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Abstract

We study effect propagation in a causal directed acyclic graph (DAG), with the goal of
providing a flow-based decomposition of the effect (i.e., change in the outcome variable) as
a result of changes in the source variables. We first compare various ideas on causality to
quantify effect propagation, such as direct and indirect effects, path-specific effects, and
degree of responsibility. We discuss the shortcomings of such approaches and propose a
flow-based methodology, which we call recursive Shapley value (RSV). By considering a
broader set of counterfactuals than existing methods, RSV obeys a unique adherence to
four desirable flow-based axioms. Further, we provide a general path-based characterization
of RSV for an arbitrary non-parametric structural equations model (SEM) defined on
the underlying DAG. Interestingly, for the special class of linear SEMs, RSV exhibits a
simple and tractable characterization (and hence, computation), which recovers the classical
method of path coefficients and is equivalent to path-specific effects. For non-parametric
SEMs, we use our general characterization to develop an unbiased Monte-Carlo estimation
procedure with an exponentially decaying sample complexity. We showcase the application
of RSV on two challenging problems on causality (causal overdetermination and causal
unfairness).

Keywords: Structural causal model, attribution, effect decomposition, Shapley value,
Monte-Carlo estimation

1. Introduction

A fundamental problem in causal analysis is to quantify effect propagation; namely, given
a change in the outcome variable (effect) that is driven by changes at the source nodes
in a causal graph, how does the effect flow through the graph? This question relates to
various foundational ideas on causality, including direct and indirect effects (Pearl, 2001),
path analysis (Wright, 1934; Duncan, 1966; Goldberger, 1972) and path-specific effects
(Pearl, 2001), degree of responsibility (Chockler and Halpern, 2004), explanations (Halpern
and Pearl, 2005), mediation analysis (Baron and Kenny, 1986; MacKinnon et al., 2007;
Imai et al., 2010), information flow (Ay and Polani, 2008), causal influence (Janzing et al.,
2013), and effect decomposition (Kitagawa, 1955; Blinder, 1973; Oaxaca, 1973; Alwin and
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Hauser, 1975; Fortin et al., 2011; Chernozhukov et al., 2013). In this work, we study
the effect propagation problem on a causal directed acyclic graph (DAG) with arbitrary
non-parametric structural equations. Such a fairly general framework captures a broad
spectrum of causal systems and has found applications in political science (Imai et al.,
2011), epidemiology (VanderWeele et al., 2012), ecology (Weible et al., 2004) and wage
inequality (Firpo and Pinto, 2016), to name a few.

X1

X22X1 = X3 = 3X1

Y = 5X1 + X2 + X3

Figure 1: An example of a causal graph with linear structural equations. The source variable X1

(without parents) is set exogenously, X2 = 2X1, X3 = 3X1, and Y = 5X1 +X2 +X3.

To build intuition, consider the causal graph in Figure 1, where the underlying structural
equations are linear and deterministic (no error / noise terms present). Suppose the source
variable X1 changes from a value of 0 (background) to 1 (foreground), causing the outcome
variable Y to change from 0 to 10. How does this effect (10) of the change in X1 propagate
through the DAG? Given the linear equations, an intuitive answer is to express the effect
in terms of the corresponding edge weights / path coefficients (Wright, 1918, 1934; Alwin
and Hauser, 1975):

• Path X1 → X2 → Y carries 2 units of the total effect.

• Path X1 → Y carries 5 units of the total effect.

• Path X1 → X3 → Y carries 3 units of the total effect.

This decomposition of (2, 5, 3) along the three channels sums up to the total effect of 10,
which is desirable. However, quantifying effect propagation is not as straightforward when
the underlying structural equations are non-linear and earlier work, including Wright (1934)
and Alwin and Hauser (1975), assumes linear equations. Motivated by this shortcoming,
Pearl (2001) introduced natural direct and indirect effects, which are well-defined for non-
linear equations and recover the above-mentioned seemingly natural decomposition for linear
equations. However, the natural direct and indirect effects do not necessarily sum to the
total effect, which is rather “strange” (quoted from Pearl (2001)).

To see this, consider the causal graph in Figure 2 with the following non-linear equations:

X1 exogenous

X2 = X1

Y = X1X2.

In particular, the outcome involves an interaction of X1 and X2. Similar to the previous
example, suppose the source variable X1 changes from 0 to 1, causing Y to change from 0 to
1. How does this effect (change in Y ) propagate through the two channels X1 → X2 → Y
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X1

X2

Y

Figure 2: An example of a two-channeled graph. X1 → X2 → Y is the indirect channel with X2

being the mediator and X1 → Y is the direct channel.

(indirect) and X1 → Y (direct)? As we elaborate in §3, both the natural direct and indirect
effects equal 0, implying such a decomposition explains none of the total effect. The key
reason driving this behavior is that direct (indirect) effect only considers one counterfactual,
i.e., when computing effect propagated through the direct (indirect) channel, edges on the
indirect (direct) channel are assumed to be inactive. As we will see, by allowing for a
broader set of counterfactuals, the proposed approach will overcome this limitation and
always explain 100% of the effect, irrespective of the underlying equations being linear or
non-linear.

A further challenge to quantify effect propagation is to allow for the possibility of mul-
tiple source variables changing simultaneously and letting the effect flow through multiple
mediators, as opposed to a single block of mediators (Zhang and Bareinboim (2018b) call
it “en bloc”), as shown in Figure 3. For instance, in domains such as school admissions,
credit approval, and wage discrimination, it is often of interest to quantify causal unfairness
(Kilbertus et al., 2017; Kusner et al., 2017; Chiappa, 2019), which can be driven by simul-
taneous changes in multiple protected attributes. A desirable property in such a setting is
flow conservation, i.e., the total effect (due to changes at all the source nodes) flows down
the DAG while obeying flow-in equals flow-out at each node (formally defined in §2). To
the best of our knowledge, most state-of-the-art approaches are either not well-defined in
such a setting or fail to obey flow conservation, primarily due to their inability to account
for multiple counterfactuals, which is important in applications with multiple moving pieces
(e.g., multiple source variables changing or multiple variables mediating the effect). From
both a foundational and a practical point-of-view, this is unsatisfying.

One possibility to characterize the direct effect of multiple source variables changing
simultaneously is via k-way interaction effects; i.e., let the changed values of race and
sex propagate only through the red direct links in Figure 3 (2-way effect) and compute the
corresponding difference in the outcome variable (income). However, such a way of thinking
leads to exponentially many effects (one for each possible combination of the source nodes).
In addition, when one sums up all of these interaction effects, they do not necessarily equal
the total effect, which is again undesirable. To see this, consider the Figure 4 setup.

X1 X2

Y

Figure 4: A simple graph to illustrate 2-way interaction effects.
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race age sex

edu ms hrs

inc

Figure 3: A DAG with multiple source variables (race, age, and sex) and multiple mediators
(edu, ms, and hrs). We re-visit this DAG in §7 to illustrate how RSV quantifies causal
unfairness (effect propagated via the “unfair” thick red edges) when multiple sensitive
attributes (race and sex) change simultaneously and the underlying dynamics are non-
linear.

Let y = f(x1, x2) with the source variables (x1, x2) changing from (0, 0) to (1, 1). The
1-way effects correspond to the two direct effects (one for X1 and one for X2):

θ1 := f(1, 0)− f(0, 0)

θ2 := f(0, 1)− f(0, 0).

There is one 2-way effect, which corresponds to changing both the source variables:

θ12 := f(1, 1)− f(0, 0).

There are no k-way effects for k ≥ 3 since there are only 2 source variables. On adding all
of these effects, we get

θ1 + θ2 + θ12 = f(1, 0) + f(0, 1) + f(1, 1)− 3f(0, 0).

However, the latter does not necessarily equal the total effect, which is f(1, 1) − f(0, 0).
Naturally, θ12 equals the total effect, but such a view provides no insight into how to
decouple this interaction effect in terms of the underlying contributing factors. Even in a
setting as simple as Figure 4 (i.e., no mediators), being able to decouple the total effect is
important and analogous to Shapley value, which is a well-accepted concept in economics. In
particular, as discussed in Friedenberg and Halpern (2019), one potential application of such
a decomposition is in “legal ascription of responsibility”. In fact, this has been discussed
in the legal literature as well, where Ferey and Dehez (2016) motivate it as “fairness of the
apportionment” from an “ex post perspective”. To dive deeper, consider the “Tragedy of
the Commons” example from Friedenberg and Halpern (2019):

100 fishermen live by a lake. If at least 10 of them overfish this year, then the
entire fish population of the lake will die out. Each fisherman overfishes. By the
end of the year, the entire fish population has died out.

Here, we can define k-way interaction effects for k ∈ {1, · · · , 100}. All of them will equal 0
for k < 10 and equal 1 for k ≥ 10. However, such a view gives no insight into individual-
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level responsibility.1 On the other hand, the Shapley value assigns a responsibility equal
to 1/100 to each fisherman, which given their symmetric behavior, is a fair apportionment
from an ex post perspective.

This work aims to develop a principled framework to quantify effect propagation in
causal DAGs with linear / non-linear structural equations. While obeying intuitive prop-
erties such as the effect decomposition adding up to the total effect (source efficiency) and
obeying flow conservation, our framework is flexible enough to allow for the possibility
of simultaneous changes at an arbitrary number of source nodes. Note that such prop-
erties represent one possible way to operationalize the notion of fair apportionment from
an ex post perspective. We reckon there might be other sets of properties2 (and context-
specific knowledge could be useful in determining which properties are relevant), but we
show uniqueness to four desirable axioms under the posited properties. While doing so,
we do not impose any additional assumption on the graph topology, besides being a DAG,
and hence, allow for multiple mediators. When the graph has no mediators, our framework
recovers Shapley value. In addition, it goes a step beyond and is able to decouple the total
effect in more involved settings (i.e., with mediators), while accounting for a multitude of
non-trivial interaction effects. As such, our proposal can be seen as a generalization of SV
to graphs with mediators. The main contributions of this work are as follows.

First, we use the language of causal graphs to formally state the underlying attribution
/ effect propagation problem. The framework is general enough to capture an arbitrary
causal graph as long as the underlying graph topology contains no cycles (DAG). We use
our problem definition to highlight some intuitive properties (source efficiency and flow
conservation) that any methodology to quantify effect propagation should satisfy.

Second, we develop a flow-based methodology to quantify effect propagation, which we
call recursive Shapley value (RSV). As illustrated in Figure 5, RSV employs a top-down
principle by first attributing to the source nodes and then quantifying how the effect flows
down the DAG. Such a top-down principle generalizes a number of existing node-based
attribution techniques. On the foundational front, we establish that by considering a broad
spectrum of counterfactuals, RSV uniquely obeys a set of natural flow-based axioms (Theo-
rem 4). We further show that adherence to such axioms result in RSV satisfying a number
of intuitive properties (implementation invariance, sensitivity, monotonicity, and affine scale
invariance) discussed in recent literature (Sundararajan et al., 2017; Sundararajan and Na-
jmi, 2020). On the implementation front, we provide a closed-form characterization for
RSV under both linear (Theorem 6) and non-linear 3 (Theorem 8) SEMs. Our charac-
terization for the linear model recovers the classical method of path coefficients (Wright,
1918, 1934) and is equivalent to path-specific effects advocated by Pearl (2001), whereas for
non-parametric (possibly non-linear) models, the decomposition provided by RSV sums up

1. Of course, this is not meant to diminish the importance of such interaction effects from an ex ante
perspective, where one is interested in the impact of (possibly multiple) interventions on the outcome
variable. However, that is not our objective in this work.

2. In fact, Friedenberg and Halpern (2019) discuss this caveat as well: “words like “blame” have a wide
variety of nuanced meanings in natural language. While we think that the notion that we are trying to
capture is useful, it corresponds at best to only one way that the word “blame” is used by people.” So
do Chockler and Halpern (2004): “We cannot say that a definition is “right” or “wrong”.”

3. All results for the non-linear case hold more generally for an arbitrary non-parametric SEM, as it will
become clear in §5.
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to the total effect (an implication of the more fundamental flow-based axioms). We use our
characterization for the non-parametric models to develop a Monte-Carlo estimation scheme
and analyze the quality of our estimator (Proposition 10), which is illustrated through a
numerical study. Subsequently, we show how RSV facilitates non-linear mediation analysis
to quantify causal overdetermination and causal unfairness and contrast it with existing
ideas such as degree of responsibility and path-specific effects.

Third, we provide a comprehensive view of existing approaches to effect propagation.
In particular, we show how various existing techniques in the causality literature operate
and shed light on their shortcomings via simple examples. Interestingly, most existing
approaches do not result in the decomposition adding up to the total effect. To the best of
our knowledge, this is the first work to understand the effect propagation literature using a
common framework.

10 X1

X2 X3

Y

X1

X2

2

X3

3

Y

5

X1

X2 X3

Y

2

X1

X2 X3

Y

3

Figure 5: Illustrating RSV on the causal graph from Figure 1. First (see the leftmost plot), RSV
attributes the total effect of 10 to the source node 1. Second (see plot #2), node 1’s at-
tribution (10) is decomposed among its outgoing edges by evaluating their contributions
via the following counterfactual questions: how much attribution would node 1 have
received had edge (1, 2) not propagated the change at node 1? This results in edge (1, 2)
receving a flow of 2, edge (1, Y ) a flow of 5, and edge (1, 3) a flow of 3. Third (see plot
#3), to propagate down the flow node 2 receives, RSV evaluates the attribution node 2
would have received had edge (2, Y ) not communicated the change at node 2. Finally
(see the rightmost plot), RSV repeats the exercise at node 3.

Outline The remainder of the paper is organized as follows. In §2, we formally state
the effect propagation problem and use such formalism to discuss existing approaches and
their shortcomings in §3. We then propose the recursive Shapley value (RSV) approach
and establish its desirability in §4, in addition to discussing its connections with the exist-
ing works. We characterize RSV for both linear and non-parametric (possibly non-linear)
structural equations models and discuss its exact computation in §5, followed by developing
a Monte-Carlo estimation scheme in §6. We then showcase applications in §7 and discuss
concluding remarks in §8. Technical details are deferred to the appendices.

2. Problem formulation

We start by formulating the problem under consideration. First, we define the causal graph
of interest (§2.1) and subsequently, formally present the effect propagation problem (§2.2).
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2.1 Causal graph setting

Let G = (N+,E) denote the underlying directed acyclic graph (DAG), with node set N+ :=
{1, . . . , n, n + 1} and edge set E. A node without parents is called a source node and we
allow for multiple such nodes, with N0 denoting their collection. The outcome variable
corresponds to the sink node (node without children) and we let it correspond to node n+1
without loss of generality. We focus on a single sink node and note that it is straightforward
to generalize our framework to multiple sink nodes (multivariate outcome). We let N :=
N+ \ {n+ 1} = {1, . . . , n} be the set of non-sink nodes. Given an edge (i, j) in E, node i is
referred to as a parent of node j whereas node j is a child of node i. For an arbitrary node
j ∈ N+, we define Pj to be the set of its parents:

Pj := {i ∈ N : (i, j) ∈ E} ∀j ∈ N+.

Naturally, nodes in N0, i.e., source nodes, have no parents: Pj = ∅ for all j ∈ N0. Similarly,
for node i ∈ N+, we define Ci to be the set of its children:

Ci := {j ∈ N+ : (i, j) ∈ E} ∀i ∈ N+,

and note that node n+ 1, i.e., the sink node, has no children, i.e., Cn+1 = ∅.
Corresponding to each non-outcome node i ∈ N is a variable 4 Xi ∈ R whereas the

variable corresponding to the outcome node n + 1 is denoted by Y ∈ R. For ease of
notation, we will sometimes denote Y by Xn+1. We define the vector of all non-outcome
variables as X := (X1, . . . , Xn) and a subset of this collection as XN := (Xi)i∈N for N ⊆ N.
Each non-source variable Xi is a function of its parents XPi

and a corresponding noise
variable Ui, leading to the following structural equations F := [fi(·)]i∈N+\N0

in the DAG:

xi = fi(xxxPi
, ui) ∀i ∈ N+ \ N0.

Non-capitalized symbols are used to denote the realizations of the corresponding random
variables. The noise variables U := (Ui)i∈N+\N0

are drawn from some exogenous distribution
D, which is independent of (X, Y ). The values of the source variables XN0 are set exogenously
and independently of each other. Mediating variables or mediators (variables that are
neither source nor outcome, i.e., XN\N0

) propagate the source nodes values down to the
outcome node n + 1. Given source variables XN0 = xxxN0 and noise variables U = uuu, we
denote the observed outcome at node n+ 1 by

f(xxxN0 ,uuu).

Clearly, conditioned on the noise U = uuu, the model is deterministic and the source variables
realizations XN0 = xxxN0 are sufficient to determine the outcome. Hence, we denote the
expected outcome by

g(xxxN0) := E[f(xxxN0 ,uuu)],

4. Our framework is well-defined and all our results go through for multi-dimensional variables as well, i.e.,
each non-outcome node i ∈ N corresponding to a multi-dimensional variable. However, to be consistent
with the literature on causal graphs, we treat each variable as being one-dimensional.
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where the expectation is over the distribution of uuu. Similar to Definition 7.1.1 in Pearl
(2009), the structural causal model (or causal graph) is denoted by M := (G,F,D) 5. Given
our focus on effect propagation, we assume M to be fixed and known throughout the paper,
as do related notions such as direct, indirect, and path-specific effects (Pearl, 2001) and
degree of responsibility (Chockler and Halpern, 2004).

2.2 The effect propagation problem

Next, we use the setup previously defined to formally state the effect propagation problem.
Similar to Pearl (2001), we are interested in two realizations of the source variables XN0 :

xxx
(1)
N0

:= (x
(1)
i )i∈N0 (background)

xxx
(2)
N0

:= (x
(2)
i )i∈N0 . (foreground)

There is an underlying temporal / interventional aspect such that the background value
changes to the foreground value. To tie our terminology with existing literature, note
that our “background” is similar to the “reference” value x∗ in Pearl (2001). Given noise
realization U = uuu, the structural causal model is deterministic and hence, the changes at
source nodes dictate changes in the entire graph. The background value defines the baseline
outcome

y
(1)
uuu := f(xxx

(1)
N0
,uuu),

and analogously

y
(2)
uuu := f(xxx

(2)
N0
,uuu).

The super-script in y
(t)
uuu captures the dependence on the source values xxx

(t)
N0

for t ∈ {1, 2}
whereas the sub-script captures the dependence on the noise uuu. Hence, the change in the
outcome equals

δuuu := y
(2)
uuu − y(1)

uuu ,

and the expected change equals

δ := E[δuuu] = E[y
(2)
uuu − y(1)

uuu ] = E[y
(2)
uuu ]− E[y

(1)
uuu ] = y(2) − y(1),

where y(t) := E[y
(t)
uuu ] = g(xxx

(t)
N0

) for t ∈ {1, 2} with the expectation over uuu. Note that this
delta effect, i.e., the (expected) change in the outcome, is entirely driven by the changes at
the source nodes and their propagation through the DAG. This is because all the exogenous
sources of variation are captured by the source nodes.

The question here is how to attribute the expected change in Y (i.e., δ) to the changes
at the source nodes and their propagation through the edges of the graph. If the graph has

5. Note that Pearl (2009) defines a structural causal model (Definition 7.1.1) as the triplet (V,F,U) where
V := (X, Y ), whereas we define it as (G,F,D). The two definitions are equivalent as we use G instead of
V and D instead of U.
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only one node, i.e., n = 1, such a task is straightforward since the only node is completely
responsible for the expected change and thus, receives 100% attribution, which propagates
through the only edge in the graph. However, if the graph has multiple nodes, i.e., n >
1, then non-trivial interactions are possible. Given an arbitrary causal graph, is there a
systematic way to disentangle such interactions and quantify effect propagation via flow-
based attribution, i.e., the amount of effect each edge carries?

In order to quantify effect propagation, we introduce the following notation. We use
[πi]i∈N to capture the attribution to nodes and [πij ](i,j)∈E to denote the attribution to edges
(attribution flow). The scale of both is in terms of δ. As discussed above, all the exogenous
variation is captured by the source nodes. Hence, a desirable property is source efficiency :∑

i∈N0

πi = δ.

In addition, it seems natural to ensure conservation of flow at each node, that is, flow in
equals flow out.

