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Abstract
We consider parsimonious modeling of high-dimensional multivariate additive models using
regression splines, with or without sparsity assumptions. The approach is based on treating
the coefficients in the spline expansions as a third-order tensor. Note the data does not have
tensor predictors or tensor responses, which distinguishes our study from the existing ones.
A Tucker decomposition is used to reduce the number of parameters in the tensor. We also
combined the Tucker decomposition with penalization to enable variable selection. The
proposed method can avoid the statistical inefficiency caused by estimating a large number
of nonparametric functions. We provide sufficient conditions under which the proposed
tensor-based estimators achieve the optimal rate of convergence for the nonparametric
regression components. We conduct simulation studies to demonstrate the effectiveness of
the proposed novel approach in fitting high-dimensional multivariate additive models and
illustrate its application on a breast cancer copy number variation and gene expression data
set.
Keywords: High dimensionality; Sparse models; Splines; Tensor estimation; Tucker
decomposition.

1 Introduction

Linear regression is one of the oldest and the most popular statistical tools used for relating
predictors to a continuous response. It imposes the strict assumption that the effect between
any predictor and the response is linear, which may not be satisfied in some applications
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(Liu et al., 2011). Semiparametric models such as those with additive structures also have
a long history in statistics and have been actively investigated (Stone, 1985, 1986). The
additive form in the conditional mean circumvents the curse of dimensionality problem in
nonparametric regression. They are more parsimonious than fully nonparametric models
that are difficult to fit when the number of predictors p is larger than three (Stone, 1980),
and more flexible than linear models by not constraining the relationships to be linear.

In the multivariate additive regression problem, we assume the generating model

yil = µl +

p∑
j=1

fjl(xij) + ϵil, i = 1, . . . , n, l = 1, . . . , q, (1)

where yi = (yi1, . . . , yiq)
T are the q responses, xi = (xi1, . . . , xip)

T are the p predictors, and
ϵi = (ϵi1, . . . , ϵiq)

T are the mean zero errors for the q responses which can be correlated.
The functions fjl are used to model the relationship between the j-th predictor xij and the
l-th response yil. The goal is to estimate these unknown functions based on the sample. If
we impose the constraint that fjl is a linear function (with unknown linear coefficient), this
reduces to the standard linear regression model. On the other hand, the fully nonparametric
model is given by

yil = µl +

p∑
j=1

fl(xi1,...,xip) + ϵil, i = 1, . . . , n, l = 1, . . . , q,

which involves the estimation of q p-dimensional functions fl, l = 1, . . . , q. It is well-known
that the sample size required to estimate a p-dimensional function for p large is excessive
(Stone, 1980). Thus in practice nonparametric regression is rarely used for p > 3. More
concretely, for univariate response (q = 1), if we use the spline estimator to estimate the
functions and the number of basis functions for each dimension is K, for estimating a p-
dimensional function, the number of parameters is Kp, while the number of parameters for
additive models is Kp (He and Shi, 1996). Thus, for nonparametric regression, the number
of parameters increases exponentially fast with dimension, and in this sense we say the
semiparametric additive model is more parsimonious.

In this work, we allow both q and p to be diverging with the sample size. The additive
model has a well-known identifiability issue in the sense that adding a scalar c to fjl and
subtracting the same c from fj′l for some j′ ̸= j leads to the same regression function. In
other words, without additional assumptions, fjl can only be estimated up to an arbitrary
constant. Thus we take up the standard identifiability assumption

∫
fjl(x)dx = 0 which is

commonly used (Liu et al., 2011; Fan et al., 2014). This constraint can be enforced easily
for the spline estimation approach as we detail in Section 2.1.

Even in semiparametric models which already partially addressed the problem of curse
of dimensionality to some extent, we may still have a large number of univariate functions
to estimate, raising efficiency and stability concerns of the statistical estimation. One can
take advantage of the widely adopted concept of sparsity to alleviate the problem, which
works under the assumption that some covariates do not have effects on the responses. Thus
it is desired to find and remove those covariates either for efficiency reasons or to make the
model more easily interpretable. Such zero components in additive models can be found by
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optimizing a penalized functional as in Xue (2009); Ravikumar et al. (2008); Meier et al.
(2009); Huang et al. (2010); Wang et al. (2011), even in the ultra-high dimensional setting.

The assumption of sparsity has been shown to be valuable in the literature. A different
scenario for additive models is that although all component functions are nonzero, the
functions are similar or related in some sense so that one can borrow information among
the functions when simultaneously estimating them. Motivated by this, we herein propose
a different route to achieving further parsimony in multivariate additive models, which can
also be combined with the working assumption of sparsity to take advantage of both worlds.

For fitting additive models, popular approaches include kernel methods and splines
(Linton and Nielsen, 1995; Liu et al., 2011). However, kernel methods are hard to be adapted
to the high-dimensional setting due to its high computational cost, as discussed in Liu et al.
(2011). In the high-dimensional setting, all existing studies with implementation based on
the series estimation method are based spline methods (Meier et al., 2009; Huang et al., 2010;
Fan et al., 2014). Thus we focus on B-spline approach in this paper. After approximating
all component functions using splines, we will see the spline coefficients naturally organize
themselves into the form of a third-order tensor. Then the way to parsimonious modelling
is to assume that the tensor has a low rank. Conceptually, low-rankness of tensors can be
regarded as a higher-order extension of low-rankness of matrices, and the latter has become
common in the statistics community for decades. In particular, reduced rank regression
(Izenman, 1975; Geweke, 1996; Anderson, 1999; Bunea et al., 2011; Chen et al., 2013) is
built upon the assumption that the coefficient matrix has a low rank in multivariate linear
regression. When the covariates are matrices, which appear naturally in applications such as
medical imaging, Negahban and Wainwright (2011); Zhou and Li (2014) used low-rankness
assumption in such matrix regression problems. As a direct extension, when the covariates
or responses or both are higher-order tensors, Zhou et al. (2013); Raskutti et al. (2017); Sun
and Li (2017); Sun et al. (2017) used either sparsity or low-rankness or both assumptions
for tensors. All these models concerned are parametric models.

Tensor estimation has received increasing attention recently in the statistical community,
for example in Zhou et al. (2013); Sun et al. (2017); Miranda et al. (2015); Raskutti et al.
(2017) to name a few among possibly many others. In all these works, parametric models
are considered and tensor structure appears naturally due to that either the responses or
the covariates are tensors. The current study is fundamentally different from those in that
the model we study is semiparametric. The covariates and responses are random vectors as
in all traditional statistical problems instead of being tensors. The tensor structure arises
only after using the series estimation approach for fitting the semiparametric model. Thus
our study reveals a new class of statistical problems in which tensor estimation can play
a role. We also provide an implementation of the proposed method through a publicly
available R package tensorMAM (https://github.com/xliusufe/tensorMam). Our main
contributions are summarized as follows.

• First, methodologically, we proposed a new estimation approach for semiparametric
additive models based on tensor decomposition, to reduce the number of parameters to
be estimated. Although both tensor regression and additive models are widely studied
already, this combination is novel in that we have identified a class of classical models
that appears to have nothing to do with tensor regression and use tensor techniques
to improve the estimation performance.
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• Second, we establish the statistical theory for the proposed estimator, which clearly
shows the role of the reduced number of parameters resulting in an improved conver-
gence rate. When further combined with penalization, we establish the oracle prop-
erty of the sparse estimator. In particular, to show the improved convergence rate, we
need to use empirical processes techniques and Dudley’s integral bound which were
not necessary in previous works on high-dimensional additive models based on splines.

• Finally, we numerically compare the proposed estimator with existing methods for
fitting high-dimensional additive models, including the traditional method without
using low-rank factorization, and some more recent methods based on matrix decom-
position (see also Section 2.3). We show that our method has clear advantages in
some settings.

