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Abstract

Bayesian non-parametric methods based on Dirichlet process mixtures have seen tremen-
dous success in various domains and are appealing in being able to borrow information by
clustering samples that share identical parameters. However, such methods can face hurdles
in heterogeneous settings where objects are expected to cluster only along a subset of axes
or where clusters of samples share only a subset of identical parameters. We overcome such
limitations by developing a novel class of product of Dirichlet process location-scale mix-
tures that enables independent clustering at multiple scales, which results in varying levels
of information sharing across samples. First, we develop the approach for independent
multivariate data. Subsequently we generalize it to multivariate time-series data under the
framework of multi-subject Vector Autoregressive (VAR) models that is our primary focus,
which go beyond parametric single-subject VAR models. We establish posterior consistency
and develop efficient posterior computation for implementation. Extensive numerical stud-
ies involving VAR models show distinct advantages over competing methods in terms of
estimation, clustering, and feature selection accuracy. Our resting state fMRI analysis from
the Human Connectome Project reveals biologically interpretable connectivity differences
between distinct intelligence groups, while another air pollution application illustrates the
superior forecasting accuracy compared to alternate methods.

Keywords: Dirichlet process mixtures, spatio-temporal data, functional magnetic reso-
nance imaging, human connectome project, vector auto-regressive models

1. Introduction

Multivariate time-series data routinely arise in diverse application areas such as finance
(Cramer and Miller, 1978), econometrics (Engle and Watson, 1981), air pollution forecast-
ing (Nath et al., 2021) and medical imaging (Kundu and Risk, 2021), among other domains.
In order to tackle such data, a rich body of work on modeling autocorrelations and tem-
poral cross-correlations between variables with multivariate outcomes has been developed,
of which vector autoregressive (VAR) models are widely used (Lütkepohl, 2005). Our fo-
cus in this paper is on Bayesian VAR modeling, which was initially heavily motivated by
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econometric research (Doan et al., 1984) and has since seen a rich development (Korobilis,
2013). More recently, Bayesian VAR models have been adopted with increasing promi-
nence in biomedical research including patient-level predictive modeling (Lu et al., 2018)
and functional Magnetic Resonance Imaging (fMRI) applications (Gorrostieta et al., 2013;
Chiang et al., 2017) in neuroimaging studies. However, existing Bayesian VAR literature
has primarily focused on methodological and computational developments, with limited
theoretical investigations. Recently, Ghosh et al. (2018) addressed this gap by establishing
posterior consistency for the autocovariance matrix in parametric Bayesian VAR models
based on single subject data.

The vast majority of the Bayesian VAR literature involves Gaussian assumptions and
parametric prior specifications that may not be sufficiently flexible in characterizing the
underlying probability distributions with non-regular features. For example, it is known
that the nature of shocks in econometric analysis may not always be Gaussian (Weise,
1999). Similarly, flexible VAR modeling is necessary for analyzing heterogeneous multi-
subject data in neuroimaging studies, where parametric VAR models may prove inadequate
(see our Human Connectome Project (HCP) application in Section 6). Non-Gaussianity
is also observed in air pollution data captured via sensors (Kim et al., 2013), where it is
often of interest to perform forecasting using VAR models (Hajmohammadi and Heydecker,
2021). Such parametric VAR models may result in inaccurate performance when parametric
assumptions are violated or even mis-specified. To bypass parametric constraints in VAR
models, some recent articles relaxed Gaussianity assumptions (Jeliazkov, 2013). Recently,
Bayesian nonparametric VAR models were proposed by Kalli and Griffin (2018) involving
single subject data, where the mixing weights of the transition density depend on the
previous lags. On the other hand, Billio et al. (2019) proposed Dirichlet process mixture
of normal-Gamma priors on the VAR autocovariance elements. Unlike for the parametric
case, the non-parametric methods are more robust to mis-specification and can potentially
cater to a large class of models. However, the above approaches were applied to small
or moderate dimensional data with limited or no emphasis on pooling information across
samples and with negligible or no theoretical investigations.

Existing literature has largely ignored the problem of developing provably flexible non-
parametric Bayesian VAR methodology to model heterogeneous multi-subject time-series
data, to our knowledge. Such approaches are desirable over single-subject VAR analyses in
terms of being able to pool information across samples in a flexible manner that can accom-
modate arbitrary probability distributions. They also facilitate robust and reproducible
parameter estimates and provide a natural foundation for conduct inferences to test for
differences across samples via credible intervals, which may not be straightforward under
single-subject analysis. Although there is some literature on parametric VAR modeling of
multi-subject data, these existing approaches typically require a priori knowledge of class
labels (Gorrostieta et al., 2013; Chiang et al., 2017; Kook et al., 2021). Hence, they have a
limited ability to accommodate heterogeneity within each class and may result in poor per-
formance when the class labels are mis-specified due to no clear distinction between groups.
Moreover, they clearly suffer from the aforementioned pitfalls of parametric methods.

Motivated by the above discussions, we propose a broad class of novel Bayesian non-
parametric models that specify Dirichlet process (DP) mixture priors independently on
mutually exclusive subsets of model parameters. Our specification results in a product of
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Dirichlet process mixture (PDPM) priors. A key feature of the proposed approach is the
ability to allow differential clustering at multiple scales, which enables clusters of samples
that share only a subset of common model parameters resulting in greater flexibility. We
develop several variants of the proposed approach that encourage differential degrees of
heterogeneity via different modes of multiscale clustering by altering the manner in which
the parameter space is partitioned. First, we develop the PDPM approach in the generic
setting of multivariate density estimation for kernel mixtures of the form

∫
K(x; Θ)dP (Θ),

and establish posterior consistency properties. We also provide a toy example that il-
lustrates the distinct numerical advantages of the product mixture models compared to
traditional DP mixtures in terms of clustering accuracy. Subsequently, we generalize the
proposed PDPM approach to multivariate time-series data under the framework of a VAR
model, which is our primary focus in this article. In such settings, the multiscale clustering
approach becomes even more relevant given the large number of parameters in the autoco-
variance matrix whose dimension grows quadratically with the vector dimension. Starting
from a VAR model that allows for limited differences in clustering across multiple scales
and greater model parsimony, we eventually develop a variant that is able to independently
cluster row-specific parameters, which provides greater flexibility in practical applications.
By specifying appropriate base measures in the DP prior, it is possible to enable appropri-
ate shrinkage for the autocovariance elements that facilitates feature selection. Additional
dimension reduction is also possible via a low rank representation for the residual covariance.

By designing non-parametric Bayesian VAR models based on heterogeneous multi-
subject data, we are able to relax the parametric assumptions and provide a more flexible
characterisation of heterogeneity via unsupervised clustering. The proposed methods are
particularly desirable in terms of being able to bypass any restrictive assumptions such as
the presence of replicated samples, which is routinely assumed in Bayesian non-parametric
literature (Tokdar, 2006; Durante et al., 2017), but may potentially lead to inadequate
characterization of heterogeneity. In particular, replicated samples are structured to share
fully identical sets of model parameters within a given cluster, which may not be realistic
in applications where heterogeneous samples are often effectively clustered only along a
subset of directions with the remaining axes being uninformative/redundant for clustering
(Agrawal et al., 2005).

Another appealing feature of the proposed approach is the associated posterior consis-
tency properties for density estimation, as the number of samples (n) grows to ∞. We
note that such theoretical results for VAR models involving multivariate time-series data
represent non-trivial extensions of the rich theoretical properties established in the Bayesian
non-parametric literature for independent outcomes (Tokdar, 2006; Canale and De Blasi,
2017). We resolve the significant challenges arising from the non-parametric Bayesian theo-
retical analysis by establishing Kullback-Leibler properties for VAR models, and construct-
ing carefully designed sieves that are shown to satisfy certain entropy bounds and tail prior
probability conditions under the product of DP priors. Moreover, we show that the theo-
retical results hold for commonly used base measures that enable straightforward posterior
computation, and subsequently outline the computational complexity.

We develop an efficient and scalable Markov chain Monte Carlo (MCMC) implemen-
tation for the proposed class of models in the VAR framework. In addition, we illustrate
the sharp numerical advantages and efficient mixing under the proposed non-parametric

3



Kundu and Lukemire

Bayesian VAR approach in terms of parameter estimation and recovering the true clusters,
compared to competing state-of-the-art methods. Further, the inferential capability of the
proposed approach is evident from accurate feature selection of the autocovariance elements.
Our analysis of resting state fMRI data from a subset of individuals in the HCP study infers
several effective connectivity differences between the high and low fluid intelligence groups
that are supported by existing evidence in literature. Moreover, the analysis under the
proposed approach produces biologically reproducible estimates that are consistent across
repeated neuroimaging scans from the same samples. In contrast, a single subject VAR
analysis is able to identify only negligible effective connectivity differences across groups,
which seems biologically implausible. Using a second data application example involving
air pollution data from the Environment Protection Agency (EPA), we illustrate the con-
siderable advantages in forecasting accuracy under the proposed approach compared to a
parametric VAR model even when the dimension of the outcome is small.

The rest of the article is structured as follows. Section 2 develops the product of DP
mixtures for independently distributed multivariate data and establishes posterior consis-
tency properties. Section 3 extends the methodology to multivariate time-series data under
a VAR framework, along with illustrating theoretical properties. Section 4 describes the
posterior computation scheme. Section 5 reports results from extensive simulation studies
involving VAR models. Sections 6 and 7 describe our analysis of the neuroimaging data
from the HCP as well as air pollution data from the EPA. Section 8 contains additional
discussions. Appendices are provided that contain other relevant details.

2. Product of DP Mixtures for Multivariate Data

2.1 A Primer on DP mixture approaches

Consider i.i.d. random vectors xi, i,= 1, . . . , n, each of dimension D × 1, and denote the
collection of vectors as Xn = {x1, . . . ,xn}. Non-parametric Bayesian literature has often
focused on modeling these vectors under a DP location mixture or location-scale framework.
Such approaches (Escobar and West, 1995) often specify xi ∼ N(µi,Σi), (µi,Σi) ∼ P, P ∼
DP (MP0), i = 1, . . . , n, where Σi ∈ SD×D denotes the covariance for subject i, SD×D
denotes the space of all D × D symmetric positive definite matrices, P0 denotes the base
measure of the DP, and M is the precision parameter. We note that alternative choices
other than the Gaussian kernel may also be used but are not considered here for simplicity.
The resulting DP location-scale mixture induces the unknown probability density fP (x) =∫
φΣ(x − µ)dP (µ,Σ), where φΣ(· − µ) denotes the density of a D-dimensional normal

distribution with mean µ and covariance Σ. Given that P ∼ DP (MP0), the proposed
method results in probability distributions on the class of densities F = {fP }, which can
also be seen from the result fP (x) =

∑∞
h=1 πhφΣh

(
x− µh

)
, where (µh,Σh) ∼ P0 and πh =

νh
∏h−1
l=1 (1− νl), νh ∼ Be(1,M), using Sethuraman’s (1994) stick-breaking representation.

The above commonly used DP mixture specification results in clusters of replicated sam-
ples that share identical sets of parameters (µ,Σ), which allows for pooling of information
across samples resulting in robust learning. While such a clustering mechanism is routinely
used and often backed by posterior consistency guarantees, it may not be well-equipped to
succeed for more heterogeneous settings where the clustering is dictated by a small number
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of axes or subspaces, with the other axes being irrelevant to clustering. A more reason-
able approach is to allow differential clustering at multiple scales that does not constrain
samples to share fully identical parameter sets, but instead allows subsets of parameters to
cluster independently resulting in partially overlapping clusters. Such a multi-scale cluster-
ing approach results in a more accurate characterization of heterogeneity that is expected
to improve finite sample performance. The above arguments form the basis of the proposed
product mixture priors in this article.

2.2 Proposed Methodology and Properties

We propose a class of novel product mixture priors that is equipped to perform differential
clustering at multiple scales. Consider equally sized mutually exclusive and exhaustive
subsets of the full parameter set denoted as µ = ∪Mµ

m1=1µm1
, σ̃ = ∪Mσ

m2=1σm2 , where σ̃
denotes the vectorized upper triangular matrix of Σ, and {µ1, . . . ,µMµ

} represent subsets
of equal cardinality, and similarly for {σ1, . . . ,σMσ}. Consider specifying the following
product of DP priors on the parameters:

µm1

indep∼ Pµ, m1 = 1, . . . ,Mµ, σm2

indep∼ Pσ, m2 = 1, . . . ,Mσ, Σ ∈ SD×D,
Pµ ∼ DP (α1P

∗
1 ), Pσ ∼ DP (α2P

∗
2 ), (1)

where each component is assigned independent priors µm1

indep∼ Pµ,σm2

indep∼ Pσ, that follow
Dirichlet process with base measures P ∗1 and P ∗2 respectively, with corresponding precision
parameters α1, α2. The specification (1) results in a product of DP priors on the original
parameters (µ,Σ) that is denoted by Π∗, where the exact prior depends on the way in
which the partitions are defined. Hence, one can obtain a class of product mixture priors
by tweaking the partition structure to reflect the most appropriate setting for the data at
hand. The product priors in (1) induce priors Π on F via the relationship:

fP (x) =

∫ ∫
φΣ

(
x− µ

)
dΠ∗(µ,Σ)

=
∞∑

h11,...,h1Mµ=1

∞∑
hσ=1

π1,h11 . . . πMµ,h1Mµ
πσ,hσφΣhσ

(
x− (µT1,h11

, . . . ,µTMµ,h1Mµ
)T
)
, (2)

where the second equality is obtained by Sethuraman’s (1994) stick breaking representa-
tion with πh1m1

= νh1m1

∏
l1<h1m1

(1− νl1), νl1 ∼ Be(1, α1), πσ,hσ = νσ,hσ
∏
l2<hσ

(1− νσ,l2),

νσ,hσ ∼ Be(1, α2), and further Σhσ ∼ P ∗2 , µm1 ∼ P ∗1 , and Mσ is assumed to be one in
the above expression. The choice of Mσ = 1 is guided by practical considerations in VAR
models that is our primary focus (next section) where the residual covariance matrix often
has a sparse or even diagonal structure after regressing out the lag effects of previous time
points. However our treatment can be generalized to Mσ > 1 in a straightforward man-
ner. We note that the above form in (2) follows the generic kernel mixture representation∫
K(x; Θ)dP (Θ) that is commonly considered in non-parametric Bayesian density estima-

tion literature (Wu and Ghosal, 2008). We denote the resulting class of priors on F arising
from (2) as the product of Dirichlet process mixtures (PDPM).

The most straightforward case of the prior in (1) is given as Π∗(µ,Σ) = Pµ(µ)×Pσ(Σ),
which specifies independent priors on the mean and covariance parameters without further

5



Kundu and Lukemire

partitioning these parameters (i.e. Mµ = 1,Mσ = 1). The PDPM operates by clustering
the mean and covariance parameters independently, which suggests separate modes of pool-
ing information across samples for the mean and covariance. Such a multiscale clustering
approach results in greater flexibility and a more accurate characterization of heterogeneity
compared to replicated samples with fully identical parameter sets via allowing for dedi-
cated clusters of samples that share common mean signatures (but not necessarily for the
covariance), along with independently constructed subgroups of samples that share common
patterns in the covariance (but not necessarily for the mean). As a more flexible generaliza-
tion, one can consider the generalized PDPM (gPDPM) model that specifies independent
DP priors for each element of the mean vector, i.e. Π∗(µ,Σ) =

∏D
m=1 Pµ(µm)×Pσ(σ̃). The

gPDPM approach allows separate clustering for each element of µ across samples, which
enables differential clustering along various axis and provides a more granular approach for
pooling information, albeit at the cost of a larger number of model parameters . The mul-
tiscale clustering approach is expected to excel in settings where the clustering is dictated
by a subset of axes in the mean with the other axes being redundant towards clustering.
The above discussions highlight the advantages of the multiscale clustering aspect under
the proposed product mixture modeling methodology, and provides the central motivation
for this article. A schematic representation of the above ideas is presented in Figure 1.

Toy Example: We illustrate the advantages of the multiscale clustering approach using a
toy example. Multivariate data Yi ∼ ND(µi,Σi), for i = 1, . . . , 250, was generated such
that the mean across samples were identical except the first d elements, where d ≈ D

3 . For
the first d elements of µ, there were 5 clusters, each with a corresponding d−vector of µ
values. Similarly, 5 clusters were generated for Σ(D×D) that were constructed independent
of the mean. We used the standard DPM and the proposed PDPM to fit these data, and
evaluate the clustering performance across varying dimensions. The posterior computation
steps for both approaches are just simplified versions of the posterior computation for the
PDPM-VAR model that will be introduced in the sequel (omitted here for conciseness). For
each method, we evaluated the adjusted Rand index for clustering the mean vector that
is averaged over all MCMC iterations (Rand, 1971). Figure 1c illustrates the clustering
accuracy. Unsurprisingly, the PDPM offers significant improvement over the DPM for such
a heterogeneous clustering setup across varying dimensions D, which clearly illustrates the
considerable advantages of the proposed approach. The standard DPM approach allocates
identical mean and covariance parameters for all samples within each cluster, which can not
tackle the differential clustering allocations between the mean and covariance and hence
results in spurious clusters that adversely affect the overall clustering accuracy.

Theoretical Properties: From a theoretical perspective, it is possible to show that the
proposed product of DP approach leads to posterior consistency for Kullback-Leibler neigh-
borhoods, under reasonable assumptions on the true density f0 that are routinely assumed
in multivariate density estimation literature (Wu and Ghosal, 2008). This is not surprising
given that the density follows a generic kernel mixture representation

∫
K(x; Θ)dP (Θ) com-

monly encountered in the literature. Some additional notations are provided below. Denote
the Euclidean norm for a vector as || · ||, and denote the spectral norm of a matrix as || · ||2.
Further, denote the eigenvalues of a D ×D positive definite matrix Σ in decreasing order
as λ1(Σ) ≥ . . . ≥ λD(Σ). Let a . b imply that a is less than b upto a constant, and let b·c

6



Product of Dirichlet Process Mixtures

Figure 1: A schematic representation of the product of DP mixture prior. Panel (a) illustrates the product
prior that separately clusters the mean (represented by A) into red and blue clusters and the
covariance (Σ) into green and saffron clusters. Panel (b) represents the traditional DP mixture
prior that forms clusters containing samples having identical values for both the mean and co-
variance parameters. Panel (c) illustrates the results from the toy example under the traditional
DPM and the proposed PDPM, in terms of the change in clustering accuracy with varying
dimension when the clustering is dictated by a subset of axes.

denote the floor operator. Denote the Kullback-Leibler (KL) divergence between densities
f, g ∈ F as KL(f, g) =

∫
log(f/g)f . Denote the set of natural numbers as N.

We now establish our result on positive prior support for Kullback-Leibler neighborhoods
under the product of DP prior below, based on the following assumptions.

(C1) 0 < f0(x) < M for some constant M and all x ∈ <D;
(C2)

∫
f0(x) log(f0(x))dx <∞;

(C3)
∫
f0(x) log(f0(x)/φδ(x))dx <∞ where φδ(x) = inf ||t−x||<δ f0(t) for some δ > 0;

(C4) for some η > 0,
∫
||x||2(1+η)f0(x)dx <∞.

Assumptions (C1)-(C4) are similar to routinely used conditions in non-parametric Bayesian
literature for establishing posterior consistency properties. For example, these conditions
were proposed in Wu and Ghosal (2008) for establishing Kullback-Leibler convergence prop-
erties for location-scale mixtures. Since then, they have been used extensively in related
literature such as Wu and Ghosal (2010) for multivariate location mixtures, in Canale and
De Blasi (2017) for showing strong consistency properties for multivariate location-scale
mixtures, as well as for conditional density estimation (Pati et al., 2013), and Dirichlet
mixtures of exponential power densities (Scricciolo, 2011), among others. Condition (C1)
simply implies that the true density f0 is bounded which is a reasonable and mild assump-
tion. Conditions (C2) and (C3) are subtle, but are also mild, as noted in Pati et al. (2013).
For example, condition (C2) should be satisfied by appropriate location-scale mixtures of
normals. Condition (C4) imposes a minor tail restriction that should be satisfied by the
t-distribution with suitable degrees of freedom, among others.

7



Kundu and Lukemire

Lemma 1: Let f0 ∈ F and assume conditions (C1)-(C4) hold. Then for the prior defined
in (1), we have Π

(
f ∈ F :

∫
log
(
f0/f

)
f0 ≤ η∗

)
≥ 0, for any η∗ > 0.

Remark 1: Lemma 1 provides weak consistency guarantees by establishing positive prior
support for arbitrarily small Kullback-Leibler neighborhoods of f0, as per Schwartz (1965).

An outline of the proof is provided in the Appendix. Although weak consistency is useful,
a more appealing feature is strong consistency, ensuring that the posterior distribution
concentrates in arbitrarily small L1 neighborhoods of the true density. The next result
states that under certain tail conditions on the base measure of the DP priors, it is possible
to derive strong posterior consistency corresponding to the PDPM priors.