Definition 1 (Flow conservation) At each internal node j ∈ N \ N0,∑
i∈Pj

πij =
∑
k∈Cj

πjk.

For source nodes, ∑
i∈N0

∑
j∈Ci

πij = δ.

Finally, at sink node, ∑
i∈Pn+1

πi,n+1 = δ.

Despite being a desirable feature, flow conservation does not map to a unique attribu-
tion flow [πij ](i,j)∈E in general, making the task of attribution non-trivial. As mentioned
earlier, consistent with the related literature (Pearl, 2001; Chockler and Halpern, 2004), the
underlying causal graph M = (G,F,D) is assumed to be fixed and known in this work. It
is worth emphasizing that attribution, i.e., quantifying effect propagation, is a challenging
problem in itself, which complements the ongoing developments in causal discovery (Peters
et al., 2017; Glymour et al., 2019).

Remark 2 (Individual-level effect) In the problem formulation above, we focus on the
population-level effect (or the average treatment effect) as we take an expectation over uuu and
aim to decompose δ (as opposed to δuuu). We note that our framework works for individual-
level effect as well since given uuu, all of our machinery can be recycled to propagate δuuu through
the graph. However, a practical challenge might be that uuu is unobserved. To overcome this,
we can use the “abduction, action, and prediction” framework of Pearl et al. (2016). We
elaborate further in the context of the causal unfairness application (see Remark 11).
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3. Existing approaches and their limitations

As stated in §1, quantifying effect propagation relates to various concepts on causality. To
be concise, we review direct and indirect effects (§3.1), path-based techniques (§3.2), and
degree of responsibility (§3.3) as these notions seem to be the closest to our work. As we
illustrate below, each of these notions either fails to satisfy the seemingly natural property
of source efficiency or is not even well-defined beyond the class of linear SEMs. On the other
hand, in addition to satisfying source efficiency, our flow-based approach (§4) uniquely obeys
a set of desirable axioms (e.g., flow conservation and attributing zero flow to a redundant
edge) and is well-defined for a non-parametric SEM with arbitrary DAG structure.

It is also worth highlighting ideas such as Blinder-Oaxaca decomposition (Kitagawa,
1955; Blinder, 1973; Oaxaca, 1973), which attempt to quantify effect decomposition and un-
derstand direct and indirect discrimination in a regression setting. Our flow-based approach
(§4) naturally aids such quantification in a much more general setting than regression. We
discuss one such application in §7 (causal unfairness).

We note that in addition to the causality literature, our work intersects with the bur-
geoning explainable AI / interpretable ML literature. We provide an in-depth discussion
of this literature (and its connections to the proposed approach) in our preliminary work
(Singal et al., 2021). Therefore, for brevity, we primarily center our discussion here on the
causality literature.

3.1 Direct and indirect effects

Pearl (2001) considers a graph with two channels (see Figure 2 in §1) and quantifies di-
rect (effect propagated through the direct channel X1 → Y ) and indirect (effect mediated

through the indirect channel X1 → X2 → Y ) effects. Given background x
(1)
1 and foreground

x
(2)
1 with noise (u2, u3), Pearl (2001) defines natural direct effect as the following difference:

f3(x
(2)
1 , f2(x

(1)
1 , u2), u3)− f3(x

(1)
1 , f2(x

(1)
1 , u2), u3). (1)

That is, in the output equation f3(x1, x2, u3), the source variable changes from x
(1)
1 to x

(2)
1

while the intermediate variable X2 is held at its background value f2(x
(1)
1 , u2). On the other

hand, for the natural indirect effect, the intermediate variable changes from f2(x
(1)
1 , u2) to

f2(x
(2)
1 , u2) while the source variable is held at its background value x

(1)
1 :

f3(x
(1)
1 , f2(x

(2)
1 , u2), u3)− f3(x

(1)
1 , f2(x

(1)
1 , u2), u3). (2)

Figure 6 provides a visual description of (1) and (2) in terms of active (solid black) and
inactive (dashed red) edges (formally defined in §4). As alluded to in §1, it should be clear
that such a notion only allows for one possible counterfactual. The average direct and
indirect effects are defined by taking an expectation over the noise (u2, u3).

A key limitation of such a definition is that it fails to capture the interactions between
the two channels, resulting in it violating source efficiency. We illustrate this in Example 1.

Example 1 (Interaction) Consider the graph in Figure 2 with the following structural

equations: X2 = X1 and Y = X1X2 (interaction). Suppose background x
(1)
1 = 0 and
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X1

X2

Y

X1

X2

Y

(a) Natural direct effect

X1

X2

Y

X1

X2

Y

(b) Natural indirect effect

Figure 6: Illustration of (a) direct and (b) indirect effects (Pearl, 2001). Under the direct effect, as

shown in the first graph, the foreground value x
(2)
1 propagates through the direct edge

(1, 3) (active) but not through the indirect edge (1, 2) (inactive). (Node 3 denotes the
outcome Y .) Direct effect corresponds to the difference between the first two graphs.

Under the indirect effect, as shown in the third graph, the foreground value x
(2)
1 prop-

agates through the indirect edge (1, 2) (active) but not through the direct edge (1, 3)
(inactive). Indirect effect corresponds to the difference between the last two graphs.

foreground x
(2)
1 = 1. Hence, x

(1)
2 = y(1) = 0 and x

(2)
2 = y(2) = 1. Both natural direct and

indirect effects as in (1) and (2) equal 0, even though the change in the outcome equals 1.
Hence, the sum of the two effects is less than the total effect. (We assumed the model in
this example to be deterministic for ease of illustration and note that it is straightforward
to introduce noise variables.)

In fact, realizing that natural direct and indirect effects do not necessarily sum up to the
total effect, Pearl (2001) himself stated such relationships to be “strange” (see discussion
below Equation (23) in Pearl (2001)). The notion of reverse indirect effect (Pearl, 2010)
can fix this limitation. However, as we discuss in Appendix B, it is rather an ad hoc fix and
can result in different attributions depending on the order in which one adds the channels.
In fact, the recent work of Plecko and Bareinboim (2024) points this out as well (see §5.1
in their paper) and highlights the averaging we propose in this work as a solution.

We mention in passing the work of Zhang and Bareinboim (2018a), which generalizes
such notions to account for confounders. However, under the absence of counfounders
(which is the focus of this work), the proposal of Zhang and Bareinboim (2018a) suffers
from the above-mentioned limitations as it reduces to Pearl (2001).

Beyond the simple graphical structure as in Figure 6 (one source variable and one
mediator), it is possible to generalize the notion of direct and indirect effects to graphs
with multiple source variables and multiple mediators. In fact, Pearl (2001) does so via
path-specific effects, which we discuss next.

3.2 Path-based techniques

Path-based techniques decompose the total effect by attributing it to the underlying paths
in the DAG and date back to the method of path coefficients, introduced over a century ago
(Wright, 1918) and discussed in various fields, including mathematical statistics (Wright,
1934), sociology (Duncan, 1966; Alwin and Hauser, 1975; Fox, 1980), and econometrics
(Goldberger, 1972). As alluded to in §1, though the path coefficients method handles the
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case of linear SEMs (by appropriately defining path coefficients using the underlying edge
weights, as we did for the example in Figure 1), its key limitation is the inability to generalize
beyond the class of linear SEMs.

Recognizing this limitation, Pearl (2001) defined path-specific effects, where given a path
from a source node to the outcome node, one only allows the foreground value of the source
node to be propagated along the edges in the path (and all other edges are inactive). The
corresponding path-specific effect is the difference between the resulting (expected) outcome
value and the baseline outcome value y(1). Despite being well-defined for non-parametric
SEMs, path-specific effects can suffer from the same key limitation as direct and indirect
effects, i.e., the sum of path-specific effects might not add up to the total effect. For instance,
in Example 1, the path-specific effect of both the direct path (X1 → Y ) and the indirect
path (X1 → X2 → Y ) equals 0, since the absence of either of the paths results in a failure
to capture the interaction effect X1X2. As with direct and indirect effects, the key reason
for this shortcoming is that path-specific effects only allow for one counterfactual, i.e., all
other edges are assumed to be inactive.

Recent path-based works include Zhang and Bareinboim (2018b) and Henshaw et al.
(2020). Though non-parametric in nature, Zhang and Bareinboim (2018b) tackle a different
problem, as their goal is to decompose the covariance between a source variable and the
outcome variable as a sum over the unblocked paths. On the other hand, though we do
not discuss the path-specific causal derivative / selection gradient (Henshaw et al., 2020) in
detail, it is straightforward to verify that it suffers from the same limitation as path-specific
effects (decomposition not adding up to the total effect).

3.3 Degree of responsibility

Motivated by “causality typically [being] treated an all-or-nothing concept”, Chockler and
Halpern (2004) study a similar problem and propose degree of responsibility to quantify
attribution to nodes. To illustrate the intuition behind degree of responsibility, consider
the following example, which is adapted from Chockler and Halpern (2004).

X1 X2 X3

Y

Figure 7: The graph corresponding to the voting example (Example 2).

Example 2 (Voting) There are two candidates (1 and 2) in an election and three voters.
For each voter i ∈ {1, 2, 3}, source variable Xi ∈ {0, 1, 2} denotes the candidate voter i votes
for, where 0 means the voter is undecided. We are interested in the outcome Y ∈ {0, 1},
which denotes whether the first candidate wins:

Y =

{
1 if

∑3
i=1 I{Xi = 1} >

∑3
i=1 I{Xi = 2}

0 otherwise.
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I{·} denotes the indicator function and the underlying graph is shown in Figure 7. Consider
the following two scenarios:

1. Background xxx(1) = (0, 0, 0) and foreground xxx(2) = (1, 1, 1), i.e., all three voters vote
for candidate 1 and hence, candidate 1 wins the election 3-0.

2. Background xxx(1) = (0, 0, 0) and foreground xxx(2) = (1, 1, 2), i.e., the first two voters
pick candidate 1 and the third voter picks candidate 2, meaning candidate 1 wins 2-1.

In the words of Chockler and Halpern (2004),

“If someone wins an election [3-0], then each person who votes for [them] is less
responsible for the victory than if [they] had won [2-1].”

To operationalize this intuition, Chockler and Halpern (2004) define degree of responsibility
of A for B as 1/(κ+1), where κ “is the minimal number of changes that have to be made to
obtain a contingency where B counterfactually depends on A”. In the first scenario (3-0),
this notion attributes a value of 1/2 to each of the 3 voters, as 1 change is needed for a vote
to be critical. On the other hand, in the second scenario (2-1), the degree of responsibility
of each of the 2 voters (for candidate 1) is 1, as each vote is critical (and attribution to the
remaining 1 voter is 0).

Similar to Pearl (2001), a key limitation of such a notion is that it violates source effi-
ciency, as should be clear from Example 2. In fact, Chockler and Halpern (2004) themselves
stated that a better name for their notion may have been “degree of criticality” (see their
discussion in §5) by pointing out the following example:

“For example, consider a voter who voted for [candidate 1] in the case of a 1-0
vote and a voter who voted for [candidate 1] in the case of a 100-99 vote. In
both case, that voter has degree of responsibility 1. While it is true that, in both
cases, that voter’s vote was ciritical, in the second case, the voter may believe
that his responsibility is more diffuse.”

Recognizing this, Chockler and Halpern (2004) discussed the possibility of using Shapley
value to define responsibility, which motivates RSV.

4. The recursive Shapley value (RSV) approach

We first provide the intuition behind the proposed approach (§4.1) and then formally in-
troduce it (§4.2). Subsequently, we establish the flow-based axioms (§4.3) obeyed by RSV.
Finally, we discuss how RSV connects to existing approaches in the literature (§4.4). We
note that the presentation here generalizes our preliminary work (Singal et al., 2021) since
the model here has noise variables U, which were absent before.

Before providing intuition, we introduce some notation. Without loss of generality, we
insert node 0 (super-source) to the DAG G. This node has no parent but has |N0| outgoing
edges (one to each of the source node): (0, j) for j ∈ N0. The set of edges is re-defined to
include these edges: E ← E ∪ {(0, j) : j ∈ N0}. Similarly, the set of nodes is re-defined:
N ← N ∪ {0} and N+ ← N+ ∪ {0}. The original set of source nodes is still denoted by N0
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and this collection does not contain the super-source node 0. For each non-outcome node
i ∈ N, we define Ei := {(i, j) : j ∈ Ci} as the set of its outgoing edges, implying (E0, . . . ,En)
forms a partition of E. The proposed flow-based approach will quantify edge attributions
[πij ](i,j)∈E. These edge attributions are used to define the node attributions [πj ]j∈N\{0} as
the corresponding incoming flow:

πj :=
∑
i∈Pj

πij ∀j ∈ N \ {0}.

It will help to formalize the notion of an active or inactive edge. In our causal graph
setting, the role of an edge is to propagate information. As a result, motivated by Pearl
(2001) (recall Figure 6), if an edge (i, j) ∈ E is active, then it propagates the updated value
xi from node i to node j, whereas if it is inactive, then it does not propagate the updated
value, meaning node j receives the background value. An illustration is provided in Figure
8.

0 X1 X2 Y

Figure 8: Illustrating active / inactive edges. Here, E = {(0, 1), (1, 2), (1, 3), (2, 3)} is the set con-
taining all edges in the DAG (active and inactive). Node 3 denotes the outcome Y . There
are two inactive edges: (1, 3) and (2, 3) (dashed red lines). Consider arbitrary noise value

U = (u2, u3). Since edge (0, 1) is active, we set node 1 to its foreground value x
(2)
1 . As

edge (1, 2) is active and X1 is set to x
(2)
1 , node 2 receives x

(2)
1 . However, since edges (1, 3)

and (2, 3) are inactive, node 3 (Y ) receives x
(1)
1 (from node 1) and x

(1)
2 := f2(x

(1)
1 , u2)

(from node 2). Therefore, X1 = x
(2)
1 , X2 = f2(x

(2)
1 , u2), and Y = f3(x

(1)
1 , x

(1)
2 , u3). Note

that if edge (0, 1) had been inactive, then the variables would have been set as follows:

X1 = x
(1)
1 , X2 = f2(x

(1)
1 , u2), and Y = f3(x

(1)
1 , x

(1)
2 , u3).

In general, we consider a subset E ⊆ E of active edges and arbitrary noise U = uuu. Let

xxx(1)(uuu) denote the background corresponding to uuu, i.e., x
(1)
i (uuu) denotes the value at node

i ∈ N+ \ {0} given (xxx
(1)
N0
,uuu). Then, each source node i ∈ N0 is set as a function of E as

follows:

xi(E) :=

{
x

(1)
i if (0, i) /∈ E
x

(2)
i if (0, i) ∈ E.

(3a)

Leveraging the underlying structural equations, we set each non-source node j ∈ N+ \{N0∪
{0}} as a functon of active edges E as follows:

xj(E,uuu) = fj((xij(E,uuu))i∈Pj
, uj), (3b)

where for all i ∈ Pj ,

xij(E,uuu) :=

{
x

(1)
i (uuu) if (i, j) /∈ E
xi(E,uuu) if (i, j) ∈ E.

(3c)

14



Axiomatic effect propagation in structural causal models

We note that such a construction is motivated by Pearl (2001) (see Figure 3 in Pearl (2001)
for example). Notation xij is new and xn+1(E,uuu) corresponds to the outcome, which we
denote by yuuu(E). Analogous to the notation in §2.2, we define y(E) := E[yuuu(E)] by taking
the expectation over uuu. Thus, given arbitrary E ⊆ E, the notation y(E) is well-defined,
using which we provide intuition next. This notation would be critical to define RSV,
since unlike existing notions, RSV allows for a broad spectrum of counterfactuals in terms
of which edges are active. (Note that the discussion below assumes basic knowledge of
Shapley value (Shapley, 1953), a brief primer for which is presented in Appendix A.)

4.1 Intuition guiding the RSV approach

First, the proposed RSV approach attributes to the source nodes. Then, it quantifies effect
propagation by flowing down the source node attributions on the outgoing edges (top-down).
To convey intuition, we illustrate the RSV mechanics on a relatively simple DAG (see Figure
9) with arbitrary F (structural equations) and D (noise distribution).

0

X1 X2

X3 X4

Y

Figure 9: DAG used to illustrate the intuition behind the proposed RSV approach.

Recall that XN0 changes from xxx
(1)
N0

to xxx
(2)
N0

, resulting in the expected outcome changing

from y(1) = E[y
(1)
uuu ] to y(2) = E[y

(2)
uuu ]. Since the source nodes N0 = {1, 2} capture all the

exogenous source of variation, the expected change in Y is entirely driven by the propagation
of changes at (X1, X2). As a result, we begin by attributing to the source nodes, which is
done via the following game at the super-source node 0. The collection of outgoing edges
from node 0, i.e., E0 = {(0, 1), (0, 2)}, is the set of players. Given a subset of players
(coalition) E0 ⊆ E0, we define the corresponding characteristic function as

v0(E0) := y(E0,E1,E2,E3,E4).

Recall the notation y(·) is defined in (3). The downstream edges (E1,E2,E3,E4) are set
to be active in this game. Then, the attributions received by edges (0, 1) and (0, 2), i.e.,
π01 and π02, equal the SVs of this game (illustrated in Figure 10). To explicitly capture
the dependence on E = (E0,E1,E2,E3,E4) in our notation, we denote these attributions as
π01(E), π02(E), π1(E), and π2(E).

We then move down to the children of node 0, i.e., nodes 1 and 2, to understand how
the effect flows through the graph. Since node 1 has only one outgoing edge, the effect
propagation through node 1 is trivial (cf. flow conservation): π13 = π1(E). On the other
hand, quantifying the propagation of π2(E) through node 2 is challenging as there are two
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0

X1 X2

X3 X4

Y

0

X1 X2

X3 X4

Y

(a) Edge (0, 1) inactive

0

X1 X2

X3 X4

Y

0

X1 X2

X3 X4

Y

(b) Edge (0, 1) active

Figure 10: Illustration of the flow π02. The effect propagated by edge (0, 2) is quantified via its
value-add, as determined by the following counterfactual question: how much would
have been the effect (expected change in Y ) had edge (0, 2) been inactive? Note that
such a counterfactual question involves two possibilities: (a) edge (0, 1) being inactive
and (b) edge (0, 1) being active. The difference between the first two graphs captures
possibility (a) (value-add of edge (0, 2) given edge (0, 1) being inactive). On the other
hand, the difference between the last two graphs captures possibility (b) (value-add of
edge (0, 2) given edge (0, 1) being active). Edge (0, 2) receives an attribution equal to a
(weighted) average of these two counterfactuals, where the weights are determined via
SV (1/2 in this example). We note that all downstream edges (E1,E2,E3,E4) are set to
be active in both the possibilities.

outgoing edges: E2 = {(2, 3), (2, 4)}. Our goal is to decouple the flow received by node 2
into its two outgoing edges. To do so, we aim to understand how much does the presence
of each of these two edges contributes to π2(E). Recall that the upstream game at node
0 assumed all the downstream edges to be active. Thus, node 2 receives an attribution of
π2(E0,E1,E2,E3,E4) if both the edges in E2 are active. To decompose π2 into π23 and π24,
following counterfactual questions seem natural:

• Had both the edges in E2 been inactive, how much flow would have propagated through
node 2?

• What if edge (2, 3) was inactive and (2, 4) active (and vice versa)?

In the upstream game at node 0, had both the edges (2, 3) and (2, 4) been inactive, then
the resulting characteristic function would have been y(E0,E1, ∅,E3,E4) ∀E0 ⊆ E0, meaning
edge (0, 2) (and thus, node 2) would have received no flow at all, i.e., π2(E0,E1, ∅,E3,E4) = 0.
Therefore, edges (2, 3) and (2, 4) are entirely responsible for the flow π2(E) through node
2. As a result, flow conservation seems logical: π2(E) = π23 + π24. However, this does not
uniquely determine the flow on the two edges: π23 and π24.

An intuitive scenario is if an edge is redundant, i.e., the attribution received by node 2
is independent of the edge being active or inactive. Then, assigning zero flow on such an
edge seems apt (nullity). A second intuitive scenario corresponds to both the edges in E2

being equivalent. For instance, if the value attributed to node 2 equals π2(E)/2 if either of
the two edges is active, then decoupling π2(E) equally between them aligns with intuition
(symmetry).
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We operationalize such intuition by considering the following game at node 2. The set
of outgoing edges (E2) maps to the set of players. For arbitrary subset of players (coalition)
E2 ⊆ E2, we define the characteristic function as the attribution received by node 2 from
the upstream game at node 0 (hence, recursive):

v2(E2) := π2(E0,E1, E2,E3,E4).

