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Abstract
Deep residual network architectures have been shown to achieve superior accuracy over
classical feed-forward networks, yet their success is still not fully understood. Focusing
on massively over-parameterized, fully connected residual networks with ReLU activation
through their respective neural tangent kernels (ResNTK), we provide here a spectral analysis
of these kernels. Specifically, we show that, much like NTK for fully connected networks
(FC-NTK), for input distributed uniformly on the hypersphere Sd−1, the eigenvalues of
ResNTK corresponding to their spherical harmonics eigenfunctions decay polynomially with
frequency k as k−d. These in turn imply that the set of functions in their Reproducing
Kernel Hilbert Space are identical to those of both FC-NTK as well as the standard Laplace
kernel. Our spectral analysis allows us to highlight several additional properties of ResNTK,
which depend on the choice of a hyper-parameter that balances between the skip and
residual connections. Specifically, (1) with no bias, deep ResNTK is significantly biased
toward even frequency functions; (2) unlike FC-NTK for deep networks, which is spiky and
therefore yields poor generalization, ResNTK is stable and yields small generalization errors.
We finally demonstrate these with experiments showing further that these phenomena arise
in real networks.
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1. Introduction

Deep residual networks (ResNets), first introduced in He et al. (2016a), are to date amongst
the most effective network architectures for image understanding as well as other tasks Howard
et al. (2019); Radosavovic et al. (2020); Tan et al. (2019); Greenfeld et al. (2019); Siravenha
et al. (2019). Residual networks use a sequence of block operations of the form

x` = x`−1 + αG(x`−1, θ`−1) (1)

in which the input to each block, denoted x`−1, is added to its output G(x`−1, θ`−1) (called
the residual), and their sum is passed to the next block. (θ`−1 denote the block parameters.)
The scalar hyper-parameter α balances between the residual and skip connections. While
He et al. (2016a)’s implementation uses α = 1, Huang et al. (2020); Du et al. (2019); Hayou
et al. (2021) suggested to set this constant according to α = L−γ with 0.5 ≤ γ ≤ 1 and
L denotes the total number of hidden layers in the network. Our analysis in this paper
examines the range 0 ≤ γ ≤ 1.

The introduction of skip connections in ResNets allowed researchers to train networks
with hundreds, and even thousands of layers and to achieve unprecedentedly accurate
classification results on the competitive ImageNet dataset He et al. (2016a,b). The reasons
for the advantage of residual over classical feed-forward architectures are not yet fully
understood. Several papers argue that skip connections alleviate the problem of vanishing
gradients, which is prevalent in classical deep architectures Balduzzi et al. (2017); Veit et al.
(2016). Subsequent work showed that ResNets can avoid spurious local minima Liu et al.
(2019), while Li et al. (2018) showed, by empirically visualizing the loss landscape, that skip
connections make the loss smoother.

In this work, we examine residual networks from the perspective of the neural tangent
kernels. As with many existing network models, residual network applications are typically
over-parameterized. He et al. (2016a)’s implementation, for example, trains a network with
roughly 60M trainable parameters on the 1.2M images of ImageNet. Recent work Jacot
et al. (2018) suggested that massively overparameterized neural networks behave similarly
to kernel regressors with a family of kernels called Neural Tangent Kernels (NTKs). Huang
et al. (2020); Tirer et al. (2021) proved that fully connected residual networks of infinite
width converge to such kernel, which we here call ResNTK, and provided a closed form
derivation.

Kernel regression is characterized by the set of functions in the corresponding Reproducing
Kernel Hilbert Space (RKHS) and by the norm induced in this space. These in turn are
determined by the eigenfunctions and eigenvalues of the respective kernel under some
measure, with the decay rate of the eigenvalues playing a particularly important role. (Note
that the RKHS structure of a kernel is independent of the data distribution, see remark
4.3 in Kanagawa et al. (2018).) Previous work Hayou et al. (2021) showed that with data
distributed uniformly on the hypersphere Sd−1, the eigenfunctions of ResNTK are the
spherical harmonics. Here we prove that the eigenvalues of ResNTK decay polynomially with
frequency k at the rate of k−d, thus characterizing the set of functions in the corresponding
RKHS. We conclude that this set of functions is identical to the functions in the RKHS of
NTK of classical, fully connected networks (denoted FC-NTK ) Geifman et al. (2020); Bietti
and Bach (2021); Chen and Xu (2020), and, as is implied by this previous work, also to
those of the standard Laplace kernel, restricted to Sd−1.
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Our analysis reveals further connections and differences between ResNTK and FC-NTK.
These appear to critically depend on the choice of hyperparameter α, which balances between
the residual and skip connections (1). In particular, we prove for α = L−γ with 0.5 < γ ≤ 1
that when L (the network depth) tends to infinity ResNTK converges uniformly to a two-layer
FC-NTK in the interval. (A weaker result showing point-wise convergence with γ = 1 was
provided in Huang et al. (2020).) This implies on one hand that in this parameter regime,
in contrast to FC-NTK, deep Res-NTK is not spiky, and consequently, as we establish
by proving generalization bounds, deep ResNTK can generalize to new data, while deep
FC-NTK cannot. On the other hand, we prove that in the same parameter regime deep,
bias-free ResNTK is prone to parity imbalance. That is, with deep ResNTK, eigenfunctions
of odd frequencies k ≥ 3 have significantly lower eigenvalues than those of even frequencies,
indicating that odd frequencies are difficult to learn. Lastly, with 0 ≤ γ < 0.5, there is no
significant parity imbalance, but, much like FC-NTK, ResNTK becomes spiky with deep
architectures.

We finally provide experiments with real datasets (CIFAR-10 and SVHN) showing the
behavior of ResNTK with different settings of α as well as experiments that show the same
behavior in real neural networks.

In summary our paper makes the following four contributions.

1. We prove the decay rate of the eigenvalues of ResNTK, thus providing a full charac-
terization of its RKHS.

2. We prove the uniform convergence of deep ResNTK to FC-NTK of two layers in the
entire interval 1

L ≤ α <
1√
L
.

3. We use this uniform convergence to show that without bias, ResNTK for deep networks
suffers from a parity imbalance. In this, it is significantly inferior to the bias-free
FC-NTK.

4. We leverage our spectral characterization to contrast the generalization properties of
ResNTK to those of FC-NTK.

2. Previous work

Existing neural network models are typically applied with many more learnable parameters
than training data items, yet somewhat counter-intuitively they successfully generalize to
unseen data. Attempting to explain this phenomenon, Jacot et al. (2018) showed that
infinite width networks whose parameters are initialized sufficiently close to zero behave
like kernel regression with novel kernels called Neural Tangent Kernels. Specifically, for
an input x ∈ Rd and learnable parameters θ ∈ Rm, denote the network by f(x, θ), then
the corresponding NTK is given by Eθ∼P

〈
∂f(xi,θ)

∂θ ,
∂f(xj ,θ)

∂θ

〉
, where xi and xj is a training

pair, and the expectation is over the distribution P with which θ is initialized (typically the
standard normal distribution).

Subsequent work showed that very wide networks of finite width converge to a global
minimum Du et al. (2019); Allen-Zhu et al. (2019); Chizat et al. (2019) and further charac-
terized the speed of convergence as a function of the data distribution and the frequency
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of the target function Arora et al. (2019a); Basri et al. (2019, 2020). In particular, for
data distributed uniformly in the hypersphere Sd−1, it was shown that the eigenfunctions of
FC-NTK with any depth are the spherical harmonics and the eigenvalues decay at the rate
of k−d, where k denotes frequency Bietti and Bach (2021); Chen and Xu (2020) (Basri et al.
(2019); Bietti and Mairal (2019); Cao et al. (2019); Su and Yang (2019) show analogous
results in the case of FC-NTK for two-layer networks, while Fan and Wang (2020) studied the
restricted case in which the input samples are approximately orthogonal). This completely
characterizes the set of functions in the RKHS of FC-NTK. Recent work showed that the
set of functions in the RKHS of FC-NTK is identical to the respective set of functions of the
classical Laplace kernel Geifman et al. (2020); Bietti and Bach (2021); Chen and Xu (2020).
Our paper extends these results to NTK of residual networks of any depth.

Understanding the spectrum of a kernel is useful for a number of objectives. It indicates
whether a kernel exhibits a frequency bias Cao et al. (2019); Rahaman et al. (2019); Xu
et al. (2019), it provides an estimate of the number of gradient descent iterations needed
to learn certain target functions Basri et al. (2019, 2020) (accordingly, the number of
iterations to learn an eigenfunction of a certain frequency is inversely proportional to the
corresponding eigenvalue). Finally, the characterization of the spectrum can be used to
estimate the generalization error obtained by using the kernel as a minimum interpolant
regressor (ridge-less kernel regression). For example, Liang et al. (2020, 2019); Pagliana
et al. (2020) analyzed the bias-variance interplay of minimum norm interpolation with a
growing number of samples when the dimension is either fixed or growing at the same rate.

Several recent studies examined the behavior of over-parameterized residual networks.
Du et al. (2019); Zhang et al. (2019b) showed that very wide ResNets of finite size converge
to their global minima. Huang et al. (2020); Tirer et al. (2021) derived a formula for
ResNTK. The formula uses a parameter α that balances between the skip and residual
connections. Huang et al. (2020); Du et al. (2019); Hayou et al. (2021) argued that α should
be properly scaled with depth. Hayou et al. (2021) showed that the spherical harmonics
form the eigenfunctions of ResNTK on the hypersphere Sd−1 and proved its universality
(for networks with bias) in the infinite depth limit. Tirer et al. (2021)’s analysis further
suggested that ResNTK tends to generate smoother functions than FC-NTK. Huang et al.
(2020) showed that FC-NTK becomes spiky for deep networks, indicating that learning with
these kernels becomes degenerate, while ResNTK (with α = 1/L) remains stable with depth.

Our analysis, in contrast, (1) calculates the decay rate of the eigenvalues of ResNTK,
thus characterizing its RKHS structure and establishing that the functions in the RKHS of
both ResNTK and FC-NTK have the same smoothness properties. (2) It shows a parity
imbalance in deep, bias-free ResNTK. (3) It shows that depending on hyperparameters,
deep ResNTK may or may not become spiky. Moreover, we use the spectral properties of
these kernels to prove generalization bounds for both ResNTK and FC-NTK.

It has been a subject of debate whether results about NTK will help us to understand the
behavior of real neural networks, that are not so massively overparameterized. In particular,
it was argued that with real NNs, weights do not stay near their initialization, and therefore
linear models (“lazy training”) do not properly capture their dynamics Chizat et al. (2019);
Tachella et al. (2020). Moreover, several recent papers have crafted learning problems
that can be solved with real neural networks, but that linear models, including NTK, are
unable to solve Daniely and Malach (2020); Ghorbani et al. (2020); Yehudai and Shamir
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(2019). Nevertheless, previous studies have shown experimentally that simple FC networks
are subject to a similar inductive bias and training dynamics as predicted by analysis of
FC-NTK Basri et al. (2019, 2020). Moreover, Arora et al. (2020); Lee et al. (2020) have
shown that kernel regression using FC-NTK performs similarly, and a bit better than real
FC networks on a large number of machine learning datasets. We further refer the reader
to recent findings on this subject in Malach et al. (2021). Our experiments indicate that
properties of FC-NTK and ResNTK indeed show up in real networks.

3. Preliminaries

We consider positive definite kernels k : Rd × Rd → R over inputs x, z ∈ Rd. k is called
zonal if when x, z are restricted to the hypersphere Sd−1, k can be expressed as a function
of xT z. In such case we overload our definition of k, defining also k : [−1, 1] → R by
letting u = xT z and writing k(x, z) = k(u). To avoid unnecessary scaling and to allow
comparison of different kernels and kernels constructed for networks with different depths,
a good practice is to normalize the kernel by a constant multiplicative factor such that
k(1) = 1. Such normalization does not alter the RKHS of the kernel. The eigenfunctions and
eigenvalues derived in this paper are with respect to the uniform measure on the hypersphere
Sd−1. Note, however, that the resulting RKHS definition is independent of data distribution.
The kernels we use in this paper are ResNTK and FC-NTK, denoted respectively by r and
k, as well as the Laplace kernel (denoted kLap), with superscripts denoting the number of
hidden layers, e.g. k(L), i.e., L = 1 corresponds to a network with one hidden layer (i.e., a
two-layer network). All proofs are deferred to the supplementary material.

3.1 NTK for FC Networks

A fully-connected neural network (also called multi-layer perceptron, MLP) with L hidden
layers and m units in each hidden layer is expressed as

f(θ,x) = vTxL, x` =
√
cσ
m
σ
(
W (l)x`−1

)
, ` ∈ [L]

and x0 = x. The network parameters θ include W (1),W (2), ...,W (L), where W (1) ∈ Rd×m,
W (`) ∈ Rm×m (2 ≤ ` ≤ L), and v ∈ Rm. We denote by σ the ReLU activation function and
by cσ = 1/

(
Ez∼N (0,1)[σ(z)2]

)
= 2. The network parameters are initialized randomly with

N (0, I).
Jacot et al. (2018) showed that when the width m → ∞ the network behaves like

kernel regression with the neural tangent kernel. Bietti and Mairal (2019) showed that this
kernel, denoted for x, z ∈ Rd by k(L)(x, z), is homogeneous of degree 1 and zonal, so that
k(L)(x, z) = ‖x‖‖z‖k(L)(u), where u = xT z

‖x‖‖z‖ ∈ [−1, 1]. The (normalized) kernel is defined
by

k(L)(u) = 1
L+ 1 k̃

(L)(u)

with the recursive formula

k̃
(`)(u) = k̃

(`−1)(u)κ0(Σ(`−1)(u)) + Σ(`)(u) (2)
Σ(`)(u) = κ1(Σ(`−1)(u)), ` ∈ [L].
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It can be ready shown that with this definition, k(L)(1) = 1 for all values of L. The functions
κ1, κ0 are the arc-cosine kernels Cho and Saul (2009), defined as

κ0(u) = 1
π

(π − acos(u)) (3)

κ1(u) = 1
π

(
u · (π − acos(u)) +

√
1− u2

)
, (4)

and k̃
(0)(u) = Σ(0)(u) = u.