Theorem 1: Suppose f0 satisfies the conditions of Lemma 1. Then the posterior is strongly
consistent at f0 under the PDPM and gPDPM priors Π in (2) with base measures that
satisfy the conditions: (i) P ∗2 (λ1(Σ−1

hσ
) > x∗) . exp(−c1(x∗)c2), P ∗2 (λD(Σ−1

hσ
) < 1/x∗) .

(x∗)−c3 , P ∗2
( λ1(Σ−1)

λD(Σ−1
hσ

)
> x∗

)
. (x∗)−κ, for some constants c1, c2, c3, κ, and all clusters hσ;

(ii) P ∗1 (||µm1,h1m1
|| > x∗) . (x∗)−2(r+1) for all clusters h1m1, where m1 = 1, . . . ,Mµ.

Theorem 1 provides explicit conditions on the PDPM prior that will ensure strong con-
sistency, corresponding to any true density f0 lying in the weak neighborhood of the prior Π
on the set of densities F . The proof is provided in the Appendix. The tail conditions on the
base measures in Theorem 1 are very reasonable and hold for commonly used distributions
(such as Gaussian and Laplace) on the mean, as well as the inverse-Wishart distribution on
the covariance (see Lemmas 2-3 in the sequel). It should be noted that the procedure for
proving the strong consistency result in Theorem 1 corresponding to non-compact space of
densities F relies on carefully designed sieves Fn that are compact subsets of F but that
grow with n to eventually cover all of F as n → ∞. These sieves must satisfy certain suf-
ficient conditions for the strong consistency result to hold. These sufficient conditions are
motivated from ideas in Theorem 5 of Ghosal and Van Der Vaart (2007), and were derived
by Shen et al. (2013) for location mixtures and in Theorem 1 of Canale and De Blasi (2017)
for location-scale mixtures. For clarity, we restate the result in Canale and De Blasi (2017)
as Theorem 2 in our paper that will be leveraged to establish the posterior consistency
under our set-ups in Sections 2 and 3 (Theorems 1 and 5 respectively).

Denote the entropy of a space of densities G ⊂ F as N(ε,G, d), which is defined (in terms
of the metric d) as the minimum integer N for which there exists densities f1, . . . , fN ∈ F
satisfying G ⊂ ∪Nj=1{f : d(f, fj) < ε}. The distance metric used to study convergence in the

space F is evaluated in terms of the Hellinger distance (defined d(f, g) =
[ ∫

(
√
f−√g)2

]1/2
),

as well as the L1 metric (defined as ||f − g||1 =
∫
|f − g|). Further, denote Fn0 as the n-

products measure, where F0 is the probability measure corresponding to f0.

Theorem 2 (Canale and De Blasi): Consider sieves Fn ⊂ F with Fn ↑ F as n → ∞,
where Fn = ∪jFn,j, with (2A) Π(Fcn) . e−bn; and (2B)

∑
j

√
N(2ε,Fn,j , d)

√
Π(Fn,j)e−(4−c)nε2 → 0,

for b, c, ε > 0. Then Π(f : d(f0, f) > 8ε | Xn)→ 0 in Fn0 −probability for any f0 in the weak
support of Π defined in (1).

In Theorem 2, condition (2A) suggests that the sieve should grow with the sample size
such that only small neighborhoods with exponentially small prior probabilities are ex-
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cluded. On the other hand, condition (2B) reflects the summability condition that involves
smaller subsets Fn,j that cover the sieve Fn under the union operation. It places constraints
on the growth rate of the metric entropy in a manner that the weighted sum of the square
root of metric entropy of Fn,j (weighted by the corresponding square root of prior probabil-
ities) go towards zero with increasing n. We construct such sieves in the proof of Theorem
1 in the Appendix, and illustrate that the conditions (2A) and (2B) are satisfied, which
results in strong consistency.

Model (1) lays the foundation for the novel PDPM priors, that potentially has a wide
array of applications, and can likely be generalized to most frameworks that involve cluster-
ing under Dirichlet process mixtures. We are now well positioned to turn our focus on the
primary goal in this article, which is to develop a provably flexible non-parametric Bayesian
methodology for multivariate time-series data modeled under a VAR framework, which is
one of the first such set of results in literature, to our knowledge.

3. Extension to Vector Autoregressive Models

3.1 Proposed Model

Consider the data matrix Xi = (xi1, . . . ,xiT ), where xit represents the (D × 1) tem-
porally dependent multivariate measurement for the i-th subject at the t-th time point
(i = 1, . . . , n, t = 1, . . . , T ). Note that our model can easily accommodate subject-specific
scan lengths (Ti); however we will assume Ti = T from hereon in, to ease the exposition.
Throughout, we will also assume a fixed dimension (D), and a pre-specified number of time
scans (T ), which is consistent with the routinely used fixed dimensional assumptions in the
literature on non-parametric modeling of location-scale mixtures. Consider the VAR model:

xit =

min{t−1,K}∑
k=1

Aikxi,t−1 + εit, εit ∼ N(0,Σi), i = 1, . . . , n, t = 2, . . . , T, (3)

where Aik denotes the D × D matrix of autocovariance parameters for subject i at lag k
(k = 1, . . . ,K), Σi ∈ SD×D denotes the time-invariant residual covariance for subject i,
and the lag order (K) is pre-specified as per standard practice in the VAR model literature
(Ghosh et al., 2018). Model (3) implies that the mean of xt depends on xt−1, . . . ,x1 when
t ≤ K and on xt−1, . . . ,xt−K for t > K, with xi1 ∼ N(0,Σi) as per convention. As is
common in practice, the intercept term is fixed to be zero and not included in (3).

In order to understand the properties of (3), it is imperative to note that the likelihood
for the i-th sample can be written as a product of conditional densities as

L(Xi | Θi,Σi) =

T∏
t=2

φΣi

(
xit −

min{t−1,K}∑
k=1

Aikxi,t−k

)
× φΣi

(
xi1
)
, i = 1, . . . , n, (4)

where Θi denotes the collection of autocovariance matrices for sample i across lags. For
example, the likelihood for the ith sample under a VAR(2) model may be written as∏T
t=3 φΣi

(
xit−

∑2
k=1Aikxi,t−k

)
×φΣi

(
xi2−Ai1xi,1

)
×φΣi

(
xi1
)
. The above likelihood in (4)

will be used throughout in our treatment of VAR models. We note that (4) is a different
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way of representing the likelihood compared to the linear regression framework that is often
used in single subject VAR models (Ghosh et al., 2018).

Our goal involves multi-subject VAR analysis by proposing suitable priors on (Θi,Σi)
in (3) to leverage common patterns of information across samples in an unsupervised and
flexible manner. A natural framework for pooling information across subjects is via cluster-
ing, which also inherently results in model parsimony that is particularly important in our
settings where the number of parameters grow with n. Such a clustering approach should
enable straightforward posterior computation and result in theoretical guarantees. To this
end, we extend the PDPM methodology to the case of multivariate time-series data that im-
poses independent DP mixture priors separately on Θ and Σ to induce multiscale clustering.
Depending on the manner of the DP prior specification on the autocovariance elements, one
can obtain different variants of the proposed method that allow for varying degrees of model
parsimony and varying levels of information sharing within samples, via different patterns
of autocovariance clusters. Such a multi-scale clustering approach is particularly relevant
in the context of VAR models where the dimension of the autocovariance matrix increases
quadratically with the outcome dimension D, making it imperative to avoid the assumption
of replicated samples that is embedded in typical mixture modeling approaches. The result-
ing PDPM approach leads to a more fitting characterization of heterogeneity and greater
accuracy, as illustrated via extensive numerical studies involving VAR models in the sequel.
In addition, appropriate base measures in the DP can be chosen to encourage shrinkage in
the autocovariance elements that facilitate feature selection, as well as to induce low rank
decomposition for the residual covariance resulting in additional model parsimony.

Product of DP mixtures for VAR models: In the following specifications, we will omit
subscript i where appropriate, for notational convenience and as per convention (Wu and
Ghosal, 2008; Canale and De Blasi, 2017). We propose the following PDPM prior

Θ = {vec(A1), . . . , vec(AK)} ∼ PΘ, PΘ ∼ DP (α1P
∗
1 ),Σ ∼ PS , PS ∼ DP (α2P

∗
2 ), (5)

where α1, α2, represent precision parameters in the Dirichlet process, the base measure P ∗1
belongs to the space of probability measures P1 on D1 = <D2×1 × . . .×<D2×1︸ ︷︷ ︸

K

, and the base

measure P ∗2 belongs to the space of probability measures P2 on D2 = SD×D. Model (5)
specifies unknown distributions PΘ and PS on model parameters, that are modeled under
independent DP priors. The resulting product of DP priors in (5) is defined on the space of
densities P with domain D1×D2 and may be expressed as Π∗(Θ,Σ) = PS(Σ)×PΘ(Θ). This
prior specification translates to a product of DP mixture of VAR (PDPM-VAR) models that
induces a prior Π on the space of probability densities F for the data matrix X as follows:

fP (X) =

∫ ∫ T∏
t=1

φΣ

(
xt −

min{t−1,K}∑
k=1

Akxt−k

)
dPΘ(Θ)dPS(Σ)

=
∞∑

h1=1

∞∑
hσ=1

πh1πσ,hσ

T∏
t=1

φΣhσ

(
xt −

min{t−1,K}∑
k=1

Ak,h1xt−k

)
, (6)

where πh1 = νh1

∏
l1<h1

(1 − νl1), νh1 ∼ Be(1, α1), πσ,hσ = νσ,hσ
∏
l2<hσ

(1 − νσ,l2), νσ,hσ ∼
Be(1, α2), and further Σhσ ∼ P ∗2 , (vec(A1,h1), . . . , vec(AK,h1)) ∼ P ∗1 . We consider a broad
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class of base measures to study theoretical properties (Section 3.2), but for implementation
we focus on specific choices for (P ∗1 , P

∗
2 ) that facilitate posterior computations (Section 4).

While (5) provides a greater degree of flexibility in terms of accommodating heterogene-
ity compared to existing DP mixture approaches, there is further scope for generalizing this
approach to accommodate additional heterogeneity in lag-specific and row-specific relation-
ships. Such generalizations become particularly important when clusters of samples tend to
share common autocovariance elements for some but not all lags or have identical elements
for only a subset of rows/nodes in the autocovariance matrices in practical applications.
For example, the latter scenario arises when the effective clustering for the autocovariance
elements is confined to a subset of rows in the matrix A, with the remaining rows being
irrelevant with respect to clustering. Such aspects are routinely encountered in heteroge-
neous and high-dimensional clustering problems (Agrawal et al., 2005), such as our VAR
settings of interest where the number of autocovariance parameters increase quadratically
with the outcome dimension (D). We now generalize the PDPM-VAR method below to
account for such heterogeneous settings.

Generalization across autocovariance rows: It is possible to generalize the PDPM-
VAR model in (5) in a manner that relaxes the restriction to have fully identical autocovari-
ance matrices for all samples within a given autocovariance cluster. In particular, consider
an approach that specifies independent priors on the VAR model parameters corresponding
to each row of the autocovariance matrices, which results in row-specific clustering patterns.
In particular, denote Ak,d′• as the d′-th row of Ak and consider the following specification

vec{A′1,d′•, . . . , A′K,d′•}
indep∼ PΘd′ , PΘd′ ∼ DP (α∗d′P

∗∗
1d′), Σ ∼ PS , PS ∼ DP (α2P

∗
2 ), d′ = 1, . . . , D, (7)

whereA′ denotes the transpose ofA, and the row-specific priors PΘd′ (vec{A
′
1,d′•, . . . , A

′
K,d′•})

are specified independently for each row and jointly across lags. The product of DP prior
in (7) is expressed as Π∗(Θ,Σ) = PS(Σ) ×

∏D
d′=1 PΘd′ (vec{A

′
1,d′•, . . . , A

′
K,d′•}), and results

in the row-generalized PDPM-VAR (rgPDPM-VAR) model that induces priors on F via

fP (X) =
∞∑

h1,1=1

. . .
∞∑

h1,D=1

∞∑
hσ=1

(πσ,hσ

D∏
d′=1

π∗d′,h1d′
)
T∏
t=1

φΣhσ

(
xt −

min{t−1,K}∑
k=1

Ak,h11,...,h1D
xt−k

)
,

(8)

where Ak,h11,...,h1D
denotes the autocovariance matrix at lag k that assigns the h1d′-th mix-

ture component to the d′-th row with prior probability π∗d′,h1d′
= ν∗d′,h1d′

∏
l1d′<h1d′

(1 − ν∗l1d′ ),

where ν∗d′,h1d′
∼ Be(1, α∗d′), vec{A′1,d′•,h1,d′

, . . . , A′K,d′•,h1,d′
} indep∼ P ∗∗1d′ and Ak,d′•,h1,d′

denotes

the d′-th row for the matrix Ak that takes values from the h1,d′-th mixture component. Fur-
ther, Σhσ ∼ P ∗2 with prior probability πσ,hσ = νσ,hσ

∏
l2<hσ

(1− νσ,l2) and νσ,hσ ∼ Be(1, α2).

In the scenario when multiple rows have identical clustering configurations, the rgPDPM-
VAR model is able to identify clusters of samples that share identical autocovariance ele-
ments corresponding to a subset of nodes only, but exhibit variations corresponding to the
remaining autocovariance rows. We note that for our motivating neuroimaging applications,
this scenario translates to identical effective connectivity corresponding to a subset of brain
regions within a autocovariance cluster, while the remaining brain regions are allowed to
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exhibit varying connectivity profiles within this cluster. By allowing row-specific cluster-
ing patterns in the autocovariance matrix, the rgPDPM-VAR approach results in a more
complete characterization of heterogeneity compared to the PDPM-VAR. Additional gen-
eralizations are also possible; for example, one may extend specification (7) to impose row-
and lag-specific priors. However, such extensions may result in a rapid rise in parameters
that presents potential computational issues, and hence are not considered further.

Generalization across lags: For the second extension, we specify independent DP priors
for the autocovariance matrices at each lag, which results in lag-specific clustering as follows:

vec(Ak)
indep∼ PΘk , PΘk ∼ DP (α1kP

∗
1k), Σ ∼ PS , PS ∼ DP (α2P

∗
2 ), k = 1, . . . ,K,(9)

where PΘk denotes the unknown density for vec(Ak) that is modeled under a DP prior with
base measure P ∗1k and precision parameter α1k(k = 1, . . . ,K), and the prior on the residual
covariance parameters is defined similarly to (5), but with the understanding that α2 and
P ∗2 in the DP priors in (9) and (5) are allowed to be distinct. The resulting product of
DP priors in (9) may be expressed as Π∗(Θ,Σ) = PS(Σ) ×

∏K
k=1 PΘk(Ak). As under the

PDPM-VAR, specification (9) induces a prior on the space of densities F via

fP (X) =

∞∑
h11,...,h1K=1

∞∑
hσ=1

πσ,hσ
( K∏
k=1

πk,h1k

) T∏
t=1

φΣhσ

(
xt −

min{t−1,K}∑
k=1

Ak,h1k
xt−k

)
, (10)

where πk,h1k
= νk,h1k

∏
lk,1k<hk,1k

(1 − νk,l1k) (k = 1, . . . ,K), πσ,hσ = νσ,hσ
∏

l2<hσ

(1 − νσ,l2)

and νk,h1k
∼ Be(1, α1k), νσ,hσ ∼ Be(1, α2), and further vec(Ak,h1k

) ∼ P ∗1k,Σhσ ∼ P ∗2 for
k = 1, . . . ,K, using the stick-breaking construction in Sethuraman (1994). We denote the
model under (3) and (9) as the lag-generalized product of DP mixture of VAR (lgPDPM-
VAR) model and note that this model reduces to the PDPM-VAR for lag 1 models. This
approach is expected to be less flexible compared to the rgPDPM-VAR method in general,
but may exhibit some advantages when the clustering patterns are distinct across lags.

3.2 Theoretical Properties

Notations and Definitions: In this section we will establish posterior consistency properties
of the proposed product of DP mixture of VAR models. We will assume that the D×T data
matrices X1, . . . , Xn, are i.i.d. under some true density f0 ∈ F . We note that the theoretical
derivations corresponding to VAR models involving multivariate time-series data are more
involved than the independent multivariate outcome settings in Section 2 that has been
the focus of existing non-parametric Bayesian density estimation literature. Moreover, our
theoretical results assume fixed T (finite time set-up) with growing number of samples,
which is in contrast to theoretical settings in parametric VAR analysis for single subjects
that rely on growing T (Ghosh et al., 2018).

Throughout the article, we will assume the following reasonable regularity conditions
on f0(xt | X1:(t−1)) that reflect counterparts of the assumptions (C1)-(C4) corresponding to
multivariate density estimation. Here, f0(xt | X1:(t−1)) denotes the true conditional density
of xt that depends on previous time scans up to a certain known lag (K).
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(A0) The form of the true density satisfies f0(X) =
{∏T

t=1 f0(xt | xt−1, . . . ,x1)
}

={∏T
t=1 f0(xt | X1:(t−1))

}
, for all X ∈ <D×T .

(A1) 0 < f0(X) < M for some constant M and for all X ∈ <D×T .
(A2) |

∫
f0

(
xt | X1:(t−1)

)
log
(
f0(xt | X1:(t−1))

)
dxt| <∞, point-wise for X1:(t−1) for all t.

(A3) For all t and some δ > 0,
∫
f0

(
xt | X1:(t−1)

)
log
( f0(xt|X1:(t−1))

φ∗δ(xt|X1:(t−1))

)
dxt < ∞, where

φ∗δ(xt | X1:(t−1)) = inf ||r−xt||<δ f0(r | X1:(t−1)), point-wise for X1:(t−1).

(A4) For all t and some η > 0,
∫
||xt||2(1+η)f0(xt | X1:(t−1))dxt <∞, point-wise for X1:(t−1).

Condition (A0) expresses the true density as a product of conditional densities, subject
to a known K, where the true conditional density only depends on xt−1,xt−2, . . . ,xt−K ,
when t > K and depends on xt−1,xt−2, . . . ,x1 for t ≤ K. Condition (A1) assumes that
the true density is bounded. Further, assumptions (A1)-(A4) are reminiscent of conditions
used for conditional density estimation in Pati et al. (2013) who focused on dependent
stick-breaking processes. In the special case when the true density corresponds to a VAR
structure, (A0)-(A4) would imply (among other things) that the true VAR parameters are
well-behaved and satisfy stability conditions so that the true density does not blow up to
∞ or attenuate to zero.

The following Theorem formally states the result on positive prior support under the
above assumptions. The proof is provided in the Appendix and uses key results in Wu and
Ghosal (2008) for multivariate density estimation under DP mixtures.

Theorem 3: Suppose assumptions (A0 )− (A4 ) are satisfied. Then the product of DP
mixture priors Π specified in (5), (7), and (9) satisfies the Kullback-Leibler property, i.e.

Π

(
f ∈ F :

∫
log
(
f0/f

)
f0 ≤ η∗

)
≥ 0, for any η∗ > 0.

The next goal is to establish strong consistency for the proposed approach. We will again
leverage the sufficiency conditions in Theorem 2 that rely on careful sieve constructions.
In practice, it may not be straightforward to construct such sieves for the matrix-variate
density estimation case, since the metric entropy depends on a number of terms including
the sample size n, dimension D, as well as T (see Theorem 4). A major contribution of our
work is to construct appropriate sieves using the stick-breaking representation and inspired
by the ideas implemented in Shen et al. (2013), which satisfy the conditions in Theorem 2.

Sieve Constructions: The sieves are constructed so as to allow the norm of the elements
in the autocovariance matrices, as well as the condition number of the residual covariance
matrices, to increase with sample size at an appropriate rate that satisfies the conditions
in Theorem 2. We note that the condition number of a matrix frequently appears in the
random matrix literature (Edelman, 1988) and is defined as the ratio of the largest to
the smallest eigen values, i.e. λ1(Σ)/λD(Σ) = λ1(Σ−1)/λD(Σ−1). For our purposes, we
construct the following sieves corresponding to the PDPM-VAR model in (3) and (5) as:
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Fn =

{
fp : P =

∑
h1≥1

∑
hσ≥1

πh1πσ,hσδΘh1 ,Σhσ :
∑

h1>Hn

πh1 < ε1,
∑

hσ>Hn

πσ,hσ < ε2, and for

hσ ≤ Hn, σ
2
n ≤ λD,Σhσ ≤ λ1,hσ ≤ σ2

n(1 + ε/
√
D)Mn , 1 <

λ1,hσ

λD,hσ
≤ nHn

}
,

Fn,jl =

{
fp ∈ Fn : for h1, hσ ≤ Hn, ah1,j ≤ ||vec(Ak,h1)|| ≤ āh1,j ∀k, uhσ,l ≤

λ1,hσ

λD,hσ
≤ uhσ,l

}
,

(11)

where δθ denotes the probability measure degenerate at θ, λd′,Σhσ is a shorthand for
λd′(Σhσ), i.e. the eigen values corresponding to Σhσ , j, l are integers that are ≤ Hn for
a given n, the sequences {Hn}, {Mn}, {σn}{ah1,j}, {āh1,j}, {uhσ ,j}, {uhσ ,j} grow to ∞ with

n and are chosen appropriately such that Fn ⊂ ∪j,lFn,jl, and further, Fn ↑ F as n → ∞.
Moreover, the sieves corresponding to rgPDPM-VAR in (3) and (7) are constructed as:

Fn =

{
fp : P =

∞∑
h1,1=1

..