To be self-complete, in the last part of the introduction, we introduce some notation and
operations involving tensors (Kolda and Bader, 2009). Suppose T = {ti1...iN } ∈ RI1×···×IN

is a tensor of order N . The only norm of a tensor used in this paper is the squared root
of the sum of squares of all its elements, i.e., ∥T∥ =

√∑I1
i1=1 · · ·

∑IN
iN=1 |ti1···iN |2, which is

called the Frobenius norm. A fiber of T is defined by fixing all indices but one, assumed to
be oriented as column vectors. Slices are two-dimensional sections of a tensor, obtained by
fixing all but two indices. Matricization is the process of reordering the elements of a tensor
into a matrix. In particular, the mode-n matricization of T, denoted by T(n), arranges
the mode-n fibers to be the columns of the resulting In × (I1 · · · In−1In+1 · · · IN ) matrix.
More specifically, the tensor element (i1, i2, . . . , iN ) is mapped to matrix element (in, j),
where j = 1 +

∑N
k=1,k ̸=n(ik − 1)Jk with Jk =

∑N
m=1,m ̸=n Im. Tensors can be multiplied

together, and in this paper we only use the mode-n product of a tensor with a matrix. For
a matrix U = {uji} of size Jn × In, the mode-n product of T and U, denoted by T×n U is
a tensor of size I1×· · ·×In−1×Jn×In+1×· · ·×IN , with elements (T×nU)i1···in−1jin···iN =∑

in
ti1···iNujin . For later use, we mention the property that for n-th order tensors S and

T,

T = S×1A1×2A2 · · ·×N An ⇔ T(n) = AnS(n)(AN ⊗· · ·⊗An+1⊗An−1⊗· · ·⊗A1)
T, (2)

where ⊗ denotes the Kronecker product of matrices.
The rest of the article is organized as follows. In Section 2 we present our methodology

based on B-splines expansion and Tucker decomposition for tensors. We then discuss in de-
tail the relationship between our approach and some other existing ones. We also establish
the convergence rate of the estimator. In Section 3, variable selection based on sparsity as-
sumption is further incorporated so that we can deal with even larger dimensions. Section 4
discusses the computational algorithm based on group coordinate descent. Section 5 reports
our simulation studies and an empirical application. We conclude with some discussions in
Section 6. The proofs are given in the Appendix. The Appendix also contains a table of
notations for ease of reference.
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2 Tensor estimation of multivariate additive models

2.1 B-spline for component functions

First we describe the spline approximation for component functions. Without loss of gen-
erality, we assume the support of xij is [0, 1] for j = 1, . . . , p. Let 0 = ν0 < ν1 < · · · <
νK′−1 < νK′ = 1 be a partition of [0, 1] into K ′ subintervals Ik′ = [νk′ , νk′+1), k

′ = 0, . . . ,K ′,
where K ′ increases with sample size n. In this paper, we simply take equally spaced knots
(i.e., νk = k/K ′), while other data-driven choices of knots, for instance placing knots at
sample quantiles of the observed values, may also be suitable.

Denote by Sn the space of polynomial splines of order t ≥ 2. Any function f(·) from
Sn satisfies: (i) on each Ik′ , 1 ≤ k′ ≤ K ′, f(·) is a polynomial of degree t − 1; (ii) f(·) is
globally t − 2 times continuously differentiable on [0, 1]. See the definition in Schumaker
(2007) or Stone (1985). The collection of splines on [0, 1] with a fixed sequence of knots
has a B-spline basis B(x) := {B1(x), . . . , BK′+t(x)}, which means that functions in Sn

are of the form
∑K′+t

k=1 akBk(x) for some ak ∈ R. We assume the basis is scaled to have∑K′+t
k=1 Bk(x) =

√
K ′ + t. Such normalization is not essential, but adopted to simplify some

expressions in theoretical deductions later. In addition, we will then have the eigenvalues
of

∫ 1
0 B(x)BT(x)dx bounded away from zero and infinity, while if using the basis with∑K

k=1Bk(x) = 1 we would have the eigenvalues being of order O((K ′)−1). Finally, to take
into account the identifiability constraint

∫
fjl(x)dx = 0, we center the basis functions to

be b(x) = (b1(x), . . . , bK(x))T with K = K ′ + t − 1 and bk(x) = Bk(x) −
∫ 1
0 Bk(x)dx.

Due to centering, the basis functions become linearly dependent and thus one of them, for
specificity the last one, is removed.

Recall that in the multivariate model (1), the aim is to estimate the unknown functions
fjl, j ∈ {1, . . . , p}, l ∈ {1, . . . , q}. Using splines, we approximate fjl(x) ≈ bT(x)djl where
djl = (dj1l, . . . , djKl)

T. When K increases with the sample size n at a reasonable order, the
approximation error can be well controlled. For example, if fjl is d times differentiable, it is
known that there exist coefficients djkl such that |fjl(x)−bT(x)djl| = O(K−d) (Schumaker,
2007). In other words, as K → ∞, the approximation can converge to zero, although in
practice, it is rare to use K beyond 10 (Huang et al., 2010; Fan et al., 2014). Stone
(1985) studied spline estimator for additive models with a fixed p and showed that the
spline estimator can achieve the optimal convergence rate for functions in the Hölder class.
However, when p and/or q are large, there are a large number of nonparametric functions to
estimate, which makes statistical estimation inefficient unless the sample size is very large.

2.2 Spline coefficients as a low-rank tensor

We propose a natural and general framework for dimension reduction in multivariate ad-
ditive models, by treating D = {djkl} as a third-order tensor and using an appropriate
definition of low-rank tensors to achieve dimension reduction in the estimation.

Among many possible tensor decompositions proposed in the literature, CP decompo-
sition and Tucker decomposition are the two most popular ones, both of which can be
considered to be higher-order generalizations of the matrix singular value decomposition.
Although in principle either of them can potentially be used to reduce the dimension of
D, we focus on Tucker decomposition here since it is more closely related to singular value
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decomposition for matrices and thus more easily interpretable (de Lathauwer et al., 2000).
Furthermore, several existing dimension reduction approaches in the recent literature can
be regarded as special cases of using Tucker decomposition, as we will explain later in Sec-
tion 2.3. However, none of these studies take advantage of the natural tensor structure of
D but instead treat it as a low-rank matrix after a certain matricization operation.

The Tucker decomposition for the third order tensor D can be written as

D = S×1 A×2 B×3 C. (3)

Without further constraints, the above decomposition can be trivial in that we can always
choose S = D and take A,B and C to be identity matrices. Such a decomposition is
obviously useless. Under the low-rank assumption, we assume that the size of S is smaller
than that of D. More specifically, the low-rank assumption imposes that D of size p×K×q
can be decomposed into a core tensor S of size r1 × r2 × r3 multiplied by a matrix along
each mode, with A,B,C of sizes p × r1, K × r2 and q × r3, respectively. Such a low-
rank assumption on tensors can be regarded as an extension of the low-rank assumption
for matrices used in reduced-rank regression, in which a p × q matrix is assumed to be
decomposable as the product of a p× r and a r × q matrix.

Note that the Tucker decomposition is not unique since for any non-singular square
matrices U,V,W of suitable dimensions, we have

S×1 A×2 B×3 C = (S×1 U×2 V ×3 W)⊗1 (AU−1)×2 (BV−1)×3 (CW−1). (4)

This decomposition also means that we can, when necessary, assume that A, B, C are
orthogonal matrices, which will be convenient for some of our analysis later. Informally,
the number of parameters to be estimated (degrees of freedom) in (3) is pr1 +Kr2 + qr3 +
r1r2r3−r21−r22−r23, which can be much smaller than the number of elements pKq in D. To
see this, for simplicity we first assume the upper r1 × r1 block of A is nonsingular and then
by (4), we can assume without loss of generality that A takes the form A = [Ir1×r1 A1]

T.
Thus in the estimation of A, we only need to estimate the pr1 − r21 parameters in A1. The
number of free parameters in A is thus pr1 − r21. Similarly, the number of free parameters
for B and C are Kr2 − r22 and qr3 − r23, respectively. Thus the total number of free
parameters, that is, the number of parameters to be estimated in S ×1 A ×2 B ×3 C, is
pr1 + Kr2 + qr3 + r1r2r3 − r21 − r22 − r23, where r1r2r3 is the number of parameters in S.
This value of degrees of freedom is also more rigorously established in terms of the entropy
number in the asymptotic analysis below.

Let D(r1, r2, r3) be the set of tensors D that can be decomposed as in (3). Using
spline approximation,

∑
j fjl(xij) ≈

∑p
j=1

∑K
k=1 bk(xij)djkl = (D(3))l.zi, where D(3) is the

matricization of D along its 3rd mode, (D(3))l. is the lth row of D(3), and zi is a pK-vector
with components bk(xij), 1 ≤ j ≤ p, 1 ≤ k ≤ K. The least squares optimization problem
for D and µ = (µ1, . . . , µq)

T can thus be written as

min
µ,D∈D(r1,r2,r3)

n∑
i=1

∥yi − µ−D(3)zi∥2

= min
µ,S,A,B,C

n∑
i=1

∥yi − µ− (S×1 A×2 B×3 C)(3)zi)∥2. (5)
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Let D̂ be the minimizer of (5). Since we are only interested in D rather than S,A,B and C,
we do not need to be concerned about the identifiability issue and computationally we do not
impose the constraint that A,B,C are orthogonal matrices. The strategy is to alternatingly
update one of S,A,B and C while fixing the others. Of course one can certainly use (4) to
orthogonalize the A,B or C after updating it to force it into this standardized form, if one
chooses to.