3.2 NTK for residual networks

For the definition of a fully connected residual network we follow the formulation of Huang
et al. (2020); Tirer et al. (2021).

g(x, θ) = vTxL

x` = x`−1 + α

√
1
m
V` σ

(√
2
m
W`x`−1 + τb`

)
, ` ∈ [L],

and x0 =
√

1
mAx. The parameters include A ∈ Rm×d, V`,W` ∈ Rm×m, v ∈ Rm, and σ(·) is

the ReLU function. α is a constant hyperparameter. Huang et al. (2020); Du et al. (2019);
Hayou et al. (2021) suggested to set this constant according to α = L−γ with 0.5 ≤ γ ≤ 1.
In contrast, He et al. (2016a)’s implementation uses α = 1 (and an additional ReLU function
applied to V` σ(.)). Recent work argued that setting α to decay with depth is enforced
in practice through suitable small initialization of the residual parameters or by applying
normalization blocks Zhang et al. (2019a). Our analysis below examines the range 0 ≤ γ ≤ 1.

Adopting Huang et al. (2020)’s derivation, we assume that both A and v are fixed at
their initial values and that V`, W`, and b are learned, with all parameters initialized with
the standard normal distribution except for the bias terms b`, which are initialized at 0.
Let x, z ∈ Rd. The respective NTK, denoted r(L)(x, z), is given by

r(L)(x, z) = Cτ

L∑
`=1

B`+1(x, z) [v`−1(x, z)κ1(u`−1(x, z))

+ (K`−1(x, z) + τ2)κ0(u`−1(x, z))
]
, (5)

where for ` ∈ [L] we let

v`(x, z) =
√
K`(x,x)K`(z, z), u`(x, z) = K`(x, z)

v`(x, z)
K`(x, z) = K`−1(x, z) + α2v`−1(x, z)κ1(u`−1)
B`(x, z) = B`+1(x, z)[1 + α2κ0(u`−1)]
K0(x, z) = xT z, BL+1(x, z) = 1

Cτ =
(

2L(1 + α2)L−1 + τ2 (1 + α2)L − 1
α2

)−1

,
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and κ0 and κ1 are defined in (3)-(4). The expression of Cτ is set so as to obtain r(1) = 1.
This is essential, as it was argued in Huang et al. (2020) to prevent the kernel from diverging
or vanishing as the depth L tends to infinity. We note that with this model, with L = 1
ResNTK is equal to FC-NTK, i.e., r(1) = k(1).

4. Analysis of ResNTK

In this section, we analyze properties of the ResNTK kernel. We prove three main results:

1. We prove the decay rate of the eigenvalues of ResNTK and compare its RKHS structure
to those of FC-NTK and the Laplace kernel.

2. We show a significant parity imbalance in the bias-free, deep ResNTK.

3. We prove generalization bounds for ResNTK and compare them to those of FC-NTK.

4.1 RKHS Structure of ResNTK

We next characterize the RKHS structure of ResNTK. Hayou et al. (2021) has shown
that ResNTK is zonal, and therefore its eigenfunctions under the uniform measure in
the hypersphere Sd−1 consist of the spherical harmonics. Our main result in this section
establishes that the eigenvalues of ResNTK decay with frequency k at the rate of k−d.

Theorem 1 The eigenvalues λk of ResNTK, r(x, z), for x, z ∈ Sd−1 corresponding to a
spherical harmonic eigenfunction Ykl(x) with frequency k ≥ 0 and phase 1 ≤ l ≤ N(d, k)
decay when k →∞ under the uniform measure as

λk =
{
C̄(c1 + c−1)k−d if k is even
C̄(c1 − c−1)k−d if k is odd,

where C̄, c1, c−1 are constants that depend on α,L, τ .

The proof of this theorem, given in the supplementary material, relies on an analysis of
the infinitesimal tendency of ResNTK near ±1. Specifically, we prove that for input in Sd−1

with α > 0, for L ≥ 1,

1. Near +1, r(L)(1− t) = 1 + c1t
1/2 + o(t1/2), with

c1 = −Cτ
√

2
π
L(1 + α2)L−2

(
(1 + α2L) + τ2(1 + α2)

)
.

2. Near -1, r(L)(−1 + t) = p−1(t) + c−1t
1/2 + o(t1/2), with |c−1| < max{τ2, 1}Cτ

√
2
π (1 +

α2)L−1, where p−1 is a finite degree polynomial.

Consequently,
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|c−1| < max{τ2, 1}Cτ
√

2
π

(1 + α2)L−1 ≤

Cτ

√
2
π

(1 + α2)L−1 max
{
Lτ2,

1 + α2L

1 + α2

}
≤ |c1|, .

Together, these results satisfy the conditions of a theorem proved in Bietti and Bach (2021)
from which it follows that the eigenvalues of ResNTK decay at the rate of k−d with coefficients
as specified in Theorem 1.

Theorems 1 provides a full characterization of the set of functions in the reproducing
kernel Hilbert space of ResNTK, denoted Hr, defined in Sd−1 as

Hr =

f(x) =
∑
k≥0
λk 6=0

N(d,k)∑
j=1

akjYkj(x) s.t. ‖f‖Hr <∞

 ,
where λk are the eigenvalues of r, N(d, k) is the number of Harmonics of frequency k in Rd
and j is the phase. The coefficient akj is the projection of f onto the Spherical Harmonic
Ykj(x) and

‖f‖Hr =
∑
k≥0
λk 6=0

N(d,k)∑
j=1

a2
kj

λk
. (6)

Theorem 1 holds for data sampled uniformly from Sd−1. It can however be easily extended to
any radial distribution in Rd, by applying Theorem 5 in Geifman et al. (2020). Specifically,
(5) establishes that ResNTK is the sum of homogeneous kernels of order zero and order one
and thus satisfies the conditions of that theorem.

As the eigenvalues of ResNTK decay at the same rate as those of both FC-NTK and
the standard Laplace kernel Bietti and Bach (2021); Chen and Xu (2020); Geifman et al.
(2020), their RKHSs are closely related. This is summarized in the following corollary.

Corollary 2 Let k and r respectively denote the FC-NTK and ResNTK kernels. Denote
by Hk and Hr the set of functions in the RKHS of the FC-NTK k and ResNTK r in Sd−1

Then,

Hk = Hr = HkLap ,

where for x, z ∈ Sd−1, kLap denotes the standard Laplace kernel defined by

kLap(x, z) = e−c‖x−z‖ = e−c
√

2(1−xT z). (7)

A consequence of Corollary 2 is that the three kernels, ResNTK, FC-NTK, and the Laplace
kernel generate functions of the same smoothness properties, i.e., all three RKHSs include
functions that have weak derivatives up to order d/2 Narcowich et al. (2007). However,
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the structure of the RKHSs is not identical; while the set of functions in the three RKHSs
are identical, each kernel is associated with a different RKHS norm. In particular, while
the eigenvalues decay at the same rate, they are not identical across kernels, or even across
different depths for the same kernel, producing different RKHS norms (6). This, in turn,
implies that when applied to the same regression problem, the kernels may produce somewhat
different outcomes. For example, as we prove below, with deep architectures the bias-free
ResNTK will be biased to interpolate functions with even frequencies, while with bias it will
be agnostic to parity. Also, Tirer et al. (2021) showed that under a suitable measure, with
low values of α ResNTK tends to produce smoother interpolations. A close examination of
their experiments however reveals that also with small values of α their interpolations are
only piecewise smooth, consistent with the structure of the respective RKHS derived here.

4.2 Parity Imbalance

Theorem 1 indicates that the rate of decay for all frequencies is k−d. However, for the
bias-free ResNTK according to Theorem 1, the leading coefficient for the even and odd
frequencies, respectively C̄(c1 ± c−1), differ. In fact, if the hyperparameter α, which relates
between the residual and the skip connections, decays sufficiently fast with network depth,
then the eigenvalues for the odd frequencies become extremely small compared to those
for the even frequencies. This in fact happens when α is chosen according to Huang et al.
(2020); Du et al. (2019); Hayou et al. (2021), i.e., when α = L−γ with 0.5 < γ ≤ 1, see
Figure 1(top left).

To prove the parity imbalance, we will need the following theorem, which establishes
that with 0.5 < γ ≤ 1, the bias-free ResNTK converges uniformly to the two-layer, bias-free
FC-NTK for which, as is shown in Basri et al. (2019), the eigenvalues corresponding to
the odd frequency k ≥ 3 are zero. Our theorem below extends over a weaker theorem by
Huang et al. (2020), which proved point-wise convergence for γ = 1 in the open interval
xT z ∈ (−1, 1) only.

Theorem 3 ResNTK r(L) for residual networks with L ∈ N layers and the hyperparameter
α = L−γ, 0.5 < γ ≤ 1, approaches the 2-layer FC-NTK uniformly in the interval xT z ∈
[−1, 1], where x, z ∈ Sd−1; that is, let ε > 0, ∀L > c(ε, γ)

|r(L)(x, z)− k(1)(x, z)| ≤ ε.

For the proof, given in the supplementary material, we first prove uniform convergence
in the interval [−1 + δ, 1− δ] for all δ > 0. We then extend this to the full range [−1, 1] by
utilizing the Taylor expansion of both kernels at the endpoints, relying on our asymptotic
analysis for ResNTK.

Based on this theorem we obtain

Corollary 4 With α = L−γ, 0.5 < γ ≤ 1, and L → ∞ the eigenvalues of the bias-free
ResNTK (i.e setting τ = 0) of odd frequencies k ≥ 3 vanish.

The proof follows directly from Theorem 3, since for FC-NTK the eigenvalues corre-
sponding to odd frequency functions are zero Basri et al. (2019). This is also evident from
the expansion near ±1. We show in the supplementary material that when α2L � 1,
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c1
α2L−→0−−−−−→ − 1√

2π = c−1, indicating (using Bietti and Bach (2021)) that the eigenvalues
corresponding to odd frequencies vanish. It is important to note that according to The-
orem 1 for every finite L the eigenvalues for the odd frequencies are non-zero and decay
asymptotically as k−d. The eigenvalues vanish at the limit when L→∞.

With finite L and a training set of n samples, the uniform convergence and the Wielandt-
Hoffman inequality Golub and Van Loan (1996) implies that the eigenvalues associated with
the odd frequencies are at most O(nL1−2γ). Therefore, ResNTK differs from FC-NTK, for
which in all depths except L = 1 the eigenvalues of odd and even frequencies have similar
values.

Figure 1(top left) shows the eigenvalues of ResNTK for various depth values as a function
of frequency. It can be seen that as depth increases the eigenvalues of odd frequencies
considerably decrease, compared to those of the even frequencies. We note finally that
this parity difference disappears if we choose γ = 0.5, i.e., α = 1/

√
L, or if we include

bias (τ > 0), as can be seen in Figure 1 (top right, bottom left). The same phenomenon
is observed with real networks. We used a bias-free residual network with 50 layers and
α = 1/L to regress sinusoidal functions for data in S1. Consistent with our findings, fitting
both the odd and even frequency functions took O(k2) epochs, i.e., the number of epochs is
indeed inversely proportional to the corresponding eigenvalue, as indicated in Basri et al.
(2019), but fitting the odd frequencies required significantly more time than fitting the even
frequency ones. Convergence times are shown in Figure 1 (bottom right).

4.3 Generalization

Our analysis also allows us to determine how sharp ResNTK is near 1. In particular, the
expansion of the Laplace kernel (7) near 1, derived in Bietti and Bach (2021), is given by

kLap(1− t) = 1− c
√

2t+O(t).

Therefore, the coefficient of t1/2 indicates how steep a kernel is near 1. Specifically, for the
bias-free ResNTK, with c = 1+α2L

2π(1+α2) , where α is the balancing parameter defined in Section
3.2, we have that r(L)(1− t)−kLap(1− t) = o(t1/2) (see supplementary material). Therefore,
with 0.5 ≤ γ ≤ 1 the steepness of ResNTK is bounded, i.e.,

cRES(L) = (1 + α2L)
2π(1 + α2)

L−→∞−−−−→
{ 1
π , γ = 0.5
1

2π , 0.5 < γ ≤ 1.

In contrast, with 0 ≤ γ < 0.5, cRES(L) either grows linearly (if γ = 0) or sublinearly with
L. This is similar to FC-NTK, for which with c = L

2π , k(L)(1− t)− kLap(1− t) = o(t1/2),
implying that deep FC-NTK becomes steeper near 1. This is consistent with Huang et al.
(2020); Xiao et al. (2020) who proved that, except near u = xT z = 1, as the depth L tends to
infinity FC-NTK approaches the constant 0.25. Therefore, with deep architectures, FC-NTK
forms a spike. Figure 2 shows the shape of both FC-NTK and ResNTK for three choices of
network depths.