The flows received by edges (2, 3) and (2, 4), i.e., π23 and π24, are defined to be the SVs of
this game (illustrated in Figures 11 and 12).

X2

X3 X4

Y

X2

X3 X4

Y

(a) Edge (2, 4) inactive

X2

X3 X4

Y

X2

X3 X4

Y

(b) Edge (2, 4) active

Figure 11: Illustration of the flow π23. The effect propagated by edge (2, 3) is quantified via its
value-add, as determined by the following counterfactual question: how much would
have been the attribution received by node 2 had edge (2, 3) been inactive? Note that
such a counterfactual question involves two possibilities: (a) edge (2, 4) being inactive
and (b) edge (2, 4) being active. The difference between the first two graphs captures to
possibility (a) (value-add of edge (2, 3) given edge (2, 4) being inactive). On the other
hand, the difference between the last two graphs captures possibility (b) (value-add of
edge (2, 3) given edge (2, 4) being active). Edge (0, 2) receives an attribution equal to a
(weighted) average of these two counterfactuals, where the weights are determined via
SV (1/2 in this example). Note that the attribution node 2 receives in each of these
four graphs still needs to be evaluated. Figure 10 illustrated this evaluatation for the
third graph here (both (2, 3) and (2, 4) active). In Figure 12 below, we show it for the
first graph ((2, 3) active but (2, 4) inactive). Computations for the second and fourth
graphs are similar (not shown to be concise).

Having computed the flow through nodes 1 and 2, we move down to the next layer of
children: nodes 3 and 4. To compute the flow through these two nodes, we recycle our logic
(in a recursive manner). For example, at the node 3 game, the players are the corresponding
outgoing edges E3. Given arbitrary coalition E3 ⊆ E3, we define the characteristic function
to be the incoming flow at node 3 from the upstream games: v3(E3) := π3(E0,E1,E2, E3,E4).

4.2 Recursive Shapley value based attribution

The formal definition of RSV involves n recursions, with each recursion being initialized
at the corresponding node j ∈ N \ {0} via the following game. The set of players includes
all the outgoing edges Ej . Given a subset of players (coalition) Ej ⊆ Ej , we define the
characteristic function to be the node j attribution from the upstream games with all other
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0

X1 X2

X3 X4

Y

0

X1 X2

X3 X4

Y

(a) Edge (0, 1) inactive

0

X1 X2

X3 X4

Y

0

X1 X2

X3 X4

Y

(b) Edge (0, 1) active

Figure 12: Illustration of the flow π02 (attribution node 2 receives) when one of its outgoing edges
(edge (2, 4)) is inactive. The four graphs here replicate the ones in Figure 10 but with
edge (2, 4) being inactive. The steps to compute π02 are identical to the ones in the
caption of Figure 10.

edges being active:

vj(Ej) := πj(E0, . . . , Ej , . . . ,En) =
∑
i∈Pj

πij(E0, . . . , Ej , . . . ,En). (4)

Given this game, the flow attributed to edge (j, k) ∈ Ej is the corresponding SV:

πjk(E) =
∑

Ej⊆Ej\{(j,k)}

wEj
(Ej)× {vj(Ej ∪ {(j, k)})− vj(Ej)} , (5)

where

wEj
(Ej) :=

|Ej |! (|Ej |−|Ej |−1)!

|Ej |!

is the SV weight function as in Appendix A. It should be clear from (4) and (5) that
πjk(E0, . . . ,En) is a function of πij(E0, . . . , Ej , . . . ,En) for Ej ⊆ Ej , where node i is a parent
of node j. The latter defines a recursion since to compute πij(E0, . . . , Ej , . . . ,En) at an
arbitrary upstream node i ∈ Pj , we use

πi(E0, . . . , Ei, . . . , Ej , . . . ,En) ∀Ei ⊆ Ei

as the characteristic function of the corresponding game at node i, as opposed to

πi(E0, . . . , Ei, . . . ,Ej , . . . ,En).

In other words, all other edges are not assumed to be active within a recursion, but only
at the initialization. The pseudocode in Algorithm 1 formalizes (and clarifies) this. When
necessary, we will use the notation vj(Ej | E−j) to highlight this difference, where E−j :=
(E0, . . . , Ej−1, Ej+1, . . . , En) and E` ⊆ E` ∀` ∈ N. Recall that the default notation vj(·)
assumes all other edges E−j to be active, i.e., vj(·) = vj(· | E−j) for all j ∈ N.
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Each recursion breaks at node 0 via the following game. The set of players is E0 and we
define this game conditioned on an arbitrary collection of downstream edges being active:
(E1, . . . , En) where E` ⊆ E`, ∀` = 1, . . . , n. For a given coalition E0 ⊆ E0, we define the
characteristic function to be the expected outcome with (E0, E−0) being the active edges
(recall (3)):

v0(E0 | E−0) := y(E0, E−0).

Given this game, the flow on edge (0, k) ∈ E0 is the corresponding SV:

π0k(E0, E−0) =
∑

E0⊆E0\{(0,k)}

wE0(E0)× {v0(E0 ∪ {(0, k)} | E−0)− v0(E0 | E−0)} .

Observe that this definition is non-recursive and hence, it breaks every recursion. The flow
attributed to super-source edges E0 equals the SVs of the node 0 game defined above but
with all downstream edges being active, i.e., E−0 is set to E−0.

Given the DAG structure, all of the n recursions are well-defined and end up evaluating
the expected outcome y(E) for various E ⊆ E. We formally state our recursive definition
of RSV in Algorithm 1 (and sub-routine Algorithm 2). Algorithm 1 outputs RSV: πRSV

jk =
πjk(E) ∀(j, k) ∈ E. Note that the two inputs N and E provided to Algorithm 1 are assumed
to include the super-source node 0 and the corresponding edges E0, i.e., N = {0, . . . , n}
and E = (E0, . . . ,En). Note that the (j, k) notation in the sub-script of RSVjk represents an
input to Algorithm 2. Also, the notation E, E, and E is used to distinguish three different
sets of edges since the recursion primarily revolves around them.

Algorithm 1 RSV(N,E)

1: for (j, k) ∈ E
2: πRSV

jk = RSVjk(E0, . . . ,En)
3: end for
4: return [πRSV

jk ](j,k)∈E

Algorithm 2 RSVjk(E0, . . . ,En)

1: if j > 0 % recursion
2: return

∑
Ej⊆Ej\{(j,k)}wEj

(Ej)×∑
i∈Pj
{RSVij(E0, . . . , Ej ∪ {(j, k)}, . . . ,En)− RSVij(E0, . . . , Ej , . . . ,En)}

3: else % base case
4: return

∑
E0⊆E0\{(0,k)}wE0(E0)× {y(E0 ∪ {(0, k)},E1, . . . ,En)− y(E0,E1, . . . ,En)}

5: end if

4.3 Flow-based axioms

Having defined RSV, we now establish its desirability by proving uniqueness to a set of
seemingly natural flow-based axioms. The first axiom is conservation of flow (recall Defi-
nition 1 in §2). The next two axioms are flow symmetry and flow nullity, as touched upon
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in §4.1. Intuitively, they require equivalent outgoing edges to receive equal flow and a re-
dundant edge to receive no flow, respectively. The final axiom advocates for flow linearity,
which we shed light upon after formally defining these axioms.

Definition 3 (Flow-based axioms) The flow-based axioms are as follows:

1. Flow conservation:
∑

k∈C0
π0k = y(2) − y(1) and

∑
i∈Pj

πij =
∑

k∈Cj
πjk ∀j ∈ N \ {0}.

2. Flow symmetry: For node j ∈ N, if (j, k) ∈ Ej and (j, `) ∈ Ej are such that vj(Ej ∪
{(j, k)}) = vj(Ej ∪ {(j, `)}) ∀Ej ⊆ Ej \ {(j, k), (j, `)}, then πjk = πj`.

3. Flow nullity: For node j ∈ N, if vj(Ej ∪ {(j, k)}) = vj(Ej) ∀Ej ⊆ Ej \ {(j, k)}, then
πjk = 0.

4. Flow linearity: For node j ∈ N, consider characteristic functions vj(·) and v′j(·).
Linearity requires πjk(vj + v′j) = πjk(vj) + πjk(v

′
j) ∀(j, k) ∈ Ej. (Notation πjk(vj)

captures the dependence of πjk on vj(·).)

Though conservation of flow is stated slightly differently than before (Definition 1), it is
easy to establish equivalence between the two. Flow linearity can be interpreted as follows.
Note that the characteristic functions [vj(·)]j∈N (defined in §4.2) in the end correspond to
the structural equations F as given arbitrary j ∈ N, vj(·) ends up evaluating v0(·), which
ultimately is a function of F. Now, let [v′j(·)]j∈N correspond to a different population of
variables X, governed by a different set of structural equations (say F′) and noise (say
D′). Linearity is the requirement that the attribution should be robust to mixing such
heterogeneous populations. In other words, one can either (1) mix the two populations first
(vj+v

′
j) and compute attribution using the mixture (πjk(vj+v

′
j)) or (2) compute attributions

on the two populations first (πjk(vj) and πjk(v
′
j)) and mix them later (πjk(vj) + πjk(v

′
j)).

Under linearity, both (1) and (2) output the same attributions.
It is possible to interpret flow symmetry and nullity using the model primitive y(·). To

do so, observe that that given node j ∈ N, if (j, k) ∈ Ej and (j, `) ∈ Ej obey

y(E ∪ {(j, k)}) = y(E ∪ {(j, `)}) ∀E ⊆ E \ {(j, k), (j, `)},

then symmetry requires the two edges two receive same flow, i.e., πjk = πj`. Similarly, if

y(E ∪ {(j, k)}) = y(E) ∀E ⊆ E \ {(j, k)},

then nullity requires edge (j, k) to receive zero flow, i.e., πjk = 0. In Theorem 4, we establish
RSV is the unique solution to these four flow-based axioms, with a proof in Appendix C.

Theorem 4 Given structural causal model M = (G,F,D), the RSV [πRSV
jk ](j,k)∈E defined via

Algorithm 1 is the unique solution to the flow-based axioms.

A direct corollary of Theorem 4 is that RSV overcomes the source efficiency violation
of most existing approaches discussed in §3. In fact, Theorem 4 implies that if one believes
in the seemingly natural flow-based axioms, then RSV is the only metric they should use
to quantify effect propagation (since it is the unique solution). To showcase the desirability
of the flow-based axioms, we illustrate them on a DAG equipped with linear structural
equations F (Example 3).
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X1

X2 X3

Y

Figure 13: The graph for Example 3. (Node 0 is not included for brevity.)

Example 3 (Linear SEM) Consider the graph in Figure 13. There is one source variable
X1. The structural equations are linear in X and have an additive noise U:

X2 = a12X1 + U2

X3 = a13X1 + U3

Y = a14X1 + a24X2 + a34X3 + U4.

Suppose the noise is mean-zero, i.e., E[U] = 0 and consider the background x
(1)
1 = 0 and

the foreground x
(2)
1 = 1. Then, the background and foreground expected outcomes equal:

y(1) = 0

y(2) = a14 + a12a24 + a13a34.

RSV outputs the following flow:

πRSV
12 = πRSV

24 = a12a24

πRSV
14 = a14

πRSV
13 = πRSV

34 = a13a34.

Interpreting conservation of flow is straightforward (flow in equals flow out). To see the
intuition behind symmetry, let a12 = a13 and a24 = a34. Then, the change at node 1 is
propagated identically through edges (1, 2) and (1, 3). As a result, these two edges receive
the same flow. To understand nullity, consider an arbitrary (j, k) ∈ E and let ajk = 0.
Clearly, such as edge is redundant in terms of effect propagation and RSV attributes zero
flow to it. Finally, to see the mechanics behind linearity, consider a different model with the
same underlying DAG G but suppose the coefficients are different: [a′jk](j,k)∈E. RSV under
the mixture model (ã = (a+ a′)/2) is the same as averaging the RSVs under the individual
models. For instance, edge (1, 4) receives a flow of (a14 + a′14)/2 under the mixture model
and a14 and a′14 under the individual models.

The above example also highlights RSV’s ability to decouple direct and indirect effects
(Pearl, 2001). In particular, the direct effect of the source X1 on the outcome Y corresponds
to the flow a14 on edge (1, 4) whereas the indirect effect is the sum of flow on edges (1, 2)
and (1, 3): a12a24 + a13a34. In addition, RSV goes a step beyond by splitting the indirect
effects into the underlying edge-specific flows and thus, facilitates mediation analysis: “a
mediating variable transmits the effect of an independent variable on a dependent variable”
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(MacKinnon et al., 2007). Connecting this notion to Figure 13, the independent variable
X1 changes from a value of 0 (background) to 1 (foreground), causing Y (the dependent
variable) to change from an expected value of 0 to a14 + a12a24 + a13a34 (total effect). RSV
provides a crisp decomposition of this total effect. In particular, the direct channel (X1 →
Y ) carries a14 whereas the two mediating channels (X1 → X2 → Y ) and (X1 → X3 → Y )
transmit a12a24 and a13a34, respectively. (Note that it is possible to generalize the intuition
here to an arbitrary DAG G with linear structural equations F and mean-zero noise. We do
so in §5 (Theorem 6).)

Before concluding this subsection, we note that RSV’s adherence to the flow-based
axioms results in it respecting a mix of desirable properties (implementation invariance,
sensitivity, monotonicity, and affine scale invariance) discussed in the interpretable ML
literature (Sundararajan et al., 2017; Sundararajan and Najmi, 2020). For instance, imple-
mentation invariance requires the attributions to be robust to internal changes in the graph
whereas sensitivity / monotonicity require the attributions to respect basic independence
and monotonicity relations. Our preliminary work (Singal et al., 2021) provides a detailed
discussion of such additional properties along with formal propositions, which we omit here
for brevity. We emphasize here that such properties come out naturally as implications of
our more fundamental flow-based axioms.

4.4 Connections with existing approaches in the causality literature

Having established RSV’s desirable properties, we now highlight connections between RSV
and existing approaches on causality. As before, we refer the reader to our preliminary
work (Singal et al., 2021) for the connections to the interpretable ML literature, where
we rigorously show how the edge-based RSV generalizes a number of existing node-based
approaches.

Direct and indirect effects To understand the connection between natural direct /
indirect effects (Pearl, 2001) and RSV, we revisit the two-channeled graph introduced in
Figure 2 and illustrate the computation of direct effect under RSV in Figure 14. When
computing the direct effect, i.e., attribution to edge (1, 3), RSV allows for two possibilities
with respect to the indirect channel: (a) edge (1, 2) inactive and (b) edge (1, 2) active. In
particular, RSV averages over these two possibilities, allowing it to decouple the interaction
effect (which only appears in possibility (b)). On the other hand, natural direct effect
(Pearl, 2001) only considers possibility (a) and hence, is unable to capture the interaction.
The connection between indirect effect under the two definitions is analogous. We exemplify
this discussion by revisiting Example 1 next.

Revisiting Example 1 Recall from Example 1 (interaction) that a key limitation of the
proposal in Pearl (2001) is it does not explain interaction effects, which leads to a source
efficiency violation (both channels receiving zero attribution in Example 1). RSV, on the
other hand, obeys source efficiency (cf. flow conservation axiom). In Example 1, RSV
attributes 1/2 to each of the two channels (cf. flow symmetry) and hence, captures the
interaction effect. Thus, by allowing for a richer set of counterfactuals, RSV is able to
decouple interaction effects in a principled manner, ensuring the direct and indirect effects
add up to the total effect. Further, recall from Appendix B that although the notion of
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X1

X2

Y

X1

X2

Y

(a) Edge (1,2) inactive

X1

X2

Y

X1

X2

Y

(b) Edge (1,2) active

Figure 14: Direct effect under RSV for the graph introduced in Figure 2. The direct channel
(1, 3) receives an attribution equal to its value-add, which is evaluated via the following
counterfactual question: how much would have been the effect (change in Y ) had edge
(1, 3) been inactive? Note that there are two possibilities in such a counterfactual
question: (a) edge (1, 2) is inactive and (b) edge (1, 2) is active. The difference between
the first two plots corresponds to possibility (a), i.e., value-add of edge (1, 3) when edge
(1, 2) is inactive. Similarly, the difference between the last two plots corresponds to
possibility (b), i.e., value-add of edge (1, 3) when edge (1, 2) is active. The attribution
received by edge (1, 3) is the weighted average of these two value-adds, where the weights
come from the classical SV (1/2 for this instance). Recall that the natural direct effect
of Pearl (2001) places all the weight on possibility (a).

reverse effects obeys efficiency, it lacks uniqueness since it results in either the direct or the
indirect channel getting all the attribution depending on the order in which one adds the
channels. RSV avoids this issue by averaging over these two orderings.

Path-based techniques The connection between path-specific effects (Pearl, 2001) /
path-specific selection gradient (Henshaw et al., 2020) and RSV is similar. In particular, to
quantify the effect propagated through the direct path X1 → Y , both path-specific effects
and selection gradient put all the weight on possibility (a) and hence, do not account for
the interaction effect, which only appears in possibility (b).

Remark 5 It is worth noting that under the class of linear SEMs, a multitude of exist-
ing approaches (direct and indirect effects, path coefficients, path-specific effects, and path-
specific selection gradient) result in the same intuitive quantification as discussed around
Figure 1. In particular, all these approaches boil down to using the edge weights to compute
the corresponding path coefficients and attribute accordingly 6. As we formalize in §5 (The-
orem 6), for linear SEMs, RSV recovers the same flow. Accordingly, RSV is consistent with
most existing techniques in the relatively simple linear setting but provides a new perspective
under non-linearity, where it is systematically able to account for interaction effects.

Degree of responsibility RSV operationalizes the intuition of Chockler and Halpern
(2004) (see the quotes “if someone wins ...” and “... responsibility is more diffuse” stated in
§3.3) while adhering to a set of desirable axioms, which imply source efficiency. To illustrate
this, we revisit Example 2.

6. Though some of these approaches are not clearly defined for the setting with multiple source nodes and
/ or multiple mediators, the implicit decoupling in the linear SEM case (due to no interaction effects)
enables their computations.
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Revisiting Example 2 Recall that a key limitation of degree of responsibility is it vio-
lates source efficiency as well, as shown in Example 2 (voting). RSV, on the other hand,
attributes 1/3 to each of the 3 voters in scenario 1 whereas in scenario 2, RSV attributes
2/3 to each of the 2 voters of candidate 1 and −1/3 to the voter of candidate 2. If, in
scenario 2, we consider the background of (0, 0, 2) (as opposed to (0, 0, 0)) while keeping the
foreground as (1, 1, 2), then voters 1 and 2 receive an attribution of 1/2 each, whereas voter
3 receives zero attribution (nullity).

Blameworthiness It is worth discussing the work of Friedenberg and Halpern (2019),
which is complementary to our work in the sense that they propose a definition of blame
in a structural causal model. Their key contribution is to extend the framework of Halpern
and Kleiman-Weiner (2018) to a multi-agent setting and they do so using Shapley value.
Saying that, their definition is fundamentally different than ours since it depends on the
notion of an epistemic state (distribution over causal models) to “capture an agent’s beliefs
about the effects that actions may have”. RSV is independent of the individual-level beliefs
but only operates on a single given causal model. To dive deeper, consider the illustrative
example presented by Friedenberg and Halpern (2019) (see §3.4 of their paper):

“Consider a scenario where a committee of 7 people, ag1 through ag7, vote for
whether or not to pass a bill. If at least 4 agents vote yes, then the bill will
pass. Everyone agrees that it would be better for the bill to pass, but there are
external reasons (such as opinions of constituents) that might result in agents
benefiting from voting no as long as the bill is passed. The committee votes and
agents ag1 through ag5 all vote no, so the bill does not pass. How blameworthy
is each agent for this outcome?”

