
Journal of Machine Learning Research 25 (2024) 1-75 Submitted 05/22; Revised 12/23; Published 03/24

Nonparametric Estimation of Non-Crossing Quantile
Regression Process with Deep ReQU Neural Networks

Guohao Shen∗ guohao.shen@polyu.edu.hk
Department of Applied Mathematics
The Hong Kong Polytechnic University
Hong Kong SAR, China

Yuling Jiao∗ yulingjiaomath@whu.edu.cn
School of Mathematics and Statistics
and Hubei Key Laboratory of Computational Science
Wuhan University
Wuhan 430072, China

Yuanyuan Lin ylin@sta.cuhk.edu.hk
Department of Statistics
The Chinese University of Hong Kong
Hong Kong SAR, China

Joel L. Horowitz joel-horowitz@northwestern.edu
Department of Economics
Northwestern University
Evanston, IL 60208, USA

Jian Huang j.huang@polyu.edu.hk

Department of Applied Mathematics

The Hong Kong Polytechnic University

Hong Kong SAR, China

Editor: Ryan Tibshirani

Abstract

We propose a penalized nonparametric approach to estimating the quantile regression pro-
cess (QRP) in a nonseparable model using rectifier quadratic unit (ReQU) activated deep
neural networks and introduce a novel penalty function to enforce non-crossing of quantile
regression curves. We establish the non-asymptotic excess risk bounds for the estimated
QRP and derive the mean integrated squared error for the estimated QRP under mild
smoothness and regularity conditions. To establish these non-asymptotic risk and esti-
mation error bounds, we also develop a new error bound for approximating Cs smooth
functions with s > 1 and their derivatives using ReQU activated neural networks. This
is a new approximation result for ReQU networks and is of independent interest and may
be useful in other problems. Our numerical experiments demonstrate that the proposed
method is competitive with or outperforms two existing methods, including methods using
reproducing kernels and random forests for nonparametric quantile regression.

Keywords: Approximation error, quantile process, deep neural networks, monotonic
constraints, non-asymptotic error bound

∗. Guohao Shen and Yuling Jiao contributed equally to this work.

c©2024 Guohao Shen, Yuling Jiao, Yuanyuan Lin, Joel Horowitz and Jian Huang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/22-0488.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/22-0488.html

Shen, Jiao, Lin, Horowitz and Huang

1. Introduction

Consider a nonparametric regression model

Y = f0(X,U), (1)

where Y ∈ R is a response variable, X ∈ X ⊂ Rd is a d-dimensional vector of predictors,
U is an unobservable random variable following the uniform distribution on (0, 1) and
independent of X. The function f0 : X × (0, 1) → R is an unknown regression function,
and f0 is increasing in its second argument. This is a non-separable quantile regression
model, in which the specification U ∼ Unif(0, 1) is a normalization but not a restrictive
assumption (Chernozhukov et al., 2007; Horowitz and Lee, 2007). Nonseparable quantile
regression models are important in empirical economics (see, e.g., Blundell et al. (2017)).
Based on (1), it can be seen that for any τ ∈ (0, 1), the conditional τ -th quantile QY |x(τ)
of Y given X = x is

QY |x(τ) = f0(x, τ). (2)

We refer to f0 = {f0(x, τ) : (x, τ) ∈ X × (0, 1)} as a quantile regression process (QRP). A
basic property of QRP is that it is nondecreasing with respect to τ for any given x ∈ X ,
often referred to as the non-crossing property. We propose a novel penalized nonparametric
method for estimating f0 on a random discrete grid of quantile levels in (0, 1) simultaneously,
with a penalty designed to ensure the non-crossing property.

Quantile regression (Koenker and Bassett, 1978) is an important method for modeling
the relationship between a response Y and a predictor X. Different from least squares
regression that estimates the conditional mean of Y given X, quantile regression models
the conditional quantiles of Y given X, so it fully describes the conditional distribution of Y
given X. The non-separable model (1) can be transformed into a familiar quantile regression
model with an additive error. For any τ ∈ (0, 1), we have P{Y − f0(X, τ) ≤ 0} = τ under
(1). If we define ε = Y − f0(X, τ), then model (1) becomes

Y = g0(X) + ε, (3)

where g0(X) = f0(X, τ) and P (ε ≤ 0 | X = x) = τ for any x ∈ X . An attractive
feature of the nonseparable model (1) is that it explicitly includes the quantile level as a
second argument of f0, which makes it possible to construct a single objective function for
estimating the whole quantile process simultaneously.

A general nonseparable quantile regression model that allows a vector random distur-
bance U was proposed by Chernozhukov and Hansen (2005). The model (1) in the presence
of endogeneity was considered by Chernozhukov et al. (2007), who gave local identification
conditions for the quantile regression function f0 and provided sufficient conditions under
which a series estimator is consistent. The convergence rate of the series estimator is un-
known. The relationship between the nonseparable quantile regression model (1) and the
usual separable quantile regression model was discussed in Horowitz and Lee (2007). A
study of nonseparable bivariate quantile regression for nonparametric demand estimation
using splines under shape constraints was given in Blundell et al. (2017).

There is a large body of literature on separable linear quantile regression in the fixed-
dimension setting (Koenker and Bassett, 1978; Koenker, 2005) and in the high-dimensional

2

Non-Crossing Deep Quantile Regresion

settings (Belloni and Chernozhukov, 2011; Wang et al., 2012; Zheng et al., 2015). Nonpara-
metric estimation of separable quantile regressions has also been studied. Examples include
the methods using shallow neural networks (White, 1992), smoothing splines (Koenker
et al., 1994; He and Shi, 1994; He and Ng, 1999) and reproducing kernels (Takeuchi et al.,
2006; Sangnier et al., 2016). Semiparametric quantile regression has also been considered in
the literature (Chao et al., 2016; Belloni et al., 2019). A popular semiparametric quantile
regression model is

QY |x(τ) = Z(x)>β(τ). (4)

where QY |x(τ) is defined in (2) and Z(x) ∈ Rm is usually a series representation of the
predictor x. The goal is to estimate the coefficient process {β(τ) : τ ∈ (0, 1)} and derive
the asymptotic distribution of the estimators. Such results can be used for conducting
statistical inference about β(τ). However, they hinge on the model assumption (4). If this
assumption is not satisfied, estimation and inference results based on a misspecified model
can be misleading.

Quantile regression curves satisfy a monotonicity condition. At the population level, it
holds that f0(x, τ2) ≥ f0(x; τ1) for any 0 < τ1 < τ2 < 1 and every x ∈ X . However, for
an estimator f̂ of f0, there can be values of x for which the quantile curves cross, that is,
f̂(x, τ2) < f̂(x; τ1) due to finite sample size and sampling variation. Quantile crossing makes
it challenging to interpret the estimated quantile curves (He, 1997). Therefore, it is desir-
able to avoid it in practice. Constrained optimization methods have been used to obtain
non-crossing conditional quantile estimates in linear quantile regression and nonparamet-
ric quantile regression with a scalar covariate (He, 1997; Bondell et al., 2010). A method
proposed by Chernozhukov et al. (2010) uses sorting to rearrange the original estimated
non-monotone quantile curves into monotone curves without crossing. It is also possible to
apply the isotonization method for qualitative constraints (Mammen, 1991) to the original
estimated quantile curves to obtain quantile curves without crossing. Brando et al. (2022)
proposed a deep learning algorithm for estimating conditional quantile functions that en-
sures quantile monotonicity. They first restrict the output of a deep neural network to be
positive as the estimator of the derivative of the conditional quantile function, then by using
truncated Chebyshev polynomial expansion, the estimated derivative is integrated and the
estimator of conditional quantile function is obtained.

Recently, there has been active research on nonparametric least squares regression using
deep neural networks (Bauer and Kohler, 2019; Schmidt-Hieber, 2020; Chen et al., 2019;
Kohler et al., 2019; Nakada and Imaizumi, 2020; Farrell et al., 2021; Jiao et al., 2023). These
studies show that, under appropriate conditions, least squares regression with neural net-
works can achieve the optimal rate of convergence up to a logarithmic factor for estimating
a conditional mean regression function. Since the quantile regression problem considered in
this work is quite different from the least squares regression, different treatments are needed
in the present setting.

We propose a penalized nonparametric approach for estimating the nonseparable quan-
tile regression model (1) using rectified quadratic unit (ReQU) activated deep neural net-
works. We introduce a penalty function for the derivative of the QRP with respect to the
quantile level to avoid quantile crossing, which does not require numerical integration as in
Brando et al. (2022).

3

Shen, Jiao, Lin, Horowitz and Huang

Our main contributions are as follows.

1. We propose a novel loss function that is the expected quantile loss function with re-
spect to a distribution over (0, 1) for the quantile level, instead of the quantile loss
function at a single quantile level as in the usual quantile regression. An appeal-
ing feature of the proposed loss function is that it can be used to estimate quantile
regression functions at an arbitrary number of quantile levels simultaneously.

2. We propose a new penalty function to enforce the non-crossing property for quantile
curves at different quantile levels. This is achieved by encouraging the derivative of
the quantile regression function f(x, τ) with respect to τ to be nonnegative. The
use of ReQU activation ensures that the derivative exists. This penalty is easy to
implement and computationally feasible for high-dimensional predictors.

3. We establish non-asymptotic excess risk bounds for the estimated QRP and derive
the mean integrated squared error for the estimated QRP under the assumption that
the underlying quantile regression process belongs to the Cs class of functions on
X × (0, 1).

4. We derive novel approximation error bounds for Cs smooth functions with a positive
smoothness index s and their derivatives using ReQU activated deep neural networks.
The error bounds hold not only for the target function, but also its derivatives. This
is a new approximation result for ReQU networks and is of independent interest and
may be useful in other problems.

5. We conduct simulation studies to evaluate the finite sample performance of the pro-
posed QRP estimation method and demonstrate that it is competitive or outperforms
two existing nonparametric quantile regression methods, including kernel based quan-
tile regression and quantile regression forests.

The remainder of the paper is organized as follows. In Section 2 we describe the proposed
method for nonparametric estimation of QRP with a novel penalty function for avoiding
quantile crossing. In Section 3 we state the main results of the paper, including bounds
for the non-asymptotic excess risk and the mean integrated squared error for the proposed
QRP estimator. In Section 4 we derive the stochastic error for the QRP estimator. In
Section 5 we establish a novel approximation error bound for approximating Cs smooth
functions and their derivatives using ReQU activated neural networks. Section 6 describes
computational implementation of the proposed method. In Section 7 we conduct numerical
studies to evaluate the performance of the QRP estimator. Conclusion remarks are given
Section 8. Proofs and technical details are provided in the Appendix.

2. Deep quantile regression process estimation with non-crossing
constraints

In this section, we describe the proposed approach for estimating a quantile regression
process using deep neural networks with a novel penalty for avoiding non-crossing.

4

Non-Crossing Deep Quantile Regresion

2.1 The standard quantile regression

We first recall the standard quantile regression method with the check loss function (Koenker
and Bassett, 1978). For a given quantile level τ ∈ (0, 1), the quantile check loss function is

ρτ (x) = x{τ − I(x ≤ 0)}, x ∈ R.

For any f : X × (0, 1)→ R and τ ∈ (0, 1), the τ -risk of f is defined by

Rτ (f) = EX,Y {ρτ (Y − f(X, τ))}. (5)

Clearly, by the model assumption in (2), for each given τ ∈ (0, 1), the function f0(·, τ) is
the minimizer of Rτ (f) over all the measurable functions from X × (0, 1)→ R, i.e., for

f τ∗ = arg min
f
Rτ (f) = arg min

f
EX,Y {ρτ (Y − f(X, τ))},

we have f τ∗ ≡ f0(·, τ) on X × {τ}. This is a basic identification result for the standard
quantile regression, where only a single conditional quantile function f0(·, τ) at a given
quantile level τ is estimated.

2.2 Expected check loss with non-crossing constraints

Our goal is to estimate the whole quantile regression process {f0(·, τ) : τ ∈ (0, 1)}. The
existing method estimates the quantile curves f0(·, τ) at each τ separately and then mono-
tonize them afterwards to ensure non-crossing. In this subsection, we present the proposed
penalized estimation framework, where the entire quantile process is modelled nonpara-
metrically. We construct a randomized objective function by treating the quantile level τ
as a random variable whose distribution is supported on the unit interval. The resulting
estimator is naturally non-crossing, computationally efficient, and easy-to-implement.

Let ξ be a random variable supported on (0, 1) with density function πξ : (0, 1) → R+.
Consider the following randomized version of the check loss function

ρξ(x) = x{ξ − I(x ≤ 0)}, x ∈ R.

For a measurable function f : X × (0, 1)→ R, define the ξ-risk of f by

Rξ(f) = EX,Y,ξ{ρξ(Y − f(X, ξ))} =

∫ 1

0
Rt(f)πξ(t)dt. (6)

At the population level, let f∗ : X × (0, 1)→ R be a measurable function defined by

f∗ ∈ arg min
f
Rξ(f) = arg min

f

∫ 1

0
Rt(f)πξ(t)dt.

Note that f∗ may not be unique if (X, ξ) has zero density on some set A0 ⊆ X × (0, 1) with
positive Lebesgue measure. In this case, f∗(x, ξ) can take any value for (x, ξ) ∈ A0 since it
does not affect the risk. Importantly, since the target quantile function f0(·, τ) defined in
(1) minimizes the τ -risk Rτ for each τ ∈ (0, 1), f0 is also the risk minimizer of Rξ over all

5

Shen, Jiao, Lin, Horowitz and Huang

measurable functions. Then we have f0 ≡ f∗ on X × (0, 1) almost everywhere given that
(X, ξ) has nonzero density on X × (0, 1) almost everywhere.

In addition, the riskRξ depends on the distribution of ξ. Different distributions of ξ may
lead to different Rξ. However, the target quantile process f0 is still the risk minimizer of
Rξ over all measurable functions, regardless of the distribution of ξ. We state this property
in the following proposition, whose proof is given in the Appendix.

Proposition 1 For any random variable ξ supported on (0, 1), the target function f0 min-
imizes the risk Rξ(·) defined in (6) over all measurable functions, i.e.,

f0 ∈ arg min
f
Rξ(f) = arg min

f
EX,Y,ξ{ρξ(Y − f(X, ξ))}.

Furthermore, if (X, ξ) has non zero density almost everywhere on X × (0, 1) and the proba-
bility measure of (X, ξ) is absolutely continuous with respect to the Lebesgue measure, then
f0 is the unique minimizer of Rξ(·) over all measurable functions in the sense of almost
everywhere(almost surely), i.e.,

f0 = arg min
f
Rξ(f) = arg min

f
EX,Y,ξ{ρξ(Y − f(X, ξ))},

up to a negligible set with respect to the probability measure of (X, η) on X × (0, 1).

The loss function in (6) can be viewed as a weighted quantile check loss function, where
the distribution of ξ weights the importance of different quantile levels in the estimation.
Proposition 1 implies that, though different distributions of ξ may result in different esti-
mators with finite samples, these estimators can be shown to be consistent for the target
function f0 under mild conditions.

A natural and simple choice of the distribution of ξ is the uniform distribution over (0, 1)
with density function πξ(t) ≡ 1 for all t ∈ (0, 1). In this paper we focus on the case that ξ
is uniformly distributed on (0, 1), but we emphasize that the theoretical results presented
in Section 3-5 hold for different choices of the distribution of ξ. More discussions can be
found at the beginning of Section 3.

In practice, only a random sample {(Xi, Yi)}ni=1 is available. We can only estimate the
quantile process on a discrete grid of quantile levels. Moreover, the integral with respect
to πξ in (6) does not have a closed form expression, so we approximate it using a random
sample {ξi}ni=1 generated from πξ. Then, the empirical risk corresponding to the population
risk Rξ(f) in (6) is

Rξn(f) =
1

n

n∑
i=1

ρξi(Yi − f(Xi, ξi)). (7)

By minimizing (7) over certain hypothesis function class, we can obtain estimates for the
process {f0(·, τ) : τ ∈ (0, 1)} on a grid of random quantile levels that are increasingly dense
as the sample size n increases.

Let Fn be a class of deep neural network (DNN) functions defined on X × (0, 1). We
define the QRP estimator as the empirical risk minimizer

f̂n ∈ arg min
f∈Fn

Rξn(f). (8)

6

Non-Crossing Deep Quantile Regresion

The estimator f̂n contains estimates of the quantile curves {f̂n(x, ξ1), . . . , f̂n(x, ξn)} at the
quantile levels ξ1, . . . , ξn. An attractive feature of this approach is that it estimates all these
quantile curves simultaneously; since the estimator f̂n based on neural networks takes the
quantile level as an input and automatically interpolates the quantile curves at the points
other than {ξ1, . . . , ξn}.

By the basic properties of quantiles, the underlying quantile regression function f0(x, τ)
satisfies the monotonicity constraints

f0(x, ξ(1)) ≤ · · · ≤ f0(x; ξ(n)), x ∈ X ,

where ξ(1) < · · · < ξ(n) are the ordered values of ξ1, . . . , ξn. It is desirable that the estimated
quantile function also possess this monotonicity property. However, with finite samples
and due to sampling variation, the estimated quantile function f̂n(x, τ) may violate this
monotonicity property and cross for some values of x, leading to an improper distribution
for the predicted response. To avoid quantile crossing, constraints are required in the
estimation process. However, it is not a simple matter to impose monotonicity constraints
directly on regression quantiles.

We use the fact that a regression quantile function f0(x, τ) is nondecreasing in its second
argument τ if its partial derivative with respect to τ is non-negative. For a quantile regres-
sion function f : X × (0, 1) → R with first order partial derivatives, we let ∂f/∂τ denote
the partial derivative operator for f with respect to its second argument. A natural way to
impose the monotonicity on f(x, τ) with respect to τ is to constrain its partial derivative
with respect to τ to be nonnegative. So it is natural to consider ways to constrain the
derivative of f(x; τ) with respect to τ to be nonnegative.

We propose a penalty function based on the ReLU activation function, σ1(x) = max{x, 0}
x ∈ R, as follows,

κ(f) = EX,ξσ1
(
− ∂

∂τ
f(X, ξ)

)
= EX,ξ

[
max

{
− ∂

∂τ
f(X, ξ), 0

}]
. (9)

Clearly, this penalty function encourages ∂
∂τ f(x, ξ) ≥ 0. The empirical version of κ is

κn(f) :=
1

n

n∑
i=1

[
max

{
− ∂

∂τ
f(Xi, ξi), 0

}]
. (10)

Based on the above discussion and combining (6) and (9), we propose the following
population level penalized risk for the regression quantile functions

Rξλ(f) = EX,Y,ξ
[
ρξ(Y − f(X, ξ)) + λmax

{
− ∂

∂τ
f(X, ξ), 0

}]
, (11)

where λ ≥ 0 is a tuning parameter. Suppose that the partial derivative of the target quantile
function f0 with respect to its second argument exists. It then follows that ∂

∂τ f0(x, u) ≥ 0

for any (x, u) ∈ X×(0, 1), and thus f0 is also the risk minimizer ofRξλ(f) over all measurable
functions on X × (0, 1).

The empirical risk with respect to (11) for estimating the quantile functions is

Rξn,λ(f) =
1

n

n∑
i=1

[
ρξi(Yi − f(Xi, ξi)) + λmax

{
− ∂

∂τ
f(Xi, ξi), 0

}]
. (12)

7

Shen, Jiao, Lin, Horowitz and Huang

The penalized empirical risk minimizer over a class of functions Fn is given by

f̂λn ∈ arg min
f∈Fn

Rξn,λ(f), (13)

We refer to f̂λn as a penalized deep quantile regression process (DQRP) estimator. The
function class Fn plays an important role in (13). Next we give a detailed description of
Fn.

2.3 ReQU activated neural networks

Neural networks with nonlinear activation functions have proven to be a powerful approach
for approximating multi-dimensional functions. Rectified linear unit (ReLU), defined as
σ1(x) = max{x, 0}, x ∈ R, is one of the most commonly used activation functions due to its
attractive properties in computation and optimization. ReLU neural networks have received
much attention in statistical machine learning (Schmidt-Hieber, 2020; Bauer and Kohler,
2019; Jiao et al., 2023) and applied mathematics (Yarotsky, 2017, 2018; Shen et al., 2020,
2019; Lu et al., 2021a). However, since partial derivatives are involved in our proposed
objective function (12) and need to be approximated, piecewise linear ReLU networks may
not be an ideal choice as the ReLU function is not differentiable at 0.

We will use the Rectified Quadratic Unit (ReQU) activation, which is smooth and has
a continuous first derivative. The ReQU activation function, denoted as σ2, is the squared
ReLU,

σ2(x) = σ21(x) = [max{x, 0}]2, x ∈ R. (14)

With ReQU as the activation function, the network will be smooth and differentiable. Thus
ReQU activated networks are suitable to approximate a target function and its derivative as
in (12). Below in Table 1 we tabulate the comparison between ReLU and ReQU networks
in several important aspects.

Table 1: A comparison between ReLU and ReQU activation functions. Both activation
functions are continuous and non-saturated, which won’t encounter the problem of “van-
ishing gradients” during the optimization as Sigmodal activations (e.g. Sigmoid, Tanh) do.
ReQU activation is differentiable and can approximate the gradient of the target function
while ReLU activation is not, especially for estimation involving high-order derivatives of
the target function.

Activation Continuous Non-saturated Differentiable Gradient Estimation

ReLU ! ! % %

ReQU ! ! ! !

We set the function class Fn in (13) to be FD,W,U ,S,B,B′ , a class of ReQU activated
multilayer perceptrons f : Rd+1 → R with depth D, width W, size S, number of neurons
U and f satisfying ‖f‖∞ ≤ B and ‖ ∂∂τ f‖∞ ≤ B

′ for some 1 ≤ B,B′ < ∞, where ‖f‖∞ is
the sup-norm of a function f . The network parameters may depend on the sample size n,

8

Non-Crossing Deep Quantile Regresion

but the dependence is omitted in the notation for simplicity. The boundedness conditions
on the neural network functions and their derivatives can be implemented by truncating or
clipping the network output and its derivative (Chen et al., 2020; Lee and Kifer, 2021).

The architecture of a multilayer perceptron can be expressed as a composition of a series
of functions

f(x) = LD ◦ σ2 ◦ LD−1 ◦ σ2 ◦ · · · ◦ σ2 ◦ L1 ◦ σ2 ◦ L0(x), x ∈ Rp0 ,

where p0 = d + 1, σ2 is the rectified quadratic unit (ReQU) activation function defined in
(14) (operating on x component-wise if x is a vector), and Li’s are linear functions

Li(x) = Wix+ bi, x ∈ Rpi , i = 0, 1, . . . ,D,

with Wi ∈ Rpi+1×pi a weight matrix and bi ∈ Rpi+1 a bias vector. Here pi is the width (the
number of neurons or computational units) of the i-th layer. The input data consisting of
predictor values X is the first layer and the output is the last layer. Such a network f has D
hidden layers and (D+ 2) layers in total. We use a (D+ 2)-vector (p0, p1, . . . , pD, pD+1)

> to
describe the width of each layer; particularly, p0 = d+1 is the dimension of the input (X, ξ)
and pD+1 = 1 is the dimension of the response Y in model (2). The width W is defined
as the maximum width of hidden layers, i.e., W = max{p1, ..., pD}; the size S is defined
as the total number of parameters in the network fφ, i.e., S =

∑D
i=0{pi+1 × (pi + 1)}; the

number of neurons U is defined as the number of computational units in hidden layers, i.e.,
U =

∑D
i=1 pi. Note that the neurons in consecutive layers are connected to each other via

linear transformation matrices Wi, i = 0, 1, . . . ,D.
The network parameters can depend on the sample size n, but the dependence is sup-

pressed for notational simplicity, that is, S = Sn, U = Un, D = Dn, W =Wn, B = Bn and
B′ = B′n. This makes it possible to approximate the target regression function by neural
networks as n increases. The approximation and excess error rates will be determined in
part by how these network parameters depend on n.

3. Main results

In this section, we state our main results on the bounds for the excess risk and estimation
error of the penalized DQRP estimator. The excess risk of the penalized DQRP estimator
is defined as

Rξ(f̂λn)−Rξ(f0) = EX,Y,ξ{ρξ(Y − f̂λn (X, ξ))− ρξ(Y − f0(X, ξ))},

where (X,Y, ξ) is an independent copy of the random sample {(Xi, Yi, ξi)}ni=1.
Since the definition of Rξ(·) depends on the distribution of ξ, the theoretical guarantees

for Rξ(f̂λn) − Rξ(f0) established in this section also depends on the distribution of ξ. For
instance, if ξ is chosen to have a point mass distribution at a fixed τ ∈ (0, 1), i.e., P (ξ =
τ) = 1, then the excess risk

Rξ(f̂λn)−Rξ(f0) = EX,Y,ξ{ρξ(Y − f̂λn (X, ξ))} − EX,Y,ξ{ρξ(Y − f0(X, ξ))}
= EX,Y {ρτ (Y − f̂λn (X, τ))} − EX,Y {ρτ (Y − f0(X, τ))}
= Rτ (f̂λn)−Rτ (f0),

9

Shen, Jiao, Lin, Horowitz and Huang

which is precisely the excess risk for nonparametric quantile regression at a single quantile
level τ . In this case, our theoretical guarantee for the estimated quantile process will be
only in terms of the estimated quantile curve f̂λn (·, τ) at quantile level τ but not any other
quantile levels in (0, 1)\{τ}.

If ξ is chosen to follow a discrete uniform distribution on a set {τi}ki=1 with 0 < τ1 <
. . . < τk < 1, then the excess risk

Rξ(f̂λn)−Rξ(f0) = EX,Y,ξ{ρξ(Y − f̂λn (X, ξ))} − EX,Y,ξ{ρξ(Y − f0(X, ξ))}

=
1

k

k∑
j=1

[
EX,Y {ρτj (Y − f̂λn (X, τj))} − EX,Y {ρτj (Y − f0(X, τj))}

]

=
1

k

k∑
j=1

[
Rτj (f̂λn)−Rτj (f0)

]
,

which reduces to the excess risk for nonparametric quantile regression at multiple quantile
levels. In this case, our theoretical results will only guarantee the consistency of the es-
timated quantile process at quantile levels in {τi}ki=1. In addition, if the distribution of ξ
is chosen to concentrate more around the extreme quantiles close to 0 or 1, our theoreti-
cal results can lead to a tighter bound for the prediction errors at extreme quantiles; see
Corollary 5 for details.

Next, we first state a basic lemma for bounding the excess risk.

Lemma 1 (Excess risk decomposition) For the penalized empirical risk minimizer f̂λn
defined in (13), its excess risk can be upper bounded as follows:

Rξ(f̂λn)−Rξ(f0) ≤ Rξλ(f̂λn)−Rξλ(f0)

≤ 2 sup
f∈Fn

∣∣[Rξλ(f)−Rξλ(f0)]− [Rξn,λ(f)−Rξn,λ(f0)]
∣∣+ inf

f∈Fn

[
Rξλ(f)−Rξλ(f0)

]
.

Therefore, the bound for ξ-excess risk can be decomposed into two parts: the stochas-
tic error supf∈Fn |[R

ξ
λ(f) − Rξλ(f0)] − [Rξn,λ(f) − Rξn,λ(f0)]| and the approximation error

inff∈Fn [Rξλ(f)−Rξλ(f0)]. Once bounds for the stochastic error and approximation error are
available, we can immediately obtain an upper bound for the ξ-excess risk of the penalized
DQRP estimator f̂λn .