∞∑
h1,D=1

∞∑
hσ=1

(πσ,hσ

D∏
d′=1

π∗d′,h1d′
)δΘh

1d′
,Σhσ

:
∑

h1d′>Hn

π∗d′,h1d′
< ε1, ∀d′ ≤ D,

∑
hσ>Hn

πσ,hσ < ε2, and for hσ ≤ Hn, σ
2
n ≤ λD,hσ ≤ λ1,hσ ≤ σ2

n(1 + ε/
√
D)Mn , 1 <

λ1,hσ

λD,hσ
≤ nHn

}
,

Fn,jl =

{
fp ∈ Fn : ah1d′ ,j

≤ ||vec(Ak,d′•,h1,d′ )|| ≤ āh1d′ ,j for h11, . . . , h1D ≤ Hn,

and d′ = 1, . . . , D, and uhσ,l ≤
λ1,hσ

λD,hσ
≤ uhσ,l, for hσ ≤ Hn

}
, (12)

and the sieves for the lgPDPM-VAR model in (3) and (9) are constructed similarly as:

Fn =

{
fp : P =

∞∑
h11=1

. . .

∞∑
h1K=1

∞∑
hσ=1

πσ,hσ
( K∏
k=1

πk,h1k

)
δΘh1k ,Σhσ :

∑
h1,1k>Hn

πk,h1k
< ε1,∀k = 1, . . . ,K,

∑
hσ>Hn

πσ,hσ < ε2, and for hσ ≤ Hn, σ
2
n ≤ λD(Σhσ ) ≤ λ1(Σhσ ) ≤ σ2

n(1 + ε/
√
D)Mn , 1 <

λ1,hσ

λD,hσ
≤ nHn

}
,

Fn,jl =

{
fp ∈ Fn : ah1k,j

≤ ||vec(Ak,h1k
)|| ≤ āh1k,j for all h1k ≤ Hn, uhσ,l ≤

λ1,hσ

λD,hσ
≤ uhσ,l, hσ ≤ Hn

}
,

(13)

where Fn ⊂ ∪j,lFn,jl and Fn ↑ F as n → ∞, and it is understood that the sequences
{Hn}, {Mn}, {σn}, {ah1,j}, {āh1,j}, {uhσ ,l}, {uhσ ,l} are chosen appropriately and can be spe-
cific to sieves corresponding to PDPM-VAR, lgPDPM-VAR or rgPDPM-VAR. The following
results establish entropy bounds that are vital to establishing strong consistency.

Theorem 4: The entropy bound for sieves (11) satisfies N(ε,Fn,jl, || · ||1) .
(
MD

ε−C1

)Hn
×∏

hσ≤Hn
{2Duhσ,l

ε2

}D(D−1)/2 ×
∏
h1≤Hn

{(
C∗h1,j ,hσ,l

āh1,j

σnε
+ 1

)D2

−
(
C∗h1,j ,hσ,l

ah1,j

σnε
− 1

)D2}K
,

where constants C1 > 0 and C∗h1,j ,hσ,l
> 0 depend on (D,T,K).
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Corollary 1: The entropy for sieves in (12) and (13) corresponding to rgPDPM-VAR and

lgPDPM-VAR respectively, satisfy N(ε,Fn,jl, ||·||1) . K∗
(
MD

ε−C1

)Hn
×
∏
hσ≤Hn

{2Duhσ,l
ε2

}D(D−1)/2
,

where K∗ is understood to vary depending on the specific variant of the PDPM model used.

Having established the entropy bounds, the next step is to propose sensible base mea-
sures that satisfy the tail conditions and summability constraints in Theorem 2. These base
measures include some commonly used choices as discussed in the sequel.

(B1) The base measures corresponding to PS in (5), (7) and (9) satisfy P ∗2 (λ1(Σ−1
hσ

) > x∗) .

exp(−c1(x∗)c2), P ∗2 (λD(Σ−1
hσ

) < 1/x∗) . (x∗)−c3 , P ∗2
( λ1(Σ−1

hσ
)

λD(Σ−1
hσ

)
> x∗

)
. (x∗)−κ, for some pos-

itive constants c1, c2, c3, κ, and corresponding to the cluster hσ.
(B2) The base measure corresponding to PΘ specifies independence across lags, and satisfies
the following tail conditions: (i) under PDPM-VAR, P ∗1 (||vec(Ak,h1)|| > x∗) . (x∗)−2(r+1)

for cluster h1; (ii) under lgPDPM-VAR, P ∗1k(||vec(Ak,h1k
)|| > x∗) . (x∗)−2(r+1) for clus-

ter h1k; and (iii) under rgPDPM-VAR, P ∗1d′(||vec{A′1,d′•,h1,d′
, . . . , A′K,d′•,h1,d′

}|| > x∗) .

(x∗)−2(r∗+1) corresponding to cluster h1d′ , for some constants r, r∗ > 0, and d′ = 1, . . . , D.

The above conditions on the base measures are very reasonable and hold for commonly
used distributions on autocovariance matrices (such as Gaussian and Laplace), as well as
inverse-Wishart distribution corresponding to P ∗2 . These tail conditions are also satis-
fied by certain low rank decompositions for the covariance, such as a factor model form
(Σ = ΛΛT + Ω where the D × B matrix Λ contains B << D factor loadings), which
is particularly suitable for scaling up the approach to higher dimensions. Such low rank
representations are routinely used for dimension reduction in the factor model literature
(Ghosh and Dunson, 2009). Denote Ad′,h1,d′

= vec{A′1,d′•,h1,d′
, . . . , A′K,d′•,h1,d′

} and let DE

denote a double exponential prior. The following Lemmas formalize the above discussions
on the base measures.

Lemma 2: Condition (B2) holds when P ∗1 (vec(Ak,h1)) is specified as ND2(vec(Ak);µ,Λ)
with Λ ∼ IW (Λ0, νλ) corresponding to PDPM-VAR, and for a similar choice of P ∗1k(vec(Ak,h1k

))

under lgPDPM-VAR. It is also satisfied when P ∗∗1d′(Ad′,h1,d′
)=
∏K
k=1ND(Ak,d′•,h1,d′

;µ,Λd′),Λd′ ∼
IW (Λ0d′ , νλ,d′), under rgPDPM-VAR. Further, (B2) also holds if the above base measures
are changed to a product of independent DE(λ) priors with suitably large λ.

Lemma 3: Condition (B1) holds when for cluster hσ, P ∗2 (Σhσ) = IW (Σhσ ; Σ0, νσ), as well
as under the low rank representation Σhσ = ΓhσΓThσ + Ωhσ where Γhσ is D ×B and Ωhσ =

diag(σ2
1,hσ

, . . . , σ2
D,hσ

), and P ∗2 (Σhσ)=
{∏D

d′=1

∏B
m′=1N(γd′m′,hσ ; 0, 1)

}{∏D
j=1Ga(σ−2

j,hσ
; aσ, bσ)

}
.

The proof of Lemma 2 is provided in the Appendix, while that of Lemma 3 follows
directly from Corollaries 1 and 2 in Canale and De Blasi (2017). We note that B << D in
Lemma 3 ensures a reduced rank structure on the residual covariance matrix.

One can now use the entropy bounds derived in Theorem 4 and Corollary 1 along with
tail conditions in (B1)-(B2) to establish our strong consistency under a broad class of base
measures, by applying Theorem 2. Our strong consistency result is stated below.

Theorem 5: Suppose Theorem 3 holds, and (B1)-(B2) are satisfied. Then for suitably large
constants r, r∗, κ, the posterior distributions corresponding to the PDPM-VAR, lgPDPM-
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VAR and rgPDPM-VAR are strongly consistent at f0 under suitable choice of sequences
{Hn}, {Mn}, {σn}{ah1,j}, {āh1,j}, {uhσ ,j}, {uhσ ,j} in the sieves (11), (12), and (13).

Remark 3: In mathematical terms, strong posterior consistency can be written as Π({f :
d(f, f0) > εf} | X(1), . . . , X(n))→ 0 as n→∞ in Fn0 probability for any εf > 0.

Remark 4: While Theorem 5 is stated in terms of general class of base measures that
satisfy (B1)-(B2), we rely on commonly used base measures outlined in Lemmas 2-3 for
implementing the proposed approach. We elaborate these choices in the next section.

4. Posterior Computation

We outline the posterior computation steps to fit all proposed VAR models that is the
main focus of this work. Our approach alternates between sampling parameters related
to the autocovariance matrices and the residual covariance matrix. For all models, we
update the autocovariance parameters row-wise for one outcome at a time. For the PDPM-
VAR, rgPDPM-VAR, and lgPDPM-VAR we use a hierarchical representation of Laplace
base measures (Park and Casella, 2008). Under these base measures, these autocovariance
elements follow independent DE(λ) distributions (Park and Casella, 2008). Explicit details
are provided in Appendix C.

In order to scale up the implementation of the proposed method to high dimensional
applications, we use a reduced rank factor model representation for the residual covariance
matrix in our implementation, which provides a desired balance between computational
scalability and theoretical flexibility. In particular, such a low rank structure on the resid-
ual covariance does not adversely impact the accuracy of parameter estimates compared to
an unstructured covariance matrix, in our experience involving extensive numerical experi-
ments with true unstructured residual covariances. Moreover, the results for estimation of
the autocovariance terms are not particularly sensitive to the choice of rank. Further, it is
considerably more flexible and results in greater accuracy compared to a diagonal residual
covariance that is routinely used in VAR literature (Kook et al., 2021) but may be restric-
tive in practical applications. In particular, we specify Σi = ΓiΓ

′
i+Ψi, where Γi is a D×B

factor loadings matrix with B(<< D) factors, and Ψi is diag{σ2
i,1, . . . , σ

2
i,D}.To facilitate

posterior computation, we use the following parameter expanded version of the model,

xi,t =

min{t−1,K}∑
k=1

Aikxi,t−k + Γ∗iη
∗
i,t + ε∗i,t, η

∗
i,t ∼ N(0,Ξi), ε

∗
i,t ∼ N(0,Ψi), (14)

where Ξi = diag{ ξi,1, . . . , ξi,B}. Under the low rank representation, we impose DP mix-
ture priors on (Γ∗i , Ξi, Ψi) leading to a mixture prior on Σi. This corresponds to the prior
Σi ∼

∑∞
hσ=1 πσ,hσδ(Γ∗hσ ,Ξhσ ,Ψhσ )

, where (Γ∗hσ ,Ξhσ ,Ψhσ) ∼ P ∗2 ≡ PΓ∗ × PΞ × PΨ. Here

PΓ∗ is a product of independent standard normal distributions, PΞ is a product of indepen-
dent Gamma(1/2, 1/2) distributions yielding a half-Cauchy prior on the diagonal elements
of Γ and a Cauchy prior on the lower-off-diagonal elements as in Ghosh and Dunson (2009),
and the inverse of the diagonal elements of Ψ have independent Gamma(ασ, βσ) priors.

Computational Cost of the PDPM-VAR Approaches: The proposed approaches are quite
efficient as long as the number of nodes is not overly large. The computation is driven by
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the need to sample the rows of Ai and the terms in the low rank representation for Σi

as per equation (14). We briefly discuss the computational costs below. In practice, the
computational costs are quite manageable, as demonstrated by the HCP analysis in the
sequel.

First, for the PDPM-VAR and rgPDPM-VAR, the rows of Ai are updated one at a
time, separately for each cluster. This corresponds to performing D draws, each from a
DK-variate multivariate normal distribution, thus updating Ai requires D O(D3K3) steps
for the PDPM-VAR and rgPDPM-VAR. We note that this can also be parallelized over
the outcomes as a possible direction for future work. The draw for the lgPDPM-VAR is
more complicated. Although we still sample one row of Ai at a time, we now must sample
across all clusters, since different subjects can belong to different collections of clusters for a
given row due to the lag-specific clustering structure. This means that we must draw from
a HallD dimensional multivariate normal distribution, where Hall is the total number of
clusters across all lags. Therefore, this update requires D O(H3

allD
3) computational steps.

We note that if one does not use the low rank decomposition in (14) but instead imposes a
diagonal residual covariance structure, then the computational complexity remains similar.

In the scenario that an unstructured residual covariance structure is imposed but without
a low rank decomposition, the computational complexity rapidly increases to O(HD6K3)
due to the need to sample from a KD2-variate normal distribution for each cluster. This
may result in prohibitive computational costs for higher dimensions. Therefore, sampling
from the low rank representation in model (14) is desirable, especially given that sampling
the latent factors and their loading is computationally straightforward. In particular, each
subject has a B × Ti dimensional matrix of latent factors to sample, where B is generally
small and the time points are independent. Thus this simplifies to sampling a set of Ti
B-dimensional vectors, all of which have the same posterior covariance. Since Ti is large
relative to B, this means that the draw for the ηi terms is driven by the cost to generate
standard normal draws (each requiring O(1) operations), and subsequently multiply them
with the lower triangular matrix from the Cholesky factorization of the posterior covariance
of size B×B. Given that this must only be calculated once per cluster, the cost per subject
is O(DBT ). Thus the overall cost across all samples is O(HB3) +O(nDBT ).

5. Simulation Studies

We compared the performance under the proposed approaches to a state-of-the-art single-
subject VAR approach, as well as an ad-hoc clustering extension of the single subject VAR
model that is able to borrow information across samples. We generated data for n = 100,
200, D = 100, Ti = 250, and different levels of sparsity within the autocovariance matrices
were considered (75% and 90%). For each data generation setting we generate 25 simula-
tion replicates, and for all settings the true VAR model involved K = 2 lags. We consider
four settings for generating the subject-level autocovariance matrices that differ with re-
spect to the clustering structure. Settings 1-3 represent the PDPM-VAR, lgPDPM-VAR
and rgPDPM-VAR scenarios respectively, while Setting 4 represents a more heterogeneous
setting that is obtained via introducing additional random noise to the autocovariance el-
ements generated under Setting 3. For Setting 1, we use 3 autocovariance clusters, for
Setting 2 we use 3 clusters for lag 1 and 2 clusters for lag 2, and for Settings 3-4 we vary
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the true number of clusters randomly (between 2 − 5) across rows of the autocovariance
matrix, and the elements of these matrices are generated randomly in order to ensure a
stable time series. In Setting 3, subjects within a cluster share the exact same elements for
the corresponding rows of the autocovariance matrix, whereas in Setting 4 the subject-level
rows of the autocovariance matrix within a cluster are random deviations from a shared
mean row. Each cluster’s residual covariance matrix was generated from an Inverse Wishart
distribution with D degrees of freedom and diagonal scale matrix with elements equal to
D/2. Subject level time courses were obtained by starting with random values for the
multivariate observation at the first time point, and subsequently generating future obser-
vations from the assumed true VAR model. For a subject, an additional 5 time scans were
generated after the initial Ti observations to evaluate forecasting accuracy.

5.1 Approaches and Performance Metrics

We compare the proposed approaches to the single subject Bayesian VAR (SS-VAR) model
developed in Ghosh et al. (2018), which separately models the time courses for each subject.
We also consider a two-stage clustering extension of this method, where we first estimated
subject specific autocovariance and residual covariances under the single VAR approach by
Ghosh et al. (2018) and then applied the k–means clustering separately to the vectorized
autocovariance and residual covariance matrix estimates. We choose the number of clusters
to maximize the silhouette score (Rousseeuw, 1987) and we then allocate each sample to one
of the k clusters that is based on both the autocovariance terms and the residual covariance
estimates from the initial SS-VAR fit. We subsequently concatenate the time courses across
all subjects within the same cluster in order to borrow information within cluster, and
finally re-fit the SS-VAR model to this concatenated data separately for each cluster. Since
the true clustering structure was assumed to be unknown when fitting the model, it was not
possible to compare the performance with existing multi-subject VAR modeling methods
that assume known groupings (Chiang et al., 2017; Kook et al., 2021).

We evaluate performance in terms of (1) autocovariance estimation accuracy, (2) clus-
tering accuracy, (3) feature selection for identifying structural zeros in the autocovariance
matrices, and (4) forecasting accuracy. Following Ghosh et al. (2018), we measure estima-
tion accuracy using the relative L2 error of the estimates to the true estimates. Clustering
accuracy is measured using the adjusted Rand index (Rand, 1971), which measures agree-
ment between the assigned and true cluster labels, adjusted for chance agreement. Feature
selection performance is evaluated via area under the receiver operating characteristic (RoC)
curve and precision recall curve (PRC). To calculate both curves we considered a sequence of
significance thresholds, and for each threshold, we examined the corresponding credible in-
terval to infer the significance. The corresponding sequence of sensitivity versus 1-specificity
values were plotted over varying thresholds in order to obtain the ROC curve, while the PRC
was obtained by plotting the positive predictive value (1− FDR) against sensitivity (FDR
denotes the false discovery rate). Finally, forecasting accuracy is measured via the relative
L2 error of the predicted time courses for time scans Ti + 1, . . . , Ti + 5. The MCMC chains
converged for all methods as assessed using Dickey-Fuller tests of stationarity, although the
results are not displayed due to space constraints.
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5.2 Simulation Results

Simulation results are presented in Figures 2–3. Due to space constraints, we provide the
simulation results for the most challenging case (D = 100, T = 250) at the 75% sparsity
level here, but the results under the 90% sparsity case were quite similar. Several general
patterns are clear from the results. First, the clustering performance for the autocovariance
depends heavily on the true clustering structure (Figure 2, Panel A), with the PDPM-VAR,
lgPDPM-VAR, and rgPDPM-VAR generally outperforming the other approaches when the
data is generated from Settings 1-3 respectively. However, the rgPDPM-VAR often has
close to optimal clustering performance when the PDPM-VAR is the true model and it also
performs the best for the heterogeneous Setting 4, which reflects the generalizability of this
variant. Critically, when there are differences in clustering across the different outcomes
corresponding to more heterogeneous scenarios (Settings 3-4), only the rgPDPM-VAR is
able to achieve a good clustering score. Finally, across all settings, the SS-VAR with
clustering has the worst performance, demonstrating that the ad hoc two-stage analysis
procedure is not able to accurately pool information across subjects.

The areas under the ROC and PR curves (Figure 2, Panels C and D) illustrate a consis-
tently superior feature selection performance under the three proposed variants compared
to the single subject VAR model with and without clustering. As expected, the PDPM-
VAR, lgPDPM-VAR and rgPDPM-VAR approaches have higher area under the ROC and
PR curves when the data is generated from Settings 1-3 respectively. In addition, the
rgPDPM-VAR often has comparable area under the curve with PDPM-VAR for n = 200
under Setting 1 and the best performance under the more heterogeneous Setting 4. These
results imply the ability of rgPDPM-VAR to accurately identify the sparsity structure of
the autocovariance with a low risk of false discoveries for data with unknown clustering.

When estimating the residual covariance matrices (Figure 3, Panel A), all three proposed
approaches are able to heavily outperform the SS-VAR model. The performance under the
three proposed approaches is generally comparable, with the rgPDPM-VAR outperforming
the others in the more heterogeneous Settings 3 and 4. In addition, the SS-VAR approach
with initial clustering has a higher relative error compared to the rgPDPM-VAR for the
vast majority of cases, although it occassionally has a slightly improved performance in
Setting 3. We conjecture that this is due to the assumed full rank structure for the residual
covariance that is modeled via an inverse-Wishart distribution under the SS-VAR, which
aligns with the true data generation scenario, in contrast to the assumed low-rank structure
on the PDPM-VAR. Unfortunately, the SS-VAR approach with clustering has extremely
poor performance in terms of autocovariance estimation (Figure 3 B), while the PDPM-
VAR, lgPDPM-VAR, and rgPDPM-VAR approaches typically have the lowest errors when
the data is generated from Settings 1-3 respectively. The rgPDPM-VAR method also has
the best autocovariance estimation performance under the more heterogeneous Setting 4.

Figure 2 Panel B displays the forecasting error for each of the autocovariance clustering
setups, averaged over the sparsity level and the number of time points per subject. With
the exception of Setting 2 where lgPDPM-VAR performs best, the rgPDPM-VAR approach
has the best or close to optimal forecasting performance for other settings. Moreover, in
the more heterogeneous Settings 3-4, the SS-VAR method with initial clustering has better
forecasting accuracy compared to the PDPM-VAR and lgPDPM-VAR approaches, although
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Figure 2: Simulation results for D = 100, T = 250 case with sparsity level 0.75. Panel A displays the
adjusted Rand index for clustering the autocovariance. Panel B displays the forecasting error.
Panels C and D display the area under the PR and RoC curves for identifying autocovariance
non-zero elements.