2.3 Relation to some previous works
Our work can be regarded as a novel combination of tensor decomposition/optimization
with semiparametric statistical modelling. There are certainly a large number of works on
tensor decomposition/optimization, for example Anandkumar et al. (2012, 2014b); Sedghi
and Sabharwal (2018). In the paper Hao et al. (2021), the authors studied sparse tensor
additive regression. Besides that we have multivariate responses, the key difference is that
the predictor considered in Hao et al. (2021) is tensorial and thus it is natural to use tensor
method. However, in our case, we have a vector predictor xi = (xi1, . . . , xip)

T and thus
the method of Hao et al. (2021) does not apply to our case. It is traditionally not realized
that the additive models can be approached using tensors, after series expansion. Thus
our work represents a methodological advancement in using tensor method for non-tensor
models. There are certainly other works on applying tensor methods to non-tensor models,
including generalized linear models and some latent variable models (Anandkumar et al.,
2012, 2014a; Sedghi et al., 2016; Janzamin et al., 2019).

Traditionally, estimation of high-dimensional additive models are focused on variable
selection under the sparsity assumption (Ravikumar et al., 2008; Meier et al., 2009; Huang
et al., 2010). These works do not use low-rank factorization and roughly correspond to our
approach when r1 = p, r2 = K, r3 = q. More related to our work, low-rankness assumptions
were also adopted for semiparametric statistical models in a recently published work (He
et al., 2022), which we became aware of after we received the first review of the current
work. In He et al. (2022), the authors focused on univariate response additive models, and
after using splines expansion for the unknown component functions, they assume the spline
coefficient matrix is low-rank and matrix decomposition is used to reduce the number of
parameters. Their method can only deal with one response variable and thus when there are
possible relationships among multivariate responses, the method fails to incorporate such
information. Besides, they did not provide statistical convergence rate in their paper, while
our theory clearly shows the role of the reduced number of parameters in the convergence
rate. In our numerical studies, we will also compare our tensor-based method to the method
of He et al. (2022) to demonstrate the improved performance of the tensor-based method.
Other works combining low-rank assumption with semiparametric modelling include Jiang
et al. (2013); He et al. (2018) which also used matrix decomposition.

2.4 Asymptotic properties
In this section, we consider the asymptotic properties of the proposed estimators. The main
goal of the analysis is to reveal the improved convergence rate due to the reduced effective
number of parameters in the low-rank model. We make the following assumptions.
(A1) The joint density of xi is bounded away from zero and infinity on [0, 1]p.
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(A2) The eigenvalues of
∑n

i=1(1, z
T
i )

T(1, zTi )/n are bounded away from zero and infinity
with probability tending to one as n → ∞.

(A3) The noise vector ϵi = (ϵi1, . . . , ϵiq)
T is independent of the predictor and is sub-

Gaussian in the sense that E[eaϵ
T
i η] ≤ eCa2∥η∥2 for any non-random η ∈ Rq.

(A4) For g = fjl, 1 ≤ j ≤ p, 1 ≤ l ≤ q, g satisfies a Lipschitz condition of order d > 1/2:
|g(⌊d⌋)(t) − g(⌊d⌋)(s)| ≤ C|s − t|d−⌊d⌋, where ⌊d⌋ is the largest integer strictly smaller
than d and g(⌊d⌋) is the ⌊d⌋-th derivative of g. The order of the B-spline used satisfies
t ≥ d+ 1/2.

(A5) Let D0 = (d0jkl) be the spline coefficients satisfying |
∑K

k=1 bk(x)d0jkl − fjl(x)| ≤
CK−d. We assume D0 satisfies (3), that is, D0 ∈ D(r1, r2, r3).

These assumptions are generally mild. (A1) roughly means we will have a sufficient number
of observations in all locations. If there is a low probability of predictors being observed in
a certain location, then it is impossible to estimate the regression function near that loca-
tion. The region [0, 1]p can be changed to any rectangular region

∏p
j=1[aj , bj ] by a simple

scaling. Note that for spline-based estimation, it is common to assume the covariates are
bounded in order to construct spline basis functions. Assumption (A2) on the eigenvalues
of

∑n
i=1(1, z

T
i )

T(1, zTi )/n are frequently assumed. This is the same as that assumed in equa-
tions (35) and (36) of Ravikumar et al. (2008) in high-dimensional additive models. This
is rigorously established as Lemma A.1 of Lian and Liang (2013) which showed that (A2)
holds when Kplog(K ∨ p)/n → 0. In the linear regression models, one typically assumes
(or proves from other primitive assumptions) that the eigenvalues of

∑n
i=1(1,x

T
i )

T(1,xT
i )/n

are bounded away from zero and infinity, which restricts the correlations among different
predictors, and our assumption is simply the nonparametric counterpart of such an assump-
tion. In (A3), sub-gaussianity of errors is assumed in order to apply Dudley’s bound for
the error term in our proof, which includes Gaussian error distribution as a special case.
Sub-gaussianity is often assumed for theoretical studies of high-dimensional models (Wain-
wright, 2019). Assumption (A3) means our procedure does not work well for heavy-tailed
error distribution or for data containing outliers, which is as expected since it is well-known
that the least squares procedure is not robust. Robust version of the proposed approach
should be used to deal with heavy-tailed errors, which is however not the main focus of
the current work. Smoothness assumption in (A4) on the component functions is imposed
to obtain nontrivial approximation rate for B-splines. This is a standard assumption even
for p = q = 1 (nonparametric regression). Smoothness of the regression function is rea-
sonably expected for many applications where the effects of the predictors change slowly
with the value of the predictors. Assumption (A5) is fundamental to our analysis, which
has been discussed in section 2.3. This is a direct extension of the low-rank assumption
almost always used in matrix estimation problems. The low-rank assumption reduces the
number of parameters. Bear in mind that without using the low-rank assumption, the num-
ber of parameters in D is pqK, estimation of which requires possibly a very large sample
size. Such curse of dimensionality is lessened by imposing a low-rank approximation to the
high-dimensional coefficient array. In real analysis, the predictors and the coefficient are
probably not exactly low-rank. However, with a limited sample size, a low-rank estimate
can provide a reasonable approximation to the true parameter, even when the truth is not
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low-ranked. This phenomenon has been observed in some previous studies (Zhou et al.,
2013) and also appears to be true in our real data illustration which showed the lower pre-
diction error of the low-rank model. With minor modifications of the proof, our theoretical
results also apply to the approximately low-rank case (see our Remark 2).

Theorem 1 Under assumptions (A1)-(A5) and K → ∞, we have

∥D̂−D0∥ = Op(
√

df/n+ pqK−d),

where df = r1r2r3 + pr1 +Kr2 + qr3 − r21 − r22 − r23 can be deemed as the effective degrees
of freedom under the low-rank assumption. In particular, this implies

∑
l,j ∥f̂jl − fjl∥2 =

Op(df/n+ p2q2K−2d).

Remark 1 This result establishes the convergence rate of the difference between the coeffi-
cients in the spline representation of the nonparametric functions and their estimators. As
a consequence, the rate of convergence of the estimated functions follows based on the prop-
erties of spline approximation, and we also have

∑
l,j ∥f̂jl − fjl∥2 = Op(df/n+ p2q2K−2d).

The two terms in the convergence rate correspond to the stochastic error and the (squared)
approximation error, respectively. The theory shows there is a trade-off in the choice
of the value of K. When K increases, the approximation error term pqK−d decreases
while the stochastic error increases. If we choose K to satisfy K2d+1 ≍ np2q2

r2
, then∑

l,j ∥f̂jl − fjl∥2 = Op(df/n). When p = q = 1 and r2 is fixed, this choice of K leads
to the convergence rate n− 2d

2d+1 which is the minimax convergence rate for nonparametric
regression (Tsybakov, 2009).

Remark 2 Our result can be straightforwardly extended to the case that the true coefficient
tensor is approximately low-rank in the sense that minD∈D(r1,r2,r3) ∥D0 −D∥ ≤ ξ for some
ξ > 0. With other assumptions unchanged, we can show the convergence rate is ∥D̂−D0∥ =
Op(

√
df/n+ pqK−d+ ξ). The proof of this bound is also contained in the proof of Theorem

1 in the appendix.