3.1 Non-asymptotic excess risk bounds

We first state the conditions needed for establishing the excess risk bounds.

Definition 2 (Multivariate differentiability classes Cs) A function f : B ⊂ Rd → R
defined on a subset B of Rd is said to be in class Cs(B) on B for a positive integer s, if all
partial derivatives

Dαf :=
∂α

∂xα1
1 ∂xα2

2 · · · ∂x
αd
d

f

10

Non-Crossing Deep Quantile Regresion

exist and are continuous on B for all non-negative integers α1, α2, . . . , αd such that α :=
α1 + α2 + · · ·+ αd ≤ s. In addition, we define the norm of f over B by

‖f‖Cs :=
∑
|α|1≤s

sup
B
|Dαf |,

where |α|1 :=
∑d

i=1 αi for any vector α = (α1, α2, . . . , αd) ∈ Rd.

We make the following smoothness assumption on the target regression quantile function
f0.

Assumption 3 The target quantile regression function f0 : X × (0, 1) → R defined in (2)
belongs to Cs(X × (0, 1)) for s ∈ N+ with s > 1, where N+ is the set of positive integers.

Let F ′n := { ∂∂τ f : f ∈ Fn} denote the function class induced by Fn. For a class F of
functions: X → R, its pseudo dimension, denoted by Pdim(F), is the largest integer m
for which there exists (x1, . . . , xm, y1, . . . , ym) ∈ Xm × Rm such that for any (b1, . . . , bm) ∈
{0, 1}m there exists f ∈ F such that ∀i : f(xi) > yi ⇐⇒ bi = 1 (Anthony and Bartlett,
1999; Bartlett et al., 2019).

Theorem 4 (Non-asymptotic ξ-excess risk bounds) For any N ∈ N+, let Fn :=
FD,W,U ,S,B,B′ be the ReQU activated neural networks f : X × (0, 1) → R with depth
D ≤ 2N − 1, width W ≤ 12Nd, the number of neurons U ≤ 15Nd+1, the number of
parameters S ≤ 24Nd+1. Under Assumption 3, suppose that B ≥ ‖f0‖C0 and B′ ≥ ‖f0‖C1.
Then for n ≥ max{Pdim(Fn),Pdim(F ′n)} and any λ ≥ 0, the ξ-excess risk of the penalized
DQRP estimator f̂λn defined in (13) satisfies

E{Rξ(f̂λn)−Rξ(f0)} ≤ C0(B + λB′)
√
d log n

n
N (d+3)/2 + Cs,d,X (1 + λ)‖f0‖CsN−(s−1),

(15)

where C0 > 0 is a universal constant and Cs,d,X is a positive constant depending only on
d, s and the diameter of the support X × (0, 1). If λ > 0, we also have

Emax

{
− ∂

∂τ
f̂λn (X, ξ), 0

}
≤ 1

λ

[
C0(B + λB′)

√
d log n

n
N (d+3)/2 + Cs,d,X (1 + λ)‖f0‖CsN−(s−1)

]
.

(16)

Further, if we set λ = log n and N = bn1/(d+2s+1)c, then (15) and (16) imply the upper
bounds

E{Rξ(f̂λn)−Rξ(f0)} ≤ C(log n)2n−
s−1

d+2s+1 , Emax

{
− ∂

∂τ
f̂λn (X, ξ), 0

}
≤ C(log n)2n−

s−1
d+2s+1 ,

where C > 0 is a constant depending only on B,B′, s, d,X and ‖f0‖Cs.

The upper bound for the ξ-excess risk (15) holds for any λ ≥ 0, and the upper bound
for the penalty term (16) holds for λ > 0. Note that larger λ leads to larger upper bound in

11

Shen, Jiao, Lin, Horowitz and Huang

(15) but smaller upper bound in (16). For each fixed sample size n, one can choose a proper
positive integer N based on n to construct such a ReQU network to achieve fast convergence
rate of the ξ-excess risk with respect to the sample size n. We recommend λ = log n and
N = bn1/(d+2s+1)c in (15) and (16), and we can obtain upper bounds with convergence rate
(log n)2n−(s−1)/(d+1+2s) for the ξ-excess risk. The term (s − 1) in the exponent is due to
the approximation of the first-order partial derivative of the target function. Of course,
the smoothness of the target function f0 is unknown in practice and how to determine the
smoothness of an unknown function is a difficult problem.

The non-asymptotic upper bound in Theorem 4 is for the excess risk for the entire
estimated quantile regression process. To the best of our knowledge, most existing studies
on nonparametric quantile regression focus on the quantile curve estimation at a specific
quantile level, and their convergence results are for a given quantile level. In contrast, our
method and theoretical results concern the entire quantile process and its derivative with
respect to the quantile level.

We can derive a pointwise upper bound for the excess risk at any specific quantile level
of interest. To this end, for any specific τ ∈ (0, 1) and δ < 1, we denote the collection of
neighborhoods of τ with radium δ by B(τ, δ) := {[a, b] : b− a = δ, τ ∈ [a, b]}, and define

Bτ
ξ (δ) := argmax

B∈B(τ,δ)

∫
B
πξ(t)dt

as the δ-neighborhood of τ on which ξ has the largest probability. Note that P(ξ ∈ Bτ
ξ) =∫

Bτξ
πξ(t)dt.

Corollary 5 (Pointwise excess risk bounds) Suppose ξ is a random variable with non-
zero density on (0, 1) almost everywhere. For any N ∈ N+, let Fn := FD,W,U ,S,B,B′

be the ReQU activated neural networks f : X × (0, 1) → R with depth D ≤ 2N − 1,
width W ≤ 12Nd, the number of neurons U ≤ 15Nd+1, the number of parameters S ≤
24Nd+1. Under Assumption 3, suppose that B ≥ ‖f0‖C0 and B′ ≥ ‖f0‖C1. Then, for
n ≥ max{Pdim(Fn),Pdim(F ′n)}, the pointwise excess risk of the penalized DQRP estimator
f̂λn at a specific quantile level τ ∈ (0, 1) satisfies

EX,Y {ρτ (Y − f̂λn (X, τ))− ρτ (Y − f0(X, τ))}

=E{Rτ (f̂λn)−Rτ (f0)} ≤
1

P(ξ ∈ Bτ
ξ (δ))

[
E{R(f̂λn)−R(f0)}

]
+ 2δ(B′ + 2B)

≤ 1

P(ξ ∈ Bτ
ξ (δ))

[
C0(B + λB′)

√
d log n

n
N (d+3)/2 + Cs,d,X (1 + λ)‖f0‖CsN−(s−1)

]
+ 2δ(B′ + 2B),

for δ ∈ [0, 1), where C0 > 0 is a universal constant and Cs,d,X is a positive constant
depending only on d, s and the diameter of the support X×(0, 1). Especially, if ξ is uniformly

12

Non-Crossing Deep Quantile Regresion

distributed on (0, 1), then

sup
τ∈(0,1)

EX,Y {ρτ (Y − f̂λn (X, τ))− ρτ (Y − f0(X, τ))}

≤1

δ

[
C0(B + λB′)

√
d log n

n
N (d+3)/2 + Cs,d,X (1 + λ)‖f0‖CsN−(s−1)

]
+ 2δ(B′ + 2B). (17)

By Corollary 5, for each fixed sample size n, letting N = bn1/(d+2s+1)c, λ = log n,
δ = n−(s−1)/[2(d+2s+1)], and if ξ is uniformly distributed on (0, 1), we can obtain an upper
bound from (17):

sup
τ∈(0,1)

E{Rτ (f̂λn)−Rτ (f0)} ≤ C(log n)2n
− s−1

2(d+2s+1) ,

where C > 0 is a constant depending only on B,B′, s, d,X and ‖f0‖Cs .
In addition, if the distribution of ξ is chosen to concentrate more around the extreme

quantiles near 0 and 1, then for any given δ ∈ [0, 1), the probability P(ξ ∈ Bτ
ξ (δ)) will be

larger for τ near 0 and 1. This will lead to a tighter bound for the prediction errors at
extreme quantiles, i.e. EX,Y {ρτ (Y − f̂λn (X, τ))− ρτ (Y − f0(X, τ))} for τ near 0 and 1.

3.2 Non-asymptotic mean integrated error

The empirical risk minimization quantile estimator typically results in an estimator f̂λn
whose risk R(f̂λn) is close to the optimal risk R(f0) in expectation or with high probability.
However, small excess risk in general only implies in a weak sense that the penalized empir-
ical risk minimizer f̂λn is close to the target f0 (Remark 3.18 Steinwart (2007)). We bridge
the gap between the excess risk and the mean integrated error of the estimated quantile
function. To this end, we need the following condition on the conditional distribution of Y
given X.

Assumption 6 There exist constants K > 0 and k > 0 such that for any |δ| ≤ K,

|PY |X(f0(x, τ) + δ | x)− PY |X(f0(x, τ) | x)| ≥ k|δ|,

for all τ ∈ (0, 1) and x ∈ X up to a negligible set, where PY |X(· | x) denotes the conditional
distribution function of Y given X = x.

Assumption 6 is a mild condition on the distribution of Y in the sense that, if Y has a density
that is bounded away from zero on any compact interval, then Assumption 6 will hold. In
particular, no moment assumptions are made on the distribution of Y . Similar conditions
are assumed by Padilla and Chatterjee (2021) in studying nonparametric quantile trend
filtering for a single quantile level τ ∈ (0, 1). This condition is weaker than Condition 2 in
He and Shi (1994) where the density function of response is required to be lower bounded
every where by some positive constant. Assumption 6 is also weaker than Condition D.1 in
Belloni and Chernozhukov (2011), which requires the conditional density of Y given X = x
to be continuously differentiable and bounded away from zero uniformly for all quantiles in
(0, 1) and all x in the support X .

13

Shen, Jiao, Lin, Horowitz and Huang

Under Assumption 6, the following self-calibration condition can be established as stated
below. This will lead to a bound on the mean integrated error of the estimated quantile
process based on a bound for the excess risk.

Lemma 7 (Self-calibration) Suppose that Assumption 6 holds. For any f : X × (0, 1)→
R, denote

∆2(f, f0) = E[min{|f(X, ξ)− f0(X, ξ)|, |f(X, ξ)− f0(X, ξ)|2}],

where X is the predictor vector and ξ is a uniform random variable on (0,1) independent
of X. Then we have

∆2(f, f0) ≤ cK,k{Rξ(f)−Rξ(f0)},

for any f : X × (0, 1) → R, where cK,k = max{2/k, 4/(Kk)} and K, k > 0 are defined in
Assumption 6. Especially, if ‖f − f0‖∞ ≤ K, then

E|f(X, ξ)− f0(X, ξ)|2 ≤
2

k
{Rξ(f)−Rξ(f0)}.

Additionally, if f, f0 are both bounded by B and K ≥ 2B, then ‖f − f0‖∞ ≤ K.

Theorem 8 (Mean integrated error bound) Suppose Assumptions 3 and 6 hold. For
any N ∈ N+, let Fn := FD,W,U ,S,B,B′ be the class of ReQU activated neural networks

f : X × (0, 1) → R with depth D ≤ 2N − 1, width W ≤ 12Nd, number of neurons U ≤
15Nd+1, number of parameters S ≤ 24Nd+1 and satisfying B ≥ ‖f0‖C0 and B′ ≥ ‖f0‖C1.
Then for n ≥ max{Pdim(Fn),Pdim(F ′n)}, the mean integrated error of the penalized DQRP

estimator f̂λn defined in (13) satisfies

E{∆2(f̂λn , f0)} ≤ cK,k
[
C0(B + λB′)

√
d log n

n
N (d+3)/2 + Cs,d,X (1 + λ)‖f0‖CsN−(s−1)

]
, (18)

where C0 > 0 is a universal constant, cK,k is defined in Lemma 7, Cs,d,X is a positive
constant depending only on d, s and the diameter of the support X × (0, 1). Letting N =
bn1/{(d+2s+1)}c and λ = log n in (18), we obtain an upper bound

E{∆2(f̂λn , f0)} ≤ C1(log n)2n−
s−1

d+2s+1 ,

where C1 > 0 is a constant depending only on B,B′, s, d,K, k,X and ‖f0‖Cs. Additionally,

if 2B ≤ K, the penalized DQRP estimator f̂λn defined in (13) satisfies

E|f̂λn (X, ξ)− f0(X, ξ)|2 ≤ 2

k

[
C0(B + λB′)

√
d log n

n
N (d+3)/2 + Cs,d,X (1 + λ)‖f0‖CsN−(s−1)

]
. (19)

Letting N = bn1/{(d+2s+1)}c and λ = log n in (19), we obtain

E|f̂λn (X, ξ)− f0(X, ξ)|2 ≤ C2(log n)2n−
s−1

d+2s+1 ,

where C2 > 0 is a constant depending only on B,B′, s, d,K, k,X and ‖f0‖Cs.

14

Non-Crossing Deep Quantile Regresion

For the nonseparable quantile regression model Y = f0(X,U), where U is uniformly
distributed on (0, 1) and f0 : X × (0, 1) → R is a function with a (d + 1)-dimensional
input and increasing in its second argument U , f0(·, ·) is actually the function describing
the quantile process of Y . Given any weighting random variable ξ on (0, 1), according to
Theorem 8 in the revised manuscript, the risk EX,ξ|f(X, ξ)−f0(X, ξ)|2 := ‖f−f0‖2L2(ν(X,ξ)),

where ν(X, ξ) denotes the probability measure of (X, ξ). Thus, it can be viewed as the
L2(ν(X, ξ)) distance between f and the target quantile process functions f0.

Without the crossing penalty in the objective function, the estimation for the derivative
function is not needed, thus the convergence rate can be improved. In this case, ReLU
activated or other neural networks can be used to estimate the quantile regression process.
For instance, Shen et al. (2021) showed that nonparametric quantile regression based on
ReLU neural networks attains a convergence rate of n−s/(d+s) up to a logarithmic factor.
This rate is slightly faster than the rate n−(s−1)/(d+2s+1) in Theorem 8 when the estimation
of the derivative function is involved.

Corollary 9 (Pointwise mean integrated error bound) Suppose the conditions in The-

orem 8 hold, then the penalized DQRP estimator f̂λn defined in (13) satisfies

E[min{|f̂λn (X, τ)− f0(X, τ)|, |f̂λn (X, τ)− f0(X, τ)|2}]

≤ CK,k
P(ξ ∈ Bτξ (δ))

[
C0(B + λB′)

√
d log n

n
N (d+3)/2 + Cs,d,X (1 + λ)‖f0‖CsN−(s−1)

]
+ 2CK,kδ(B′ + 2B),

(20)

for a specific τ ∈ (0, 1) and δ ∈ [0, 1), where C0 > 0 is a universal constant, cK,k is defined
in Lemma 7 and Cs,d,X is a positive constant depending only on d, s and the diameter of
the support X × (0, 1). If additionally 2B ≤ K, for τ ∈ (0, 1) and δ ∈ [0, 1) we have

E|f̂λn (X, τ)− f0(X, τ)|2

≤ 2

k · P(ξ ∈ Bτξ (δ))

[
C0(B + λB′)

√
d log n

n
N (d+3)/2 + Cs,d,X (1 + λ)‖f0‖CsN−(s−1)

]
+

4δ

k
(B′ + 2B).

(21)

Especially, if ξ is uniformly distributed on (0, 1), we have

sup
τ∈(0,1)

E|f̂λn (X, τ)− f0(X, τ)|2

≤ 2

kδ

[
C0(B + λB′)

√
d log n

n
N (d+3)/2 + Cs,d,X (1 + λ)‖f0‖CsN−(s−1)

]
+

4δ

k
(B′ + 2B). (22)

Letting N = bn1/{(d+2s+1)}c, λ = log n and δ = n−(s−1)/{2(d+2s+1)} in (22), we obtain

sup
τ∈(0,1)

E|f̂λn (X, τ)− f0(X, τ)|2 ≤ C2(log n)2n−
s−1

2(d+2s+1) ,

where C2 > 0 is a constant depending only on B,B′, s, d,K, k,X and ‖f0‖Cs .

15

Shen, Jiao, Lin, Horowitz and Huang

3.3 Lower bounds

In this subsection, we derive lower bounds for the prediction errors of the quantile process
estimate and the pointwise conditional quantile function in terms of different measurements.
We show that our DQRP quantile process estimator can achieve the lower bound of the con-
vergence for process estimation up to logarithmic factors, but fails to achieve the minimax
optimal rate for pointwise quantile estimation.

Our proof is based on the application of Fano’s inequality (Scarlett and Cevher, 2019)
and Varshamov-Gilber lemma (Tsybakov, 2008). By constructing a finite subset of the
target function space, we turn the lower bound problem to a multiple hypothesis testing
problem, and apply the Fano’s inequality to obtain the lower bound.

Theorem 10 (Lower Bound for Quantile Process Estimation) Given s ∈ N+, let
Cs+ := Cs+(X × (0, 1)) denote the class of functions f : X × (0, 1) → R, which is s times
differentiable and increasing in its last argument. Under Assumption 6, we have

inf
f̂n

sup
f0∈Cs+

E‖f̂n − f0‖C1 ≥ C × n−(s−1)/(d+1+2s),

where C > 0 is a universal constant and Sn denotes a sample generated from the model (1)
with f0 ∈ Cs+, and f̂n is any estimator based on Sn.

The lower bound in Theorem 10 is obtained with respect to the ‖·‖C1 distance and under
the non-separable quantile regression model Y = f0(X,U) where f0 is a (d+1)-dimensional
function with smoothness index s.

There are several implications of the lower bound results in Theorem 10. First, our upper
bound for the expected penalized excess risk E[Rλξ (f̂λn) − Rλξ (f0)] in Theorem 4 achieves
the rate of the lower bound in Theorem 10. And the upper bound in Theorem 4 would
match its lower bound as long as E[Rλξ (f̂λn)−Rλξ (f0)] ≥ c1E‖f̂λn − f0‖C1 for some universal
constant c1 > 0. Apparently, the opposite of the inequality holds by the Lipschitz property
of the penalized risk. While the existence of the constant c1 relies on proper distributional
assumptions on the data and model (e.g., Assumption 6 and Lemma 7) and a relative small
error for derivative estimation, i.e., ‖ ∂∂τ f̂

λ
n − ∂

∂τ f0‖C0 ≤ c2‖f̂λn − f0‖C0 for some universal

constant c2 > 0 or ‖ ∂∂τ f̂
λ
n − ∂

∂τ f0‖C0 ≤ c3λmax{− ∂
∂τ f̂

λ
n , 0} for some universal constant

c3 > 0. Second, regarding the excess risk Rξ(f̂λn) − Rξ(f0) without the penalty term,
distributional assumptions on the data and model (e.g., Assumption 6) can link the excess
risk with the prediction error through Rξ(f̂λn) − Rξ(f0) ≥ c4∆

2(f̂λn , f0), where c4 > 0 is
a universal constant and ∆(·, ·) is a proper measurement (see Lemma 7). In this sense,
our obtained upper bound for the excess risk in Theorem 4 loses a bit of efficiency in the
exponent of the rate from the optimal s to (s−1), due to the penalty term on the first-order
derivative. Third, our obtained results in Theorem 4 differ from existing ones in several
aspects. Many existing deep quantile regression methods focus on the point estimation of
the conditional quantile curve at a given quantile level, while our proposed estimator is for
estimating the entire quantile process. Our estimation involves derivatives to encourage
monotonicity, which results in a slower convergence rate from s to (s− 1) in the exponent,
while existing quantile regression estimation does not involve derivatives and can achieve a

16

Non-Crossing Deep Quantile Regresion

better rate in the exponent with respect to the smoothness index s, but facing a higher risk
of quantile-crossing.

The convergence rate in Theorem 10 attains the minimax rate n−(s−k)/(d+2s+1) derived
in Stone (1982) for the estimation of the kth derivative of the nonparametric regression
function E{Y | X} under certain distributional assumptions. For least square estimation
for the nonparametric regression model Y = f0(X) + ε with proper ε, the linkage between
excess risk and prediction error naturally holds: R(f̂λn) − R(f0) = EX‖f̂λn (X) − f0(X)‖2,
where R(f) = EX,Y ‖Y − f(X)‖2 is the least square risk. According to the nonparametric
regression framework in Stone (1982), several quantile regression methods have been shown
to achieve the minimax rate under proper assumptions (Chaudhuri, 1991; He and Shi, 1994;
Padilla et al., 2022). For example, the deep conditional quantile estimation at quantile level
τ = 0.5 in Padilla et al. (2022) can achieve the minimax rate in Schmidt-Hieber (2020) for
nonparametric mean regression under the assumption that the errors are Gaussian and the
covariates are uniformly distributed in [0, 1]d.

By Fano’s inequality, we also derive lower bounds for the pointwise prediction error of
quantile process estimation.

Theorem 11 (Lower Bound for Pointwise Quantile Estimation) Given s ∈ N+, let
Cs+ := Cs+(X × (0, 1)) denote the class of functions f : X × (0, 1) → R, which is s times
differentiable and increasing in its last argument. Under Assumption 6, we have

inf
f̂n

sup
f0∈Cs+

sup
τ∈(0,1)

E|f̂n(X, τ)− f0(X, τ)| ≥ C × n−s/(d+2s),

where C > 0 is a universal constant and Sn denotes a sample generated from the model (1)
with f0 ∈ Cs+, and f̂n is any estimator based on Sn.

The lower bound in Theorem 11 is for pointwise prediction error of quantile regression,
where the target quantile function is d-dimensional with smoothness index s. This rate
attains the minimax rate n−s/(d+2s) in Stone (1982) for the d-dimensional nonparamet-
ric regression function with smoothness s. The upper bounds for the pointwise quantile
estimation error of our DQRP estimator in Corollary 5 and Corollary 9 fall short of the
lower bound in Theorem 11 for several reasons. First, our DQRP estimation incorporates
derivatives to enforce monotonicity, which compromises the efficiency of the convergence
rate on the exponent from s to (s− 1). Second, the target function in our work is a (d+ 1)-
dimensional quantile process, which compromises the efficiency of the convergence rate on
the exponent from d to (d+ 1). Third, our proposed objective function in (11) depends on
the distribution of the randomized quantile level ξ, but no adversarial training is involved.
Thus, the pointwise results of DQRP do not attain the optimal convergence rate in terms
of the supremum norm over τ ∈ (0, 1).

4. Stochastic error

Now we derive non-asymptotic upper bound for the stochastic error given in Lemma 1. The
main difficulty here is that the term

sup
f∈Fn

∣∣∣[Rξλ(f)−Rξλ(f0)]− [Rξn,λ(f)−Rξn,λ(f0)]
∣∣∣

17

Shen, Jiao, Lin, Horowitz and Huang

involves the partial derivatives of the neural network functions in Fn. Thus we also need
to study the properties, especially, the complexity of the partial derivatives of the neural
network functions in Fn. Let

F ′n :=
{ ∂

∂τ
f(x, τ) : f ∈ Fn, (x, τ) ∈ X × (0, 1)

}
.

Note that the partial derivative operator is not a Lipschitz contraction operator, thus Ta-
lagrand’s lemma (Ledoux and Talagrand, 1991) cannot be used to link the Rademacher
complexity of Fn and F ′n, and to obtain an upper bound of the Rademacher complexity of
F ′n. In view of this, we consider a new class of neural network functions whose complex-
ity is convenient to compute. Then the complexity of F ′n can be upper bounded by the
complexity of such a class of neural network functions.

The following lemma shows that F ′n is contained in the class of neural network functions
with ReLU and ReQU mixed-activated multilayer perceptrons. In the following, we refer to
the neural networks activated by the ReLU or the ReQU as ReLU-ReQU activated neural
networks, i.e., the activation functions in each layer of ReLU-ReQU network can be ReLU
or ReQU and the activation functions in different layers can be different.

Lemma 12 (Network for partial derivative) Let Fn := FD,W,U ,S,B,B′ be a class of
ReQU activated neural networks f : X × (0, 1)→ R with depth (number of hidden layer) D,
width (maximum width of hidden layer) W, number of neurons U , number of parameters
(weights and bias) S and f satisfying ‖f‖∞ ≤ B and ‖ ∂∂τ f‖∞ ≤ B

′. Then for any f ∈ Fn,

the partial derivative ∂
∂τ f can be implemented by a ReLU-ReQU activated multilayer per-

ceptron with depth 3D+ 3, width 10W, number of neurons 17U , number of parameters 23S
and bound B′.

By Lemma 12, the partial derivative of a function in Fn can be implemented by a
function in F ′n. Consequently, for κ and κn given in (9) and (10),

sup
f∈Fn

|κ(f)− κn(f)| ≤ sup
f ′∈F ′n

|κ̃(f ′)− κ̃n(f ′)|,

where κ̃(f) = E[max{−f(X, ξ), 0}] and κ̃n(f) =
∑n

i=1[max{−f(Xi, ξi), 0}]/n. Note that
κ̃ and κ̃n are both 1-Lipschitz in f , thus an upper bound for supf ′∈F ′n |κ̃(f ′) − κ̃n(f ′)|
can be derived once the complexity of F ′n is known. The complexity of a function class
can be measured in several ways, including Rademacher complexity, covering number, VC
dimension and Pseudo dimension. These measures depict the complexity of a function class
differently but are closely related to each other in many ways (a brief description of these
measures can be found in Appendix B). Next, we give an upper bound on the Pseudo
dimension of the function class F ′n, which facilities our derivation of the upper bound for
the stochastic error.

Lemma 13 (Pseudo dimension of ReLU-ReQU multilayer perceptrons) Let F be
a function class implemented by ReLU-ReQU activated multilayer perceptrons with depth no
more than D̃, width no more than W̃, number of neurons (nodes) no more than Ũ and size
or number of parameters (weights and bias) no more than S̃. Then the Pseudo dimension
of F satisfies

Pdim(F) ≤ min{7D̃S̃(D̃ + log2 Ũ), 22Ũ S̃}.

18

Non-Crossing Deep Quantile Regresion

Theorem 14 (Stochastic error bound) Let Fn = FD,W,U ,S,B,B′ be the ReQU activated
multilayer perceptron and let F ′n = { ∂∂τ f : f ∈ Fn} denote the class of first order partial
derivatives. Then for n ≥ max{Pdim(Fn),Pdim(F ′n)}, the stochastic error satisfies

E sup
f∈Fn

∣∣[Rξλ(f)−Rξλ(f0)]− [Rξn,λ(f)−Rξn,λ(f0)
∣∣

≤ c0
√{
BPdim(Fn) + λB′Pdim(F ′n)

}√ log(n)

n
, (23)

for some universal constant c0 > 0. Also,

E sup
f∈Fn

∣∣[Rξλ(f)−Rξλ(f0)]− [Rξn,λ(f)−Rξn,λ(f0)]
∣∣

≤ c1
(
B + λB′

)√
min{5796DS(D + log2 U), 8602US}

√
log(n)

n
,

for some universal constant c1 > 0.

The proofs of Lemma 13 and Theorem 14 are given in the Appendix.

5. Approximation error

In this section, we give an upper bound on the approximation error of the ReQU network
for approximating functions in Cs defined in Definition 2.

