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Abstract

Black-box optimization is a versatile approach to solve complex problems where the objective
function is not explicitly known and no higher order information is available. Due to its
general nature, it finds widespread applications in function optimization as well as machine
learning, especially episodic reinforcement learning tasks. While traditional black-box
optimizers like CMA-ES may falter in noisy scenarios due to their reliance on ranking-based
transformations, a promising alternative emerges in the form of the Model-based Relative
Entropy Stochastic Search (MORE) algorithm. MORE can be derived from natural policy
gradients and compatible function approximation and directly optimizes the expected fitness
without resorting to rankings. However, in its original formulation, MORE often cannot
achieve state of the art performance. In this paper, we improve MORE by decoupling
the update of the search distribution’s mean and covariance and an improved entropy
scheduling technique based on an evolution path resulting in faster convergence, and a
simplified model learning approach in comparison to the original paper. We show that
our algorithm performs comparable to state-of-the-art black-box optimizers on standard
benchmark functions. Further, it clearly outperforms ranking-based methods and other
policy-gradient based black-box algorithms as well as state of the art deep reinforcement
learning algorithms when used for episodic reinforcement learning tasks.

Keywords: black-box optimization, stochastic search, derivative-free optimization, evolu-
tion strategies, episodic reinforcement learning

1. Introduction

Stochastic-Search algorithms (Spall, 2005) are problem independent algorithms well-suited
for black-box optimization (BBO) (Larson et al., 2019) of an objective function. They only
require function evaluations and are used when the objective function cannot be modeled
analytically and no gradient information is available. This is often the case for real world
problems such as robotics (Chatzilygeroudis et al., 2017) where the objective function
describes the outcome of a task, medical applications (Winter et al., 2008), or forensic
identification (Ibáñez et al., 2009).

Typically, these algorithms maintain a search distribution over the optimization variables
of the objective function. Solution candidates are sampled, evaluated, and the parameters of
the search distribution (e.g. mean and covariance for Gaussian search distributions) are then
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updated towards a more promising direction. This process is repeated until a satisfactory
solution quality is found or a pre-defined budget of objective function evaluations is reached.

In this paper, we re-introduce Model-based Relative Entropy Stochastic Search (MORE)
(Abdolmaleki et al., 2015), a versatile, general purpose stochastic-search optimization
algorithm. Using insights from reinforcement learning (RL) and information-theoretic trust-
regions, it aims to update the parameters of a Gaussian search distribution in the direction
of the natural gradient (Kakade, 2001). To this end, MORE uses compatible function
approximation (Sutton et al., 1999; Pajarinen et al., 2019) and learn a quadratic surrogate
model of the objective function and bound the Kullback-Leibler (KL) divergence between
subsequent search distributions. In its original formulation, a bound on the Kullback-Leibler
divergence and a bound on the loss of entropy between the old and new search distribution
additionally acts as an exploration-exploitation trade-off to prevent pre-mature convergence
of the algorithm.

Most other successful stochastic search algorithms make use of rankings of objective
function evaluations for updating the search distribution’s parameters (Hansen, 2016; Wier-
stra et al., 2014; Rubinstein and Kroese, 2004). While the use of rankings is well studied for
deterministic objective function evaluations, its effects in the case of stochastic objective
function evaluations, which are, for example, common in episodic reinforcement learning,
are less well understood. We analyze these ranking based algorithms for this stochastic
evaluation case and uncover their limitations to solve such tasks. In contrast, MORE directly
optimizes the expected objective function values without ranking transformations of the
objective function evaluations and can therefore also be applied for such domains.

However, the original MORE approach suffers from (a) the need for conservative KL
bounds to keep the covariance updates stable, (b), a fixed entropy decreasing schedule
resulting in suboptimal exploration and slow convergence, and (c), it employs an unnecessary
complicated and inaccurate model learning method. We aim to fix these issues by (a)
splitting the KL divergence into separate updates for the mean and covariance with separate
trust region bounds, (b) introducing an adaptive entropy schedule based on an evolution
path, and (c) using ordinary least squares with appropriate data pre-processing techniques to
simplify the model learning process. We call our new algorithm Coordinate-Ascent MORE
with Step Size Adaptation or CAS-MORE for short.

We empirically evaluate our algorithm on simulated robotics tasks, as well as a set of
benchmark optimization functions. While we are competitive with state-of-the-art algorithms
such as CMA-ES on the benchmark optimization functions, the RL experiments clearly show
the strength of MORE.

2. Related Work

In the following sections, we describe in more depth current state of the art algorithms
from the field of black-box optimization and review common design choices and algorith-
mic procedures. In addition, we highlight current step- and episode-based reinforcement
learning approaches along with their benefits and drawbacks and discuss trust-region based
reinforcement learning algorithms.
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2.1 Evolutionary Strategies and Black-Box Optimization

The MORE algorithm can be seen as an instance of Evolution Strategies (Beyer and Schwefel,
2002) from the broader class of Evolutionary Algorithms. The usual procedure involves
sampling from a search distribution π(x; θ) with parameters θ, evaluating the candidates
xk on an objective function f(x), f : Rn → R, x 7→ f(x), and the goal is to either find
an individual x∗ that maximizes f or a distribution π∗ that maximizes the optimization
objective J = Ex∼π[f(x)].

2.1.1 Ranking-Based Algorithms

Instead of directly incorporating function values into the optimization process, many al-
gorithms apply a ranking based transformation , i.e., a monotonous mapping of func-
tion values sorted by fitness to some pre-defined fixed values. Specifically, for a popu-
lation {xi:λ | i = 1, . . . , λ} = {xi | i = 1, . . . , λ} sorted by function values such that
f(x1:λ) ≤ f(x2:λ) ≤ · · · ≤ f(xλ:λ), the function values are substituted by weight values
w1 <, . . . , < wλ, before updating parameters. While this makes the optimization process
invariant to certain transformations and adds to the robustness of algorithms, it also changes
the optimization objective into θ∗ = arg maxθ

∑
iwi log π(xi; θ). As we will show in our

experiments, this change can have severe downsides in reinforcement learning problems. In
non-deterministic problems, it leads to an over- or underestimation of a sample’s performance
and requires averaging over several sample evaluations in order to obtain a reliable estimate
for the ranking (Hansen et al., 2008; Heidrich-Meisner and Igel, 2009).

The cross-entropy method (Rubinstein and Kroese, 2004; Botev et al., 2013; Amos and
Yarats, 2020) is one of the simplest representatives of ranking based algorithms. It evolves
the search distribution by only incorporating an elite set of samples into the next generation
which can be seen as a rank-based update.

The Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) (Hansen, 2016)
performs well established heuristics to update the mean and covariance matrix of a Gaussian
search distribution as an interpolation of the weighted sample mean and covariance and
the old mean and covariance. The weights of the samples are chosen according to the
ranking of the samples. CMA-ES also introduces the evolution path, an exponentially
smoothed cumulative sum of previous update steps, which acts as a momentum term, similar
to gradient based optimizers (Li and Zhang, 2016; Ruder, 2016). Building on the basic
CMA-ES approach, many derivative algorithms exist, mainly aiming at improving sample
efficiency. Notable extensions are those which include restarts with increasing population
sizes (Auger and Hansen, 2005), restarts that alternate between large and small population
sizes (Hansen, 2009), a version with decreasing step-sizes (Loshchilov et al., 2012a), or
incorporating second order information into the update of the covariance matrix (Auger
et al., 2004).

Another class of algorithms using rank-based fitness shaping are those from the family of
Natural Evolution Strategies (NES) (Wierstra et al., 2014). Instead of updating the search
distribution parameters with heuristics, NES follow a sample-based search gradient based
on the same objective as MORE. Yet, due to the use of rankings, the connection to the
natural gradient of the original expected reward objective is lost. We describe the relation
to MORE in more detail in the next section.
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Contrary to these algorithms, MORE does not discard poorly performing candidates in
its optimization process and only applies common data pre-processing techniques such as
standardization before feeding them to the learning algorithm. There also exist variations of
the CMA-ES using surrogate models such as (Loshchilov et al., 2012b) or (Hansen, 2019).
Whereas these algorithms use the surrogate to generate approximate function values, which
are then again used to generate a ranking, MORE directly uses the model parameters to
update the search distribution parameters.

2.1.2 Natural Gradients for Black-Box Optimization

The natural gradient is often used in optimization as it has shown to be more effective when
a parameter space has a certain underlying structure (Amari, 1998). Important algorithms
belong to the family of Natural Evolution Strategies (NES) (Wierstra et al., 2014). They
use a Taylor approximation of the KL-divergence between subsequent updates to estimate a
search gradient in the direction of the natural gradient. Instead of information theoretic
trust-regions on the update as used in MORE, they use either fixed (Sun et al., 2009;
Glasmachers et al., 2010) or heuristically updated learning rates (Wierstra et al., 2014). NES
also uses ranking-based fitness shaping. The ranking is required to improve the robustness of
the algorithm, yet, it also changes the objective and the search direction does not correspond
to the natural gradient anymore. In contrast, MORE is inherently robust due to the used
trust-regions and therefore, does not require a ranking-based transformation of the rewards.
The ROCK∗ algorithm presented in (Hwangbo et al., 2014) uses the natural gradient on a
global approximation of the objective generated with kernel regression.