Indeed, the instability of FC-NTK and of ResNTK with 0 ≤ γ < 0.5 badly affects their
generalization, while the stability of ResNTK with 0.5 < γ ≤ 1 allows it to learn target
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Figure 1: Top left: the eigenvalues of ResNTK without bias (γ = 1, i.e., α = 1/L) as a function of
frequency for different depths L. The eigenvalues for the odd frequencies as L grows are significantly
lower than the eigenvalues for the nearby even frequencies, approaching 0 at L→∞. This parity
difference disappears with bias (top right) or if the hyperparameter γ is set to 0.5 or lower (γ = 0.5,
i.e., α = 1/

√
L, no bias, bottom left), in which case the eigenvalues decrease monotonically with

frequency. Bottom right: a real residual network with L = 50 and α = 1/50 was trained to regress the
function sin(kx) for input (cosx, sin x) ∈ S1. The figure shows the number of epochs to convergence
for each frequency k (execution was stopped when a fit with 5% error was achieved). Consistent
with our findings for ResNTK, convergence times grow quadratically with k, but convergence for the
odd frequency target functions is significantly slower than for the even frequencies.

functions with a small generalization error. This is established in the following theorem.
Denote the space of band limited functionsy(x)|y(x) =

r∑
k=0

N(d,k)∑
j=1

αkjYkj(x), x ∈ Sd−1


by Hr(Sd−1). The theorem states that with the truncated `2 loss L and x drawn from the
uniform distribution, deep ResNTK with 0.5 < γ ≤ 1 can learn functions y(x) ∈ Hr(Sd−1)
with generalization error that approaches zero as the number of training samples increases,
whereas, in contrast, FC-NTK of sufficient depth achieves poor generalization for such
functions. Below we denote by fResNTK and fFC-NTK the predictions of the ResNTK and
FC-NTK kernel regressors.
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Figure 2: FC-NTK (left) and ResNTK (center α = 1, right α = 1/L) for networks of different
depths, L = 5, 20, 100. For FC-NTK and ResNTK with α = 1, the kernel becomes spiky with depth.
With α = 1/L ResNTK remains stable for all depths.

Theorem 5 Let {(xi, yi)}ni=1 be n i.i.d samples such that {xi}ni=1 are drawn from the
uniform distribution on Sd−1 and assuming that y ∈ Hr(Sd−1). Then,

1. There exists L0 such that ∀L > L0 it holds that with probability at least 1 − δ, the
expected risk of the ResNTK with depth L and 0.5 < γ ≤ 1 is upper bounded by

E(L(fResNTK(x), y)) ≤ O

r 3d−2
2
√
n

+

√
log(1/δ)

n

 .
2. ∀ε > 0 there exists L0 = L(ε, n), such that ∀L > L0, the NTK predictor for {(xi, yi)}ni=1

and depth L satisfies almost surely

E(L(fFC−NTK(x), y)) =∫
Sd−1

(fFC−NTK(x)− y(x))2dx ≥ 1−O(ε),

where the expectation is taken over the data distribution stated above.

The main contribution in Theorem 5 is in proving that with a proper set of parameters
deep ResNTK generalizes well, extending existing generalization results Arora et al. (2019a);
Nitanda and Suzuki (2020); Huang et al. (2020); Xiao et al. (2020) to ResNTK. We note
that Arora et al. (2019b); Nitanda and Suzuki (2020) show better generalization bounds for
FC-NTK, but their results are applicable to two layers Neural Networks only. Xiao et al.
(2020); Huang et al. (2020) show that with large depth, FC-NTK becomes degenerate. The
second part of Thm. 5 leverages their results to establish a trivial MSE for such FC-NTKs.

Our experiments in Section 5 below indeed indicate that while for FC-NTK and ResNTK
with 0 ≤ γ < 0.5 learning accuracy degrades with depth, for ResNTK with 0.5 ≤ γ ≤ 1
learning accuracy is stable across depth. This is also observed in the corresponding fully
connected and residual networks.

5. Experiments

We performed a number of experiments to show the effect of depth on ResNTK and to
compare it to FC-NTK. We further tested these effects also on actual networks. In the
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Table 1: Classification accuracies (percent) obtained by applying FC-NTK and ResNTK on the
CIFAR-10 dataset with α ∈ { 1

L5/4 , 1/L, 1/
√
L, 1

4√
L
, 1}.

ResNTK

L FC-NTK α = 1
L5/4 α = 1

L α = 1√
L

α = 1
4√
L

α = 1

5 58.29 57.89 58.23 58.32 58.37 58.31
25 54.33 57.44 57.72 58.33 57.92 55.91
50 51.42 57.38 57.58 58.34 57.63 54.18
100 48.27 57.34 57.53 58.34 57.01 51.39

Table 2: Classification accuracies (percent) obtained by applying on the SVHN dataset FC-NTK
and ResNTK with α ∈ {1/L, 1/

√
L, 1}.

ResNTK

L FC-NTK α = 1
L5/4 α = 1

L α = 1√
L

α = 1
4√
L

α = 1

5 74.44 79.4 73.62 78.36 77.9 77.72
25 48.75 79.8 74.73 78.17 77.3 76.03
50 33.69 79.8 74.89 78.14 77 74.16
100 21.12 79.7 74.91 78.13 76.4 71.12

kernel experiments, we minimized the ridge regression formula

min
f∈H

n∑
i=1

(f(xi)− yi)2 + λ‖f‖H,

with a constant ridge parameter λ ≥ 0. We used in these experiments the bias-free FC-NTK
and ResNTK. In the network experiment, we minimized the cross-entropy loss with no
regularization.

CIFAR-10 We applied both ResNTK and FC-NTK to the CIFAR-10 dataset. Note that
the kernels we applied correspond to classical and residual fully connected architectures and
are not convolutional. We normalized the pixels in each image to zero mean and unit variance
and used kernel regression with λ = 0. Table 1 (left) shows classification accuracies with
FC-NTK and ResNTK with α ∈ { 1

L5/4 ,
1
L ,

1√
L
, 1

4√
L
, 1}. It can be seen that test accuracies

for FC-NTK degrade from 58.28% with 5 layers to 48.27% with 100 layers. Likewise, test
accuracies for ResNTK with α = 1 degrade from 58.31% with 5 layers to 51.39% with 100
layers. In contrast, consistent with our theory, ResNTK with α ∈ {1/L, 1/

√
L} maintains

an accuracy of 57.5%-58.3% across depth.

SVHN We repeated the same experiments on the SVHN dataset, see Table 2 (right).
Here too we normalized the pixels in each image to zero mean and unit variance but used
regression with λ = 1e−5. The differences between FC-NTK and ResNTK are even more
extreme in this experiment. FC-NTK degrades from an accuracy of 74.44% with 5 layers to
21.12% with 100 layers. ResNTK with α = 1 degrades more modestly, from 77.72% with 5
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Table 3: Network application. Classification accuracies (percent) on the CIFAR-10 dataset obtained
by applying a residual network with α ∈ { 1

L5/4 ,
1
L ,

1√
L
, 1

4√
L
} and with a standard fully-connected

network (FC-Net).

ResNet

L FC-Net α = 1
L5/4 α = 1

L α = 1√
L

α = 1
4√
L

5 52.32 53.17 53.15 53.58 52.17
25 41.08 53.07 53.49 52.09 47.32
50 36.76 52.63 53.49 52.89 45.34
100 36.73 52.0 53.49 52.05 36.48

layers to 71.12%, while with α = 1/L and α = 1/
√
L it maintains respectively a 74-75% and

78% accuracy for all tested depths as our theory predicts.

CIFAR-10: Real networks To further examine the relevance of these results to real
networks, we applied a fully-connected network (FC-Net) and a residual, fully-connected
network (ResNet), both with hidden layers of width m = 2000. We optimized the networks
with SGD with no momentum and used a constant learning rate of 5e−5. The results shown
in Table 3 are similar to those obtained with the respective kernels. Specifically, both FC-Net
and ResNet with α = L−1/4 degrade from 52% with 5 layers to 36% with deeper layers.
Consistent with our kernel analysis, ResNet with γ ∈ {1, 0.5} maintains an accuracy of
52-53% for all depths.

6. Conclusion

We have provided derivations to determine the RKHS structure of NTK for residual
networks and analyzed the shape of the kernel and its generalization properties with
different hyperparameters. Our analysis indicates that similar to NTK for classical, fully
connected networks, the eigenvalues of ResNTK corresponding to its spherical harmonic
eigenfunctions decay polynomially with frequency k at the rate of k−d. These in turn imply
that the set of functions in its RKHS are identical to those of both FC-NTK and the Laplace
kernel restricted to the hypersphere Sd−1. Our results imply that all three kernels produce
functions of similar smoothness properties. We have shown further that, depending on
the choice of α, which balances between the residual and skip connections, deep bias-free
ResNTK is significantly biased toward the even frequencies. Finally, we saw that ResNTK
can be controlled to become spiky with depth, as is the case with FC-NTK, or maintain a
stable shape, enabling superior generalization with deep networks.

Our results suggest that NTK provides only a partial explanation to the success of
residual networks. Indeed it appears that classification with FC-NTK degrades with depth,
while classification with ResNTK can be made stable with a proper choice of a balancing
hyper-parameter. However, our experiments suggest that with an optimal choice of depth,
classification results with FC-NTK and ResNTK are similar, most likely due to their similar
RKHS structures. This is somewhat in contrast to actual implementations, in which residual
networks seem to significantly outperform classical feed-forward networks. This difference
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may be attributed to optimization issues, or to the possible invalidity of the assumptions of
NTK to real networks of finite width. It is also possible that differences between residual
and classical kernels are more significant in convolutional architectures.

Acknowledgments

This research was supported in part by the Israel Science Foundation, grant No. 1639/19,
by the Israeli Council for Higher Education (CHE) via the Weizmann Data Science Research
Center, by the MBZUAI-WIS Joint Program for Artificial Intelligence Research and by
research grants from the Estates of Bernice Bernath and Marni Josephs Grossman; Joel
B. Levey; Tully and Michele Plesser and the Anita James Rosen and Harry Schutzman
Foundations.

15



Belfer, Geifman, Galun, Basri

Appendix A. Decay rate of eigenvalues of ResNTK without bias

In this section we prove Theorem 1 for a bias-free ResNTK (i.e. τ = 0). We extend this to
τ ≥ 0 in Section B.

Theorem A.1 The eigenvalues λk of ResNTK, r(x, z), for x, z ∈ Sd−1 corresponding to
a spherical harmonic eigenfunction Ykl(x) with frequency k ≥ 0 and phase 1 ≤ l ≤ N(d, k)
decay when k →∞ under the uniform measure as

λk =
{
C̄(c1 + c−1)k−d if k is even
C̄(c1 − c−1)k−d if k is odd,

where C̄, c1, c−1 are constants that depend on α,L, τ .

Before proving the theorem, we will lay out some notations and prove related lemmas.
We assume that x, z ∈ Sd−1 and let u = xT z. We use the following lemma to simplify
ResNTK for such input.

Lemma A.2 Huang et al. (2020) For inputs in Sd−1 and with no bias (τ = 0), K`(x,x) =
(1 + α2)`.

Using the lemma above, bias-free ResNTK can be expressed as follows

r(L)(u) = C
L∑
`=1

B`+1(u)
[
(1 + α2)`−1κ1

(
K`−1(u)

(1 + α2)`−1

)
+K`−1(u)κ0

(
K`−1(u)

(1 + α2)`−1

)]
, (8)

where K0(u) = u, BL+1(u) = 1, C = 1
2L(1+α2)L−1 and

K`(u) = K`−1(u) + α2(1− α2)l−1κ1

(
K`−1(u)

(1 + α2)`−1

)
, ` = 1, ..., L− 1 (9)

B`(u) = B`+1(u)
[
1 + α2κ0

(
K`−1(u)

(1 + α2)`−1

)]
, ` = L, ..., 2, (10)

and κ0 and κ1 are defined as

κ0(u) = 1
π

(π − acos(u)) (11)

κ1(u) = 1
π

(
u · (π − acos(u)) +

√
1− u2

)
. (12)

We further define the following variables, to be used in Section A.2. Near -1 (small
t > 0):

ν` = K`−1(−1 + t)
(1 + α2)`−1 (13)

β` = κ1 (ν`) (14)
η` = κ0 (ν`) (15)

for ` = 1, 2, ..., and β0 = ηL = 0. Note that β`, η` ∈ [0, 1] due to the image of the arc-cosine
kernels.

16



Spectral Analysis of the Neural Tangent Kernel for Deep Residual Networks

The proof of Theorem 1 proceeds by calculating the asymptotes of ResNTK near ±1
and applying a result from Bietti and Bach (2021), which for certain zonal kernels relates
the decay rate of the eigenvalues of a kernel to its infinitesimal tendency near ±1. Below
we review the theorem and provide additional lemmas, which together allow us to prove
Theorem 1.