3 Tensor decomposition combined with sparse modelling
The low-rank tensor decomposition method proposed in the previous section reduces the
number of parameters from pKq to r1r2r3 + pr1 +Kr2 + qr3 − r21 − r22 − r23. However, for
example, the number of parameters still increases linearly with the covariate dimension p.
When the covariate dimension is high, a standard method that has proved powerful is to
incorporate variable selection methodology under a sparsity assumption. In this section we
consider penalized estimation for variable selection. We assume without loss of generality
that only the first s predictors are useful. In other words, we assume fjl ≡ 0 for j > s.
One can also consider the possibility that each response variable may have a different set
of useful predictors, which can be implemented using a slightly different way of penalizing
parameters than used here. But this alternative is not further considered in this work.

In the coefficient tensor D, the slice (a K × q matrix) Dj.. is the part that is associated
with predictor j and thus one strategy for variable selection is to shrink ∥Dj..∥ to zero. Let

9
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dj be the vectorization of Dj... We can certainly shrink ∥Fjdj∥ to zero for any Fj without
changing much of the theoretical aspect of the estimator as long as the maximum and the
minimum eigenvalues of FT

j Fj are of the same order. If the maximum and the minimum
eigenvalues of FT

j Fj are not of the same order, the proof can also be modified. However, in
this case, ∥Fjdj∥ will penalize certain vector directions much more heavily than others and
thus it seems harder to justify the use of such Fj . In this work, we will penalize ∥Zjdj/

√
n∥

instead of ∥dj∥, where Zj contains the columns of Z associated with the j-th predictor with
Znq×pKq = (z1 ⊗ Iq, . . . , zn ⊗ Iq)

T, resulting in the optimization problem

min
D∈D(r1,r2,r3)

∥ȳ − 1⊗ µ− Zd∥2 + n

p∑
j=1

pλ(∥Zjdj∥/
√
n), (6)

where ȳ = (yT
1 , . . . ,y

T
n )

T is nq-vector of responses, 1 is a n-vector of ones, d = vec(D(3)).
Here pλ(.) is the penalty function and λ is the associated tuning parameter that controls
the amount of shrinkage in parameters. For example, if we use pλ(x) = λ|x|, this is just the
ℓ1/lasso penalty (Tibshirani, 1996).

For the high-dimensional models, variable selection plays a vital role in identifying the
relevant and useful features and improving the accuracy of estimation. Many variable
selection techniques have been developed, such as bridge regression (Frank and Friedman
(1993) ), the lasso (Tibshirani (1996)), the adaptive lasso (Zou (2006)) and the Dantzig
selector (Candes and Tao (2007)). There are also nonconvex penalties proposed, including
the smoothly clipped absolute deviation (SCAD, Fan and Li (2001)), and the minimax
concave penalty (MCP, Zhang (2010)). It is known that the lasso penalty generally do not
have variable selection consistency (that is, it does not correctly separately the nonzero
and zero parameters as n → ∞), while the SCAD/MCP penalty can have such properties.
Thus, in this paper, we mainly consider these two penalties theoretically, but we also use
the ℓ1 penalty in our numerical studies. The SCAD penalty is defined as

pλ(|u|) = λ|u|I(0 ≤ |u| < λ)+
aλ|u| − (|u|2 + λ2)/2

a− 1
I(λ ≤ |u| ≤ aλ)+

(a+ 1)λ2

2
I(|u| > aλ),

for some a > 2, and the MCP defined as

pλ(|u|) =
(
λ|u| − u2

2a

)
I(|u| ≤ aλ) +

aλ2

2
I(|u| > aλ),

for some a > 1.
The specific choice of penalizing ∥Zjdj∥ instead of ∥dj∥ is motivated from two aspects.

First, Zjdj is the component of the conditional mean that represents directly the effect of
predictor j on the responses. Second, it allows an efficient group descent algorithm proposed
in Breheny and Huang (2015) as will be made clear below.

Theorem 2 Under assumptions (A1)-(A5), with zi in (A2) understood as the vector bk(xij)
based on only j ≤ s, and that

log(pKq)

n
+

df

n
+ s2q2K−2d ≪ λ2 ≪ min

j≤s

q∑
l=1

∥fjl∥2,

10
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where we used the Vinogradov symbol ≪ such that a ≪ b means a = o(b), there is a local
minimizer of (6) D̆, using either SCAD or MCP as the penalty, such that

∥D̆−D0∥ = Op(
√
df/n+ sqK−d),

and Dj.. is a zero matrix for j > s with probability approaching one, where df = r1r2r3 +

r1(s− r1)+ r2(K− r2)+ r3(q− r3). In particular, this implies
∑

l,j ∥f̆jl−fjl∥2 = Op(df/n+

s2q2K−2d) and f̆jl = 0 for all j > s with probability approaching one.

Remark 3 This theorem shows the existence of a local minimizer of the objective function
with the oracle property, in the sense that it correctly selects the nonzero functions and
achieves the optimal rate of convergence. In particular, if K satisfies K2d+1 = ns2q2

r2
, then∑

l,j ∥f̆jl − fjl∥2 = Op(df/n).

4 Computation

We will use Einstein summation notation. That is, repeated indices (one upper and one
lower) are summed over. Denote bjki = bk(xij) and denote entries of A,B,C by Aa

j ,B
b
k,C

c
l ,

respectively. Then the minimization problem is∑
i,l

(yil − sabcA
a
jB

b
kC

c
l b

jk
i )2

It is clear that sabcA
a
jB

b
kC

c
l b

jk
i is linear in one of S,A,B,C when the other three are fixed.

Thus alternating updates can be easily implemented.
For the penalized estimators, we also use the alternating updating strategy, but due

to the presence of the penalty function, the computation is more complicated. In our
numerical studies, we will consider SCAD and MCP penalties, as well as the group lasso
penalty. For illustration, consider only the updating of A. Since D(1) = AS(1)(C ⊗ B)T,
we have dj = (C⊗B)ST

(1)aj , where aj is the j-th row of A (as a column vector). Thus to
update aj we write (6) as

n∑
i=1

∥ȳ −
∑
j′ ̸=j

Zj′dj′ − Zj(C⊗B)ST
(1)aj∥

2 + n

p∑
j=1

pλ(∥Zj(C⊗B)ST
(1)aj∥/

√
n).

Let Γj = S(1)(C ⊗B)TZT
j Zj(C ⊗B)ST

(1)/n, anewj = Γ
1/2
j aj , Znew

j = Zj(C ⊗B)ST
(1)Γ

−1/2
j ,

the above is equivalent to

n∑
i=1

∥ȳ −
∑
j′ ̸=j

Zj′dj′ − Znew
j anewj ∥2 + n

p∑
j=1

pλ(∥anewj ∥),

with (Znew
j )TZnew

j /n = I. Then the group descent algorithm of Breheny and Huang (2015)
can be used to update aj , j = 1, . . . , p.

11
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More specifically, we can implement the updating of A as follows. Let trj = ȳ −∑
j′ ̸=j Zj′dj′ and write the above as

Q(anewj ) =
∥∥trj − Znew

j anewj

∥∥2 /2 + n

p∑
j=1

pλ(∥anewj ∥).

If the group lasso penalty is used, we have the first-order conditions

∂Q(anewj )

∂anewj

=

{
−(Znew

j )Ttrj + nanewj + n λ
∥anew

j ∥a
new
j , if aj ̸= 0;

−(Znew
j )Ttrj + nλv, if anewj = 0,

where v is any r1-vector satisfying ∥v∥ ≤ 1. Let z̃j = n−1(Znew
j )Ttrj . The solution is easily

derived to be

ânewj = S(z̃j , λ)
z̃j

∥z̃j∥
,

where S(z, λ) = (|z| − λ)+ is the soft thresholding operator.
The MCP and SCAD estimators can be calculate similarly. Define

fmcp(z, λ, a) =
{

S(z,λ)
1−1/a , if |z| ≤ aλ;
z, if |z| > aλ.

and

fscad(z, λ, a) =


S(z, λ), if |z| ≤ 2λ;
S(z,aλ/(a−1))
1−1/(a−1) , if 2λ < |z| ≤ aλ;

z, if |z| > aλ.