2.1.3 Other Black-Box Optimization Approaches

There exists a wide variety of stochastic search algorithm classes for black-box optimization,
each with their own benefits and drawbacks. Classic algorithms such as Nelder-Mead (Nelder
and Mead, 1965) use a simplex to find the minimum of a function. Bayesian optimization
techniques such as Gaussian processes, for example, aim at finding global optima in low
dimensional problem domains (Osborne et al., 2009). However, they suffer from high
computation time and scale poorly with problem dimensionality and data points. Other
directions are genetic algorithms (Holland, 1992) which are easy to implement but suffer
from the need for good heuristics and random search (Zabinsky, 2010; Price, 1983). While
both approaches can yield good results, they are not computationally efficient.

2.2 Reinforcement Learning

As MORE is based on the policy search objective, we also review some of the recent work
from the domain of reinforcement learning. Here, the objective is based on the reward
function defining the task to be solved. A detailed introduction to the problem domain can
be found in Section 3.

2.2.1 Step-based Trust-Region Reinforcement Learning Algorithms

Updates bounded by a trust-region are a common approach in the reinforcement learning
literature. One of the first deep reinforcement learning algorithms to successfully make
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use of a trust-region update is TRPO (Schulman et al., 2015) which enforces a bound
on an average KL divergence trust-region. Similar sample-based approximations of the
trust-region are also employed by recent deep reinforcement learning techniques such as
Maximum A-Posteriori Policy Optimization (MPO) (Abdolmaleki et al., 2018b). Compatible
function approximation for deep reinforcement learning has been explored in (Pajarinen
et al., 2019). An improved way of enforcing trust-regions directly in the policy function by
using differentiable trust-region layers (TRPLs) has been introduced in (Otto et al., 2021).

2.2.2 Episode-based Reinforcement Learning

Episode-based reinforcement learning algorithms make use of black-box optimization tech-
niques to optimize the expected return of an entire trajectory. These algorithms excel when
tasks are defined through sparse and non-Markovian rewards, whereas step-based approaches
typically fail in these cases. Due to the use of sparse rewards, learned behaviors are more
energy efficient and less sensitive to high action costs compared to policies learned by
step-based reinforcement learning algorithms. On the downside, the improved performance
often comes at a higher sample complexity (Otto et al., 2023).

A closely related method to MORE is the Relative Entropy Policy Search (REPS) for
step-based reinforcement learning (Peters et al., 2010) and its episodic formulation (albeit
derived in a contextual setting) in (Kupcsik et al., 2013). Both use samples to approximate
the objective and the trust-regions which does not guarantee that the KL trust-region is
enforced for the new parametric policy in practice. Layered direct policy search (LaDIPS)
(End et al., 2017) extends MORE to the contextual setting using a linear mapping from the
context to the mean. Additionally, the usage of natural gradients can be derived by using a
second order approximation of the KL-divergence, resulting in the Fisher information matrix
used in NES.

Recently, Otto et al. (2023) extended TRPLs to the episodic case and use a policy
gradient method for learning movement primitives that allow a non-linear mapping from a
context vector to the motion primitive parameters. They show that other algorithms such
as PPO (Schulman et al., 2017) are unsuitable as they suffer from the higher dimensional
action space induced by the motion primitives. In contrast, we focus on the non-contextual
case where the policy is a Gaussian distribution with full covariance matrix. We show that
in this case, the natural gradient updates from MORE clearly outperform the trust-region
policy gradient updates from TRPL, indicating that extending the exact natural gradient
updates from MORE to deep neural networks is an interesting direction for future work.

2.3 Broader Scope

The MORE algorithm finds application in a variety of fields, such as variational inference
(Arenz et al., 2018) or density estimation (Becker et al., 2019). In the context of trajectory
optimization, ideas from the MORE algorithm are explored in the MOTO algorithm (Akrour
et al., 2018).
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3. Preliminaries

Before we introduce our new algorithm, we present in detail the problem setting and the
original MORE algorithm. Additionally, we provide another view on the algorithm derived
from compatible feature approximation and its relation to natural gradient optimization.

3.1 Problem Setting

The goal is to find a distribution π(x; θ), parameterized by θ, over variables x ∈ Rn that
maximizes 1 the expected value F(x) = E[F (x, ξ(ω))] of a noisy objective function F where
ξ(ω) is a typically unknown noise process. In the episodic reinforcement learning case
(Deisenroth et al., 2013; Otto et al., 2023), F describes the episodic return. There can be
multiple sources of noise ξ(ω), such as noise in the dynamics or the state observations of the
given system. We frame the stochastic search objective as maximizing the expected fitness
function, i.e.,

max
π

J = max
π

Ex∼π[F(x)] (1)

which is a well known objective in policy search (Deisenroth et al., 2013). We consider
the black-box scenario where we only have access to the noisy function evaluations f(x) =
F (x, ζ), ζ ∼ ξ(ω), of the objective function, i.e., the expected function values F(x) are
unknown and no gradients of the objective function are available.

3.2 Model-Based Relative Entropy Stochastic Search

MORE (Abdolmaleki et al., 2015) is an iterative stochastic search algorithm where the
search distribution πt(x) = N (x | µt,Σt) in each iteration t is modelled as a multivariate
Gaussian distribution. The parameters to be optimized are θ = {µ,Σ} and the optimization
problem is given by

maximize
π

∫
x
π(x)F(x)dx

subject to KL(π ‖ πt) ≤ ε,
H (π) ≥ β,∫

x
π(x)dx = 1

(2)

where ε and β are hyper-parameters controlling the exploration-exploitation trade-off,
H(π) =

∫
x π(x) log π(x)dx denotes the Shannon entropy of the search distribution, and

KL(π ‖ πt) =
∫
x π(x) log π(x)

πt(x)dx is the KL divergence between the current and new search
distribution.

MORE optimizes the objective from Equation (2) by substituting the expected objective
value with a learned quadratic approximation

F(x) ≈ F̂(x) = −1/2xTAx+ xTa+ a0. (3)

Using a quadratic surrogate and a Gaussian search distribution, the optimal solution in each
iteration would be to set the mean of the search distribution to the optimum of the surrogate

1. Equivalently, a cost can be minimized by maximizing the negative objective function.
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and collapse the search distribution to a point estimate which would prevent it from further
exploration. To control the exploration-exploitation trade-off, additional constraints on the
updated search distribution need to be introduced. First, the KL-divergence between the
current search distribution and the solution of the optimization problem is upper bounded
which ensures that the mean and covariance only slowly change and the approximate model
is not over-exploited. Furthermore, an additional lower bound on the entropy is introduced
to prevent premature convergence.

Closed Form Updates The optimization problem can be solved in closed form using the
method of Lagrangian multipliers. The dual function is given by

g(η, ω) = ηε− ωβ + (η + ω) log

(∫
πt(x)

η
η+ω exp

(F(x)

η + ω

)
dx

)
with Lagrangian multipliers η and ω. The new search distribution is then given in terms of
the Lagrangian multipliers as

π(x) ∝ πt(x)
η

η+ω exp

(F(x)

η + ω

)
.

Analytic Solution The use of a quadratic model is beneficial for two reasons. First, it is
expressive enough to solve a wide range of problems while being computationally easy to
obtain. Second, quadratic features are the compatible features of the Gaussian distribution
which make the integrals tractable. As shown in Section 3.3, the use of quadratic features
also allows us to obtain exact natural gradient updates. The optimization problem in terms
of the natural parameters m = Σ−1µ and Λ = Σ−1 is solved by minimizing the Lagrangian
dual function, which is given as

g(η, ω) =ηε− ωβ +
1

2

(
ωk log(2π)− η(log |Λ−1

t |+mT
t Λ−1

t mt)

+ (η + ω)(log |Λ−1|+mTΛ−1m)
)
,

and the optimization problem becomes

minimize
η, ω

g(η, ω)

subject to η ≥ 0,

ω ≥ 0

with Lagrangian multipliers η and ω. The convex dual function can be optimized using a
constrained non-linear optimization method such as L-BFGS (Liu and Nocedal, 1989) to
obtain the optimal solutions η∗ and ω∗. The update rules for the new search distribution
based on the Lagrangian multipliers are given by

Λ =
η∗Λt +A

η∗ + ω∗
, m =

η∗mt + a

η∗ + ω∗
.

Mean and covariance can be recovered by the inverse transformations and are given by
µ = Λ−1m and Σ = Λ−1. We can now see that the new search distribution’s parameters are
an interpolation between the natural parameters of the old distribution and the parameters
of the quadratic model from Equation (3).
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Hüttenrauch and Neumann

3.2.1 Model Learning

The parameters of the quadratic model can be learned from the noisy evaluations f(x)
using linear regression with quadratic features. The original MORE algorithm first uses a
probabilistic dimensionality reduction technique to project the problem parameters into a
lower dimensional space. Afterwards, weighted Bayesian linear regression is used to solve for
the model parameters in the reduced space. Lastly, the model parameters are projected back
into the original space. This approach has several drawbacks, as it introduces additional
hyper-parameters to the algorithm and involves a sample-based approach to integrate out
the projection matrix which is very costly in terms of computation time. We will later on
show that by using appropriate data pre-processing techniques, standard linear least squares
is better suited to efficiently fit the quadratic models and also allows a direct connection of
MORE to natural gradients.

3.2.2 Entropy Control

The entropy of the search distribution can be controlled with parameter β. The bound β is
chosen such that entropy of the search distribution H (π) decreases by a certain percentage
until a minimum entropy H0 is reached, i.e. β = γ(H (πt) −H0) + H0. Alternatively, a
simple alternative is to linearly decrease β in each iteration until the lower bound H0 is
reached, i.e. β = max(H (πt)− δ,H0).