Theorem A.3 (Bietti and Bach (2021)) Let κ : [−1, 1] −→ R be a C∞ function on
(−1, 1) that has the following asymptotic expansions around ±1

κ(1− t) = p1(t) + c1t
ν + o(tν) (16)

κ(−1 + t) = p−1(t) + c−1t
ν + o(tν) (17)

for t ≥ 0, where p1, p−1 are polynomials and ν > 0 is not an integer. Let λk denote an
eigenvalue of κ corresponding to a spherical harmonic eigenfunction of frequency k. Then,
there is an absolute constant C(d, ν) depending on d and ν such that

• For k even, if c1 6= −c−1:
λk ∼ (c1 + c−1)C(d, ν)k−d−2ν+1.

• For k odd, if c1 6= c−1:
λk ∼ (c1 − c−1)C(d, ν)k−d−2ν+1.

In the case |c1| = |c−1|, we have λk = o(k−d−2ν+1) for one of the two parities (or both if
c1 = c−1 = 0). If κ is infinitely differentiable on [−1, 1] so that no such ν exists, then λk
decays faster than any polynomial.

In the following sections, we provide the full Taylor expansions around ±1 for ResNTK.
We further calculate the fractional power ν and show it equals 0.5. In addition, we prove
that c1 6= c−1, except with a special choice of the parameter α and large L. These allow us
to deduce that the eigenvalues decay as O(k−d).

A.1 Expansion near 1

The expansion is given by the following lemma (Theorem 1, part 1 with τ = 0 in the paper).

Lemma A.4 For inputs in Sd−1 and near +1, if α > 0 and L ≥ 1

r(L)(1− t) = 1 + c1t
1/2 + o(t1/2)

where
c1 = − 1 + α2L√

2π(1 + α2)
.

We prove this using the following lemmas.

Lemma A.5 Bietti and Bach (2021) The arc-cosine kernels near 1 satisfy

κ0(1− t) = 1−
√

2
π
t1/2 +O(t3/2) (18)

κ1(1− t) = 1− t+ 2
√

2
3π t3/2 +O(t5/2). (19)
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Lemma A.6 For small t > 0, K`(1− t) = (1 + α2)`(1− t) + o(t), where K` is defined in
(9).

Proof We prove this by induction. For ` = 0, K0(1 − t) = 1 − t, trivially satisfying the
lemma. Suppose the lemma holds for K`−1(1− t), using (9)

K`(1− t) = K`−1(1− t) + α2(1 + α2)`−1κ1

(
K`−1(1− t)
(1 + α2)`−1

)
= (1 + α2)`−1(1− t) + o(t) + α2(1 + α2)`−1κ1

(
(1 + α2)`−1(1− t) + o(t)

(1 + α2)`−1

)
= (1 + α2)`−1(1− t) + o(t) + α2(1 + α2)`−1κ1(1− t+ o(t))
= (1 + α2)`−1(1− t) + α2(1 + α2)`−1(1− t) + o(t) = (1 + α2)`(1− t) + o(t),

where the leftmost equality in the last line is due to (19).

Lemma A.7 With small t > 0,

κ0

(
K`−1(1− t)
(1 + α2)`−1

)
= 1−

√
2
π
t1/2 + o(t)

κ1

(
K`−1(1− t)
(1 + α2)`−1

)
= 1− t+ o(t).

Proof Using Lemma A.6, for small t > 0,

K`−1(1− t)
(1 + α2)`−1 = (1 + α2)`−1(1− t) + o(t)

(1 + α2)`−1 = 1− t+ o(t).

Next, using (18)

κ0

(
K`−1(1− t)
(1 + α2)`−1

)
= κ0(1− t+ o(t)) = 1−

√
2
π
t1/2 + o(t),

and using (19)

κ1

(
K`−1(1− t)
(1 + α2)`−1

)
= κ1(1− t+ o(t)) = 1− t+ o(t).

Lemma A.8 With small t > 0,

B`+1(1− t) = (1 + α2)L−` −
√

2α2

π
(1 + α2)L−`−1(L− `) t1/2 +O(t),

where B` is defined in (10).
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Proof With small t > 0, we use Lemma A.7 to simplify (10) as follows:

B`(1− t) = B`+1(1− t)
[
1 + α2

(
1−
√

2
π
t1/2 + o(t)

)]
.

Since BL+1 = 1, resolving the recursion yields

B`+1(1− t) =
(

1 + α2 −
√

2α2

π
t1/2 +O(t3/2)

)L−`
.

This can be simplified as follows

B`+1(1− t) =
L−∑̀
i=0

(
L− `
i

)(
1 + α2 +O(t3/2)

)L−`−i(
−
√

2α2

π
t1/2 +O(t3/2)

)i
.

Grouping together all O(t) terms, we finally obtain

B`+1(1− t) = (1 + α2)L−` −
√

2α2

π
(1 + α2)L−`−1(L− `) t1/2 +O(t).

We next prove Lemma A.4.
Proof (Lemma A.4) Rewrite (8) as r(L)(1− t) = C

∑L
`=1X`Y`, where:

C = 1
2L(1 + α2)L−1

X` = (1 + α2)`−1κ1

(
K`−1(1− t)
(1 + α2)`−1

)
+K`−1(1− t)κ0

(
K`−1(1− t)
(1 + α2)`−1

)
Y` = B`+1(1− t).

Using Lemmas A.6 and A.7, for small t > 0,

X` = (1 + α2)`−1(1− t+ o(t)) + ((1 + α2)`−1(1− t) + o(t))
(

1−
√

2
π
t1/2 + o(t)

)

= (1 + α2)`−1(1− t) + (1 + α2)`−1(1− t)
(

1−
√

2
π
t1/2

)
+O(t)

= (1 + α2)`−1(1− t)
(

2−
√

2
π
t1/2

)
+O(t) = (1 + α2)`−1

(
2−
√

2
π
t1/2

)
+ o(t1/2).

Using Lemma A.8 each term in the sum can be written as

X`Y` =
[
(1 + α2)`−1

(
2−
√

2
π
t1/2

)][
(1 + α2)L−` − α2√2

π
(1 + α2)L−`−1(L− `) t1/2

]
+O(t)

=
[
2(1 + α2)L−1 −

√
2
π

(
2α2(1 + α2)L−2(L− `) + (1 + α2)L−1

)
t1/2

]
+O(t)

= (1 + α2)L−1
[
2−
√

2
π

(
2α2(L− `)

1 + α2 + 1
)
t1/2

]
+O(t).
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Recall that C = 1
2L(1+α2)L−1

CX`Y` = 1
2L

[
2−
√

2
π

(
2α2(L− `)

1 + α2 + 1
)
t1/2

]
+O(t).

Summing over the layers

r(L)(1− t) = C
L∑
`=1

X`Y` = 1− 1√
2πL

[
α2L(L− 1)

1 + α2 + L

]
t1/2 +O(t)

= 1− 1 + α2L√
2π(1 + α2)

t1/2 + o(t1/2). (20)

A.2 Expansion near -1

Here we investigate the expansion of ResNTK near -1. We consider two cases. First, with
α > 0 such that α2L does not vanish as L grows, and secondly, with α > 0 and α2L� 1.

A.2.1 α > 0 such that α2L 6� 1

The expansion is given by the following lemma (Theorem 1, part 2 with τ = 0 in the paper).

Lemma A.9 For inputs in Sd−1 and near -1, if α > 0 and L ≥ 2 then

r(L)(−1 + t) = p−1(t) + c−1t
1/2 + o(t1/2),

with

|c−1| ≤
1√

2π(1 + α2)L
.

We prove this using the following lemmas.

Lemma A.10 Bietti and Bach (2021) The arc-cosine kernels near -1 satisfy

κ0(−1 + t) =
√

2
π
t1/2 +O(t3/2) (21)

κ1(−1 + t) = 2
√

2
3π t3/2 +O(t5/2). (22)

Lemma A.11 With small t > 0,

K`(−1 + t) = −1 + t+ α2 ∑̀
j=0

(1 + α2)j−1βj +O(t3/2),

where β` as defined in (14).
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Proof With ` = 0, K0(−1 + t) = −1 + t, trivially satisfying the lemma. Suppose the lemma
holds for K`−1(−1 + t). Then, using (9) and (14)

K`(−1 + t) = K`−1(−1 + t) + α2(1 + α2)`−1κ1

(
K`−1(−1 + t)
(1 + α2)`−1

)
= K`−1(−1 + t) + α2(1 + α2)`−1β`.

By the induction assumption

K`(−1 + t) = −1 + t+ α2
`−1∑
j=0

(1 + α2)j−1βj + α2(1 + α2)`−1β` +O(t3/2)

= −1 + t+ α2 ∑̀
j=0

(1 + α2)j−1βj +O(t3/2).

The next Lemma ensures that β` is well defined (since κ1 takes input in [−1, 1]).
Lemma A.12 Let ν` as defined in (13). Then, ∀` ≥ 1, |ν`| ≤ 1.
Proof Using (13) and Lemma A.11 we have

ν` =
−1 + t+ α2∑`−1

j=0(1 + α2)j−1βj

(1 + α2)`−1 . (23)

Since β0 = 0, with ` = 1 |ν1| = | − 1 + t| ≤ 1. With ` > 1 using triangle inequality,

|ν`| ≤
∣∣∣∣∣−1 + t+ α2∑`−2

j=0(1 + α2)j−1βj

(1 + α2)`−1

∣∣∣∣∣+
∣∣∣∣∣α2(1 + α2)`−2β`−1

(1 + α2)`−1

∣∣∣∣∣ .
Noting that the first term is

∣∣∣ ν`−1
1+α2

∣∣∣, and assuming by induction that the lemma is satisfied
for ν`−1, then

|ν`| ≤
1

1 + α2 + α2β`−1
1 + α2 ≤

1
1 + α2 + α2

1 + α2 = 1,

where the rightmost inequality is because by definition β` ∈ [0, 1].

Lemma A.13 Let δ` =
−1+α2

∑`−1
j=0(1+α2)j−1βj

(1+α2)`−1 . Then, ∀` ≥ 2, |δ`| < 1.

Proof For ` = 2 we have |δ2| =
∣∣∣−1+α2β1

1+α2

∣∣∣ ≤ max{ 1
1+α2 ,

α2−1
1+α2 } < 1. Assume the lemma

holds for `− 1. We prove for `:

|δ`| =
∣∣∣∣∣−1 + α2∑`−1

j=0(1 + α2)j−1βj

(1 + α2)`−1

∣∣∣∣∣ =
∣∣∣∣∣−1 + α2∑`−2

j=0(1 + α2)j−1βj + α2(1 + α2)`−1β`

(1 + α2)`−2(1 + α2)

∣∣∣∣∣ =∣∣∣∣∣ δ`−1
(1 + α2) + α2(1 + α2)`−2β`

(1 + α2)`−2(1 + α2)

∣∣∣∣∣ =
∣∣∣∣∣ δ`−1
(1 + α2) + α2β`

(1 + α2)

∣∣∣∣∣ ≤1
∣∣∣∣ δ`−1
(1 + α2)

∣∣∣∣+
∣∣∣∣∣ α2β`
(1 + α2)

∣∣∣∣∣ <2

1
(1 + α2) + α2

(1 + α2) = 1,
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where ≤1 uses the triangle inequality, and <2 is due to the induction hypothesis and the
fact that ∀`, β` ∈ [0, 1].

Lemma A.14 With small t > 0, ∀` ∈ [L− 1]

β` = κ1

(
−1 + α2∑`−1

j=0(1 + α2)j−1βj

(1 + α2)`−1

)
+O(t).

Proof First, note that for ` = 1 we get this directly from Lemma 22. For ` ≥ 2, using
Lemma A.11 and the definition in (14):

β` = κ1

(
−1 + t+ α2∑`−1

j=0(1 + α2)j−1βj

(1 + α2)`−1

)

= κ1

(
−1 + α2∑`−1

j=0(1 + α2)j−1βj

(1 + α2)`−1 +O(t)
)

= κ1 (δ` +O(t)) ,

where δ` is defined in Lemma A.13. Note that from this lemma, −1 < δ` < 1. In this
domain, κ1 is infinitely differentiable, hence we get:

β` = κ1 (δ`) +O(t) = κ1

(
−1 + α2∑`−1

j=0(1 + α2)j−1βj

(1 + α2)`−1

)
+O(t).

Lemma A.15 With small t > 0, ∀` ∈ [L− 1]

β` = c̃` +O(t),

where c̃` ∈ [0, 1] does not depend on t.

Proof The proof is by induction. For ` = 1 we have from Lemma A.14

β1 = κ1

( −1
(1 + α2)

)
+O(t) = c̃1 +O(t).

Suppose the lemma holds for β`−1 and show for β`

β` = κ1

(
−1 + α2∑`−1

j=0(1 + α2)j−1βj

(1 + α2)`−1 +O(t)
)

= κ1

(
−1 + α2∑`−1

j=0(1 + α2)j−1(c̃j +O(t))
(1 + α2)`−1 +O(t)

)

= κ1

(
−1 + α2∑`−1

j=0(1 + α2)j−1c̃j

(1 + α2)`−1 +O(t)
)

= κ1

(
−1 + α2∑`−1

j=0(1 + α2)j−1c̃j

(1 + α2)`−1

)
+O(t) = c̃` +O(t),
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where the leftmost equality in the second line is from Lemma A.14. The definition of c̃`
directly implies that c̃` ∈ [0, 1].

Lemma A.16 With small t > 0, and for ` = 1,

η1 =
√

2
π
t1/2 +O(t3/2).