Replacing S(z, λ) by fmcp(z, λ, a) and fscad(z, λ, a) yields the algorithm for updating of
A with MCP and SCAD penalties, respectively. More details can be found in Breheny
and Huang (2015). We have implemented the algorithm described above in an R package
tensorMAM available at (https://github.com/xliusufe/tensorMam).

5 Numerical studies
5.1 Simulations

In this section we perform simulation studies to illustrate the performance of the proposed
estimator. The predictors xij are generated independently from the uniform distribution
U(0, 1). For the tensor, we set (r1, r2, r3) = (2, 2, 2), each entry of S is generated indepen-
dently from U(10, 20) if s = 40 and from U(3, 7) if s = 20 (s is the number of significant
predictors). Orthogonal matrices Uj are uniformly drawn from the Stiefel manifold (the
set of orthogonal matrices of a given size), which can be achieved by first generating a
matrix Tj with entries i.i.d. from N(0, 1) and then perform a QR decomposition to get the
orthogonal matrix. We consider two scenarios for the response:

12
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Sce 1 We set Ds×K×q = S ×1 U1 ×2 U2 ×3 U3. Given the tensor D, we set the functions
fjl(xij) = dT

jlb(xij) and add i.i.d. errors generated from N(0, σ2). In this setting,
the functions are actually in the space of splines.

Sce 2 Define two functions g1(x) = sin(2πx) and g2(x) = cos(πx) and let g1 = (g1(xij)) and
g2 = (g2(xij)) be n× s matrices. Let S1,S2 be the two s× q slices of S×1 U1 ×3 U3.
Finally, we set

yn×q = g1 × S1 + g2 × S2 +En×q,

where the errors are generated as in Scenario 1.

For each scenario, 500 datasets are generated with the number of responses q = 10. We
set n = 200, 500 and p = 100 (only the first s predictors are useful), and σ2 = 0.2. We
use cubic B-splines with 3 internal knots. Although one might try to select the number
of knots based on data, using fixed knots is convenient in practice and often adopted in
the literature. We select the ranks as well as λ when fitting the proposed models using
BIC, where the degrees of freedom in BIC is as defined in the statement of Theorem 2. For
illustration, we consider three penalties including (group) lasso, SCAD and MCP.

The results for the estimated ranks (r̂1, r̂2, r̂3) are reported in Table 1. We see that
when n = 200, the method tends to under-estimate the ranks. However, this improves with
larger sample size n = 500. This behavior is reasonable since with a smaller sample size a
more parsimonious model with fewer parameters is preferred.

To examine the performance of variable selection, we also compare our method with the
oracle estimator and the full-rank (FR) estimator. Here the oracle estimator is the one which
fixes the ranks to be (2, 2, 2) while still using a penalty to select significant variables, and
the full-rank estimator does not use low-rank factorization. We also compare our estimator
with that of the high-dimensional additive models (HAM) (Meier et al., 2009), the sparse
additive models (SAM) (Ravikumar et al., 2009), and the reduced additive models with
the group Lasso (RAM_GL) and with the adaptive group Lasso (RAM_AGL) (He et al.,
2022). Table 2 reports the True Positives (TP, the number of correctly estimated nonzero
coefficients), the True Negatives (TN, the number of correctly estimated zero coefficients),
the False Positives (FP, the number of incorrectly estimated nonzero coefficients), the True
Negatives (TN, the number of correctly estimated zero coefficients) and the False Negatives
(FN, the number of incorrectly estimated zero coefficients), Model Sizes (MS, the number
of selected variables), and Matthews Correlation Coefficient (MCC), defined as

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

A larger MCC value indicates better variable selection performance. From Table 2, we can
see that the results for variable selection are generally satisfactory with high MCC values.
Compared with MCP and SCAD estimators, Lasso estimators tend to have slightly larger
model sizes with larger false positives. FR, HAM, SAM, RAM_GL and RAM_AGL all
produce much smaller MCC compared to the proposed method.

Finally, we calculate the integrated mean squared errors (IMSE) for the estimated func-
tion of fjl(·), defined as IMSE =

∫ 1
0 (f̂jl(x) − fjl(x))

2dx. Table 3 reports the median of
the square root of IMSEs for the proposed estimator, FR, HAM, SAM, RAM_GL and

13
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RAM_AGL. The estimators based on the MCP and the SCAD penalties have smaller
IMSE compared to the lasso estimator. Furthermore, the proposed estimator performs
much better than both the full-rank estimator which does not perform dimension reduction
and the reduced additive models with the group Lasso (RAM_GL) and with the adaptive
group Lasso (RAM_AGL) which do not reduce ranks as an order-three tensor.

Table 1: The frequency of the estimated ranks (r̂1, r̂2, r̂3) of tensor D in models with spar-
sity.

(n, s) r̂j
LASSO MCP SCAD

=1 =2 =3 =4 =5 =1 =2 =3 =4 =5 =1 =2 =3 =4 =5
Scenario 1

r̂1 500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
(200,20) r̂2 493 7 0 0 0 499 1 0 0 0 499 1 0 0 0

r̂3 500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

r̂1 500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
(200,40) r̂2 457 38 3 2 0 494 5 1 0 0 492 7 0 1 0

r̂3 491 9 0 0 0 500 0 0 0 0 500 0 0 0 0

r̂1 92 408 0 0 0 23 477 0 0 0 29 471 0 0 0
(500,20) r̂2 92 407 1 0 0 23 477 0 0 0 29 471 0 0 0

r̂3 92 408 0 0 0 23 477 0 0 0 29 471 0 0 0

r̂1 500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
(500,40) r̂2 95 403 2 0 0 57 443 0 0 0 63 437 0 0 0

r̂3 95 405 0 0 0 57 443 0 0 0 63 437 0 0 0
Scenario 2

r̂1 0 500 0 0 0 0 500 0 0 0 0 500 0 0 0
(200,20) r̂2 0 493 7 0 0 0 500 0 0 0 0 500 0 0 0

r̂3 0 500 0 0 0 0 500 0 0 0 0 500 0 0 0

r̂1 500 0 0 0 0 494 6 0 0 0 500 0 0 0 0
(200,40) r̂2 97 328 58 17 0 64 427 7 2 0 103 390 6 1 0

r̂3 104 396 0 0 0 64 436 0 0 0 104 396 0 0 0

r̂1 0 500 0 0 0 0 500 0 0 0 0 500 0 0 0
(500,20) r̂2 0 500 0 0 0 0 500 0 0 0 0 500 0 0 0

r̂3 0 500 0 0 0 0 500 0 0 0 0 500 0 0 0

r̂1 0 500 0 0 0 0 500 0 0 0 0 500 0 0 0
(500,40) r̂2 0 493 7 0 0 0 500 0 0 0 0 500 0 0 0

r̂3 0 500 0 0 0 0 500 0 0 0 0 500 0 0 0

5.2 Breast cancer data example

We applied the proposed method to a breast cancer dataset (Chin et al. (2006), Witten et al.
(2009) and Chen et al. (2013)), which includes gene expressions and comparative genomic
hybridization measurements for 89 subjects. For illustration, we selected chromosome 21,
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Table 2: The performances of variable selection in terms of TP, TN, FP, FN, MS, and MCC.

(n, s) Scenario 1 Scenario 2
TP TN FP FN MS MCC TP TN FP FN MS MCC

LASSO
Oracle (200,20) 17.25 77.55 2.45 2.75 19.70 0.84 18.36 78.81 1.19 1.64 19.55 0.91

(200,40) 31.74 53.12 6.88 8.26 38.62 0.69 28.83 57.09 2.91 11.17 31.75 0.71
(500,20) 17.96 79.70 0.30 2.04 18.26 0.93 19.03 79.58 0.42 0.97 19.45 0.96
(500,40) 36.95 58.78 1.22 3.05 38.16 0.91 37.59 58.60 1.40 2.41 38.99 0.92

Proposed (200,20) 16.70 78.51 1.49 3.30 18.19 0.85 18.36 79.16 0.84 1.64 19.19 0.92
(200,40) 34.14 55.24 4.76 5.86 38.90 0.78 26.63 57.09 2.91 13.37 29.55 0.67
(500,20) 17.82 79.71 0.29 2.18 18.10 0.92 19.02 79.51 0.49 0.98 19.51 0.95
(500,40) 36.31 58.30 1.70 3.69 38.01 0.89 37.55 58.96 1.04 2.45 38.60 0.93