3.3 Relation to Natural Gradient

The natural gradient is an optimization technique that considers the geometry of the
parameter space to improve the convergence speed and efficiency of training machine
learning models, especially in situations where parameters are highly correlated (Amari,
1998). The natural gradient is given by scaling the ”vanilla” gradient

∇θJ = Ex∼π[∇θ log π(x)F(x)] ≈
∑
i

∇θ log π(xi)f(xi)

with the inverse of the Fisher information matrix (FIM) F = Ex∼π[∇θ log π(x)∇θ log π(x)T],
i.e.,

gNG = F−1∇θJ.

3.3.1 Approximating the Natural Gradient with Samples

A sample based approximation of the natural gradient is given as

gNG ≈
(∑

i

∇θ log π(xi)∇θ log π(xi)
T

)−1∑
i

∇θ log π(xi)f(xi)

=
(
ΦTΦ

)−1
ΦTy (4)

with

Φ =

∇θ log π(x1)
...

∇θ log π(xN )

 , y =

 y1
...
yN


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where yi = f(xi), i = 1, . . . , N . Equation (4) resembles the least squares solution to a linear
regression problem which is given by

w∗ = arg min
w

∑
i

(∇θ log π(xi)
Tw − yi)2

(5)

using the function approximator ∇θ log π(x)Tw where the features are given by the gradient
of the log search distribution with respect to the parameters of π. In this case, the natural
gradient is given by the least squares solution, i.e., gNG = w∗.

3.3.2 Compatible Function Approximation for Stochastic Search

Equation (5) is a special case of compatible function approximation. To see this, we will
quickly review this concept. Originally defined in the context of policy gradients with
function approximation for step-based reinforcement learning (Sutton et al., 1999), the
compatible function theorem states that the policy gradient with function approximation is
exact under two conditions:

1. The gradient of the advantage function approximator is equal to the log gradients of
the policy, i.e. ∇wÂ(s, a;w) = ∇θ log π(a | s; θ)

2. the parameters w of the advantage function minimize a mean-squared error.

Stochastic search can be seen as a state-less one-step RL problem where A(s, a) = F(x)
and the policy π(a | s; θ) is the search distribution π(x). For the gradient to be unbiased
in the case of MORE where we optimize an approximated surrogate objective, we need to
replace F(x) with a learned approximation F̂ that uses compatible features. For a Gaussian
distribution with natural parameters m = Σ−1µ and Λ = Σ−1, these features are given by

∇m log π(x) = xT + c1,

∇Λ log π(x) = −1

2
xxT + c2.

Thus, the compatible features are given by

φ(x) = [∇m log π(x), vec(∇Λ log π(x))]

=
[
1,x,−1

2 vec(xxT)
]
.

Consequently, if the model is obtained by a linear least squares fit using quadratic features,
the MORE algorithm is performing an unbiased update in the natural gradient direction
where the learning rate is specified implicitly by the trust region ε. This is reflected in the
update equations of MORE which, assuming an entropy bound β → −∞, are simply given
by

m = mt + η−1a, Λ = Λt + η−1A,

where a and A are the estimated parameters of the compatible function approximation.
They directly correspond to the fitted model parameter w∗ in Equation (5). In difference to
other methods such as CMA-ES (Akimoto et al., 2010) or NES, where a relation to natural
gradients has also been established, the natural gradient update of MORE is exact since the
estimation of the quadratic model is unbiased in expectation and no ranking based reward
transformation is used.
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4. Improving the MORE Algorithm

In its original formulation, MORE has several drawbacks as already pointed out earlier. In
this section, we will introduce a new version of MORE that aims at improving convergence
speed and simplifying the model learning approach. We achieve this by (a) disentangling
the trust regions for mean and covariance, (b) an adaptive entropy control mechanism, (c)
a simplified but improved model learning approach based on standard linear least squares.
We also propose a robust fitting of the surrogate to stabilize the model fitting process. We
will refer to the new algorithm as Coordinate-Ascent MORE with Step Size Adaptation or
CAS-MORE for short.

4.1 Disentangled Trust Regions

The trust-region radius ε controls the change of the distributions between subsequent updates
and thus has an influence on the speed of convergence. While a large trust region should
encourage larger steps of the mean, we observed in our experiments that the result is mainly a
large change in the covariance matrix leading to instabilities and divergence of the algorithm,
especially on problems where it is difficult to estimate the quadratic model.

Therefore, limiting the KL-divergence between the policies in subsequent iterations is a
sub-optimal choice as we have no direct control whether the mean or covariance of the search
distribution is updated more aggressively. To alleviate this problem, we propose to decouple
the mean and covariance update by employing a block coordinate ascent strategy for the
mean and the covariance matrix which allows for setting different bounds on each of the
components. This approach results in independent updates for the mean and covariance as in
CMA-ES, albeit more principled, and has already been explored successfully in other episodic
(Otto et al., 2023) and step-based (Abdolmaleki et al., 2018a) reinforcement algorithms.

The optimization problems we will be solving are

maximize
µ

∫
x
π(x)F̂(x)dx

∣∣∣∣
Σ=Σt

subject to KL(π(x) ‖ πt(x))|Σ=Σt
≤ εµ

(6)

for the mean and

maximize
Σ

∫
x
π(x)F̂(x)dx

∣∣∣∣
µ=µt

subject to KL(π ‖ πt)|µ=µt
≤ εΣ

(7)

for the covariance in each iteration. By choosing a small bound εΣ, we can drop the entropy
constraint from the optimization as the entropy is not decreasing as quickly.

4.1.1 Updating the Mean

We start updating the mean by setting Σ = Σt and introducing a bound εµ to limit the
change of the mean displacement. The dual function to the problem in Equation (6) is given
by

gµ(λ) = λεµ +
1

2

(
mµ(λ)TMµ(λ)−1mµ(λ)− λmT

t M
−1
t mt

)
10
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where λ is a Lagrangian multiplier and

Mµ(λ) = λΣ−1
t +A, mµ(λ) = λΣ−1

t µt + a.

A detailed derivation of the dual function can be found in Appendix A.1. We now solve the
dual problem

minimize
λ

gµ(λ)

subject to λ > 0

and obtain the new mean as

µ∗ = Mµ(λ∗)−1mµ(λ∗)

where λ∗ is the solution of the optimization problem which we find using a non-linear
optimization algorithm 2.

4.1.2 Updating the Covariance Matrix

Next, we set µ = µt and introduce a bound εΣ to constrain the change of the covariance. The
dual function (see Appendix A.2 for a detailed derivation) for the problem in Equation (7)
is given by

gΣ(ν) = νεΣ +
1

2
ν
(

log |Λ(ν)−1| − log |Λ−1
t |
)

with

Λ(ν) =
νΣ−1

t +A

ν

and we need to solve the following optimization problem

minimize
ν, ω

gΣ(ν)

subject to ν > 0

where ν is again a Lagrangian multiplier. The optimal solution Σ∗ in terms of the solution
ν∗ can be found analogously and is given by

Σ∗ = Λ(ν∗)−1.

4.2 Entropy Control

The standard MORE algorithm is only able to decrease the entropy of the search distribution
in each iteration. This might result in slow convergence in particularly if the search
distribution is initialized with too small variances3. On the other hand, a too large covariance

2. We used the implementation of L-BFGS-B (Liu and Nocedal, 1989) provided by the python package
NLOpt (Johnson, 2014).

3. This is often necessary in case a large initial exploration is generating samples that are very costly or
dangerous to evaluate, e.g., in robotics.

11
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Figure 1: This figure illustrates the concept of the evolution path in a 2D example and
is adapted from Hansen (2016). In each figure, arrows with black heads correspond to an
update of the mean. The evolution path is a smoothed sum over subsequent mean updates
and depicted with an open head. In the left plot, the mean updates show no clear search
direction and, as a result, the evolution path is short. The right plot shows the opposite
where heavily correlated mean updates lead to a long evolution path. The center plot shows
the desired case, where subsequent mean updates are uncorrelated.

can also lead to slow convergence as it takes a long time to settle in on a solution and simply
increasing the bound on the covariance can lead to unstable updates.

To solve these issues, we take inspiration from CMA-ES which already makes use of
an entropy control mechanism in form of the step-size update (Hansen, 2016). The crucial
property underlying this update is the so-called evolution path which is a smoothed sum
over previous mean updates. The idea of step-size adaptation is the following. Whenever
we take steps in the same direction, we could essentially take a single, larger step, while
dithering around a constant location indicates no clear search direction. In the first case, a
larger entropy would allow for bigger steps, in the second case, we need to decrease entropy.
We illustrate the concept in Figure 1. We can achieve this by scaling the covariance after
the optimization with a scalar factor

σt+1 = exp

(
−δt+1

n

)
after the optimization steps where n is the problem dimensionality and δt+1 is the desired
change between the entropy in iteration t and the next iteration t+ 1 of the algorithm. The
question is now how to determine a suitable value for δt+1.