The ReQU activation function has a continuous first order derivative and its first order
derivative is the popular ReLU function. With ReQU as the activation function, the network
is smooth and differentiable. Therefore, ReQU is a suitable choice for our problem since
derivatives are involved in the penalty function.

An important property of ReQU is that it can represent the square function x2 without
error. In the study of ReLU network approximation properties (Yarotsky, 2017, 2018; Shen
et al., 2020), the analyses rely essentially on the fact that x2 can be approximated by deep
ReLU networks to any error tolerance as long as the network is large enough. With ReQU
activated networks, x2 can be represented exactly with one hidden layer and 2 hidden
neurons. ReQU can be more efficient in approximating smooth functions in the sense that
it requires a smaller network size to achieve the same approximation error.

Now we state some basic approximation properties of ReQU networks. The analysis of
the approximation power of ReQU networks in our work basically rests on the fact that
given inputs x, y ∈ R, the powers x, x2 and the product xy can be exactly computed by
simple ReQU networks. Let σ2(x) = [max{x, 0}]2 denote the ReQU activation function.
We first list the following basic properties of the ReQU approximation:

1. For any x ∈ R, the square function x2 can be computed by a ReQU network with 1
hidden layer and 2 neurons, i.e.,

x2 =σ2(x) + σ2(−x).

2. For any x, y ∈ R, the multiplication function xy can be computed by a ReQU network
with 1 hidden layer and 4 neurons, i.e.,

xy =
1

4
{σ2(x+ y) + σ2(−x− y)− σ2(x− y)− σ2(−x+ y)}.

19

Shen, Jiao, Lin, Horowitz and Huang

3. For any x ∈ R, taking y = 1 in the above equation, then the identity map x 7→ x can
be computed by a ReQU network with 1 hidden layer and 4 neurons, i.e.,

x =
1

4
{σ2(x+ 1) + σ2(−x− 1)− σ2(x− 1)− σ2(−x+ 1)}.

4. If both x and y are non-negative, the formulas for square function and multiplication
can be simplified as follows:

x2 = σ2(x), xy =
1

4
{σ2(x+ y)− σ2(x− y)− σ2(−x+ y)}.

The above equations can be verified using simple algebra. The realization of the identity
map is not unique here, since for any a 6= 0, we have x = {(x+ a)2 − x2 − a2}/(2a) which
can be exactly realized by ReQU networks. In addition, the constant function 1 can be
computed exactly by a 1-layer ReQU network with zero weight matrix and constant 1 bias
vector. In such a case, the basis 1, x, x2, . . . , xp of the degree p ∈ N0 polynomials in R can
be computed by a ReQU network with proper size. Therefore, any p-degree polynomial can
be approximated without error.

To approximate the square function in (1) with ReLU networks on bounded regions,
the idea of using “sawtooth” functions was first raised in Yarotsky (2017), and it achieves
an error O(2−L) with width 6 and depth O(L) for positive integer L ∈ N+. General
construction of ReLU networks for approximating a square function can achieve an error
N−L with width 3N and depth L for any positive integers N,L ∈ N+ (Lu et al., 2021a).
Based on this basic fact, the ReLU networks approximating multiplication and polynomials
can be constructed correspondingly. However, the network complexity (cost) in terms of
network size (depth and width) for a ReLU network to achieve precise approximation can be
large compared to that of a ReQU network since ReQU network can compute polynomials
exactly with fewer layers and neurons.

Theorem 15 (Approximation of Polynomials by ReQU networks) For any non-negative
integer N ∈ N0 and any positive integer d ∈ N+, if f : Rd → R is a polynomial of d variables
with total degree N , then there exists a ReQU activated neural network that can compute f
with no error. More exactly,

1. if d = 1 where f(x) =
∑N

i=1 aix
i is a univariate polynomial with degree N , then there

exists a ReQU neural network with 2N −1 hidden layers , 5N −1 number of neurons,
8N number of parameters (weights and bias) and network width 4 that computes f
with no error.

2. If d ≥ 2 where f(x1, . . . , xd) =
∑N

i1+...+id=0 ai1,...,idx
i1
1 · · ·x

id
d is a multivariate poly-

nomial of d variables with total degree N , then there exists a ReQU neural network
with 2N − 1 hidden layers , 2(5N − 1)Nd−1 + (5N − 1)

∑d−2
j=1 N

j ≤ 15Nd number of

neurons, 16Nd + 8N
∑d−2

j=1 N
j ≤ 24Nd number of parameters (weights and bias) and

network width 8Nd−1 + 4
∑d−2

j=1 N
j ≤ 12Nd−1 that computes f with no error.

Theorem 15 shows any d-variate multivariate polynomial with degree N on Rd can
be represented with no error by a ReQU network with 2N − 1 hidden layers, no more

20

Non-Crossing Deep Quantile Regresion

than 15Nd neurons, no more than 24Nd parameters (weights and bias) and width less
than 12Nd−1. The approximation powers of ReQU networks (and RePU networks) on
polynomials are studied in Li et al. (2019b,a), in which the representation of a d-variate
multivariate polynomials with degree N on Rd needs a ReQU network with dblog2Nc + d
hidden layers, and no more than O(

(
N+d
d

)
) neurons and parameters. Compared to the

results in Li et al. (2019a,b), the orders of neurons and parameters for the constructed
ReQU network in Theorem 15 are basically the same. The the number of hidden layers
for the constructed ReQU network here is 2N − 1 depending only on the degree of the
target polynomial and independent of the dimension of input d, which is different from
the dimension depending dblog2Nc + d hidden layers required in Li et al. (2019a). In
addition, ReLU activated networks with width {9(W+1)+N−1}Nd = O(WNd) and depth
7N2L = O(LN2) can only approximate d-variate multivariate polynomial with degree N
with an accuracy 9N(W + 1)−7NL = O(NW−LN) for any positive integers W,L ∈ N+.
Note that the approximation results on polynomials using ReLU networks are generally on
bounded regions, while ReQU can exactly compute the polynomials on Rd. In this sense, the
approximation power of ReQU networks is generally greater than that of ReLU networks.

Next, we leverage the approximation power of multivariate polynomials to derive error
bounds of approximating general multivariate smooth functions using ReQU activated neu-
ral networks. Here we focus on the approximation of multivariate smooth functions in Cs

space for s ∈ N+ defined in Definition 2.

Theorem 16 Let f be a real-valued function defined on X × (0, 1) ⊂ Rd+1 belonging to
class Cs for 0 ≤ s < ∞. For any N ∈ N+, there exists a ReQU activated neural network
φN with width no more than 12Nd, hidden layers no more than 2N − 1, number of neurons
no more than 15Nd+1 and parameters no more than 24Nd+1 such that for each multi-index
α ∈ Nd0, we have |α|1 ≤ min{s,N},

sup
X×(0,1)

|Dα(f − φN)| ≤ Cs,d,X N−(s−|α|1)‖f‖Cs ,

where Cs,d,X is a positive constant depending only on d, s and the diameter of X × (0, 1).

In Li et al. (2019b,a), a similar rate of convergence O(N−(s−α)) under the Jacobi-
weighted L2 norm was obtained for the approximation of α-th derivative of a univariate
target function, where α ≤ s ≤ N + 1 and s denotes the smoothness of the target function
belonging to Jacobi-weighted Sobolev space. The ReQU network in Li et al. (2019a) has a
different shape from ours specified in Theorem 8. The results of Li et al. (2019a) achieved
a O(N−(s−α)) rate using a ReQU network with O(log2(N)) hidden layers, O(N) neurons
and nonzero weights and width O(N). Simultaneous approximation to the target function
and its derivatives by a ReQU network was also considered in Duan et al. (2021) for solving
partial differential equations for d-dimensional smooth target functions in C2.

Now we assume that the target function f0 : X × (0, 1) → R in our QRP estimation
problem belongs to the smooth function class Cs for some s ∈ N+. The approximation

error inff∈Fn

[
Rξ(f)−Rξ(f0) + λ{κ(f)− κ(f0)}

]
given in Lemma 1 can be handled corre-

spondingly.

21

Shen, Jiao, Lin, Horowitz and Huang

Corollary 17 (Approximation error bound) Suppose that the target function f0 de-
fined in (2) belongs to Cs for some s ∈ N+. For any N ∈ N+, let Fn := FD,W,U ,S,B,B′

be the ReQU activated neural networks f : X × (0, 1) → R with depth (number of hidden
layer) D ≤ 2N − 1, width W ≤ 12Nd, number of neurons U ≤ 15Nd+1, number of param-
eters (weights and bias) S ≤ 24Nd+1, satisfying B ≥ ‖f0‖C0 and B′ ≥ ‖f0‖C1. Then the
approximation error given in Lemma 1 satisfies

inf
f∈Fn

[
Rξ(f)−Rξ(f0) + λ{κ(f)− κ(f0)}

]
≤ Cs,d,X (1 + λ)N−(s−1)‖f0‖Cs ,

where Cs,d,X is a positive constant depending only on d, s and the diameter of the support
X × (0, 1).

6. Computation

In this section, we describe the training algorithms for the proposed penalized DQRP esti-
mator, including a generic algorithm and an improved algorithm.

Algorithm 1 An stochastic gradient descent algorithm for the penalized DQRP estimator

Require: Sample data {(Xi, Yi)}ni=1 with n ≥ 1; Minibatch size m ≤ n.
Generate n random values {ξi}ni=1 uniformly from (0, 1)
for number of training iterations do

Sample minibatch of m data {(X(j), Y (j), ξ(j))}mj=1 form the data {(Xi, Yi, ξi)}ni=1

Update the ReQU network f parameterized by θ by descending its stochastic gradient:

∇θ
1

m

m∑
j=1

[
ρξ(j)(Y

(j) − f(X(j), ξ(j))) + λmax
{
− ∂

∂τ
f(X(j), ξ(j)), 0

}]
end for
The gradient-based updates can use any standard gradient-based algorithm. We used
Adam in our experiments.

In Algorithm 1, the number of random values {ξi}ni=1 is set to be the same as the sample
size n and each ξi is coupled with the sample (Xi, Yi) for i = 1, . . . , n during the training
process. This may degrade the efficiency of the learning DQRP f̂λn since each data (Xi, Yi)
has only been used to train the ReQU network f(·, ξi) at a single value (quantile) ξi. Hence,
we proposed an improved algorithm.

22

Non-Crossing Deep Quantile Regresion

Algorithm 2 An improved stochastic gradient descent algorithm for the penalized DQRP
estimator

Require: Sample data {(Xi, Yi)}ni=1 with n ≥ 1; Minibatch size m ≤ n.
for number of training iterations do

Sample minibatch of m data {(X(j), Y (j))}mj=1 form the data {(Xi, Yi)}ni=1

Generate m random values {ξj}mj=1 uniformly from (0, 1)
Update the ReQU network f parameterized by θ by descending its stochastic gradient:

∇θ
1

m

m∑
j=1

[
ρξj (Y

(j) − f(X(j), ξj)) + λmax
{
− ∂

∂τ
f(X(j), ξj), 0

}]
end for
The gradient-based updates can use any standard gradient-based algorithm. We used
Adam in our experiments.

(a) Trained by Algorithm 1 (b) Trained by Algorithm 2

Figure 1: A comparison of Algorithms 1 and 2. The 512 training data generated from the
“Wave” model are depicted as black dots. The target quantile functions at quantile levels
0.05 (blue), 0.25 (orange), 0.5 (green), 0.75 (red), 0.95 (purple) are depicted as dashed
curves, and the estimated quantile functions are the solid curves with the same color. In
the left panel, the estimator is trained by Algorithm 1. In the right panel, the estimator is
trained by the improved Algorithm 2. Both trainings stop after 200 epochs.

In Algorithm 2, at each minibatch training iteration, m random values {ξj}mj=1 are

generated uniformly from (0, 1) and coupled with the minibatch sample {(X(j), Y (j))}mj=1

for the gradient-based updates. In this case, each sample (Xi, Yi) gets involved in the

training of ReQU network f(·, ξ) at multiple values (quantiles) of ξ = ξ
(1)
i , . . . , ξ

(t)
i where

t denotes the number of minibatch iterations and ξ
(j)
i , j = 1, . . . , t denotes the random

value generated at iteration t that is coupled with the sample (Xi, Yi). In such a way, the
utilization of each sample (Xi, Yi) is greatly improved while the computation complexity
does not increase compared to the generic Algorithm 1.

We use an example to demonstrate the advantage of Algorithm 2 over Algorithm 1.
Figure 1 displays a comparison between Algorithm 1 and Algorithm 2 with the same sim-
ulated dataset generated from the “Wave” model (see section 7 for detailed introduction
of the simulated model). The sample size n = 512, and the tuning parameter is chosen as

23

Shen, Jiao, Lin, Horowitz and Huang

λ = log(n). Two ReQU neural networks with the same architecture (width of hidden layers
(256, 256, 256)) are trained for 200 epochs by Algorithm 1 and Algorithm 2, respectively.
The example and the simulation studies in section 7 show that Algorithm 2 has a better and
more stable performance than Algorithm 1 without additional computational complexity.

7. Numerical studies

In this section, we compare the proposed penalized deep quantile regression with the fol-
lowing nonparametric quantile regression methods:

• Kernel-based nonparametric quantile regression (Sangnier et al., 2016), denoted by
kernel QR. This is a joint quantile regression method based on a vector-valued re-
producing kernel Hilbert space (RKHS), which enjoys fewer quantile crossings and
enhanced performance compared to the estimation of the quantile functions sepa-
rately. In our implementation, the radial basis function (RBF) kernel is chosen and a
coordinate descent primal-dual algorithm (Fercoq and Bianchi, 2019) is used via the
Python package qreg.

• Quantile regression forests (Meinshausen and Ridgeway, 2006), denoted by QR Forest.
Conditional quantiles can be estimated using quantile regression forests, a method
based on random forests. Quantile regression forests can nonparametrically estimate
quantile regression functions with high-dimensional predictor variables. This method
is shown to be consistent in Meinshausen and Ridgeway (2006).

• Deep quantile regression (Padilla et al., 2022; Shen et al., 2021), denoted by DQR.
Especially, Padilla et al. (2022) discussed the extension to multiple (finitely many)
quantiles estimation with non-crossing constraints using ReLU neural networks. We
implement it in Python via Pytorch and use Adam (Kingma and Ba, 2014) algo-
rithm with default learning rate 0.01 and default β = (0.9, 0.99) (coefficients used for
computing running averages of gradients and their squares).

• Penalized DQRP estimator as described in Section 2 using ReQU networks, denoted
by DQRP. We implement it in Python via Pytorch and use Adam (Kingma and
Ba, 2014) as the optimization algorithm with default learning rate 0.01 and default
β = (0.9, 0.99).

• Penalized DQRP estimator as described in Section 2 using ReLU networks, denoted
by DQRP*. We implement it in Python via Pytorch and use the same optimizer and
parameters as those for DQRP using ReQU networks.

7.1 Estimation and Evaluation

For the proposed penalized DQRP (DQRP*) estimator, we set the tuning parameter λ =
log(n) in the simulation stuides. We restrict the norm of neural network output and deriva-
tive to be bounded by B and B′ respectively, and set B = B′ = 10 × (log n)2. The norm
bound restriction is achieved by scaling the weights in the last layer of neural network dur-
ing the optimization. We use rectangle networks with 3 hidden layers and width 128 for

24

Non-Crossing Deep Quantile Regresion

estimating univariate target functions, and we use rectangle networks with 3 hidden layers
and width 256 for estimating multivariate target functions. We apply Kernel QR and QR
Forest to estimate the quantile curves at 5 different levels for each simulated model, i.e.,
τ ∈ {0.05, 0.25, 0.5, 0.75, 0.95}.

For each target f0, according to model (1) we generate the training data (Xtrain
i , Y train

i)ni=1

with sample size n to train the empirical risk minimizer at τ ∈ {0.05, 0.25, 0.5, 0.75, 0.95}
using Kernel QR and QR Forest, i.e.

f̂ τn ∈ arg min
f∈F

1

n

n∑
i=1

ρτ (Y train
i − f(Xtrain

i)),

where F is the class of RKHS, the class of functions for QR forest, or the class of ReQU
neural network functions.

For each f0, we also generate the testing data (Xtest
t , Y test

t)Tt=1 with sample size T from
the same distribution of the training data. For the proposed method and for each obtained
estimate f̂n, we denote f̂ τn(·) = f̂n(·, τ) for notational simplicity. For DQRP, Kernel QR and
QR Forest, we calculate the testing error on (Xtest

t , Y test
t)Tt=1 at different quantile levels τ .

For quantile level τ ∈ (0, 1), we calculate the L1 distance between f̂ τn and the corresponding
risk minimizer f τ0 (·) := f0(·, τ) by

‖f̂ τn − f τ0 ‖L1(ν) =
1

T

T∑
t=1

∣∣∣f̂n(Xtest
t , τ)− f τ0 (Xtest

t , τ)
∣∣∣,

and we also calculate the L2
2 distance between f̂ τn and the f τ0 , i.e.

‖f̂ τn − f τ0 ‖2L2(ν) =
1

T

T∑
t=1

∣∣∣f̂n(Xtest
t , τ)− f τ0 (Xtest

t , τ)
∣∣∣2.

The specific forms of f0 are given in the data generation models below.
In the simulation studies, the size of testing data T = 105 for each data generation

model. We report the mean and standard deviation of the L1 and L2
2 distances over R = 100

replications under different scenarios.

7.2 Univariate models

We consider three basic univariate models, including “Linear”, “Wave” and “Triangle”,
which corresponds to different specifications of the target function f0. The formulae are
given below.

(a) Linear: f0(x, τ) = 2x+ F−1t (τ),

(b) Wave: f0(x, τ) = 2x sin(4πx) + | sin(πx)|Φ−1(τ),

(c) Triangle: f0(x, τ) = 4(1− |x− 0.5|) + exp(4x− 2)Φ−1(τ),

where Ft(·) is the cumulative distribution function of the standard Student’s t random vari-
able, Φ(·) is the cumulative distribution function of the standard normal random variable.
We use the linear model as a baseline model in our simulations and expect all the methods

25

Shen, Jiao, Lin, Horowitz and Huang

perform well under the linear model. The “Wave” is a nonlinear smooth model and the
“Triangle” is a nonlinear, continuous but non-differentiable model. These models are cho-
sen so that we can evaluate the performance of DQRP, DQRP*, kernel QR and QR Forest
under different types of models.

Figure 2: The target quantiles curves. From the left to the right, each column corresponds
a data generation model, “Linear”, “Wave” and “Triangle”. The sample data with size
n = 512 is depicted as grey dots.The target quantile functions at the quantile levels τ =0.05
(blue), 0.25 (orange), 0.5 (green), 0.75 (red), 0.95 (purple) are depicted as solid curves.

For these models, we generate X uniformly from the unit interval [0, 1]. The τ -th
conditional quantile of the response Y given X = x can be calculated directly based on the
expression of f0(x, τ). Figure 2 shows all these univariate data generation models and their
corresponding conditional quantile curves at τ = 0.05, 0.25, 0.50, 0.75, 0.95.

Figures 3 and 4 show an instance of the estimated quantile curves for the “Wave” and
“Triangle” models. The plot for the “Linear” model is included in the Appendix. In these
plots, the training data is depicted as grey dots. The target quantile functions at the quantile
levels τ =0.05 (blue), 0.25 (orange), 0.5 (green), 0.75 (red), 0.95 (purple) are depicted as
dashed curves, and the estimated quantile functions are represented by solid curves with the
same color. For each figure, from the top to the bottom, the rows correspond to the sample
size n = 512, 2048. From the left to the right, the columns correspond to the methods
DQRP, DQRP*, kernel QR and QR Forest.

26

Non-Crossing Deep Quantile Regresion

Figure 3: The fitted quantile curves under the univariate “Wave” model. The training data
is depicted as grey dots. The target quantile functions at the quantile levels τ =0.05 (blue),
0.25 (orange), 0.5 (green), 0.75 (red), 0.95 (purple) are depicted as dashed curves, and the
estimated quantile functions are represented by solid curves with the same color. From the
top to the bottom, the rows correspond to the sample size n = 512, 2048. From the left to
the right, the columns correspond to the methods DQRP, DQRP*, DQR, kernel QR and
QR Forest.

Figure 4: The fitted quantile curves under the univariate “Triangle” model. The training
data is depicted as grey dots. The target quantile functions at the quantile levels τ =0.05
(blue), 0.25 (orange), 0.5 (green), 0.75 (red), 0.95 (purple) are depicted as dashed curves,
and the estimated quantile functions are represented by solid curves with the same color.
From the top to the bottom, the rows correspond to the sample sizes n = 512, 2048. From
the left to the right, the columns correspond to the methods DQRP, DQRP*, DQR, kernel
QR and QR Forest.

27

Shen, Jiao, Lin, Horowitz and Huang

Table 2: Data is generated from the “Wave” model with training sample size n = 512, 2048
and the number of replications R = 100. The averaged L1 and L2

2 test errors with the
corresponding standard deviation (in parentheses) are reported for the estimators trained
by different methods.

Sample size n = 512 n = 2048

τ Method L1 L2
2 L1 L2

2

0.05

DQRP 0.163(0.056) 0.046(0.034) 0.093(0.027) 0.015(0.009)
DQRP* 0.178(0.046) 0.053(0.028) 0.113(0.024) 0.021(0.012)

DQR 0.161(0.041) 0.039(0.021) 0.107(0.030) 0.016(0.010)
Kernel QR 0.461(0.072) 0.377(0.125) 0.599(0.224) 0.600(0.470)
QR Forest 0.228(0.030) 0.092(0.024) 0.195(0.017) 0.071(0.013)

0.25

DQRP 0.111(0.030) 0.022(0.012) 0.075(0.026) 0.010(0.007)
DQRP* 0.133(0.035) 0.033(0.016) 0.087(0.028) 0.013(0.008)

DQR 0.123(0.032) 0.022(0.012) 0.084(0.028) 0.011(0.006)
Kernel QR 0.441(0.064) 0.298(0.109) 0.571(0.225) 0.545(0.460)
QR Forest 0.166(0.024) 0.051(0.015) 0.143(0.012) 0.039(0.007)

0.5

DQRP 0.104(0.027) 0.019(0.01) 0.073(0.023) 0.009(0.005)
DQRP* 0.124(0.035) 0.026(0.014) 0.080(0.029) 0.011(0.007)

DQR 0.116(0.026) 0.020(0.009) 0.083(0.027) 0.010(0.006)
Kernel QR 0.440(0.058) 0.289(0.105) 0.555(0.226) 0.530(0.461)
QR Forest 0.157(0.024) 0.045(0.014) 0.137(0.010) 0.036(0.005)

0.75

DQRP 0.126(0.039) 0.027(0.016) 0.084(0.027) 0.014(0.008)
DQRP* 0.134(0.039) 0.030(0.017) 0.091(0.031) 0.012(0.008)

DQR 0.123(0.029) 0.022(0.010) 0.088(0.028) 0.011(0.006)
Kernel QR 0.462(0.055) 0.322(0.107) 0.560(0.219) 0.546(0.462)
QR Forest 0.168(0.022) 0.050(0.014) 0.146(0.013) 0.041(0.008)

0.95

DQRP 0.182(0.06) 0.057(0.038) 0.118(0.043) 0.023(0.017)
DQRP* 0.180(0.049) 0.051(0.027) 0.121(0.039) 0.024(0.017)

DQR 0.158(0.041) 0.035(0.020) 0.102(0.030) 0.015(0.009)
Kernel QR 0.552(0.064) 0.469(0.120) 0.615(0.200) 0.648(0.462)
QR Forest 0.224(0.030) 0.090(0.026) 0.198(0.018) 0.074(0.014)

28

Non-Crossing Deep Quantile Regresion

Table 3: Data is generated from the “Triangle” model with training sample size n =
512, 2048 and the number of replications R = 100. The averaged L1 and L2

2 test errors
with the corresponding standard deviation (in parentheses) are reported for the estimators
trained by different methods.

Sample size n = 512 n = 2048

τ Method L1 L2
2 L1 L2

2

0.05

DQRP 0.202(0.078) 0.089(0.080) 0.145(0.072) 0.052(0.070)
DQRP* 0.202(0.078) 0.089(0.070) 0.131(0.050) 0.034(0.026)

DQR 0.216(0.072) 0.089(0.068) 0.135(0.045) 0.037(0.026)
Kernel QR 0.533(0.147) 0.520(0.268) 0.515(0.200) 0.490(0.459)
QR Forest 0.364(0.061) 0.282(0.115) 0.359(0.031) 0.264(0.053)

0.25

DQRP 0.164(0.063) 0.046(0.031) 0.092(0.034) 0.016(0.012)
DQRP* 0.131(0.061) 0.036(0.040) 0.090(0.039) 0.015(0.014)

DQR 0.145(0.060) 0.039(0.033) 0.099(0.038) 0.017(0.012)
Kernel QR 0.249(0.084) 0.110(0.084) 0.308(0.138) 0.179(0.217)
QR Forest 0.272(0.044) 0.155(0.061) 0.259(0.021) 0.140(0.026)

0.5

DQRP 0.170(0.066) 0.047(0.035) 0.097(0.038) 0.016(0.012)
DQRP* 0.134(0.058) 0.032(0.025) 0.088(0.033) 0.013(0.009)

DQR 0.130(0.054) 0.030(0.030) 0.086(0.032) 0.012(0.008)
Kernel QR 0.164(0.063) 0.052(0.044) 0.231(0.134) 0.125(0.158)
QR Forest 0.251(0.040) 0.131(0.053) 0.252(0.021) 0.133(0.026)

0.75

DQRP 0.198(0.082) 0.068(0.053) 0.117(0.052) 0.023(0.019)
DQRP* 0.163(0.065) 0.047(0.032) 0.094(0.043) 0.015(0.013)

DQR 0.137(0.0528) 0.036(0.038) 0.090(0.035) 0.013(0.011)
Kernel QR 0.252(0.087) 0.109(0.081) 0.334(0.123) 0.192(0.166)
QR Forest 0.261(0.043) 0.142(0.059) 0.266(0.024) 0.149(0.031)

0.95

DQRP 0.295(0.134) 0.145(0.106) 0.168(0.078) 0.052(0.048)
DQRP* 0.282(0.133) 0.183(0.165) 0.174(0.063) 0.074(0.046)

DQR 0.198(0.095) 0.084(0.098) 0.122(0.039) 0.026(0.014)
Kernel QR 0.540(0.123) 0.522(0.242) 0.541(0.175) 0.527(0.363)
QR Forest 0.359(0.057) 0.256(0.090) 0.357(0.033) 0.259(0.053)

Tables 2 and 3 summarize the results for the models “Wave” and “Triangle”, respec-
tively. For Kernel QR, QR Forest, Deep Quantile Regression (DQR) and our proposed
DQRP (DQRP*) estimator, the corresponding L1 and L2

2 errors (standard deviation in
parentheses) between the estimates and the target are reported at different quantile lev-
els τ = 0.05, 0.25, 0.50, 0.75, 0.95. For each column, using bold text we highlight the best
method which produces the smallest risk among these three methods. For the smooth
“Wave” model, the DQR and proposed DQRP, DQRP* perform similarly, and they out-
performs Kernel QR and QR Forest in all the scenarios. For the nonlinear and nonsmooth

29

Shen, Jiao, Lin, Horowitz and Huang

“Triangle” model, with ReLU activation function, DQRP* and DQR also tends to per-
form better than DQRP, Kernel QR and QR Forest. DQR performs slightly better than
our proposed DQRP* where DQR focuses on the estimation of curves at finite quantiles
(τ = 0.05, 0.25, 0.5, 0.75, 0.95), and DQRP* focuses on the estimation of the whole quantile
process. For the “Linear” model, the results from the three methods are comparable, all
methods except QR Forest have similar performance, among which DQR and Kernel QR
tends to have slightly better performance. The results for the “Linear” model are given in
Table 11 in the Appendix.