For ` ≥ 2,

η` = κ0

(
−1 + α2∑`−1

j=0(1 + α2)j−1βj

(1 + α2)`−1

)
+O(t).

where η` is defined in (15).

Proof First, note that for ` = 1 we get this directly from Lemma 21. For ` ≥ 2, using
Lemma A.11 and the definition (15):

η` = κ0

(
−1 + t+ α2∑`−1

j=0(1 + α2)j−1βj

(1 + α2)`−1

)

= κ0

(
−1 + α2∑`−1

j=0(1 + α2)j−1βj

(1 + α2)`−1 +O(t)
)

= κ0 (δ` +O(t)) .

where δ` is defined in Lemma A.13. Note that from this lemma, −1 < δ` < 1. In this
domain, κ0 is infinitely differentiable, hence we get:

η` = κ0 (δ`) +O(t) = κ0

(
−1 + α2∑`−1

j=0(1 + α2)j−1βj

(1 + α2)`−1

)
+O(t).

Lemma A.17 With small t > 0, ∀` ≥ 2

η` = d̃` +O(t),

where d̃` ∈ [0, 1] does not depend on t.

Proof The proof is by induction. For ` = 2 we have from Lemma A.16

η2 = κ0

( −1
(1 + α2)

)
+O(t) = d̃2 +O(t).

23



Belfer, Geifman, Galun, Basri

Suppose the lemma holds for η`−1 and show for η`

η` = κ0

(
−1 + α2∑`−1

j=0(1 + α2)j−1βj

(1 + α2)`−1 +O(t)
)

= κ0

(
−1 + α2∑`−1

j=0(1 + α2)j−1(c̃j +O(t))
(1 + α2)`−1 +O(t)

)

= κ0

(
−1 + α2∑`−1

j=0(1 + α2)j−1c̃j

(1 + α2)`−1 +O(t)
)

= κ0

(
−1 + α2∑`−1

j=0(1 + α2)j−1c̃j

(1 + α2)`−1

)
+O(t) = d̃` +O(t),

where the leftmost equality in the second line is from Lemma A.16. The definition of d̃`
directly implies that d̃` ∈ [0, 1].

Lemma A.18 With small t > 0,

B`+1(−1 + t) =
L∏

i=`+1
(1 + α2ηi),

where η` is defined in (15).

Proof Since BL+1 = 1 and using (10)

B`+1(−1 + t) =
L∏

i=`+1

[
1 + α2κ0

(
Ki−1(−1 + t)
(1 + α2)i−1

)]
=

L∏
i=`+1

[
1 + α2η`

]

We next prove Lemma A.9.
Proof (Lemma A.9) Rewrite (8) as r(L)(−1 + t) = C

∑L
`=1X`Y`, where

C = 1
2L(1 + α2)L−1

X` = (1 + α2)`−1κ1

(
K`−1(−1 + t)
(1 + α2)`−1

)
+K`−1(−1 + t)κ0

(
K`−1(−1 + t)
(1 + α2)`−1

)
= (1 + α2)`−1β` +K`−1(−1 + t)η`

Y` = B`+1(−1 + t).

By plugging Lemma A.11 into the definition of X` we have

X` = (1 + α2)`−1β` +

−1 + α2
`−1∑
j=0

(1 + α2)j−1βj

 η` +O(t).
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Using Lemma A.18 the sum can be written as

L∑
`=1

X`Y` =
L∑
`=1

(1 + α2)`−1β` +

−1 + α2
`−1∑
j=0

(1 + α2)j−1βj

 η`
 L∏
i=`+1

(1 + α2ηi) +O(t).

From Lemma A.16, there is a difference between ` = 1 and ` ≥ 2. For ` = 1:

X1Y1 =

(1 + α2)0β1 +

−1 + α2
0∑
j=0

(1 + α2)j−1βj

 η1

 L∏
i=1+1

(1 + α2ηi) +O(t)

= −η1

L∏
i=2

(1 + α2ηi) +O(t) = −
(

L∏
i=2

(1 + α2ηi)
) √

2
π
t1/2 +O(t).

Using Lemma A.17 this simplifies to

X1Y1 = −
(

L∏
i=2

(1 + α2(d̃i +O(t)))
) √

2
π
t1/2 +O(t) = −

(
L∏
i=2

(1 + α2d̃i)
) √

2
π
t1/2 +O(t).

For ` ≥ 2, using Lemmas A.15 and A.17

X`Y` =

(1 + α2)`−1β` +

−1 + α2
`−1∑
j=0

(1 + α2)j−1βj

 η`
 L∏
i=`+1

(1 + α2ηi) +O(t)

=

(1 + α2)`−1(c̃` +O(t)) +

−1 + α2
`−1∑
j=0

(1 + α2)j−1(c̃j +O(t))

 (d̃` +O(t))


L∏

i=`+1
(1 + α2(d̃i +O(t))) +O(t)

=

(1 + α2)`−1c̃` +

−1 + α2
`−1∑
j=0

(1 + α2)j−1c̃j

 d̃`
 L∏
i=`+1

(1 + α2d̃i) +O(t)/

The sum can be rewritten as

L∑
`=1

X`Y` =

 L∑
`=2

(1 + α2)`−1c̃` +

−1 + α2
`−1∑
j=0

(1 + α2)j−1c̃j

 d̃`
 L∏
i=`+1

(1 + α2d̃i)


−
(

L∏
i=2

(1 + α2d̃i)
) √

2
π
t1/2 +O(t).

Multiplying this by the normalization factor C we have

r(L)(−1 + t) = C
L∑
`=1

X`Y` = 1
2L(1 + α2)L−1

L∑
`=1

X`Y` = p−1(t) + c−1t
1/2 + o(t1/2),
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where

p−1(t) = 1
2L(1 + α2)L−1

 L∑
`=2

(1 + α2)`−1c̃` +

−1 + α2
`−1∑
j=0

(1 + α2)j−1c̃j

 d̃`
 L∏
i=`+1

(1 + α2d̃i)


c−1 = − 1

2L(1 + α2)L−1

(
L∏
i=2

(1 + α2d̃i)
) √

2
π
.

From Lemma A.17,

|c−1| =
∣∣∣∣∣ 1
2L(1 + α2)L−1

(
L∏
i=2

(1 + α2d̃i)
) √

2
π

∣∣∣∣∣ =
∣∣∣∣∣ 1√

2πL(1 + α2)L−1

(
L∏
i=2

(1 + α2d̃i)
)∣∣∣∣∣

≤
√

2(1 + α2)L−2

2πL(1 + α2)L−1 = 1√
2π(1 + α2)L

.

A.2.2 Vanishing regime α2L� 1

For the case where α2L −→ 0 with L −→ ∞ (which implies (1 + α2)j ≈ 1,∀j ∈ [L]), the
analysis takes the following form. The next Lemma is analogous to Lemma A.11.

Lemma A.19 With small t > 0 and α2L� 1,

K`(−1 + t) = −1 + t+O(t3/2).

Proof With ` = 0, K0(−1 + t) = −1 + t, trivially satisfying the lemma. Suppose the lemma
holds for K`−1(−1 + t). Then, using (9) and (14)

K`(−1 + t) = K`−1(−1 + t) + α2(1 + α2)`−1κ1

(
K`−1(−1 + t)
(1 + α2)`−1

)
= K`−1(−1 + t) + α2κ1 (K`−1(−1 + t)) .

Where the last equality is from α2 � 1. By the induction assumption

K`(−1 + t) = (−1 + t+O(t3/2)) + α2κ1
(
−1 + t+O(t3/2)

)
= −1 + t+O(t3/2),

where the last equality is directly from Lemma A.10.

The next Lemma is analogous to Lemma A.12.

Lemma A.20 Let ν` as defined in (13). Then, for α2L� 1, ∀` ≥ 1, ν` = −1 +O(t).

Proof Using (23), with ` = 1, ν1 = −1 + t. Assume the lemma is satisfied for ν`−1. Then,
for 1 ≤ j ≤ `− 1,

βj = κ1(νj) = κ1(−1 +O(t)) = O(t),
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where the rightmost equality is due to (22). Therefore, using (23) and (1 + α2)`−1 ≈ 1 we
obtain

ν` =
−1 + t+ α2∑`−1

j=0(1 + α2)j−1βj

(1 + α2)`−1 = −1 + t+ α2
`−1∑
j=0
O(t) = −1 +O(t).

Combining this lemma with lemma A.10 we get the following lemmas (analogous to A.14,
A.16):

Lemma A.21 With α2L→ 0, ∀` ∈ [L− 1], β` = κ1(ν`) = κ1(−1 + t) = O(t).

Lemma A.22 With α2L→ 0, ∀` ∈ [L− 1], η` = κ0(ν`) = κ0(−1 + t) =
√

2
π t

1/2 +O(t).

Lemma A.23 With α2L→ 0, ∀` ∈ [L− 1],

B`+1(−1 + t) = 1 + (L− `)
√

2α2

π
t1/2 +O(t).

Proof Using lemma A.18, the expansion of B around -1 can be written in this regime as:

B`+1(−1 + t) =
L∏

i=`+1
(1 + α2ηi) =

L∏
i=`+1

(
1 +
√

2α2

π
t1/2

)
+O(t)

=
(

1 +
√

2α2

π
t1/2

)L−`
+O(t) = 1 + (L− `)

√
2α2

π
t1/2 +O(t).

We next prove the analogous to lemma A.9 for the "vanishing regime".

Lemma A.24 For inputs in Sd−1 and near -1, if α2L� 1 then

r(L)(−1 + t) = c−1t
1/2 + o(t1/2)

with
c−1 = − 1√

2π

Proof Rewrite (8) r(L)(−1 + t) = C
∑L
`=1X`Y`, where:

C = 1
2L(1 + α2)L−1 ≈

1
2L

X` = (1 + α2)`−1κ1

(
K`−1(−1 + t)
(1 + α2)`−1

)
+K`−1(−1 + t)κ0

(
K`−1(−1 + t)
(1 + α2)`−1

)
= (1 + α2)`−1β` +K`−1(−1 + t)η`

Y` = B`+1(−1 + t).
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Using (1 + α2) ≈ 1 and Lemmas A.19, A.21 and A.22

X` = (1 + α2)`−1β` +K`−1(−1 + t)η` = −
√

2
π
t1/2 +O(t).

Using the above and Lemma A.23, we have

X`Y` =
(
−
√

2
π
t1/2 +O(t)

)(
1 + (L− `)

√
2α2

π
t1/2 +O(t)

)
= −
√

2
π
t1/2 +O(t).

Consequently,

r(L)(−1 + t) = C
L∑
`=1

X`Y` = C
L∑
`=1

(
−
√

2
π
t1/2 +O(t)

)

= 1
2L

(
−
√

2L
π

t1/2
)

+O(t) = − 1√
2π
t1/2 +O(t) = − 1√

2π
t1/2 + o(t1/2).

Note that with the conditions of α2L −→ 0 with L −→∞, using Lemma A.4,

c1 = − 1 + α2L√
2π(1 + α2)

L−→∞−−−−→ − 1√
2π
.

This is indeed the case when α = L−γ with 0.5 < γ ≤ 1. In this case we have from Lemma
A.24 that c1 = c−1, implying that the odd frequencies decay faster than O(k−d). If however
α = L−1/2 then for all L, α2L = 1 and c1 approaches −

√
2/π and all the frequencies decay

exactly at the rate of O(k−d). This also reflects the convergence of ResNTK as L→∞ to
FC-NTK with L = 1. Note that this common value of c1 and c−1 in the limit when α2L→ 0
is identical to the value of the coefficients in the expansion of k(1) near ±1 for L = 1.

A.3 Proof of Theorem 1 in the bias-free case

We are now ready to prove Theorem 1.
Proof Lemmas A.4 and A.9 establish that for L ≥ 1 ResNTK near ±1 (outside the
"vanishing regime") takes the forms of (16) and (17) with ν = 1/2, satisfying the conditions
of Theorem A.3. Moreover, clearly from these lemmas

|c−1| ≤
1√

2π(1 + α2)L
<

1 + α2L√
2π(1 + α2)

= |c1|.

Hence, |c1| 6= |c−1|. The eigenvalues of ResNTK, therefore, decay at the rate of k−d both for
the odd and even frequencies, proving Theorem 1.

Appendix B. Decay rate of eigenvalues of ResNTK with bias

Next we extend our analysis to the case that τ > 0, thus proving Theorem 1 from the paper.
Before proving the theorem, we will lay out some notations.
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B.1 Normalization factor of ResNTK with bias

As mentioned before, it is a common practice to normalize the kernel such that r(1) = 1.
The kernel on the sphere is written as

r(L)(x, z) = Cτ

L∑
`=1

B`+1(x, z)
[
(1 + α2)`−1κ1

(
K`−1(u)

(1 + α2)`−1

)

+ (K`−1(u) + τ2)κ0

(
K`−1(u)

(1 + α2)`−1

)]
For u = 1:

K`(1) = (1 + α2)`

BL+1−`(1) = (1 + α2)` ⇐⇒ B`+1(1) = (1 + α2)L−`

r(L)(1) =
L∑
`=1

B`+1(1)
[
(1 + α2)`−1κ1(1) + (K`−1(1) + τ2)κ0(1)

]

=
L∑
`=1

(1 + α2)L−`
[
(1 + α2)`−1 + (1 + α2)`−1 + τ2

]

=
L∑
`=1

[2(1 + α2)L−1 + (1 + α2)L−`τ2]

= 2L(1 + α2)L−1 + τ2 (1 + α2)L − 1
α2 .