The step size update we propose is inspired by the step size control mechanism used in
CMA-ES called cumulative step size adaptation (CSA). We also use the evolution path p
which is a vector tracking previous mean updates and compare its length to a hypothetical
length of the evolution path resulting from uncorrelated mean updates. Therefore, the
evolution path update needs to be constructed in a way that we can derive a computable
desired length from it. Inspired by CMA-ES, we initialize the evolution path p0 to zero and

12



Robust Black-Box Optimization for Stoch. Search and Episodic RL

update it as follows

pt+1 = (1− cσ)pt +

√
cσ(2− cσ)

2εµ
Σ
− 1

2
t (µt+1 − µt)

where cσ < 1 is a hyper parameter. The factors are chosen analogously to CMA-ES such that

(1− cσ)2 +
√
cσ(2− cσ)

2
= 1. While multiplying the shift in means with the inverse square

root of the covariance matrix in CMA-ES makes the evolution path roughly zero mean and
unit variance distributed, we know its exact length due to the constraint on the mean update

in Equation (6) as long as the mean update is at its bound. The vector Σ
− 1

2
t (µt+1 −µt) has

in that case length
√

2εµ and by scaling it with (
√

2εµ)−1 the resulting length is 1. We set

δt+1 = α

(
1− ‖pt+1‖
‖pdes

t+1‖

)
,

where ‖pdes
t+1‖ is a desired length of the evolution path given by the length of a evolution

path resulting from fully uncorrelated updates and α influences the magnitude of entropy
change which was set to 1 in the black-box optimization experiments, and 0.1 in the episodic
RL experiments. This rule for determining the change in entropy is almost identical to the
one in CMA-ES. If the norm of the current evolution path pt+1 is smaller than pdes

t+1, i.e., the
mean updates were dithering around a constant location, we reduce entropy (i.e. δt+1 > 0)
while entropy is increased if the length of the evolution path is longer than desired.

In order to determine the length of an uncorrelated path ‖pdes
t+1‖, we first look at the

length of two vectors

‖a+ b‖ =
√
‖a‖2 + ‖b‖2 + 2‖a‖‖b‖ cos θ,

where θ is the angle between vectors a and b. If these two vectors are uncorrelated (i.e.
θ = π/2), the length becomes

√
‖a‖2 + ‖b‖2. Under the assumption that the mean update

is always at the bound, i.e. (2εµΣt)
− 1

2 (µt+1 −µt) = 1, the length of the evolution path pt+1

given the previous length pt is then

pt+1 =
√

(1− cσ)2p2
t + cσ(2− cσ).

In practice, we set the desired angle θ = 3π
8 and compute ‖pdes

t+1‖ accordingly to account for
unavoidable correlations between iterations due to sample reuse and constrained updates.
Finally, the adapted policy is given by

πσt+1 = N (x | µt+1, σ
2
t+1Σt+1).

4.3 Illustrative Example

We demonstrate the characteristics of CAS-MORE by comparing it to the original formulation
of MORE and Coordinate Ascent MORE without adaptive entropy control (CA-MORE). We
therefore use a 15 dimensional Rosenbrock function as defined in Hansen et al. (2009b) and
run each variant of MORE 20 times with different seeds. The optimization is stopped once
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Figure 2: This figure shows the function value (left) and the entropy of the search distribution
(right) over the course of optimization of a 15-dimensional Rosenbrock function using different
variants of MORE. The original MORE is shown in green, while coordinate ascent versions
of more are orange and blue where CA-MORE indicates a fixed entropy reduction schedule
and CAS-MORE indicates the adaptive entropy schedule using the step-size adaptation. For
comparison, CMA-ES is plotted in red.

a target function value of 1× 10−8 is reached, or 12 000 function evaluations are exceeded.
Figure 2 shows median and 5% / 95% quantiles of the function value at the mean (Figure 2a)
and the entropy of the search distribution (Figure 2b) over the optimization. The hyper-
parameters for the KL bounds (and entropy schedule for MORE) are chosen individually for
each algorithm based on a grid search. We observe that decoupling the mean and covariance
update already significantly improves convergence speed as it allows for a higher learning
rate for the mean and therefore a quicker entropy reduction. Note, that reducing entropy
even quicker leads to premature convergence while increasing ε for MORE leads to divergence
of the algorithm. This problem is alleviated by introducing the adaptive entropy schedule
that first quickly reduces entropy, then plateaus, and, finally, quickly reduces entropy again,
resulting in an accelerated optimization process.

5. Model Learning

In this section, we introduce a simple but effective approach of learning a quadratic model
based on polynomial ridge regression using the method of least squares as replacement for
the more complex Bayesian dimensionality reduction technique introduced in the original
paper (Abdolmaleki et al., 2015). We design the model learning with two objectives in mind.
First, it should be data- and time-efficient to allow for quick execution of the algorithm.
Additionally, it should be robust towards outliers and samples from very low entropy regimes.
To this end, we apply a series of data pre-processing techniques, re-use old samples, and start
learning a model with a lower complexity and increase it once sufficient data is available.

14



Robust Black-Box Optimization for Stoch. Search and Episodic RL

5.1 Least Squares Model Fitting

In each iteration, we generate a fixed number K of samples xi ∼ π, i = 1, . . . ,K, evaluate
them on the objective function to obtain yi = f(xi) and add the tuple (xi, yi) to a data-set
D = {(xq, yq) | q = 1 . . . Q} of length Q4. The goal of the model fitting process is to find the
parameters A, a, and a of a quadratic model of the form

F(x) ≈ F̂(x) = −1/2xTAx+ xTa+ a.

These parameters can be found by solving a regularized least squares problem

min
w
‖(y −Φw)‖22 + λ‖w‖22,

where Φ is the design matrix whose rows are given by a feature transformation φ(x), i.e
Φ = [φ(x1), . . . , φ(xQ)]T, y is a vector containing the fitness evaluations yi = f(xi) and λ is
the regularization factor. The solution is given by the well known ridge regression estimator

ŵ = (ΦTΦ + λI)−1ΦTy.

5.2 Adaptive Model Complexity

A full quadratic model has in the order of O(n2) parameters that need to be estimated.
Compared to model-free algorithms, this can be a disadvantage if we initially need to sample
enough parameters for the first model to be built. Instead, the complexity of the feature
function φ(x) will be gradually increased from a linear to a diagonal and, finally, a full
quadratic model depending on the number of obtained samples. The simplest model is a
linear model where

a = w1 a = [w2, . . . , wn+1]T A = 0.

Next, we estimate a diagonal model where

A = −diag([wn+2, . . . , w2n+1]).

Once sufficiently many data-points are available, we estimate a full quadratic model where

A = −(L+LT)

with

L =


wn+2 0 ... ... 0
wn+3 wn+4 0 ... 0

...
. . .

wn(n+3)/2−1 ... ... wn(n+3)/2−n−1 0
wn(n+3)/2−n+2 ... ... ... wn(n+3)/2+1

.
The feature functions for the models are given by

φlin(x) = [1, x1, x2, . . . , xn]T

φdiag(x) = [φlin(x)T, x2
1, x

2
2, . . . , x

2
n]T

φfull(x) = [φlin(x)T, x2
1, x1x2, x1x3, . . . , x1xn, x

2
2, x2x3, . . . x2xn, x3x4, . . . , x

2
n]T.

4. Once the number of data-points Q in D exceeds a maximum queue-size Qmax, we discard old samples in
a first-in, first-out manner.
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(b) Attractive Sector

Figure 3: This figure shows the effects of data pre-processing on the optimization. We plot
the function value over the course of optimization for a Rosenbrock (a) and Attractive Sector
(b) function in 15 dimensions and turn off whitening and robust target normalization with
clipping, respectively. We see that whitening becomes important for low entropy regimes
near the optimum, while target normalization is especially important in case of outliers in
the function values as can be seen for the Attractive Sector function.

We empirically found that we require at least 10% more samples than the model has
parameters, i.e. start with a linear model once |D| ≥ 1.1(1 +n) and continue with a diagonal
model once |D| ≥ 1.1(1 + 2n). Finally, we switch to estimating a full quadratic model once
|D| ≥ 1.1(1 + n(n+ 3)/2).

5.3 Data Pre-Processing

Estimating the model parameters can be numerically difficult with function values spanning
several orders of magnitude, outliers, and very low variances of input and output values near
the optimum. Therefore, we perform data pre-processing on the input values x, as well as
the design matrix Φ and the target values y before solving the least squares problem. In
particular, we perform whitening of the inputs x, standardization of the design matrix Φ
and a special form of standardization of the target values y and construct the normalized
data set Dw. We demonstrate the effect of data pre-processing in Figure 3.

5.3.1 Data Whitening

Before estimating β̂, we whiten the input data and obtain

xw = C̄−1
D (x− x̄D) ∀ x ∈ D

where x̄D is the empirical mean and C̄D is the Cholesky-factorization of the empirical
covariance of the data-set. The parameters β̂w learned with the whitened data-set to be
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transformed back into unwhitened parameters. This transformation is given by

A = C̄−T
D AwC̄

−1
D ,

a = Ax̄D + C̄−T
D aw,

a = aw + x̄T
D(Ax̄D − C̄−T

D aw),

where Aw, aw and aw are the model parameters in the whitened space.

5.3.2 Target Normalization

Normalization of function values is beneficial as it stabilizes the model learning process.
Depending on the number of samples we draw in each iteration as well as how well behaved
the objective function is, we propose two target normalization methods. The first one allows
for exact natural gradient updates, while the second one is more robust towards outliers.

Standard Target Normalization The first target normalization method is based on a
simple standardization

yw = (y − ȳD)/sD ∀ y ∈ D

of the target values where ȳD is the empirical mean and sD is the empirical standard
deviation of the target values in D.

Robust Target Normalization Additionally, we propose an adaptive iterative normal-
ization and clipping scheme based on the excess kurtosis of the target values resulting in
a normalization process more robust towards outliers. Given the data-set in a particular
iteration, we first perform standardization like above, then treat all values outside the interval
[−vclip, vclip] as outliers. Afterwards, we look at the excess kurtosis of the standardized
targets in the interval (−vclip, vclip). If it is high, the data is still compacted to a small
interval while outliers at the borders negatively influence the least squares optimization.
In order to evenly spread the data, we repeat the procedure (normalization and clipping),
until the excess kurtosis falls below a threshold or the standard deviation of the remaining
values is close to 1. After the procedure, we replace the negative and positive outliers with
the minimum and maximum value of the remaining targets, respectively. We illustrate the
procedure in Figure 4, pseudo-code of the approach can be found in Appendix B. While this
effectively changes the optimization objective, it is not as severe as replacing all function
values with a ranking and, thus, the update direction still corresponds to an approximated
natural gradient. An exact quantification of the error is subject to future work.