Figure 5: The fitted quantile curves under the univariate isotonic models: “Constant”,
“Swing” and “Exp” with sample size n = 512. The training data is depicted as grey
dots. The target quantile functions at the quantile levels τ =0.05 (blue), 0.25 (orange), 0.5
(green), 0.75 (red), 0.95 (purple) are depicted as dashed curves, and the estimated quantile
functions are represented by solid curves with the same color. From left to the right, the
columns correspond to the model “Constant”, “Swing” and “Exp”.

We note that DQR and Kernel QR are point quantile estimations, which have different
focus compared to our proposed DQRP quantile process estimator. In this regard, we
compare the performance of DQRP, DQRP*, and the interpolated DQR and QR Forest for
quantile process estimation. In particular, to obtain the quantile process estimation from
DQR and QR Forest, we use a two-step procedure: firstly, we run DQR and QR Forest at
quantile level τ = 0.05, 0.25, 0.5, 0.75, 0.95 and then interpolate these conditional quantile
functions with respect to quantile level τ using a 3 hidden-layers ReLU neural networks
with width 256. We denote the interpolated DQR estimator by DQR* and the interpolated

30

Non-Crossing Deep Quantile Regresion

QR Forest estimator by QR Forest*. The simulation results are summarized in Tables 4-5.

Table 4: Data is generated from the “Wave” model with training sample size n = 512, 2048
and the number of replications R = 100. The DQR* and QRF* estimators are obtained by
interpolating DQR and QRF estimations at quantile level τ = 0.05, 0.25, 0.5, 0.75, 0.95. The
averaged L1 and L2

2 test errors with the corresponding standard deviation (in parentheses)
are reported for the estimators trained by different methods.

n = 512 n = 2048

Method DQRP DQRP* DQR* QR Forest* DQRP DQRP* DQR* QR Forest*
τ L1 L1

0.05 0.162(0.058) 0.183(0.051) 0.154(0.039) 0.535(0.115) 0.125(0.065) 0.123(0.034) 0.148(0.088) 0.562(0.122)
0.1 0.125(0.037) 0.142(0.039) 0.158(0.048) 0.515(0.100) 0.109(0.065) 0.108(0.045) 0.184(0.096) 0.528(0.107)
0.15 0.112(0.030) 0.133(0.039) 0.141(0.047) 0.407(0.088) 0.098(0.056) 0.096(0.041) 0.160(0.084) 0.409(0.096)
0.2 0.105(0.027) 0.126(0.039) 0.120(0.038) 0.273(0.079) 0.091(0.046) 0.088(0.034) 0.119(0.066) 0.273(0.088)

0.25 0.099(0.025) 0.118(0.038) 0.111(0.033) 0.178(0.065) 0.087(0.037) 0.083(0.030) 0.094(0.042) 0.176(0.076)
0.3 0.096(0.024) 0.113(0.038) 0.108(0.033) 0.151(0.055) 0.083(0.030) 0.080(0.028) 0.089(0.032) 0.143(0.056)
0.35 0.093(0.025) 0.111(0.038) 0.110(0.033) 0.143(0.052) 0.080(0.025) 0.077(0.028) 0.086(0.029) 0.130(0.045)
0.4 0.092(0.026) 0.111(0.038) 0.110(0.033) 0.139(0.048) 0.078(0.022) 0.075(0.028) 0.083(0.027) 0.120(0.040)
0.45 0.093(0.029) 0.112(0.038) 0.111(0.032) 0.135(0.044) 0.076(0.021) 0.075(0.027) 0.078(0.027) 0.114(0.038)
0.5 0.096(0.032) 0.114(0.040) 0.113(0.031) 0.133(0.041) 0.075(0.022) 0.075(0.027) 0.076(0.026) 0.114(0.037)
0.55 0.100(0.034) 0.117(0.042) 0.114(0.030) 0.136(0.040) 0.076(0.024) 0.075(0.027) 0.078(0.026) 0.118(0.037)
0.6 0.105(0.037) 0.120(0.043) 0.116(0.030) 0.143(0.040) 0.078(0.027) 0.076(0.026) 0.082(0.024) 0.126(0.042)
0.65 0.110(0.039) 0.123(0.044) 0.121(0.033) 0.152(0.040) 0.081(0.028) 0.077(0.026) 0.084(0.023) 0.137(0.048)
0.7 0.115(0.040) 0.127(0.044) 0.127(0.038) 0.165(0.042) 0.085(0.028) 0.079(0.026) 0.082(0.024) 0.149(0.060)

0.75 0.121(0.040) 0.133(0.045) 0.133(0.044) 0.198(0.057) 0.089(0.028) 0.081(0.026) 0.083(0.027) 0.189(0.078)
0.8 0.129(0.041) 0.141(0.044) 0.151(0.057) 0.278(0.093) 0.094(0.029) 0.082(0.026) 0.102(0.038) 0.286(0.103)
0.85 0.142(0.042) 0.150(0.045) 0.186(0.071) 0.396(0.134) 0.100(0.032) 0.087(0.026) 0.144(0.054) 0.421(0.115)
0.9 0.165(0.049) 0.160(0.044) 0.210(0.076) 0.504(0.158) 0.105(0.034) 0.102(0.031) 0.174(0.061) 0.537(0.119)

0.95 0.227(0.075) 0.202(0.058) 0.186(0.066) 0.532(0.174) 0.119(0.044) 0.121(0.029) 0.138(0.047) 0.570(0.122)
τ L2

2 L2
2

0.05 0.042(0.028) 0.056(0.027) 0.040(0.017) 0.394(0.157) 0.028(0.028) 0.026(0.012) 0.037(0.046) 0.410(0.158)
0.1 0.025(0.013) 0.033(0.015) 0.043(0.023) 0.357(0.129) 0.023(0.026) 0.020(0.015) 0.053(0.054) 0.363(0.137)
0.15 0.020(0.010) 0.029(0.015) 0.034(0.021) 0.227(0.088) 0.018(0.020) 0.016(0.014) 0.041(0.042) 0.226(0.100)
0.2 0.018(0.009) 0.026(0.014) 0.024(0.016) 0.110(0.054) 0.015(0.014) 0.013(0.011) 0.023(0.026) 0.107(0.062)

0.25 0.016(0.009) 0.023(0.014) 0.021(0.012) 0.054(0.036) 0.013(0.010) 0.012(0.009) 0.014(0.012) 0.050(0.036)
0.3 0.015(0.009) 0.022(0.013) 0.020(0.012) 0.041(0.029) 0.012(0.008) 0.011(0.008) 0.012(0.008) 0.034(0.024)
0.35 0.015(0.010) 0.021(0.014) 0.021(0.012) 0.037(0.024) 0.011(0.006) 0.010(0.008) 0.012(0.008) 0.028(0.018)
0.4 0.015(0.011) 0.021(0.014) 0.021(0.013) 0.034(0.021) 0.010(0.005) 0.010(0.007) 0.011(0.007) 0.025(0.015)
0.45 0.015(0.012) 0.022(0.015) 0.021(0.012) 0.031(0.018) 0.009(0.005) 0.009(0.007) 0.010(0.006) 0.023(0.014)
0.5 0.016(0.013) 0.022(0.016) 0.021(0.011) 0.030(0.017) 0.009(0.005) 0.009(0.007) 0.009(0.006) 0.022(0.013)
0.55 0.017(0.013) 0.023(0.016) 0.022(0.011) 0.031(0.017) 0.009(0.005) 0.009(0.006) 0.010(0.006) 0.024(0.014)
0.6 0.019(0.014) 0.024(0.016) 0.023(0.012) 0.034(0.019) 0.010(0.006) 0.010(0.006) 0.011(0.006) 0.027(0.016)
0.65 0.020(0.015) 0.025(0.017) 0.025(0.014) 0.037(0.020) 0.011(0.007) 0.010(0.006) 0.011(0.006) 0.030(0.020)
0.7 0.022(0.015) 0.026(0.017) 0.028(0.017) 0.043(0.022) 0.011(0.007) 0.010(0.007) 0.011(0.006) 0.036(0.025)

0.75 0.024(0.016) 0.028(0.017) 0.031(0.020) 0.060(0.031) 0.012(0.008) 0.011(0.007) 0.011(0.007) 0.054(0.036)
0.8 0.027(0.016) 0.031(0.018) 0.039(0.030) 0.112(0.060) 0.014(0.009) 0.011(0.007) 0.017(0.012) 0.112(0.070)
0.85 0.032(0.019) 0.036(0.021) 0.057(0.043) 0.219(0.116) 0.016(0.011) 0.012(0.007) 0.031(0.021) 0.226(0.113)
0.9 0.043(0.025) 0.041(0.024) 0.071(0.051) 0.345(0.176) 0.018(0.013) 0.016(0.009) 0.042(0.025) 0.356(0.145)

0.95 0.078(0.047) 0.063(0.036) 0.057(0.043) 0.391(0.209) 0.024(0.017) 0.023(0.010) 0.029(0.017) 0.400(0.156)

31

Shen, Jiao, Lin, Horowitz and Huang

Table 5: Data is generated from the “Triangle” model with training sample size n =
512, 2048 and the number of replications R = 100. The DQR* and QRF* estima-
tors are obtained by interpolating DQR and QRF estimations at quantile level τ =
0.05, 0.25, 0.5, 0.75, 0.95. The averaged L1 and L2

2 test errors with the corresponding stan-
dard deviation (in parentheses) are reported for the estimators trained by different methods.

n = 512 n = 2048

Method DQRP DQRP* DQR* QR Forest* DQRP DQRP* DQR* QR Forest*
τ L1 L1

0.05 0.232(0.121) 0.241(0.107) 0.214(0.122) 0.525(0.175) 0.133(0.061) 0.126(0.036) 0.167(0.062) 0.652(0.168)
0.1 0.197(0.105) 0.172(0.070) 0.212(0.134) 0.536(0.129) 0.120(0.053) 0.095(0.030) 0.223(0.074) 0.634(0.146)
0.15 0.180(0.094) 0.162(0.073) 0.169(0.098) 0.422(0.103) 0.110(0.048) 0.088(0.026) 0.179(0.064) 0.494(0.124)
0.2 0.169(0.080) 0.154(0.073) 0.144(0.060) 0.292(0.102) 0.104(0.045) 0.083(0.026) 0.119(0.050) 0.339(0.106)

0.25 0.161(0.069) 0.145(0.070) 0.134(0.050) 0.213(0.083) 0.102(0.044) 0.079(0.023) 0.086(0.039) 0.225(0.089)
0.3 0.158(0.063) 0.137(0.067) 0.123(0.049) 0.179(0.062) 0.102(0.044) 0.075(0.022) 0.075(0.034) 0.172(0.079)
0.35 0.158(0.061) 0.129(0.063) 0.118(0.049) 0.160(0.054) 0.101(0.045) 0.072(0.024) 0.070(0.030) 0.140(0.070)
0.4 0.160(0.063) 0.123(0.059) 0.117(0.050) 0.147(0.050) 0.100(0.045) 0.070(0.025) 0.067(0.028) 0.121(0.061)
0.45 0.164(0.065) 0.121(0.056) 0.119(0.052) 0.139(0.050) 0.100(0.045) 0.071(0.026) 0.066(0.027) 0.109(0.053)
0.5 0.168(0.067) 0.121(0.055) 0.120(0.056) 0.139(0.046) 0.103(0.046) 0.073(0.026) 0.068(0.027) 0.104(0.046)
0.55 0.171(0.069) 0.125(0.055) 0.121(0.058) 0.141(0.045) 0.107(0.047) 0.074(0.026) 0.071(0.027) 0.104(0.042)
0.6 0.176(0.070) 0.130(0.057) 0.123(0.058) 0.145(0.050) 0.111(0.048) 0.076(0.026) 0.075(0.025) 0.112(0.042)
0.65 0.181(0.071) 0.136(0.059) 0.126(0.056) 0.156(0.060) 0.114(0.050) 0.078(0.026) 0.078(0.025) 0.125(0.049)
0.7 0.188(0.072) 0.144(0.061) 0.131(0.056) 0.178(0.073) 0.117(0.050) 0.082(0.028) 0.080(0.031) 0.146(0.060)

0.75 0.198(0.075) 0.152(0.062) 0.141(0.060) 0.222(0.093) 0.122(0.049) 0.089(0.032) 0.086(0.049) 0.196(0.081)
0.8 0.211(0.083) 0.158(0.059) 0.169(0.076) 0.304(0.129) 0.129(0.050) 0.103(0.036) 0.124(0.079) 0.332(0.104)
0.85 0.227(0.095) 0.159(0.047) 0.222(0.107) 0.437(0.146) 0.141(0.055) 0.116(0.038) 0.193(0.096) 0.514(0.121)
0.9 0.242(0.107) 0.169(0.041) 0.260(0.121) 0.546(0.168) 0.157(0.059) 0.122(0.037) 0.229(0.107) 0.664(0.146)

0.95 0.263(0.114) 0.272(0.093) 0.227(0.105) 0.532(0.191) 0.191(0.081) 0.172(0.048) 0.164(0.099) 0.675(0.186)
τ L2

2 L2
2

0.05 0.128(0.143) 0.142(0.130) 0.111(0.145) 0.555(0.513) 0.038(0.048) 0.035(0.025) 0.053(0.042) 0.654(0.332)
0.1 0.085(0.104) 0.062(0.058) 0.101(0.147) 0.527(0.336) 0.029(0.028) 0.016(0.010) 0.087(0.060) 0.619(0.278)
0.15 0.068(0.080) 0.053(0.047) 0.063(0.078) 0.319(0.171) 0.023(0.021) 0.014(0.008) 0.059(0.045) 0.382(0.182)
0.2 0.056(0.058) 0.048(0.043) 0.040(0.029) 0.159(0.104) 0.020(0.018) 0.012(0.008) 0.027(0.023) 0.184(0.101)

0.25 0.049(0.042) 0.044(0.038) 0.037(0.024) 0.088(0.069) 0.019(0.017) 0.011(0.007) 0.015(0.013) 0.088(0.056)
0.3 0.045(0.034) 0.039(0.035) 0.031(0.021) 0.059(0.048) 0.018(0.018) 0.010(0.006) 0.011(0.010) 0.052(0.039)
0.35 0.044(0.030) 0.034(0.031) 0.028(0.022) 0.048(0.038) 0.018(0.018) 0.009(0.006) 0.009(0.009) 0.035(0.031)
0.4 0.045(0.031) 0.031(0.028) 0.027(0.025) 0.041(0.032) 0.018(0.018) 0.009(0.006) 0.008(0.008) 0.027(0.025)
0.45 0.047(0.032) 0.029(0.026) 0.028(0.028) 0.038(0.027) 0.018(0.017) 0.009(0.006) 0.008(0.007) 0.021(0.020)
0.5 0.049(0.034) 0.029(0.025) 0.030(0.031) 0.037(0.025) 0.019(0.016) 0.009(0.007) 0.009(0.007) 0.019(0.017)
0.55 0.051(0.035) 0.030(0.025) 0.030(0.031) 0.038(0.024) 0.020(0.016) 0.010(0.007) 0.009(0.007) 0.019(0.014)
0.6 0.054(0.037) 0.033(0.027) 0.031(0.031) 0.041(0.028) 0.022(0.017) 0.010(0.007) 0.010(0.007) 0.020(0.014)
0.65 0.058(0.041) 0.036(0.029) 0.031(0.030) 0.049(0.037) 0.023(0.017) 0.011(0.007) 0.011(0.007) 0.025(0.017)
0.7 0.063(0.046) 0.039(0.032) 0.033(0.029) 0.065(0.052) 0.024(0.018) 0.012(0.007) 0.011(0.007) 0.035(0.025)

0.75 0.071(0.054) 0.042(0.034) 0.036(0.028) 0.099(0.077) 0.026(0.018) 0.014(0.009) 0.013(0.015) 0.065(0.043)
0.8 0.081(0.066) 0.044(0.031) 0.055(0.046) 0.179(0.130) 0.029(0.021) 0.019(0.012) 0.029(0.035) 0.176(0.095)
0.85 0.096(0.083) 0.044(0.024) 0.100(0.084) 0.328(0.208) 0.035(0.025) 0.023(0.013) 0.064(0.062) 0.404(0.174)
0.9 0.112(0.108) 0.055(0.030) 0.134(0.111) 0.478(0.294) 0.045(0.030) 0.027(0.013) 0.087(0.079) 0.649(0.281)

0.95 0.146(0.156) 0.164(0.100) 0.102(0.080) 0.453(0.327) 0.071(0.055) 0.077(0.044) 0.047(0.056) 0.666(0.363)

With the Isotonic Quantile Regression (denoted by Isotonic QR) in Mösching and
Dümbgen (2020), we conduct simulation studies for isotonic univariate models, where the
conditional quantile of response is increasing in the covariate (f0 is in increasing in its first
argument in our model setup). We simulate data from three models described below, in-
cluding “Constant”, “Swing” and “Exp”, which corresponds to different specifications of
the target function f0.

(a) Constant: f0(x, τ) = 1 + Φ−1(τ);

(b) Swing: f0(x, τ) = 2πx+ sin(2πx) + | sin(πx)|Φ−1(τ);

32

Non-Crossing Deep Quantile Regresion

(c) Exp: f0(x, τ) = exp(2x) + exp(2x− 1)Φ−1(τ),

Table 6: Data are generated from the isotonic models with training sample size n = 512, 2048
and the number of replications R = 100. The averaged L1 and L2

2 test errors with the
corresponding standard deviation (in parentheses) are reported for the estimators trained
by different methods.

Model τ
Sample size n = 512 n = 2048

Method L1 L2
2 L1 L2

2

Constant

0.05
DQRP 0.171(0.097) 0.047(0.059) 0.153(0.081) 0.036(0.036)

Isotonic QR 0.144(0.068) 0.057(0.037) 0.079(0.035) 0.018(0.009)

0.25
DQRP 0.080(0.041) 0.011(0.009) 0.059(0.032) 0.005(0.005)

Isotonic QR 0.089(0.034) 0.022(0.012) 0.048(0.022) 0.006(0.004)

0.5
DQRP 0.083(0.037) 0.011(0.008) 0.072(0.043) 0.008(0.009)

Isotonic QR 0.086(0.032) 0.020(0.010) 0.046(0.018) 0.006(0.003)

0.75
DQRP 0.126(0.066) 0.025(0.025) 0.119(0.065) 0.020(0.019)

Isotonic QR 0.100(0.046) 0.025(0.015) 0.047(0.020) 0.006(0.003)

0.95
DQRP 0.207(0.116) 0.067(0.064) 0.198(0.109) 0.056(0.054)

Isotonic QR 0.132(0.059) 0.054(0.029) 0.070(0.032) 0.015(0.007)

Swing

0.05
DQRP 0.191(0.050) 0.060(0.028) 0.127(0.056) 0.033(0.037)

Isotonic QR 1.488(0.076) 4.168(0.348) 1.478(0.035) 4.140(0.155)

0.25
DQRP 0.101(0.029) 0.016(0.010) 0.098(0.052) 0.018(0.022)

Isotonic QR 1.473(0.068) 3.695(0.283) 1.461(0.031) 3.673(0.132)

0.5
DQRP 0.097(0.046) 0.015(0.013) 0.097(0.062) 0.017(0.022)

Isotonic QR 1.471(0.063) 3.604(0.257) 1.459(0.029) 3.583(0.122)

0.75
DQRP 0.131(0.083) 0.029(0.038) 0.126(0.076) 0.027(0.030)

Isotonic QR 1.475(0.064) 3.703(0.268) 1.459(0.030) 3.673(0.126)

0.95
DQRP 0.203(0.100) 0.070(0.073) 0.187(0.096) 0.060(0.056)

Isotonic QR 1.513(0.072) 4.243(0.336) 1.471(0.034) 4.129(0.143)

Exp

0.05
DQRP 0.200(0.109) 0.086(0.086) 0.153(0.094) 0.050(0.060)

Isotonic QR 0.886(0.073) 1.434(0.265) 0.832(0.046) 1.166(0.146)

0.25
DQRP 0.159(0.094) 0.056(0.060) 0.130(0.082) 0.039(0.042)

Isotonic QR 1.522(0.065) 3.787(0.325) 1.523(0.032) 3.727(0.164)

0.5
DQRP 0.176(0.105) 0.065(0.080) 0.150(0.099) 0.049(0.059)

Isotonic QR 1.994(0.081) 6.427(0.483) 2.013(0.039) 6.484(0.250)

0.75
DQRP 0.212(0.142) 0.094(0.120) 0.183(0.132) 0.073(0.107)

Isotonic QR 2.486(0.103) 9.972(0.754) 2.507(0.050) 10.045(0.394)

0.95
DQRP 0.308(0.210) 0.197(0.278) 0.278(0.189) 0.157(0.197)

Isotonic QR 3.151(0.132) 16.01(1.235) 3.212(0.073) 16.487(0.725)

where Φ(·) is the cumulative distribution function of the standard normal random vari-
able. The “Constant” is a linear isotonic model, and the “Swing” and “Exp” are nonlinear,
continuous isotonic models. We set sample size n = 512, 2048 and replicate for 100 times.

33

Shen, Jiao, Lin, Horowitz and Huang

The results are summarized in Table 6 and a visualization is presented in Figure 5. One
can see that our DQRP method performs reasonably well and comparable to the isotonic
quantile regression in Mösching and Dümbgen (2020) in the isotonic univariate case.

7.3 Multivariate models

We consider three basic multivariate models, including linear model (“Linear”), single index
model (“SIM”) and additive model (“Additive”), which correspond to different specifica-
tions of the target function f0. The formulae are given below.

(a) Linear:

f0(x, τ) = 2A>x+ F−1t (τ),

(b) Single index model:

f0(x, τ) = exp(0.1×A>x) + | sin(πB>x)|Φ−1(τ),

(c) Additive model:

f0(x, τ) = 3x1 + 4(x2 − 0.5)2 + 2 sin(πx3)− 5|x4 − 0.5|+ exp{0.1(B>x− 0.5)}Φ−1(τ),

where Ft(·) denotes the cumulative distribution function of the standard Student’s t random
variable, Φ(·) denotes the cumulative distribution function of the standard normal random
variable and the parameters (d-dimensional vectors)

A =(0.409, 0.908, 0, 0,−2.061, 0.254, 3.024, 1.280)>,

B =(1.386,−0.902, 5.437, 0, 0,−0.482, 4.611, 0)>.

34

Non-Crossing Deep Quantile Regresion

Table 7: Data is generated from the “Single index model” with training sample size n =
512, 2048 and the number of replications R = 100. The averaged L1 and L2

2 test errors
with the corresponding standard deviation (in parentheses) are reported for the estimators
trained by different methods.

Sample size n = 512 n = 2048

τ Method L1 L2
2 L1 L2

2

0.05

DQRP 0.529(0.037) 0.382(0.059) 0.433(0.016) 0.255(0.021)
DQRP* 0.482(0.036) 0.326(0.052) 0.421(0.011) 0.243(0.010)

DQR 0.635(0.050) 0.606(0.101) 0.564(0.032) 0.379(0.061)
Kernel QR 0.641(0.043) 0.596(0.078) 0.620(0.030) 0.561(0.059)
QR Forest 0.460(0.012) 0.318(0.031) 0.450(0.004) 0.305(0.013)

0.25

DQRP 0.228(0.024) 0.084(0.020) 0.195(0.013) 0.057(0.008)
DQRP* 0.247(0.027) 0.097(0.022) 0.191(0.010) 0.054(0.008)

DQR 0.415(0.040) 0.281(0.054) 0.338(0.028) 0.185(0.029)
Kernel QR 0.462(0.043) 0.330(0.054) 0.486(0.043) 0.361(0.062)
QR Forest 0.214(0.010) 0.065(0.006) 0.207(0.005) 0.058(0.003)

0.5

DQRP 0.179(0.021) 0.058(0.016) 0.098(0.011) 0.021(0.005)
DQRP* 0.167(0.033) 0.048(0.019) 0.082(0.017) 0.011(0.004)

DQR 0.329(0.044) 0.184(0.048) 0.241(0.028) 0.100(0.022)
Kernel QR 0.339(0.035) 0.188(0.036) 0.346(0.048) 0.193(0.053)
QR Forest 0.081(0.010) 0.010(0.003) 0.058(0.005) 0.005(0.001)

0.75

DQRP 0.269(0.021) 0.120(0.024) 0.209(0.013) 0.067(0.008)
DQRP* 0.235(0.028) 0.086(0.022) 0.183(0.010) 0.049(0.006)

DQR 0.422(0.043) 0.281(0.057) 0.341(0.031) 0.184(0.032)
Kernel QR 0.453(0.047) 0.317(0.059) 0.492(0.044) 0.368(0.063)
QR Forest 0.213(0.011) 0.064(0.007) 0.207(0.005) 0.058(0.003)

0.95

DQRP 0.403(0.020) 0.360(0.046) 0.459(0.029) 0.287(0.035)
DQRP* 0.405(0.032) 0.338(0.070) 0.453(0.025) 0.267(0.030)

DQR 0.643(0.049) 0.614(0.096) 0.561(0.027) 0.468(0.044)
Kernel QR 0.637(0.044) 0.589(0.080) 0.627(0.033) 0.572(0.066)
QR Forest 0.459(0.010) 0.317(0.028) 0.451(0.0025) 0.306(0.014)

35

Shen, Jiao, Lin, Horowitz and Huang

Table 8: Data is generated from the “Additive” model with training sample size n =
512, 2048 and the number of replications R = 100. The averaged L1 and L2

2 test errors
with the corresponding standard deviation (in parentheses) are reported for the estimators
trained by different methods.