As discussed in Friedenberg and Halpern (2019), the degree of blameworthiness varies as a
function of the agent’s beliefs. For instance,

“ag1 believed that each of the 6 other agents started with a 60% chance of voting
yes. For any coalition of n agents, ag1 also believed that for a cost of n×100 each
agent’s probability of voting yes (including that of agents not in the coalition)
could be increased by n × 5% by applying social pressure. In addition, if ag1

herself was in the coalition, then for an additional cost of 2000 she would have
switched her vote to yes. Given these beliefs, the degree of blameworthiness for
the entire group is ≈ 0.390, while ag1’s degree of blameworthiness is ≈ 0.073.”

On the other hand, RSV is independent of individual-level beliefs and simply attributes
the same value to the 5 agents who voted no (cf. symmetry axiom). Degree of blamewor-
thiness requires much more information (individual-level beliefs) than RSV, which can be
challenging to gather. Clearly, there is a fundamental difference in how the two approaches
attribute ex post blame.

We conclude this section by summarizing our foundational developments. So far, we
have focussed on the definitional / philosophical aspects of flow-based attribution. Our
goal has been to convince the reader that leaving computational tractability aside, RSV is
an attractive metric for quantifying effect propagation. It recovers the existing approaches
when appropriate and overcomes their limitations when they “fail”, with a unique adherence

24



Axiomatic effect propagation in structural causal models

to a set of seemingly natural flow-based axioms. Having established such desirability of RSV,
we shed light on its computational tractability next.

5. Characterization and computation of RSV

Next, we focus on the computational aspects of RSV and consider the following two cases:
(i) all the structural equations F = [fi(·)]i∈N+\N0

in model M = (G,F,D) are linear (§5.1) and
(ii) F is non-parametric and hence, possibly non-linear (§5.2). For both settings, we provide
a closed-form characterization of RSV and discuss the implications on its computation.

5.1 Linear SEM

Consider an arbitrary DAG G (containing super-source node 0) with linear structural equa-
tions F and mean-zero noise:

Xj =
∑
i∈Pj

aijXi + Uj ∀j ∈ N+ \ {N0 ∪ 0} (6a)

E[U] = 0. (6b)

Note that this is a classical setting for structural equations in DAGs (see Peters et al. (2017)
for example). Denote by Ein

j := {(i, j) : i ∈ Pj} the incoming edges of node j ∈ N+ \ {0}.
Define the forward-looking weights ccc as follows:

cj,n+1 := aj,n+1 ∀(j, n+ 1) ∈ Ein
n+1 (7a)

cij := aij
∑
k∈Cj

cjk ∀(i, j) ∈ E \ Ein
n+1, (7b)

where a0j := x
(2)
j − x

(1)
j ∀(0, j) ∈ E0. Similarly, define the backward-looking weights bbb as

follows:

b0j := x
(2)
j − x

(1)
j ∀(0, j) ∈ E0 (8a)

bjk :=
∑
i∈Pj

bijajk ∀(j, k) ∈ E \ E0. (8b)

Since G is a DAG, weights (7) and (8) are well-defined. In such a linear setting, RSV can
be characterized as in Theorem 6.

Theorem 6 Consider structural causal model M = (G,F,D) , wherein the structural equa-
tions F are linear and the noise distribution D has zero mean (see (6)), with ccc and bbb as in
(7) and (8). Then,

πRSV
0j = c0j ∀(0, j) ∈ E0

πRSV
jk =

∑
i∈Pj

bijcjk ∀(j, k) ∈ E \ E0.

A proof is given in Appendix D and illustrations are provided in Example 3 (§4.3)
and the motivating example (§1). Furthermore, this characterization establishes a tight
connection between RSV and most existing approaches, as alluded to in Remark 5 earlier.
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Remark 7 (Computational implication of Theorem 6) Given the characterization in
Theorem 6, it follows that RSV can be computed in linear time and exhibits linear space
complexity. Note that topological sorting of a DAG requires O(|N|+|E|) time. Given a
topologically sorted graph, ccc can be computed in O(|N|+|E|) time by proceeding in a reverse
topological order and storing local computations at each node (O(|N|) additional space):

cj :=
∑
k∈Cj

cjk ∀j ∈ N.

Similarly, bbb can be computed in O(|N|+|E|) time. Finally, given ccc and bbb, RSV can be
computed in O(|N|+|E|) time by using the characterization in Theorem 6. This highlights
the tractability of RSV for linear models.

5.2 Non-parametric SEM

We now characterize RSV for an arbitrary set of structural equations (possibly non-linear).
We start by illustrating the intuition of the derivation, through the DAG depicted in Figure
15. Our discussion highlights the role of paths in the DAG and the notion of “sister edges”
that prove critical in the calculation of RSV.

0 X1 X2 X3 X4 X5 Y

Figure 15: DAG for illustrating the path-based characterization of RSV.

Pick an arbitrary edge (say the thick blue edge (3, 4) in Figure 15) and suppose we are
interested in computing the corresponding RSV πRSV

34 (E), with E = (E0, . . . ,E5) denoting
the set of all edges. By definition (recall from §4.2), πRSV

34 (E) is the SV of the following
game. The set of players is E3 = {(3, 4), (3, 5), (3, 6)} and given coalition E3 ⊆ E3, the
characteristic function is given by

v3(E3) = π3(E0,E1,E2, E3,E4,E5)

= π3(E3,E−3)

= π13(E3,E−3) + π23(E3,E−3).

Hence, πRSV
34 (E) equals

=
∑

E3⊆E3\{(3,4)}

wE3(E3)× {v3(E3 ∪ {(3, 4)})− v3(E3)}

=
∑
E3⊆E4

3

wE3(E3)× {v3(E3 ∪ {(3, 4)})− v3(E3)}

=
∑
E3⊆E4

3

wE3(E3)× {π13(E3 ∪ {(3, 4)})− π13(E3)}

︸ ︷︷ ︸
(?)
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+
∑
E3⊆E4

3

wE3(E3)× {π23(E3 ∪ {(3, 4)})− π23(E3)}

︸ ︷︷ ︸
(�)

, (9)

where we use the short-hand notation Eji := Ei \ {(i, j)} for arbitrary node i ∈ N+ and its
child node j ∈ Ci.

Next, we analyze the first term in (9), i.e., (?). Given E3 ⊆ E3, observe that π13(E3)
denotes the flow (RSV) on edge (1, 3) when only E3 edges are active at node 3, i.e.,

π13(E0,E1,E2, E3,E4,E5) =
∑
E1⊆E3

1

wE1(E1)× {v1(E1 ∪ {(1, 3)} | E3)− v1(E1 | E3)}

=
∑
E1⊆E3

1

wE1(E1)× {π01(E1 ∪ {(1, 3)}, E3)− π01(E1, E3)} . (10)

Plugging (10) into (?), we get

(?) =
∑
E3⊆E4

3

wE3(E3)× {π13(E3 ∪ {(3, 4)})− π13(E3)}

=
∑
E3⊆E4

3

wE3(E3)

 ∑
E1⊆E3

1

wE1(E1) {π01(E1 ∪ {(1, 3)}, E3 ∪ {(3, 4)})

− π01(E1, E3 ∪ {(3, 4)})} −
∑
E1⊆E3

1

wE1(E1) {π01(E1 ∪ {(1, 3)}, E3)− π01(E1, E3)}


=
∑
E1⊆E3

1

∑
E3⊆E4

3

wE1(E1)wE3(E3) {π01(E1 ∪ {(1, 3)}, E3 ∪ {(3, 4)})− π01(E1, E3 ∪ {(3, 4)})

− π01(E1 ∪ {(1, 3)}, E3) + π01(E1, E3)} .
(11)

Now, given E1 ⊆ E1 and E3 ⊆ E3, observe that π01(E1, E3) equals π01(E0, E1,E2, E3,E4,E5),
which equals

=
∑
E0⊆E1

0

wE0(E0)× {v0(E0 ∪ {(0, 1)} | E1, E3)− v0(E0 | E1, E3)}

=
∑
E0⊆E1

0

wE0(E0)× {y(E0 ∪ {(0, 1)}, E1,E2, E3,E4,E5)− y(E0, E1,E2, E3,E4,E5)} , (12)

where y(E) is the expected outcome as a function of the set of active edges E ⊆ E (see (3)).
Plugging (12) into (11) and re-arranging gives us

(?) =
∑
E0⊆E1

0

∑
E1⊆E3

1

∑
E3⊆E4

3

wE0(E0)wE1(E1)wE3(E3)

× {y(E0 ∪ {(0, 1)}, E1 ∪ {(1, 3)}, E3 ∪ {(3, 4)})− y(E0 ∪ {(0, 1)}, E1 ∪ {(1, 3)}, E3)

− y(E0 ∪ {(0, 1)}, E1, E3 ∪ {(3, 4)})− y(E0, E1 ∪ {(1, 3)}, E3 ∪ {(3, 4)})
+ y(E0 ∪ {(0, 1)}, E1, E3) + y(E0, E1 ∪ {(1, 3)}, E3) + y(E0, E1, E3 ∪ {(3, 4)})

− y(E0, E1, E3)} .
(13)
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There is a total of eight y(·) terms in (13). Observe the following pattern among them. The
first term

y(E0 ∪ {(0, 1)}, E1 ∪ {(1, 3)}, E3 ∪ {(3, 4)})

includes each of the three edges {(0, 1), (1, 3), (3, 4)} (3 choose 3) and has a positive sign in
front of it. Each of the next three terms

− y(E0 ∪ {(0, 1)}, E1 ∪ {(1, 3)}, E3),

− y(E0 ∪ {(0, 1)}, E1, E3 ∪ {(3, 4)}), and

− y(E0, E1 ∪ {(1, 3)}, E3 ∪ {(3, 4)})

include two of the three edges (3 choose 2) and has a negative sign. The next three terms

+ y(E0 ∪ {(0, 1)}, E1, E3),

+ y(E0, E1 ∪ {(1, 3)}, E3), and

+ y(E0, E1, E3 ∪ {(3, 4)})

include one of the three edges (3 choose 1) and are positive. The last term

−y(E0, E1, E3)

includes none of the three edges (3 choose 0) and is negative.

The previous illustration reveals certain patterns that hold in the general case. First, we
introduce concise notation to summarize the previous calculation. Clearly, (?) corresponds
to the path 0→ 1→ 3 from source node 0 to node 3. Accordingly, define W := (0, 1, 3) to
be the corresponding (ordered) set of nodes in this path. We use the short-hand∑

E013⊆E134
013

κ013(E013) :=
∑
E0⊆E1

0

∑
E1⊆E3

1

∑
E3⊆E4

3

wE0(E0)wE1(E1)wE3(E3). (14)

for the summation over the weights. In the illustrative example we have here, E134
013 :=

E1
0 ∪ E3

1 ∪ E4
3, E013 := (E0, E1, E3), and κ013(E013) := wE0(E0)wE1(E1)wE3(E3).

Next, in the general case, given path W , we use the notation∑
EW⊆E

W∪{j}\{0}
W

κW (EW ),

where j denotes the end node (4 in the above example) of the edge we are interested in
((3, 4) in the example). As a side note, observe that∑

EW⊆E
W∪{j}\{0}
W

κW (EW ) = 1 (15)

since each of the wEk
(Ek) term decouples and sums to 1 (by definition of the SV weight

function). The latter fact is useful for developing a Monte-Carlo estimation scheme (§6).
Next, we express the 23 “y(·)” terms in (?) (recall (13)). Recycling W = (0, 1, 3) and
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defining Edge(W ) := {(0, 1), (1, 3)} to be the set of edges in path W , these y(·) terms can
be expressed as follows (cf. the pattern discussed above):∑

V⊆Edge(W∪{4})

(−1)|W |−|V | × y(EW ∪ V,E−W ).

In summary, given path W = (0, 1, 3) corresponding to (?), we have

(?) =
∑

EW⊆E
W∪{4}\{0}
W

κW (EW )
∑

V⊆Edge(W∪{4})

(−1)|W |−|V | × y(EW ∪ V,E−W ). (16)

Similarly, (�) from (9) equals

(�) =
∑

EW⊆E
W∪{4}\{0}
W

κW (EW )
∑

V⊆Edge(W∪{4})

(−1)|W |−|V | × y(EW ∪ V,E−W ), (17)

where the only difference is that path W equals (0, 1, 2, 3), instead of (0, 1, 3). Putting (16)
and (17) together, we get

πRSV
34 (E) =

∑
W∈W3

∑
EW⊆E

W∪{4}\{0}
W

κW (EW )
∑

V⊆Edge(W∪{4})

(−1)|W |−|V | × y(EW ∪ V,E−W ),

(18)

where W3 := {(0, 1, 3), (0, 1, 2, 3)} is the set of all unique paths from node 0 to node 3. As
we prove in Appendix E, this characterization holds in general and we state it formally in
Theorem 8.

Theorem 8 Given structural causal model M = (G,F,D), the RSV of edge (i, j) ∈ E ex-
hibits the following characterization:

πRSV
ij (E) =

∑
W∈Wi

∑
EW⊆E

W∪{j}\{0}
W

κW (EW )
∑

V⊆Edge(W∪{j})

(−1)|W |−|V | × y(EW ∪ V,E−W ).

Hence, the recursion in RSV (recall Algorithms 1 and 2) can be boiled down to a path-
based expression, wherein we sum over each unique path W ∈ Wi from node 0 to node
i. For each such path W , we consider the subset of edges EW that excludes the edges
in this path, i.e., EW contains the “sister edges” of the edges in W . We weigh EW by a
corresponding factor κW (EW ) and evaluate the value-add of all possible subsets V of the
edges in W (to EW ). That is, how much value the edges in the path W add to their “sister
edges” EW .

Remark 9 (Computational implication of Theorem 8) It should be clear from the
characterization in Theorem 8 that in the worst case, computing RSV takes an exponential
number of operations in the number of edges. For example, consider the characterization
for edge (5, 6) in Figure 15 and focus on the path W = (0, 1, 2, 3, 4, 5). The

∑
EW⊆E

W∪{j}\{0}
W

sum expands into roughly 2|E| terms (all possible subsets of E). Since a dense DAG has
O(n2) edges (where n is the number of nodes), we get the worst-case run-time to be O(2n

2
).

Further, techniques such as dynamic programming can not reduce this worst-case runtime
since each of the O(2n

2
) term can be unique in general.
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Naturally, such a high runtime is undesirable and the following two questions are of
interest:

1. Can we develop a computationally tractable characterization for a special class of
models?

2. Can we estimate RSV and reduce the exponential dependence on the number of edges?

For the first question, Theorem 6 provides a positive answer for the class of linear SEMs.
However, as we discuss in Appendix F, developing a tractable characterization even for a
linear model with two-way interactions 7 is challenging. Therefore, we focus on developing
an estimation scheme for RSV next, which leverages the path-based characterization in
Theorem 8.

6. Estimation of RSV

Our estimation scheme along with its properties (unbiasedness, rate of decay of its variance,
and sample complexity) is discussed in §6.1 followed by a numerical illustration in §6.2. Note
that the model M is assumed to be known (as it is throughout the paper) and our focus
here is on estimating the RSV (for a given model M).

6.1 Estimation scheme and properties

Suppose we are interested in estimating πRSV
ij (E) for an arbitrary edge (i, j) ∈ E. Recalling

the path-based characterization (Theorem 8), consider an arbitrary path W ∈Wi.

The key computational bottleneck is the sum
∑

EW⊆E
W∪{j}\{0}
W

since it enumerates all

possible subsets of the “sister edges”. To estimate this sum, we leverage the fact that the
kappa factor sums to 1 (recall (15)) and is non-negative (and hence, can be interpreted as
a probability), which leads to a natural Monte-Carlo estimation scheme. Define

µjW :=
∑

EW⊆E
W∪{j}\{0}
W

κW (EW )
∑

V⊆Edge(W∪{j})

(−1)|W |−|V | × y(EW ∪ V,E−W ) (19)

so that πRSV
ij equals

∑
W∈Wi

µjW (cf. Theorem 8). We focus on estimating µjW , for which we
propose the following strategy:

1. Instead of summing over all EW ⊆ E
W∪{j}\{0}
W (which can be O(2n

2
)), sample EW with

corresponding “probability” κW (EW ). To do so, we can sample using the independent

structures in E
W∪{j}\{0}
W (each independent structure corresponds to a node in path

W ) and use the SV weight function (recall the relation in (14)) to leverage existing
SV estimation techniques (Castro et al., 2009; Maleki et al., 2013; Castro et al., 2017;
Mitchell et al., 2022). For example, given W = (0, 1, 3) in Figure 15, observe from

7. That is, f(Xj) =
∑

i∈Pj
aj
iXi +

∑
i,i′∈Pj

aj
ii′XiXi′ ; arguably the “closest” non-linear model to a linear

model, since the model remains linear in the coefficients aaa and quadratic in the variables X. The super-
scripts in the coefficients (e.g., “j” in aj

i ) do not represent exponents but are used to indicate the child
node of the corresponding edge.
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(14) that the sum
∑

EW⊆E
W∪{j}\{0}
W

κW (EW ) decomposes as follows (“independent

structures”):∑
EW⊆E

W∪{j}\{0}
W

κW (EW ) =
∑

E013⊆E134
013

κ013(E013)

=
∑
E0⊆E1

0

∑
E1⊆E3

1

∑
E3⊆E4

3

wE0(E0)wE1(E1)wE3(E3)

=
∑
E0⊆E1

0

wE0(E0)
∑
E1⊆E3

1

wE1(E1)
∑
E3⊆E4

3

wE3(E3).

Accordingly, we can first sample E0 ⊆ E1
0 using the SV weight wE0(E0), then E1 ⊆ E3

1

using the SV weight wE1(E1), followed by E3 ⊆ E4
3 using the SV weight wE3(E3) and

finally, use (E0, E1, E3) as a sample EW . Since each of the sampling probabilities
(wE0(E0), wE1(E1), and wE3(E3)) corresponds to the SV weight function, we can use
existing Monte-Carlo techniques to generate such samples of E0, E1, and E3 (Castro
et al., 2009; Maleki et al., 2013; Castro et al., 2017; Mitchell et al., 2022). As one
possibility, observing that for an arbitrary function h(·),∑

E1⊆E3
1

wE1(E1)× h(E1) =
∑
E1⊆E3

1

|E1|! (|E1|−|E1|−1)!

|E1|!
× h(E1) [|E3

1|= |E1|−1]

=
1

|E1|

|E3
1|∑

k=0

1(|E3
1|
k

) ∑
{E1⊆E3

1:|E1|=k}

h(E1),

we can sample a coalition size first from a uniform distribution (“1/|E1|” factor) and
then a coalition (among the coalitions of the sampled size) from a uniform distribution
(“1/(|E3

1| choose k)” factor). That is, to sample E1 ⊆ E3
1, we will first sample the

coalition size
k ∼ Uniform({0, . . . , |E3

1|})

and then sample a coalition

E1 ∼ Uniform(E3
1(k))

from the set of all coalitions of this size, i.e., E3
1(k) := {E1 ⊆ E3

1 : |E1|= k}. Note that
the set E3

1(k) contains |E3
1| choose k elements. Fortunately, we do not need to enumer-

ate all possible elements to sample E1. Instead, to generate a uniform sample of size
k from E3

1, we can uniformly sample k elements from E3
1 without replacement. Re-

peating the process to sample E0 and E3 results in (E0, E1, E3), which is an unbiased
sample of EW .

2. Use the sampled EW to compute the inner term in (19):

µ̂jW (s) :=
∑

V⊆Edge(W∪{j})

(−1)|W |−|V | × y(EW ∪ V,E−W ),

where s denotes the Monte-Carlo sample number (corresponding to the sample EW ).
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3. Repeat steps 1 and 2 for s = 1, . . . , S (for relatively large S, the number of Monte-
Carlo samples) and return the average, which we denote by

µ̂jW :=
1

S

S∑
s=1

µ̂jW (s).

Since πRSV
ij equals

∑
W∈Wi

µjW , a natural estimate for πRSV
ij is

π̂RSV
ij :=

∑
W∈Wi

µ̂jW .

We summarize our estimation scheme in Algorithm 3 along with the sub-routine Algorithm
4 to sample “sister edges”.