6. Experiments

In this section, we evaluate the performance of CAS-MORE5 in the black-box stochastic
search and episodic reinforcement learning setting. While we use the former to highlight the
applicability over a wide range of objective functions using as few samples as possible, it is
the episodic reinforcement learning domain where the core strengths of the algorithm come
into play. We start by looking at the performance in terms of sample efficiency on a set of

5. An implementation of the algorithm can be found under https://github.com/ALRhub/cas-more
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Hüttenrauch and Neumann

−4 −2 0 2 4
0

20

40

60

80

Excess kurtosis: 11.57

−4 −2 0 2 4
0

20

40

60

80

Excess kurtosis: 12.37

−4 −2 0 2 4
0

10

20

30

40

50

Excess kurtosis: 6.61

−4 −2 0 2 4
0

5

10

15

20

25

30

35

Excess kurtosis: 2.10

−4 −2 0 2 4
0

5

10

15

20

25

Excess kurtosis: 1.40

−4 −2 0 2 4
0

5

10

15

20

25

Excess kurtosis: 0.56

−4 −2 0 2 4
0

5

10

15

20

Excess kurtosis: 0.00

−4 −2 0 2 4
0

5

10

15

20

Final

Figure 4: This figure illustrates the robust target normalization scheme on 100 synthetic data
points, generated by a reward function y = −0.5xTx. We sample x from a two dimensional
multivariate normal distribution with zero mean and unit variance and pick 20 random y
values and add Gaussian noise with a standard deviation of 10. Plots from top left to bottom
right show histograms of the data after standardization of the input in each level of recursion
of the procedure. The excess kurtosis is measured on the black data points in the interval
(-3, 3) and only these data points are recursively treated again until the excess kurtosis of
the clipped data is below the threshold of 0.55. Finally, the bottom right histogram shows
the output with the red data points clipped to the minimum and maximum values of the
remaining data points. Note, that in each plot the standardized data has zero mean and
unit variance but the model quality suffers from the present outliers.
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black-box optimization benchmark functions provided by Hansen et al. (2021) and compare
CAS-MORE to the original formulation of MORE, as well as competitors such as CMA-ES
(Hansen, 2016) and XNES (Wierstra et al., 2014). Afterwards, we run our algorithm on a
suite of different episodic reinforcement learning tasks from the domain of robotics where
the fitness function evaluation is inherently noisy and we also care about the quality of the
generated samples (e.g., the sample evaluations should not damage the robot) instead of
plainly looking at the fitness evaluation at the mean of the search distribution. We compare
against state of the art episodic and step-based reinforcement learning algorithms.

6.1 Black-Box Optimization Benchmarks

The COCO framework (Hansen et al., 2021) provides continuous benchmark functions to
compare the performance of optimizers on problems with different problem dimensions. In
these deterministic problems, it is only important to find a good point estimate x∗. We
choose this benchmark to show that our algorithm is competitive with other black-box
optimizers in using as few samples as possible. In order to avoid the center-bias problem
(Kudela, 2022), the optimum of the objective function is randomly shifted away from zero
for each instance.

6.1.1 Experimental Setup

We evaluate MORE on the 24 functions of the Black-box Optimization Benchmark (BBOB)
(Hansen et al., 2009a) suite in dimensions 2, 3, 5, 10, 20 and 40. We run the experiments
without explicit optimization of the algorithm’s hyper parameters for individual functions.
Table 2 shows a set of default parameters which we found to robustly perform well on a
wide variety of benchmark functions in terms of the problem dimensionality n. Additionally,
we allow restarts of the algorithm with a larger population size whenever the optimization
process fails (see (Auger and Hansen, 2005)) until a budget of 10 000n function evaluations
is exceeded or the final target of 1× 10−8 is reached. Since MORE maximizes, we multiply
the function by -1 in order to minimize the objective.

6.1.2 Black-box Optimization Benchmarks

Figure 5 shows runtime results aggregated over function groups and on single functions in
dimension 20. Plotted is the percentage of targets reached within the interval 1× 102 to
1× 10−8 versus the log of objective function evaluations divided by the problem dimension-
ality. The further left a curve is, the quicker it reached a certain target. The first two rows
correspond to combined results on separable, moderate, ill-conditioned, multi-modal and
weakly structured multi-modal functions, as well as combined results from all 24 functions.
The third and fourth row shows results on selected individual functions.

We first notice that CAS-MORE has a significant advantage over the original formulation
of MORE on almost all functions. Furthermore, we can see that, especially on functions from
the group of moderate and ill-conditioned functions such as Ellipsoid, Rosenbrock or Bent
Cigar, CAS-MORE is able to improve state of the art results of competitors like CMA-ES
and XNES. On other functions on the other hand, for example the Attractive Sector function,
MORE has slower convergence. We found this shortcoming is mainly due to difficulties
estimating a good model for this objective (see also Figure 3b). Other hard functions include
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multi-modal functions such as the Rastrigin function, where MORE often focuses on a local
optimum. Here, the solution is to draw more samples in each iteration to improve the
estimated model. For more results on the BBOB suite we refer to Appendix D. Typically,
these black-box optimization benchmarks also focus purely on the fitness evaluation of the
mean of the distribution and disregard the quality of the samples. While CAS-MORE is
comparable to state-of-the-art black-box optimizers such as CMA-ES in these domains, the
real benefits of MORE appear if we consider problems with noisy fitness evaluations and
whenever we care also about the quality of the generated samples. This is for example the
case in robot reinforcement learning problems which are discussed in the next sub-section.

6.2 Episodic Reinforcement Learning Results

Our experiments aim to showcase the benefits of CAS-MORE over other black-box optimiza-
tion techniques in the episodic RL setting, as well as deep RL algorithms for the step-based
RL setting. To this end, we compare CAS-MORE to the original MORE algorithm that
uses the dimensionality reduction model, an intermediate algorithm labeled as MORE-LS
comprising of the same joint KL and entropy constraint as in MORE and the simplified
model learning approach as in CAS-MORE, and CMA-ES, representing black-box stochastic
search optimizers. Furthermore, we compare to policy gradient based episodic reinforcement
learning using movement primitives with and without trust regions (Otto et al., 2023)
labeled as BBRL-TRPL and BBRL-PPO, respectively. Note that these algorithms have
been developed for contextual episodic RL, which allows to learn a deep neural network
mapping from a context vector, which describes the task, to a motion primitive parameter
vector, which describes the corresponding robot motion. In this work, we concentrate on the
non-contextual case where we only have to learn a single Gaussian distribution. While this
case is arguably simpler, we show that CAS-MORE significantly outperforms trust-region
policy gradient based methods, showing the benefits of a closed form natural gradient update.
Finally, we compare with contemporary step-based deep RL algorithms such as PPO, SAC,
and TD-3. We run step-based PPO using approximately the same number of transitions as
the episode-based algorithms. For SAC and TD-3, we are limited by a 24 hour compute
budget and therefore report the performance after this budget is exceeded.

In our experiments, we analyze the performance of the mean the search distribution, as
well as other performance indicators such as success rates. The experiments are designed to
be non-contextual with unchanged starting configurations of the agent in a noisy environment.
For the episodic RL experiments, we use Probabilistic Movement Primitives (Paraschos et al.,
2013) to plan trajectories. A PD-controller provides the torques necessary to follow them.
For the step-based deep RL algorithms, we provide proprioceptive feedback in form of the
joint angles and joint velocities, as well as a normalized time-step to the agent. The policy
directly outputs the torques applied to the joints. For the BBRL and deep RL experiments,
we orient ourselves towards the hyper-parameters used in Otto et al. (2023). They are
provided in Appendix C. For more careful exploration, we set εµ = 0.05 and εΣ = 0.005 and
draw 64 samples per iteration for the episodic RL algorithms. Since we do not operate using
a very low number of new samples per iteration and the reward functions do not produce
large outliers, we can use the standard target normalization allowing for more exact natural
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6 Attractive sector

Figure 5: This figure shows the bootstrapped empirical cumulative distribution of the
number of objective function evaluations divided by dimension (FEvals/DIM) for 51 targets
with target precision in 10[−8..2] in 20-D representing the percentage of targets achieved
over the number of function evaluations. The results are averaged over 15 instances of each
function. As reference algorithm, the best algorithm from BBOB 2009 is shown as light thick
line with diamond markers. The first two rows show the aggregated results for all functions
and subgroups of functions. Additionally, we show the results of individual functions in the
third and fourth row. Big thin crosses indicate the used budget median for the respective
algorithm which is 10 000 n function evaluations for each trial of CAS-MORE. Runtimes to
the right of the cross are based on simulated restarts and are used to determine a runtime
for unsuccessful runs (Hansen et al., 2016c).
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Figure 6: This figure shows an illustration of the hole reacher task. The robot arms starts
upright and smoothly reaches down the narrow hole. The policy is learned using CAS-MORE
and shows a typical behavior that keeps a safe distance to the ground.

gradient updates. We report the results in terms of the interquartile mean (IQM) with a
95% stratified bootstrap confidence interval (Agarwal et al., 2021).