FR (200,20) 5.86 79.94 0.06 14.14 5.92 0.49 7.54 79.99 0.01 12.46 7.55 0.57
(200,40) 8.43 59.69 0.31 31.57 8.74 0.36 9.24 59.70 0.30 30.76 9.54 0.38
(500,20) 5.87 80 0 14.13 5.87 0.50 8.02 80 0 11.98 8.02 0.59
(500,40) 9.47 60 0 30.53 9.47 0.40 10.15 60 0 29.85 10.15 0.41

RAM_GL (200,20) 18.98 42.29 37.71 1.02 56.69 0.39 14.64 79.53 0.47 5.36 15.11 0.81
(200,40) 38.20 15.30 44.70 1.80 82.90 0.27 25.71 52.86 7.14 14.29 32.85 0.55
(500,20) 19.49 44.20 35.80 0.51 55.29 0.42 16.10 80.00 0.00 3.90 16.10 0.88
(500,40) 39.49 12.92 47.08 0.51 86.57 0.29 29.98 59.97 0.03 10.02 30.01 0.80

RAM_AGL (200,20) 19.71 34.70 45.30 0.29 65.01 0.35 17.09 78.88 1.12 2.91 18.21 0.87
(200,40) 39.28 13.13 46.87 0.72 86.15 0.28 23.76 57.64 2.36 16.24 26.12 0.62
(500,20) 19.66 41.11 38.89 0.34 58.55 0.40 17.61 80.00 0.00 2.39 17.61 0.92
(500,40) 39.75 12.33 47.67 0.25 87.42 0.29 28.19 60.00 0.00 11.81 28.19 0.77

SAM (200,20) 8.43 78.58 1.42 11.57 9.85 0.54 13.22 77.67 2.33 6.78 15.55 0.70
(200,40) 20.62 49.72 10.28 19.38 30.90 0.36 17.45 53.92 6.08 22.55 23.53 0.39
(500,20) 5.43 80.00 0.00 14.57 5.43 0.48 9.22 80.00 0.00 10.78 9.22 0.64
(500,40) 19.26 59.50 0.50 20.74 19.76 0.58 12.50 60.00 0.00 27.50 12.50 0.46

HAM (200,20) 0.02 80.00 0.00 19.98 0.02 0.03 0.16 80.00 0.00 19.84 0.16 0.08
(200,40) 6.38 59.90 0.10 33.62 6.48 0.31 0.13 60.00 0.00 39.87 0.13 0.04
(500,20) 15.73 79.29 0.71 4.27 16.44 0.84 18.17 78.39 1.61 1.83 19.78 0.89
(500,40) 6.22 59.99 0.01 33.78 6.23 0.31 0.04 60.00 0.00 39.96 0.04 0.02

MCP
Oracle (200,20) 16.74 80 0 3.26 16.74 0.90 17.54 80 0 2.46 17.54 0.92

(200,40) 29.68 59.91 0.09 10.32 29.77 0.79 26.96 59.82 0.18 13.04 27.14 0.74
(500,20) 17 80 0 3 17 0.91 18.88 80 0 1.12 18.88 0.96
(500,40) 34.43 60 0 5.57 34.43 0.89 36.67 59.98 0.02 3.33 36.69 0.93

Proposed (200,20) 16.22 79.97 0.03 3.78 16.25 0.88 17.41 80 0 2.59 17.41 0.92
(200,40) 31.79 59.98 0.02 8.21 31.81 0.84 24.73 59.80 0.20 15.27 24.94 0.70
(500,20) 16.98 80 0 3.02 16.98 0.90 18.89 80 0 1.11 18.89 0.97
(500,40) 34.38 60 0 5.62 34.38 0.89 36.56 60 0 3.44 36.56 0.93

FR (200,20) 5.13 80 0 14.87 5.13 0.46 6.22 80 0 13.78 6.22 0.51
(200,40) 6.80 59.93 0.07 33.20 6.87 0.33 7.40 59.93 0.07 32.60 7.47 0.34
(500,20) 5.29 80 0 14.71 5.29 0.47 7.10 80 0 12.90 7.10 0.55
(500,40) 8.26 60 0 31.74 8.26 0.37 8.95 60 0 31.05 8.95 0.38

SCAD
Oracle (200,20) 17.17 79.86 0.14 2.83 17.30 0.91 18.41 79.87 0.13 1.59 18.54 0.95

(200,40) 32.89 59.81 0.19 7.11 33.07 0.85 32.23 59.15 0.85 7.77 33.08 0.83
(500,20) 17.31 80 0 2.69 17.31 0.92 18.98 80 0 1.02 18.98 0.97
(500,40) 36.31 59.96 0.04 3.69 36.34 0.92 37.46 59.76 0.24 2.54 37.70 0.94

Proposed (200,20) 16.71 79.76 0.24 3.29 16.95 0.89 18.31 79.98 0.02 1.69 18.33 0.95
(200,40) 33.60 59.64 0.36 6.40 33.96 0.86 26.55 59.05 0.95 13.45 27.50 0.71
(500,20) 17.21 80 0 2.79 17.21 0.91 18.99 80 0 1.01 18.99 0.97
(500,40) 35.49 59.93 0.07 4.51 35.55 0.91 37.42 59.82 0.18 2.58 37.60 0.94

FR (200,20) 5.85 79.94 0.06 14.15 5.90 0.49 7.54 79.99 0.01 12.46 7.55 0.57
(200,40) 8.43 59.69 0.31 31.57 8.74 0.36 9.24 59.70 0.30 30.76 9.54 0.38
(500,20) 5.82 80 0 14.18 5.82 0.50 8.01 80 0 11.99 8.01 0.59
(500,40) 9.46 60 0 30.54 9.46 0.40 10.15 60 0 29.85 10.15 0.4115
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Table 3: The median of the square root of IMSE of the estimated functions.

Methods Scenario 1 (n, s) Scenario 2 (n, s)
(200,20) (200,40) (500,20) (500,40) (200,20) (200,40) (500,20) (500,40)

LASSO
Proposed 7.61e-04 1.21e-03 2.72e-04 7.83e-04 2.88e-03 7.21e-04 2.12e-03 1.76e-03

FR 0.0754 0.124 0.0755 0.125 0.125 0.0874 0.119 0.0876
RAM_GL 0.1093 0.2211 0.1135 0.2221 0.0362 0.0464 0.0199 0.0253

RAM_AGL 0.1084 0.2215 0.1106 0.2211 0.0463 0.0626 0.0326 0.0492
SAM 0.1921 0.5576 0.1289 0.5283 0.4777 0.3044 0.4088 0.2789
HAM 0.0560 0.1807 0.0859 0.1795 0.1145 0.1148 0.0750 0.1149

MCP
Proposed 2.15e-04 7.86e-04 5.37e-05 1.92e-04 7.73e-04 5.93e-04 7.92e-04 5.63e-04

FR 0.0739 0.124 0.0697 0.122 0.115 0.0873 0.112 0.0856
SCAD

Proposed 1.94e-04 8.71e-04 1.18e-04 1.56e-04 6.12e-04 7.83e-04 8.64e-04 6.64e-04
FR 0.0754 0.124 0.0758 0.125 0.125 0.0874 0.119 0.0876

including q = 44 variables for copy-number variations and p = 227 variables for gene
expression. As in Chen et al. (2013), we consider copy-number variations as the responses
and gene expressions as the predictors. To illustrate the selection stability of the proposed
method, we randomly split data into two parts multiple times, each with a training set
containing 79 subjects and a test set containing 10 subjects. We standardize the responses
to have mean zero and variance one, and transform the predictors into [0, 1].

We use the proposed method with MCP penalty to select important genes for each
random partition of the data. There are a total of 90 genes that are ever selected in 100
random splits. We list in Table 4 the top 6 genes with the highest frequency of being
selected.

The top two genes have been shown to have significant associations between genome
copy numbers measured using CGH and gene transcript level measured using Affymetrix
U133A expression arrays in 101 primary breast tumors, of which the Pearson correlations
are respectively 0.53 and 0.46, see Table S3 in the Supplementary Material of Chin et al.
(2006). In Table 4, there are two segments of the same gene named “SON1” and “SON2”
that have the same nucleotide position. The average prediction error (PE) is 1.90 and the
average number of selected genes is 4.68.