Algorithm 3 Estimating πRSV
ij for a given edge (i, j) ∈ E using S Monte-Carlo samples

1: for W ∈Wi

2: for s = 1, . . . , S
3: EW = sample sister edges(W ∪ {j})
4: µ̂jW (s) =

∑
V⊆Edge(W∪{j})(−1)|W |−|V | × y(EW ∪ V,E−W )

5: end for
6: end for
7: µ̂jW = 1

S

∑S
s=1 µ̂

j
W (s)

8: return π̂RSV
ij =

∑
W∈Wi

µ̂jW

Algorithm 4 sample sister edges(W ∪ {j})
1: for node h ∈W
2: k ∼ Uniform({0, . . . , |Eh|−1})
3: Eh ∼ Uniform(Eh

+

h (k)) % h+ denotes the node that follows h in path W ∪ {j}
4: end for
5: return EW = (Eh)h∈W

By construction of our Monte-Carlo scheme, π̂RSV
ij is an unbiased estimator of πRSV

ij

and its variance decays at a rate of 1/S. It is also possible to provide a high probability
concentration bound on the quality of our estimate. We summarize such properties in
Proposition 10, with a proof in Appendix G.

Proposition 10 For edge (i, j) ∈ E, π̂RSV
ij is an unbiased estimator of πRSV

ij with variance
decaying at a rate of 1/S. Furthermore, for all t ≥ 0,

P
{∣∣πRSV

ij − π̂RSV
ij

∣∣ ≥ t} ≤ 2 exp
(
−βijSt2

)
for some βij > 0 finite. (The probability measure P{·} here denotes the Monte-Carlo sam-
pling distribution of the estimator π̂RSV

ij .)
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An exponentially decaying sample complexity (w.r.t. number of samples S) is highly
desirable. The proposed Monte-Carlo scheme tackles the key computational bottleneck in
the path-based characterization, i.e., the sum

∑
EW⊆E

W∪{j}\{0}
W

. Though this eliminates

the O(2n
2
) dependence, we still require O(2n) number of operations in the worst-case,

since each of the remaining two sums
∑

W∈Wi
and

∑
V⊆Edge(W∪{j}) can be such. We note

that it is possible to develop polynomial-time Monte-Carlo estimation schemes to estimate
both the sums via techniques such as importance sampling. For example, to estimate
the sum

∑
W∈Wi

, we can multiply and divide by |Wi| and use the “probability” weight
1/|Wi| to sample W . This requires us to sample uniformly from Wi, which can be done in
linear time and space (see Appendix H for one procedure that does so). Similar desirable
properties such as in Proposition 10 apply to such sequential Monte-Carlo estimation as
well. Furthermore, it is worth mentioning that estimating SV is an active area of research
(see Mitchell et al. (2022) for a recent work). Given our estimation scheme for RSV involves
sampling SV coalitions (“sister edges”) as a sub-routine (recall Algorithm 4), such advances
can be leveraged to further enhance our strategy.

6.2 Numerical illustration of Algorithms 3 and 4

We consider a fully connected layered graph with L layers and M nodes per layer (see
Figure 16 for example). We assume each non-source node to be a product of all its parents,
e.g., X4 = X1X2X3 (non-linear SEM) in Figure 16. In general,

Xj =
∏
i∈Pj

Xi ∀j ∈ N+ \ {N0 ∪ 0}.

For each source node in N0, we use a background and foreground of 0 and 1, respectively.
This stylized setup enables us to know the exact RSV without resorting to a brute force
calculation. In particular, the axioms of flow conservation and flow symmetry prove useful.
For example, in Figure 16, the effect (change in Y ) equals 1, with each outgoing edge of
node 0 receiving a flow of 1/3, each outgoing edge in layer 1 (edges coming out of nodes 1,
2, and 3) receiving a flow of 1/9, and each edge in the last layer receiving 1/3. In general,
given the setup, the exact RSV equals 1/M for the edges coming out of node 0 and going in
to node Y , whereas it equals 1/M2 for all other edges. Knowing the exact RSV is useful for
our numerical exercise since it enables us to evaluate the quality of our estimate. (Though
not the focus of this subsection, note that essentially all existing approaches attribute zero
to every edge or path, again highlighting their limitation to explain the total effect in the
presence of interactions.)

The goal is to evaluate the quality of the proposed RSV estimation scheme given a
layered DAG of size (L,M). For ease of presentation, we focus on the top-right edge
in the DAG (e.g., the blue thick edge (4, Y ) in Figure 16). Note that this edge is most
computationally demanding, since compute time grows with the depth of the DAG.

Figure 17a depicts the Monte-Carlo distribution of the estimate (white bars) and the ex-
act RSV (blue vertical line) for a layered graph with (L,M) = (3, 3) for S ∈ {100, 200, . . . , 900}
Monte-Carlo samples. The distribution is based on 100 runs for each value of S. It can be
seen that mean estimate is very close to the theoretical RSV of 1/3, even for low values
of S, which is in accordance with the unbiased nature of the estimate. Further, the vari-
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0

X1

X2

X3

layer 1

X4

X5

X6

layer 2

Y

Figure 16: A layered graph with L = 2 layers and M = 3 nodes per layer. For conciseness, we
always evaluate the quality of our estimate on the top-right edge in the graph (e.g., the
blue thick edge (4, Y ) in this figure).

ance decays as S increases, as seen in Figure 17b and the rate of decay is 1/S as stated in
Proposition 10.

(a) Estimator distribution
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Figure 17: Numerical illustration of our estimation scheme for (L,M) = (3,3). In plot (a), we
show the Monte-Carlo distribution of our estimate (white bars) and the exact RSV (blue
vertical line) for S ∈ {100, 200, . . . , 900} Monte-Carlo samples. The exact RSV (of the
top-right edge) equals 1/M , which equals 1/3 in this case. At the top of each subplot,
we report the mean and the standard deviation of the corresponding distribution. In
plot (b), we show the variance of the Monte-Carlo estimate as a function of samples S.
The black dots correspond to the square of the standard deviation numbers reported
in plot (a) (at the top of each subplot). The dotted red line is a regression fitted on
the black dots (y = β

x ), highlighting that the variance decays at a rate of 1/S.

In Figures 18 and 19, we report the results for M = 5 and M = 7, respectively (while
holding L = 3). All previous findings regarding the unbiased nature of the Monte-Carlo
estimate and the rate of decay of its variance as a function of S continue to hold. Results
from experiments involving an increasing number of layers from L = 3 to L ∈ {4, 5}
(for M ∈ {3, 5, 7} as above) are given in Appendix I. The additional experimental results
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highlight the robustness of the proposed estimation scheme to the number of nodes per
layer and number of layers, respectively.

Note that even for (L,M) = (3, 7), a brute force calculation of the RSV requires a long
computing time, since the latter is exponential in the number of edges which is around
100. On the other hand, for the same setting, the Monte-Carlo estimate takes ∼ 10 seconds
for S = 100 and ∼ 90 seconds for S = 900, which highlights the computational benefit to
estimate the

∑
EW⊆E

W∪{j}\{0}
W

sum. Note that the compute time of our estimation scheme

increases (exponentially) in the depth L (e.g., around 7 hours for (L,M) = (5, 7) with S =
900), primarily due to the other two sums in the path-based characterization (

∑
W∈Wi

and∑
V⊆Edge(W∪{j})). As previously mentioned, it can be controlled via importance sampling

enhancements. Also worth noting, the Monte-Carlo estimate is trivially parallelizable and
the compute times can be significantly reduced in multi-core environments.
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(b) Variance as a function of S

Figure 18: Numerical illustration of our estimation scheme for (L,M) = (3,5). Note that the
exact RSV (of the top-right edge) equals 1/M , which equals 1/5 in this case (blue
vertical line in plot (a)). The estimator’s mean is close to 0.2 for all values of S and
the variance decays at a rate of 1/S.
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(a) Estimator distribution
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Figure 19: Numerical illustration of our estimation scheme for (L,M) = (3,7). Note that the
exact RSV (of the top-right edge) equals 1/M , which equals 1/7 in this case (blue
vertical line in plot (a)). The estimator’s mean is close to 0.14 for all values of S and
the variance decays at a rate of 1/S.

7. Applications

We showcase the application of the RSV framework on two challenging problems in causality,
namely, causal overdetermination in §7.1 and causal unfairness in §7.2 and benchmark it
with appropriate existing methodologies.

7.1 Causal overdetermination

The rock-throwing example is a textbook application introduced by Hall (2004) that helps
illustrate the robustness of RSV to model changes (implementation invariance) and compare
it with existing methods on causality. In the words of Chockler and Halpern (2004), the
setup is as follows:

“Suppose that Suzy and Billy both pick up rocks and throw them at a bottle.
Suzy’s rock gets there first, shattering the bottle.”

Each throw is assumed to be perfectly accurate and hence, is sufficient but not necessary
to shatter the bottle (causal overdetermination). A corresponding DAG is shown in Figure
20a with the following structural equation for the outcome BS (bottle shatters):

BS = I{ST = 1 or BT = 1}.

ST ∈ {0, 1} denotes whether Suzy throws (1) or not (0) whereas BT ∈ {0, 1} denotes
whether Billy throws (1) or not (0), and I{·} denotes the indicator function. The background
for the source variables (ST,BT ) is (0, 0) and the foreground is (1, 1).

As discussed in §1, in this work, we care about the cause of the bottle shattering from
a blame / ex post perspective. In this simple model, the degree of responsibility (Chockler
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SH

BH

BS

(b) Model 2

Figure 20: Two models for the rock-throwing application.

and Halpern, 2004) of Suzy is 1/2 and of Billy is 1/2, which is consistent with RSV8.
However, techniques such as direct and indirect effects (Pearl, 2001), path-specific effects
(Pearl, 2001), and path-specific selection gradient (Henshaw et al., 2020) attribute 1 to both
Suzy and Billy, resulting in an over-allocation, i.e., they attribute more than the total effect.
Note that in this example, such approaches give the same decomposition as RSV up to a
normalization constant, but this is not true in general (cf. Example 1 in §3).

Chockler and Halpern (2004) also discuss another way to model this setting (Figure
20b). They “implicitly assume a context where Suzy throws first, so there is an edge from
SH [Suzy hits] to BH [Billy hits], but not one in the other direction”. The underlying
structural equations are as follows:

SH = I{ST = 1}
BH = I{BT = 1 and SH = 0}
BS = I{SH = 1 or BH = 1}.

Interestingly, the degree of responsibility for Suzy remains at 1/2, but for Billy drops to 0
under the “restriction to allowable settings” (Chockler and Halpern, 2004)9. Clearly, the
decomposition does not add up to the total effect of 1. In a more extreme setting with
k − 1 people throwing rocks in addition to Suzy (as opposed to just Billy), the degree of
responsibility equals 1/k for Suzy and 0 for all others. As k →∞, the degree of responsibility
over all people sums to 0. To put it another way, if an infinite number of people harm a
person, then according to the degree of responsibility framework, no one is responsible! This
is rather strange.

There are two possible ways to interpret the dynamics here. In the first one, to capture
the fact that “Suzy throws first”, we can model the change in source variables as a sequence
of two changes, i.e., the source variables (ST,BT ) change from (0, 0) to (1, 0) to (1, 1),
as opposed to a direct change from (0, 0) to (1, 1). Under such a view, the outcome BS
changes from 0 to 1 to 1 and it is easy to verify that all approaches attribute 1 to Suzy (as
a result of the first change) and 0 to Billy (as a result of the second change), irrespective

8. In this simple example, a standard Shapley value framing would suffice and hence, RSV can be seen as
a generalization of SV to graphs with mediators. We discussed this in §1 as well. The fact that RSV
recovers SV when appropriate should be seen in positive light. In fact, we formalized such connections
in the preliminary version of this work; see Proposition 3 and Proposition B in Singal et al. (2021).

9. From §5 of Chockler and Halpern (2004): “If Suzy’s rock hits first and it requires only one rock to shatter
the bottle then, as we have seen, Suzy has degree of responsibility 1 or 1/2 (depending on whether we
consider only allowable settings) and Billy has degree of responsibility 0.”
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of the underlying model one uses (Figure 20a or Figure 20b). However, this case does not
highlight the difference between RSV and existing techniques.

To understand the difference, we discuss the second interpretation next. Both Suzy and
Billy throw the rocks at the same time, but Suzy’s throw is faster than Billy’s. Hence,
the source variables (ST,BT ) change from (0, 0) to (1, 1) without an intermediate value of
(1, 0). Under this view, both model 1 (Figure 20a) and model 2 (Figure 20b) are correct,
but model 2 is more fine-grained. As discussed above, Suzy’s degree of responsibility is 1/2
under both models, but Billy’s degree of responsibility drops from 1/2 (model 1) to 0 (model
2). Despite the two models being equivalent (in terms of the relationship between the source
variables and the outcome variable), the degree of responsibility changes. We posit that
such lack of robustness to how the underlying mechanics are implemented is undesirable.
As we established in our preliminary work (Proposition 1 in Singal et al. (2021)), RSV
obeys implementation invariance, i.e., source variables receive the same attribution under
equivalent models. For instance, RSV for both Suzy and Billy equals 1/2 under both
models 10. Further, path-based approaches including path-specific effects and path-specific
selection gradient attribute 1 to both Suzy and Billy under both models, resulting in an
over-allocation irrespective of the model one uses. In particular, paths ST → SH → BS
and BT → BH → BS have a path-specific effect of 1, whereas the only remaining path
ST → SH → BH → BS has a path-specific effect of 0.

7.2 Causal unfairness

As alluded to in §1 (recall Figure 3), we next illustrate an application of RSV on non-
linear mediation analysis to quantify causal unfairness, which has been a topic of great
interest recently (Kilbertus et al., 2017; Kusner et al., 2017; Chiappa, 2019). The goal is to
understand the influence exerted by sensitive attributes on the outcome, through both fair
channels (effect mediated by resolving variables) and unfair channels. As we show next, RSV
provides a crisp flow-based decomposition of the total effect even when multiple sensitive
attributes (e.g., race and sex) change and the underlying dynamics are non-linear. Such
a flow-based accounting naturally quantifies causal unfairness, with one possible context
being an employee (or a class of employees) suing their employer for unjust treatment and
the court trying to apportion legal responsibility to the employer.

Setup To illustrate causal unfairness, we use a graph structure motivated by real data, but
assume intuitive relationships between the variables for ease of exposition. In particular,
we focus on the DAG shown in Figure 21, which is motivated by the graph topologies
discovered in recent works (Zhang et al., 2017; Wu et al., 2019), by employing the PC
algorithm (Spirtes et al., 2000) on the adult dataset in the UCI repository (Dua and Graff,
2017). Given source variables race (sensitive attribute #1), age, and sex (sensitive attribute
#2), we assume the following non-linear structural equations (with noise):

edu =

{
4 log(age) +N(0, 32) if race = 0

5 log(age) +N(0, 32) if race = 1
(20a)

10. In the setting with k− 1 people throwing rocks in addition to Suzy, every person’s RSV equals 1/k, and
hence, the sum equals the total effect.
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race age sex

edu ms hrs

inc

Figure 21: DAG used to illustrate causal unfairness. There are three source variables (race, age,
and sex ), two of which are sensitive (race and sex ). There are four non-source variables:
edu stands for years of education, ms for marital status (1 for married and 0 for not),
hrs for average hours spent working per day, and inc for whether the person’s annual
income is above a threshold (e.g., $50,000 in the adult dataset (Dua and Graff, 2017)).
The two red thick edges show instances of unfair channels / unresolved discrimination
(overt sexism and racism) and the corresponding unfairness parameters a1 and a3 are
highlighted in red in the corresponding structural equation (20d). Note that although
the mediated pathways could be said to reflect systemic racism (e.g., unequal access to
education), they can also map to no unfairness if the difference is due to voluntary be-
havior of the underlying population. A well-known example is the Berkeley admissions
case study (Bickel et al., 1975) where one category of sex (sensitive attribute) volun-
tarily chooses to apply to a more competitive department (mediating variable) and
hence, is less likely to be admitted (outcome variable). We discussed such an example
in our preliminary version (see §6 in Singal et al. (2021)). Irrespective of whether the
difference is systemic or voluntary, we note that RSV is well-defined.

ms =

{
1 w.p. p(age, sex, edu)

0 w.p. 1− p(age, sex, edu)
(20b)

hrs = 8−ms− 0.05age+ sex+N(0, 22) (20c)

inc =

{
1 w.p. 1

1+exp{−0.1(age−50)−0.05edu−0.02hrs−a1race−a3sex}
0 w.p. 1− 1

1+exp{−0.1(age−50)−0.05edu−0.02hrs−a1race−a3sex} .
(20d)

The ms probability p(age, sex, edu) in (20b) is governed by the following logistic equations
such that sex = 1 population is 90% less likely to be married relative to the sex = 0
population with all else being equal (i.e., same age and edu):

p(age, sex, edu) =

{
1

1+exp{−0.1(age−25)+0.03edu} if sex = 0
0.9

1+exp{−0.1(age−25)+0.03edu} if sex = 1.
(20e)

To provide intuition, we visualize these relationships in Figure 22. In Figure 22a, we plot
the expected value of edu (from (20a)) as we vary age from 20 to 100 for race ∈ {0, 1}.
The monotonicity and concavity is encoded to reflect reality and the race = 1 population is
expected to have a higher level of education. Figure 22b depicts the ms probability (from
(20b) and (20e)) as a function of age for three levels of edu with sex = 0. Again, the
monotonicity with respect to age captures reflects reality (more likely to be married as age
increases) and we further encode an inverse relation with edu. We assume a linear function
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for hrs (see (20c)) with a baseline value of 8, which decreases by 1 if ms = 1 (married),
decreases in age, and increases by 1 if sex equals 1. Finally, in Figure 22c, we show expected
inc (from (20d)) as a function of age for two settings of the sensitive attributes: background
(race(1), sex(1)) = (0, 0) and foreground (race(2), sex(2)) = (1, 1). In this plot, we set the
unfairness parameters a1 and a3 equal to 1 and the intermediate variables (edu, ms, and
hrs) are set according to the corresponding relationships in (20). To compute the expected
outcome for a given instance of the source variables (race, age, and sex), we generate 10,000
samples of the noise, which we found to be large enough to provide a stable estimate. As
before, the monotonicity with age is desirable. Further, the functional form stated above
in (20d) makes it clear that the expected outcome is increasing in edu and hrs as well, and
the level of unfairness increases as we increase a1 and a3.
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Figure 22: Visualizing the underlying structural equations presented in (20).

Our goal is to understand causal unfairness, which relates to the change in the expected
outcome as a result of changes in sensitive attributes. For instance, in Figure 22c, for
age = 40, the expected outcome roughly equals 0.46 and 0.89 for the two scenarios of
sensitive attributes. Accordingly, the delta corresponding to an (race, age, sex) background
and foreground of (0, 40, 0) and (1, 40, 1) equals the difference 0.89− 0.46 = 0.43. However,
not all of this 0.43 can be credited as unfair since some of this effect is propagated through
mediators (edu, ms, and hrs), as seen in Figure 21. The question of interest is how to
decompose the total effect of 0.43 along the various edges / pathways in order to quantify
causal unfairness.

Results In Figure 23a, we show the RSV 11 corresponding to the SEM of (20) with a
background (race(1), age(1), sex(1)) = (0, 40, 0) and a foreground (race(2), age(2), sex(2)) =
(1, 40, 1) and unfairness parameters (a1, a3) = (1, 1). Clearly, RSV obeys flow conservation
and thus, provides an exact decomposition of the total effect of 0.43, which is in contrast
to the over-allocation under path-specific effects (Figure 23b) 12. The zero flow attributed

11. Given the relatively small size of the DAG, we computed the RSV using Algorithm 1 (brute-force). With
10,000 noise samples (used to evaluate expected outcome), it took around 10 minutes on a 3.8 GHz 8-core
Intel i7 machine with 16 GB memory to compute RSV for all the edges.

12. We benchmark RSV with the path-specific effects approach, since it can be perceived as a generalization
of direct and indirect effects and is very similar to path-specific selection gradient in this setup. Further, it
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to the edges coming out of age is an instance of the flow nullity axiom, since those edges
carry no new information (recall age has the same background and foreground).
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Figure 23: RSV and path-specific effects for the SEM of (20) with a background
(race(1), age(1), sex(1)) = (0, 40, 0) and a foreground (race(2), age(2), sex(2)) = (1, 40, 1)
and unfairness parameters (a1a1a1, a3a3a3) = (1, 1). Expected inc under the back-
ground equals 0.89 and under the foreground equals 0.46 and hence, the total effect
inc(2) − inc(1) equals 0.43. Path-specific effects add up to 0.54, which is more than the
total effect. The thickness of each edge is proportional to the flow.