Hence, to obtain r(1) = 1, we multiply the kernel by Cτ =
(
2L(1 + α2)L−1 + τ2 (1+α2)L−1

α2

)−1
.

B.2 Expansions around +1

Note that both K`(u) and B`(u) are not affected by bias. Hence, their asymptotic analysis
does not change, compared to the bias-free case. The following lemma generalizes Lemma A.4
for the case with bias.

Lemma B.1 For inputs in Sd−1 and near +1, if α > 0 and L ≥ 1

r(L)(1− t) = 1 + c1t
1/2 + o(t1/2),

where

c1 = Cτ

(
−
√

2
π
L(1 + α2)L−2

(
(1 + α2L) + τ2(1 + α2)

))
.

Proof Similarly to the proof of lemma A.4, we rewrite r(L)(1− t) = Cτ
∑L
`=1X`Y`, where:

X` = (1 + α2)`−1κ1

(
K`−1(1− t)
(1 + α2)`−1

)
+K`−1(1− t)κ0

(
K`−1(1− t)
(1 + α2)`−1

)
+ τ2κ0

(
K`−1(1− t)
(1 + α2)`−1

)
Y` = B`+1(1− t).
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Using Lemmas A.6 and A.7, for small t > 0,

X` = (1 + α2)`−1(1− t+ o(t)) + ((1 + α2)`−1(1− t) + o(t))
(

1−
√

2
π
t1/2 + o(t)

)

+ τ2
(

1−
√

2
π
t1/2 + o(t)

)

= (1 + α2)`−1(1− t) + (1 + α2)`−1(1− t)
(

1−
√

2
π
t1/2

)
+O(t) + τ2

(
1−
√

2
π
t1/2 + o(t)

)

= (1 + α2)`−1(1− t)
(

2−
√

2
π
t1/2

)
+O(t) + τ2

(
1−
√

2
π
t1/2 + o(t)

)

=
(
2(1 + α2)`−1 + τ2

)
−
√

2
π

((1 + α2)`−1 + τ2)t1/2 + o(t1/2).

Using Lemma A.8 each term in the sum can be written as

X`Y` =
[(

2(1 + α2)`−1 + τ2
)
−
√

2
π

((1 + α2)`−1 + τ2)t1/2
]

[
(1 + α2)L−` − α2√2

π
(1 + α2)L−`−1(L− `) t1/2

]
+ o(t1/2)

=
(
2(1 + α2)`−1 + τ2

)
(1 + α2)L−` −

√
2
π

[(2(1 + α2)`−1 + τ2)α2(1 + α2)L−`−1(L− `)

+((1 + α2)`−1 + τ2)(1 + α2)L−`]t1/2 + o(t1/2)

=
(
2(1 + α2)L−1 + τ2(1 + α2)L−`

)
−
√

2
π

(
τ2α2(1 + α2)L−`−1(L− `)

+2α2(1 + α2)L−2(L− `) + (1 + α2)L−1 + τ2(1 + α2)L−`)t1/2
)

+ o(t1/2)

=
(
2(1 + α2)L−1 + τ2(1 + α2)L−`

)
−
√

2
π

(
τ2
[
α2(1 + α2)L−`−1(L− `) + (1 + α2)L−`

]
+2α2(1 + α2)L−2(L− `) + (1 + α2)L−1

)
t1/2 + o(t1/2).

Summing over the layers, starting with the free term

Cτ

L∑
`=1

(
2(1 + α2)L−1 + τ2(1 + α2)L−`

)
= Cτ

(
2L(1 + α2)L−1 + τ2 (1 + α2)L − 1

α2

)
= 1.

The term that includes t1/2 is therefore

Cτ

(
−
√

2
π

[α2τ2(L− `)(1 + α2)L−`−1 + (1 + α2)L−`((1 + α2)`−1 + τ2) + 2α2(L− `)(1 + α2)L−2]
)
t1/2
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Summing over the layers we obtain

c1 = Cτ

(
−
√

2
π

(
(1 + α2)L−1L(1 + α2L)

(1 + α2) + τ2L(1 + α2)L−1
))

= Cτ

(
−
√

2
π
L
(
(1 + α2)L−2(1 + α2L) + τ2(1 + α2)L−1

))

= Cτ

(
−
√

2
π
L(1 + α2)L−2

(
(1 + α2L) + τ2(1 + α2)

))
.

B.3 Expansions around -1

Note that both K`(u) and B`(u) are not affected by bias. Hence, their asymptotic analysis
does not change, compared to the no-bias case. As before, we need to distinguish between
two regimes, (1) with α > 0 such that α2L does not vanish as L grows, and (2) with α > 0
and α2L� 1.

B.3.1 α > 0 such that α2L 6� 1

The following lemma generalizes lemma A.9 for the case with bias.

Lemma B.2 For inputs in Sd−1 and near -1, if α > 0 and L ≥ 2 then

r(L)(−1 + t) = p−1(t) + c−1t
1/2 + o(t1/2),

with

|c−1| < |c1|.

Proof Similarly to the proof of lemma A.9, we rewrite r(L)(−1 + t) = Cτ
∑L
`=1X`Y`, where

X` = (1 + α2)`−1κ1

(
K`−1(−1 + t)
(1 + α2)`−1

)
+K`−1(−1 + t)κ0

(
K`−1(−1 + t)
(1 + α2)`−1

)
+ τ2κ0

(
K`−1(−1 + t)
(1 + α2)`−1

)

= (1 + α2)`−1β` +K`−1(−1 + t)η` + τ2η` = (1 + α2)`−1β` +

−1 + τ2 + α2
`−1∑
j=0

(1 + α2)j−1βj

 η`
Y` = B`+1(−1 + t).

Using Lemma A.18 the sum can be written as

L∑
`=1

X`Y` =
L∑
`=1

(1 + α2)`−1β` +

−1 + τ2 + α2
`−1∑
j=0

(1 + α2)j−1βj

 η`
 L∏
i=`+1

(1 + α2ηi) +O(t).
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From Lemma A.16, there is a difference between ` = 1 and ` ≥ 2. For ` = 1:

X1Y1 =

(1 + α2)0β1 +

−1 + τ2 + α2
0∑
j=0

(1 + α2)j−1βj

 η1

 L∏
i=1+1

(1 + α2ηi) +O(t) =

(−1 + τ2)η1

L∏
i=2

(1 + α2ηi) +O(t) = (−1 + τ2)
(

L∏
i=2

(1 + α2ηi)
) √

2
π
t1/2 +O(t).

Using Lemma A.17 this simplifies to

X1Y1 = (−1 + τ2)
(

L∏
i=2

(1 + α2(d̃i +O(t)))
) √

2
π
t1/2 +O(t)

= (−1 + τ2)
(

L∏
i=2

(1 + α2d̃i)
) √

2
π
t1/2 +O(t).

For ` ≥ 2, using Lemmas A.15 and A.17

X`Y` =

(1 + α2)`−1β` +

−1 + τ2 + α2
`−1∑
j=0

(1 + α2)j−1βj

 η`
 L∏
i=`+1

(1 + α2ηi) +O(t)

=

(1 + α2)`−1(c̃` +O(t)) +

−1 + τ2 + α2
`−1∑
j=0

(1 + α2)j−1(c̃j +O(t))

 (d̃` +O(t))


L∏

i=`+1
(1 + α2(d̃i +O(t))) +O(t)

=

(1 + α2)`−1c̃` +

−1 + τ2 + α2
`−1∑
j=0

(1 + α2)j−1c̃j

 d̃`
 L∏
i=`+1

(1 + α2d̃i) +O(t).

The sum can be rewritten as
L∑
`=1

X`Y` =

 L∑
`=2

(1 + α2)`−1c̃` +

−1 + τ2 + α2
`−1∑
j=0

(1 + α2)j−1c̃j

 d̃`
 L∏
i=`+1

(1 + α2d̃i)


+ (−1 + τ2)

(
L∏
i=2

(1 + α2d̃i)
) √

2
π
t1/2 +O(t).

The value of c−1:

|c−1| =
∣∣∣∣∣Cτ (−1 + τ2)

(
L∏
i=2

(1 + α2d̃i)
) √

2
π

∣∣∣∣∣ ≤
∣∣∣∣∣Cτ (−1 + τ2)

(
L∏
i=2

(1 + α2)
) √

2
π

∣∣∣∣∣ = Cτ
∣∣∣(−1 + τ2)

∣∣∣ √2
π

(1 + α2)L−1

We want to show that |c−1| < |c1| (note that L ≥ 1). Recall that c1 = Cτ (−
√

2
π L(1 +

α2)L−2 ((1 + α2L) + τ2(1 + α2)
)
).

• |τ | > 1:

Cτ
∣∣∣(−1 + τ2)

∣∣∣ √2
π

(1 + α2)L−1 < Cττ
2
√

2
π

(1 + α2)L−1 ≤ CτLτ2
√

2
π

(1 + α2)L−1 ≤ c1.
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• |τ | < 1:

Cτ
∣∣∣(−1 + τ2)

∣∣∣ √2
π

(1 + α2)L−1 < Cτ

√
2
π

(1 + α2)L−1 ≤ Cτ
√

2
π

(1 + α2)L−1 1 + α2L

1 + α2 ≤ c1.

Where for |τ | = 1 we get c−1 = 0 6= c1.

B.3.2 (Non) Vanishing regime α2L� 1

Note that with bias, the odd eigenvalues do not vanish. For the case where α2L −→ 0 with
L −→∞ (which implies (1 + α2)j ≈ 1,∀j ∈ [L]), the analysis takes the following form. The
next lemma generalizes lemma A.24.

Lemma B.3 For inputs in Sd−1 and near -1, if α2L� 1 then

r(L)(−1 + t) = c−1t
1/2 + o(t1/2)

with
c−1 = CτL

1√
2π

(−1 + τ2)

Proof Similarly to the proof of lemma B.2, we rewrite r(L)(−1+ t) = Cτ
∑L
`=1X`Y`, where:

X` = (1 + α2)`−1κ1

(
K`−1(−1 + t)
(1 + α2)`−1

)
+K`−1(−1 + t)κ0

(
K`−1(−1 + t)
(1 + α2)`−1

)
+ τ2κ0

(
K`−1(−1 + t)
(1 + α2)`−1

)
= (1 + α2)`−1β` +K`−1(−1 + t)η` + τ2η`

Y` = B`+1(−1 + t).

Using (1 + α2) ≈ 1 and Lemmas A.19, A.21 and A.22

X` = (1 + α2)`−1β` +K`−1(−1 + t)η` + τ2η` = (−1 + τ2)
√

2
π
t1/2 +O(t).

Using the above and Lemma A.23, we have

X`Y` =
((

(−1 + τ2)
√

2
π
t1/2 +O(t)

)(
1 + (L− `)

√
2α2

π
t1/2 +O(t)

))
= (−1 + τ2)

√
2
π
t1/2 +O(t).

Consequently,

r(L)(−1 + t) = Cτ

L∑
`=1

X`Y` = Cτ

L∑
`=1

(
(−1 + τ2)

√
2
π
t1/2 +O(t)

)
= CτL(−1 + τ2)

√
2
π
t1/2 + o(t1/2)

Lemma B.4 In this regime, c1 6= c−1.
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Proof First, in this regime, we get:

c1 = Cτ (−
√

2
π
L(1 + α2)L−2

(
(1 + α2L) + τ2(1 + α2)

)
≈ −Cτ

√
2
π
L
(
1 + τ2

)
We will show that the division does not equal to 1:

|c1|
|c−1|

=

∣∣∣Cτ √2
π L

(
1 + τ2)∣∣∣∣∣∣CτL(−1 + τ2)

√
2
π

∣∣∣ =
∣∣1 + τ2∣∣
|−1 + τ2|

This expression 6= 1 for any τ > 0, hence c1 6= c−1.

B.4 Proof of Theorem 1 from the paper

Theorem B.5 The eigenvalues λk of ResNTK with bias, r(x, z), for x, z ∈ Sd−1 corre-
sponding to a spherical harmonic eigenfunction Ykl(x) with frequency k ≥ 0 and phase
1 ≤ l ≤ N(d, k) under the uniform measure decay at the rate of k−d where k denotes
frequency.

Proof By combining Lemmas B.2, B.3 and B.4, the conditions of Theorem A.3 are satisfied,
implying the desired decay.

Appendix C. Proof of Theorem 2 from the paper

Theorem C.1 ResNTK r(L) for residual networks with L ∈ N layers and the hyperparam-
eter α = L−γ, 0.5 < γ ≤ 1, approaches the 2-layer FC-NTK uniformly in the interval
xT z ∈ [−1, 1], where x, z ∈ Sd−1; that is, let ε > 0, ∀L > c(ε, γ)

|r(L)(x, z)− k(1)(x, z)| ≤ ε.