Figure 3: Relative L1 error for estimating the residual covariance (Panel A) and the subject-specific au-
tocovariance matrices (Panel B) for D = 100, T = 250 case with sparsity level 0.75.
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it can not outperform the rgPDPM-VAR method. The relative forecasting performance
levels off for greater than three time steps for all approaches, as expected.

MCMC Diagnostics: The MCMC was implemented via a Gibbs sampler and exhibited good
mixing as measured by the effective sample size (Appendix Section 12). Moreover, we varied
the dimension of the low rank representation of the covariance and found that the results
were not particularly sensitive to this choice, however these results are excluded due to
space constraints.

Synopsis of findings: Overall, the rgPDPM-VAR provides a desirable balance between model
parsimony and accurate estimation and inference for various degrees of heterogeneity across
samples. The advantages under the rgPDPM-VAR are most pronounced under the hetero-
geneous Settings 3 and 4, and it often has close to optimal performance in Setting 1 for
larger n. This illustrates the advantages of pooling information across subjects, while ac-
commodating varying levels of heterogeneity at the level of the rows of the autocovariance
matrix. While the SS-VAR approach with ad-hoc clustering is also able to pool informa-
tion, it is highly sensitive to the clustering accuracy in the first step, and it can not capture
clustering uncertainty, resulting in inferior performance.

6. Analysis of Human Connectome Project Data

6.1 Analysis Description

We use the rgPDPM-VAR approach to investigate effective connectivity differences between
individuals with high and low fluid intelligence (FI) using a subset of resting-state fMRI data
from the Human Connectome Project. Preprocessing details for these data can be found
in (Smith et al., 2013). We adopt the 360-region Glasser atlas for parcellation as in Akiki
and Abdallah (2019), where each node has a corresponding time course with T = 1200.
We centered and scaled the subject level time courses for each node before analysis, and
verified that each node’s time course was stationary using Dickey-Fuller tests. We grouped
the brain nodes into one of 6 well known functional brain networks (Akiki and Abdallah,
2019). These networks corresponded to the central executive (67 nodes), default mode (96
nodes), dorsal salience (23 nodes), somatomotor (55 nodes), ventral salience (49 nodes), and
the visual network (70 nodes). We fit a separate VAR model with lag-1 on each of these
networks, which corresponds to six separate VAR analyses. We selected the lag 1 model
following previous literature on VAR models applied to fMRI data (Kook et al., 2021),
and based on the lower temporal resolution of the fMRI data. We restrict our analysis to
a subset of samples with the highest 10% and lowest 10% fluid intelligence scores, with
n = 306 samples. We note that the grouping information was only used for post-model
fitting comparisons in effective connectivity across groups. We used 1500 burn-in and 3500
MCMC iterations.

To the best of our knowledge, our approach for analyzing fluid intelligence-related ef-
fective connectivity differences using heterogeneous multi-subject data is one of the first
such attempts. Most existing approaches involve a single-subject VAR analysis, and subse-
quently these estimates are combined to estimate between-subject variations and examine
group differences (Deshpande et al., 2009). There are a handful of approaches for esti-
mating effective connectivity by pooling information across multiple subjects, however they
assume known groups (Chiang et al., 2017) with limited heterogeneity within groups, and
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have similar limitations as outlined in the Introduction. Our analysis using the rgPDPM-
VAR model is able to compute effective connectivity for multiple samples without any given
group labels and can account for heterogeneity in an unsupervised manner. We compare
the performance with a SS-VAR approach that analyses each sample separately, and subse-
quently performs permutation tests to assess significant differences (10,000 permutations).
For both methods, false discovery rate control was applied to obtained significant elements.

In addition to investigating effective connectivity differences, we are interested in the
clustering reliability and biological reproducibility of our findings. We report clustering
reliability over two distinct MCMC runs, that are designed to evaluate the reliability of the
clusters discovered by rgPDPM-VAR. As discussed in the introduction, for heterogeneous
multivariate measurements, one can expect a subset of nodes/rows to drive the clustering
whereas for other nodes the clustering patterns likely hold little information. We calculate
the ARI for the node-level clustering across the two MCMC runs to investigate this aspect
of clustering reliability. To assess biological reproducibility, we conduct our VAR analysis
for two scans collected from each individual using different phase-encodings (LR1 and RL1),
with the expectation that the parameter estimates should be similar corresponding to the
two scans. We examine the correlation of the estimated autocovariance elements across
the two runs (LR1 and RL1) under both the SS-VAR and the rgPDPM-VAR, with high
correlation providing evidence that the findings are reproducible.

6.2 Results

Figure 4 displays heatmaps of the significant autocovariance differences between the low and
high FI groups under the rgPDPM-VAR, after appropriate FDR control. Several patterns
are clear from Figure 4. First, the rgPDPM-VAR is able to identify a large number of sig-
nificant differences between the two groups after FDR control. Second, the rgPDPM-VAR
finds a large number of strong differences along the diagonal. These correspond to AR(1)
coefficients, and it seems sensible that if there are differences between groups at Lag 1
that they would be strongly related to each nodes’ own time course. Thirdly, the strongest
differences were observed corresponding to the nodes in the Dorsal Salience network, as
illustrated in Table 1. These nodes were identified by looking at columns of the autocovari-
ance matrix with a large proportion of significant elements, which accounts for the varying
sizes for the 6 networks. These findings are consistent with previous evidence, which have
suggested the dorsal salience and attention networks to be highly related to fluid intelli-
gence (Santarnecchi et al., 2017). We note that in contrast, only one significantly different
effective connectivity difference between the high and low fluid intelligence groups was re-
ported under the SS-VAR approach. Such results are clearly biologically implausible. Our
overall findings point to the advantages of performing a multi-subject analysis accounting
for heterogeneity, over a single subject analysis.

To examine biological reproducibility, the right–hand side of Figure 5 displays his-
tograms of the correlations of the rows of the autocovariance matrices across the two analy-
ses corresponding to the LR1 and RL1 fMRI scans, under the SS-VAR and rgPDPM-VAR.
The estimates under the rgPDPM-VAR exhibit a very high degree of correlation, almost
entirely > 0.8. On the other hand, the correlation for the majority of the elements is
less than 0.5 under SS-VAR, with only 10 elements registering a correlation greater than
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Figure 4: Elements of the autocovariance matrices exhibiting significant differences between
the low and high FI groups. The color of the element represents the strength of
the mean difference between groups (high FI − low FI), with white elements
corresponding to non-significant elements.

Clustering Reliability Biological Reproducibility

Figure 5: Adjusted Rand index across two runs of the analysis of the HCP LR1 data for
assessing clustering reliability (left). Correlation between the rows of Ai across
two different HCP data sets (right). The first run of the analysis was on the LR1
phase-encoding data and the second on RL1.
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Node Network Prop. FI Diff.

L PF Dorsal Salience 0.43
R 7Am Dorsal Salience 0.35
L IFSa Dorsal Salience 0.35
L PHT Dorsal Salience 0.35
R PHT Dorsal Salience 0.30
R PF Dorsal Salience 0.30
L 6a Dorsal Salience 0.30
L PFt Dorsal Salience 0.30
R PGs Central Executive 0.28
R IFSa Dorsal Salience 0.26

Node Network Prop. FI Diff.

R PFt Dorsal Salience 0.26
L PEF Dorsal Salience 0.26
L TE2p Dorsal Salience 0.26
R V3A Visual 0.23
R PSL Ventral Salience 0.22
R 7PL Dorsal Salience 0.22
R 6r Dorsal Salience 0.22
L 7Am Dorsal Salience 0.22
L 6r Dorsal Salience 0.22
L V3A Visual 0.21

Table 1: Table of the 20 nodes with large proportion of significant effects on other nodes
within their network. Note that the proportion is used instead of the raw count
to account for the different network sizes.

0.8, which implied considerably lower reproducibility overall compared to the multi-subject
analysis. Moreover a non-negligible number of nodes had weak reproducibility with cor-
relations less than 0.25 under SS-VAR. In addition, Figure 5 (left) displays a histogram
of the ARI for clustering each node across two separate runs of MCMC on the LR1 data,
which illustrates clustering reliability. In general, most nodes exhibited 9–10 clusters. As
hypothesized in the Introduction, we see a pattern in which a subset of nodes exhibited very
high clustering reliability across runs (> 0.7), which supports our hypothesis that only some
nodes contribute meaningfully towards clustering of samples. On the other hand, most of
the nodes exhibited relatively moderate clustering reliability (ARI ≈ 0.5), which indicates
much higher clustering than chance, but not fully consistent clustering across all subjects
corresponding to these nodes. We note that given the strong biological reproducibility re-
sults, the moderate or low clustering reliability for a subset of nodes in our analysis should
be attributed to the fact that these nodes are irrelevant to clustering. This provides further
justification for using the rgPDPM-VAR, which is designed to accommodate exactly this
kind of clustering structure. Finally, the computation for the analysis is very efficient. On
average, a single MCMC iteration required 1.8 (centeral executive), 3.8 (default mode), 0.3
(dorsal salience), 1.26 (somatomotor), 1.01 (ventral salience), and 1.9 (visual) seconds on
an 8 core 2021 M1 Macbook Air.

7. Forecasting of Air Quality Data

While the fMRI study described above focuses on connectivity between brain regions, fMRI
studies are not generally concerned with forecasting accuracy. To demonstrate the fore-
casting accuracy of our method, we next apply the proposed methods to an open source
air quality data set from the EPA (https://www.epa.gov/outdoor-air-quality-data).
The data consist of daily measurements from air quality monitors spread across the United
States. For our purposes, we consider the air quality index time series for nitrogen dioxide
(NO2), ozone (O3), and carbon monoxide (CO). We used data from sensors having 100
days of consecutive data in 2000 from May 20th to August 27th. A simple kernel regression
density plot for the data for each pollutant produced non-Gaussian curves, which motivates
the use of non-parametric Bayesian analysis over parametric forecasting models. While our
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method does not require the data from each sensor to be overlapping, this restriction helps
ensure that the forecasting results are due only to the method and not so some other data-
dependent difference. Additionally, the relatively short time span helps reduce concerns
about non-stationarity. For each time course, the time series were differenced (5 steps), de-
meaned, and outliers were replaced using the tsoutliers function in R (López-de Lacalle,
2024). The time courses were then checked for stationarity using a Dickey-Fuller test, and
sensors for which the time courses were not stationary were removed from the data. After
this procedure, we had 41 sensors with complete data.

We fit the rgPDPM-VAR model to this data using 1500 burn-in samples and 3500
MCMC samples. The concentration parameter was set to 5 to encourage more clusters
to spawn. The resulting forecasting accuracy was measured in terms of the relative error
and was 0.549 at step 1, 0.877 at step 2, and 0.929 at step 3. Thus the model shows
considerable forecasting performance for 1 step forecasting, and naturally this performance
degrades as the number of forecasting steps increases. As a comparison, we also used the
SS-VAR approach of Ghosh et al. (2018) to analyse each sensor separately. The SS-VAR
model illustrates decent performance, but is considerably worse that the rgPDPM-VAR,
with a relative forecasting error of 0.598 at step 1, 0.897 at step 2, and 0.959 at step 3. This
suggests that even for a small number of nodes, pooling information across sensors/subjects
under the rgPDPM-VAR can still provide forecasting benefits. We note that other choices
could have been made for the number of differencing steps. However, the overall relative
performance between the two methods stays similar, with the proposed rgPDPM-VAR
consistently performing better over different settings, as reported below.

Differencing Level 1 Step Forecasting 2 Step Forecasting 3 Step Forecasting
rgPDPM-VAR SS-VAR rgPDPM-VAR SS-VAR rgPDPM-VAR SS-VAR

1 1.202 (0.043) 1.204 (0.120) 1.022 (0.089) 1.054 (0.146) 1.002 (0.037) 1.009 (0.053)
2 0.718 (0.064) 0.731 (0.118) 0.995 (0.131) 1.034 (0.140) 1.022 (0.021) 1.022 (0.041)
3 0.644 (0.143) 0.696 (0.254) 0.913 (0.376) 0.934 (0.411) 1.057 (0.129) 1.067 (0.178)
4 0.616 (0.133) 0.703 (0.226) 0.889 (0.212) 0.932 (0.256) 0.962 (0.227) 1.000 (0.498)
5 0.549 (0.118) 0.598 (0.167) 0.877 (0.247) 0.897 (0.237) 0.929 (0.127) 0.959 (0.150)

Table 2: Forecasting results under the rgPDPM-VAR and SS-VAR models for the air quality
data with different levels of differencing. The values in the cells represent the
relative L2 error between the model-based predictions and the true values, and
the standard deviation is given in parenthesis.

8. Discussion

In this work, we developed a non-parametric Bayesian framework for i.i.d. multivariate
data as well as multivariate time-series data, which provides a fundamentally novel way
to borrow information across samples, via a class of novel product of DP mixture priors.
The proposed approach employs multi-scale clustering to flexibly borrow information across
heterogeneous samples that bypasses restrictive parametric assumptions and the require-
ment of replicated samples. The method is implemented via an efficient MCMC sampling
scheme and computational complexity calculations are presented. The distinct numerical
advantages over existing methods are illustrated via extensive numerical examples. The
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proposed class of methods are shown to have desirable posterior consistency properties that
are derived based on novel sieve constructions and careful entropy calculations. Unlike
single-subject parametric VAR modeling (Ghosh et al., 2018) that relies on an increasing T
to establish posterior consistency, the proposed Bayesian non-parametric analysis focuses
on posterior consistency corresponding to density estimation as n→∞. While it would be
interesting to explore posterior consistency under our set-up as both T →∞, n→∞, there
are potential theoretical challenges to be encountered. For example, increasing the number
of timepoints T directly has an impact on the expression of the true density f0, as well as
on the form of fP (X). The latter has a direct impact on the sieve entropy (Theorem 4)
that is intricately tied to the sufficient conditions for posterior consistency in Theorem 2.
We plan to explore such aspects in future work.

While this work introduced several variants of the PDPM-VAR model, there are numer-
ous potential extensions that lie within our class of models. In particular, future directions
might investigate possible generalizations intended to induce sparsity in the parameter es-
timates. For example, a spike and slab prior could be used to model the autocovariance
elements, with the slab component modeled using a DP mixtures. Additionally, the models
could be generalized to accommodate even higher levels of heterogeneity, such as cluster-
ing individual autocovariance elements separately. However, such extensions may involve a
massive computational burden. The proposed approaches, particularly the rgPDPM-VAR,
seem to strike a desirable balance between computational complexity, clustering flexibility
and model parsimony, with theoretical guarantees and appealing practical performance. Fi-
nally, we note that the proposed product of DP priors provides a viable improvement over
traditional DP mixture models and it should have wide applicability to other types of set-
tings that go beyond the VAR framework, which is of immediate interest in this article. We
expect to pursue these directions in future research. For example, the VAR model structure
could be relaxed to a dynamic linear model framework that can cater to non-stationary
time-series, using a set of lower dimensional latent time courses to model the observed data
(Sevestre and Trognon, 1996). Such an approach would potentially enrich the kinds of time
courses that could be described by incorporating time-varying relationships.
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Appendix

Appendix A. Proofs of Results

Proof of Lemma 1: An outline for the proof of Lemma 1 is provided, which follows similar
steps as the proof of Lemma 1 in Canale and De Blasi (2017). One may write KL(f0, fP ) =
KL(f0, fPε) + KL(fPε , fP ) and then show that each of the terms in the right hand side
can be made exceedingly small with positive probability, for some compactly supported Pε.
The compact support for Pε is taken as [−µ∗, µ∗]D × {Σ ∈ S : σ2 < λl(Σ) < σ̄2, 1 ≤ l ≤ p},
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for some constants µ∗ > 0 and 0 < σ < σ̄, and eigenvalues denoted as λl, l = 1, . . . , p, the
second term can also be shown to be infinitesimally small with positive probability.

Proof of Theorem 1: The proof relies on two parts, i.e calculating the entropy bounds
and calculating the prior probability of the constructed sieves, and then using them to show
the summability condition in Theorem 2 holds. We will illustrate the proof for the case of
Mµ = 1, and extensions to higher values of Mµ are straightforward.

First, we will construct sieves of the following form -

Fn =

{
fp : P =

∑
h1≥1

∑
hσ≥1

πh1πσ,hσδµh1
,Σhσ

:
∑

h1>Hn

πh1 < ε,
∑

hσ>Hn

πσ,hσ < ε, and for

hσ ≤ Hn, σ
2
n ≤ λD, λ1 ≤ σ2

n(1 + ε/
√
D)Mn , 1 <

λ1(Σhσ)

λD(Σhσ)
≤ nHn

}
, (15)

Fn,j,l =

{
fp ∈ Fn : for h1, hσ ≤ Hn, n

H2
n(jh1 − 1) = ah1,j ≤ ||µh1

|| ≤ āh1,j = nH
2
njh1 ,

k ∈ {1, . . . ,K}, nlhσ−1 <
λ1(Σhσ)

λD(Σhσ)
≤ nlhσ

}
, (16)

where Mn = σ−2c2 = n and Hn = bCnε2/ log(n)c for some positive constant C, and clearly
Fn ⊂ ∪j,lFn,j,l. Using similar techniques to those used in Lemma 6 in the Appendix, it is
possible to show the tail condition (2A) holds in Theorem 2, i.e. Π(Fcn) ≤ e−b

∗n. Further,
using similar steps as in the proof of Lemma 4 in the Appendix, the distance between the

two densities fP1 and fP2 can be expressed as ||fP1 − fP2 ||1 ≤ ε2 +
∑

h1,hσ<Hn
|π(1)
h1
π

(1)
σ,hσ
−

π
(2)
h1
π
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| + ε +
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(1)
h1
π

(1)
σ,hσ

∥∥∥∥φΣ
(1)
hσ

(
x − µ

(1)
h1

)
− φ

Σ
(2)
hσ

(
xt − µ
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1

, where || · ||1 de-

notes the L1 norm. Using similar steps as in the proof of Lemma 2 in Canale and De Blasi

(2017), it is possible to show that
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}
, where O(j′) rep-

resents the matrix of orthogonal vectors in the spectral decomposition of Σ(j′), j′ = 1, 2.

Finally, we need to establish an upper bound for the term
∑

h1,hσ<Hn
|π(1)
h1
π

(1)
σ,hσ
−π(2)

h1
π

(2)
σ,hσ
|,

which is given by Lemma 5 as
∑

h1,hσ<Hn

∣∣∣∣π̃(1)
h1
π̃

(1)
σ,hσ
−π(2)

h1
π

(2)
σ,hσ

∣∣∣∣+ ∣∣∣∣1− (1− ε)2

∣∣∣∣, where π̃ =

πh
(1−

∑
h>H πh) .

For a given fP ∈ Fn,jl with P =
∑
h1≥1

∑
hσ≥1

π
(1)
h1
π

(1)
σ,hσ

δ(
Θ

(1)
h1
,Σ

(1)
hσ

) and Σh = (OhΛhO
T
h )−1

where Λh = diag(λh,1, . . . , λh,D), we will construct another density, fP̂ , where

P̂ =
∑
h1≥1

∑
hσ≥1

π
(1)
h1
π

(1)
σ,hσ

δ(
Θ̂

(1)
h1
,Σ̂

(1)
hσ

) within the ε-net and then compute the cardinality of the

ε-net set to derive an upper bound for the entropy of sieve Fn,jl. To construct such a density,
we will choose:
1. µ̂h1

∈ R̂h1 , h1 = 1, . . . ,H, where R̂h1 is a ε∗-net of Rh1 := {µ ∈ <D : µ
h1,j
≤ ||µ|| ≤

µ̄h1,j}, such that ||µh1
− µ̂h1

|| ≤ σnε, k = 1, . . . ,K, where µ̄, µ, and σn correspond to the
sieve boundaries in (16).
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2. {π̂h1 π̂hσ , h1, hσ ≤ Hn} ∈ ∆̂, where ∆̂ is a ε-net of a H2
n dimensional probability simplex

such that
∑

h1,hσ≤Hn |π̃h1 π̃hσ − π̂h1 π̂hσ | ≤ ε, and π̃h = πh∑
h≤Hn πh

, h ≤ Hn.

3. Ôh ∈ Ôh, where Ôh is a δh-net of the set Oh defined as the set of D × D orthogonal
matrices with respect to the spectral norm || · ||2 with δh = ε2/(2Duh,l) such that ||Oh −
Ôh||2 ≤ Tδh.

4. (mh,1, ...,mhD) ∈ {1, ...,M}D, h = 1, ...,H, such that λ̂h,l = {σ2(1 + ε
√
D)mh,l−1}−1

will satisfy 1 ≤ λ̂h,l/λh,l < (1 + ε/
√
D).

Under this construction, it can be shown that ||fP − fP̂ ||1 < C∗ε for some constant C∗,
by employing some additional algebra and similar arguments as in the proof of Lemma 2 in
Canale and De Blasi (2017) and Theorem 4 in our paper. Further, the cardinality of the ε-net

can be computed by noting that #(∆̂) . ε−H
2
n for j = 1, 2,#(Ôh) . δ

−D(D−1)/2
h ,#(R̂k,h) .