Hence, with a relatively large value of (a1, a3) = (1, 1), around 90% of the effect is prop-
agated via the unfair edges and the remainder of around 10% is mediated through resolving
variables. Of course, these numbers would vary as we change the unfairness parameters a1

and a3. In Figure 24, we show the RSV for (a1, a3) ∈ {(0, 0), (0, 0.2), (0.2, 0), (0.2, 0.2)}.
When (a1, a3) = (0, 0), it follows from (20d) that there is no causal unfairness since the
sensitive attributes do not exert any direct influence on the outcome. In fact, the corre-
sponding edges (race, inc) and (sex, inc) obey the flow nullity axiom and as a result, they
receive an attribution equal to 0 (see Figure 24a). The total effect equals 0.05 and all of
it is propagated through intermediate variables (0.04 by edu and 0.01 by hrs). When we
increase a3 to 0.2 (see Figure 24b), edge (sex, inc) is no longer redundant and all of the 0.05
increment in the total effect flows through this unfair channel. A similar observation holds
for the (a1, a3) = (0.2, 0) setting (see Figure 24c), with edge (race, inc) no longer being re-
dundant and carrying the 0.05 increment in the total effect. Finally, at (a1, a3) = (0.2, 0.2)
(see Figure 24d), the total effect jumps to 0.15, with each of the unfair channels carrying
0.05 units and the remainder 0.05 units being propagated by the mediating variables, as in
the (a1, a3) = (0, 0) case.

As it should be clear, there is nothing special about keeping the age variable at a constant
value of 40 in both background and foreground. Our framework is flexible to allow changes
in age as well. In Figure 25, we show the RSV when the source variables change from a

is unclear how one would compute the degree of responsibility for this setting. Note that the path-specific
effects approach outputs a value corresponding to each source-to-sink path, and these path-specific values
uniquely map to edge-specific values via simple aggregation, i.e., for each edge, consider all the paths it
appears in and add those path values. We did such an aggregation in our results to facilitate comparison
with RSV, e.g., in Figure 23.

41



Singal and Michailidis

race

0.04

age

0

sex

0.01

edu ms hrs

inc

effect = 0.05

0.04
0.00

0.01

0.00

0.04

0.00

0.01

(a) (a1a1a1, a3a3a3) = (0, 0)

race

0.04

age

0

sex

0.06

edu ms hrs

inc

effect = 0.10

0.04
0.00

0.01

0.050.00

0.04

0.00

0.01

(b) (a1a1a1, a3a3a3) = (0, 0.2)

race

0.09

age

0

sex

0.01

edu ms hrs

inc

effect = 0.10

0.04

0.05

0.00

0.01

0.00

0.04

0.00

0.01

(c) (a1a1a1, a3a3a3) = (0.2, 0)
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Figure 24: RSV for the SEM of (20) with a background (race(1), age(1), sex(1)) = (0, 40, 0) and
a foreground (race(2), age(2), sex(2)) = (1, 40, 1) and unfairness parameters (a1a1a1, a3a3a3) ∈
{(0, 0), (0, 0.2), (0.2, 0), (0.2, 0.2)}.

background of (0, 40, 0) to a foreground of (1, 45, 1), i.e., age changes as well (from 40 to
45). The unfair parameters are set at (a1, a3) = (0.2, 0.2), as in Figure 24d (to facilitate
comparison). The expected outcome in the background equals 0.46 (as before) and in the
foreground equals 0.73 and hence, the total effect equals the difference 0.27, an increase of
0.12 when compared to the total effect of 0.15 in Figure 24d. This increase of 0.12 in total
effect is essentially attributed to the outgoing edges of age, as seen in Figure 25. (Note that
the outgoing edges of age are attributed 0.13, which is not exactly 0.12. This is primarily
because we rounded to two decimal places and there is small noise in our numbers since we
used 10,000 noisy samples to evaluate the expected outcome.)

Connecting this application back to our motivation discussed in §1, RSV is naturally able
to quantify effect propagation even when multiple source variables change simultaneously
and the effect is propagated through multiple mediators, that too in a non-linear manner.
Further, it does so while obeying a set of four desirable flow-based axioms, primarily because
of its ability to consider a broader set of counterfactuals than existing approaches. On the
contrary, approaches such as direct / indirect effects and path-specific effects only allow
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Figure 25: RSV for the SEM of (20) with a background (race(1), age(1), sex(1)) = (0,40, 0) and
a foreground (race(2), age(2), sex(2)) = (1,45, 1) and unfairness parameters (a1, a3) =
(0.2, 0.2). As opposed to before, the edges coming out of age are no longer redundant.

for the possibility of one counterfactual (all other edges being inactive), resulting in them
violating arguably the most primitive axiom (flow conservation).

RSV can in fact handle more involved scenarios. As an illustration, we can have an
unfair path from race to inc that goes through one of the intermediate variables (edu). As
shown in Figure 26, we insert a new node denoting geographical location of the individual
(loc ∈ {0, 1}), which depends on race and influences edu and inc. We modify (20) as
follows:

loc =

{
1 w.p. p(race)

0 w.p. 1− p(race)

edu =

4 + I{race = 1}+ I{loc = 1}︸ ︷︷ ︸
new term

 log(age) +N(0, 32)

inc =

1 w.p.

modification︷ ︸︸ ︷
0.9 + 0.1I{loc = 1}

1+exp{−0.1(age−50)−0.05edu−0.02hrs−a1X1−a3X3}
0 w.p. 1− 0.9+0.1I{loc=1}

1+exp{−0.1(age−50)−0.05edu−0.02hrs−a1X1−a3X3} ,

where p(race) is parameterized by p ∈ [0, 1] such that p(1) = p and p(0) = p/10, i.e., race 1
is 10 times more likely to live in loc 1 (than race 0). The equation for edu is a generalization
of that in (20) and simply boosts the edu level, if loc equals 1. As such, race 1 is more
likely to live in the location with better access to education and the loc→ edu edge can be
seen as the unfair channel that goes through an intermediate variable (edu). The unfairness
here is due to a lower access to education in location 0. Further, we modify the equation for
inc by changing the numerator from 1 to 0.9 + 0.1I{loc = 1}, so that location 1 results in
a direct boost to the income as well. This might not be unfair, e.g., location 1 might have
a higher cost of living and hence, the incomes are higher as well. All other components of
the SCM remain the same as before13.

13. Note that in Figure 26, we do not show the edges coming out of age since the background and foreground
values of age equal each other and hence, the corresponding edges will have an RSV of 0. As such, to
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In addition to the unfairness discussed already (i.e., on edges race→ inc and sex→ inc),
it is also of interest to understand the unfairness mediated through loc (i.e., on the edge
loc→ edu). We provide such an understanding in Figure 26. RSV attributes 1/16th of the
total effect to such unfairness (0.01 out of 0.16) for p = 0.3 and 2/19th for p = 0.6. As we
increase p from 0 to 1, the total effect increases from 0.13 to 0.22. RSV values for all edges
except the ones corresponding to loc do not change much. This aligns with intuition (as
increasing p results in more effect being propagated through loc). Accordingly, in Figure 27,
we show how RSV evolves as a function of p for the two edges coming out of loc. For p = 0,
both the links are attributed a value of 0, which makes sense (since they do not propagate
any effect when p = 0). The attributions increase with p, with a clear delineation of how
much of the effect flows through the unfair channel of interest (loc→ edu).
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Figure 26: RSV for the modified SCM of with a background (race(1), age(1), sex(1)) = (0, 40, 0) and
a foreground (race(2), age(2), sex(2)) = (1, 40, 1) with unfairness parameters (a1, a3) =
(0.2, 0.2) and location parameter p ∈ {0.3, 0.6}. (Note that the reported numbers do
not necessarily obey flow conservation as they are rounded to 2 decimal places.)

Remark 11 (Individual-level counterfactual) Note that in our illustration of causal
unfairness, we only fix the data corresponding to source variables (race, age, sex) and do
not condition on any realization of the non-source variables but let them by determined
by the structural equations (20). We did this for ease of illustration and we note that it is
straightforward to account for individual-level data observed at non-source nodes. Motivated
by Kusner et al. (2017), this can be done by following the standard three-step framework of
Pearl et al. (2016) (Chapter 4): (a) abduction, (b) action, and (c) prediction. In partic-
ular, given individual-level realization (X, Y ) = (xxx, y), we can first compute the posterior
of the noise (abduction) U | (xxx, y). Second, as we did above, we can consider the two
cases of interest (action): setting the source variables at background and foreground. Fi-
nally, we can compute the RSV-based effect propagation (prediction) as we did above but
by using the posterior U | (xxx, y) (instead of the prior). Furthermore, this can be done

prevent clutter, we omit showing those edges but note that they exist and the corresponding structural
equations are the same as in (20).
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Figure 27: RSV on the two outgoing edges of loc (i.e., loc → edu and loc → inc) as we vary
p ∈ {0, 0.1, . . . , 1}. The rest of the setup remains the same as in Figure 26.

for realizations corresponding to any subset of (X, Y ). For example, one might only ob-
serve (race, age, sex, edu,ms, inc) but not the hrs of an individual, which will result in the
corresponding noise posterior.

8. Concluding remarks

Before concluding, we elaborate on a number of interesting extensions for the posited frame-
work. Instead of having the quantity of attribution (i.e., the δ) as the difference in the

expected outcomes (i.e., Euuu[y
(2)
uuu ]− Euuu[y

(1)
uuu ]), we can define it using other functionals of the

noise distribution, e.g., the quantile or the variance. Our key results (axiomatic support in
Theorem 4, path-based characterization for non-parametric SEMs in Theorem 8, and the
Monte-Carlo estimation scheme in §6 along with the properties in Proposition 10) hold for
such a generalization. To see this, observe that given a subset E ⊆ E of active edges, the
definition of yuuu(E) remains the same as discussed around (3) in §4. The key definition that
changes is that of y(E). Instead of defining y(E) as Euuu[yuuu(E)] (as we did below (3)), we
now define it by using an arbitrary operator of interest, denoted by Fuuu[·] (e.g., quantile or
variance), i.e.,

y(E) := Fuuu[yuuu(E)].

Accordingly, given background and foreground source values xxx
(1)
N0

and xxx
(2)
N0

, the background

and foreground outcome equals y(1) := Fuuu[y
(1)
uuu ] and y(2) := Fuuu[y

(2)
uuu ], respectively, where the

super-script captures the dependence on source values as before. Hence, the quantity of
attribution equals the difference y(2) − y(1) as before. For this modification, the intuition
provided in §4.1 holds as it is and the definition of RSV remains as in §4.2. Further, the
aforementioned results (Theorem 4, Theorem 8, and Proposition 10) go through without
any additional modification (proofs are identical). This highlights the flexibility of the pro-
posed framework to accommodate various metrics of interest for attribution purposes. For
example, given the widespread usage of quantile regression (Koenker and Bassett Jr, 1978;
Koenker and Hallock, 2001; Meinshausen, 2006), one might be interested in understand-
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ing the change in a certain p-quantile of the outcome, for some p ∈ (0, 1). In fact, if the
underlying SEM is linear (as in (6)), then our closed-form characterization in Theorem 6
holds for quantiles as well. The reason for this is that due to the additive nature of the
noise in a linear SEM, the p-quantile of the outcome can be represented as the outcome’s
expected value plus some constant (with respect to which edges are active). This constant
gets cancelled out under the RSV computations and hence, the solution ends up being the
same as the one for the expectation operator.

In summary, we formulate a generic problem to study effect propagation in causal DAGs,
and use it to provide a comprehensive view on existing approaches such as direct and in-
direct effects, path-specific effects, and degree of responsibility. In addition to highlighting
limitations of such techniques, we propose an axiomatic flow-based methodology (RSV) to
quantify attribution. RSV operates on a top-down principle and flows down the effect from
the source nodes via a sequence of recursive games, which allow RSV to consider a broader
spectrum of counterfactuals than existing approaches. For linear SEMs, RSV admits a
tractable closed-form characterization, which recovers the classical method of path coeffi-
cients and is equivalent to ideas such as path-specific effects. For non-parametric SEMs, we
provide a path-based characterization of RSV, which leads to an unbiased Monte-Carlo esti-
mation scheme with an exponentially decaying sample complexity. Our principled approach
to effect propagation provides a new perspective on challenging problems on causality, such
as causal overdetermination and causal unfairness.

Next, we outline several directions worth further exploring. First, although our path-
based characterization leads to an estimation scheme for non-parametric SEMs, one can
potentially develop tractable exact characterizations of RSV, especially beyond the class
of linear SEMs. We found it challenging to do so even for the case of a linear model with
two-way interactions, as mentioned at the end of §5 (recall Footnote 7). Even though
if such characterizations are intractable, they might lead to efficient estimation schemes.
Second, our framework assumes knowledge of the underlying structural causal model and
it would be useful to understand RSV’s robustness to model estimation and presence of
hidden confounders. For example, in the case of a linear SEM, one can possibly use the
characterization in Theorem 6 to understand the sensitivity of RSV to the model param-
eters [aij ](i,j)∈E (i.e., the edge weights). Understanding such robustness is critical before
employing RSV in real-world applications, especially for sensitive applications such as causal
unfairness. Third, given the applicability of causal attribution in practical domains such
as advertising (Dalessandro et al., 2012; Singal et al., 2022) and legal studies (Ferey and
Dehez, 2016), applying RSV to such real-world applications is of interest. Finally, this work
proposed one set of desirable axioms for effect propagation and it is of interest to explore
alternative axioms.
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Appendix A. Primer on Shapley value (SV)

In this appendix, we provide a brief primer on Shapley value (SV) and refer the reader
to Chapter 8 of Peleg and Sudhölter (2007) for details. In cooperative game theory, SV
(Shapley, 1953) is a well-accepted solution concept to fairly attribute the total value in a
game. In particular, given a finite set P of players, let the value generated by any subset
of players (coalition) P ⊆ P be denoted by the characteristic function v(P ). Accordingly,
the total value in the game equals v(P) and the goal is to distribute this value back to the
individual players in P. To do so, SV attributes the following to player r ∈ P:

πr :=
∑

P⊆P\{r}

wP(P )× {v(P ∪ {r})− v(P )} ,

where the weight function is defined as

wP(P ) :=
|P |! (|P|−|P |−1)!

|P|!
.

Intuitively speaking, SV of player r computes its value-add to each coalition P that does
not contain player r and weights it by a corresponding “probability” 14 wP(P ). Hence, it
can be seen as the “expected” value-add of player r. SV is desirable since it is the unique
solution to obey the following four axioms:

1. Efficiency: Total value is distributed, i.e.,∑
r∈P

πr = v(P)− v(∅).

2. Symmetry: Equivalent players receive same attribution, i.e., πr = πr′ if players
r, r′ ∈ P obey the following:

v(P ∪ {r}) = v(P ∪ {r′}) ∀P ⊆ P \ {r, r′}.

3. Linearity: Given two characteristic functions v1(·) and v2(·), linearity requires ro-
bustness to mixing and scaling, i.e., for all r ∈ P,

πr(v1 + v2) = πr(v1) + πr(v2)

πr(αv1) = απr(v1) ∀α ∈ R.

4. Null player: Useless player gets zero attribution, i.e., πr = 0 if player r ∈ P obeys

v(P ∪ {r}) = v(P ) ∀P ⊆ P \ {r}.

14. Note that
∑

P⊆P\{r} wP(P ) equals 1 and each of the weight term is non-negative.
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Appendix B. Reverse effects

As in our direct and indirect effects discussion (§3.1), consider the setup of Figure 2. To
understand a limitation of reverse indirect effect (Pearl, 2010), we first visualize direct effect
(DE) and reverse indirect effect (−IEr) in Figure 28. Simply put, DE starts off with the
baseline of both direct and indirect channels being inactive (subplot 2) and computes the
value-add of making the direct channel active (subplot 1). −IEr starts off with the baseline
of the direct channel being active (subplot 4) and computes the value-add of making the
indirect channel active (subplot 3). When we add up DE and −IEr, subplots 1 and 4 in
Figure 28 cancel out and we are left with the total effect TE (difference between subplots
3 and 2). Clearly, DE = 0 and −IEr = 1, suggesting all of the effect is mediated by
the indirect channel. However, we can similarly define reverse direct effect (−DEr) by
flipping the order in which we proceed. In particular, as we show in Figure 29, we can first
compute indirect effect (IE) by starting off with the baseline of both direct and indirect
channels being inactive (subplot 2) and computing the value-add of making the indirect
channel active (subplot 1). Then, we can start off with the baseline of the indirect channel
being active (subplot 4) and compute the value-add of making the direct channel active
(subplot 3), which we call −DEr (analogous to −IEr). Similar to TE = DE − IEr, we
have TE = IE−DEr. Doing so results in IE = 0 and −DEr = 1, meaning all of the effect
is propagated by the direct channel, which is the opposite of what we concluded above. As
such, the order in which we proceed leads to a different conclusion. RSV avoids this issue
by averaging over these two orderings:

TE = (DE −DEr)/2︸ ︷︷ ︸
RSV of direct channel

+ (IE − IEr)/2︸ ︷︷ ︸
RSV of indirect channel

. (21)

Note that RSV simplifies to (21) only for the very specific graph structure under consider-
ation. To see this, observe that (21) is path-based in that it decouples the total effect along
two paths (direct and indirect), which is different from the edge-based RSV. Futhermore,
(21) provides a very coarse decomposition of the total effect as it only decouples it along
two paths, which is very different from RSV’s ability to provide a granular flow-based de-
composition along every edge. Given the clean decomposition in (21), it is of interest to
understand if RSV can be expressed in a similar manner for more general graphs. In fact,
this was partly our motivation behind the path-based characterization of RSV in Theorem
8, but RSV’s intricate nature leads to a much more involved expression in general. Irre-
spective, RSV can be seen as generalizing (21) to more involved settings as it recovers (21)
in simple settings but has the ability to provide a more granular decomposition of the total
effect.

This issue is exacerbated in bigger graphs as there are more possible choices of which
order to proceed in. For example, in the graph shown in Figure 30, there are 6 possible
orderings. Depending on the order, we end up attributing different values, and there is
no unique right order. As such, though the notion of reverse effects can restore efficiency
(decomposition adding up to the total effect), it feels rather ad hoc and lacks uniqueness.
This is in sharp contrast to RSV, which comes out uniquely from four desirable axioms.
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Figure 28: Visualizing DE and −IEr. DE corresponds to the difference between the two graphs
in subplot (a). −IEr corresponds to the difference between the two graphs in subplot
(b).
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Figure 29: Visualizing IE and −DEr. IE corresponds to the difference between the two graphs
in subplot (a). −DEr corresponds to the difference between the two graphs in subplot
(b).

Appendix C. Proof of Theorem 4

Theorem 4 Given structural causal model M = (G,F,D), the RSV [πRSV
jk ](j,k)∈E defined via

Algorithm 1 is the unique solution to the flow-based axioms.

Proof First, consider the node 0 game. E0 is the set of players with the characteristic
function v0(E0) = y(E0,E1, . . . ,En) for coalition E0 ⊆ E0. Under RSV, flow received by
each edge in E0 equals the corresponding SV of this game:

πRSV
0k =

∑
E0⊆E0\{(0,k)}

wE0(E0)× {v0(E0 ∪ {(0, k)})− v0(E0)} ∀(0, k) ∈ E0.

The uniqueness result of SV w.r.t. the original SV axioms (Shapley, 1953) implies that
[πRSV

0k ](0,k)∈E0
uniquely satisfies the four flow-based axioms (at node 0). Observe that the

symmetry, nullity, and linearity axioms of the classical SV are equivalent to the flow sym-
metry, flow nullity, and flow linearity axioms. In addition, flow conservation at node 0 is
implied by the efficiency axiom of the classical SV. To see this, observe that the classical
efficiency axiom states

∑
k∈C0

πRSV
0k = v0(E0)− v0(∅). This is equivalent to the conservation

of flow at node 0:

v0(E0)− v0(∅) = y(E0,E1, . . . ,En)− y(∅,E1, . . . ,En)
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Figure 30: A graph with one direct and two indirect channels. There are 6 possible orderings,
which can be understood as follows. We start with the baseline of all 3 channels being
inactive and hence, we have the option of adding any of the 3 channels first. Then, we
activate any of the remaining 2 channels. Finally, we activate the remaining 1 channel.
Note that 3× 2× 1 = 6.