We also compare the method with the linear reduced rank regression model of Chen
et al. (2013) and the reduced additive model with the group Lasso (RAM_GL) and the
adaptive group Lasso (RAM_AGL) (He et al. (2022)). As demonstrated in He et al. (2022)
and the simulation studies in the previous section, HAM and SAM perform much worse than
RAM_GL and RAM_AGL. Thus, we do not compute HAM and SAM here for the real data
set. As in Chen et al. (2013), since the number of predictors is much larger than n, we first
applied reduced rank regression with sparse singular value decomposition (Chen et al., 2012).
Then, based on the selected predictors, the linear reduced rank regression method was
applied using R package rrpack. The prediction error on the test data based on 100 random
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splits is 5.96, which is larger than the prediction error of our proposed method. Notably,
the average number of selected genes based on the linear reduced rank model is 46.73, which
is about 10 times the number of the selected genes using our proposed method. Therefore,
with a much smaller number of genes, our proposed method achieves a better prediction
performance in comparison to the linear reduced rank regression model. Both RAM_GL
and RAM_AGL were applied using R package fAdditiveModel. The prediction errors of
RAM_GL and RAM_AGL based on 100 random splits are 1.33 and 1.13 respectively, but
the average numbers of selected genes are 226.83 and 88.79, respectively, which are much
greater than our proposed method.

Table 4: List of genes most frequently selected with their selected frequency among 100
random splits of the data.

gene name “HRMT1L1” “SON1” “LSS” “SON2” “C21orf59” “SMT3H1”
position 46911 33835 46465 33835 32894 45081

times selected 59 39 38 34 34 26

6 Conclusion
In this paper, we have proposed a tensor-based approach for multivariate additive models
which involves a large number of component functions. Tensor decomposition allows a
dramatic reduction of the number of parameters along all three directions of the tensor that
results in improved efficiency of the estimation. We further combine dimension reduction
with penalized variable selection to deal with ultra-high dimensionality. Our numerical
studies have shown superior performance of the proposed estimators.

The current research can be extended in a few directions. First, the generalized linear
model can deal with binary and count responses and represents another direction to make
the linear model more flexible. Again, its application is partially limited by the linear
form imposed. One can thus consider generalized additive models (Hastie and Tibshirani,
1990) with various response types, using the estimation strategy proposed here to make
the estimation more accurate in some settings. One can also consider quantile additive
models (Horowitz and Lee, 2005) to investigate the conditional distribution of the response
at different quantile levels. Second, the current variable selection approach assumes a
predictor is selected as long as it has an effect on one of the responses for the convenience
of theory and implementation. In practice, it is more realistic to allow a different set of
active predictors for different responses, possibly based on other types of penalty. These
topics can be investigated in the future.
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Appendix: Proofs

In this appendix, we prove Theorems 1 and 2.

Proof of Theorem 1. For simplicity of notations, we first assume the intercepts are
non-existent and at the end of the proof mention why this can be assumed without loss of
generality. By the definition of the estimator, we have∑

i

∥yi − D̂(3)zi∥2 ≤
∑
i

∥yi −D0(3)zi∥2.

Define ri = (ri1, . . . , riq)
T where ril =

∑
j fjl(xij) −

∑
j,k d0jklbk(xij) are the spline ap-

proximation errors. Rewriting the above using that yi = ϵi + ri + (D0(3) − D̂(3))zi, we
obtain ∑

i

∥(D̂(3) −D0(3))zi∥2 ≤ 2
∑
i

(ϵi + ri)
T(D̂(3) −D0(3))zi, (7)

Next we bound
∑

i ϵ
T
i (D̂(3)−D0(3))zi =

∑
i ϵ

T
i (z

T
i ⊗Iq)vec(D̂(3)−D0(3)). Let Znq×pKq =

(z1⊗Iq, . . . , zn⊗Iq)
T and define the set, with any fixed Z, Γ(Z) = {η = Zd/

√
λmax(ZTZ) :

d = vec(D(3)), ∥D∥ ≤ 1,D satisfies (3)}, where λmax(.) denotes the largest eigenvalue of a
symmetric matrix.

We compute the covering number of N(ϵ,Γ(Z), l2). Let D1 = {d : d = vec(D(3)), ∥D∥ ≤
1,D satisfies (3)}. Obviously, since ∥Z(d1−d2)/

√
λmin(ZTZ)∥ ≤ ∥d1−d2∥, N(ϵ,Γ(Z), l2) ≤

N(ϵ,D1, l2) and the latter is nonrandom. For D = S×1A×2B×3C with A,B,C orthogo-
nal, using (2) we have ∥D∥ = ∥S∥. The ϵ-covering number for {S : ∥S∥ ≤ 1} is bounded by
(C/ϵ)r1r2r3 . For orthogonal matrices A1 and A2, we use the distance ∥A1A

T
1 −A2A

T
2 ∥op,

where ∥.∥op denotes the operator norm. By Proposition 8 of Szarek (1982) the covering num-
ber of the set of p× r1 orthogonal matrices under this distance is bounded by (C/ϵ)r1(p−r1).
Similarly the covering number for orthogonal matrices of dimension as that of B and C can
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be obtained. We have

∥S1 ×1 A1 ×2 B1 ×3 C1 − S2 ×1 A2 ×2 B2 ×3 C2∥
= ∥(S1 − S2)×1 A1 ×2 B1 ×3 C1∥

+∥S2 ×1 (A1 −A2)×2 B1 ×3 C1∥
+∥S2 ×1 A2 ×2 (B1 −B2)×3 C1∥
+∥S2 ×1 A2 ×2 B2 ×3 (C1 −C2)∥.

Using (2), it is easily seen that ∥(S1 − S2)×1 A1 ×2 B1 ×3 C1∥ = ∥S1 − S2∥, ∥S2 ×1 (A1 −
A2) ×2 B1 ×3 C1∥ = ∥(A1 − A2)S(1)(C1 ⊗ B1)

T∥ ≤ ∥A1 − A2∥op since ∥S(1)∥ ≤ 1 and
∥C1 ⊗B1∥op = 1, and thus

N(ϵ,Γ(Z), l2) ≤ N(ϵ,D1, l2) ≤ (C/ϵ)df ,

where df = r1r2r3 + pr1 +Kr2 + qr3 − r21 − r22 − r23.
Furthermore, since the error is sub-Gaussian, we have

E[exp{aϵ̄Tη}|Z] ≤ exp{Ca2∥η∥2},

where ϵ̄ = (ϵT1 , . . . , ϵ
T
n )

T, for any η ∈ Rnq that can depend on predictors, in particular for
η ∈ Γ(Z).

Using Corollary 2.2.8 of van der Vaart and Wellner (1996), we get

E[sup
η∈Γ

ηTϵ̄] ≤ C

∫ 2

0

√
df log(

C

ϵ
)dϵ ≤ C

√
df.

The above implies that∑
i

ϵTi (D̂(3) −D0(3))zi =
√
λmax(ZTZ)∥D̂−D0∥Op(

√
df).

Furthermore, by the Cauchy-Schwarz inequality,∑
i

rTi (D̂(3) −D0(3))zi

≤ (
∑
i

∥ri∥2)1/2(
∑
i

∥(D̂(3) −D0(3))zi∥2)1/2.

Using the above two displays in (7), we get∑
i

∥(D̂(3) −D0(3))zi∥2 = Op(df +
∑
i

∥ri∥2),

and thus
∥D̂−D0∥2 = Op(df/n+

∑
i

∥ri∥2/n)

The proof for the case without intercept is complete since√∑
i

∥ri∥2 = Op(
√
npqK−d).
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Now we describe the modifications required for incorporating intercepts. In this case we
can incorporate µ = (µ1, . . . , µq)

T into D(3)zi so that µ is the first column of D(3) while zi
is replaced by (1, zTi )

T. The covering number with this expanded set of parameters has the
same order since only q parameters are added and q = O(df). Thus the previous arguments
can still be followed exactly to obtain the same convergence rate.