6.2.1 Hole Reacher

The first task is an advanced version of the holereaching task from Abdolmaleki et al. (2015)
that aims to show the difference between step-based and episodic reward formulations and
the benefits of maximizing the expected fitness. The end-effector of a 5-link planar robot arm
has to reach into a narrow hole without colliding with the ground or the walls of the hole.
The arm is controlled in joint-space by applying torques to each of the 5 joints. Each link
has a length of 1 m, the hole has a width of 20 cm, a depth of 1 m and is located 2 m away
from the robot’s base. For an illustration of a successful episode, see Figure 6. While the
simulation of the arm is rather crude, this experiment has other properties that emphasize
certain shortcomings of step-based RL, as well as rank-based optimization techniques. These
properties include two distinct regions of exploration where above ground level, the agent
can explore freely, while below the ground level even slight errors lead to a collision with the
walls of the hole. Additionally, the depth of the hole, which is a main contributor to the
reward function, is subject to noise in the noisy environment.

For the episodic RL setting, we learn the parameters of a ProMP with 3 basis functions,
resulting in 15 parameters to be optimized. An episode consists of 200 time steps and
in each iteration of the learning algorithm, we draw 64 new samples for the episodic RL
algorithms. The cost function of the task is composed of two stages. First, the distance of
the end-effector to the entrance of the hole is minimized, subsequently, the reward increases
the further down the end-effector reaches. The reward is scaled down with a constant
factor if the robot touches the ground. Additional penalty costs for acceleration ensure a
smooth and energy-efficient trajectory. This reward function is different from the original
MORE paper and is designed to highlight the risk awareness of the tested algorithms as
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the reward increases towards the bottom of the hole and then suddenly drops. The exact
reward function can be found in Appendix E.1.

We examine 4 different settings of this experiment where we highlight the consequences
of each choice on the learning process, namely

1. noise-free environment with dense in time reward,

2. noisy environment with dense in time reward,

3. noise-free environment with sparse in time reward,

4. noisy environment with sparse in time reward,

where in the noisy environment the perception of the depth of the hole is subject to noise6.
The difficulty of this task lies in the two distinct sectors above and below the ground level.
While above ground level, the agent can explore without negative consequences, it has to be
much more careful once navigating into the narrow hole. The results of these experiments
can be found in Figure 7. We plot the performance at the mean of the search distribution
in left column, the expected performance under the search distribution in the center left
column, the percentage of samples that collided with the ground in the center right column,
and the distance of the end-effector to the bottom of the hole at the end of the episode in
the right column. The result is averaged over 20 seeds for the episodic RL algorithms and
10 seeds for the step-based RL algorithms.

Dense in time reward We first examine the results of the experiment in the noise-free
environment with dense in time reward, the usual setting of current deep RL literature, in
the first row of Figure 7. When looking at the second column, we can see that CAS-MORE
optimizes towards a stable solution reaching into the ground that avoids collision with the
ground. While CMA-ES finds a solution that comes closer to the bottom of the hole (right
column) leading to a higher performance at the mean, it often draws samples that collide
with the walls during the optimization as can be seen in the center left column. Compared
to the original MORE algorithm, MORE-LS using a model based on our newly introduced
model learning approach leads to a similar performance as CAS-MORE. BBRL-TRPL also
performs similarly to CAS-MORE, yet, at the cost of much higher computation time. For
a comparison of run times, see also Table 1. PPO optimizes towards fast movement of
the end-effector in the direction of the entrance of the hole but fails to consistently reach
into it. When looking at individual learning curves, we found that it often finds policies
that successfully reach into the hole but soon after forgets this solution again. SAC, TD-3,
BBRL-PPO, and also the original MORE with the dimensionality reduction model fail to
find policies that reach into the ground in our experiments.

Next, we look at the results of the experiments in the noisy environment in the second
row of Figure 7. Compared to the noise-free experiment, we can see the biggest impact on
CMA-ES. CMA-ES again optimizes very fast towards the ground of the hole but due to the
noise it quickly ends up in a solution that collides with the ground. CAS-MORE, MORE-LS
and BBRL-TRPL on the other hand are hardly influenced by the noise in the environment
and still provide solutions that reach into hole, albeit maintaining a slightly larger distance

6. In the beginning of the episode, we sample the depth of the hole uniformly from (1.00± 0.02) m.
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Algorithm Median (s) Mean (s) Standard Deviation (s)

BBRL PPO 0.23196 0.25007 0.03200
BBRL TRPL 0.42725 0.43615 0.11009
CAS MORE 0.01095 0.01117 0.00191

CMA-ES 0.00601 0.00613 0.00192
MORE 2.24552 2.20081 0.36460

MORE LS 0.01070 0.01462 0.08261

Table 1: Runtime comparison for various episodic reinforcement learning algorithms. We
measure the time the algorithm takes for one iteration without the sampling process.

to the ground compared to the noise-less case. The results of the rest of the algorithms stay
more or less unchanged as they never get close to the ground.

Sparse in time reward As noted in Otto et al. (2023), a dense reward leads to a fast
movement and overall poor energy efficiency. Thus, a better task description for this task
is to only provide a distance-based reward in the last time-step and penalize high action
values in each time-step. Again, we first examine the noise-free environment results which
can be found in the third row of Figure 7. Even without noise, the results of CMA-ES
become inconsistent over individual seeds, while CAS-MORE consistently optimizes towards
well performing distributions. We assume this is the case as the distance between the
initialization of the movement primitive parameters and a well performing solution is quite
large. MORE-LS and BBRL-TRPL still find good solutions but perform slightly worse as
can be seen from the distance of the end-effector to the ground in the last column. All
step-based algorithms now fail to find good policies.

Last, we look at the results of the experiments in the noisy environment in the last
row of Figure 7. We can now see the full potential of optimizing the expected reward and
individual updates of the mean and covariance of the search distribution, as CAS-MORE
finds the policies with the best performance at the mean as well as the best performing
samples during the optimization process, with MORE-LS and BBRL-TPRL slightly below
them. CMA-ES now consistently produces policies that collide with the ground. Results for
all other algorithms remain poor.

6.2.2 Table Tennis

In the second task, we want to teach a 7 DoF Barrett WAM robotic arm a fore-hand smash.
The goal is to return a table-tennis ball and place it as close as possible to the far edge of
table on the opponent’s side. For this and all following experiments, we concentrate on the
noisy environment with sparse in time reward setting. Thus, in every episode, the ball is
initialized at the same position but the velocity in x-direction (approaching the robot) is
noisy. A robust strategy is to account for the uncertain velocity and aim for a spot that is
not too close to the edge. An illustration of a successful execution of the task can be found
in Figure 8.

We learn the parameters of a ProMP where we use 2 basis functions for each joint,
resulting in 14 parameters to be optimized. The weights of the movement primitive are
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Figure 7: This figure shows the results of the hole-reacher experiment. Plotted is the
expected performance of the mean in the left column, the mean of episode returns of the
samples drawn in each iteration in the center left column, the percentage of trajectories
that led to collisions with the ground in the center right column, and the distance of the
end-effector at the end of the trajectory in the right column. The first row contains the
results for the noise-less experiment with dense step-based reward, while the second row
shows the results of the noisy experiment with dense step-based reward. The third and
fourth row show the results for the noiseless and noisy experiments using a sparse episodic
reward, respectively.
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Figure 8: A successful episode of the table tennis task learned by CAS-MORE.
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Figure 9: This figure shows the results of the table tennis experiment. Plotted is the expected
performance of the mean in the left column, the mean of episode returns of the samples
drawn in each iteration in the center column, and the percentage of trajectories that led to
ball landing points within the last 10cm of the table in the right column.

initialized as zero, so that the robot needs to learn the movement from scratch. The reward
function is composed of three stages. First, the distance between the ball and the racket is
minimized to enforce hitting of the ball. Second, a term is added to minimize the distance
between the landing point of the ball and the far edge of the table. Once the ball lands
on the table, the reward increases with the distance of the ball. Note, that different from
the hole-reacher task, the reward for this task is non-Markovian as it depends on the
whole trajectory (Otto et al., 2023). In order to provide a step-based based reward for the
step-based RL algorithms, we run the simulation until the racket touches the ball while only
return the action cost. The rest of the episode is then simulated without agent interaction
and presented to the learning algorithm as one last time-step with the task reward as in Otto
et al. (2023). For more details on the environment, we refer the reader to Appendix E.2.
The reward function differs from Otto et al. (2023) to showcase the risk awareness of the
optimization algorithms, as the reward drops as soon as the ball flies past the table.

The results of the experiment are presented in Figure 9. We can again see that CAS-
MORE and MORE using the novel model learning approach produce the best results, this
time with a distinct advantage over both, step-based RL algorithms PPO, TD3 and SAC,
as well as gradient based episodic RL algorithms BBRL TRPL and BBRL PPO. Only
CAS-MORE is able to consistently return around 90% of the balls into the target zone
towards the edge of the table. CMA-ES and BBRL TRPL only produce distributions that
are able to return around 60% of the balls.
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Figure 10: A successful episode of the beerpong task learned by CAS-MORE.

0.0 0.25 0.5 0.75 1.0 1.25 1.5

·107

0

2

4

6

Environment interactions

R
ew

ar
d

0.0 0.25 0.5 0.75 1.0 1.25 1.5

·107

0

2

4

6

Environment interactions

E
x
p
ec
te
d
re
w
a
rd

0.0 0.25 0.5 0.75 1.0 1.25 1.5

·107

0

0.2

0.4

0.6

0.8

1

Environment interactions

S
u
cc
es
s
ra
te

CAS-MORE MORE MORE LS CMA-ES BBRL-TRPL BBRL-PPO PPO SAC TD-3

Figure 11: This figure shows the results of the beerpong experiment. Plotted is the expected
performance of the mean in the left column, the mean of episode returns of the samples
drawn in each iteration in the center column, and the percentage of successful throws where
the ball landed in the cup in the right column.