= y(2) − y(1).

The final equality is due to the definition of y(·) (recall (3)):

y(E0,E1, . . . ,En) = y(2)

y(∅,E1, . . . ,En) = y(1).

Next, consider the node j ∈ N \ {0} game. The players are Ej with the characteristic
function vj(Ej) =

∑
i∈Pj

πij(E0, . . . , Ej , . . . ,En) for coalition Ej ⊆ Ej . Under RSV, flow
received by each edge in Ej equals the corresponding SV of this game:

πRSV
jk =

∑
Ej⊆Ej\{(j,k)}

wEj
(Ej)× {vj(Ej ∪ {(j, k)})− vj(Ej)} ∀(j, k) ∈ Ej .

The uniqueness result of SV w.r.t. the original SV axioms (Shapley, 1953) implies that
[πRSV
jk ](j,k)∈Ej

uniquely satisfies the four flow-based axioms (at node j). Observe that the
symmetry, nullity, and linearity axioms of the classical SV are equivalent to the flow sym-
metry, flow nullity, and flow linearity axioms. In addition, flow conservation at node j is
implied by the efficiency axiom of the classical SV. To see this, observe that the classical
efficiency axiom states

∑
k∈Cj

πRSV
jk = vj(Ej)− vj(∅). This is equivalent to the conservation

of flow at node j:

vj(Ej)− vj(∅) =
∑
i∈Pj

πij(E0, . . . ,Ej , . . . ,En)−
∑
i∈Pj

πij(E0, . . . , ∅, . . . ,En)

=
∑
i∈Pj

πRSV
ij .

The last equality holds since

πij(E0, . . . ,Ej , . . . ,En) = πRSV
ij ∀i ∈ Pj

πij(E0, . . . , ∅, . . . ,En) = 0 ∀i ∈ Pj .

The first statement is by definition and the second statement is true because for Ej = ∅,
no new information is passed via node j to its children (see the definition of y(·) as in (3))
and therefore, edge (i, j) becomes a null player in the node i ∈ Pj upstream game. This
completes the proof. �
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Appendix D. Proof of Theorem 6

Theorem 6 Consider structural causal model M = (G,F,D) , wherein the structural equa-
tions F are linear and the noise distribution D has zero mean (see (6)), with ccc and bbb as in
(7) and (8). Then,

πRSV
0j = c0j ∀(0, j) ∈ E0

πRSV
jk =

∑
i∈Pj

bijcjk ∀(j, k) ∈ E \ E0.

Proof Seeting E = E in Lemma 12 (stated below) gives the following flow on each edge
(0, j) ∈ E0:

π0j(E) =
∑

k:(j,k)∈Ej

b0j(E0)cjk(Ej , . . . ,En)

=
∑

k:(j,k)∈Ej

b0jcjk

=
∑

k:(j,k)∈Ej

a0jcjk

= c0j .

The second equality holds due to bbb = bbb(E) (see (8) and (23)) and ccc = ccc(E) (see (7) and

(22)), the third equality holds as b0j = x
(2)
j −x

(1)
j = a0j ∀(0, j) ∈ E0, and the fourth equality

directly follows the definition of c0j ∀(0, j) ∈ E0 (see (7)). Similarly, setting E = E in Lemma
12 gives the following attributions to each edge (j, k) ∈ E \ E0:

πjk(E) =
∑

`:(k,`)∈Ek

bjk(E0, . . . ,Ej)ck`(Ek, . . . ,En)

=
∑
`∈Ck

bjkck`

=
∑
`∈Ck

∑
i∈Pj

bijajkck`

=
∑
i∈Pj

bijajk
∑
`∈Ck

ck`

=
∑
i∈Pj

bijcjk.

The third and fifth equalities directly follow the definitions of bbb and ccc (see (8) and (7)).
Recalling that πRSV

jk is defined as πjk(E) for all (j, k) ∈ E, the proof is complete. �

Details on Lemma 12

The proof of Theorem 6 uses a more general result (Lemma 12), which we develop next.
It will help to generalize the definitions of both the forward-looking weights ccc and the

51



Singal and Michailidis

backward-looking weights bbb. In §5.1 (recall Equations (7) and (8)), when defining these
weights, we implicitly assumed all edges E as being active. We now let these weights vary
as a function of an arbitrary subset E = (E0, . . . ,En) ⊆ E of edges. We assume topologically
sorting wlog, i.e., there does not exist an edge (i, j) ∈ E such that i > j (Cormen et al.,
2009). We define the generalized forward-looking weights ccc(E) as follows:

cj,n+1(Ej) := aj,n+1I{(j, n+ 1) ∈ Ej} ∀(j, n+ 1) ∈ Ein
n+1 (22a)

cij(Ei, . . . ,En) := aijI{(i, j) ∈ Ei}
∑

k:(j,k)∈Ej

cjk(Ej , . . . ,En) ∀(i, j) ∈ E \ Ein
n+1, (22b)

where a0j := x
(2)
j −x

(1)
j ∀(0, j) ∈ E0 as before. Similarly, we define the generalized backward-

looking weights bbb(E) as follows:

b0j(E0) := (x
(2)
j − x

(1)
j )I{(0, j) ∈ E0} ∀(0, j) ∈ E0 (23a)

bjk(E0, . . . ,Ej) :=
∑

i:(i,j)∈Ei

bij(E0, . . . ,Ei)ajkI{(j, k) ∈ Ej} ∀(j, k) ∈ E \ E0. (23b)

Observe that setting in E = E recovers the original weights as in (7) and (8), i.e., bbb = bbb(E)
and ccc = ccc(E). We next present Lemma 12.

Lemma 12 Consider structural causal model M = (G,F,D) where the structural equations
F are linear and the noise D is mean-zero (see (6)), with ccc(·) and bbb(·) as in (22) and (23).
Then, given E ⊆ E, for all i ∈ N,

πij(E) =
∑

k:(j,k)∈Ej

bij(E0, . . . ,Ei)cjk(Ej , . . . ,En) ∀j : (i, j) ∈ E,

where E = (E0, . . . ,En) and the graph G is assumed to be topologically sorted (wlog).

Proof First, consider the node i = 0 (super-source). Recall that π0j(E) is the SV of the
following game. The players are the elements of E0 and given an arbitrary coalition E0 ⊆ E0,
characteristic function is

v0(E0 | E−0) = y(E0,E1, . . . ,En)

=
∑

j:(0,j)∈E0

c0j(E0,E1, . . . ,En)

=
∑

j:(0,j)∈E0

a0jI{(0, j) ∈ E0}
∑

k:(j,k)∈Ej

cjk(Ej , . . . ,En)

=
∑

j:(0,j)∈E0

b0j(E0)
∑

k:(j,k)∈Ej

cjk(Ej , . . . ,En).

The second equality directly follows the definition of ccc(·) (see (22)) and y(·) (see (3)).
The third equality follows the definition of ccc(·) (see (22)). The last equality holds since

a0j = x
(2)
j − x

(1)
j and it also leverages the definition of b0j(·) (see (23)). Given v0(E0 | E−0)
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is separabile over the players (0, j) in E0, we have that the SV of each player (0, j) ∈ E0

equals

π0j(E) = b0j(E0)
∑

k:(j,k)∈Ej

cjk(Ej , . . . ,En)

=
∑

k:(j,k)∈Ej

b0j(E0)cjk(Ej , . . . ,En).

The base case is complete.
Due to the DAG structure, it is sufficient to show the claim holds at node j ∈ N by

assuming it to hold at each of its parent nodes i such that (i, j) ∈ Ei. In other words, it
suffices to show that

πij(E) =
∑

k:(j,k)∈Ej

bij(E0, . . . ,Ei)cjk(Ej , . . . ,En) ∀j : (i, j) ∈ E (24)

implies

πjk(E) =
∑

`:(k,`)∈Ek

bjk(E0, . . . ,Ej)ck`(Ek, . . . ,En) ∀k : (j, k) ∈ E.

Recall that πjk(E) corresponds to the SV of the game with Ej as the set of players and the
following characteristic function given coalition Ej ⊆ Ej :

vj(Ej | E−j) =
∑

i:(i,j)∈Ei

πij(E0, . . . , Ej , . . . ,En)

=
∑

i:(i,j)∈Ei

∑
k:(j,k)∈Ej

bij(E0, . . . ,Ei)cjk(Ej , . . . ,En)

=
∑

i:(i,j)∈Ei

∑
k:(j,k)∈Ej

bij(E0, . . . ,Ei)cjk(Ej , . . . ,En)

=
∑

k:(j,k)∈Ej

∑
i:(i,j)∈Ei

bij(E0, . . . ,Ei)cjk(Ej , . . . ,En).

The second equality follows (24), the third is true as cjk(Ej , . . . ,En) = cjk(Ej , . . . ,En) for
(j, k) ∈ Ej (see (22)). Given the characteristic function is separabile over the underlying
players, we have that the SV of player (j, k) ∈ Ej equals

πjk(E) =
∑

i:(i,j)∈Ei

bij(E0, . . . ,Ei)cjk(Ej , . . . ,En)

=
∑

i:(i,j)∈Ei

bij(E0, . . . ,Ei)ajkI{(j, k) ∈ Ej}
∑

`:(k,`)∈Ek

ck`(Ek, . . . ,En)

= bjk(E0, . . . ,Ej)
∑

`:(k,`)∈Ek

ck`(Ek, . . . ,En)

=
∑

`:(k,`)∈Ek

bjk(E0, . . . ,Ej)ck`(Ek, . . . ,En),

where the second and third equalities follow from the definitions of ccc(·) (see (22)) and bbb(·)
(see (23)), respectively. This completes the proof. �
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Appendix E. Proof of Theorem 8

Theorem 8 Given structural causal model M = (G,F,D), the RSV of edge (i, j) ∈ E ex-
hibits the following characterization:

πRSV
ij (E) =

∑
W∈Wi

∑
EW⊆E

W∪{j}\{0}
W

κW (EW )
∑

V⊆Edge(W∪{j})

(−1)|W |−|V | × y(EW ∪ V,E−W ).

Proof Directly follows when we plug in E equal to E in Lemma 13 (see below). �

Details on Lemma 13

The proof of Theorem 8 leverages a more general result (Lemma 13), which we present
now. We generalize the definitions of various primitives as a function of a subset E =
(E0, . . . ,En) ⊆ E. For instance, the set of parents of node i ∈ N+ is denoted as Pi(E), the
set of all unique paths to node i ∈ N+ is denoted as Wi(E), flow (RSV) on edge (i, j) ∈ E is
denoted as πRSV

ij (E) (or simply πij(E) for conciseness), the SV weight as wEi
(·) for the game

at node i ∈ N, the kappa factor (given path W ) as κEW (·), etc. We assume wlog that the
DAG is topologically sorted, i.e., there is no edge (i, j) ∈ E with i > j (Cormen et al., 2009).
Note that plugging in E as E recovers the original primitives. We are now in a position to
present Lemma 13.

Lemma 13 Given structural causal model M = (G,F,D) and a subset E = (E0, . . . ,En) ⊆
E of edges, the RSV (corresponding to input E) of edge (i, j) ∈ E exhibits the following
characterization:

πRSV
ij (E) =

∑
W∈Wi(E)

∑
EW⊆E

W∪{j}\{0}
W

κEW (EW )
∑

V⊆Edge(W∪{j})

(−1)|W |−|V | × y(EW ∪ V,E−W ).

(Note that πRSV
ij (E) corresponds to the following call of Algorithm 1: RSV(N,E). In particular,

the second input is E instead of E.)

Proof First, consider the super-source node i = 0. By definition, π0j(E) corresponds to
the Shapley value of the following game. The set of players is E0 and for a given coalition
E0 ⊆ E0, characteristic function equals

v0(E0 | E−0) = y(E0,E1, . . . ,En)

= y(E0,E−0).

Accordingly, the Shapley value for player (0, j) ∈ E0 equals

π0j(E) =
∑

E0⊆E0\{(0,j)}

wE0(E0)× {y(E0 ∪ {(0, j)},E−0)− y(E0,E−0)} . (25)

Observing that W0(E) = (0), the RHS of the claim for (i, j) = (0, j) equals:

=
∑

W∈W0(E)

∑
EW⊆E

W∪{j}\{0}
W

κEW (EW )
∑

V⊆Edge(W∪{j})

(−1)|W |−|V | × y(EW ∪ V,E−W )
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=
∑
E0⊆Ej

0

κE0(E0)
∑

V⊆{(0,j)}

(−1)1−|V | × y(E0 ∪ V,E−0)

=
∑

E0⊆E0\{(0,j)}

wE0(E0)× {y(E0 ∪ {(0, j)},E−0)− y(E0,E−0)}

= π0j(E).

The first equation is the RHS of the claim, the second is obtained by plugging in W0(E) = (0)
and simplifying, the third follows the definition of the kappa factor and expanding the sum
over V , and the final equality follows (25). This completes the base case.

Given the DAG structure, it suffices to show the claim holds at node j ∈ N by assuming
it to hold at each of its parent nodes i s.t. (i, j) ∈ Ei. That is, it suffices to show that

πij(E) =
∑

W∈Wi(E)

∑
EW⊆E

W∪{j}\{0}
W

κEW (EW )
∑

V⊆Edge(W∪{j})

(−1)|W |−|V | × y(EW ∪ V,E−W )

(26)

for all j : (i, j) ∈ E implies

πjk(E) =
∑

W∈Wj(E)

∑
EW⊆E

W∪{k}\{0}
W

κEW (EW )
∑

V⊆Edge(W∪{k})

(−1)|W |−|V | × y(EW ∪ V,E−W )

for all k : (j, k) ∈ E. Consider arbitrary edge (j, k) ∈ E. Observe that

πjk(E) =
∑

Ej⊆Ej\{(j,k)}

wEj
(Ej)× {vj(Ej ∪ {(j, k)} | E−j)− vj(Ej | E−j)}

=
∑

Ej⊆Ej\{(j,k)}

wEj
(Ej)

∑
i∈Pj(E)

{πij(Ej ∪ {(j, k)},E−j)− πij(Ej ,E−j)}

=
∑

Ej⊆Ej\{(j,k)}

wEj
(Ej)

∑
i∈Pj(E)

∑
W∈Wj(E)

∑
EW⊆E

W∪{j}\{0}
W

κEW (EW )

×
∑

V⊆Edge(W∪{j})

(−1)|W |−|V |

×
{
y(EW ∪ V,Ej ∪ {(j, k)},E−(W∪j))− y(EW ∪ V,Ej ,E−(W∪j))

}
=

∑
i∈Pj(E)

∑
W∈Wj(E)

∑
Ej⊆Ej\{(j,k)}

∑
EW⊆E

W∪{j}\{0}
W

wEj
(Ej)κ

E
W (EW )

×
∑

V⊆Edge(W∪{j})

(−1)|W |−|V |

×
{
y(EW ∪ V,Ej ∪ {(j, k)},E−(W∪j))− y(EW ∪ V,Ej ,E−(W∪j))

}
=

∑
i∈Pj(E)

∑
W∈Wj(E)

∑
Ej⊆Ej\{(j,k)}

∑
EW⊆E

W∪{j}\{0}
W

wEj
(Ej)κ

E
W (EW )

×
∑

V⊆Edge(W∪{j})

(−1)|W |−|V |
∑

V ′⊆{(j,k)}

(−1)1−|V ′|y(EW ∪ V,Ej ∪ V ′,E−(W∪j))
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=
∑

W∈Wj(E)

∑
EW⊆E

W∪{k}\{0}
W

κEW (EW )
∑

V⊆Edge(W∪{k})

(−1)|W |−|V | × y(EW ∪ V,E−W ).

The first equality follows the definition of SV, second follows the recursive definition of
the characteristic function vj(·), third invokes (26), and the last three equalities use basic
algebra. This completes the proof. �

Appendix F. RSV characterization for a linear model with interactions

Consider the DAG in Figure 31 for illustration.

X1

X2 X3

Y

Figure 31: DAG used to illustrate the RSV characterization for a linear model with two-way in-
teractions. We have excluded node 0 for simplicity.

Suppose X1 is set exogenously and the true (deterministic) relations are linear with two-way
interactions:

X2 = a2
1X1

X3 = a3
1X1 + a3

2X2 + a3
12X1X2

Y = a4
1X1 + a4

2X2 + a4
3X3 + a4

12X1X2 + a4
13X1X3 + a4

23X2X3.

The super-scripts in the coefficients (e.g., “2” in a2
1) do not represent exponents but are

used to indicate the child node of the corresponding edge (e.g., “2” in a2
1 denotes node 2). In

§F.1, we compute the RSV for this relatively simple example and observe a pattern, which
we generalize in §F.2. Finally, we discuss its computational implications in §F.3. The key
message of this section is that developing a computationally tractable RSV characterization
even for a linear model (in the coefficients) with two-way interactions in the variables is
challenging.

F.1 RSV computation

For simplicity 15, assume background X
(1)
1 = 0 and foreground X

(2)
1 = 1. Then, Y (1) = 0

and

Y (2) = a4
1X

(2)
1 + a4

2X
(2)
2 + a4

3X
(2)
3 + a4

12X
(2)
1 X

(2)
2 + a4

13X
(2)
1 X

(2)
3 + a4

23X
(2)
2 X

(2)
3

= a4
1 + a4

2X
(2)
2 + a4

3X
(2)
3 + a4

12X
(2)
2 + a4

13X
(2)
3 + a4

23X
(2)
2 X

(2)
3

= a4
1 + a4

2a
2
1 + a4

3X
(2)
3 + a4

12a
2
1 + a4

13X
(2)
3 + a4

23a
2
1X

(2)
3

15. As we show, even under this simplification, a computationally tractable characterization of RSV is
challenging.
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= a4
1 + a4

2a
2
1 + a4

3(a3
1 + a3

2a
2
1 + a3

12a
2
1) + a4

12a
2
1 + a4

13(a3
1 + a3

2a
2
1 + a3

12a
2
1)

+ a4
23a

2
1(a3

1 + a3
2a

2
1 + a3

12a
2
1).

First equality is by definition. Second plugs in X
(2)
1 = 1. Third plugs in X

(2)
2 = a2

1. Fourth

plugs in X
(2)
3 = a3

1 + a3
2a

2
1 + a3

12a
2
1.

First, RSV considers a game at node 1, where the players are the outgoing edges E1 =
{(1, 2), (1, 3), (1, 4)}. All downstream edges are assumed to be active. The RSV of edge
(1, 2) equals:

πRSV
12 =

1

3
(v1({(1, 2)})− v1(∅)) +

1

6
(v1({(1, 2), (1, 3)})− v1({(1, 3)}))

+
1

6
(v1({(1, 2), (1, 4)})− v1({(1, 4)}))

+
1

3
(v1({(1, 2), (1, 3), (1, 4)})− v1({(1, 3), (1, 4)})) .

Observe that the coalition values are as follows (via bruteforce computation):

v1(∅) = Y (1) = 0

v1({(1, 2)}) = a4
2a

2
1 + a4

3a
3
2a

2
1 + a4

23a
2
1a

3
2a

2
1

v1({(1, 3)}) = a4
3a

3
1

v1({(1, 4)}) = a4
1

v1({(1, 2), (1, 3)}) = a4
2a

2
1 + a4

3(a3
1 + a3

2a
2
1 + a3

12a
2
1) + a4

23a
2
1(a3

1 + a3
2a

2
1 + a3

12a
2
1)

v1({(1, 2), (1, 4)}) = a4
1 + a4

2a
2
1 + a4

3a
3
2a

2
1 + a4

12a
2
1 + a4

13a
3
2a

2
1 + a4

23a
2
1a

3
2a

2
1

v1({(1, 3), (1, 4)}) = a4
1 + a4

3a
3
1 + a4

13a
3
1

v1({(1, 2), (1, 3), (1, 4)}) = Y (2) = a4
1 + a4

2a
2
1 + a4

3(a3
1 + a3

2a
2
1 + a3

12a
2
1) + a4

12a
2
1

+ a4
13(a3

1 + a3
2a

2
1 + a3

12a
2
1) + a4

23a
2
1(a3

1 + a3
2a

2
1 + a3

12a
2
1).