Sample size n = 512 n = 2048

τ Method L1 L2
2 L1 L2

2

0.05

DQRP 0.928(0.130) 1.367(0.305) 0.542(0.095) 0.473(0.134)
DQRP* 0.752(0.142) 0.958(0.372) 0.544(0.148) 0.462(0.225)

DQR 0.934(0.167) 1.400(0.467) 0.636(0.105) 0.665(0.207)
Kernel QR 1.231(0.106) 2.116(0.324) 0.950(0.060) 1.177(0.134)
QR Forest 0.752(0.059) 0.871(0.129) 0.568(0.026) 0.508(0.044)

0.25

DQRP 0.600(0.047) 0.660(0.112) 0.374(0.032) 0.243(0.039)
DQRP* 0.517(0.045) 0.442(0.082) 0.383(0.066) 0.242(0.084)

DQR 0.796(0.096) 1.038(0.245) 0.567(0.066) 0.533(0.119)
Kernel QR 0.686(0.055) 0.771(0.124) 0.503(0.031) 0.397(0.046)
QR Forest 0.586(0.038) 0.536(0.066) 0.431(0.018) 0.296(0.025)

0.5

DQRP 0.578(0.043) 0.606(0.091) 0.364(0.038) 0.226(0.044)
DQRP* 0.524(0.052) 0.453(0.093) 0.365(0.066) 0.219(0.080)

DQR 0.749(0.066) 0.914(0.158) 0.539(0.050) 0.483(0.088)
Kernel QR 0.578(0.039) 0.566(0.074) 0.389(0.018) 0.256(0.024)
QR Forest 0.553(0.037) 0.480(0.063) 0.404(0.018) 0.260(0.023)

0.75

DQRP 0.628(0.064) 0.718(0.140) 0.410(0.063) 0.289(0.084)
DQRP* 0.577(0.076) 0.498(0.138) 0.377(0.080) 0.231(0.099)

DQR 0.799(0.094) 1.034(0.239) 0.558(0.064) 0.520(0.118)
Kernel QR 0.670(0.051) 0.745(0.106) 0.506(0.035) 0.412(0.055)
QR Forest 0.577(0.037) 0.530(0.069) 0.427(0.019) 0.290(0.025)

0.95

DQRP 0.897(0.152) 1.343(0.381) 0.602(0.149) 0.593(0.264)
DQRP* 0.873(0.175) 1.121(0.383) 0.600(0.187) 0.539(0.281)

DQR 0.920(0.140) 1.340(0.389) 0.611(0.090) 0.616(0.174)
Kernel QR 1.201(0.099) 2.025(0.296) 0.975(0.064) 1.243(0.151)
QR Forest 0.761(0.057) 0.925(0.132) 0.576(0.024) 0.523(0.042)

The simulation results under multivariate “SIM” and “Additive” models are summarized
in Tables 7-8 for point estimation and Tables 9-10 for process estimation. For Kernel QR,
QR Forest, QR Forest*, DQR, DQR*, our proposed DQRP and DQRP*, the corresponding
L1 and L2

2 distances (standard deviation in parentheses) between the estimates and the
target are reported at different quantile levels. For each column or row, using bold text we
highlight the best method which produces the smallest risk among these three methods.

36

Non-Crossing Deep Quantile Regresion

Table 9: Data is generated from the “Single index model” with training sample size
n = 512, 2048 and the number of replications R = 100. The DQR* and QRF* esti-
mators are obtained by interpolating DQR and QRF estimations at quantile level τ =
0.05, 0.25, 0.5, 0.75, 0.95. The averaged L1 and L2

2 test errors with the corresponding stan-
dard deviation (in parentheses) are reported for the estimators trained by different methods.

n = 512 n = 2048

Method DQRP DQRP* DQR* QR Forest* DQRP DQRP* DQR* QR Forest*
τ L1 L1

0.05 0.529(0.026) 0.466(0.022) 0.468(0.020) 0.657(0.105) 0.476(0.028) 0.433(0.015) 0.452(0.007) 0.687(0.080)
0.1 0.383(0.020) 0.343(0.014) 0.403(0.037) 0.582(0.097) 0.347(0.014) 0.322(0.007) 0.374(0.016) 0.595(0.078)
0.15 0.299(0.016) 0.274(0.010) 0.338(0.028) 0.455(0.071) 0.272(0.009) 0.258(0.005) 0.297(0.010) 0.441(0.062)
0.2 0.242(0.014) 0.225(0.009) 0.285(0.017) 0.331(0.041) 0.219(0.008) 0.211(0.005) 0.243(0.008) 0.303(0.035)

0.25 0.202(0.013) 0.188(0.010) 0.251(0.020) 0.242(0.023) 0.179(0.009) 0.172(0.005) 0.206(0.009) 0.216(0.015)
0.3 0.173(0.013) 0.158(0.011) 0.216(0.020) 0.186(0.014) 0.147(0.010) 0.138(0.005) 0.166(0.009) 0.166(0.010)
0.35 0.156(0.015) 0.133(0.013) 0.188(0.022) 0.148(0.012) 0.121(0.011) 0.108(0.005) 0.129(0.010) 0.130(0.011)
0.4 0.146(0.016) 0.114(0.015) 0.165(0.022) 0.120(0.013) 0.103(0.013) 0.083(0.006) 0.098(0.010) 0.102(0.015)
0.45 0.143(0.018) 0.102(0.018) 0.148(0.022) 0.103(0.016) 0.093(0.016) 0.065(0.007) 0.075(0.010) 0.083(0.018)
0.5 0.145(0.019) 0.099(0.020) 0.144(0.022) 0.097(0.018) 0.091(0.017) 0.059(0.008) 0.068(0.010) 0.075(0.020)
0.55 0.151(0.018) 0.105(0.021) 0.151(0.022) 0.103(0.017) 0.098(0.015) 0.067(0.008) 0.079(0.009) 0.083(0.018)
0.6 0.164(0.018) 0.118(0.022) 0.170(0.023) 0.120(0.016) 0.113(0.013) 0.085(0.007) 0.104(0.010) 0.103(0.015)
0.65 0.182(0.017) 0.137(0.020) 0.196(0.023) 0.146(0.014) 0.136(0.011) 0.109(0.005) 0.136(0.010) 0.131(0.012)
0.7 0.206(0.017) 0.161(0.018) 0.229(0.023) 0.182(0.015) 0.163(0.010) 0.137(0.004) 0.172(0.010) 0.167(0.012)

0.75 0.236(0.018) 0.189(0.014) 0.266(0.023) 0.231(0.021) 0.195(0.010) 0.170(0.003) 0.211(0.009) 0.216(0.019)
0.8 0.272(0.018) 0.223(0.010) 0.310(0.021) 0.309(0.039) 0.232(0.010) 0.209(0.003) 0.253(0.007) 0.296(0.043)
0.85 0.316(0.018) 0.268(0.009) 0.357(0.021) 0.429(0.065) 0.277(0.011) 0.257(0.005) 0.306(0.009) 0.422(0.075)
0.9 0.372(0.018) 0.332(0.013) 0.418(0.022) 0.580(0.093) 0.336(0.015) 0.325(0.008) 0.377(0.016) 0.577(0.100)

0.95 0.462(0.020) 0.447(0.023) 0.508(0.023) 0.710(0.113) 0.436(0.025) 0.444(0.014) 0.466(0.012) 0.702(0.111)
τ L2

2 L2
2

0.05 0.375(0.040) 0.284(0.029) 0.323(0.042) 0.696(0.193) 0.298(0.034) 0.242(0.016) 0.314(0.021) 0.749(0.140)
0.1 0.197(0.022) 0.156(0.013) 0.265(0.051) 0.527(0.150) 0.158(0.012) 0.138(0.005) 0.235(0.025) 0.545(0.115)
0.15 0.123(0.014) 0.103(0.008) 0.181(0.034) 0.329(0.092) 0.099(0.007) 0.092(0.004) 0.142(0.015) 0.313(0.077)
0.2 0.084(0.010) 0.073(0.007) 0.121(0.016) 0.178(0.046) 0.066(0.006) 0.063(0.004) 0.082(0.005) 0.152(0.037)

0.25 0.062(0.008) 0.052(0.006) 0.095(0.016) 0.094(0.021) 0.046(0.005) 0.043(0.003) 0.058(0.005) 0.075(0.014)
0.3 0.048(0.008) 0.038(0.006) 0.073(0.014) 0.055(0.010) 0.032(0.005) 0.028(0.002) 0.038(0.005) 0.043(0.007)
0.35 0.040(0.008) 0.028(0.006) 0.057(0.013) 0.034(0.006) 0.024(0.005) 0.018(0.002) 0.024(0.004) 0.026(0.006)
0.4 0.036(0.008) 0.021(0.005) 0.045(0.012) 0.023(0.005) 0.018(0.004) 0.011(0.002) 0.015(0.003) 0.017(0.005)
0.45 0.034(0.008) 0.017(0.005) 0.038(0.011) 0.017(0.005) 0.015(0.004) 0.007(0.002) 0.009(0.002) 0.011(0.005)
0.5 0.035(0.008) 0.016(0.006) 0.035(0.010) 0.015(0.005) 0.014(0.004) 0.006(0.002) 0.008(0.002) 0.009(0.005)
0.55 0.038(0.009) 0.018(0.007) 0.038(0.011) 0.017(0.006) 0.016(0.004) 0.007(0.002) 0.010(0.002) 0.011(0.005)
0.6 0.045(0.009) 0.022(0.008) 0.047(0.013) 0.023(0.006) 0.021(0.004) 0.011(0.002) 0.016(0.003) 0.017(0.005)
0.65 0.054(0.010) 0.030(0.009) 0.061(0.015) 0.033(0.007) 0.029(0.005) 0.018(0.002) 0.027(0.004) 0.026(0.006)
0.7 0.069(0.012) 0.040(0.010) 0.081(0.018) 0.051(0.010) 0.041(0.006) 0.029(0.003) 0.042(0.004) 0.043(0.008)

0.75 0.089(0.015) 0.054(0.011) 0.108(0.020) 0.084(0.019) 0.058(0.007) 0.042(0.003) 0.062(0.005) 0.074(0.017)
0.8 0.116(0.019) 0.074(0.010) 0.145(0.021) 0.155(0.042) 0.081(0.008) 0.061(0.002) 0.092(0.005) 0.143(0.043)
0.85 0.153(0.023) 0.101(0.008) 0.193(0.025) 0.297(0.083) 0.113(0.010) 0.089(0.002) 0.143(0.014) 0.286(0.089)
0.9 0.207(0.025) 0.149(0.010) 0.266(0.033) 0.527(0.142) 0.162(0.012) 0.138(0.006) 0.227(0.029) 0.515(0.144)

0.95 0.306(0.027) 0.260(0.026) 0.382(0.040) 0.798(0.210) 0.258(0.028) 0.252(0.016) 0.338(0.034) 0.773(0.192)

37

Shen, Jiao, Lin, Horowitz and Huang

Table 10: Data is generated from the “Additive model” with training sample size
n = 512, 2048 and the number of replications R = 100. The DQR* and QRF* esti-
mators are obtained by interpolating DQR and QRF estimations at quantile level τ =
0.05, 0.25, 0.5, 0.75, 0.95. The averaged L1 and L2

2 test errors with the corresponding stan-
dard deviation (in parentheses) are reported for the estimators trained by different methods.

n = 512 n = 2048

Method DQRP DQRP* DQR* QR Forest* DQRP DQRP* DQR* QR Forest*
τ L1 L1

0.05 0.923(0.132) 0.901(0.209) 0.69(0.086) 1.278(0.238) 0.538(0.093) 0.541(0.149) 0.415(0.060) 1.213(0.182)
0.1 0.730(0.084) 0.712(0.129) 0.659(0.053) 1.233(0.222) 0.423(0.037) 0.410(0.081) 0.456(0.083) 1.154(0.179)
0.15 0.655(0.064) 0.651(0.086) 0.653(0.049) 1.021(0.182) 0.393(0.025) 0.389(0.063) 0.432(0.066) 0.915(0.161)
0.2 0.618(0.054) 0.625(0.064) 0.655(0.053) 0.810(0.129) 0.381(0.029) 0.386(0.063) 0.397(0.044) 0.680(0.121)

0.25 0.597(0.047) 0.613(0.054) 0.652(0.055) 0.682(0.086) 0.373(0.033) 0.384(0.064) 0.382(0.038) 0.541(0.080)
0.3 0.585(0.043) 0.605(0.050) 0.649(0.053) 0.620(0.061) 0.367(0.035) 0.380(0.064) 0.377(0.039) 0.479(0.060)
0.35 0.578(0.040) 0.600(0.049) 0.648(0.051) 0.584(0.051) 0.363(0.036) 0.375(0.064) 0.375(0.039) 0.445(0.050)
0.4 0.575(0.039) 0.596(0.048) 0.649(0.049) 0.558(0.047) 0.361(0.036) 0.370(0.063) 0.374(0.037) 0.418(0.041)
0.45 0.574(0.039) 0.593(0.048) 0.648(0.048) 0.541(0.045) 0.361(0.037) 0.367(0.063) 0.373(0.035) 0.400(0.033)
0.5 0.576(0.042) 0.591(0.048) 0.649(0.046) 0.535(0.044) 0.362(0.037) 0.366(0.065) 0.373(0.034) 0.393(0.032)
0.55 0.580(0.045) 0.589(0.047) 0.650(0.045) 0.540(0.049) 0.367(0.039) 0.366(0.069) 0.373(0.034) 0.400(0.041)
0.6 0.586(0.048) 0.587(0.047) 0.653(0.046) 0.559(0.059) 0.373(0.043) 0.368(0.073) 0.372(0.035) 0.422(0.057)
0.65 0.595(0.053) 0.585(0.046) 0.657(0.049) 0.590(0.074) 0.383(0.048) 0.372(0.077) 0.371(0.035) 0.458(0.077)
0.7 0.608(0.058) 0.583(0.046) 0.663(0.053) 0.641(0.097) 0.395(0.054) 0.375(0.079) 0.369(0.035) 0.513(0.104)

0.75 0.624(0.064) 0.583(0.050) 0.670(0.058) 0.735(0.130) 0.409(0.061) 0.377(0.080) 0.368(0.039) 0.607(0.142)
0.8 0.647(0.070) 0.587(0.061) 0.671(0.056) 0.900(0.176) 0.426(0.067) 0.379(0.077) 0.377(0.052) 0.778(0.183)
0.85 0.681(0.080) 0.605(0.087) 0.667(0.050) 1.128(0.221) 0.447(0.073) 0.387(0.077) 0.400(0.070) 1.005(0.209)
0.9 0.740(0.099) 0.664(0.134) 0.672(0.055) 1.342(0.254) 0.483(0.087) 0.424(0.102) 0.414(0.077) 1.200(0.227)

0.95 0.890(0.152) 0.864(0.209) 0.720(0.084) 1.405(0.274) 0.597(0.148) 0.597(0.185) 0.388(0.050) 1.228(0.240)
τ L2

2 L2
2

0.05 1.346(0.312) 1.245(0.471) 0.777(0.195) 2.209(0.700) 0.466(0.129) 0.456(0.225) 0.277(0.077) 1.872(0.492)
0.1 0.923(0.192) 0.816(0.261) 0.706(0.112) 2.041(0.628) 0.310(0.045) 0.275(0.108) 0.330(0.109) 1.696(0.459)
0.15 0.770(0.151) 0.687(0.168) 0.693(0.102) 1.466(0.459) 0.271(0.034) 0.249(0.083) 0.298(0.084) 1.140(0.345)
0.2 0.693(0.128) 0.636(0.124) 0.695(0.110) 0.975(0.287) 0.253(0.038) 0.245(0.081) 0.254(0.052) 0.683(0.207)

0.25 0.648(0.110) 0.612(0.104) 0.689(0.116) 0.711(0.168) 0.241(0.041) 0.242(0.081) 0.243(0.046) 0.451(0.116)
0.3 0.621(0.097) 0.598(0.096) 0.683(0.111) 0.592(0.108) 0.232(0.042) 0.237(0.079) 0.235(0.048) 0.360(0.081)
0.35 0.604(0.089) 0.589(0.093) 0.681(0.108) 0.528(0.085) 0.226(0.043) 0.230(0.077) 0.227(0.047) 0.312(0.065)
0.4 0.595(0.085) 0.581(0.091) 0.681(0.106) 0.485(0.077) 0.223(0.043) 0.225(0.075) 0.226(0.045) 0.278(0.050)
0.45 0.593(0.085) 0.576(0.090) 0.681(0.105) 0.458(0.071) 0.222(0.043) 0.221(0.076) 0.225(0.042) 0.254(0.039)
0.5 0.596(0.088) 0.571(0.089) 0.682(0.101) 0.449(0.070) 0.224(0.044) 0.219(0.078) 0.225(0.041) 0.246(0.040)
0.55 0.604(0.094) 0.567(0.088) 0.684(0.098) 0.460(0.078) 0.229(0.046) 0.220(0.083) 0.224(0.040) 0.255(0.055)
0.6 0.619(0.102) 0.563(0.088) 0.689(0.098) 0.493(0.098) 0.237(0.051) 0.222(0.089) 0.223(0.040) 0.282(0.079)
0.65 0.639(0.113) 0.560(0.087) 0.698(0.103) 0.551(0.132) 0.250(0.058) 0.226(0.095) 0.222(0.040) 0.330(0.112)
0.7 0.668(0.126) 0.557(0.089) 0.710(0.111) 0.647(0.184) 0.266(0.068) 0.229(0.098) 0.220(0.040) 0.406(0.158)

0.75 0.706(0.141) 0.558(0.098) 0.725(0.121) 0.831(0.269) 0.286(0.080) 0.232(0.098) 0.220(0.044) 0.547(0.234)
0.8 0.758(0.158) 0.567(0.120) 0.728(0.116) 1.190(0.399) 0.311(0.093) 0.234(0.093) 0.235(0.061) 0.835(0.341)
0.85 0.833(0.181) 0.603(0.168) 0.721(0.105) 1.756(0.564) 0.344(0.107) 0.242(0.090) 0.256(0.085) 1.289(0.458)
0.9 0.967(0.229) 0.718(0.264) 0.731(0.116) 2.380(0.732) 0.399(0.136) 0.288(0.124) 0.273(0.094) 1.764(0.566)

0.95 1.321(0.383) 1.137(0.466) 0.835(0.187) 2.628(0.831) 0.585(0.261) 0.534(0.276) 0.241(0.057) 1.879(0.614)

7.4 Distribution of ξ

In this subsection, we investigate how the distribution of ξ affect the performance of the
proposed method. We compute our proposed DQRP estimator under the data-generating
models and the same configurations as in Section 7.2 and 7.3, but with different choices
of distribution of ξ. We set ξ follow Beta distributions Beta(α, β) with four different
parameters (α, β), i.e. (α, β) = (0.5, 0.5), (1, 1), (2, 2) and (0.5, 1.5). The probability density
functions and cumulative distribution functions for the four Beta distributions are presented
in Figure 6.

38

Non-Crossing Deep Quantile Regresion

Figure 6: The probability density functions and cumulative distribution functions for Beta
distributions Beta(α, β) of ξ with different parameters (α, β).

It is known that Beta(1, 1) is a uniform distribution on (0, 1). One can also see from
Figure 6 that Beta(0.5, 0.5) concentrates more around 0 and 1; Beta(2, 2) concentrates
more near 0.5 and Beta(0.5, 1.5) is right-skewed.

We simulated for univariate models “Linear”, “Wave” and “Triangle” with n = 512
specified in Section 7.2 to examine how the distribution of ξ affect the estimation. For
each model, we replicate for 20 times for each distribution of ξ and report the mean L1

distance between estimates and the target quantile curves at all levels in (0, 1). The results
are visualized in Figures 7-9. There is evidence that the distribution of ξ concentrating
around 0 and 1 can improve the estimation at extreme quantiles. And our proposed method
performs reasonably well with uniform distributed ξ under different models.

39

Shen, Jiao, Lin, Horowitz and Huang

Figure 7: Univariate “Linear” model: The probability density functions of different choices
of ξ are depicted in the left. The according mean L1 distance between estimates and the
target quantile curves at all levels in (0, 1) over 20 replications are depicted in the right.

Figure 8: Univariate “Wave” model: The probability density functions of different choices
of ξ are depicted in the left. The according mean L1 distance between estimates and the
target quantile curves at all levels in (0, 1) over 20 replications are depicted in the right.

40

Non-Crossing Deep Quantile Regresion

Figure 9: Univariate “Triangle” model: The probability density functions of different choices
of ξ are depicted in the left. The according mean L1 distance between estimates and the
target quantile curves at all levels in (0, 1) over 20 replications are depicted in the right.

7.5 Tuning Parameter

In this subsection, we study the effects of the tuning parameter λ on the proposed method.
First, we demonstrate that the “quantile crossing” phenomenon can be mitigated. We apply
our method to the bone mineral density (BMD) dataset. This dataset is originally reported
in Bachrach et al. (1999) and analyzed in Takeuchi et al. (2006); Hastie et al. (2009)1. The
dataset collects the bone mineral density data of 485 North American adolescents ranging
from 9.4 years old to 25.55 years old. Each response value is the difference of the bone
mineral density taken on two consecutive visits, divided by the average. The predictor age
is the averaged age over the two visits.

In Figure 10, we show the estimated quantile regression processes without (λ = 0) or
with (λ = log(n)) the proposed non-crossing penalty. We use the Adam optimizer with
the same parameters (for the optimization process) to train a fixed-shape ReQU network
with three hidden layers and width (128, 128, 128). The estimated quantile curves at τ =
0.1, 0.2, . . . , 0.9 and the observations are displayed in Figure 10. It can be seen that the
proposed non-crossing penalty is effective to avoid quantile crossing, even in the area outside
the range of the training data.

1. The data is also available from the website http://www-stat.stanford.edu/ElemStatlearn.

41

http://www-stat.stanford.edu/ElemStatlearn

Shen, Jiao, Lin, Horowitz and Huang

(a) Without non-crossing penalty (b) With non-crossing penalty

Figure 10: An example of quantile crossing problem in BMD data set. The estimated
quantile curves at τ = 0.1, 0.2, . . . , 0.9 and the observations are depicted. In the left panel,
the estimation is conducted without non-crossing penalty and there are crossings at both
edges of the graph. In the right figure, the estimation is conducted with non-crossing
penalty. There is no quantile crossing even in the area outside the range of the training
data.

Second, we study how the value of tuning parameter λ affects the risk of the estimated
quantile regression process and how it helps avoiding crossing. Given a sample with size n,
we train a series of the DQRP estimators at different values of the tuning parameter λ. For
each DQRP estimator, we record its risk and penalty values and the track of these values
are plotted in Figures 11-12. For each obtained DQRP estimator f̂λn , the statistics “Risk”
is calculated according to the formula

R(f̂λn) = EX,Y,ξ{ρξ(Y − f(X, ξ))},

and the statistics “Penalty” is calculated according to

κ(f̂λn) = EX,ξ[max{− ∂

∂τ
f̂λn (X, ξ), 0}].

In practice, we generate T = 10, 000 testing data (Xtest
t , Y test

t , ξtesrt)Tt=1 to empirically cal-
culate risks and penalty values.

In each figure, a vertical dashed line is also depicted at the value λ = log(n). It can be
seen that crossing seldom happens when we choose a tiny value of the tuning parameter λ.
And the loss caused by penalty can be negligible compared to the total risk, since the penalty
values are generally of order O(10−3) instead of O(103) for the total risk. For large value of
tuning parameter λ, the crossing nearly disappears which is intuitive and encouraged by the
formulation of our penalty. However, the risk could be very large resulting a poor estimation
of the target function. As shown by the dashed vertical line in each figure, numerically the
choice of λ = log(n) can lead to a reasonable estimation of the target function with tiny
risk (blue lines) and little crossing (red lines) across different model settings. Empirically,
we choose λ = log(n) in general for the simulations. By Theorem 4, such choice of tuning
parameter can lead to a consistent estimator with reasonable fast rate of convergence.

42

Non-Crossing Deep Quantile Regresion

Figure 11: The value of risks and penalties under the univariate “Triangle” model when
n = 512, 2048. A vertical dashed line is depicted at the value λ = log(n) on x-axis in each
figure.

Figure 12: The value of risks and penalties under the multivariate additive model when
n = 512, 2048 and d = 8. A vertical dashed line is depicted at the value λ = log(n) on
x-axis in each figure.

8. Conclusions

We have proposed a penalized nonparametric approach to estimating the nonseparable
quantile regression model using ReQU activated deep neural networks and introduced a
novel penalty function to enforcing non-crossing quantile curves. We have established non-
asymptotic excess risk bounds for the estimated QRP and derived the mean integrated
squared error for the estimated QRP under mild smoothness and regularity conditions.
We have also developed a new approximation error bound for Cs smooth functions with
smoothness index s > 0 using ReQU activated neural networks. Our numerical experiments
demonstrate that the proposed method is competitive with or outperforms two existing
methods, including methods using reproducing kernels and random forests, for nonpara-
metric quantile regression. Therefore, the proposed approach can be a useful addition to
the methods for multivariate nonparametric regression analysis.

An often used existing approach is to estimate the quantile curve f0(·, τ) at each τ non-
parametrically and then carry out a post-isotonization step to ensure non-crossing (Cher-
nozhukov et al., 2010; Mammen, 1991; Brando et al., 2022). However, this only works for
regression quantiles at finitely many quantile levels, not for the entire regression quantile

43

Shen, Jiao, Lin, Horowitz and Huang

process on (0, 1). Our method optimizes a novel penalized objective function with a new
penalty using differential networks to enforce non-crossing of quantile regression curves.
Because we have a well formulated objective function, this enables us to establish non-
asymptotic error bounds for the proposed estimator under reasonable conditions.

The results and methods of this work are expected to be useful in other nonparametric
estimation problems. In particular, our approximation results on ReQU activated networks
are of independent interest. It would be interesting to take advantage of the smoothness of
ReQU activated networks and use them in other nonparametric estimation problems, such
as the estimation of a regression function and its derivative.

A key assumption in our theoretical analysis is that the neural networks and their
derivatives are bounded. The boundedness constraints can be implemented by truncating or
clipping the network output and its derivative (Chen et al., 2020; Lee and Kifer, 2021). The
commonly used assumptions in the existing works (Schmidt-Hieber, 2020; Zhong and Wang,
2021; Padilla et al., 2022) assume that the network parameters are sparse and the sup-norm
or the operator norm of the weight matrices or bias vectors are bounded. These assumptions
are stronger than our assumption and may destroy the approximation power of neural
network functions (Huster et al., 2018). It would be interesting to relax such assumptions
to strengthen the theoretical results. This is an important question that deserves further
careful technical analysis in the future.

In applications, the target function f0 may be neither smooth nor continuous in X, or the
conditional distribution of Y |X has point masses. In this case, we may transform the output
of neural networks into discrete values to accommodate point mass quantile estimation. To
achieve this, one may add additional layers (e.g. Softmax, Softplus or Indicator) at the
end of the neural networks. Additional efforts are needed to study theoretical guarantees
for quantile process estimation with discrete response under proper assumptions. We leave
space here for future research.

Acknowledgements

The authors wish to thank the action editor and reviewers for their valuable and constructive
comments, which have significantly improved the quality of this paper. G. Shen is partially
supported by the Hong Kong Research Grants Council (Grant No. 15305523) and a research
grant from The Hong Kong Polytechnic University. The work of Y. Jiao is supported by
the National Nature Science Foundation of China (Grant No.12371441), “the Fundamental
Research Funds for the Central Universities”, and the research fund of KLATASDSMOE
of China. Y. Lin’s research was partially supported by the Hong Kong Research Grants
Council (Grant No. 14306219, 14306620, 14304523), and Direct Grants for Research, The
Chinese University of Hong Kong. The work of J. Huang is supported by the National
Natural Science Foundation of China (Grant No. 72331005) and research grants from The
Hong Kong Polytechnic University.

44

Non-Crossing Deep Quantile Regresion

Appendix

In the appendix, we include proofs of the results stated in the main text and additional
simulation results.

Appendix A. Proof of Theorems, Corollaries and Lemmas

In this section of the Appendix, we include the proofs for the results stated in Section 3
and the technical details needed in the proofs.

Proof of Proposition 1

For any random variable ξ supported on (0, 1), the risk

Rξ(f) =EX,Y,ξ{ρξ(Y − f(X, ξ))}

=

∫ 1

0
EX,Y {ρξ(Y − f(X, τ))}πξ(τ)dτ

where πξ(·) ≥ 0 is the density function of ξ. By the definition of f0 and the property
of quantile loss function, it is known f0 minimizes EX,Y {ρτ (Y − f(X, τ))} as well as
EX,Y {ρτ (Y − f(X, τ))}πξ(τ) for each τ ∈ (0, 1). Thus f0 minimizes the integral or the
risk R(·) over measurable functions.