[( āhε∗ + 1)D − (
ah
ε∗ − 1)D]. Using these quantities, one can write the upper bound for the

exponential of the entropy bound as,

(M)DHnε−H
2
n ×

∏
h1≤Hn

{
(
āh1,j

σnε
+ 1)D − (

ah1,j

σnε
− 1)D

} ∏
hσ≤Hn

{2Duhσ ,l
ε2

}D(D−1)/2

≈ exp

{
DHn log(M) +H2

n log(
1

ε
) +

D(D − 1)

2
log(nlhσ ) +

D(D − 1)

2
log(

1

ε
)

}
,

when n and jh1 is large, and using the definitions of a and ā defined in (16), and follow-
ing similar steps as in the proof of Theorem 2 in Canale and De Blasi (2017) to show

that

[( āh1,j

σnε/2
+ 1
)D − ( ah1,j

σnε/2
− 1
)D]

.

[
n

(Hn+ 1
2c2

)D
jD−1
h1

(ε)D

]
. Further, using similar steps as

in (33) in the proof of Theorem 5, we have Π(Fn,jl) ≤
∏

h1≤Hn
P ∗1
(
||µh1

|| > nH
2
n(jh1 −

1)
)∏

hσ≤Hn P
∗
2

(
λ1(Σ)/λD(Σ) > n(lhσ−1)

)
.
∏
h1≤Hn

{(
nH

2
n(jh1 − 1)

)−1(jh1
≥2)2(r+1)}

×
∏
hσ≤Hn(n(lhσ−1))

−1(lhσ
≥1)κ ≈

{
n−2H3

n(r+1)
∏
h1≤Hn

(
jh1 − 1

)−1(jh1
≥2)2(r+1)

}
×
{∏

hσ≤Hn(nκ(lhσ−1))
−1(lhσ

≥1)

}
, for large n.

Finally, using similar steps as in Lemma 7 in the Appendix it is possible to show that
the summability condition in Theorem 2 holds. This proves the strong consistency result
for the product mixture of DP priors for multivariate density estimation.

Proof of Theorem 3: We will use the conditions in Lemmas 2-4 and Theorem 2 in Wu
and Ghosal (2008) to prove our results. Note that f0(X) =

∏T
t=1 f0(xt | X1:(t−1)), where

f0(xt | X1:(t−1)) = f0(x1) for t = 1 by convention. As a shorthand notation, we will denote
f0(x)
fP (x) = (f0/fP )(x) in the following proof. For any P ∈ P, note that the KL divergence can
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be expressed as KL(f0(X), fP (X)) =
∫
f0(X) log

(
(f0/fP )(X)

)
dx1 . . . dxT

=

∫ T∏
t=1

f0

(
xt | X1:(t−1)

)
log
( T∏
t=1

(f0/fP )(xt | X1:(t−1))
)
dx1 . . . dxT

=

∫ T∏
t=1

f0

(
xt | X1:(t−1)

)
×
{ T∑
t=1

log
(
(f0/fP )(xt | X1:(t−1))

)}
dx1 . . . dxT

=

T∑
t=1

[ ∏
t∗>t

∫
f0

(
xt∗ | X1:(t∗−1)

)
dxt∗︸ ︷︷ ︸

=1

×
∫ {∫

f0

(
xt | X1:(t−1)

)
log
(
(f0/fP )(xt | X1:(t−1))

)
dxt

×
∏
t′<t

f0

(
xt′ | X1:(t′−1)

)
dxt′

}]

=

T∑
t=1

{∫
KL

(
f0

(
xt | X1:(t−1)

)
, fP
(
xt | X1:(t−1)

)) t−1∏
t′=1

f0(xt′ | X1:(t′−1))dxt′−1 . . . dx1

}
, (17)

which is a sum of integrals involving Kullback-Leibler divergences of conditional densities.
In the following derivations, we will use the shorthand notation KL(f0,fP )(xt | X1:(t−1))
to denote KL

(
f0

(
xt | X1:(t−1)

)
, fP
(
xt | X1:(t−1)

))
where convenient. We will prove that

KL(f0,fP )(xt | X1:(t−1)) is infinitesmall (< ε) with positive probability pointwise for X1:(t−1)

for t = 1, . . . , T , which will imply that the above sum on the right hand side of the equality
also becomes infinitesmall for fixed T , and hence we will prove our Theorem.

As a first step, we will define Pε on a compact set {Θ : −a ≤ Ak(j, j
′) ≤ a, k =

1, . . . ,K, and ||
∑K

k=1Akxt−k|| < m} × {Σ ∈ S : hm = m−η ≤ λD(Σ) < . . . < λ1(Σ) ≤
M̄, t = 1, . . . , T} = D∗1 × D∗2, such that Pε(D∗1 × D∗2) = 1, for some m, η > 0. We will
construct Pε such that it ensures that the upper bounds for the terms in the right hand side
of the above equality are arbitrarily small with positive prior probability:

KL(f0,fP )

(
xt | X1:(t−1)

)
= KL(f0,fPε )

(
xt | X1:(t−1)

)
+KL(fPε ,fP )

(
xt | X1:(t−1)

)
. (18)

Write r =
∑

k Akxt−k, and t−1
m =

∫
||r||<m

f0

(
r | X1:(t−1)

)
d(r) and define t−1

m fPε
(
xt | X1:(t−1)

)
=

∫
||r||<m

φΣ

(
xt − r | X1:(t−1)

)
f0

(
rt−k | X1:(t−1)

)
d(r) ≥

∫
||r||<m

φhmID
(
xt − r | X1:(t−1)

)
f0

(
r | X1:(t−1)

)
d(r)

×
(λD(Σ)

λ1(Σ)

)(D−1)/2
= tm

∫
||xt−θhm||<m

φhmID
(
θ | X1:(t−1)

)
f0

(
xt − θhm | X1:(t−1)

)
dθ ×

(λD(Σ)

λ1(Σ)

)(D−1)/2

where θ = (xt −
∑K

k=1Akxt−k)/hm, and the inequality in the second last step is derived

using the fact that
(λD(Σ)
λ1(Σ)

)(D−1)/2
φλD(Σ)ID

(
x
)
≤ φΣ

(
x
)
≤
( λ1(Σ)
λD(Σ)

)(D−1)/2
φλ1(Σ)ID

(
x
)
. Us-

ing the above, we have KL(f0,fPε )
≤
( λ1(Σ)
λD(Σ)

)(D−1)/2
KL(f0,fPε,Σ=hmID

), where fPε,Σ=hmID

has the same form as fPε but with Σ set to hmID. Hence, the next step is to show that
KL(f0, fPε,Σ=hmID

)(xt | X1:(t−1)) can be made arbitrarily small with positive prior proba-
bility, point-wise for all X1:(t−1), which will help establish that the first term on the right
hand side of (18) is negligible with positive prior probability.
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Since whenm→∞ and hm → 0, φhmID
(
xt−

∑K
k=1Akxt−k | X1:(t−1)

)
takes non-zero val-

ues only when
∑K

k=1Akxt−k → xt, we obtain φhmID
(
xt−

∑K
k=1Akxt−k | X1:(t−1)

)
f0

(∑K
k=1Akxt−k |

X1:(t−1)

)
→ f0(xt | X1:(t−1)) as m → ∞ and hm → 0, which also implies fPε,Σ=hmID

(xt |
X1:(t−1)) → f0(xt | X1:(t−1)), point-wise for all X1:(t−1). We will combine the above con-

vergence with the fact the log
( f0(xt|X1:(t−1))

fPε,Σ=hmID
(xt|X1:(t−1))

)
is bounded and integrable (as shown

in the sequel) and subsequently apply the DCT to achieve our result. As a next step, note

KL(f0,fPε,Σ=hmID
)(xt | X1:(t−1)) =

∫
||xt≤m||

f0(xt | X1:(t−1)) log
( f0(xt|X1:(t−1))

fPε,Σ=hmID
(xt|X1:(t−1))

)
dxt +∫

||xt>m||
f0(xt | X1:(t−1)) log

( f0(xt|X1:(t−1))

fPε,Σ=hmID
(xt|X1:(t−1))

)
dxt. Using similar arguments as in the

Proof of Theorem 2 in Wu and Ghosal (2008), for ||xt|| > m, we have fPε,Σ=hmID
(xt |

X1:(t−1))

≥ tm
∫

||
∑
k Akxt−k||<m

φhmID
(
xt +mxt/||xt|| | X1:(t−1)

)
f0

(
r | X1:(t−1)

)
d(

K∑
k=1

Akxt−k)

= φhmID
(
xt +mxt/||xt||

)
×
{
tm

∫
||
∑
k Akxt−k||<m

f0

(
r | X1:(t−1)

)
d(

K∑
k=1

Akxt−k)

︸ ︷︷ ︸
=1

}

= φhmID
(
xt +mxt/||xt||

)
= mηφID

(
mηxt +m1+ηxt/||xt||

)
≥ ||xt||ηφID(2||xt||xt).

Similarly for ||xt|| ≤ m, it is possible to show that given a constant δ > 0, fPε,Σ=hmID
(xt |

X1:(t−1)) ≥ c inf
||r−xt||<δ

f0(r | X1:(t−1)), using similar steps as in the proof of Theorem 2 in

Wu and Ghosal (2008). Hence for a given constant R < m, we have

log

(
f0(xt | X1:(t−1))

fPε,Σ=hmID
(xt | X1:(t−1))

)
= ξ(xt;X1:(t−1)) ≤


r∗1 = log

(
f0(xt|X1:(t−1))

c inf
||r−xt||<δ

f0(r|X1:(t−1))

)
, ||xt|| < R,

max

{
log

(
f0(xt|X1:(t−1))

||xt||ηφID (2||xt||xt)

)
, r∗1

}
||xt|| ≥ R.

(19)

Further note that fPε,Σ=hmID
(xt | X1:(t−1)) ≤Mt1 which implies log

( f0(xt|X1:(t−1))

fPε,Σ=hmID
(xt|X1:(t−1))

)
≥

log
(f0(xt|X1:(t−1))

Mφ∗1

)
, where φ∗1 =

∫
||xt||<1

f0(xt | X1:(t−1)) the lower bound is < 0. Combining

this fact with the upper bound in (19), it is possible to write

KL

(
f0(xt | X1:(t−1))

fPε,Σ=hmID
(xt | X1:(t−1))

)
≤
∫
f0(xt | X1:(t−1)) max

{
ξ(xt;X1:(t−1)),

∣∣ log
( f0

Mφ∗1

)∣∣}.
Using assumptions (A2)-(A4) and similar steps as in the proof of Theorem 2 in Wu and
Ghosal (2008), it is possible to show that the RHS is bounded, point-wise for all X1:(t−1).
Hence using DCT, the term KL(f0,fPε,Σ=hmID

)

(
xt | X1:(t−1)

)
can be made arbitrarily small
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with positive prior probability. Therefore, we see that for any ε > 0, there exists mε

such that KL(f0,fPε )

(
xt | X1:(t−1)

)
≤
( λ1(Σ)
λD(Σ)

)(D−1)/2
KL(f0,fPε,Σ=hmεID

)

(
xt | X1:(t−1)

)
≤ ε/2.

Hence the first term in (18) is bounded by ε/2 with positive prior probability.

To show that the second term in (18) is negligible, we will demonstrate that the con-
ditions in Lemma 3 of Wu and Ghosal (2008) are satisfied. Using similar arguments
as in Wu and Ghosal (2008) as well as the proof of Lemma 1 in Canale and De Blasi
(2017), it is possible to show that the weak support of Π∗ contains any compactly sup-
ported P. Since Pε is compactly supported by definition, it belongs to the weak sup-
port of Π∗. Next, condition (A7) of Lemma 3 in Wu and Ghosal (2008) requires log(fPε)
and log inf

A1,...,AK ,Σ
φΣ

(
xt −

∑K
k=1Akxt−k

)
to be f0− integrable. Note that for ||xt|| < m,

log inf
A1,...,AK ,Σ

φΣ

(
xt −

∑K
k=1Akxt−k

)
is bounded, and for ||xt|| > m, inf

A1,...,AK ,Σ
φΣ(xt −∑K

k=1Akxt−k) ≤ M̄−Dφ(exp{−4||xt||2
2m−η }), which is f0 integrable. A similar upper bound

can be applied for bounding | log(fPε)| for ||xt|| > m that implies that | log(fPε)| is f0 inte-
grable, which satisfies condition (A7) in Lemma 3 of Wu and Ghosal (2008). Note that the
above statements hold point-wise for all X1:(t−1).

Condition (A8) of Lemma 3 in Wu and Ghosal (2008) corresponding to the second term
in (18) is clearly satisfied since the multivariate normal kernel φΣ

(
xt −

∑K
k=1Akxt−k

)
is

bounded away from zero for xt in a compact set of <d and (A1, . . . , AK ,Σ) ∈ D∗1 ×D∗2. To
show condition (A9) in Lemma 3 in Wu and Ghosal (2008), we will need to show that the
kernel φΣ(xt−

∑K
k=1Akxt−k) is equicontinuous as a family of functions of {A1, . . . , AK ,Σ}

for xt lying on a compact subset of <D and conditional on given values of X1:(t−1). Note
that for two distinct sets of parameters (Θ,Σ) and (Θ′,Σ′),

∣∣∣∣φΣ

(
xt −

K∑
k=1

Akxt−k
)
− φΣ′t

(
xt −

K∑
k=1

A′kxt−k
)∣∣∣∣ ≤ ∣∣∣∣φΣ′

(
xt −

K−1∑
k=1

Akxt−k −A′Kxt−K
)
−

φΣ

(
xt −

K∑
k=1

Akxt−k
)∣∣∣∣+

∣∣∣∣φΣ′
(
xt −

K−1∑
k=1

Akxt−k −A′Kxt−K
)
− φΣ′

(
xt −

K∑
k=1

A′kxt−k
)∣∣∣∣. (20)

The first term in (20) can be shown to be arbitrarily small when (A′K ,Σ
′) lies within a

small neighborhood of (AK ,Σ) (or equivalently AKxt−K is in a neighborhood of A′Kxt−K
pointwise for xt−K , and Σ lies in a neighborhood of Σ′) for xt ∈ C ⊂ <D, where C is a
compact subset of <D, using arguments similar to the last part of the proof of Theorem 2
in Wu and Ghosal (2008). The second term in (20) can be decomposed using similar and
repeated iterative steps, and hence shown to be arbitrarily small. Hence the equicontinuity
condition holds, and all conditions of Lemma 3 in Wu and Ghosal (2008) are satisfied, point-
wise for all X1:(t−1). This implies that the second term in (18) is less than or equal to ε/2.
Combining this with the upper bound on the first term in (18), it is possible to show that
KL(f0, fPε)(xt | X1:(t−1)) < ε, point-wise almost everywhere for X1:(t−1). Combining the
above results and using the expression in (17), we have KL(f0(X), f(X)) ≤ ε. Finally, we
note that this bound holds with positive prior probability under the PDPM-VAR, lgPDPM-
VAR and rgPDPM-VAR models, thus yielding the desired result in Theorem 3.
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Proof of Theorem 4: The proof of this result is based on modifications of the arguments
in the proof of Proposition 2 in Shen et al. (2013) and Lemma 2 in Canale and De Blasi
(2017). We will show that for every fP ∈ Fn,jl, it is possible to find another density fP̂
belonging to Ĝ (the ε-net over Fn,jl) such that ||fP − fP̂ ||1 ≤ ε. Since N(ε,Fn,jl, || · ||1) is
the minimum cardinality of the ε-net over Fn,jl, we will be able to obtain a desired upper

bound on the entropy if the number of balls required to cover the ε-net Ĝ is bounded. Let us

consider P1 =
∑
h1≥1

∑
hσ≥1

π
(1)
h1
π

(1)
σ,hσ

δ(
Θ

(1)
h1
,Σ

(1)
hσ

) and P2 =
∑
h1≥1

∑
hσ≥1

π
(2)
h1
π

(2)
σ,hσ

δ(
Θ

(2)
h1
,Σ

(2)
hσ

). Using

Lemma 4 (elaborated in the sequel), the distance between the corresponding densities can
be expressed as

||fP1 − fP2 ||1 ≤ 2ε2 +
∑

h1,hσ<Hn

|π(1)
h1
π

(1)
σ,hσ
− π(2)

h1
π

(2)
σ,hσ
|+ 4ε

+
∑

h1,hσ≤Hn

π
(1)
h1
π

(1)
σ,hσ

∥∥∥∥ T∏
t=1

φ
Σ

(1)
hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)
−

T∏
t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(2)
k,h1

xt−k
)∥∥∥∥

1

.(21)

Let us first investigate the upper bound for the last term on the right hand side of (21).
Note that ∥∥∥∥ T∏

t=1

φ
Σ

(1)
hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)
−

T∏
t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(2)
k,h1

xt−k
)∥∥∥∥

1

≤
∥∥∥∥ T∏
t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)
−

T∏
t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(2)
k,h1

xt−k
)∥∥∥∥

1

+

∥∥∥∥ T∏
t=1

φ
Σ

(1)
hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)
−

T∏
t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)∥∥∥∥

1

, (22)

using the triangle inequality. The first term on the right hand side of (22) can be bounded
above using the following steps. In particular, the first term is ≤∥∥∥∥{φΣ

(2)
hσ

(
xT −

K∑
k=1

A
(1)
k,h1

xT−k
)
− φ

Σ
(2)
hσ

(
xT −

K∑
k=1

A
(2)
k,h1

xT−k
)} T−1∏

t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)∥∥∥∥

1

+

∥∥∥∥φΣ
(2)
hσ

(
xT −

K∑
k=1

A
(2)
k,h1

xT−k
){ T−1∏

t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)
−
T−1∏
t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(2)
k,h1

xt−k
)}∥∥∥∥

1

.

(23)

The first term in (23) may be written as
∫ { ∫ ∣∣∣∣{φΣ

(2)
hσ

(
xT −

∑K
k=1A

(1)
k,h1

xT−k
)
−φ

Σ
(2)
hσ

(
xT −∑K

k=1A
(2)
k,h1

xT−k
)}∣∣∣∣dxT}∏T−1

t=1 φ
Σ

(2)
hσ

(
xt−

∑K
k=1A

(1)
k,h1

xt−k

)
dxT−1 . . . dx1, which is≤ 2

π
√
λD(Σ

(2)
hσ

)
×

∫
. . .
∫ {∥∥∥∥∑K

k=1

(
A

(1)
k,h1
−A(2)

k,h1

)
xT−k

∥∥∥∥×∏T−1
t=1 φ

Σ
(2)
hσ

(
xt−

∑K
k=1A

(1)
k,h1

xt−k
)}
dxT−1 . . . dx1,

where we have used the well-known result ||φΣ

(
xT −µ1

)
−φΣ

(
xT −µ2

)
||1 ≤ 2

π
√
λD(Σ)

||µ1−
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µ2||. One can write

∥∥∥∥∑K
k=1

(
A

(1)
k,h1
−A(2)

k,h1

)
xT−k

∥∥∥∥=

√∑K
k=1

∑D
l=1

{∑D
l′=1

(
A

(1)
k,h1

(l, l′)−A(2)
k,h1

(l, l′)
)
xT−k,l′

}2

≤

√∑K
k=1

∑D
l=1

(∑D
l′=1

(
A

(1)
k,h1

(l, l′)−A(2)
k,h1

(l, l′)
)2)||xT−k||2 =

√∑K
k=1 ||vec

(
A

(1)
k,h1
−A(2)

k,h1

)
||2 × ||xT−k||2

≤
∑K

k=1 ||vec(A
(1)
k,h1
−A(2)

k,h1
)||×||xT−k||, where the second to last inequality is obtained using

Cauchy-Schwarz inequality, and the last inequality uses the fact
∑K

k=1(a∗)2
k ≤ (

∑K
k=1 |a∗|k)2.

Hence, the first term in (23) has an upper bound 2
(
π
√
λD(Σ

(2)
hσ

)
)−1 × K∗, where K∗ =∑K

k=1 ||vec(A
(1)
k,h1
−A(2)

k,h1
)||

∫ {
||xT−k||

∏T−1
t=1 φ

Σ
(2)
hσ

(
xt−

∑K
k′=1A

(1)
k′,h1

xt−k′
)}
dxT−1 . . . dx1.

Using Cauchy-Schwarz,

∫ {
||xT−k||

∏T−1
t=1 φ

Σ
(2)
hσ

(
xt −

∑K
k′=1A

(1)
k′,h1

xt−k′
)}
dxT−1 . . . dx1 ≤√

ζ̃×
√
ζ1:(T−k), where ζ̃ =

∫ ∏T−1
t=T−k+1

{
φ

Σ
(2)
hσ

(
xt−

∑K
k′=1A

(1)
k′,h1

xt−k′
)}2

dxT−1 . . . dxT−k+1

and ζ1:(T−k) =

∫
||xT−k||2

{∏T−k
t=1 φ

Σ
(2)
hσ

(
xt −

∑K
k′=1A

(1)
k′,h1

xt−k′
)}2

dxT−k . . . dx1.