Proof To show uniform convergence on the interval [−1, 1] we need to address the singu-
larities of these kernels near the boundaries. Hence, we let δ = ε2

4 , and analyze separately
the following intervals

• xT z ∈ [−1 + δ, 1− δ]

• xT z ∈ [1− δ, 1]

• xT z ∈ [−1,−1 + δ]

The inner interval, xT z ∈ [−1 + δ, 1− δ]. We follow the ResNTK notations in Sec. A.
We include an additional subscript L to emphasize the dependence of α on L. Let

u`,L = K`,L

(1 + α2)` , u0 = K0 = xT z
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and assume that −1 + δ < u0 < 1− δ. Following these notations, and using Lemma A.2, we
obtain the following relation

u`,L = u`−1,L + α2κ1(u`−1,L)
1 + α2 , (24)

which implies that

u`,L − u`−1,L = α2

1 + α2 (κ1(u`−1,L)− u`−1,L). (25)

We note that κ0, κ1 : [−1, 1]→ [0, 1] and κ′1(s) = κ0(s), and therefore, the derivative of the
function κ1(s)− s is non-positive, implying that κ1(s)− s is non-increasing. Therefore, the
minimal value is attained at s = 1 and the maximal value at s = −1. Since κ1(1)− 1 = 0
and κ1(−1) + 1 = 1 this means that 0 ≤ κ1(s)− s ≤ 1. Now, by the relation (25), it is easy
to see that u`,L ≥ u`−1,L, which means that

u0 ≤ u1,L ≤ . . . ≤ uL−1,L. (26)

In addition, we obtain the following upper bound for u`,L − u0

u`,L − u0 =
∑̀
i=1

(ui,L − ui−1,L) = α2

1 + α2

∑̀
i=1

(κ1(ui−1,L)− ui−1,L) ≤ α2

1 + α2 (κ1(u0)− u0)`,

where the last inequality uses the observation u0 ≤ ui,L and that κ1(s)− s is decreasing.
The last inequality is equivalent to

u`,L ≤ u0 + α2

1 + α2 (κ1(u0)− u0)`. (27)

For α = L−γ , we have α2

1+α2 = 1
1+L2γ , and since 0 ≤ κ1(s)− s ≤ 1 this inequality implies

that
uL−1,L ≤ u0 + L

1 + L2γ ≤ 1− δ + L1−2γ . (28)

Therefore, for γ > 0.5 and L sufficiently large, this yields a maximal bound 1− δ′ over the
series (26), with δ > δ′ > 0. In particular, we can let δ′ = δ/2 and then can bound the series
from above by 1− δ + δ/2 = 1− δ′ for any L large enough.

Denote by

P`+1,L = B`+1,L(1 + α2)−(L−`) =
L−1∏
i=`

1 + α2κ0(ui,L)
1 + α2 ,

and note that Pl+1,L ∈ (0, 1]. Since 1 − 1+α2κ0(ui,L)
1+α2 = α2(1−κ0(ui,L))

1+α2 and for ak ∈ [0, 1],
1−

∏n
k=1(1− ak) ≤

∑n
k=1 ak (see Lemma C.2), we obtain

1− P`+1,L = 1−
L−1∏
i=`

(
1− α2(1− κ0(ui,L))

1 + α2

)

≤
L−1∑
i=`

α2(1− κ0(ui,L))
1 + α2 = α2

1 + α2

(
L− `−

L−1∑
i=`

κ0(ui,L)
)
. (29)
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Using these notations, ResNTK on the sphere (8) can be written as

r(L) = 1
2L

L∑
`=1

P`+1,L(κ1(u`−1,L) + u`−1,Lκ0(u`−1,L)). (30)

We next bound the distance of each layer from κ1(u0) + u0κ0(u0) from above. In the
derivation below we apply several times the mean value theorem, i.e., ∃ c ∈ [a, b], such that
κ1(b)− κ1(a) = κ0(c)(b− a) ≤ κ0(b)(b− a). This is valid since the derivative of κ1 is κ0. In
addition, κ0 is monotonic increasing, so any c ∈ [a, b] can be replaced by b.

|P`+1,L(κ1(u`−1,L) + u`−1,Lκ0(u`−1,L))− (κ1(u0) + u0κ0(u0))|
≤ |P`+1,L| · |(κ1(u`−1,L) + u`−1,Lκ0(u`−1,L))− (κ1(u0) + u0κ0(u0))|+ |(κ1(u0) + u0κ0(u0))| · |1− P`+1,L|
≤ |κ0(u`−1,L)(u`−1,L − u0)|+ |κ0(u`−1,L)u`−1,L − κ0(u0)u0|+ |(κ1(u0) + u0κ0(u0))| · |1− P`+1,L|,

where the last inequality is because 0 < P`−1,L ≤ 1 and due to the mean value theorem. We
next focus on the first two terms

|κ0(u`−1,L)(u`−1,L − u0)|+ |κ0(u`−1,L)u`−1,L − κ0(u0)u0|
≤ |κ0(u`−1,L)(u`−1,L − u0)|+ |κ0(u`−1,L)u`−1,L − κ0(u`−1,L)u0 + κ0(u`−1,L)u0 − κ0(u0)u0|
≤ |κ0(u`−1,L)(u`−1,L − u0)|+ |κ0(u`−1,L)u`−1,L − κ0(u`−1,L)u0|+ |κ0(u`−1,L)u0 − κ0(u0)u0|
= 2|κ0(u`−1,L)(u`−1,L − u0)|+ |u0(κ0(u`−1,L)− κ0(u0))|

≤1 2κ0(u`−1,L) α2

1 + α2 (κ1(u0)− u0)(`− 1) + |u0|(ul−1,L − u0)κ′0(cl−1,L)

= 2κ0(u`−1,L) α2

1 + α2 (κ1(u0)− u0)(`− 1) + |u0|(ul−1,L − u0) 1
π
√

1− c2
`−1,L

≤2 2κ0(u`−1,L) α2

1 + α2 (κ1(u0)− u0)(`− 1) + |u0|(κ1(u0)− u0)(`− 1)
π
√

1− c2
`−1,L

α2

1 + α2

where ≤1 is obtained by applying (27) and the mean value theorem for κ0 with cl−1,L ∈
[u0, ul−1,L], and ≤2 too is obtained by applying (27).

Third term (29) and the monotonicity of κ0 yield

|(κ1(u0) + u0κ0(u0))| · |1− P`+1,L| ≤ |(κ1(u0) + u0κ0(u0))| · α2

1 + α2 (L− `−
L−1∑
i=`

κ0(ui,L))

≤ |(κ1(u0) + u0κ0(u0))| · α2

1 + α2 (L− `)(1− κ0(u0))

To recap, the upper bound for each layer is

|P`+1,L(κ1(u`−1,L) + u`−1,Lκ0(u`−1,L))− (κ1(u0) + u0κ0(u0))| (31)

≤ 2κ0(u`−1,L) α2

1 + α2 (κ1(u0)− u0)(`− 1) + |u0|(κ1(u0)− u0)(`− 1)
π
√

1− c2
`−1,L

α2

1 + α2

+ |(κ1(u0) + u0κ0(u0))| · α2

1 + α2 (L− `)(1− κ0(u0)).
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We would like next to derive a bound for the entire kernel, i.e., to bound from above the
following expression

|r(L)(u0)− k(1)(u0)| =
∣∣∣∣∣ 1
2L

L∑
`=1

{
P`+1,L(κ1(u`−1,L) + u`−1,Lκ0(u`−1,L))

}
− 1

2(κ1(u0) + u0κ0(u0))
∣∣∣∣∣

=
∣∣∣∣∣ 1
2L

L∑
l=1

{
P`+1,L(κ1(u`−1,L) + u`−1,Lκ0(u`−1,L))− (κ1(u0) + u0κ0(u0))

}∣∣∣∣∣
≤3 1

2L
α2

1 + α2

L∑
`=1

2κ0(u`−1,L)(κ1(u0)− u0)(`− 1) + |u0|(κ1(u0)− u0)(`− 1)
π
√

1− c2
`−1,L

+|(κ1(u0) + u0κ0(u0))|(L− `)(1− κ0(u0))}

≤4 1
2L

α2

1 + α2

L∑
`=1

(
2(κ1(u0)− u0)(`− 1) + |u0|(κ1(u0)− u0)(`− 1)

π
√

1− (1− δ′)2

)

+ 1
2L

α2

1 + α2 |(κ1(u0) + u0κ0(u0))|(1− κ0(u0))L(L− 1)
2

= L(L− 1)
2

1
2L

α2

1 + α2

[
2(κ1(u0)− u0) + |u0|(κ1(u0)− u0)

π
√

1− (1− δ′)2 + |(κ1(u0) + u0κ0(u0))|(1− κ0(u0))
]

= L− 1
4

α2

1 + α2

[
2(κ1(u0)− u0) + |u0|(κ1(u0)− u0)

π
√

1− (1− δ′)2 + |(κ1(u0) + u0κ0(u0))|(1− κ0(u0))
]
,

where ≤3 is directly by applying (31), and ≤4 relies on the fact that 0 ≤ κ0(s) ≤ 1
and the following argument. We would like to bound from above the term 1√

1−c2
l−1,L

for

cl−1,L ∈ [u0, ul−1,L]. Since we have

−1 + δ′ ≤ −1 + δ ≤ u0 ≤ . . . ≤ uL−1,L ≤ 1− δ ≤ 1− δ′,

it follows that 1√
1−c2

l−1,L
≤ 1√

1−(1−δ′)2 .

Since for α = L−γ we have α2

1+α2 = 1
1+L2γ we obtain

|r(L)(u0)− k(1)(u0)| ≤
L− 1

4
1

1 + L2γ

[
2(κ1(u0)− u0) + |u0|(κ1(u0)− u0)

π
√

1− (1− δ′)2 + |(κ1(u0) + u0κ0(u0))| · (1 + κ0(u0))
]
≤

L1−2γ
[
2(κ1(u0)− u0) + |u0|(κ1(u0)− u0)

π
√

1− (1− δ′)2 + |(κ1(u0) + u0κ0(u0))| · (1 + κ0(u0))
]
≤1

L1−2γ

2(2− δ) + (1 + δ)(2− δ)

π
√

1− (1− δ
2)2

+ (2 + δ) · 2

 = c̃(δ)L1−2γ ,

where ≤1 holds since κ0, κ1 ∈ [0, 1] and in this interval u0 ∈ [−1+δ, 1−δ] (recall that δ′ = δ
2).

Using the relation δ = ε2

4 , we define c(ε) = c̃( ε
2
4 )
ε . Therefore, given ε > 0, ∀L > c(ε)

1
2γ−1 c(ε, γ)

it holds that |r(L)(u0)− k(1)(u0)| ≤ ε.
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The interval on the right, xT z ∈ [1− δ, 1]. Since the kernels have a singular point at
u0 = 1, we will use their asymptotes (20) and (32) with t→ 0.∣∣∣r(L)(1− t)− k(1)(1− t)

∣∣∣ ≤ ∣∣∣∣∣1− 1 + α2L√
2π(1 + α2)

t1/2 + o(t1/2)−
(

1− 1√
2π
t1/2 + o(t1/2)

)∣∣∣∣∣
=

∣∣∣∣∣− 1 + α2L√
2π(1 + α2)

t1/2 + 1√
2π
t1/2 + o(t1/2)

∣∣∣∣∣
=

∣∣∣∣∣(1 + α2)− (1 + α2L)√
2π(1 + α2)

t1/2 + o(t1/2)
∣∣∣∣∣

=
∣∣∣∣∣ α2(1− L)√

2π(1 + α2)
t1/2 + o(t1/2)

∣∣∣∣∣
≤

∣∣∣∣∣ α2(1− L)√
2π(1 + α2)

δ1/2 + δ1/2
∣∣∣∣∣

≤ δ1/2
(

α2(L− 1)√
2π(1 + α2)

+ 1
)
.

For uniform convergence we require

δ1/2
(

α2(L− 1)√
2π(1 + α2)

+ 1
)
< ε⇐⇒ α2(L− 1)

1 + α2 ≤
√

2πε− δ
1/2

δ1/2 =1 √2π ⇐⇒

L− 1
1 + L2γ ≤

√
2π ⇐⇒ −(1 +

√
2π) < L2γ(

√
2π − L1−2γ),

where =1 is obtained by plugging in δ = ε2

4 . Since L > 0 (and therefore L2γ > 0), we only
need to make sure that the RHS is positive. This happens ∀L ≥ 1 > ( 1√

2π )
1

2γ−1 . Therefore,
it holds that ∀L ≥ 1, |r(L)(1− t)− k(1)(1− t)| ≤ ε.

The interval on the left, xT z ∈ [−1,−1 + δ]. Since the kernels are singular at u0 = −1
we again use their Taylor expansions. Note that we are in the vanishing regime, α2L� 1,
so for ResNTK we will use Lemma A.24. For FC-NTK we use the expansion from Bietti
and Bach (2021).∣∣∣r(L)(−1 + t)− k(1)(−1 + t)

∣∣∣ ≤ ∣∣∣∣∣− 1√
2π
t1/2 + o(t1/2)−

(
−
√

2
π
t1/2 + o(t1/2)

)∣∣∣∣∣
=

∣∣∣∣ 1√
2π
t1/2 + o(t1/2)

∣∣∣∣
≤ 1√

2π
δ1/2 + δ1/2 ≤ 2δ1/2 =1 ε,

where =1 is due to δ = ε2/4. Combining the proofs for the three intervals the theorem is
proven.

Lemma C.2 For ak ∈ [0, 1], it holds that 1−
∏n
k=1(1− ak) ≤

∑n
k=1 ak.
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Proof By induction. The lemma holds trivially for k = 1. Assume the lemma holds for
k ≤ n− 1, then

1−
n∏
k=1

(1− ak) = 1− (1− an)
(
n−1∏
k=1

(1− ak)
)

= 1−
n−1∏
k=1

(1− ak) + an

n−1∏
k=1

(1− ak)

≤
n−1∑
k=1

ak + an

n−1∏
k=1

(1− ak) ≤
n∑
k=1

ak.