Note that if πξ(τ) = 0 for some τ ∈ T where T is a subset of (0, 1), then any function
f̃0 defined on X × (0, 1) that is different from f0 only on X × T will also be a minimizer of
Rξ(·). To be exact,

f̃0 ∈ arg min
f
R(f) if and only if f̃0 = f0 on X × (0, 1)\T.

Further, if (X, ξ) has non zero density almost everywhere on X×(0, 1) and the probability
measure of (X, ξ) is absolutely continuous with respect to Lebesgue measure, then above
defined set X ×T is measure-zero and f0 is the unique minimizer of R(·) over all measurable
functions in the sense of almost everywhere(almost surely), i.e.,

f0 = arg min
f
Rξ(f) = arg min

f
EX,Y,ξ{ρξ(Y − f(X, ξ))},

up to a negligible set with respect to the probability measure of (X, ξ) on X × (0, 1). �

Proof of Lemma 1

Recall that f̂λn is the penalized empirical risk minimizer. Then, for any f ∈ Fn we have

Rξn,λ(f̂λn) ≤ Rξn,λ(f).

Besides, for any f ∈ F we have κ(f) ≥ 0 and κn(f) ≥ 0 since κ and κn are nonnegative
functions. Note that κ(f0) = κn(f0) = 0 by the assumption that f0 is increasing in its
second argument. Then,

Rξ(f̂λn)−Rξ(f0) ≤Rξ(f̂λn)−Rξ(f0) + λ{κ(f̂λn)− κ(f0)} = Rξλ(f̂λn)−Rξλ(f0).

45

Shen, Jiao, Lin, Horowitz and Huang

We can then give upper bounds for the excess risk Rξ(f̂λn)−Rξ(f0). For any f ∈ Fn,

Rξ(f̂λn)−Rξ(f0) ≤ Rξλ(f̂λn)−Rξλ(f0)

= {Rξλ(f̂λn)−Rξn,λ(f̂λn)}+ {Rξn,λ(f̂λn)−Rξn,λ(f)}+ {Rξn,λ(f)−Rξλ(f)}+ {Rξλ(f)−Rξλ(f0)}

≤ 2 sup
f∈Fn

∣∣∣[Rξλ(f)−Rξλ(f0)]− [Rξn,λ(f)−Rξn,λ(f0)]
∣∣∣+ {Rξλ(f)−Rξλ(f0)},

where the second inequality holds since Rξn,λ(f) ≥ Rξn,λ(f̂λn) for any f ∈ Fn. Since the
inequality holds for any f ∈ Fn, we have

Rξ(f̂λn)−Rξ(f0) ≤ 2 sup
f∈Fn

∣∣∣[Rξλ(f)−Rξλ(f0)]− [Rξn,λ(f)−Rξn,λ(f0)]
∣∣∣+ inf

f∈Fn
{Rξλ(f)−Rξλ(f0)}.

This completes the proof. �

Proof of Theorem 4

The proof is straightforward by consequences of Theorem 14 and Corollary 17.

For any N ∈ N+, let Fn := FD,W,U ,S,B,B′ be the ReQU activated neural networks f :
X × (0, 1)→ R with depth D ≤ 2N −1, widthW ≤ 12Nd, number of neurons U ≤ 15Nd+1,
number of parameters S ≤ 24Nd+1 and satisfying B ≥ ‖f0‖C0 and B′ ≥ ‖f0‖C1 . Then we
would compare the stochastic error bounds 8602US and 5796DS(D + log2 U). By simple
math it can be shown that DS(D+ log2 U) = O(dNd+3) and US = O(N2d+2). Since d ≥ 1,
then we choose apply the upper bound DS(D + log2 U) in Theorem 14 to get a excess risk
bound with lower order in terms of N . This completes the proof. �

Proof of Corollary 5

The proof rests on the smoothness and bound conditions on the target function and the
neural networks, as well as the Lipschitz property of the quantile check loss. Firstly, for
any τ1, τ2 ∈ (0, 1) and any a ∈ R, we have |ρτ1(a) − ρτ2(a)| ≤ |a| · |τ1 − τ2|. Secondly, for
any t ∈ (0, 1) and a, b ∈ B, it holds that |ρt(a) − ρt(b)| ≤ |a − b|. For any τ ∈ (0, 1) and
δ ∈ [0, 1), we consider the risk Rt(f) = EX,Y [ρt(Y − f(X, t))] for t ∈ Bτ

ξ (δ) and f ∈ Fn.
Note that for any t ∈ Bτ

ξ (δ) and f ∈ Fn,

Rt(f) =EX,Y [ρt(Y − f(X, t))] ≥ EX,Y [ρτ (Y − f(X, t))]− |Y − f(X, t)| · |τ − t|
≥EX,Y [ρτ (Y − f(X, t))]− 2δB
≥EX,Y [ρτ (Y − f(X, τ))]− |f(X, τ)− f(X, t)| − 2δB
≥EX,Y [ρτ (Y − f(X, τ))]− δB′ − 2δB,

where the second inequality holds since ‖f‖∞ ≤ B, and the last inequality holds since
‖ ∂∂τ f‖∞ ≤ B

′ for all f ∈ Fn. Similarly, given ‖f0‖C0 ≤ B and ‖f0‖C1 ≤ B′, we have
Rt(f0) = EX,Y [ρt(Y − f0(X, t))] ≤ EX,Y [ρτ (Y − f0(X, τ))] + δB′ + 2δB for any t ∈ Bτ

ξ (δ).

46

Non-Crossing Deep Quantile Regresion

Then for τ ∈ (0, 1), δ ∈ [0, 1) and any f ∈ Fn,

Rξ(f)−Rξ(f0) =

∫ 1

0

[
Rt(f)−Rt(f0)

]
πξ(t)dt

≥
∫
Bτξ (δ)

[
Rt(f)−Rt(f0)

]
πξ(t)dt

≥
∫
Bτξ (δ)

[
Rτ (f)−Rτ (f0)− 2δ(B′ + 2B)

]
πξ(t)dt

= P(ξ ∈ Bτ
ξ (δ))

[
Rτ (f)−Rτ (f0)− 2δ(B′ + 2B)

]
,

where the first inequality holds since Rt(f)−Rt(f0) ≥ 0 for any f and t ∈ (0, 1). By simple
math, we have

Rτ (f)−Rτ (f0) ≤
1

P(ξ ∈ Bτ
ξ (δ))

[
Rξ(f)−Rξ(f0)

]
+ 2δ(B′ + 2B).

Taking expectation on both sides of the above inequality, and combining the upper bound
for E[Rξ(f)−Rξ(f0)], we complete the proof of the first part of Corollary 5. If ξ is uniformly
distributed on (0, 1), then P(ξ ∈ Bτ

ξ (δ)) = δ for any τ ∈ (0, 1) and δ ∈ [0, 1). This gives the
uniform guarantee for the pointwise excess risk, and thus completes the proof of Corollary
5.

Proof of Lemma 7

By equation (B.3) in Belloni and Chernozhukov (2011), for any scalar w, v ∈ R and τ ∈ (0, 1)
we have

ρτ (w − v)− ρτ (w) = −v{τ − I(w ≤ 0)}+

∫ v

0
{I(w ≤ z)− I(w ≤ 0)}dz.

Given any quantile level τ ∈ (0, 1), function f and X = x, let w = Y − f0(X, τ), v =
f(X, τ) − f0(X, τ). Suppose |f(x, τ) − f0(x, τ)| ≤ K, taking conditional expectation on
above equation with respect to Y | X = x, we have

E{ρτ (Y − f(X, τ))− ρτ (Y − f0(X, τ)) | X = x}
=E
[
− {f(X, τ)− f0(X, τ)}{τ − I(Y − f0(X, τ) ≤ 0)} | X = x

]
+ E

[∫ f(X,τ)−f0(X,τ)

0
{I(Y − f0(X, τ) ≤ z)− I(Y − f0(X, τ) ≤ 0)}dz | X = x

]
=0 + E

[∫ f(X,τ)−f0(X,τ)

0
{I(Y − f0(X, τ) ≤ z)− I(Y − f0(X, τ) ≤ 0)}dz | X = x

]
=

∫ f(x,τ)−f0(x,τ)

0
{PY |X(f0(x, τ) + z)− PY |X(f0(x, τ))}dz

≥
∫ f(x,τ)−f0(x,τ)

0
k|z|dz

=
k

2
|f(x, τ)− f0(x, τ)|2.

47

Shen, Jiao, Lin, Horowitz and Huang

Suppose f(x)− f0(x) > K, then similarly we have

E{ρτ (Y − f(X, τ))− ρτ (Y − f0(X, τ)) | X = x}

=

∫ f(x,τ)−f0(x,τ)

0
{PY |X(f0(x, τ) + z)− PY |X(f0(x, τ))}dz

≥
∫ f(x,τ)−f0(x,τ)

K/2
{PY |X(f0(x, τ) +K/2)− PY |X(f0(x, τ))}dz

≥(f(x, τ)− f0(x, τ)−K/2)(kK/2)

≥kK
4
|f(x, τ)− f0(x, τ)|.

The case f(x, τ)− f0(x, τ) ≤ −K can be handled similarly as in Padilla and Chatterjee
(2021). The conclusion follows combining the three different cases and taking expectation
with respect to X of above obtained inequality. Finally for any function f : X × (0, 1)→ R,
we have

∆2(f, f0) =Emin{|f(X, ξ)− f0(X, ξ)|, |f(X, ξ)− f0(X, ξ)|2}

≤max{2/k, 4/(kK)}E
[∫ 1

0
ρτ (Y − f(X, τ))− ρτ (Y − f0(X, τ))dτ

]
= max{2/k, 4/(kK)}[R(f)−R(f0)].

Especially, if ‖f‖∞ ≤ B, ‖f0‖∞ ≤ B and 2B ≤ K, then ‖f − f0‖∞ ≤ K, and

E|f(X, ξ)− f0(X, ξ)|2 ≤
2

k
{R(f)−R(f0)}.

This completes the proof. �

Proof of Theorem 8

Theorem 8 is a direct consequence of Lemma 7 and Theorem 4.

Proof of Theorem 10

The proof is based on the Fano’s inequality (Scarlett and Cevher, 2019) and the Varshamov-
Gilber bound (Lemma 2.9 in Tsybakov (2008) and Lemma D.2 in Lu et al. (2021b)). The
main idea of our proof is to construct a finite subset of the target function space, then
turn the problem into a multiple hypothesis testing problem, and lastly apply the Fano’s
inequality to obtain the lower bound.

Firstly, we specify the space of the target function. Recall that the nonparametric
regression model in our paper is a non-separable quantile regression model Y = f0(X,U),
where Y ∈ R is the response, X ∈ X ⊂ Rd is a d-dimensional vector of predictors, U is an
unobservable random variable following the uniform distribution on (0, 1) and independent
of X. The function f0 : X×(0, 1)→ R is an (d+1)-dimensional unknown function increasing
in its second argument, and it is smooth with order s ∈ N+. With a slight abuse of notation,
we denote the space of the target f0 by Cs+.

48

Non-Crossing Deep Quantile Regresion

Next, we construct a finite subset of the target function space. According to the
Varshamov-Gilbert lemma, for any positive integer m satisfying md+1 ≥ 8, there exists

a subset V = {v(0), · · · , v(2m
d+1/8)} of md+1 dimensional hypercube {0, 1}md+1

such that
v(0) = (0, . . . , 0) and the `1 distance between every two elements is larger than md+1/8, i.e.,

md+1∑
i=1

‖v(j) − v(k)‖1 ≥
md+1

8
, for all 0 ≤ j 6= k ≤ 2m

d+1/8.

According to the proof of Theorem D.1 in Lu et al. (2021b), we consider a simple C∞ bump
function supported on [0, 1]d × (0, 1):

g(x, τ) =

(∫ τ

−∞
h0(t)dt− C

)
×

d∏
i=1

h1(xi),

where h0, h1 : R → R are non-zero integrable function in C∞(R) satisfy h0(x) > 0 and
h1(x) > 0, and C is a constant satisfying

∫ +∞
−∞ h0(t)dt > C > 0. It can be verified that

d
dτ g(x, τ) > 0 over its domain [0, 1]d × (0, 1). Then, we construct the multiple hypothesis

on the regular grid (x(j), τ (j)), j ∈ [m]d+1 by

fk(x, τ) =
∑

j∈[m]d+1

v
(k)
j

ω

ms+d+1
g(m(x− x(j)),m(τ − τ (j))), k = 1, 2, . . . , 2m

d+1/8,

where ω is a constant. It can be checked that fk ∈ Cs and

‖fi − fk‖C1 =
C · ω
ms+d

∑
j∈[m]d+1

|v(i)j − v
(k)
j |1 ≥

C · ω
ms−1 , ∀1 ≤ i 6= k ≤ 2m

d+1/8. (24)

Now we turn the problem into multiple hypothesis testing. Let {1, . . . , 2md+1/8} be
an index set, and let Pv denote the distribution of the data (X,Y) corresponding to the

generating model Y = fv(X,U) for v ∈ {1, . . . , 2md+1/8}. Firstly, suppose that there is a
sample Sn = {(Xi, Yi)}ni=1 generated from the model Y = f(X,U) for a given f ∈ Cs. For
any estimator f̂n based on Sn, and any ε > 0, we know that

sup
f∈Cs+

E‖f̂n − f‖C1 ≥ sup
f∈Cs

ε× P(‖f̂n − f‖C1 ≥ ε)

≥ ε× max
v=1,...,2m

d+1/8

P(‖f̂n − fv‖C1 ≥ ε),

where the first inequality follows from Markov’s inequality and the second inequality follows
by finding the maximum over a smaller set.

Next, we consider the multiple hypothesis testing over the set IV = {1, . . . , 2md+1/8}.
Suppose that a random index V is drawn uniformly from IV , then the samples Sn =
{(Xi, Yi)}ni=1 are drawn from the distribution Pv corresponding to Y = fv(X,U) for v = V .
Given any estimator f̂n based on Sn, let fV̂ denote the one closest to f̂n with respect to

the metric ‖ · ‖C1 over {fv : v ∈ IV }, i.e., V̂ = argminv∈IV ‖fv − f̂n‖C1 . Using the triangle

inequality and (24), for ε = C · ω/m[t]−d−2 if ‖fv − f̂n‖C1 < ε/2 then V̂ = v. Thus

P(‖fv − f̂n‖C1 ≥ ε/2) ≥ P(V̂ 6= v),

49

Shen, Jiao, Lin, Horowitz and Huang

and for ε = C · ω/ms−1 and any estimator f̂n,

sup
f∈Cs+

E‖f̂n − f‖C1 ≥ sup
f∈Cs

ε× P(‖f̂n − f‖C1 ≥ ε)

≥ ε× max
v=1,...,2m

d+1/8

P(‖f̂n − fv‖C1 ≥ ε)

≥ ε× max
v=1,...,2m

d+1/8

P(V̂ 6= v)

≥ ε× 1

2md+1/8

2m
d+1/8∑
v=1

P(V̂ 6= v)

≥ ε×
(

1− I(V ;Sn) + log 2

log(2md+1/8)

)
=
C · ω
ms−1 ×

(
1− I(V ;Sn) + log 2

md+1 log(2)/8

)
,

where the second last inequality lower bounds the maximum by the average, and the last
inequality follows from Fano’s inequality (Theorem 1 in Scarlett and Cevher (2019)) and
I(V ;Sn) denotes the mutual information of V and Sn. To calculate the lower bound, in what
follows, we give bounds of the mutual information I(V ;Sn). Note that Sn = {(Xi, Yi)}ni=1

contains n independent samples, then we can tensorize the mutual information I(V ;Sn) by
a sum of n mutual information terms. By Lemma 2 in Scarlett and Cevher (2019), we know

I(V ;Sn) ≤
n∑
i=1

I(V ; (Xi, Yi)) = n× I(V ; (X,Y)).

By the KL divergence based bounds (Lemma 4 in Scarlett and Cevher (2019)), we further
have

I(V ; (X,Y)) ≤ max
v,v′∈{1,...,2md+1/8}

DKL(Pv || Pv′),

where DKL(Pv || Pv′) denotes the KL distance between distributions Pv and Pv′ , and Pv
denotes the joint distribution of (X,Y) under the model Y = fv(X,U). For simplicity, we
let pv and pv′ denote the density function of the joint distribution Pv and Pv′ . It follows

50

Non-Crossing Deep Quantile Regresion

from the definition of KL divergence that

DKL(Pv || Pv′) ≤ Dχ2(Pv || Pv′)

= E(X,Y)∼Pv′

[
{pv(X,Y)− pv′(X,Y)}2

p2v′(X,Y)

]

= E(X,Y)∼Pv′

[
{pv(Y | X)− pv′(Y | X)}2

p2v′(Y | X)

]
≤ 1

k2
E(X,Y)∼Pv′ |pv(Y | X)− pv′(Y | X)|2

≤ C1

k2
E(X,Y)∼Pv

∣∣(fv(X, ·)−1)′(Y)− (fv′(X, ·)−1)′(Y)
∣∣2

≤ 2C1

k2
E(X,Y)∼Pv

[∣∣(fv′(X, ·))′(fv′(X, ·)−1(Y))− (fv(X, ·))′(fv′(X, ·)−1(Y))
∣∣2

+
∣∣(fv(X, ·))′(fv′(X, ·)−1(Y))− [fv(X, ·)]′(fv(X, ·)−1(Y))

∣∣2]

≤ 2C1

k2
× C2 · ω

m2s
≤ C3

m2s
,

where the first inequality holds due to the relationship between KL and χ2 divergence (see,
e.g., Lemma 6 of Scarlett and Cevher 2019), the second inequality follows from Assumption
6 where the conditional density function of Y given X is lower bounded by k, and the third
inequality follows by the inverse function rule.

Combining the obtained bounds, for any estimator f̂n based on the sample Sn =
{(Xi, Yi)}ni=1, we have

sup
f∈Cs+

E‖f̂n − f‖C1 ≥
C · ω
ms−1 ×

(
1− C4 · ω · n

md+2s+1

)
.

Then by choosing m = bn1/(d+2s+1)c and proper ω, we finally obtain

inf
f̂n

sup
f∈Cs+

E‖f̂n − f‖C1 ≥ C5 × n−(s−1)/(d+2s+1).

Similarly, we can obtain

inf
f̂n

sup
f∈Cs+

E‖f̂n − f‖2C0 ≥ C6 × n−2s/(d+2s+1).

�

Proof of Theorem 11

The proof is similar to that of Theorem 10 and we omit the details here.

51

Shen, Jiao, Lin, Horowitz and Huang

Proof of Lemma 12

Let σ1(x) = max{0, x} and σ2(x) = max{0, x}2 denote the ReLU and ReQU activation
functions respectively. Let (d0, d1, . . . , dD+1) be vector of the width (number of neurons) of
each layer in the original ReQU network where d0 = d + 1 and dD+1 = 1 in our problem.

We let f
(i)
j be the function (subnetwork of the ReQU network) from X × (0, 1) ⊂ Rd+1 to

R which takes (X, ξ) = (x1, . . . , xd, xd+1) as input and outputs the j-th neuron of the i-th
layer for j = 1, . . . , di and i = 1, . . . ,D + 1.

We next construct iteratively ReLU-ReQU activated subnetworks to compute (∂
∂τ f

(i)
1 , . . . , f

(i)
di

)
for i = 1, . . . ,D + 1, i.e., the partial derivatives of the original ReQU subnetworks step by
step. We illustrate the details of the construction of the ReLU-ReQU subnetworks for the
first two layers (i = 1, 2) and the last layer (ı = D + 1) and apply induction for layers
i = 3, . . . ,D. Note that the derivative of ReQU activation function is σ′2(x) = 2σ1(x), then
when i = 1 for any j = 1, . . . , d1,

∂

∂τ
f
(1)
j =

∂

∂τ
σ2

(d+1∑
i=1

w
(1)
ji xi + b

(1)
j

)
= 2σ1

(d+1∑
i=1

w
(1)
ji xi + b

(1)
j

)
· w(1)

j,d+1, (25)

where we denote w
(1)
ji and b

(1)
j by the corresponding weights and bias in 1-th layer of the

original ReQU network and with a little bit abuse of notation we view xd+1 as the argument
τ and calculate its partial derivative. Now we intend to construct a 4 layer (2 hidden layers)
ReLU-ReQU network with width (d0, 3d1, 10d1, 2d1) which takes (X, ξ) = (x1, . . . , xd, xd+1)
as input and outputs

(f
(1)
1 , . . . , f

(1)
d1
,
∂

∂τ
f
(1)
1 , . . . ,

∂

∂τ
f
(1)
d1

) ∈ R2d1 .

Note that the output of such network contains all the quantities needed to calculated

(∂
∂τ f

(2)
1 , . . . , ∂∂τ f

(2)
d2

), and the process of construction can be continued iteratively and the
induction proceeds. In the firstly hidden layer, we can obtain 3d1 neurons

(f
(1)
1 , . . . , f

(1)
d1
, |w(1)

1,d0
|, . . . , |w(1)

d1,d0
|, σ1(

d0∑
i=1

w
(1)
1i xi + b

(1)
1), . . . , σ1(

d0∑
i=1

w
(1)
d1i
xi + b

(1)
d1

)),

52

Non-Crossing Deep Quantile Regresion

with weight matrix A
(1)
1 having 2d0d1 parameters, bias vector B

(1)
1 and activation function

vector Σ1 being

A
(1)
1 =



w
(1)
1,1 w

(1)
1,2 · · · · · · w

(1)
1,d0

w
(1)
2,1 w

(1)
2,2 · · · · · · w

(1)
2,d0

.

w
(1)
d1,1

w
(1)
d1,2

· · · · · · w
(1)
d1,d0

0 0 0 0 0
.
0 0 0 0 0

w
(1)
1,1 w

(1)
1,2 · · · · · · w

(1)
1,d0

w
(1)
2,1 w

(1)
2,2 · · · · · · w

(1)
2,d0

.

w
(1)
d1,1

w
(1)
d1,2

· · · · · · w
(1)
d1,d0



∈ R3d1×d0 ,

B
(1)
1 =



b
(1)
1

b
(1)
2

. . .

b
(1)
d1

|w(1)
1,d0
|

|w(1)
2,d0
|

. . .

|w(1)
d1,d0
|

b
(1)
1

b
(1)
2

. . .

b
(1)
d1



∈ R3d1 , Σ
(1)
1 =



σ2
. . .
σ2
σ1
. . .
σ1
σ1
. . .
σ1


,

where the first d1 activation functions of Σ1 are chosen to be σ2 and others σ1. In the second
hidden layer, we can obtain 10d1 neurons. The first 2d1 neurons of the second hidden layer
(or the third layer) are

(σ1(f
(1)
1), σ1(−f (1)1)), . . . , σ1(f

(1)
d1

), σ1(f
(1)
d1

)),

which intends to implement identity map such that (f
(1)
1 , . . . , f

(1)
d1

) can be kept and out-
putted in the next layer since identity map can be realized by x = σ1(x) − σ1(−x). The

53

Shen, Jiao, Lin, Horowitz and Huang

first 8d1 neurons of the second hidden layer (or the third layer) are

σ2(w
(1)
1,d0

+ σ1(
∑d0

i=1w
(1)
1i xi + b

(1)
1))

σ2(w
(1)
1,d0
− σ1(

∑d0
i=1w

(1)
1i xi + b

(1)
1))

σ2(−w(1)
1,d0

+ σ1(
∑d0

i=1w
(1)
1i xi + b

(1)
1)

σ2(−w(1)
1,d0
− σ1(

∑d0
i=1w

(1)
1i xi + b

(1)
1))

. . .

σ2(w
(1)
d1,d0

+ σ1(
∑d0

i=1w
(1)
d1i
xi + b

(1)
d1

))

σ2(w
(1)
d1,d0

− σ1(
∑d0

i=1w
(1)
d1i
xi + b

(1)
d1

))

σ2(−w(1)
d1,d0

+ σ1(
∑d0

i=1w
(1)
d1i
xi + b

(1)
d1

)

σ2(−w(1)
d1,d0

− σ1(
∑d0

i=1w
(1)
d1i
xi + b

(1)
d1

))


∈ R8d1 ,

which is ready for implementing the multiplications in (25) to obtain (∂
∂τ f

(1)
1 , . . . , ∂∂τ f

(1)
d1

) ∈
Rd1 since

x · y =
1

4
{(x+ y)2 − (x− y)2} =

1

4
{σ2(x+ y) + σ2(−x− y)− σ2(x− y)− σ2(−x+ y)}.

In the second hidden layer (the third layer), the bias vector is zero B
(1)
2 = (0, . . . , 0) ∈ R10d1 ,

activation functions vector

Σ
(1)
2 = (σ1, . . . , σ1︸ ︷︷ ︸

2d1 times

, σ2, . . . , σ2︸ ︷︷ ︸
8d1 times

),

and the corresponding weight matrix A
(1)
2 can be formulated correspondingly without diffi-

culty which contains 2d1 + 8d1 = 10d1 non-zero parameters. Then in the last layer, by the

identity maps and multiplication operations with weight matrix A
(1)
3 having 2d1+4d1 = 6d1

parameters, bias vector B
(1)
3 being zeros, we obtain

(f
(1)
1 , . . . , f

(1)
d1
,
∂

∂τ
f
(1)
1 , . . . ,

∂

∂τ
f
(1)
d1

) ∈ R2d1 .

Such ReLU-ReQU neural network has 2 hidden layers (4 layers), 15d1 hidden neurons,
2d0d1 + 3d1 + 10d1 + 6d1 = 2d0d1 + 19d1 parameters and its width is (d0, 3d1, 10d1, 2d1).
It worth noting that the ReLU-ReQU activation functions do not apply to the last layer
since the construction here is for a single network. When we are combining two consecutive
subnetworks into one long neural network, the ReLU-ReQU activation functions should
apply to the last layer of the first subnetwork. Hence, in the construction of the whole big
network, the last layer of the subnetwork here should output 4d1 neurons

(σ1(f
(1)
1), σ1(−f (1)1) . . . , σ1(f

(1)
d1

), σ1(−f (1)d1
),

σ1(
∂

∂τ
f
(1)
1), σ1(−

∂

∂τ
f
(1)
1) . . . , σ1(

∂

∂τ
f
(1)
d1

), σ1(−
∂

∂τ
f
(1)
d1

)) ∈ R4d1 ,

to keep (f
(1)
1 , . . . , f

(1)
d1
, ∂∂τ f

(1)
1 , . . . , ∂∂τ f

(1)
d1

) in use in the next subnetwork. Then for this

ReLU-ReQU neural network, the weight matrix A
(1)
3 has 2d1 + 8d1 = 10d1 parameters, the

54

Non-Crossing Deep Quantile Regresion

bias vector B
(1)
3 is zeros and the activation functions vector Σ

(1)
3 has all σ1 as elements.

And such ReLU-ReQU neural network has 2 hidden layers (4 layers), 17d1 hidden neurons,
2d0d1 + 3d1 + 10d1 + 10d1 = 2d0d1 + 23d1 parameters and its width is (d0, 3d1, 10d1, 4d1).