Noting that φΣ

(
x
)
≤
( λ1(Σ)
λD(Σ)

)(D−1)/2
φλ1(Σ)ID

(
x
)

and the fact that

(
λ1(Σ

(2)
hσ

)

λD(Σ
(2)
hσ

)

)
≤ uhσ ,l for

all densities belonging to Fn,jl, one can write ζ̃ ≤

∫ {∏T−1
t=T−k+1(uhσ ,l)

(D−1)/2φ
λD(Σ

(2)
hσ

)ID

(
xt−

∑K
k′=1A

(1)
k′,h1

xt−k′
)}2

dxT−1 . . . dxT−k+1 = ζ̃∗× (uhσ,l)
(D−1)k

λ
Dk/2
D (Σ

(2)
hσ

)

∫ {∏T−1
t=T−k+1 φ 1

2
λD(Σ

(2)
hσ

)ID

(
xt−∑K

k′=1A
(1)
k′,h1

xt−k′
)
dxT−1 . . . dxT−k+1

}
, which is equal to ζ̃∗× (uhσ,l)

(D−1)k

λ
Dk/2
D (Σ

(2)
hσ

)
since the integral

is one, where ζ̃∗ is some constant.

Next, we need to derive an upper bound for ζ1:(T−k). Note that ζ1:(T−k) ≤ ζ∗ ×

(uhσ,l)
(D−1)(T−k)

λ
D(T−k)/2
D (Σ

(2)
hσ

)

∫ {
||xT−k||2

∏T−k
t=1 φ 1

2
λD(Σ

(2)
hσ

)ID

(
xt−

∑K
k′=1A

(1)
k′,h1

xt−k′
)
dxT−k

}
dxT−k−1 . . . dx1 =

ζ∗× (uhσ,l)
(D−1)(T−k)

λ
D(T−k)/2
D (Σ

(2)
hσ

)
I1:(T−k), where ζ∗ is some constant and I1:(T−k) denotes the integral term.

Therefore, K∗ ≤
∑K

k=1 ||vec(A
(1)
k,h1
−A(2)

k,h1
)||×

√
ζ̃∗ × (uhσ,l)

(D−1)k

λ
Dk/2
D (Σ

(2)
hσ

)
× ζ∗ × (uhσ,l)

(D−1)(T−k)

λ
D(T−k)/2
D (Σ

(2)
hσ

)
I1:(T−k) =

˜ζ∗∗
∑K

k=1 ||vec(A
(1)
k,h1
−A(2)

k,h1
)|| × (uhσ,l)

(D−1)T/2

λ
DT/2
D (Σ

(2)
hσ

)
×
√
I1:(T−k). Recalling that I1:(T−k) =∫ {

||xT−1||2
∏T−1
t=1 φ

λD(Σ
(2)
hσ

)ID

(
xt−

∑K
k′=1A

(1)
k′,h1

xt−k′
)
dxT−1

}
dxT−2 . . . dx1, we note that

I1:(T−k) can be bounded using the relationship E
( ||xT−k||2

1
2
λD

(
Σ

(2)
hσ

)

)
= D+

∑D
l′=1

(∑K
k′=1A

(1)
k′,h1

(l′, ·)xT−k−k′
)2

≤
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D +Kā2
h1,j

(∑K
k′=1D||xT−k−k′ ||2

)
. In other words, I1:(T−k) ≤

D

2
λD(Σ

(2)
hσ

) +Kā2
h1,j

∫ ( K∑
k′=1

D||xT−k−k′ ||2
) T−k−1∏

t=1

φ 1
2
λD(Σ

(2)
hσ

)ID

(
xt −

K∑
k′=1

A
(1)
k′,h1

xt−k′
)
dxT−k−1 . . . dx1,

=
D

2
λD(Σ

(2)
hσ

) +KDā2
h1,jI

∗
1:(T−k−1) =

D

2
λD(Σ

(2)
hσ

) +KDā2
h1,j

{
Ĩ∗1:(T−k−1),1 + . . .+ Ĩ∗1:(T−k−1),K

}
,

using Cauchy-Schwarz inequality and the sieve constructions, and where I∗1:(T−k−1) denotes
the integral in the first line of the above upper bound, which is decomposable intoK different
integrals denoted as {Ĩ∗1:(T−k−1),1, . . . , Ĩ

∗
1:(T−k−1),K}. For k′ = 1, the term Ĩ∗1:(T−k−1),1 in the

above integral can be written as

=

∫
||xT−k−1||2φ 1

2
λD(Σ

(2)
hσ

)ID

(
xT−k−1 −

K∑
k′=1

A
(1)
k′,h1

xt−k−1−k′
)
dxT−k−1

×
∫ { T−k−2∏

t=1

φ 1
2
λD(Σ

(2)
hσ

)ID

(
xt −

K∑
k′=1

A
(1)
k′,h1

xt−k′
)
dxT−k−2 . . . dx1

}
≤ D

2
λD(Σ

(2)
hσ

) +KDā2
h1,jI

∗
1:(T−k−2) =

D

2
λD(Σ

(2)
hσ

) +KDā2
h1,j × {Ĩ

∗
1:(T−k−2),1 + . . .+ Ĩ∗1:(T−k−2),K},

using similar notations as previously used. Similarly, when k′ = 2, the term Ĩ∗1:(T−k−1),2 in

the upper bound for I1:(T−k) may be written as Ĩ∗1:(T−k−1),2 ≤
D
2 λD(Σ

(2)
hσ

)+KDā2
h1,j

I∗1:(T−k−3) =

D
2 λD(Σ

(2)
hσ

) +KDā2
h1,j
×{Ĩ∗1:(T−k−3),1 + . . .+ Ĩ∗1:(T−k−3),K}, using similar notation as above.

The number of terms in the above expression can be derived via a decision tree. For lag
K, the total number of terms will be less than or equal to KT−1. In the special case when
K = 1, the upper bound for IT−1 is given as

I1:(T−1) ≤ D1

2
λD(Σ

(2)
hσ

)

{
1 +KDā2

h1,j + (KDā2
h1,j)

2 + . . .+ (KDā2
h1,j)

T−2

}
+ (KDā2

h1,j)
T−1

≤ DλD(Σ
(2)
hσ

)(KDā2
h1,j)

T−2 + (KDā2
h1,j)

T−1 ≤ c∗(KDā2
h1,j)

T−1, (24)

where c∗ is some constant. Given that there are a total of KT−1 terms, each being bounded
as in (24), the total upper bound for lag K is given as

I1:(T−1) ≤ DλD(Σ
(2)
hσ

)(KDā2
h1,j)

T−2 + (KDā2
h1,j)

T−1 ≤ c∗(KDā2
h1,j)

T−1 ×KT−1 = c∗(K2Dā2
h1,j)

T−1.

Hence using previous calculations, K∗ ≤ c∗∗

σ
(DT+1)
n

×
{∑K

k=1 ||vec(A
(1)
k,h1
−A(2)

k,h1
)||(uhσ ,l)T (D−1)/2×(

DK2ā2
h1,j

)T−1
}

. The second term in (23) is equal to

∥∥∥∥φΣ
(2)
hσ

(
xT−

∑K
k=1A

(2)
k,h1

xT−k
){∏T−1

t=1 φ
Σ

(2)
hσ

(
xt−∑K

k=1A
(1)
k,h1

xt−k
)
−
∏T−1
t=1 φ

Σ
(2)
hσ

(
xt−

∑K
k=1A

(2)
k,h1

xt−k
)}∥∥∥∥

1

=

∥∥∥∥∏T−1
t=1 φ

Σ
(2)
hσ

(
xt−

∑K
k=1A

(1)
k,h1

xt−k
)
−∏T−1

t=1 φ
Σ

(2)
hσ

(
xt−

∑K
k=1A

(2)
k,h1

xt−k
)∥∥∥∥

1

, since

∥∥∥∥φΣ
(2)
hσ

(
xT −

∑K
k=1A

(2)
k,h1

xT−k
)∥∥∥∥

1

= 1. Hence the
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first term in the upper bound in (22) can be written as

K∗ . c∗∗
∑K

k=1 ||vec(A
(1)
k,h1
−A(2)

k,h1
)||(uhσ ,l)T (D−1)/2

σDT+1
n

×
(
DK2ā2

h1,j

)T−1

+

∥∥∥∥ T−1∏
t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)
−
T−1∏
t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(2)
k,h1

xt−k
)∥∥∥∥

1

. c∗∗T
K∑
k=1

||vec(A(1)
k,h1
−A(2)

k,h1
)||(uhσ ,l)T (D−1)/2 ×

{
σTD+1
n(

DK2ā2
h1,j

)T−1

}−1

(25)

using similar steps to obtain an upper bound for

∥∥∥∥∏T−1
t=1 φ

Σ
(2)
hσ

(
xt −

∑K
k=1A

(1)
k,h1

xt−k
)
−∏T−1

t=1 φ
Σ

(2)
hσ

(
xt −

∑K
k=1A

(2)
k,h1

xt−k
)∥∥∥∥

1

. For the second term in (22), note that

∥∥∥∥ T∏
t=1

φ
Σ

(1)
hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)
−

T∏
t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)∥∥∥∥

1

≤

∥∥∥∥ T∏
t=1

φΣ̃hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)
−

T∏
t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)∥∥∥∥

1

+

∥∥∥∥ T∏
t=1

φΣ̃hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)
−

T∏
t=1

φ
Σ

(1)
hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)∥∥∥∥

1

, (26)

where Σ̃hσ =

(
O

(2)
t,hσ

Λ
(1)
t,hσ

(O
(2)
thσ

)′
)−1

, and Σ
(j)
hσ

=

(
O

(j)
t,hσ

Λ
(j)
t,hσ

(O
(j)
t,hσ

)′
)−1

, j = 1, 2. Using

Csiszar’s inequality the first term in (26) ≤√√√√√2

∫
. . .

∫
log

( T∏
t=1

φΣ̃hσ

(
xt −

∑K
k=1A

(1)
k,h1

xt−k
)

φ
Σ

(2)
hσ

(
xt −

∑K
k=1A

(1)
k,h1

xt−k
)){ T∏

t=1

φΣ̃hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)}
dxT . . . dx1

=

√√√√2× 1

2

T∑
t=1

{
log det

(
Σ̃−1
hσ

Σ
(2)
hσ

)
+ tr

(
(Σ

(2)
hσ

)−1Σ̃hσ

)
−D

}

=

√√√√ T∑
t=1

D∑
d′=1

{
λd′(Σ

(1)
hσ

)

λd′(Σ
(2)
hσ

)
− log

(λd′(Σ(1)
hσ

)

λd′(Σ
(2)
hσ

)

)
− 1

}
. (27)

Similarly, the second term in R.H.S. of (26)≤

√∑T
t=1

{
log det

(
Σ̃−1
hσ

Σ
(1)
hσ

)
+ tr

(
(Σ

(1)
hσ

)−1Σ̃hσ

)
−D

}
.

Using similar steps as in the proof of Lemma 2 in Canale and De Blasi (2017), it is possible
to show that the second term in the R.H.S. of (26) (and hence the last term in the R.H.S. of
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(22)), has an upper bound given by

√
2T ||O(1)

hσ
−O(2)

hσ
||2

λ1(Σ
(1)
hσ

)

λD(Σ
(1)
hσ

)
. Finally, we need to estab-

lish an upper bound for the term
∑

h1,hσ<Hn
|π(1)
h1
π

(1)
σ,hσ
− π(2)

h1
π

(2)
σ,hσ
| in (21), which is given

by Lemma 5 as
∑

h1,hσ<Hn

∣∣∣∣π̃(1)
h1
π̃

(1)
σ,hσ
− π(2)

h1
π

(2)
σ,hσ

∣∣∣∣+

∣∣∣∣1− (1− ε)2

∣∣∣∣, where π̃ = πh
(1−

∑
h>H πh) .

For a given fP ∈ Fn,jl with P =
∑
h1≥1

∑
hσ≥1

π
(1)
h1
π

(1)
σ,hσ

δ(
Θ

(1)
h1
,Σ

(1)
hσ

) and Σh = (OhΛhO
T
h )−1

where Λh = diag(λh,1, . . . , λh,D), we will construct another density fP̂ with P̂ =
∑
h1≥1

∑
hσ≥1

π
(1)
h1
π

(1)
σ,hσ

δ(
Θ̂

(1)
h1
,Σ̂

(1)
hσ

)
within the ε-net and then compute the cardinality of the ε-net set to derive an upper bound
for the entropy of sieve Fn,jl. To construct such a density, we will choose:

1. Âk,h1 ∈ R̂h1 , h1 = 1, . . . ,H, where R̂h1 is a ε∗-net of Rh1 := {A ∈ <D×D : ah1,j ≤
||vec(A)|| ≤ āh1,j}, such that ||vec(A)k,h1 − vec(Â)k,h1 || ≤ ε∗, k = 1, . . . ,K, where

ε∗ = πε

{
σTD+1
n

2T (uhσ,l)
T (D−1)/2×

(
DK2ā2

h1,j

)T−1

}
using (25) and the fact that σn < 1 for large n.

2. {π̂h1 π̂hσ , h1, hσ ≤ Hn} ∈ ∆̂, where ∆̂ is a ε-net of a H2
n dimensional probability simplex

such that
∑

h1,hσ≤Hn |π̃h1 π̃hσ − π̂h1 π̂hσ | ≤ ε, and π̃h = πh∑
h≤Hn πh

, h ≤ Hn.

3. Ôh ∈ Ôh, where Ôh is a δh-net of the set Oh defined as the set of D ×D orthogonal
matrices with respect to the spectral norm || · ||2 with δh = ε2/(2Duh,l) such that ||Oh −
Ôh||2 ≤ Tδh.
4. (mh,1, ...,mhD) ∈ {1, ...,M}D, h = 1, ...,H, such that λ̂h,l = {σ2(1 + ε

√
D)mh,l−1}−1

will satisfy 1 ≤ λ̂h,l/λh,l < (1 + ε/
√
D).

Using this construction, the term in (27) is shown to be bounded by

√
T
∑D

d′=1

{( λ̂h,D−d′+1

λh,D−d′+1
− 1
)2}

.

Moreover under this construction, it can be shown that ||fP −fP̂ ||1 < C∗ε for some constant
C∗, by employing some additional algebra and the above arguments. Further, the cardi-
nality of the ε-net can be computed by noting that #(∆̂) . ε−H

2
n for j = 1, 2,#(Ôh) .

δ
−D(D−1)/2
h ,#(R̂k,h) . [( āhε∗ + 1)D

2 − (
ah
ε∗ − 1)D

2
]. Using these quantities, one can write the

upper bound for the exponential of the entropy bound as . (M)DHnε−H
2
n ×K∗, where

K∗ =
∏

h1≤Hn

{
(
āh1,j

ε∗
+ 1)D

2 − (
ah1,j

ε∗
− 1)D

2}K ∏
hσ≤Hn

{2Duhσ ,l
ε2

}D(D−1)/2

.
∏

hσ≤Hn

{2Duhσ ,l
ε2

}D(D−1)/2
∏

h1≤Hn

{(C∗h1,j ,hσ,l
āh1,j

σnε
+ 1

)D2

−
(C∗h1,j ,hσ,l

ah1,j

σnε
− 1

)D2
}K

and C∗h1,j ,hσ,l
= 2

π

{
T (uhσ ,l)

(T )(D−1)/2
}
×
(
DK2ā2

h1,j

)T−1

σTDn
.
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Proof of Corollary 1: For computing the sieve entropy bound corresponding to lgPDPM-
VAR, note that using similar calculations as in (21), one can show that |fP1 − fP2 ||1 =

∑
h11

. . .
∑
h1K

∑
hσ<Hn

( K∏
k=1

π
(1)
k,h1k

)
π

(1)
σ,hσ

∥∥∥∥ T∏
t=1

φ
Σ

(1)
hσ

(
xt −

K∑
k=1

A
(1)
k,h1k

xt−k
)
−

T∏
t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(2)
k,h1k

xt−k
)∥∥∥∥

1

+
∑
h11

. . .
∑
h1K

∑
hσ<Hn

∣∣( K∏
k=1

π
(1)
k,h1k

)
π

(1)
σ,hσ
−
( K∏
k=1

π
(2)
k,h1k

)
π

(2)
σ,hσ

∣∣+KεK1 + Lε1, (28)

for some constant L. Using similar calculations as under the PDPM-VAR case, N(ε1,Fn,jl, ||·

||1) .

(
MD

εK1

)Hn∏K
k=1

∏
h1k≤Hn

{
(
āh1k,j

ε∗1
+1)D

2−(
ah1k,j

ε∗1
−1)D

2}∏
hσ≤Hn

{2Duhσ,l
ε21

}D(D−1)/2
.(

MD

ε
C∗1
1

)Hn
×
∏
hσ≤Hn

{2Duhσ,l
ε21

}D(D−1)/2∏K
k=1

∏
h1k≤Hn

{(C∗∗h1,j ,hσ,l
āh1k,j

σnε1
+1
)D2

−
(C∗∗h1,j ,hσ,l

ah1k,j

σnε1
−

1
)D2
}

, where C∗∗h1,j ,hσ,l
= 2

π

{
T (uhσ,l)

(T−1)(D−1)/2

σTDn

}
×
(
DK2 max

{
ā2
h11,j

, . . . , ā2
h1K ,j

})T−1
.

Similarly, for computing the entropy bound corresponding to sieves in the rgPDPM-VAR
model, note that using similar calculations as before, one can show that the densities satisfy

||fP1 − fP2 ||1 =
∑

h11≤Hn
· · ·

∑
h1D≤Hn

∑
hσ<Hn

∣∣∣∣(∏D
d′=1 π

∗(1)
d′,h1d′

)
π

(1)
σ,hσ
−
(∏D

d′=1 π
∗(2)
d′,h1d′

)
π

(2)
σ,hσ

∣∣∣∣ +

∑
h11≤Hn

· · ·
∑

h1D≤Hn

∑
hσ≤Hn

(∏D
d′=1 π

∗(1)
d′,h1d′

)
π

(1)
σ,hσ
×
∥∥∥∥∏T

t=1 φΣ
(1)
hσ

(
xt−

∑K
k=1A

(1)
k,h11,...,h1d

xt−k
)
−

∏T
t=1 φΣ

(2)
hσ

(
xt −

∑K
k=1A

(2)
k,h11,...,h1d

xt−k
)∥∥∥∥

1

+ KεK2 + L∗2ε2, for some constant L∗2. Similar

calculations as before yield the bound for exponential of the entropy N(ε2,Fn,jl, || · ||1)) as:

.

(
MD

εD2

)Hn ∏
hσ≤Hn

{2Duhσ ,l
ε22

}D(D−1)/2
D∏
d′=1

∏
h1d′≤Hn

{
(
āh1d′ ,j

ε∗2
+ 1)D − (

ah1d′ ,j

ε∗2
− 1)D

}K
.

(
MD

ε
C∗1
2

)Hn

×
∏

hσ≤Hn

{2Duhσ ,l
ε22

}D(D−1)/2
D∏
d′=1

∏
h1d′≤Hn

{( C̃∗h1,j ,hσ,l
āh1d′ ,j

σnε2
+ 1

)D
−
( C̃∗h1,j ,hσ,l

ah1d′ ,j

σnε2
− 1

)D}K
,(29)

where C̃∗h1,j ,hσ,l
= 2

π

{
T (uhσ,l)

(T−1)(D−1)/2

σTDn

}
×
(
DK2 max{ā2

h11,j
, . . . , ā2

h1d,j
}
)T−1

.

Proof of Theorem 5: The proof follows using Theorem 2 and the entropy bounds estab-
lished in Theorem 3. For the case of PDPM-VAR, consider the sieves

Fn,j,l =

{
fp ∈ Fn : for h1, hσ ≤ Hn, n

H2
n(jh1 − 1) ≤ ||vec(Ak,h1)|| ≤ nH2

njh1 ,∀k,

nlhσ−1 <
λ1(Σhσ)

λD(Σhσ)
≤ nlhσ

}
, Fn =

{
fp : P =

∑
h1≥1

∑
hσ≥1

πh1πσ,hσδΘh1
,Σhσ

:
∑

h1>Hn

πh1 < ε,

∑
hσ>Hn

πσ,hσ < ε, for hσ ≤ Hn, σ
2
n ≤ λD, λ1 ≤ σ2

n(1 + ε/
√
D)Mn , 1 <

λ1

λD
≤ nHn

}
, (30)
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where Mn = σ−2c2 = n and Hn = bCnε2/ log(n)c for some positive constant C, and
clearly Fn ⊂ ∪j,lFn,j,l. Comparing to the notations used in the manuscript, we note that
ah1,j = nHn(jh1 − 1), āh1,j = nHnjh1 , and uhσ ,l = nlhσ , for integers (j1, . . . , jHn) ∈ N and
(l1, . . . , lHn) ∈ {1, . . . ,Hn}.