6.2.3 Beerpong

We use the same simulated robot as before to throw a ball towards a table where it first
needs to bounce at least once and then fly into a cup. The task is depicted in in Figure 10.
As the robot has no actuated end-effector and the ball is directly attached to the robot’s last
joint, we only need to actuate the first 6 joints, resulting in a 12 dimensional search space
for the episodic RL algorithms. In this experiment, the ball release is noisy and designed in
a way that it is not possible to find a conservative strategy. The noise will always cause
some trials to miss the cup. The results can be found in Figure 11.

Overall, CAS-MORE again provides the best trade-off between convergence speed and
task performance. Interestingly, the original MORE performs better than MORE using
the least squares model while the step-based reinforcement learning tasks fail to find any
good strategy. This experiment also shows the benefits of trust-region optimization, as
BBRL-PPO starts to approach a good strategy but then fails due to, presumably, too
aggressive policy updates.

6.2.4 Hopper Jump

The last task we consider is a modified version of the Hopper task from OpenAI gym
(Brockman et al., 2016) where the agent is rewarded for jumping onto a box. To this end,
we place a box in front of the Hopper and use an updated reward function Appendix E.4. In
the simulation, the initial distance to the agent and height of the box are subject to noise.
For the episodic RL experiments, we choose 3 basis functions for each of the 3 degrees of
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Figure 12: A successful episode of the hopper jump task learned by CAS-MORE. At first,
the agent fully bends to then release into a fully extended jump. This way, it can reach a
safe height not risking contact with the box’s edge.
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Figure 13: This figure shows the results of the hopper jump experiment. Plotted is the
expected performance of the mean in the left column, the mean of episode returns of the
samples drawn in each iteration in the center column, and the percentage of successful
throws where the ball landed in the cup in the right column.

freedom, resulting in 9 parameters to be optimized. Compared to the original version of
the Hopper task, it is very difficult for step-based reinforcement learning algorithms, since
a successful strategy requires broad exploration and involves tucking by bending the knee
joint and an explosive move upwards to gain enough momentum to reach the top of the box.
An illustration of this behavior can be found in Figure 12

The results are presented in Figure 13. We first observe, that only CAS-MORE, MORE
LS and BBRL TRPL are able to solve the task. Again, CAS-MORE finds good solutions
more robustly than MORE LS, as indicated by the confidence interval, and more efficient in
terms of samples and in terms of computation time compared to BBRL TRPL. CMA-ES
again quickly optimizes towards a solution but soon fails once the noise has a direct impact
on the trajectory of the agent. All other algorithms hardly find policies that produce jumping
strategies.

7. Conclusion

In this paper, we presented CAS-MORE, a new version of Model-based Relative Entropy
Stochastic Search, based on a coordinate ascent strategy on the mean and covariance of
the search distribution and an adaptive entropy schedule. Additionally, we provide an
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improved model fitting process that is computationally more efficient and show how to deal
with objective functions that produce large outliers. We show how the parameter updates
follow the direction of the natural gradient and, as the model estimation is not based on
rankings of objective function values, we truly optimize the expected fitness under the search
distribution. The result is a robust risk-aware optimization which we show to outperform
state of the art algorithms such as CMA-ES on stochastic search task, as well as episodic and
step-based reinforcement learning tasks, especially on noisy episodic reinforcement learning
tasks.

Limitations and Future Work Arguably the biggest limitation of CAS-MORE is the
restriction to the non-contextual setting. However, we believe that CAS-MORE still is
a valuable tool in the prototyping stage of a more complex contextual problem, or if the
problem at hand is non-contextual. Here, the robustness and speed of the algorithm provide
a large benefit over more complex algorithms. In addition, the algorithm can easily be
extended for small context spaces with low-dimensional contexts using a linear mapping
from the context to the mean.
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Appendix A. Derivation of CA-MORE Dual

Before we solve the optimization problems, we will first state the closed-form solution of
the objective and KL-divergence using a quadratic model under multi-variate Gaussian
distributions. The solution to the objective is given by

∫
x
π(x)f̂(x)dx = −1

2
µTAµ− 1

2
tr(AΣ) + µTa+ a0

and the KL-divergence between two Gaussian distributions is given by

KL(π ‖ πt) =
1

2

{
(µt − µ)TΣ−1

t (µt − µ)

+tr(Σ−1
t Σ)− k + log |Σt| − log |Σ|

}
.
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Hüttenrauch and Neumann

A.1 Mean Update

Setting Σ = Σt, the optimization problem is given by

maximize
µ

− 1

2
µTAµ+ µTa

subject to
1

2
(µt − µ)TΣ−1

t (µt − µ) ≤ εµ

and the Lagrangian is given by

L(µ, λ) = −1

2
µTAµ+ µTa

+ λ

(
εµ −

1

2
(µt − µ)TΣ−1

t (µt − µ)

)
where λ is a Lagrangian multiplier. The optimal solution µ∗ in terms of the Lagrangian
multipliers can be found by differentiating L with respect to µ and setting it to 0, i.e,

∂L

∂µ
= −Aµ+ a+ λΣ−1

t (µt − µ)
!

= 0.

Using the solution λ∗,

µ∗ = (λ∗Σ−1
t +A)︸ ︷︷ ︸

Mµ(λ∗)

−1 (λ∗Σ−1
t µt + a)︸ ︷︷ ︸
mµ(λ∗)

= Mµ(λ∗)−1mµ(λ∗)

After rearranging terms, the dual problem for the mean is given by

gµ(λ) = λεµ +
1

2

(
mµ(λ)TMµ(λ)−1mµ(λ)

− λmT
t M

−1
t mt

)
.

A.2 Covariance Update

Analogously, we set µ = µt. The optimization problem for the covariance is given by

maximize
Σ

− 1

2
tr(AΣ)

subject to
1

2

(
tr(Σ−1

t Σ)− k + log |Σt| − log |Σ|
)
< εΣ

and the Lagrangian for the covariance matrix optimization is given by

L(Σ, ν) = −1

2
tr(AΣ)

+ ν

(
εΣ −

1

2

(
tr(Σ−1

t Σ)− k + log |Σt| − log |Σ|
))

where ν is again a Lagrangian multiplier. The optimal solution Σ∗ can be found analogously
and is given by

∂LΣ

∂Σ
= −1

2
A− 1

2
νΣ−1

t +
1

2
νΣ−1 !

= 0.
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With the solution νast,

Σ∗ =
(
(ν∗Σ−1

t +A)/ν∗
)︸ ︷︷ ︸

S(ν∗)

−1 = S(ν∗)−1.

After rearranging terms again, the dual for the covariance is given by

Λ(ν) =
νΣ−1

t +A

ν
.

Appendix B. Robust Target Normalization

In reinforcement learning, a reward function that accurately describes the task and is easy
to optimize is not always given. Here, we want to demonstrate that even with a reward
function that includes large jumps, using a robust target normalization scheme leads to good
results. To this end, we use a different reward function formulation for the hole-reacher task
from Section 6.2.1. The reward in this case is defined as the negative squared distance to a
target point at the bottom of the hole minus a large penalty whenever the robot hits the
ground. We leave the depth at -1 to focus on the effects of target normalization. Figure 14
shows the negative reward (the cost) on a log-scale and we compare CAS-MORE using
mean/std normalization and robust mean/std normalization. A cost of 1 corresponds to
the end-effector of the robot moving close to the entrance of the hole but failing to reach
inside. Only robust normalization is able to capture both, the task reward and the penalty,
and guides the robot to reach down the hole. We provide pseudo-code for the robust target
normalization technique in Algorithm 1.

Algorithm 1 Robust target normalization

1: procedure Normalize(Y) . Robust normalization of targets

2: ȳY ← 1
|Y|
∑|Y|

q yq

3: σY ←
√

1
|Y|
∑|Y|

q (yq − ȳY)2

4: y ← y−ȳY
σY

. Standardize all elements in Y
5: I ← −vclip < y < vclip . Boolean mask of all elements in Y that are in (−vclip, vclip)
6: S ← {y ∈ Y | −vclip < y < vclip} . All elements in Y that are in (−vclip, vclip)
7: k ← Kurt[S]− 3 . Excess kurtosis of the elements in S
8: if k > 0.55 and σY 6= 1 then
9: Y(I)← Normalize(S) . Normalize elements in S

10: end if
11: Y ← clip(Y,min(Y(I)),max(Y(I))
12: return Y
13: end procedure

Appendix C. Hyper-Parameters

We provide default hyper-parameters for CAS-MORE in terms of the problem dimensionality
n in Table 2 which we empirically found to work well over all benchmark functions. For
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Figure 14: Comparison of mean/std normalization and robust normalization on a penalty
based reward function for the hole-reaching task.

Table 2: Empirically found default hyper-parameters for CAS-MORE based on the problem
dimensionality n.

Parameter Default Value

K: Population size 4 + b3 log(n)c
Qmax: Maximum queue size max{d1.5(1 + n+ n(n+ 1)/2)e, 8(n+ 1)}
εµ: Trust-region for the mean 0.5

εΣ: Trust-region for the covariance 1.5
10+n1.5

cσ: Smoothing factor of evolution path 1
2+n0.75

vclip: Clip value for robust normalization 3

Excess kurtosis threshold 0.55

some functions, a higher bound on the mean often leads to quicker convergence but may
result in divergence for others.