Now we consider the second step, for any j = 1, . . . , d2,

∂

∂τ
f
(2)
j =

∂

∂τ
σ2

(d1∑
i=1

w
(2)
ji f

(1)
i + b

(2)
j

)
= 2σ1

(d1∑
i=1

w
(2)
ji f

(1)
i + b

(2)
j

)
·
d1∑
i=1

w
(2)
j,i

∂

∂τ
f
(1)
i , (26)

where w
(2)
ji and b

2)
j are defined correspondingly as the weights and bias in 2-th layer of the

original ReQU network. By the previous constructed subnetwork, we can start with its
outputs

(σ1(f
(1)
1), σ1(−f (1)1) . . . , σ1(f

(1)
d1

), σ1(−f (1)d1
),

σ1(
∂

∂τ
f
(1)
1), σ1(−

∂

∂τ
f
(1)
1) . . . , σ1(

∂

∂τ
f
(1)
d1

), σ1(−
∂

∂τ
f
(1)
d1

)) ∈ R4d1 ,

as the inputs of the second subnetwork we are going to build. In the firstly hidden layer of
the second subnetwork, we can obtain 3d2 neurons

(
f
(2)
1 , . . . , f

(2)
d2
, |

d1∑
i=1

w
(2)
1,i

∂

∂τ
f
(1)
i |, . . . , |

d1∑
i=1

w
(2)
d2,i

∂

∂τ
f
(1)
i |,

σ1(

d1∑
i=1

w
(2)
1i f

(1)
i + b

(1)
1), . . . , σ1(

d1∑
i=1

w
(2)
d2i
f
(1)
i + b

(2)
d2

)
)
,

with weight matrix A
(2)
1 ∈ R4d1×3d2 having 6d1d2 non-zero parameters, bias vector B

(2)
1 ∈

R3d2 and activation functions vector Σ
(2)
1 = Σ

(1)
1 . Similarly, the second hidden layer can be

constructed to have 10d2 neurons with weight matrix A
(2)
2 ∈ R3d2×10d2 having 2d2 + 8d2 =

10d2 non-zero parameters, zero bias vector B
(2)
1 ∈ R10d2 and activation functions vector

Σ
(2)
2 = Σ

(1)
2 . The second hidden layer here serves exactly the same as that in the first

subnetwork, which intends to implement the identity map for

(f
(2)
1 , . . . , f

(2)
d2

),

and implement the multiplication in (26). Similarly, the last layer can also be constructed
as that in the first subnetwork, which outputs

(σ1(f
(2)
1), σ1(−f (2)1) . . . , σ1(f

(2)
d2

), σ1(−f (2)d2
),

σ1(
∂

∂τ
f
(2)
1), σ1(−

∂

∂τ
f
(2)
1) . . . , σ1(

∂

∂τ
f
(2)
d2

), σ1(−
∂

∂τ
f
(2)
d2

)) ∈ R4d2 ,

with the weight matrix A
(2)
3 having 2d2 +8d2 = 10d2 parameters, the bias vector B

(2)
3 being

zeros and the activation functions vector Σ
(1)
3 with elements being σ1. Then the second

ReLU-ReQU subnetwork has 2 hidden layers (4 layers), 17d2 hidden neurons, 6d1d2 +3d2 +
10d2 + 10d2 = 6d1d2 + 23d2 parameters and its width is (4d1, 3d2, 10d2, 4d2).

55

Shen, Jiao, Lin, Horowitz and Huang

Then we can continuing this process of construction. For integers k = 3, . . . ,D and for
any j = 1, . . . , dk,

∂

∂τ
f
(k)
j =

∂

∂τ
σ2

(dk−1∑
i=1

w
(k)
ji f

(k−1)
i + b

(k)
j

)

= 2σ1

(dk−1∑
i=1

w
(k)
ji f

(k−1)
i + b

(k)
j

)
·
dk−1∑
i=1

w
(k)
j,i

∂

∂τ
f
(k−1)
i ,

where w
(k)
ji and b

(k)
j are defined correspondingly as the weights and bias in k-th layer of the

original ReQU network. We can construct a ReLU-ReQU network taking

(σ1(f
(k−1)
1), σ1(−f (k−1)1) . . . , σ1(f

(k−1)
dk−1

), σ1(−f (k−1)dk−1
),

σ1(
∂

∂τ
f
(k−1)
1), σ1(−

∂

∂τ
f
(k−1)
1) . . . , σ1(

∂

∂τ
f
(k−1)
dk−1

), σ1(−
∂

∂τ
f
(k−1)
dk−1

)) ∈ R4dk−1 ,

as input, and it outputs

(σ1(f
(k)
1), σ1(−f (k)1) . . . , σ1(f

(k)
dk

), σ1(−f (k)dk
),

σ1(
∂

∂τ
f
(k)
1), σ1(−

∂

∂τ
f
(k)
1) . . . , σ1(

∂

∂τ
f
(k)
dk

), σ1(−
∂

∂τ
f
(k)
dk

)) ∈ R4dk ,

with 2 hidden layers, 17dk hidden neurons, 6dk−1dk + 23dk parameters and its width is
(4dk−1, 3dk, 10dk, 4dK).

Iterate this process until the k = D + 1 step, where the last layer of the original ReQU
network has only 1 neurons. That is for the ReQU activated neural network f ∈ Fn =
FD,W,U ,S,B, the output of the network f : X × (0, 1) → R is a scalar and the partial
derivative with respect to τ is

∂

∂τ
f =

∂

∂τ

dD+1∑
i=1

w
(D)
i f

(D)
i + b(D) =

dD+1∑
i=1

w
(D)
i

∂

∂τ
f
(D)
i ,

where w
(D)
i and b(D) are the weights and bias parameter in the last layer of the ReQU

network. The the constructed D + 1-th subnetwork taking

(σ1(f
(D)
1), σ1(−f (D)1) . . . , σ1(f

(D)
dD

), σ1(−f (D)dD
),

σ1(
∂

∂τ
f
(D)
1), σ1(−

∂

∂τ
f
(D)
1) . . . , σ1(

∂

∂τ
f
(D)
dD

), σ1(−
∂

∂τ
f
(D)
dD

)) ∈ R4dD ,

as input and it outputs ∂
∂τ f

(D+1) = ∂
∂τ f which is the partial derivative of the whole ReQU

network with respect to its last argument τ or xd0 = xd+1 here. The subnetwork should
have 2 hidden layers width (4dD, 2, 8, 1) with 11 hidden neurons, 4dD + 2 + 16 = 4dD + 18
non-zero parameters.

Lastly, we combing all the D + 1 subnetworks in order to form a big ReLU-ReQU
network which takes (X, ξ) = (x1, . . . , xd+1) ∈ Rd+1 as input and outputs ∂

∂τ f for f ∈ Fn =
FD,W,U ,S,B,B′ . Recall that here D,W,U ,S are the depth, width, number of neurons and

56

Non-Crossing Deep Quantile Regresion

number of parameters of the ReQU network respectively, and we have U =
∑D+1

i=0 di and

S =
∑D

i=0 didi+1+di+1. Then the big network has 3D+3 hidden layers (totally 3D+5 layers),

d0+
∑D

i=1 17di+11 ≤ 17U neurons, 2d0d1+23d1+
∑D

i=1(6didi+1+23di+1)+4dD+18 ≤ 23S
parameters and its width is 10 max{d1, . . . , dD} = 10W. This completes the proof. �

Proof of Lemma 13

Our proof has two parts. In the first part, we follow the idea of the proof of Theorem 6 in
Bartlett et al. (2019) to prove a somewhat stronger result, where we give the upper bound
of the Pseudo dimension of F in terms of the depth, size and number of neurons of the
network. Instead of the VC dimension of sign(F) given in Bartlett et al. (2019), our Pseudo
dimension bound is stronger since VCdim(sign(F)) ≤ Pdim(F). In the second part, based
on Theorem 2.2 in Goldberg and Jerrum (1995), we also follow and improve the result in
Theorem 8 of Bartlett et al. (2019) to give an upper bound of the Pseudo dimension of F
in terms of the size and number of neurons of the network.

Part I

Let Z denote the domain of the functions f ∈ F and let t ∈ R, we consider a new class of
functions

F̃ := {f̃(z, t) = sign(f(z)− t) : f ∈ F}.

Then it is clear that Pdim(F) ≤ VCdim(F̃) and we next bound the VC dimension of F̃ .
Recall that the the total number of parameters (weights and biases) in the neural network
implementing functions in F is S, we let θ ∈ RS denote the parameters vector of the network
f(·, θ) : Z → R implemented in F . And here we intend to derive a bound for

K(m) :=
∣∣∣{(sign(f(z1, θ)− t1), . . . , sign(f(zm, θ)− tm)) : θ ∈ RS}

∣∣∣
which uniformly hold for all choice of {zi}mi=1 and {ti}mi=1. Note that the maximum of K(m)
over all all choice of {zi}mi=1 and {ti}mi=1 is just the growth function of F̃ . To give a uniform
bound of K(m), we use the Theorem 8.3 in Anthony and Bartlett (1999) as a main tool to
deal with the analysis.

Lemma 18 (Theorem 8.3 in Anthony and Bartlett (1999)) Let p1, . . . , pm be poly-
nomials in n variables of degree at most d. If n ≤ m, define

K := |{(sign(p1(x), . . . , sign(pm(x))) : x ∈ Rn)}|,

i.e. K is the number of possible sign vectors given by the polynomials. Then K ≤ 2(2emd/n)n.

Now if we can find a partition P = {P1, . . . , PN} of the parameter domain RS such that
within each region Pi, the functions f(zj , ·) are all fixed polynomials of bounded degree,
then K(m) can be bounded via the following sum

K(m) ≤
N∑
i=1

∣∣∣{(sign(f(z1, θ)− t1), . . . , sign(f(zm, θ)− tm)) : θ ∈ Pi}
∣∣∣, (27)

57

Shen, Jiao, Lin, Horowitz and Huang

and each term in this sum can be bounded via Lemma 18. Next, we construct the partition
follows the same way as in Bartlett et al. (2019) iteratively layer by layer. We define the a
sequence of successive refinements P1, . . . ,PD satisfying the following properties:

1. The cardinality |P1| = 1 and for each n ∈ {1, . . . ,D},

|Pn+1|
|Pn|

≤ 2
(2emkn(1 + (n− 1)2n−1)

Sn

)Sn
,

where kn denotes the number of neurons in the n-th layer and Sn denotes the total
number of parameters (weights and biases) at the inputs to units in all the layers up
to layer n.

2. For each n ∈ {1, . . . ,D}, each element of P of Pn, each j ∈ {1, . . . ,m}, and each unit u
in the n-th layer, when θ varies in P , the net input to u is a fixed polynomial function
in Sn variables of θ, of total degree no more than 1 + (n − 1)2n−1 (this polynomial
may depend on P, j and u.)

One can define P1 = RS , and it can be verified that P1 satisfies property 2 above. Note that
in our case, for fixed zj and tj and any subset P ⊂ RS , f(zj , θ) − tj is a polynomial with
respect to θ with degree the same as that of f(zj , θ), which is no more than 1+(D−1)2D−1.
Then the construction of P1, . . . ,PD and its verification for properties 1 and 2 can follow
the same way in Bartlett et al. (2019). Finally we obtain a partition PD of RS such that
for P ∈ PD, the network output in response to any zj is a fixed polynomial of θ ∈ P of
degree no more than 1 + (D− 1)2D−1 (since the last node just outputs its input). Then by
Lemma 18∣∣∣{(sign(f(z1, θ)− t1), . . . , sign(f(zm, θ)− tm)) : θ ∈ P}

∣∣∣ ≤ 2
(2em(1 + (D − 1)2D−1)

SD

)SD
.

Besides, by property 1 we have

|PD| ≤ ΠD−∞i=1 2
(2emki(1 + (i− 1)2i−1)

Si

)Si
.

Then using (27), and since the sample z1, . . . , Zm are arbitrarily chosen, we have

K(m) ≤ ΠDi=12
(2emki(1 + (i− 1)2i−1)

Si

)Si
≤ 2D

(2em
∑
ki(1 + (i− 1)2i−1)∑

Si

)∑Si
≤
(4em(1 + (D − 1)2D−1)

∑
ki∑

Si

)∑Si
≤
(

4em(1 + (D − 1)2D−1)
)∑Si

,

where the second inequality follows from weighted arithmetic and geometric means inequal-
ity, the third holds since D ≤

∑
Si and the last holds since

∑
ki ≤

∑
Si. Since K(m) is

the growth function of F̃ , we have

2Pdim(F) ≤ 2VCdim(F̃) ≤ K(VCdim(F̃)) ≤ 2D
(2emR ·VCdim(F̃)∑

Si

)∑Si
58

Non-Crossing Deep Quantile Regresion

where R :=
∑D

i=1 ki(1 + (i− 1)2i−1) ≤ U + U(D− 1)2D−1. Since U > 0 and 2eR ≥ 16, then
by Lemma 16 in Bartlett et al. (2019) we have

Pdim(F) ≤ D + (
n∑
i=1

Si) log2(4eR log2(2eR)).

Note that
∑D

i=1 Si ≤ DS and log2(R) ≤ log2(U{1 + (D − 1)2D−1}) ≤ log2(U) + 2D, then
we have

Pdim(F) ≤ D +DS(4D + 2 log2 U + 6) ≤ 7DS(D + log2 U))

for some universal constant c > 0.

Part II

We first list Theorem 2.2 in Goldberg and Jerrum (1995).

Lemma 19 (Theorem 2.2 in Goldberg and Jerrum (1995)) Let k, n be positive in-
tegers and f : Rn × Rk → {0, 1} be a function that can be expressed as a Boolean formula
containing s distinct atomic predicates where each atomic predicate is a polynomial inequal-
ity or equality in k + n variables of degree at most d. Let F = {f(·, w) : w ∈ Rk}. Then
VCdim(F) ≤ 2k log2(8eds).

Suppose the functions in f ∈ F are implemented by ReLU-REQU neural networks with S
parameters (weights and bias) and U neurons. The activation function of f ∈ F is piecewise
polynomial of degree at most 2 with 2 pieces. As in Part I of the proof, let Z denote the
domain of the functions f ∈ F and let t ∈ R, we consider the class of functions

F̃ := {f̃(z, t) = sign(f(z)− t) : f ∈ F}.

Since the outputs of functions in F̃ are 0 or 1, to apply above lemma, we intend to show that
the function in F̃ as Boolean functions consisting of no more than 2 · 3U atomic predicates
with each being a polynomial inequality of degree at most 3 · 2U . We topologically sort the
neurons of the network since the neural network graph is acyclic. Let ui be the i-th neuron
in the topological ordering for i = 1, . . . ,U +1. Note that the input to each neuron u comes
from one of the 2 pieces of the activation function ReLU or ReQU, then we call ”ui is in
the state j” if the input of ui lies in the j-th piece for i ∈ {1, . . . ,U + 1} and j ∈ {1, 2}.
For u1 and j ∈ {1, 2}, the predicate “u1 is in statej” is a single atomic predicate thus the
state of u1 can be expressed as a function of 2 atomic predicates. Given that u1 is in a
certain state, the state of u2 can be decided by 2 atomic predicates, which are polynomial
inequalities of degree at most 2 × 2 + 1. Hence the state of u2 can be determined using
2 + 22 atomic predicates, each of which is a polynomial of degree no more than 2 × 2 + 1.
By induction, the state of ui is decided using 2(1 + 2)i−1 atomic predicates, each of which
is a polynomial of degree at most 2i−1 +

∑i−1
j=0 2j . Then the state of all neurons can be

decided using no more than 3U+1 atomic predicates, each of which is a polynomial of degree
at most 2U +

∑U
j=0 2j ≤ 3 · 2U . Then by Lemma 19, an upper bound for VCdim(F̃) is

2S log2(8e · 3U+1 · 3 · 2U) = 2S[log2(6
U) + log2(72e)] ≤ 22SU . Since Pdim(F) ≤ VCdim(F̃),

then the upper bounds hold also for Pdim(F),

Pdim(F) ≤ 22SU ,

which completes the proof. �

59

Shen, Jiao, Lin, Horowitz and Huang

Proof of Theorem 14

Recall that the stochastic error is

sup
f∈Fn

∣∣∣[Rξλ(f)−Rξλ(f0)]− [Rξn,λ(f)−Rξn,λ(f0)]
∣∣∣. (28)

Since Rξλ(f) = Rξ(f) + λκ(f), then the stochastic error can be further bounded by

sup
f∈Fn

∣∣∣[Rξλ(f)−Rξλ(f0)]− [Rξn,λ(f)−Rξn,λ(f0)]
∣∣∣

≤ sup
f∈Fn

∣∣∣[Rξ(f)−Rξ(f0)]− [Rξn(f)−Rξn(f0)]
∣∣∣ (29)

+ λ sup
f∈Fn

∣∣∣[κ(f)− κ(f0)]− [κn(f)− κn(f0)]
∣∣∣. (30)

We firstly bound the first item (29) of empirical process supf∈Fn |[R
ξ(f)−Rξ(f0)]−[Rξn(f)−

Rξn(f0)]|, and the second one can be dealt with similarly.
We consider the difference of the loss items in the empirical process. Define

L(f, Zi) := ρξi(Yi − f(Xi, ξi))− ρξi(Yi − f0(Xi, ξi)),

for sample Zi = (Xi, Yi, ξi), i = 1, . . . , n, and f ∈ Fn. By the Lipschitz property of the
check loss ρξ and the assumption that f0 and functions in Fn are uniformly bounded by B,
we have L(f, Zi) ∈ [−B,B].

For any given ε > 0, let f1, f2, . . . , fN be the anchor points of an ε-covering for the
function class Fn, and we denote N := Nn(ε,Fn, ‖ · ‖∞) as the covering number of Fn with
radius ε under the norm ‖ · ‖∞. By definition, for any f ∈ Fn, there exists an anchor fj
for j ∈ {1, . . . ,N} such that ‖fj − f‖∞ ≤ ε. The Lipschitz property of ρξ them implies

|L(f, Zi)−L(fj , Zi)| ≤ ε, |Rξ(f)−Rξ(fj)| ≤ ε and |Rξn(f)−Rξ(fj)n| ≤ ε. Then triangular
inequality gives∣∣[Rξ(f)−Rξ(f)]− [Rξn(f)−Rξn(f0)]

∣∣ ≤ ∣∣[Rξ(fj)−Rξ(f0)]− [Rξn(fj)−Rξn(f0)]
∣∣+ 2ε.

Then, for any t > 0 we have,

P
(

sup
f∈Fn

∣∣[Rξ(f)−Rξ(f)]− [Rξn(f)−Rξn(f0)]
∣∣ ≥ t+ 2ε

)
≤P
(
∃j ∈ {1, . . . ,N} : |[Rξ(fj)−Rξ(f0)]− [Rξn(fj)−Rξn(f0)]

∣∣ ≥ t)
≤Nn(ε,Fn, ‖ · ‖∞) max

j∈{1,...,N}
P
(
|[Rξ(fj)−Rξ(f0)]− [Rξn(fj)−Rξn(f0)]

∣∣ ≥ t)
= Nn(ε,Fn, ‖ · ‖∞) max

j∈{1,...,N}
P
(
|
n∑
i=1

L(fj , Zi)− nE[L(fj , Z)])| ≥ nt
)

≤2Nn(ε,Fn, ‖ · ‖∞) exp

(
− nt

2

2B2

)
, (31)

where the last inequality comes from the Hoeffding’s inequality.

60

Non-Crossing Deep Quantile Regresion

Given any δ > 0, we let ε = 1/n and t =
√

2B
√

log(2Nn(1/n,Fn, ‖ · ‖∞)/δ)/n. Then
the right-hand side of (31) equals to δ, we have

P
(

sup
f∈Fn

∣∣[Rξ(f)−Rξ(f)]− [Rξn(f)−Rξn(f0)]
∣∣ ≥ t+ 2ε

)
≤ δ.

Equivalently, with probability at least 1− δ we have

sup
f∈Fn

∣∣[Rξ(f)−Rξ(f)]− [Rξn(f)−Rξn(f0)]
∣∣ ≤ t+ 2ε

≤
√

2B
√

log 2Nn(1/n,Fn, ‖ · ‖∞)√
n

+

√
2B
√

log(1/δ)√
n

+
2

n
,

where the inequality follows from the fact that
√
c+ d ≤

√
c +
√
d for any c, d ≥ 0. Fur-

thermore, we know from Lemma 25 in Appenthat with probability at least 1− δ

sup
f∈Fn

∣∣[Rξ(f)−Rξ(f)]− [Rξn(f)−Rξn(f0)]
∣∣

≤
√

2B√
n

(
C

√
log

(
en2B

Pdim(Fn)

)Pdim(Fn)
+
√

log(1/δ)

)
+

2

n

≤
√

2B√
n

(
C
√

Pdim(Fn) log n+
√

log(1/δ)

)
+

2

n
, (32)

for n ≥ Pdim(Fn), where Pdim(Fn) is the pseudo-dimension of Fn stated in Definition 23
in Appendix B and C > 0 is a universal constant.

Following similar arguments as above, we can get the upper bound for the other empirical
process. Given any δ > 0, we can obtain with probability at least 1− δ

λ sup
f∈Fn

∣∣∣[κ(f)− κ(f0)]− [κn(f)− κn(f0)]
∣∣∣ ≤ √2λB′√

n

(
C
√

Pdim(F ′n) log n+
√

log(1/δ)

)
+

2

n

(33)

for n ≥ Pdim(F ′n) where F ′n is the function class of derivatives of ReQU networks in Fn.
Next, combining (29), (30), (32) and (33) we know that for any δ > 0, with probability at
least 1− δ it holds

sup
f∈Fn

∣∣∣[Rξλ(f)−Rξλ(f0)]− [Rξn,λ(f)−Rξn,λ(f0)]
∣∣∣

≤
√

2√
n

(
C
√

log(n)[λB′
√

Pdim(F ′n) + B
√

Pdim(Fn)] + 2(B + λB′)
√

log(2/δ)

)
+

4

n
(34)

for n ≥ max{Pdim(Fn),Pdim(F ′n)} and some universal constant c0 > 0. By Lemma 13, for
the function class Fn implemented by ReLU-ReQU activated multilayer perceptrons with
depth no more than D, width no more than W, number of neurons (nodes) no more than
U and size or number of parameters (weights and bias) no more than S, we have

Pdim(Fn) ≤ min{7DS(D + log2 U), 22US},

61

Shen, Jiao, Lin, Horowitz and Huang

and by Lemma 12, for any function f ∈ Fn, its partial derivative ∂
∂τ f can be implemented

by a ReLU-ReQU activated multilayer perceptron with depth 3D+ 3, width 10W, number
of neurons 17U , number of parameters 23S and bound B′. Then

Pdim(F ′n) ≤ min{5796DS(D + log2 U), 8602US}.

Finally, for any δ > 0, with probability at least 1− δ

sup
f∈Fn

∣∣∣[Rξλ(f)−Rξλ(f0)]− [Rξn,λ(f)−Rξn,λ(f0)]
∣∣∣

≤ c1
(
B + λB′

)√min{5796DS(D + log2 U), 8602US} log(n)

n
+

9(B + λB′)√
n

√
log(2/δ)

)
,

and

E

[
sup
f∈Fn

∣∣∣[Rξλ(f)−Rξλ(f0)]− [Rξn,λ(f)−Rξn,λ(f0)]
∣∣∣]

≤ c2
(
B + λB′

)√min{5796DS(D + log2 U), 8602US} log(n)

n
,

for n ≥ max{Pdim(Fn),Pdim(F ′n)} and some universal constants c1, c2 > 0. This completes
the proof. �

Proof of Theorem 15

The idea of the proof is to construct a ReQU network that computes a multivariate polyno-
mial with degree N with no error. We begin our proof with consider the simple case, which
is to construct a proper ReQU network to represent a univariate polynomial with no error.
Recall that to approximate the multiplication operator is simple and straightforward, we
can leverage Horner’s method or Qin Jiushao’s algorithm in China to construct such net-
works. Suppose f(x) = a0 + a1x+ · · ·+ aNx

N is a univariate polynomial of degree N , then
it can be written as

f(x) = a0 + x(a1 + x(a2 + x(a3 + · · ·+ x(aN−1 + xaN)))).

We can illiterately calculate a sequence of intermediate variables b1, . . . , bN by

bk =
{ aN−1 + xaN , k = 1,
aN−k + xbN−1, k = 2, . . . , N.

Then we can obtain bN = f(x). By the basic approximation property we know that to
calculate b1 needs a ReQU network with 1 hidden layer and 4 hidden neurons, and to
calculate b2 needs a ReQU network with 3 hidden layer, 2 × 4 + 2 − 1 hidden neurons.
By induction, to calculate bN = f(x) needs a ReQU network with 2N − 1 hidden layer,
N × 4 +N − 1 = 5N − 1 hidden neurons, 8N parameters(weights and bias), and its width
equals to 4.

Apart from the construction based on the Horner’s method, another construction is
shown in Theorem 2.2 of Li et al. (2019a), where the constructed ReQU network has

62

Non-Crossing Deep Quantile Regresion

blog2Nc+1 hidden layers, 8N −2 neurons and no more than 61N parameters (weights and
bias).

Now we consider constructing ReQU networks to compute multivariate polynomial f
with total degree N on Rd. For any d ∈ N+ and N ∈ N0, let

fdN (x1, . . . , xd) =

N∑
i1+···+id=0

ai1,i2,...,idx
i1
1 x

i2
2 · · ·x

id
d ,

denote the polynomial with total degreeN of d variables, where i1, i2, . . . , id are non-negative
integers, {ai1,i2,...,id : i1 + · · · + id ≤ N} are coefficients in R. Note that the multivariate
polynomial fdN can be written as

fdN (x1, . . . , xd) =

N∑
i1=0

(N−i1∑
i2+···+id=0

ai1,i2...,idx
i2
2 · · ·x

id
d

)
xi11 ,

and we can view fdN as a univariate polynomial of x1 with degree N if x2, . . . , xd are given

and for each i1 ∈ {0, . . . , N} the (d − 1)-variate polynomial
∑N−i1

i2+···+id=0 ai1,i2...,idx
i2
2 · · ·x

id
d

with degree no more than N can be computed by a proper ReQU network. This reminds us
the construction of ReQU network for fdN can be implemented iteratively via composition
of f1N , f

2
N , . . . , f

d
N by induction.

By Horner’s method we have constructed a ReQU network with 2N − 1 hidden layers,
5N − 1 hidden neurons and 8N parameters to exactly compute f1N . Now we start to show
f2N can be computed by proper ReQU networks. We can write f2N as

f2N (x1, x2) =
N∑

i+j=0

aijx
i
1x
j
2 =

N∑
i=0

(N−i∑
j=0

aijx
j
2

)
xi1.