Using Lemma 6 in the Appendix, it is clear that condition (2A) holds for the PDPM-
VAR. Next, we will derive the entropy bounds and the complement of the prior probability
for the sieves and illustrate that the summability condition (2B) in Theorem 2 holds.

Now, using Theorem 4, the upper bound on the entropy term is . (MDε−C1)Hn ×∏Hn
hσ=1

{2Duhσ,l
ε2

}D(D−1)/2×K∗, K∗ =
∏Hn
h1=1

{(C∗h1,j ,hσ,l
āh1,j

σnε
+1
)D2

−
(C∗h1,j ,hσ,l

ah1,j

σnε
−1
)D2
}K

,

i.e. K∗ ≈
∏

h1≤Hn

(
C∗h1,j ,hσ,l

)KD2

{(
āh1,j

σnε
+ on(1)

)D2

−
(
ah1,j

σnε
− on(1)

)D2
}K

.
∏

h1≤Hn

(
C∗h1,j ,hσ,l

)KD2

{(
āh1,j

σnε
+ 1

)D2

−
(
ah1,j

σnε
− 1

)D2
}K

.
{

(uhσ ,l)
(T−1)(D−1)/2

}KD2Hn

×
∏

h1≤Hn

[
2

π

(
T (uhσ ,l)

(T )(D−1)/2

)
×
(
DK2ā2

h1,j

)T−1

σTDn

]KD2
{(

āh1,j

σnε
+ 1

)D2

−
(
ah1,j

σnε
− 1

)D2
}K

, (31)

where on(1) is a vanishing term with increasing sample size. Using similar steps as in the

proof of Theorem 2 in Canale and De Blasi (2017), it is possible to show that

[( āh1,j

σnε/2
+

1
)D2

−
( ah1,j

σnε/2
− 1
)D2
]K

.

[
n

(Hn+ 1
2c2

)D2

jD
2−1

h1

(ε)D2

]K
, when n and jh1 are large. Hence, when n

is large enough,

[
2T

π

(
DK2ā2

h1,j

)T−1

σTDn

]KD2
{(

āh1,j

σnε
+ 1

)D2

−
(
ah1,j

σnε
− 1

)D2
}K

≤
{
n

(H2
n+ 1

2c2
)D2

jD
2−1

h1

(ε)D2

}K
×
[

2T

π

(
DK2ā2

h1,j

σn

)T−1

×
(
σn
)−TD]KD2

≈ C
{
n

(H2
n+ 1

2c2
)D2

jD
2−1

h1

(ε)D2

}K
×
(
n2H2

n+1/(2c2)j2
h1

)KD2(T−1) ×
(
nTD/c2

)KD2

≤ C ×
(1

ε

)KD2

×

exp

{
H2
nKD

2(2T − 3) log(n) +
1

c2

(
KD2(T − 1) + TKD3

)
log(n)

}
×
(
jh1

)2KD2(T−2)+K(D2−1)
,

where C is a constant independent of n. Further,

{2Duhσ ,l
ε2

}D(D−1)/2{
(uhσ ,l)

(T )(D−1)/2
}KD2Hn = C1(uhσ ,l)

D(D−1)/2+KD2Hn(T )(D−1)/2

≈ C1 exp

{(
D(D − 1)

2
+KD2Hn(T )

D − 1

2

)
log(nlhσ )

}
×
(1

ε

)D(D−1)
,

for large n, where the constant C1 that does not depend on n.
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Hence we have

N(ε,Fn,jl, || · ||1) . CHn1 exp

{
DHn log(M) +Hn log

C1

ε

}
× exp

{
H3
n(2KD2(T − 2) +KD2) log(n) +

Hn

c2

(
KD2(T − 1) + TKD3

)
log(n)

}
×

{ ∏
hσ≤Hn

(nlhσ )
D(D−1)

2
+KD2Hn(T )D−1

2

}{ ∏
h1≤Hn

(jh1)2KD2(T−2)+K(D2−1)

}
×
(

1

ε

)Hn(KD2+D(D−1))

.(32)

Further, under the specification P ∗1 (A1, . . . , AK) =
∏K
k=1 P

∗
1 (Ak), we have

Π(Fn,jl) ≤
∏

h1≤Hn

P ∗1
(
||vec(Ak)|| > nH

2
n(jh1 − 1), ∀k

) ∏
hσ≤Hn

P ∗2
(
λ1(Σ)/λD(Σ) > n(lhσ−1)

)
,

.
∏

h1≤Hn

{(
nH

2
n(jh1 − 1)

)−1(jh1
≥2)2(r+1)}K × ∏

hσ≤Hn

(n(lhσ−1))
−1(lhσ

≥1)κ

≈
{
n−2H3

n(r+1)K
∏

h1≤Hn

(
jh1 − 1

)−1(jh1
≥2)2K(r+1)

}
×
{ ∏
hσ≤Hn

(nκ(lhσ−1))
−1(lhσ

≥1)

}
, for large n. (33)

Under Lemma 7 in the Appendix, we can show that for the PDPM-VAR,∑
jh1
∈N
∑

1≤lhσ≤Hn

√
N(ε,Fn,jh1

lhσ
)Π(Fn,jh1

lhσ
)e−(4−c)nε2 → 0 as n → ∞ for a suitable

choice of constants. Hence the condition (2B) in Theorem 2 is satisfied and the strong
posterior consistency result is proved corresponding to the PDPM-VAR model.

To prove the summability result for the lgPDPM-VAR approach, consider the sieves
defined in the manuscript as

Fn =

{
fp : P =

∞∑
h11=1

. . .
∞∑

h1K=1

∞∑
hσ=1

πσ,hσ
( K∏
k=1

πk,h1k

)
δΘh1k

,Σhσ
:
∑

h1,1k>Hn

πh1,1k
< ε1, 1 ≤ k ≤ K,

∑
hσ>Hn

πσ,hσ < ε2, σ
2
n ≤ λD(Σhσ), λ1(Σhσ) ≤ σ2

n(1 + ε/
√
D)Mn , 1 <

λ1(Σhσ)

λD(Σhσ)
≤ nHn , hσ ≤ Hn

}
,

Fn,j,l =

{
fp ∈ Fn : for h11, . . . , h1K ≤ Hn, n

H2
n(jh1k

− 1) ≤ ||vec(Akh1k
)|| ≤ nH2

njh1k
, (34)

and for hσ ≤ Hn, n
lhσ−1 ≤ λ1(Σhσ)

λD(Σhσ)
≤ nlhσ

}
Now note that the prior probability on the sieve Fn satisfies

Π(Fcn) ≤ Pr
( ∑
hσ>Hn

πσ,hσ > ε1

)
+

K∑
k=1

Pr

( ∑
h1k>Hn

πk,h1k
> ε1

)
+HnP

∗
2

(
λD(Σ) ≤ σ2

n

)
+

HnP
∗
2

(
λ1(Σ) > σ2

n(1 + ε1/
√
D)Mn

)
+HnP

∗
2

(
λ1(Σhσ)

λD(Σhσ)
> nHn

)
. e−b

∗n,
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using similar techniques used to derive (37) in Lemma 6 of the Appendix. Hence, condition
(2A) in Theorem 2 holds. Further, one can rewrite (33) as

Π(Fn,jl) .
{
n−2H3

n(r+1)K
K∏
k=1

∏
h1k≤Hn

(
jh1k
− 1
)−1(jh1k

≥2)2(r+1)
}
×
{ ∏
hσ≤Hn

(nκ(lhσ−1))
−1(lhσ

≥1)

}
,

for large n. Moreover, using similar steps as in the proof for Lemma 7 corresponding to the
PDPM-VAR model, it is possible to show that the entropy bound in Corollary 1 satisfies√
N(ε1,Fn,jh1

lhσ
, || · ||1)Π(Fn,jh1

lhσ
)

.
√
CHn1 exp

{
Hn log(

C∗1
ε1

) +
Hn

2

(
KD2 +D(D − 1)

)
log(

1

ε1
)

}
× exp

{
Cnε2

2

(
D +

1

2c2
KD2(T − 1 + TD)

)}
× nKH

3
n

(
D2(T−2)+ 1

2
D2−r

)
−KH3

n

×
{ K∏
k=1

∏
h1k≤Hn

(jh1k
)D

2(T−2)+ 1
2

(D2−1)

}{ K∏
k=1

∏
h1k≤Hn

(
jh1k
− 1
)−1(jh1k

≥2)(r+1)
}

×
∏

hσ≤Hn

{
nlhσ

}D(D−1)
4

+KD2Hn(T−1)D−1
4

×
{ ∏
hσ≤Hn

(nκ(lhσ−1)/2)
−1(lhσ

≥1)

}
.

Using the above expressions and similar arguments as in (38), it is straightforward to show
that condition (2B) in Theorem 2 holds. Hence the result is proved.

The proof for the rgPDPM-VAR proceeds in a similar fashion by noting that the prior
probability for the complement of the sieves defined in the manuscript can be written as

Π(Fcn) ≤ HnP
∗
2

(
λ1(Σ) > σ2

n(1 + ε/
√
D)Mn

)
+HnP

∗
2

(
λ1(Σhσ)

λD(Σhσ)
> nHn

)
+HnP

∗
2

(
λD(Σ) ≤ σ2

n

)
+Pr

( ∑
hσ>Hn

πσ,hσ > ε2

)
+ Pr

( ∑
h11>Hn

π∗1,h11
> ε2

)
+ · · ·+ Pr

( ∑
h1D>Hn

π∗D,h1D
> ε2

)
. e−b

∗n,

using similar techniques used to derive (37) in Lemma 6 in the Appendix. Hence, condition
(2A) in Theorem 2 holds. Also define Fn,j,l such that Fn ⊂ ∪j,lFn,j,l and

Fn,j,l =

{
fp ∈ Fn : for h11, . . . , h1D, n

H2
n(jh1d′ − 1) ≤ ||vec(Akh1k

)|| ≤ nH2
njh1d′ ,

d′ = 1, . . . , D, and for hσ ≤ Hn, nlhσ−1 ≤ λ1(Σhσ)

λD(Σhσ)
≤ nlhσ

}
. (35)

Given the entropy bound in (29) and using similar calculations as in Lemma 7 for the PDPM-
VAR case, it is possible to show that (2B) in Theorem 2 holds. The strong consistency
result follows under rgPDPM-VAR once conditions (2A)-(2B) in Theorem 2 are satisfied.

Proof of Lemma 2: For the case with independent double exponential priors involving

shrinkage parameter λ, note that P

(
a2(k, l) ≤ (x∗)2

D2 , for all 1 ≤ k, l ≤ D
)
≤ P (||vec(Ak)|| ≤
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x∗). Further for large positive x∗ > D, and denoting π(s | λ) = 1
2

√
λ exp(−

√
λ s2)

P ∗1

(
a2(k, l) >

(x∗)2

D2

)
= P

(
|a(k, l)| > (x∗)

D

)
= 2

∫ ∞
x∗/D

∫
1√
2πs

exp(− 1

2s
a2)π(s | λ) ds da

≤ 2

∫
1√

2πs(x∗/D)
exp(− 1

2s
(x∗/D)2)π(s | λ)ds ≤ 2

∫
1√
2πs

exp(− 1

2s
(x∗/d)2)π(s | λ)ds

= 2 exp(−λ|x∗/D|) = 2 exp(−λx∗/D) ≤ (x∗/D)−λ.

The above implies that 1 − (x∗/D)−λ ≤ P ∗1

(
a2(k, l) ≤ (x∗)2

D2

)
and further that (1 −

(x∗/D)−λ)D
2 ≤ P ∗1

(
a2(k, l) ≤ (x∗)2

D2 , for all 1 ≤ k, l ≤ D

)
≤ P ∗1 (||vec(Ak)|| ≤ x∗). This

implies that P ∗1 (||vec(Ak)|| > x∗) > 1 − (1 − (x∗/D)−λ)D
2
. For large x∗ and choosing λ

large enough, one can use the binomial expansion to write (when D is even)

1− (1− (x∗/D)−λ)D
2

= 1−
{

(1−D2(x∗/D)−λ) +
D2(D2 − 1)

2
(x∗/D)−2λ

(
1− D2 − 2

3
(x∗/D)−λ

)
+

D2(D2 − 1)(D2 − 2)(D2 − 3)

4!
(x∗/D)−4λ

(
1− D2 − 4

5
(x∗/D)−λ

)
+ . . .+

D2(D2 − 1) . . . {D2 − (D2 − 1)}
(D2)!

(x∗/D)−(D2)λ

}
= D2(x∗/D)−λ − κ∗ . (x∗)−λ,

for large x∗ and λ such that 1−D2(x∗/D)−λ > 0 and for some positive constant κ∗. Similar
calculations hold for odd D.

Further, when P ∗1 (vec(Ak)) = ND2(vec(Ak);µ,Λ), Λ ∼ IW (Λ0, νλ), the resulting dis-
tribution follows a multivariate t-distribution. Hence one can write P ∗1 (||vec(Ak)|| > x∗) ≤
(x∗)(νλ−D2+1)/2, using arguments similar to those in Canale and De Blasi (2017).

Appendix B. Additional Lemmas

Lemma 4: The distance between densities fP1 and fP2 under the PDPM-VAR can be
expressed as

||fP1 − fP2 ||1 ≤ 2ε2 +
∑

h1,hσ<Hn

|π(1)
h1
π

(1)
σ,hσ
− π(2)

h1
π

(2)
σ,hσ
|+ 4ε

+
∑

h1,hσ≤Hn

π
(1)
h1
π

(1)
σ,hσ

∥∥∥∥ T∏
t=1

φ
Σ

(1)
hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)
−

T∏
t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(2)
k,h1

xt−k
)∥∥∥∥

1

.
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Proof: ||fP1 − fP2 ||1 =

||
∑

h1,hσ≥1

π
(1)
h1
π

(1)
σ,hσ

T∏
t=1

φ
Σ

(1)
hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)
−

∑
h1,hσ≥1

π
(2)
h1
π

(2)
σ,hσ

T∏
t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(2)
k,h1

xt−k
)
||1

=

∥∥∥∥ ∑
h1,hσ>Hn

π
(1)
h1
π

(1)
σ,hσ

T∏
t=1

φ
Σ

(1)
hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)
−

∑
h1,hσ>Hn

π
(2)
h1
π

(2)
σ,hσ

T∏
t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(2)
k,h1

xt−k
)

+
∑

h1,hσ≤Hn

π
(1)
h1
π

(1)
σ,hσ

{ T∏
t=1

φ
Σ

(1)
hσ

(
xt −

K∑
k=1

A
(1)
k,h1

xt−k
)
−

T∏
t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(2)
k,h1

xt−k
)}

+
∑

h1,hσ<Hn

(
π

(1)
h1
π

(1)
σ,hσ
− π(2)

h1
π

(2)
σ,hσ

) T∏
t=1

φ
Σ

(2)
hσ

(
xt −

K∑
k=1

A
(2)
k,h1

xt−k
)
−
∑
j′=1,2

{ ∑
h1≤Hn

∑
hσ>Hn

π
(j′)
h1
π

(j′)
σ,hσ

T∏
t=1

φ
Σ

(j′)
hσ

(
xt −

K∑
k=1

A
(j′)
k,h1

xt−k
)

+
∑

h1>Hn

∑
hσ≤Hn

π
(j′)
h1
π

(j′)
σ,hσ

T∏
t=1

φ
Σ

(j′)
hσ

(
xt −

K∑
k=1

A
(j′)
k,h1

xt−k
)}∥∥∥∥

1

.

The upper bound for the right hand side of the above equation may be further written as∑
j′=1,2

{∑
h1,hσ>Hn

π
(j′)
h1
π

(j′)
σ,hσ

∥∥∥∥∏T
t=1 φΣ

(1)
hσ

(
xt−

∑K
k=1A

(j′)
k,h1

xt−k
)∥∥∥∥

1

}
+
∑

h1,hσ≤Hn π
(1)
h1
π

(1)
σ,hσ
×∥∥∥∥∏T

t=1 φΣ
(1)
hσ

(
xt−

∑K
k=1A

(1)
k,h1

xt−k
)
−
∏T
t=1 φΣ

(2)
hσ

(
xt−

∑K
k=1A

(2)
k,h1

xt−k
)∥∥∥∥

1

+
∑
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(
π

(1)
h1
π

(1)
σ,hσ
−

π
(2)
h1
π

(2)
σ,hσ

)∥∥∥∥∏T
t=1 φΣ

(2)
hσ

(
xt−

∑K
k=1A

(2)
k,h1

xt−k
)∥∥∥∥

1

+
∑

j′=1,2

{∑
h1≤Hn

∑
hσ>Hn

π
(j′)
h1
π

(j′)
σ,hσ
×
∥∥∥∥∏T

t=1 φΣ
(j′)
hσ

(
xt−∑K

k=1A
(j′)
k,h1

xt−k
)∥∥∥∥

1

+
∑

h1>Hn

∑
hσ≤Hn π

(j′)
h1
π

(j′)
σ,hσ

∥∥∥∥∏T
t=1 φΣ

(j′)
hσ

(
xt −

∑K
k=1A

(j′)
k,h1

xt−k
)∥∥∥∥

1

}
.

The right hand side of the above can be further bounded as
∑

h1,hσ≤Hn π
(1)
h1
π

(1)
σ,hσ

∥∥∥∥∏T
t=1 φΣ

(1)
hσ

(
xt−∑K

k=1A
(1)
k,h1

xt−k
)
−
∏T
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hσ

(
xt−
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xt−k
)∥∥∥∥

1

+
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π

(1)
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π
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σ,hσ

+
∑

h1,hσ>Hn
π

(2)
h1
π

(2)
σ,hσ

∣∣∣∣+∑
h1,hσ<Hn

∣∣∣∣π(1)
h1
π

(1)
σ,hσ
−π(2)

h1
π

(2)
σ,hσ

∣∣∣∣+
∑

j′=1,2

{∑
h1≤Hn

∑
hσ>Hn

π
(j′)
h1
π

(j′)
σ,hσ

+
∑

h1>Hn

∑
hσ≤Hn π

(j′)
h1
π

(j′)
σ,hσ

}
≤
∑

h1,hσ≤Hn π
(1)
h1
π

(1)
σ,hσ

∥∥∥∥∏T
t=1 φΣ

(1)
hσ

(
xt−

∑K
k=1A

(1)
k,h1

xt−k
)
−
∏T
t=1 φΣ

(2)
hσ

(
xt−

∑K
k=1A

(2)
k,h1

xt−k
)∥∥∥∥

1

+2ε2+
∑

h1,hσ<Hn
|π(1)
h1
π

(1)
σ,hσ
−π(2)

h1
π

(2)
σ,hσ
|+4ε, using the fact that

∑
h1≤Hn

∑
hσ>Hn

π
(j′)
h1
π

(j′)
σ,hσ

=

(
∑

h1≤Hn π
(j′)
h1

)(
∑

hσ>Hn
π

(j′)
σ,hσ

) ≤ ε, since
∑

h1>Hn
πh1 < ε,

∑
hσ>Hn

πσ,hσ < ε.

Lemma 5: The upper bound for
∑

h1,hσ<Hn
|π(1)
h1
π

(1)
σ,hσ
−π(2)

h1
π

(2)
σ,hσ
| is given by

∑
h1,hσ<Hn

∣∣∣∣π̃(1)
h1
π̃

(1)
σ,hσ
−

π
(2)
h1
π

(2)
σ,hσ

∣∣∣∣+

∣∣∣∣1− (1− ε)2

∣∣∣∣, where π̃ = πh
(1−

∑
h>H πh) .
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Proof: Note that
∑

h1,hσ<Hn
|π(1)
h1
π

(1)
σ,hσ
− π(2)

h1
π

(2)
σ,hσ
| ≤

∑
h1,hσ<Hn

∣∣∣∣π(1)
h1
π

(1)
σ,hσ
−
(

1−
∑
h1>H

π
(1)
h1

)(
1−

∑
hσ>H

π
(2)
σ,hσ

)
π

(2)
h1
π

(2)
σ,hσ

∣∣∣∣
+

∑
h1,hσ<Hn

∣∣∣∣(1−
∑
h1>H

π
(1)
h1

)(
1−

∑
hσ>H

π
(2)
σ,hσ

)
π

(2)
h1
π

(2)
σ,hσ
− π(2)

h1
π

(2)
σ,hσ

∣∣∣∣
=

(
1−

∑
h1>H

π
(1)
h1

)(
1−

∑
hσ>H

π
(2)
σ,hσ

) ∑
h1,hσ<Hn

∣∣∣∣π̃(1)
h1
π̃

(1)
hσ
− π(2)

h1
π

(2)
σ,hσ

∣∣∣∣
+

∣∣∣∣(1−
∑
h1>H

π
(1)
h1

)(
1−

∑
hσ>H

π
(2)
σ,hσ

)
− 1

∣∣∣∣( ∑
h1,hσ<Hn

π
(2)
h1
π

(2)
σ,hσ

)

≤
∑

h1,hσ<Hn

∣∣∣∣π̃(1)
h1
π̃

(1)
σ,hσ
− π(2)

h1
π

(2)
σ,hσ

∣∣∣∣+

∣∣∣∣1− (1− ε)2

∣∣∣∣, where π̃ =
πh

(1−
∑

h>H πh)
. (36)

Lemma 6: For the PDPM-VAR the prior tail condition (2A) in Theorem 2 is satisfied.