Plugging these in πRSV
12 , we get πRSV

12 equals

=
1

3

(
a4

2a
2
1 + a4

3a
3
2a

2
1 + a4

23a
2
1a

3
2a

2
1

)
+

1

6

(
a4

2a
2
1 + a4

3(a3
2a

2
1 + a3

12a
2
1) + a4

23a
2
1(a3

1 + a3
2a

2
1 + a3

12a
2
1)
)

+
1

6

(
a4

2a
2
1 + a4

3a
3
2a

2
1 + a4

12a
2
1 + a4

13a
3
2a

2
1 + a4

23a
2
1a

3
2a

2
1

)
+

1

3

(
a4

2a
2
1 + a4

3(a3
2a

2
1 + a3

12a
2
1) + a4

12a
2
1 + a4

13(a3
2a

2
1 + a3

12a
2
1) + a4

23a
2
1(a3

1 + a3
2a

2
1 + a3

12a
2
1)
)

= a4
2a

2
1 + a4

3a
3
2a

2
1 + a4

23a
2
1a

3
2a

2
1 +

a4
3a

3
12a

2
1

2
+
a4

23a
2
1a

3
1

2
+
a4

23a
2
1a

3
12a

2
1

2
+
a4

12a
2
1

2
+
a4

13a
3
2a

2
1

2

+
a4

13a
3
12a

2
1

3
.

We have arranged the terms using the denominators 1, 2, and 3. Note that each of the
numerator term appears in Y (2) and hence, πRSV

12 splits Y (2) via these term-specific denom-
inators. Interestingly, there is an underlying pattern behind these denominators. Observe
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that the denominator corresponds to the number of edges (out of the 3 edges of interest
in this game, i.e., E1 = {(1, 2), (1, 3), (1, 4)}) that play a role in the term. For example, in
a4

13a
3
12a

2
1, all three edges of interest appear:

• a4
13: (1, 4) and (3, 4)

• a3
12: (1, 3) and (2, 3)

• a2
1: (1, 2).

Hence, the corresponding denominator equals 3. Extrapolating this pattern, we can decom-
pose Y (2) as follows:

πRSV
12 = a4

2a
2
1 + a4

3a
3
2a

2
1 + a4

23a
2
1a

3
2a

2
1 +

a4
3a

3
12a

2
1

2
+
a4

23a
2
1a

3
1

2
+
a4

23a
2
1a

3
12a

2
1

2
+
a4

12a
2
1

2
+
a4

13a
3
2a

2
1

2

+
a4

13a
3
12a

2
1

3

πRSV
13 = a4

3a
3
1 +

a4
3a

3
12a

2
1

2
+
a4

13a
3
1

2
+
a4

13a
3
2a

2
1

2
+
a4

23a
2
1a

3
1

2
+
a4

13a
3
12a

2
1

3

πRSV
14 = a4

1 +
a4

12a
2
1

2
+
a4

13a
3
1

2
+
a4

13a
3
2a

2
1

2
+
a4

13a
3
12a

2
1

3
.

By construction of this decomposition, the sum (πRSV
12 + πRSV

13 + πRSV
14 ) equals Y (2). As a

sanity check, let’s verify the value of πRSV
14 via first principles:

πRSV
14 =

1

3
(v1({(1, 4)})− v1(∅)) +

1

6
(v1({(1, 4), (1, 3)})− v1({(1, 3)}))

+
1

6
(v1({(1, 4), (1, 2)})− v1({(1, 2)}))

+
1

3
(v1({(1, 4), (1, 2), (1, 3)})− v1({(1, 2), (1, 3)}))

=
1

3

(
a4

1

)
+

1

6

(
a4

1 + a4
13a

3
1

)
+

1

6

(
a4

1 + a4
12a

2
1 + a4

13a
3
2a

2
1

)
+

1

3

(
a4

1 + a4
12a

2
1 + a4

13(a3
1 + a3

2a
2
1 + a3

12a
2
1)
)

= a4
1 +

a4
13a

3
1

2
+
a4

12a
2
1

2
+
a4

13a
3
2a

2
1

2
+
a4

13a
3
12a

2
1

3
.

This matches the pattern above. We don’t need to verify πRSV
13 due to efficiency (flow

conservation).

Having computed RSV at the node 1 game, let’s flow it down. Consider node 2. It
receives an inflow of πRSV

12 , which is split into the outflow πRSV
23 + πRSV

24 . Recall from above
that

πRSV
12 = a4

2a
2
1 + a4

3a
3
2a

2
1 + a4

23a
2
1a

3
2a

2
1 +

a4
3a

3
12a

2
1

2
+
a4

23a
2
1a

3
1

2
+
a4

23a
2
1a

3
12a

2
1

2
+
a4

12a
2
1

2
+
a4

13a
3
2a

2
1

2

+
a4

13a
3
12a

2
1

3
.
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Extrapolating the pattern from above, we get the following flow decomposition:

πRSV
23 = a4

3a
3
2a

2
1 +

a4
23a

2
1a

3
2a

2
1

2
+
a4

3a
3
12a

2
1

2
+
a4

23a
2
1a

3
12a

2
1

4
+
a4

13a
3
2a

2
1

2
+
a4

13a
3
12a

2
1

3

πRSV
24 = a4

2a
2
1 +

a4
23a

2
1a

3
2a

2
1

2
+
a4

23a
2
1a

3
1

2
+
a4

23a
2
1a

3
12a

2
1

4
+
a4

12a
2
1

2
.

Only two inflow terms, a4
23a

2
1a

3
2a

2
1 and

a423a
2
1a

3
12a

2
1

2 , involve both the edges of interest ((2, 3)
and (2, 4)) and hence, are split between the two. All other terms involve just one of the two
edges and hence, are allocated accordingly. As a sanity check, let’s verify the value of πRSV

24

via first principles:

πRSV
24 =

1

2
(v2({(2, 4)})− v2(∅)) +

1

2
(v2({(2, 3), (2, 4)})− v2({(2, 3)})) .

Observe that the coalition values are as follows:

v2(∅) = 0

v2({(2, 3)}) = a4
3a

3
2a

2
1 +

a4
3a

3
12a

2
1

2
+
a4

13a
3
2a

2
1

2
+
a4

13a
3
12a

2
1

3

v2({(2, 4)}) = a4
2a

2
1 +

a4
23a

2
1a

3
1

2
+
a4

12a
2
1

2

v2({(2, 3), (2, 4)}) = πRSV
12 = a4

2a
2
1 + a4

3a
3
2a

2
1 + a4

23a
2
1a

3
2a

2
1 +

a4
3a

3
12a

2
1

2
+
a4

23a
2
1a

3
1

2
+
a4

23a
2
1a

3
12a

2
1

2

+
a4

12a
2
1

2
+
a4

13a
3
2a

2
1

2
+
a4

13a
3
12a

2
1

3
.

Plugging these in πRSV
24 , we get πRSV

24 equals

=
1

2

(
a4

2a
2
1 +

a4
23a

2
1a

3
1

2
+
a4

12a
2
1

2

)
+

1

2

(
a4

2a
2
1 + a4

23a
2
1a

3
2a

2
1 +

a4
23a

2
1a

3
1

2
+
a4

23a
2
1a

3
12a

2
1

2
+
a4

12a
2
1

2

)
= a4

2a
2
1 +

a4
23a

2
1a

3
1

2
+
a4

12a
2
1

2
+
a4

23a
2
1a

3
2a

2
1

2
+
a4

23a
2
1a

3
12a

2
1

4
.

It matches the decomposition above. We do not need to verify πRSV
23 due to flow conservation.

Hence, the pattern seems to hold when we flow down the attribution. Note that the due to
flow conservation, attribution through node 3 is trivial (πRSV

13 = πRSV
34 ) and hence,

πRSV
34 = a4

3a
3
1 +

a4
3a

3
12a

2
1

2
+
a4

13a
3
1

2
+
a4

13a
3
2a

2
1

2
+
a4

23a
2
1a

3
1

2
+
a4

13a
3
12a

2
1

3
.

This completes the computation of RSV for the example at hand.

F.2 General expression

Continuing with the example from above, consider the decomposition of Y that one obtains
by substituting all of the foreground inputs:

Y = a4
1 + a4

2a
2
1 + a4

3a
3
1 + a4

3a
3
2a

2
1 + a4

3a
3
12a

2
1 + a4

12a
2
1 + a4

13a
3
1 + a4

13a
3
2a

2
1 + a4

13a
3
12a

2
1
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+ a4
23a

2
1a

3
1 + a4

23a
2
1a

3
2a

2
1 + a4

23a
2
1a

3
12a

2
1. (27)

Since the background equals 0, (27) denotes the total effect. The decomposition has 12 terms
and we will use the notation a to denote an individual term and the notation “

∑
a∈Y ” to sum

over all such terms in Y (notation abuse since Y is not a set). Given this decomposition,
RSV for the topmost game (edges (1, 2), (1, 3), and (1, 4)) is as follows:

πRSV
1j =

∑
a∈Y

a× I{(1, j) ∈ a}
unique1(a)

∀j ∈ {2, 3, 4},

where I{(1, j) ∈ a} denotes whether edge (1, j) appears in term a or not (another notation
abuse since a is not a set) and unique1(a) denotes the number of unique edges in a out
of the outgoing edges of node 1 (sub-script “1” in unique1(·) captures this dependence on
node 1). For example, a4

1 has only edge (1, 4) and unique1(a4
1) = 1 whereas a4

3a
3
12a

2
1 has

four edges ((3, 4), (1, 3), (2, 3), and (1, 2)) but only two of these four emit from node 1 and
hence, unique1(a4

3a
3
12a

2
1) = 2.

Flowing down this attribution can be done using the same formula. In particular,
everything remains the same except the value that is split. For example, at node 2, instead
of splitting Y , we split the value it receives from the top, i.e., πRSV

2 , which equals πRSV
12 in

this example. The formula above gives us a decomposition of πRSV
12 (and hence, πRSV

2 ):

πRSV
2 = a4

2a
2
1 + a4

3a
3
2a

2
1 + a4

23a
2
1a

3
2a

2
1 +

a4
3a

3
12a

2
1

2
+
a4

23a
2
1a

3
1

2
+
a4

23a
2
1a

3
12a

2
1

2
+
a4

12a
2
1

2
+
a4

13a
3
2a

2
1

2

+
a4

13a
3
12a

2
1

3
.

The decomposition has 9 terms and as before, we will use the notation a to denote an
individual term (including the denominator that comes with it). Given this decomposition,
RSV for the game at node 2 (edges (2, 3) and (2, 4)) is as follows:

πRSV
2j =

∑
a∈πRSV

2

a× I{(2, j) ∈ a}
unique2(a)

∀j ∈ {3, 4}.

Note that we use unique2(·) (sub-script changed from 1 to 2), which captures the number
of unique edges out of the outgoing edges at node 2. The general pattern follows (formal
proof omitted for brevity).

Given this characterization, we have a handle on computing RSV without using the
bruteforce recursions in Algorithms 1 and 2. However, as we discuss next, the such a pro-
cedure runs into computational tractability issues (primarily due to the interaction terms).

F.3 Runtime

It should be clear that the runtime of this technique is primarily driven by the number of
terms in the decomposition of Y as in (27), which we denote by |Y |. In particular, the
runtime is upper bounded by O(|E|×|Y |), where |E| denotes the number of edges in the
graph. This is because computing πRSV

ij for an arbitrary (i, j) ∈ E involves a sum over at
most |Y | terms. Accordingly, the question of interest is as follows: how many terms does
Y have?
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In this direction, consider a fully dense DAG with n input nodes (X1, . . . , Xn) and out-
come node Y . Then, the structural equations for a linear model with two-way interactions
are:

X1 exogenous

X2 = a2
1X1

X3 = a3
1X1 + a3

2X2 + a3
12X1X2

...

Xn =
n−1∑
i=1

ani Xi +
n−2∑
i=1

n−1∑
j=i+1

anijXiXj

Y =
n∑
i=1

an+1
i Xi +

n−1∑
i=1

n∑
j=i+1

an+1
ij XiXj .

Obtaining the decomposition of Y (especially when X1 equals 1) is conceptually straightfor-
ward (though quite mechanical): starting from X1, keep performing forward-substituition.

Denote by κj the number of terms that appear in Xj for j = 1, . . . , n+ 1. That is, |Y |
equals κn+1. Given the structural equations as above, the sequence {κ1, . . . , κn+1} obeys
the following recursion:

κj =

j−1∑
i=1

κi +

j−2∑
h=1

j−1∑
i=h+1

κhκi ∀j = 2, . . . , n+ 1.

κ1 = 1 initializes the recursion. Unfortunately, this sequence explodes quite fast, as shown
in Figure 32. Hence, the technique of decomposing Y and using it to attribute via the
unique(·) characterization seems computationally intractable. Of course, this is not an
impossibility result in general for SEMs with linear main effects and 2-way interaction
terms, as there might some other characterization that might be computationally tractable.
However, it seems rather challenging to come up with one, primarily due to the presence of
the interaction terms.

Appendix G. Proof of Proposition 10

Proposition 14 For edge (i, j) ∈ E, π̂RSV
ij is an unbiased estimator of πRSV

ij with variance
decaying at a rate of 1/S. Furthermore, for all t ≥ 0,

P
{∣∣πRSV

ij − π̂RSV
ij

∣∣ ≥ t} ≤ 2 exp
(
−βijSt2

)
for some βij > 0 finite. (The probability measure P{·} here denotes the Monte-Carlo sam-
pling distribution of the estimator π̂RSV

ij .)

Proof The unbiasedness and 1/S rate of variance decay directly follow our construction of
the Monte-Carlo scheme. For the sample complexity, first, observe that given S samples,
Hoeffding’s inequality (Hoeffding, 1994) implies the following for W ∈Wi: for all t ≥ 0,

P
{∣∣∣µjW − µ̂jW ∣∣∣ ≥ t} ≤ 2 exp

(
−2S2t2∑S

s=1(max(µ̂jW (s))−min(µ̂jW (s)))2

)
,
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Figure 32: Growth of κn (on the log scale) as a function of n.

where min(µ̂jW (s)) and max(µ̂jW (s)) capture the range of µ̂jW (s) over s, i.e., µ̂jW (s) ∈
[min(µ̂jW (s)),max(µ̂jW (s))] for all s. Since the range is independent of s, we get

P
{∣∣∣µjW − µ̂jW ∣∣∣ ≥ t} ≤ 2 exp

(
−2St2

(max(µ̂jW )−min(µ̂jW ))2

)
. (28)

Note that (28) bounds the gap between µjW and µ̂jW (i.e., for a given path W ∈Wi) whereas

we are ultimately interested in estimating πRSV
ij , which equals

∑
W∈Wi

µjW . It is possible to
leverage (28) along with a corresponding concentration inequality for sub-Gaussian random
variables to obtain a similar concentration bound for the difference between πRSV

ij and π̂RSV
ij .

With the error equal to

πRSV
ij − π̂RSV

ij =
∑
W∈Wi

(
µjW − µ̂

j
W

)
︸ ︷︷ ︸

=:Zj
W

,

Theorem 2.6.2 of Vershynin (2018) implies the following sample complexity: for all t ≥ 0,

P
{∣∣πRSV

ij − π̂RSV
ij

∣∣ ≥ t} = P


∣∣∣∣∣∣
∑
W∈Wi

ZjW

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
−2cijSt

2∑
W∈Wi

||ZjW ||2ψ2

)
, (29)

where

cij := min
W∈Wi

{
1

(max(µ̂jW )−min(µ̂jW ))2

}
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and for a random variable Z, the norm

||Z||ψ2 := inf
{
a ≥ 0 : E

[
exp(Z2/a2)

]
≤ 2
}
,

which is finite if and only if Z is sub-Gaussian. For us, note that ZjW is sub-Gaussian due
to (28) for all W ∈Wi. Setting

βij =
2cij∑

W∈Wi
||ZjW ||2ψ2

in (29) completes the proof. �

Appendix H. Sampling paths in linear time and space

Here, we supplement our discussion at the end of §6.1 by illustrating how we can sample
paths uniformly at random from Wj (set of all paths from node 0 to j) in linear time and
space for node j ∈ N+ \ {0}. For simplicity, we showcase the procedure on the topologically
sorted DAG in Figure 33a. (Note that topological sorting a DAG takes linear time.)

0

X1

X2 X3

X4 X5

Y

(a) DAG

1

1

1 2

3 6

10

(b) Cumulative values [dj ]j∈N+

Figure 33: The DAG and the corresponding cumulative values used to illustrate our sampling
procedure.

We focus on node 6 (Y ) and show how we can generate uniform samples from W6. To
do so, we compute the cumulative values (Figure 33b):

d0 := 1

dj :=
∑
i∈Pj

di ∀j ∈ N+ \ {0}.

Observe that, by construction, dj equals |Wj | (number of paths from node 0 to node j)
for all j ∈ N+ \ {0}. Hence, to generate a uniform sample from W6, we can employ the
following procedure:
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(a) Estimator distribution
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(b) Variance as a function of S

Figure 34: Numerical illustration of our estimation scheme for (L,M) = (4,3). Note that the
exact RSV (of the top-right edge) equals 1/M , which equals 1/3 in this case (blue
vertical line in plot (a)). The estimator’s mean is close to 0.33 for all values of S and
the variance decays at a rate of 1/S.

1. Start at node 6 and sample a node from its set of parents P6 = {1, 4, 5} with sampling
weights (1, 3, 6), i.e., the cumulative values (d1, d4, d5) of the parents.

2. Suppose the sampled node is j ∈ P6. Repeat the procedure at node j by sampling
from Pj with weights (di)i∈Pj

.

3. Keep doing so until node 0 is reached and stitch together the sampled edges as a
sample path from W6.

Since the DAG is topologically sorted, we will reach node 0 in at most n steps and the
entire procedure runs in linear time and space, without enumerating W6. It should be clear
that the procedure samples paths uniformly at random from W6 and the same idea can be
used to sample from Wj for an arbitrary node j ∈ N+ \ {0}. Furthermore, generalizing this
procedure to an arbitrary DAG is straightforward.

Appendix I. Additional plots for the numerical illustration of our
estimation scheme

See Figures 34 to 39.
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(a) Estimator distribution
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(b) Variance as a function of S

Figure 35: Numerical illustration of our estimation scheme for (L,M) = (4,5). Note that the
exact RSV (of the top-right edge) equals 1/M , which equals 1/5 in this case (blue
vertical line in plot (a)). The estimator’s mean is close to 0.20 for all values of S and
the variance decays at a rate of 1/S.

(a) Estimator distribution
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(b) Variance as a function of S

Figure 36: Numerical illustration of our estimation scheme for (L,M) = (4,7). Note that the
exact RSV (of the top-right edge) equals 1/M , which equals 1/7 in this case (blue
vertical line in plot (a)). The estimator’s mean is close to 0.14 for all values of S and
the variance decays at a rate of 1/S.
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(a) Estimator distribution
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(b) Variance as a function of S

Figure 37: Numerical illustration of our estimation scheme for (L,M) = (5,3). Note that the
exact RSV (of the top-right edge) equals 1/M , which equals 1/3 in this case (blue
vertical line in plot (a)). The estimator’s mean is close to 0.33 for all values of S and
the variance decays at a rate of 1/S.

(a) Estimator distribution
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(b) Variance as a function of S

Figure 38: Numerical illustration of our estimation scheme for (L,M) = (5,5). Note that the
exact RSV (of the top-right edge) equals 1/M , which equals 1/5 in this case (blue
vertical line in plot (a)). The estimator’s mean is close to 0.20 for all values of S and
the variance decays at a rate of 1/S.
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(a) Estimator distribution

0 200 400 600 800 1000

Number of Monte-Carlo samples S

0

0.5

1

1.5

2

V
a

ri
a

n
c
e

 in
 t
h

e
 e

s
tim

a
te

10
-3

1.82

0.76

0.57

0.46
0.37

0.29 0.27
0.2 0.17

Data

1/S fit

(b) Variance as a function of S

Figure 39: Numerical illustration of our estimation scheme for (L,M) = (5,7). Note that the
exact RSV (of the top-right edge) equals 1/M , which equals 1/7 in this case (blue
vertical line in plot (a)). The estimator’s mean is close to 0.14 for all values of S and
the variance decays at a rate of 1/S.
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