Appendix D. Steepness of FC-NTK

In this section, we analyze the asymptotic relations between the Laplace and FC-NTK
kernels.

Lemma D.1 Bietti and Bach (2021) With small t > 0,

kLap(1− t) = e−c
√

2t = 1− c
√

2t+O(t),

where kLap is defined in equation (8) in the paper.

We next prove the Taylor expansion of deep fully connected networks.1

Lemma D.2 With small t > 0

k(L)(1− t) = 1− L

π
√

2
t1/2 + o(t1/2). (32)

Therefore, with c = L
2π , k(L)(1− t)− kLap(1− t) = o(t1/2).

Proof The proof is by induction on the unnormalized kernel k̃
(`) = (`+ 1)k(`). With ` = 1:

k̃
(1)(1− t) = (1− t)κ0(1− t) + κ1(1− t) = (1− t)

(
1−
√

2
π
t1/2 +O(t3/2)

)
+ 1 +O(t)

= 2−
√

2
π
t1/2 + o(t1/2).

Note that by the definition of k̃
(`)

k̃
(`)(u) = k̃

(`−1)(u)κ0(Σ(`−1)(u)) + Σ(`)(u).

Using

Σ(`)(1− t) = 1− t+ o(t),

1. Note that here we fix a slight miscalculation in Bietti and Bach (2021)(Corollary 3) which implied that
the coefficient of t1/2 is constant with depth.
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that was proved in Bietti and Bach (2021). Additionally, using the equation above and
Lemma A.10

κ0(Σ(`−1)(1− t)) = κ0(1− t+ o(t)) = 1−
√

2
π

(t+ o(t))1/2 + o(t1/2) = 1−
√

2
π
t1/2 + o(t1/2).

Suppose the lemma holds for j ≤ `− 1, then

k̃
(`)(1− t) = k̃

(`−1)(1− t)κ0(Σ(`−1)(1− t)) + Σ(`)(1− t)

= `

(
1− `− 1

π
√

2
t1/2 + o(t1/2)

)(
1−
√

2
π
t1/2 + o(t1/2)

)
+ 1− t+ o(t)

= `+ 1− `(`+ 1)
π
√

2
t1/2 + o(t1/2).

Using k(L) = 1
L+1 k̃

(L), the first part of the lemma is proven. Finally, using Lemma D.1, the
relation to the Laplace kernel is immediate.

Hence, with c = L/(2π), k(L)(1− t)−kLap(1− t) = o(t1/2), implying that deep FC-NTK
becomes steeper near 1.

Appendix E. Implication on generalization

In this section we prove Theorem 3 from the paper.

Theorem E.1 Let {(xi, yi)}ni=1 be n i.i.d samples such that {xi}ni=1 are drawn from the
uniform distribution on Sd−1 and assuming that y ∈ Hr(Sd−1). Then,

1. There exists L0 such that ∀L > L0 it holds that with probability at least 1 − δ, the
expected risk of the ResNTK with depth L and 0.5 < γ ≤ 1 is upper bounded by

E(L(fResNTK(x), y)) ≤ O

r 3d−2
2
√
n

+

√
log(1/δ)

n

 .
2. ∀ε > 0 there exists L0 = L(ε, n), such that ∀L > L0, the NTK predictor for {(xi, yi)}ni=1

and depth L satisfies almost surely

E(L(fFC−NTK(x), y)) =
∫
Sd−1

(fFC−NTK(x)− y(x))2dx ≥ 1−O(ε).

For the proof we consider the following setting. Let (x, y) v D, where D is some
underlying distribution over (x, y) ∈ Sd−1 × R. The generalization error is defined as the
expected risk with expectation taken over new test points sampled from the same distribution
D. For a given predictor f(x) and target function y = y(x) we use the truncated `2 loss

L(f(x), y) = min(f(x)− y, c)2

40



Spectral Analysis of the Neural Tangent Kernel for Deep Residual Networks

and define the expected risk for c > 0 as

E(x,y)vD(L(f(x), y)) =
∫
Sd−1

L(f(x), y(x))dx.

Our analysis assumes that the distribution of x ∈ Rd is uniform on the sphere and that
y(x) ∈ Hr(Sd−1), where Hr(Sd−1) is the set of band-limited functions on Sd−1 with maximal
frequency r. For simplicity we also assume that Var(y(x)) = 1 and that y(x) = O(1). We an-
alyze a case where we draw n i.i.d samples from the distribution, build fNTK(x), fResNTK(x)
so our bound will depend on the probability of the random draw.

In the following analysis, we show that for any number of samples n and large enough
depth L it holds with high probability that E(x,y)vD(L(fResNTK(x), y)) = O

(
r(3d−2)/2
√
n

)
while, in contrast, E(x,y)∼D(L(fNTK(x), y)) ≈ 1.

We begin by citing a fundamental result from Bartlett and Mendelson (2002); Arora
et al. (2019a).

Theorem E.2 Bartlett and Mendelson (2002) Given training data {(xi, yi)}ni=1 drawn i.i.d.
from a distribution D and a kernel k(·, ·) : Sd−1 × Sd−1 → R, consider any loss function
l : R × R → [0, c] that is ρ-Lipschitz in the first argument such that l(y, y) = 0. With
probability at least 1− δ, the expected risk of the kernel predictor can be upper bounded by

E(x,y)vD(l(fResNTK , y)) = O

2ρ

√
yTΘ−1y · trace(Θ)

n
+ c

√
log(1/δ)

n

 ,
where Θij = k(xi,xj), and y = (y1, .., yn)T .

Next, to prove part 1 of Theorem E.1 we use the following supporting lemmas.

Lemma E.3 Let k(x, z) =
∑
k≥0 λk

∑N(d,k)
i=1 Yki(x)Yki(z) where {Yki(·)} are the spherical

harmonics basis. Then:

1. The kernel matrix Θ where Θij = k(xi,xj) can be written as

Θ =
∞∑
k=0

λk

N(d,k)∑
i=1

Zki(X)Zki(X)T ,

where Zki(X) = (Yki(x1), .., Yki(xn))T ∈ Rn.

2. For Θ̄(ki) = λkZki(X)Zki(X)T it holds that Θ < Θ̄(ki). Moreover,

Θ̄†(ki) < PΘ̄(ki)
Θ−1PΘ̄(ki)

,

where PΘ̄(ki)
= Θ̄

1
2
(ki)Θ̄

†
(ki)Θ̄

1
2
(ki) and Θ̄†(ki) denotes the pseudo inverse of Θ̄(ki).

3. Let yki = (Yki(x1), .., Yki(xn))T . Then, PΘ̄(ki)
yki = yki.

Proof
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1. This is straightforward from the definition of the kernel.

2. Note that every term of the form Zki(X)Zki(X)T is a PSD matrix, therefore Θ̄(ki) is
generated from Θ by omitting PSD terms meaning that Θ̄(ki) < Θ. Moreover, the
inequality

Θ̄†(ki) < PΘ̄(ki)
Θ−1PΘ̄(ki)

was proved in Arora et al. (2019a) (Lemma E.1).

3. Since yki = Zki(X) and PΘ̄(ki)
is a projection to the column space of Θ(ki) it holds

that PΘ̄(ki)
yki = yki.

Lemma E.4 Let r, d ∈ N be given. Then,
∑r
k=1

∑N(d,k)
i=0 1 = O(rd−1), where N(d, k) is the

number of harmonics of degree k in Sd−1.

Proof On Sd−1the number of harmonics of degree k are N(d, k) = 2k+d−2
k

(k+d−3
d−2

)
= O(kd−2)

where the O notation holds for a fixed d. Therefore it is enough to compute
∑r
k=1 k

d−2. We
estimate this finite sum by lower and upper bounds obtained by integrals on the function
f(x) = xd−2, obtaining

rd−1

d− 1 =
∫ r

0
xd−2dx ≤

r∑
1
kd−2 ≤

∫ r+1

1
xd−2dx = (r + 1)d−1 − 1

d− 1 .

Proof (Of Thm E.1, part 1) From theorem E.2 we have

E(x,y)vD(L(fResNTK , y)) = O


√

yTΘ−1y · trace(Θ)
n

+

√
log(1/δ)

n

 , (33)

where Θij = r(L)(xTi xj). Since the ResNTK is normalized (i.e r(L)(xTi xi) = 1), trace(Θ) = n,
and (33) becomes:

E(x,y)vD(L(fResNTK , y)) = O

√yTΘ−1y
n

+

√
log(1/δ)

n

 .
Let ȳ =

∑r
k=0

∑N(d,k)
i=1 αkiyki where yki = (Yki(x1), .., Yki(xn))T . It holds that√

ȳTΘ−1ȳ
n

=

√∑
ki

∑
k′i′ αkiαk′i′yTkiΘ−1yk′i′

n
≤ O

rd−1 max
k,i

 |αki|
√

yTkiΘ−1yki
√
n


(34)
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where rd−1 results from the number of Spherical Harmonics of frequency ≤ r, which is given
by Lemma E.4. Using Lemma E.3 we have that√

yTkiΘ−1yki
n

=

√
yTkiPΘ(ki)Θ−1PΘ(ki)yki

n
≤

√√√√yTkiΘ̄
†
(ki)yki
n

,

where Θ̄†(ki) denotes the pseudo-inverse of Θ̄(ki). Observing that Θ̄(ki) = λkykiyTki, we get
that

Θ̄†(ki) = 1
‖yki‖4 λk

ykiyTki.

We therefore obtain √√√√yTkiΘ̄
†
(ki)yki
n

= 1√
nλk

.

Plugging results from Theorem 3 in the paper, we have that ∀k > 0, λk > 0 and that
maxk≤r 1

λk
= O(rd). Using (34) we get the final bound of

E(x,y)vD(L(fResNTK , y)) = O

r 3d−2
2
√
n

+

√
log(1/δ)

n

 .

Next, we use the following supporting lemma to prove Theorem E.1, part 2.

Lemma E.5 Let x1, ..,xn,x ∈ Sd−1. Fix ε, δ > 0. If ∀i 6= j, |1− xTi xj | > δ, |1− xTi x| > δ
then there exists a depth L0 = L(n, δ, ε) such that for any L > L0 it holds that

|fNTK(x)− cn1Ty| < ε

where yi = yi and cn =
(

1
3 −

n
3(3+n)

)
.

Proof Recall that given a training set (x1, y1), .., (xn, yn) the kernel regression predictor is
of the form

fNTK(x) = K(x, X)K−1(X,X)y,

where the matrix K(X,X) and the vector K(x, X) are respectively defined as K(X,X)ij =
k(L)(xi,xj) and K(x, X)i = k(L)(x,xi). By Theorem 5 in Huang et al. (2020) we have that
for x, z ∈ Sd−1 such that |1 − xT z| ≥ δ it holds that |kNTK(x, z) − 0.25| < O

(
polylog(L)

L

)
.

Therefore, under the conditions of the lemma, with probability 1,

lim
L→∞

K(X,X) = 0.75 · I + 0.25 · 11T

lim
L→∞

K(x, X) = 0.25 · 1T .
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From the continuity of the inverse function together with the Sherman-Morrison formula,
we have that

lim
L→∞

K(X,X)−1 = 4
3

(
I − 11T

3 + n

)

lim
L→∞

K(x, X)K(X,X)−1y = (0.25 · 1T )4
3

(
I − 11T

3 + n

)
y

=
(1

3 −
n

3(3 + n)

)
1Ty = cn1Ty.

We conclude therefore that for a fixed ε > 0 and n, there exists L0 such that for any L > L0,

|fNTK(x)− cn1Ty| < ε.

Next, we prove theorem E.1 part 2.
Proof (Theorem E.1 part 2) Let (x1, y1), .., (xn, yn) be i.i.d sample of n training points.
Let δ > 0 and denote

B =
n⋃
i=1

B̄(xi, δ),

where B̄(xi, δ) = {x : ‖x− xi‖2 /2 < δ} ∩ Sd−1. From Lemma E.5 we know that for any
ε > 0 there exists L0 such that ∀L > L0, ∀x ∈ Sd−1/B it holds that

|fNTK(x)− cn1Ty| < ε.

We therefore have

E(L(fNTK(x), y)) =
∫
Sd−1

(fNTK(x)− y(x))2dx

≥
∫
Sd−1/B

(fNTK(x)− y(x))2 dx ≥
∫
Sd−1/B

(
cn1Ty± ε− y(x)

)2
dx

=
∫
Sd−1/B

(
cn1Ty− y(x)

)2
dx± 2ε

∫
Sd−1/B

(
cn1Ty− y(x)

)
dx +Area(Sd−1)ε2

≥
∫
Sd−1/B

(
cn1Ty− y(x)

)2
dx−O(ε)

≥(1)
∫
Sd−1

(
cn1Ty− y(x)

)2
dx−O(ε)−O(nδ)

≥(2) var(y(x))−O(ε)−O(nδ) =(3) 1−O(ε),

where (1) is from adding at most n pieces of area at most δ, (2) is by the fact that
var(z) = mincE((z − c)2) , and (3) is by choosing L0 such that O(nδ) is of order O(ε).
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