Proof: For the PDPM-VAR, the prior probability on the sieve Fn defined in (30) satisfies

Π(Fcn) ≤ Pr

( ∑
hσ>Hn

πσ,hσ > ε

)
+ Pr

( ∑
h1>Hn

πh1 > ε

)
+HnP

∗
2

(
λD(Σ) ≤ σ2

n

)
+

HnP
∗
2

(
λ1(Σ) > σ2

n(1 + ε/
√
D)Mn

)
+HnP

∗
2

(
λ1(Σhσ)

λD(Σhσ)
> nHn

)
,

using the fact that P [(A ∩ B ∩ C)c] = P [Ac ∪ Bc ∪ Cc] ≤ P (Ac) + P (Bc) + P (Cc). Using
the stick-breaking representation for DP for the first term and the prior tail conditions, and
following similar steps as in the proof of Proposition 2 in Shen et al. (2013), one has Π(Fcn)

.
∑
m=1,2

{eαm
Hn

log(1/ε)
}Hn +Hn

{
e−c1σ

−2c2
n + σ−2c3

n

(
1 + ε/

√
D
)−c3Mn + (n

1
logn )−κCnε

2}
. 2

(
Cnε2/ log(n)

)−Cnε2/ log(n)
+
(
Cnε2/ log(n)

)(
e−c1n + nc3/c2(1 + ε/

√
D)−c3n + e−κCnε

2)
. e−bn

since n
1

logn = e and due to the fact that
(
Cnε2/ log(n)

)
log{−Cnε2/ log(n)} > Cnε2 for

large n, where 0 < b < min{Cε2/2, c1, c3 log(1 + ε/
√
D), κCε2}. Hence the first condition

(2A) in Theorem 2 is satisfied.

Lemma 7: For the PDPM-VAR, we have
∑

jh1
∈N
∑

1≤lhσ≤Hn

√
N(ε,Fn,jh1

lhσ
)Π(Fn,jh1

lhσ
)e−(4−c)nε2 →

0 as n→∞ for a suitable choice of constants.
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Proof: Hence we can write
√
N(ε,Fn,jl, || · ||1)Π(Fn,jl)

.

√
CHn1

(1

ε

)C1Hn ×
{
C
(

1 + on(1)

)KD2}Hn
×
(1

ε

)HnKD2+D(D−1)

× exp

{
1

2

(
DHn log(M) +Hn log

C1

ε
)

}
× nH

3
n(KD2(T−2)+ 1

2
KD2)+Hn

c2

(
KD2(T−1)+TKD3

)
×

{
n−H

3
n(r+1)K

∏
h1≤Hn

(jh1 − 1)
−1(jh1

≥2)K(r+1)
}
×
{ ∏
h1≤Hn

(jh1)2KD2(T−2)+K(D2−1)

}

×
{ ∏
hσ≤Hn

(nlhσ )
D(D−1)

2
+KD2Hn(T−1)D−1

2

}
×
{ ∏
hσ≤Hn

(n
κ
2

(lhσ−1))
−1(lhσ

≥1)

}
.

The above can be simplified further as√
CHn1 exp

{
Hn log(

C1

ε
) +

Hn

2

(
KD2 +D(D − 1)

)
log(

1

ε
)

}
× exp

{
1

2

(
DHn log(M) +

Hn

c2

(
KD2(T − 1) + TKD3

)
log(n))

}
× nKH

3
n

(
D2(T−2)+ 1

2
D2−r

)
−KH3

n

×
{ ∏
h1≤Hn

(jh1)KD
2(T−2)+K

2
(D2−1)

}{ ∏
h1≤Hn

(jh1 − 1)
−1(jh1

≥2)K(r+1)
}

×
∏

hσ≤Hn

{
nlhσ

}D(D−1)
4

+KD2Hn(T−1)D−1
4

×
{ ∏
hσ≤Hn

(nκ(lhσ−1)/2)
−1(lhσ

≥1)

}
, (37)

Note that nKH
3
n

(
D2(T−2)+ 1

2
D2−r

)
is bounded when r > D2(T − 2) + 1

2D
2. Further, looking

at the terms involving j in the last line of (37), one can sum over j (for a fixed h1) to have∑
jh1≥2

{
(jh1)KD

2(T−2)+K
2

(D2−1)(jh1 − 1)
−1(jh1

≥2)K(r+1)} ≈ ∑
jh1≥2

(jh1)KD
2(T−2)+K

2
(D2−1)−K(r+1) =

(
1 + B

)
,

where B is a suitable finite constant that does not depend on n when r is large enough such
that r > D2(T − 2) + 1

2D
2, and where the approximation holds for n large enough.

Similarly, looking at the terms involving l, one can sum over l (for a fixed hσ) to have∑
lhσ≥1

{
(nlhσ )

D(D−1)
4
−(κ/2)

}
×
{

(nlhσ )KD
2Hn(T−1)D−1

4

}
≤

√∑
lhσ≥1

{
(nlhσ )

D(D−1)
2
−(κ/2)

}
×

√∑
lhσ≥1

{
(nlhσ )KD

2Hn(T−1)D−1
2

}
where the inequality

is using Cauchy-Schwartz, and the first term in the upper bound (denoted by B1 ) is finite
when κ > D(D − 1)/2.

Hence the upper bound on the combined terms in the last two lines in (37) is given by(
1+B

)Hn(1+B1

)Hn/2nKH3
n

(
D2(T−2)+ 1

2
D2−r

)
−KH3

n×
∏
hσ≤Hn

√∑
l2≤hσ≤Hn

(nlhσ )KD
2Hn(T−1)D−1

2

=
(
1+B

)Hn(1+B1

)Hn/2nKH3
n

(
D2(T−2)+ 1

2
D2−r

)
×
∏
hσ≤Hn

√∑
l2≤hσ≤Hn

{
(nlhσ )KD

2Hn(T−1)D−1
2

n2KH2
n

}
.
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The sum within the square root can be simplified as
∑

l2≤hσ≤Hn

{
(nlhσ )KD

2Hn(T−1)D−1
2

n2KH2
n

}
=∑

hσ≤Hn
(
nKD

2Hn(T−1)D−1
2
−2KH2

n
)lhσ =

(
1−(r∗)Hn

1−r∗

)
< 1, where the equality is obtained by

summing Hn terms in geometric progression, and r∗ = nKD
2Hn(T−1)D−1

2
−2KH2

n < 1 since
KD2Hn(T − 1)D−1

2 − 2KH2
n < 0 when n is large enough, and recalling that 1 ≤ lhσ = hσ ≤

Hn. Combining the above expressions,
∑

jh1
∈N
∑

1≤lhσ≤Hn

√
N(ε,Fn,jh1

lhσ
)Π(Fn,jh1

lhσ
)

.

(
1 + max{B,B1}

)Hn
nKH

3
n

(
D2(T−2)+ 1

2
D2−r

)(
1− (r∗)Hn

1− r∗

)Hn
× exp

{
Hn log(

C1

ε
) +

Hn

2
(KD2 +D(D − 1)) log(

1

ε
)

}
× exp

{
Cnε2

2

(
D +

1

2c2
KD2(T − 1 + TD)

)}
.

(
K∗

nKH
2
n

(
r−D2(T−2)+ 1

2
D2
))Hn

× exp

{
Cnε2

2

{(
D +

1

2c2
KD2(T − 1)

)
+ log(

C1

ε
) +

1

2
(KD2 +D(D − 1)) log(

1

ε
))
}}

(38)

where r∗ < 1, r − D2(T − 2) + 1
2D

2 > 0, Hn log(Mn) = Cnε2, and K∗ > 0 is some finite
constant that is a function of K,D, ε, and other constants but does not depend on n.

Therefore,
∑

jh1
∈N
∑

1≤lhσ≤Hn

√
N(ε,Fn,jh1

lhσ
)Π(Fn,jh1

lhσ
)e−(4−c)nε2 → 0 as n → ∞

for a suitable choice of C such that 1
2

(
D+ 1

2c2
KD2(T −1)

)
C < 1. Hence the condition (2B)

in Theorem 2 is satisfied and the strong posterior consistency result is proved corresponding
to the PDPM-VAR model.

Appendix C. Posterior Computation Steps

C.1 Residual Covariance Updates:

Under the low rank representation, we impose DP mixture priors on (Γ∗i , Ξi, Ψi) leading
to a mixture prior on Σi. This corresponds to the prior Σi ∼

∑∞
hσ=1 πσ,hσδ(Γ∗hσ ,Ξhσ ,Ψhσ )

,

where (Γ∗hσ ,Ξhσ ,Ψhσ) ∼ P ∗2 ≡ PΓ∗ × PΞ × PΨ. Here PΓ∗ is a product of independent
standard normal distributions, PΞ is a product of independent Gamma(1/2, 1/2) distribu-
tions yielding a half-Cauchy prior on the diagonal elements of Γ and a Cauchy prior on
the lower-off-diagonal elements of Γ as in Ghosh and Dunson (2009), and the inverse of the
diagonal elements of Ψ have independent Gamma(ασ, βσ) priors. Note that here Γ∗i is not
a square matrix, and by diagonal elements we refer to elements Γi,1,1, . . . ,Γi,B,B.

Under the stick-breaking representation of Sethuraman (1994), we can write πσ,hσ =

νσ,hσ
∏hσ−1
lσ=1 (1 − νσ,lσ), νlσ ∼ Beta(1, α2). We use the slice sampling approach of Walker

(2007) to facilitate sampling. This approach introduces a cluster membership indicator, V ,
with Vi = hσ when subject i belongs to cluster hσ, and let Vhσ = {i : Vi = hσ} be the
indices of all subjects belonging to covariance cluster hσ and let nσ,hσ be the cardinality
of this set. Let gi be a uniformly distributed latent variable used to reduce the stick-
breaking representation of the DPM to a finite sum. Our sampler updates νσ,hσ , and gi as:

νσ,hσ |{V1, . . . , VN} ∼ Beta
(

1 + nσ,hσ , α2 +
∑n

i=1 I(Vi>νσ,hσ )

)
, gi|Vi ∼ U(0, πσ,Vi).
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The cluster membership indicators Vi are then sampled from a multinomial distribution
with posterior probabilities

(
p(Vi = 1|−), . . . , p(Vi = h∗σ|−)

)
expressed as, p(Vi = hσ|−) ∼

I(gi<πσ,hσ )

∏Ti
t=1 φΣhσ

(xi,t;Ai1,...,AiK)∑h∗σ
h′σ=1

{
I(gi<πσ,h′σ

)

∏Ti
t=1 φΣ

h′σ
(xi,t;Ai1,...,AiK)

} , where h∗σ = min{hσ : gi > 1−
∑hσ

h′σ=1 πσ,hσ , for all i}.

Conditioned on the cluster memberships, it is straightforward to update the variables in the
low rank representation of Σ using similar steps as in Ghosh and Dunson (2009). We start
by sampling the elements of Γh∗σ one row at a time from their full conditionals: Γ∗hσ ,d′ |− ∼

N
(
µΓ∗hσ,d′

,ΣΓ∗hσ,d′

)
, where ΣΓ∗hσ,d′

=
(
σ−2
hσ ,d′

∑
i∈Vhσ

∑Ti
t=1(E∗η,itd′)′(E∗η,itd′) + Imin{d′,B}

)−1
,

µΓ∗hσ,d′
= ΣΓ∗hσ,d′

(
σ−2
hσ ,d′

∑
i∈Vhσ

∑Ti
t=1 E∗η,itd′

[
x

(d′)
i,t −Ai,d′,•zi,t

])
, E∗η,itd′ =

(
η∗i,t,1, . . . , η

∗
i,t,min{d′,B}

)′
,

x
(d)
i,t is the response for the ith subject at the d′th node and tth time point, and A′ik,d′• is the

transpose of the d′th row of Aik, Ai,d′• is the DK × 1 vector formed by stacking the A′ik,d′•
across all lags, and zi,t = [x′i,t−1, . . . ,x

′
i,t−K ]′ is the DK × 1 vector of previous outcomes

used to predict the outcome at time t, padded with zeros for the case that t− k < 1.

The conditionals for the remaining terms in the low rank representation for Σi are: η∗i,t|− ∼
N
(
µ η∗i,t ,Σ η∗i,t

)
, ξhσ ,b|− ∼ Gamma

(
1+Nhσ

2 , 1
2

[
1 +

∑
i∈Vhσ

∑Ti
t=1 η∗

2

i,t,b

])
,

σ−2
hσ ,d′
|− ∼ Gamma

(
aσ +

Nhσ
2 , bσ + 1

2

∑
i∈Vhσ

∑Ti
t=1

[
x

(d′)
i,t −Ai,d′,•zi,t − Γ∗i,d′η

∗
i,t

]2
)

where

Nhσ is equal to the total number of time points across all subjects in covariance cluster hσ,

Σ η∗i,t =
(
Ξ−1
Vi

+ Γ′ViΨViΓVi

)−1
, and µ η∗i,t = Σ η∗i,tΓ

∗′
Vi

ΨVi

[
x

(d′)
i,t −Ai,d′,•zi,t

]
.

C.2 Autocovariance Parameter Updates

C.2.1 Computation Steps for PDPM-VAR

As with the covariance terms, we use the stick-breaking representation (Sethuraman, 1994)
of the Dirichlet process to enable posterior computation under the DPM priors. For the au-
tocovariance terms, we can express the prior as, Ai|PΘ ∼ PΘ, PΘ =

∑∞
h1=1 πh1δAh , where

πh1 = νh1

∏
l1<νh1

(1 − νl1), νh1 ∼ Beta(1, α1), and Ah ∼ P ∗1 , where P ∗1 is a multivariate

normal distribution with mean 0 and variance diag{τ 2}. The prior for the individual τ2

terms is given by p(τ2
k,d′) = λ2

2 exp{−1
2λ

2τ2
k,d′}, which implies a double exponential base

measure for modeling the autocovariance terms (Park and Casella, 2008). Furthermore, we
place a conjugate Gamma(r, δ) hyperprior on λ2 to facilitate Gibbs sampling. Throughout
our applications we fix r = 1.0 and δ = 2.0, which yield good performance in a wide range
of settings. As with the residual covariance, we use the slice sampling approach of Walker
(2007) to facilitate sampling from this infinite mixture. Let H1 be a cluster membership
indicator, where H1,i = h1 if subject i belongs to the h1th autocovariance matrix cluster.
Let Hh1 = {i : H1,i = h1} be the indices of all subjects belonging to autocovariance cluster
h1, with nh1 being the cardinality of this set. The sampler proceeds by introducing a latent
uniform variable ui, relating the cluster memberships to the stick breaking representation of
the DPM. The sampler proceeds by iteratively sampling νh1 and u1,i from their full condi-

tionals, νh1 |{H1,i} ∼ Beta
(

1 + nh1 , α1 +
∑n

i=1 I(H1,i>h1)

)
, u1,i|νh1 , H1,i ∼ U(0, πH1,i). The

cluster memberships, H1,i, are then sampled from a multinomial distribution with posterior
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probabilities (P (H1,i = 1|−), . . . , P (H1,i = h1
∗|−)) given by:

P (H1,i = h1|−) =
I(u1,i<πh1

)

∏Ti
t=1 φΣVi

(xi,t−
∑K
k=1 Ak,h1

xi,t−k)∑h1
∗

h1
′=1

{
I(u1,i<πh1

′ )
∏Ti
t=1 φΣVi

(
xi,t−

∑K
k=1 Ak,h1

′xi,t−k

)} where h1
∗ = min{h1 :

u1,i > 1−
∑h1

h1
′=1 πA,h1

′ , for all i}.

Conditioned on the cluster memberships, we sample the autocovariance matrices across
all lags one outcome at a time. The full conditional for Ah1,d′• is given by Ah1,d′•|− ∼

N(µ∗Ah1
,d′ ,Σ

∗
Ah1

,d′) with variance and mean: Σ∗Ah1
,d′ =

(∑
i∈Hh1

∑Ti
t=1 σ

−2
i,d′zi,tz

′
i,t + Λ−1

D

)−1
,

µ∗Ah1
,d′ = Σ∗Ah1

,d′

{∑
i∈Hh1

∑Ti
t=1

[
σ−2
i,d′zi,t

(
x

(d′)
i,t − Γ∗i,d′η

∗
i,t

)]}
, respectively.

Finally, the parameters of the double exponential base measure can be updated using
the approach outlined in Park and Casella (2008). The variance term in the base measure

can be sampled using τ−2
k,d′ ∼ InverseGaussian

(√
λ2

CĀ2
k,d′

, λ2

)
, for k = 1, . . . ,K and d′ =

1, . . . , D2, where C is the number of clusters. The posterior distribution for the lasso

parameter is a gamma distribution, λ2|τ 2 ∼ Gamma(KD2 + r, δ +
∑K

k=1

∑D2

d′=1

τ2
k,d′
2 ).

C.2.2 Computation Steps for rgPDPM-VAR

The rgDPM-VAR requires some modification to the slice sampling approach. In particu-
lar, the sampler for the rgDPM-VAR extends the latent terms in the slice sampler along
the outcome dimension. Let H1d′ be the vector of autocovariance cluster indices for out-
come d′, with H1d′,i = h1,d′ when subject i belongs to outcome d′ cluster h1,d′ , and let
Hh1,d′ = {i : H1d′,i = h1,d′} be the indices of all subjects belonging to outcome d′ cluster
h1,d′ , with nh1,d′ being the cardinality of this set. Then we have the following full con-

ditionals: νh1,d′ |{H1d′,i} ∼ Beta
(

1 + nd′,h, α1 +
∑n

i=1 I(H1d′,i>h1,d′ )

)
, u1d′,i|νh1,d′ , H1d′,i ∼

U(0, πd′,H1d′,i
). The cluster memberships, H1d′,i, are then sampled from a multinomial dis-

tribution with posterior probabilities
(
P (H1d′,i = 1|−), . . . , P (H1d′,i = h1,d′

∗|−)
)

given by:

P
(
H1d′,i = h1,d′ |−

)
=

I(u1d′,i<πd′,h1,d′
)

∏Ti
t=1 φΣVi

(
x

(d′)
i,t −

∑K
k=1 Ak,h1d′

xt−k

)
∑h1,d′

∗

h1,d′
′=1

{
I(u1d′,i<πd′,h1,d′

′ )
∏Ti
t=1 φΣVi

(
x

(d′)
i,t −

∑K
k=1 Ak,h1,d′

′xt−k

)} , where h1,d′
∗ =

min{h : u1d′,i > 1 −
∑h

h1,d′
′=1 πd′,h1,d′

′ , for all i}. Conditioned on the cluster memberships,

the autocovariance terms can be updated in an identical manner to the PDPM-VAR. When
updating the parameters of the double exponential base measure the variance terms can be

sampled from inverse Gaussian distributions: τ−2
k,d′,d∗ ∼ InverseGaussian

(√
λ2
d′

Cd′ Ā
2
k,d′,d∗

, λ2
d′

)
for k = 1, . . . ,K, d∗ = 1, . . . , D and d′ = 1, . . . , D, where Cd′ is the number of autocovari-
ance clusters for outcome d′ and τ−2

k,d′,d∗ is the variance term corresponding to the d∗th

element of the d′th row of Ak, and Āk,d′,d∗ is the average of element d∗ of the d′th row of
Ak across the Cd′ clusters. The outcome-specific lasso parameters have gamma posteriors:

λ2
d′ |τ 2

k,d′,d∗ ∼ Ga(DK + r, δ +
∑K

k=1

∑D
d∗=1

τ2
k,d′,d∗

2 ) for d′ = 1, . . . , D.
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D PDPM-VAR lgPDPM-VAR rgPDPM-VAR

50 1736 3160 2850
100 2329 3072 3011

Table 3: Average effective sample size (ESS) for elements of the autocovariance matrix for
the three proposed methods for varying number of nodes (D). All ESS terms are
based on 1500 burnin iterations followed by 3500 MCMC iterations.

C.2.3 Computation Steps for lgPDPM-VAR

The sampling steps under the lgPDPM-VAR model proceeds in a similar manner as the
other variants outlined in the manuscript, and are omitted here for space constraints.

Appendix D. Robustness and Convergence

We assessed the mixing of the chains for the simulation experiment. We evaluated the effec-
tive sample size (ESS) and visually inspected trace plots. Table 3 displays the average ESS,
providing a picture of how well the sampler does in general. The table clearly displays that
we can achieve good mixing. Trace plots for some selected elements of the autocovariance
matrix are displayed in Figure 6. The plots do not show any evidence of poor mixing.
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Figure 6: Trace plots for 4 selected elements of the subject-specific autocovariance matrices.
(A) subject 34, node 49 lag 2 effect on node 25; (B) subject 38, node 23 lag 1
effect on node 86; (C) subject 31, node 70 lag 1 effect on node 77; (D) subject
38, node 23 lag 2 effect on node 45.
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