Note that for i ∈ {0, . . . , N}, the the degree of polynomial
∑N−i

j=0 aijx
j
2 is N − i which is

less than N . But we can still view it as a polynomial with degree N by padding (adding
zero terms) such that

∑N−i
j=0 aijx

j
2 =

∑N
j=0 a

∗
ijx

j
2 where a∗ij = aij if i + j ≤ N and a∗ij = 0

if i + j > N . In such a way, for each i ∈ {0, . . . , N} the polynomial
∑N−i

j=0 aijx
j
2 can be

computed by a ReQU network with 2N − 1 hidden layers, 5N − 1 hidden neurons, 8N
parameters and its width equal to 4. Besides, for each i ∈ {0, . . . , N}, the monomial xi can
also be computed by a ReQU network with 2N−1 hidden layers, 5N−1 hidden neurons, 8N
parameters and its width equal to 4, in whose implementation the identity maps are used
after the (2i− 1)-th hidden layer. Now we parallel these two sub networks to get a ReQU
network which takes x1 and x2 as input and outputs (

∑N−i
j=0 aijx

j
2)x

i with width 8, hidden
layers 2N−1, number of neurons 2×(5N−1) and size 2×8N . Since for each i ∈ {0, . . . , N},
such paralleled ReQU network can be constructed, then with straightforward paralleling of
N such ReQU networks, we obtain a ReQU network exactly computes f2N with width 8N ,
hidden layers 2N − 1, number of neurons 2 × (5N − 1) × N and number of parameters
2× 8N ×N = 16N2.

Similarly for polynomial f3N of 3 variables, we can write f3N as

f3N (x1, x2, x3) =
N∑

i+j+k=0

aijkx
i
1x
j
2x
k
3 =

N∑
i=0

(N−i∑
j+k=0

aijkx
j
2x
k
3

)
xi1.

63

Shen, Jiao, Lin, Horowitz and Huang

By our previous argument, for each i ∈ {0, . . . , N}, there exists a ReQU network which

takes (x1, x2, x3) as input and outputs
(∑N−i

j+k=0 aijkx
j
2x
k
3

)
xi1 with width 8N + 4, hidden

layers 2N − 1, number of neurons 2N(5N − 1) + (5N − 1) and parameters 16N2 + 8N .
And by paralleling N such subnetworks, we obtain a ReQU network that exactly computes
f3N with width (8N + 4) × N = 8N2 + 4N , hidden layers 2N − 1, number. of neurons
N(2N(5N − 1) + (5N − 1)) = 2N2(5N − 1) + N(5N − 1) and number of parameters
16N3 + 8N2.

Continuing this process, we can construct ReQU networks exactly compute polynomials
of any d variables with total degree N . With a little bit abuse of notations, we let Wk,
Dk, Uk and Sk denote the width, number of hidden layers, number of neurons and number
of parameters (weights and bias) respectively of the ReQU network computing fkN for k =
1, 2, 3, We have known that

D1 = 2N − 1 W1 = 4 U1 = 5N − 1 S1 = 8N

Besides, based on the iterate procedure of the network construction, by induction we can
see that for k = 2, 3, 4, . . . the following equations hold,

Dk =2N − 1,

Wk =N × (Wk−1 +W1),

Uk =N × (Uk−1 + U1),
Sk =N × (Sk−1 + S1).

Then based on the values of D1,W1,U1,S1 and the recursion formula, we have for k =
2, 3, 4, . . .

Dk = 2N − 1,

Wk = 8Nk−1 + 4
Nk−1 −N
N − 1

≤ 12Nk−1,

Uk = N × (Uk−1 + U1) = 2(5N − 1)Nk−1 + (5N − 1)
Nk−1 −N
N − 1

≤ 15Nk,

Sk = N × (Sk−1 + S1) = 16Nk + 8N
Nk−1 −N
N − 1

≤ 24Nk.

This completes our proof. �

Proof of Theorem 16

The proof is straightforward by and leveraging the approximation power of multivariate
polynomials since Theorem 15 told us any multivariate polynomial can be represented by
proper ReQU networks. The theories for polynomial approximation have been extensively
studies on various spaces of smooth functions. We refer to Bagby et al. (2002) for the
polynomial approximation on smooth functions in our proof.

Lemma 20 (Theorem 2 in Bagby et al. (2002)) Let f be a function of compact sup-
port on Rd of class Cs where s ∈ N+ and let K be a compact subset of Rd which contains

64

Non-Crossing Deep Quantile Regresion

the support of f . Then for each nonnegative integer N there is a polynomial pN of degree
at most N on Rd with the following property: for each multi-index α with |α|1 ≤ min{s,N}
we have

sup
K
|Dα(f − pN)| ≤ C

N s−|α|1

∑
|α|1≤s

sup
K
|Dαf |,

where C is a positive constant depending only on d, s and K.

The proof of Lemma 20 can be found in Bagby et al. (2002) based on the Whitney extension
theorem (Theorem 2.3.6 in Hörmander (2015)). To use Lemma 20, we need to find a ReQU
network to compute the pN for each N ∈ N+. By Theorem 15, we know that any pN of
d + 1 variables can be computed by a ReQU network with 2N − 1 hidden layer, no more
than 15Nd+1 neurons, no more than 24Nd+1 parameters and width no more than 12Nd.
This completes the proof. By examining the proof of Theorem 1 in Bagby et al. (2002), the
dependence of the constant C in Lemma 20 on the d, s and K can be detailed. �

Proof of Corollary 17

Recall that

inf
f∈Fn

[
R(f)−R(f0) + λ{κ(f)− κ(f0)}

]
= inf
f∈Fn

[
EX,Y,ξ

{
ρξ(Y − f(X, ξ))− ρξ(Y − f0(X, ξ))

+ λ(max{− ∂

∂τ
f(X, ξ), 0} −max{− ∂

∂τ
f0(X, ξ), 0})

}]

≤ inf
f∈Fn

[
EX,Y,ξ

{
|f(X, ξ)− f0(X, ξ)|+ λ| ∂

∂τ
f(X, ξ)− ∂

∂τ
f0(X, ξ)|

}]
.

By Theorem 16, for each N ∈ N+, there exists a ReQU network φN ∈ Fn with 2N − 1
hidden layer, no more than 15Nd+1 neurons, no more than 24Nd+1 parameters and width
no more than 12Nd such that for each multi-index α ∈ Nd0 with |α|1 ≤ min{s,N} we have

sup
X×(0,1)

|Dα(f − φN)| ≤ C(s, d,X)×N−(s−|α|1)‖f‖Cs ,

where C(s, d,X) is a positive constant depending only on d, s and the diameter of X ×(0, 1).
This implies

sup
X×(0,1)

|f − φN | ≤ C(s, d,X)×N−s‖f‖Cs ,

and

sup
X×(0,1)

∣∣∣ ∂
∂τ

(f − φN)
∣∣∣ ≤ C(s, d,X)×N−(s−1)‖f‖Cs .

65

Shen, Jiao, Lin, Horowitz and Huang

Combine above two uniform bounds, we have

inf
f∈Fn

[
R(f)−R(f0) + λ{κ(f)− κ(f0)}

]
≤
[
|EX,ξ

{
φN (X, ξ)− f0(X, ξ)|+ λ| ∂

∂τ
φN (X, ξ)− ∂

∂τ
f0(X, ξ)|

}]
≤C(s, d,X)×N−s‖f‖Cs + λC(s, d,X)×N−(s−1)‖f‖Cs

≤C(s, d,X)(1 + λ)N−(s−1)‖f‖Cs ,

which completes the proof. �

Appendix B. Definitions and Supporting Lemmas

B.1 Definitions

The following definitions are used in the proofs.

Definition 21 (Covering number) Let F be a class of function from X to R. For a
given sequence x = (x1, . . . , xn) ∈ X n, let Fn|x = {(f(x1), . . . , f(xn) : f ∈ Fn} be the subset
of Rn. For a positive number δ, let N (δ,Fn|x, ‖ · ‖∞) be the covering number of Fn|x under
the norm ‖ · ‖∞ with radius δ. Define the uniform covering number Nn(δ, ‖ · ‖∞,Fn) to be
the maximum over all x ∈ X of the covering number N (δ,Fn|x, ‖ · ‖∞), i.e.,

Nn(δ,Fn, ‖ · ‖∞) = max{N (δ,Fn|x, ‖ · ‖∞) : x ∈ X n}. (35)

Definition 22 (Shattering) Let F be a family of functions from a set Z to R. A set
{z1, . . . , Zn} ⊂ Z is said to be shattered by F , if there exists t1, . . . , tn ∈ R such that

∣∣∣{[sgn(f(z1)− t1)
. . .
sgn(f(zn)− tn)

]
: f ∈ F

}∣∣∣ = 2n,

where rmsgn is the sign function returns +1 or −1 and | · | denotes the cardinality of a set.
When they exist, the threshold values t1, . . . , tn are said to witness the shattering.

Definition 23 (Pseudo dimension) Let F be a family of functions mapping from Z to
R. Then, the pseudo dimension of F , denoted by Pdim(F), is the size of the largest set
shattered by F .

Definition 24 (VC dimension) Let F be a family of functions mapping from Z to R.
Then, the Vapnik–Chervonenkis (VC) dimension of F , denoted by VCdim(F), is the size
of the largest set shattered by F with all threshold values being zero, i.e., t1 = . . . ,= tn = 0.

B.2 Supporting Lemmas

The following lemma gives an upper bound for the covering number in terms of the pseudo-
dimension.

66

Non-Crossing Deep Quantile Regresion

Lemma 25 (Theorem 12.2 in Anthony and Bartlett (1999)) Let F be a set of real
functions from domain Z to the bounded interval [0, B]. Let δ > 0 and suppose that F has
finite pseudo-dimension Pdim(F) then

Nn(δ,F , ‖ · ‖∞) ≤
Pdim(F)∑
i=1

(
n

i

)(B
δ

)i
,

which is less than {enB/(δPdim(F))}Pdim(F) for n ≥ Pdim(F).

67

Shen, Jiao, Lin, Horowitz and Huang

Appendix C. Additional simulation results

In this section, we include additional simulation results for the “Linear” model.

Table 11: Data is generated from the “Linear” model with training sample size n = 512, 2048
and the number of replications R = 100. The averaged L1 and L2

2 test errors with the
corresponding standard deviation (in parentheses) are reported for the estimators trained
by different methods.

Sample size n = 512 n = 2048

τ Method L1 L2
2 L1 L2

2

0.05

DQRP 0.395(0.219) 0.283(0.324) 0.282(0.165) 0.138(0.155)
DQRP* 0.338(0.157) 0.174(0.153) 0.263(0.132) 0.106(0.099)

DQR 0.316(0.143) 0.141(0.134) 0.208(0.076) 0.059(0.038)
Kernel QR 0.277(0.213) 0.143(0.227) 0.149(0.167) 0.056(0.172)
QR Forest 0.740(0.176) 1.479(1.828) 0.715(0.066) 1.250(1.048)

0.25

DQRP 0.126(0.051) 0.027(0.022) 0.084(0.037) 0.012(0.009)
DQRP* 0.143(0.056) 0.033(0.023) 0.097(0.053) 0.015(0.015)

DQR 0.128(0.054) 0.023(0.021) 0.093(0.034) 0.011(0.008)
Kernel QR 0.149(0.058) 0.037(0.026) 0.077(0.030) 0.010(0.008)
QR Forest 0.278(0.049) 0.125(0.043) 0.279(0.021) 0.127(0.019)

0.5

DQRP 0.118(0.054) 0.023(0.021) 0.084(0.043) 0.012(0.012)
DQRP* 0.125(0.054) 0.025(0.018) 0.092(0.050) 0.013(0.014)

DQR 0.114(0.048) 0.018(0.015) 0.082(0.028) 0.009(0.005)
Kernel QR 0.131(0.042) 0.029(0.018) 0.065(0.021) 0.007(0.004)
QR Forest 0.232(0.034) 0.087(0.025) 0.230(0.016) 0.085(0.011)

0.75

DQRP 0.179(0.099) 0.052(0.057) 0.113(0.075) 0.023(0.033)
DQRP* 0.150(0.066) 0.035(0.027) 0.117(0.063) 0.022(0.021)

DQR 0.129(0.051) 0.023(0.017) 0.094(0.033) 0.012(0.008)
Kernel QR 0.146(0.044) 0.035(0.020) 0.072(0.027) 0.009(0.007)
QR Forest 0.275(0.043) 0.124(0.041) 0.279(0.022) 0.127(0.020)

0.95

DQRP 0.386(0.211) 0.224(0.219) 0.252(0.151) 0.101(0.122)
DQRP* 0.403(0.182) 0.217(0.164) 0.222(0.146) 0.082(0.104)

DQR 0.305(0.142) 0.132(0.111) 0.216(0.075) 0.068(0.045)
Kernel QR 0.272(0.200) 0.134(0.204) 0.147(0.155) 0.051(0.149)
QR Forest 0.705(0.123) 0.997(0.500) 0.731(0.083) 1.438(1.531)

68

Non-Crossing Deep Quantile Regresion

Table 12: Data is generated from the multivariate “Linear” model with training sample size
n = 512, 2048 and the number of replications R = 100. The averaged L1 and L2

2 test errors
with the corresponding standard deviation (in parentheses) are reported for the estimators
trained by different methods.

Sample size n = 512 n = 2048

τ Method L1 L2
2 L1 L2

2

0.05

DQRP 0.971(0.184) 1.377(0.433) 0.681(0.148) 0.660(0.229)
DQRP* 0.897(0.173) 1.064(0.349) 0.681(0.155) 0.629(0.242)

DQR 0.703(0.129) 0.793(0.279) 0.609(0.094) 0.617(0.181)
Kernel QR 1.095(0.101) 1.610(0.251) 0.908(0.065) 1.019(0.124)
QR Forest 0.939(0.100) 1.355(0.278) 0.648(0.052) 0.679(0.112)

0.25

DQRP 0.537(0.077) 0.551(0.152) 0.328(0.047) 0.204(0.053)
DQRP* 0.411(0.072) 0.296(0.114) 0.325(0.054) 0.182(0.055)

DQR 0.475(0.071) 0.385(0.111) 0.408(0.053) 0.290(0.069)
Kernel QR 0.586(0.044) 0.580(0.090) 0.367(0.023) 0.230(0.028)
QR Forest 0.739(0.037) 0.847(0.081) 0.514(0.018) 0.413(0.028)

0.5

DQRP 0.531(0.071) 0.523(0.137) 0.309(0.044) 0.178(0.047)
DQRP* 0.381(0.060) 0.252(0.086) 0.290(0.047) 0.144(0.043)

DQR 0.442(0.052) 0.337(0.078) 0.367(0.045) 0.239(0.055)
Kernel QR 0.557(0.044) 0.534(0.089) 0.350(0.022) 0.210(0.026)
QR Forest 0.658(0.031) 0.680(0.060) 0.458(0.016) 0.331(0.022)

0.75

DQRP 0.595(0.105) 0.653(0.244) 0.382(0.089) 0.262(0.112)
DQRP* 0.389(0.069) 0.256(0.095) 0.306(0.072) 0.159(0.070)

DQR 0.466(0.054) 0.371(0.082) 0.376(0.050) 0.258(0.070)
Kernel QR 0.584(0.047) 0.580(0.095) 0.366(0.021) 0.227(0.026)
QR Forest 0.741(0.040) 0.848(0.088) 0.515(0.019) 0.414(0.029)

0.95

DQRP 0.971(0.213) 1.419(0.480) 0.635(0.163) 0.596(0.256)
DQRP* 0.838(0.173) 0.918(0.326) 0.774(0.175) 0.744(0.279)

DQR 0.635(0.120) 0.652(0.229) 0.485(0.081) 0.418(0.136)
Kernel QR 1.088(0.098) 1.596(0.246) 0.883(0.073) 0.975(0.132)
QR Forest 0.962(0.117) 1.441(0.434) 0.649(0.049) 0.683(0.109)

69

Shen, Jiao, Lin, Horowitz and Huang

Figure 13: The fitted quantile curves by different methods under the univariate “Linear”
model when n = 512, 2048. The training data is depicted as grey dots.The target quantile
functions at the quantile levels τ =0.05 (blue), 0.25 (orange), 0.5 (green), 0.75 (red), 0.95
(purple) are depicted as dashed curves, and the estimated quantile functions are represented
by solid curves with the same color. From the top to the bottom, the rows correspond to
the sample size n = 512, 2048. From the left to the right, the columns correspond to the
methods DQRP, DQRP*, DQR, kernel QR and QR Forest.

Figure 14: The value of risks and penalties under the univariate “Wave” model when
n = 512, 2048. A vertical dashed line is depicted at the value λ = log(n) on x-axis in each
figure.

70

Non-Crossing Deep Quantile Regresion

Figure 15: The value of risks and penalties under the multivariate single index model when
n = 512, 2048 and d = 8. A vertical dashed line is depicted at the value λ = log(n) on
x-axis in each figure.

References

Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations.
Cambridge University Press, Cambridge, 1999.

Laura K Bachrach, Trevor Hastie, May-Choo Wang, Balasubramanian Narasimhan, and
Robert Marcus. Bone mineral acquisition in healthy asian, hispanic, black, and caucasian
youth: a longitudinal study. The Journal of Clinical Endocrinology & Metabolism, 84(12):
4702–4712, 1999.

Thomas Bagby, Len Bos, and Norman Levenberg. Multivariate simultaneous approximation.
Constructive approximation, 18(4):569–577, 2002.

Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-
dimension and pseudodimension bounds for piecewise linear neural networks. Journal of
Machine Learning Research, 20:Paper No. 63, 17, 2019. ISSN 1532-4435.

Benedikt Bauer and Michael Kohler. On deep learning as a remedy for the curse of dimen-
sionality in nonparametric regression. Ann. of Statist., 47(4):2261–2285, 2019.

Alexandre Belloni and Victor Chernozhukov. `1-penalized quantile regression in high-
dimensional sparse models. Ann. Statist., 39(1):82–130, 2011.

Alexandre Belloni, Victor Chernozhukov, Denis Chetverikov, and Ivan Fernandez-Val. Con-
ditional quantile processes based on series or many regressors. Journal of Econometrics,
213(1):4–29, 2019.

Richard Blundell, Joel Horowitz, and Matthias Parey. Nonparametric estimation of a non-
separable demand function under the Slutsky inequality restriction. The Review of Eco-
nomics and Statistics, 99(2):291–304, 2017.

Howard D. Bondell, Brian J. Reich, and Huixia Wang. Noncrossing quantile regression
curve estimation. Biometrika, 97(4):825–838, 08 2010.

71

Shen, Jiao, Lin, Horowitz and Huang

Axel Brando, Joan Gimeno, Jose A Rodŕıguez-Serrano, and Jordi Vitrià. Deep non-crossing
quantiles through the partial derivative. arXiv preprint arXiv:2201.12848, 2022.

Shih-Kang Chao, Stanislav Volgushev, and Guang Cheng. Quantile processes for semi and
nonparametric regression. Electronic Journal of Statistics, 11, 04 2016.

Probal Chaudhuri. Nonparametric estimates of regression quantiles and their local bahadur
representation. The Annals of statistics, 19(2):760–777, 1991.

Minshuo Chen, Haoming Jiang, Wenjing Liao, and Tuo Zhao. Nonparametric regression on
low-dimensional manifolds using deep relu networks. arXiv preprint arXiv:1908.01842,
2019.

Xiangyi Chen, Steven Z Wu, and Mingyi Hong. Understanding gradient clipping in private
sgd: A geometric perspective. Advances in Neural Information Processing Systems, 33:
13773–13782, 2020.

Victor Chernozhukov and Christian Hansen. An IV model of quantile treatment effects.
Econometrica, 73(1):245–261, 2005.

Victor Chernozhukov, Guido W. Imbens, and Whitney K. Newey. Instrumental variable
estimation of nonseparable models. Journal of Econometrics, 139(1):4–14, 2007.

Victor Chernozhukov, Iván Fernández-Val, and Alfred Galichon. Quantile and probability
curves without crossing. Econometrica, 78(3):1093–1125, 2010. ISSN 00129682, 14680262.
URL http://www.jstor.org/stable/40664520.

Chenguang Duan, Yuling Jiao, Yanming Lai, Xiliang Lu, and Zhijian Yang. Convergence
rate analysis for deep ritz method. arXiv preprint arXiv:2103.13330, 2021.

Max H. Farrell, Tengyuan Liang, and Sanjog Misra. Deep neural networks for estimation
and inference. Econometrica, 89(1):181–213, 2021.

Olivier Fercoq and Pascal Bianchi. A coordinate-descent primal-dual algorithm with large
step size and possibly nonseparable functions. SIAM Journal on Optimization, 29(1):
100–134, 2019.

Paul W Goldberg and Mark R Jerrum. Bounding the vapnik-chervonenkis dimension of
concept classes parameterized by real numbers. Machine Learning, 18(2-3):131–148, 1995.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The
Elements of Statistical Learning: Data Mining, Inference, and Prediction, volume 2.
Springer, 2009.

Xuming He. Quantile curves without crossing. The American Statistician, 51(2):186–192,
1997.

Xuming He and Pin Ng. Quantile splines with several covariates. Journal of Statistical
Planning and Inference, 75(2):343–352, 1999.

72

http://www.jstor.org/stable/40664520

Non-Crossing Deep Quantile Regresion

Xuming He and Peide Shi. Convergence rate of b-spline estimators of nonparametric condi-
tional quantile functions. Journaltitle of Nonparametric Statistics, 3(3-4):299–308, 1994.

Lars Hörmander. The Analysis of Linear Partial Differential Operators I: Distribution
Theory and Fourier Analysis. Springer, 2015.

Joel L. Horowitz and Sokbae Lee. Nonparametric instrumental variables estimation of a
quantile regression model. Econometrica, 75(4):1191–1208, 2007.

Todd Huster, Cho-Yu Jason Chiang, and Ritu Chadha. Limitations of the lipschitz constant
as a defense against adversarial examples. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 16–29. Springer, 2018.

Yuling Jiao, Guohao Shen, Yuanyuan Lin, and Jian Huang. Deep nonparametric regression
on approximate manifolds: Nonasymptotic error bounds with polynomial prefactors. The
Annals of Statistics, 51(2):691–716, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

R. Koenker. Quantile Regression. Cambridge University Press, 2005.

R. Koenker and G. Bassett. Regression quantiles. Econometrica, 46:33–50, 1978.

R. Koenker, P. Ng, and S. Portnoy. Quantile smoothing splines. Biometrica, 81:673–680,
1994.

Michael Kohler, Adam Krzyzak, and Sophie Langer. Estimation of a function of low local
dimensionality by deep neural networks. arXiv preprint arXiv:1908.11140, 2019.

Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and
processes, volume 23. Springer Science & Business Media, 1991.

Jaewoo Lee and Daniel Kifer. Scaling up differentially private deep learning with fast
per-example gradient clipping. Proceedings on Privacy Enhancing Technologies, 2021(1),
2021.

Bo Li, Shanshan Tang, and Haijun Yu. Better approximations of high dimensional
smooth functions by deep neural networks with rectified power units. arXiv preprint
arXiv:1903.05858, 2019a.

Bo Li, Shanshan Tang, and Haijun Yu. Powernet: Efficient representations of polynomials
and smooth functions by deep neural networks with rectified power units. arXiv preprint
arXiv:1909.05136, 2019b.

Jianfeng Lu, Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation
for smooth functions. SIAM Journal on Mathematical Analysis, 53(5):5465–5506, 2021a.

Yiping Lu, Haoxuan Chen, Jianfeng Lu, Lexing Ying, and Jose Blanchet. Machine learn-
ing for elliptic pdes: Fast rate generalization bound, neural scaling law and minimax
optimality. arXiv preprint arXiv:2110.06897, 2021b.

73

Shen, Jiao, Lin, Horowitz and Huang

Enno Mammen. Nonparametric regression under qualitative smoothness assumptions. The
Annals of Statistics, 19(2):741 – 759, 1991.

Nicolai Meinshausen and Greg Ridgeway. Quantile regression forests. Journal of Machine
Learning Research, 7(6), 2006.

Alexandre Mösching and Lutz Dümbgen. Monotone least squares and isotonic quantiles.
Electronic journal of statistics, 14(1):24–49, 2020.

Ryumei Nakada and Masaaki Imaizumi. Adaptive approximation and estimation of deep
neural network with intrinsic dimensionality. Journal of Machine Learning Research, 21:
1–38, 2020.

Oscar Hernan Madrid Padilla and Sabyasachi Chatterjee. Risk bounds for quantile trend
filtering. arXiv preprint arXiv:2007.07472v5, 2021.

Oscar Hernan Madrid Padilla, Wesley Tansey, and Yanzhen Chen. Quantile regression with
ReLU networks: Estimators and minimax rates. Journal of Machine Learning Research,
23(247):1–42, 2022.

Maxime Sangnier, Olivier Fercoq, and Florence d’Alché Buc. Joint quantile regression in
vector-valued RKHSs. Advances in Neural Information Processing Systems, 29:3693–
3701, 2016.

Jonathan Scarlett and Volkan Cevher. An introductory guide to Fano’s inequality with
applications in statistical estimation. arXiv preprint arXiv:1901.00555, 2019.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with ReLU
activation function. Annals of Statistics, 48(4):1875–1897, 2020.

Guohao Shen, Yuling Jiao, Yuanyuan Lin, Joel L Horowitz, and Jian Huang. Deep quantile
regression: mitigating the curse of dimensionality through composition. arXiv preprint
arXiv:2107.04907, 2021.

Zuowei Shen, Haizhao Yang, and Shijun Zhang. Nonlinear approximation via compositions.
Neural Networks, 119:74–84, 2019.

Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation characterized
by number of neurons. Commun. Comput. Phys., 28(5):1768–1811, 2020.

Ingo Steinwart. How to compare different loss functions and their risks. Constructive
Approximation, 26(2):225–287, 2007.

Charles J Stone. Optimal global rates of convergence for nonparametric regression. The
Annals of Statistics, pages 1040–1053, 1982.

Ichiro Takeuchi, Quoc V. Le, Timothy D. Sears, and Alexander J. Smola. Nonparametric
quantile estimation. Journal of Machine Learning Research, 7(45):1231–1264, 2006.

Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Springer Series in
Statistics, Springer, 2008.

74

Non-Crossing Deep Quantile Regresion

Lan Wang, Yichao Wu, and Runze Li. Quantile regression for analyzing heterogeneity in
ultra-high dimension. Journal of the American Statistical Association, 107:214–222, 2012.

Halbert White. Nonparametric estimation of conditional quantiles using neural networks.
In Computing Science and Statistics, pages 190–199. Springer, 1992.

Dmitry Yarotsky. Error bounds for approximations with deep ReLU networks. Neural
Networks, 94:103–114, 2017.

Dmitry Yarotsky. Optimal approximation of continuous functions by very deep ReLU net-
works. In Conference on Learning Theory, pages 639–649. PMLR, 2018.

Qi Zheng, Limin Peng, and Xuming He. Globally adaptive quantile regression with ultra-
high dimensional data. Ann. Statist., 43(5):2225–2258, 2015.

Qixian Zhong and Jane-Ling Wang. Neural networks for partially linear quantile regression.
arXiv preprint arXiv:2106.06225, 2021.

75

	Introduction
	Deep quantile regression process estimation with non-crossing constraints
	The standard quantile regression
	Expected check loss with non-crossing constraints
	ReQU activated neural networks

	Main results
	Non-asymptotic excess risk bounds
	Non-asymptotic mean integrated error
	Lower bounds

	Stochastic error
	Approximation error
	Computation
	Numerical studies
	Estimation and Evaluation
	Univariate models
	Multivariate models
	Distribution of
	Tuning Parameter

	Conclusions
	Proof of Theorems, Corollaries and Lemmas
	Definitions and Supporting Lemmas
	Definitions
	Supporting Lemmas

	Additional simulation results