Finally, to get the bound in the approximate low-rank case, we assume the existence of
D̃ ∈ D(r1, r2, r3) with ∥D̃−D0∥ ≤ ξ. Starting from the basic inequality∑

i

∥yi − D̂(3)zi∥2 ≤
∑
i

∥yi − D̃(3)zi∥2,

we get, similar to (7),∑
i

∥(D̂(3) − D̃(3))zi∥2 ≤ 2
∑
i

(ϵi + ri)
T(D̂(3) − D̃(3))zi,

where ri = (ri1, . . . , riq)
T with ril =

∑
j fjl(xij)−

∑
j,k d̃jklbk(xij). Decompose ri = ri1+ri2,

ri1 = (ri11, . . . , ri1q)
T, ri2 = (ri21, . . . , ri2q)

T, ri1l =
∑

j fjl(xij) −
∑

j,k d0jklbk(xij), ri2l =∑
j,k(d0jkl − d̃jkl)bk(xij). The terms 2

∑
i(ϵi + ri1)

T(D̂(3) − D̃(3))zi can be bounded in
the same way as for the exactly low-rank case. We also have

∑
i r

T
i2(D̂(3) − D̃(3))zi =

(
∑

i ∥ri2∥2)1/2(
∑

i ∥(D̂(3) − D̃(3))zi∥2)1/2, and
∑

i ∥ri2∥2 = Op(nξ
2) using the approximate

low-rank assumption and (A2). These together shows ∥D̂− D̃∥ = Op(
√

df/n+ pqK−d + ξ)

and in turn ∥D̂−D0∥ = Op(
√
df/n+ pqK−d + ξ). □

Proof of Theorem 2. As before we ignore the intercept for simplicity of notation (or regard
the intercepts as already being incorporated into Zd but suppressed in notation). Let D̂o

be the oracle estimator defined as the minimizer of (5) using only s relevant covariates and
then padded with zeros to make it a p×K × q tensor. We show that the oracle estimator
herein defined is a local minimizer of (6), with probability approaching one.

Consider D in a neighborhood of D̂o with ∥dj − d̂o
j∥ ≤ δ for j ≤ s and ∥dj∥ ≤ δ for

j > s, for some δ > 0 sufficiently small. More concretely, define a neighborhood of D̂o as
Dδ = {D : D satisfies (3), ∥dj − d̂o

j∥ ≤ δ for j ≤ s and ∥dj∥ ≤ δ for j > s}.
We only need to show that for δ small enough,

∥ȳ − Zd̂o∥2 + n

p∑
j=1

pλ(∥Zjd̂
o
j∥/

√
n) ≤ inf

D∈Dδ

∥ȳ − Zd∥2 + n

p∑
j=1

pλ(∥Zjdj∥/
√
n), (8)

with probability approaching one as n → ∞.
We first note that under the assumption λ2 ≪ minj≤s

∑q
l=1 ∥fjl∥

2, we have that infj≤s ∥Zjd0j/
√
n∥ ≍

infj≤s ∥d0j∥ ≫ λ in probability. With the convergence rate ∥do
j − d0∥ = Op(

√
df/n +

sqK−d) = op(λ), we also have ∥Zjd̂
o
j∥ ≫ λ with probability approaching one. In particular,

we have ∥Zjd̂
o
j∥ > aλ for j ≤ s and thus if δ is small enough, ∥Zjdj∥ > aλ for any d ∈ Dδ,

which implies pλ(∥d̂o
j∥) = pλ(∥dj∥) for j ≤ s. Thus, using that D̂o is the oracle estimator

that minimizes (5), we have

∥ȳ − Zd̂o∥2 + n

p∑
j=1

pλ(∥Zjd̂
o
j∥/

√
n) ≤ ∥ȳ − Zd∥2 + n

p∑
j=1

pλ(∥Zjdj∥/
√
n), (9)
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for any D ∈ D′
δ where D′

δ = {D : dj = 0 for j > s} ∩ Dδ.
Thus (8) will be proved if we can show that

inf
D∈D′

δ

∥ȳ − Zd∥2 + n

p∑
j=1

pλ(∥Zjdj∥/
√
n) ≤ inf

D∈Dδ\D′
δ

∥ȳ − Zd∥2 + n

p∑
j=1

pλ(∥Zjdj∥/
√
n).

For this, we will show that if δ is small enough, for any d ∈ Dδ, we can construct a d̃ ∈ D′
δ

such that

∥ȳ − Zd̃∥2 + n

p∑
j=1

pλ(∥Zjd̃j∥/
√
n) ≤ ∥ȳ − Zd∥2 + n

p∑
j=1

pλ(∥Zjdj∥/
√
n). (10)

In fact, given D ∈ Dδ, we let D̃ be such that d̃j = dj for j ≤ s and d̃j = 0 for j > s. Then
the right hand side of (10) subtracting its left hand side is equal to

∥
p∑

j=s+1

Zjdj∥2 − 2⟨ȳ −
s∑

j=1

Zjdj ,

p∑
j=s+1

Zjdj⟩+ n

p∑
j=s+1

pλ(∥Zjdj∥/
√
n). (11)

Furthermore,

|⟨ȳ −
s∑

j=1

Zjdj ,

p∑
j=s+1

Zjdj⟩|

≤ |
p∑

j=s+1

⟨ZT
j (ȳ −

s∑
j′=1

Zj′d̂
o
j′),dj⟩|+ |

p∑
j=s+1

⟨ZT
j (

s∑
j′=1

Zj′(d̂
o
j′ − dj′)),dj⟩|

≤ max
j>s

∥ZT
j (ȳ −

s∑
j′=1

Zj′d̂
o
j′)∥

∑
j>s

∥dj∥

+
∑

j>s,j′≤s

∥Zj∥∥Zj′∥∥d̂o
j′ − dj′∥∥dj∥

≤
(
max
j>s

∥ZT
j ϵ̄∥+max

j>s
∥ZT

j r̄∥+max
j>s

∥ZT
j Z(d̂

o − d0)∥
)
(
∑
j>s

δj) + (
∑

j>s,j′≤s

∥Zj∥∥Zj′∥δjδj′)

≤
(
max
j>s

∥ZT
j ϵ̄∥+Op(

√
df +

√
nsqK−d)

√
λmax(ZTZ)

)
(
∑
j>s

δj) + (
∑

j>s,j′≤s

∥Zj∥∥Zj′∥δjδj′),

(12)

where r̄ = (rT1 , . . . , r
T
n )

T and we denote δj = ∥d̂o
j − dj∥. By the definition of Zj , we have

max
j

∥ZT
j ϵ̄∥ ≤

√
Kqmax

j,k,l
|
∑
i

bk(xij)ϵil|.

By the sub-Gaussianity of the error, and conditional on predictors, we have by Lemma 2.2.2
of van der Vaart and Wellner (1996),

E[max
j,k,l

|
∑
i

bk(xij)ϵil||{xi}] ≤ C
√
log(pKq)max

j,k,l

√∑
i

b2k(xij).
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We have E[b2k(xij)] is bounded. Also, E[|b2k(xij)|r] ≤ Cr!Kr−1. Then by Bernstein’s in-
equality,

P (
∑
i

b2k(xij)− E
∑
i

b2k(xij) > Cn) ≤ 2 exp{−Cn/K},

and by the union bound we will get

max
j,k,l

√∑
i

b2k(xij) = Op(
√
n),

if Klog(pKq)/n → 0.
Now, if δ is small enough, for the SCAD penalty, pλ(∥Zjdj∥/

√
n) = λ∥Zjdj∥/

√
n ≍

λ∥dj∥ by the definition of the penalty. For the MCP, we also have pλ(∥Zjdj∥/
√
n) ≥

(λ/2)∥Zjdj∥/
√
n ≍ λ∥dj∥. Thus, (11) is larger than

(Cnλ−Op(
√

nlog(pKq) +
√
ndf + nsqK−d)

∑
j>s

δj − (
∑

j>s,j′≤s

∥Zj∥∥Zj′∥δjδj′)

Obviously, when the scalar in front of
∑

j>s δj above is positive, the first term dominates
the second term if δj is sufficiently small, which proved the theorem. □

Appendix: Table of notations
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Table 5: Table of notations.

n sample size
K number of basis functions for splines
p number of predictors
q number of responses

xi = (xi1, . . . , xip)
T observed predictor values for the i-th individual, i ∈

{1, . . . , n}
yi = (yi1, . . . , yiq)

T observed response values for the i-th individual, i ∈
{1, . . . , n}

b(x) = (b1(x), . . . , bK(x))T spline basis functions
T(n) matricization of a tensor T along mode n

µ = (µ1, . . . , µq)
T intercept in the additive model

fjl unknown functions to be estimated in the additive model,
j ∈ {1, . . . , p}, l ∈ {1, . . . , q}

djl = (dj1l, . . . , djKl)
T spline coefficients for the approximation of fjl

dj = (dT
j1, . . . ,d

T
jK)T all spline coefficients associated with predictor j arranged as

a vector
D the p×K × q tensor containing all djkl

(r1, r2, r3) rank for the low-rank approximation of D
D(r1, r2, r3) the set of all tensors of dimension p × K × q with rank

(r1, r2, r3)
zi the pK-dimensional vector with components bk(xij)

Z, Zj The (nq)× (pKq) matrix (z1⊗Iq, . . . , zn⊗Iq)
T, with Zj the

submatrix containing columns associated with predictor j
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