Table 3 provides the chosen hyper-parameters for the step-based deep RL experiments
(PPO, SAC, TD3), as well as the BBRL experiments. Note, that samples per iteration
corresponds to tuples (s, a, r, s′) in the step-based case, and whole trajectories in the BBRL
case.

Appendix D. Black-box Optimization Benchmarks

Results from experiments according to Hansen et al. (2016b) and Hansen et al. (2016a) on
the benchmark functions given in Finck et al. (2009); Hansen et al. (2009a) are presented in
Figures 15 to 17. The experiments were performed with COCO (Hansen et al., 2020), version
2.4.1.1, the plots were produced with version 2.4.1.1. The expected runtime (ERT),
used in the figures and tables, depends on a given target function value, ft = fopt + ∆f ,
and is computed over all relevant trials as the number of function evaluations executed
during each trial while the best function value did not reach ft, summed over all trials and
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Table 3: Hyper-parameters for the deep RL and BBRL experiments.

PPO SAC TD3 BBRL-PPO BBRL-TRPL

samples per iteration 16000 1 1 64 64
GAE λ 0.95 n.a. n.a. n.a. n.a.
discount factor 0.99 0.99 0.99 n.a. n.a.

εµ n.a. n.a. n.a. n.a. 0.05
εΣ n.a. n.a. n.a. n.a. 0.005

optimizer adam adam adam adam adam
epochs 10 n.a. n.a. 100 100
learning rate 3e-4 3e-4 3e-4 1e-3 3e-4
use critic True True True False False
epochs critic 10 n.a. n.a. n.a. n.a.
learning rate critic 3e-4 3e-4 3e-4 n.a. n.a.
learning rate alpha n.a. 3e-4 n.a. n.a. n.a.
warm up steps 0 10000 25000 0 0
minibatch size 512 n.a. n.a. 64 64
batch size n.a. 256 256 n.a. n.a.
buffer size n.a. 1e6 1e6 n.a. n.a.
polyak weight n.a. 5e-3 5e-3 n.a. n.a.

normalized observations True False False False False
normalized rewards True False False False False
critic clip 0.2 n.a. n.a. 0.2 n.a.
importance ratio clip 0.2 n.a. n.a. 0.2 n.a.

hidden layers [256, 256] [256, 256] [256, 256] n.a n.a
hidden layers critic [256, 256] [256, 256] [256, 256] n.a. n.a.
hidden activation tanh ReLU ReLU n.a. n.a.
initial std 0.6 1.0 0.1 1.0 1.0

divided by the number of trials that actually reached ft (Hansen et al., 2012; Price, 1997).
Statistical significance is tested with the rank-sum test for a given target ∆ft using, for
each trial, either the number of needed function evaluations to reach ∆ft (inverted and
multiplied by −1), or, if the target was not reached, the best ∆f -value achieved, measured
only up to the smallest number of overall function evaluations for any unsuccessful trial
under consideration.
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Appendix E. Episodic RL

In this section, we provide additional information and reward functions for the episodic RL
tasks. The action cost for all tasks is given by

τt =
K∑
i

(ait)
2.

E.1 Holereaching

The reward function is composed of two phases. In the first phase, the distance dg = ‖pt−pg‖
of the position of the end-effector pt = (xee,t, yee,t) to a goal point pg = (2,−0.1) below the
entrance of the hole is minimized. Afterwards, the reward scales linearly with the absolute
value yee,t of the end-effector. The task ends if either t = 200 or a collision happens. In the
deterministic case, the hole has a depth of 1 m, while in the stochastic case, the depth is
sampled uniformly from U(0.98 m, 1.02 m). The task reward is given by

Rtask =


ccoll exp (−dg) if a collision happened or t = T ,

exp (−dg) if yee,t ≥ 0 and no collision happened,

1 + |yee,t| if yee,t < 0 and no collision happened

where ccoll = 0.25 if there is a collision and ccoll = 1 otherwise.

Dense reward. The dense reward is given in each time-step by

rt = Rtask − 0.01τt

Sparse reward. The sparse reward only returns the task reward in the terminal time-step
T which can either be the last time-step of the episode or the time-step where a collision
happens and is given by

rt =

{
−0.001τt if t < T,

Rtask − 0.001τt if t = T.

E.2 Table Tennis

In the table tennis task, the episode starts with a fixed ball position and velocity. In order to
add stochasticity to the environment, we add noise to the initial velocity in x-direction (i.e.,
along the long edge of the table tennis table). The task is to hit the ball so that it lands
close to the opponent’s side short edge of the table. The reward function is non Markovian
and is based on the minimum distance db,r = mint‖pb,t − pr,t‖ between the ball position pb,t
and the racket position pr,t, the minimum distance db,g = mint‖pb,t − pg‖ between the ball
position and a goal point pg = (−1.3, 0, 0.77), and the distance dl,e = |pl,x − pg,x| between
the x-coordinate of the ball landing position pl and x-coordinate of the opponent’s edge
pg,x = −1.3 within an episode. We use the transformation

ρ(x) = 1− x

1 + x
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to convert large distances to a value of 0 and small distances to a value of 1. The task
reward is given as

Rtask =


0.2ρ(db,r) if ball was not hit,

0.5ρ(db,r) + ρ(db,g) if ball was hit but landed on floor,

2ρ(db,r) + 3ρ(dl,e) if ball was hit, landed on the table and pl,x ≥ −1.25 ,

5ρ(db,r) + 10|pl,x| if ball was hit, landed on the table and pl,x < −1.25

and we consider a trajectory to be successful if the ball lands within 10cm of the opponent’s
side edge of the table. We use the sparse-in-time reward

rt =

{
−0.001τt if t < T,

Rtask − 0.001τt if t = T.

E.3 Beerpong

In the table beerpong task, the episode starts with the ball attached to the end-effector of
the arm. In order to add stochasticity to the environment, we add noise to the velocity at a
pre-defined fixed time-step of the release of the ball. For a successful throw, the ball first
needs to bounce once on the table and then land inside the cup. The reward function is
again non Markovian and is based on the final distance db,c,T = ‖pb,T − pc‖, and on the
minimum distance db,c = mint‖pb,t − pc‖ between the ball position pb,t and the center of
the cup pc within an episode. With the same transform ρ(x) as before, the task reward is
given by

Rtask =


0.2ρ(db,c) + 0.1ρ(db,c,T ) if ball first has contact with anything but the table,

ρ(db,c) + 0.5ρ(db,c,T ) if ball first has contact w. the table but is not in cup,

ρ(db,c) + 2ρ(db,c,T ) + 1 if ball is in cup, without contact with the table,

ρ(db,c) + 2ρ(db,c,T ) + 3 if ball is in cup and had contact with the table before.

The sparse-in-time reward is given by

rt =

{
−0.1τt if t < T,

Rtask − 0.1τt if t = T.

E.4 Hopper Jump

The task reward for the hopper task is composed of a reward term for jumping as high as
possible and a distance minimization term to the center of top of the box. Additionally,
bonuses are added for successfully landing upright and landing on the box. High velocities,
as well as joint angles that lead to falling over on the box result in a penalty. We record
the maximum height hmax of the agent’s torso during an episode, the minimum distance
df,c = mint‖pf,t − pc‖ and final distance df,c,T = ‖pf,T − pc‖ between the agent’s foot
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position pf and the top center of the box pc. The individual reward terms are given as

Rheight =


5hmax if hmax < 2,

10 + hT if hmax ≥ 2 and agent did not fall after landing on the box,

2hmax if agent is on box but falling over,

Rdist =

{
−5 if hmax < 2,

−5df,c,T if hmax ≥ 2,

Rmin dist = −2df,c

Rhealthy =

{
1 if zT ∈ [0.7,∞], φ ∈ [−∞,∞] and θ, θ̇,∈ [−100, 100],

0 else,

Rbox =

{
5 if agent is on box and hT > 1.6,

0 else,

Rbox vel =

{
−min(10v2

x, 1) if agent is on box,

0 else.

The task reward is given as

Rtask = Rheight +Rdist +Rmin dist +Rhealthy +Rbox +Rbox vel.

and the total reward for each time step is given as

rt =

{
−10−4τt if t < T,

Rtask − 10−4τt if t = T.
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Figure 15: Expected running time (ERT in number of f -evaluations as log10 value), divided
by dimension for target function value 10−8 versus dimension. Slanted grid lines indicate
quadratic scaling with the dimension. Different symbols correspond to different algorithms
given in the legend of f1 and f24. Light symbols give the maximum number of function
evaluations from the longest trial divided by dimension. Black stars indicate a statistically
better result compared to all other algorithms with p < 0.01 and Bonferroni correction
number of dimensions (six). Legend: ◦: CAS-MORE, ♦: MORE, ?: CMA-ES, O: xNESas.
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Figure 16: Bootstrapped empirical cumulative distribution of the number of objective
function evaluations divided by dimension (FEvals/DIM) for 51 targets with target precision
in 10[−8..2] for all functions and subgroups in 5-D. As reference algorithm, the best algorithm
from BBOB 2009 is shown as light thick line with diamond markers.
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Figure 17: Bootstrapped empirical cumulative distribution of the number of objective
function evaluations divided by dimension (FEvals/DIM) for 51 targets with target precision
in 10[−8..2] for all functions and subgroups in 20-D. As reference algorithm, the best algorithm
from BBOB 2009 is shown as light thick line with diamond markers.
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Figure 18: Empirical cumulative distribution of simulated (bootstrapped) runtimes,
measured in number of objective function evaluations, divided by dimension (FEvals/DIM)
for the 51 targets 10[−8..2] in dimension 5.

39
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