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Abstract

Compressed sensing is a signal processing technique used to efficiently acquire and recon-
struct signals across various fields, including science, engineering, and business. A critical
research challenge in compressed sensing is constructing a sensing matrix with desirable
reconstruction properties. For optimal performance, the reconstruction process requires
the sensing matrix to have low coherence. Several methods have been proposed to create
deterministic sensing matrices. We propose a new statistical method to construct de-
terministic sensing matrices by intelligently sampling rows of Walsh-Hadamard matrices.
Compared to existing methods, our approach yields sensing matrices with lower coherence,
accommodates a more flexible number of measurements, and entails lower computational
cost.

Keywords: coding theory, coherence, compressed sensing, design of experiment, hadamard
matrix, supersaturated design

1. Introduction

The interface between the design of experiments (DOEs), also known as data collection, and
data modeling forms the foundation of statistics. This interface manifests in various forms
across numerous modern statistical models. Examples include factorial designs for linear
models, optimal designs for generalized linear models, space-filling designs for Gaussian
process models in computer experiments, and response surface designs for process modeling
and optimization. Penalized linear models have garnered significant interest in the field of
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statistics. This work aims to construct DOEs for compressed sensing, a form of penalized
linear model used for acquiring and reconstructing sparse signals in applications such as
magnetic resonance imaging, single-pixel cameras, and radar.

The general formulation of DOEs is an optimization problem: selecting a finite number
of input configurations among all level combinations according to a desirable criterion. This
is not a routine optimization problem that can be readily solved by standard software tools.
Addressing this problem requires novel statistical ideas, tools, methods, and algorithms.
The foundational tools used in this work include Hadamard matrices, coding theory, and
statistical search algorithms. While these tools have traditionally been used for constructing
DOEs for linear models, we apply them to the emerging field of compressed sensing.

There are two main categories of DOEs. One consists of model-based optimal designs
pioneered by Jack Kiefer and others (Wynn, 1984; Fedorov and Hackl, 2012). The method
for low-rank matrix recovery proposed by Mak and Xie (2018) falls into this category. The
other consists of model-free DOEs, including minimum aberration designs and supersatu-
rated designs. In this latter category, tools such as Hadamard matrices (Lin, 1993) and
coding theory (Xu, 2005; Xu and Wong, 2007) are used to construct DOEs for standard
linear models.

Our proposed DOEs for compressed sensing are related to supersaturated designs and
can be viewed as new supersaturated designs for compressed sensing. Supersaturated de-
signs are typical DOEs for penalized linear models. For example, Qi and Chien (2023) used
supersaturated designs for a penalized linear model to screen out insignificant factors. Com-
mon criteria for selecting supersaturated designs include minimax, E(s2), UE(s2), mean
square correlation, D-optimality, Bayesian D-optimality, S-optimality, MS-optimality, and
others. Extensive research has been conducted to construct supersaturated designs based
on these criteria (Shah, 1960; Booth and Cox, 1962; Eccleston and Hedayat, 1974; Lin,
1993; Wu, 1993; Deng and Lin, 1994; Tang and Wu, 1997; Jones et al., 2008; Jones and
Majumdar, 2014).

Compared to existing supersaturated designs, our DOEs are related to UE(s2)-optimal
supersaturated designs proposed by Jones and Majumdar (2014), particularly in construct-
ing two-level supersaturated designs by sampling the rows of Hadamard matrices and al-
lowing for unbalanced designs. According to Jones and Majumdar (2014), any n rows of
a p × p Hadamard matrix form a UE(s2)-optimal design, termed type T0 designs in their
paper. As we will show below, our proposed DOEs for compressed sensing are formed by
particular n rows of a p× p Hadamard matrix, making our DOEs UE(s2)-optimal as well.
Additionally, according to Jones and Majumdar (2014), all type T0 designs are D-optimal
supersaturated designs, a UE(s2)-optimal design is Bayesian D-optimal when the prior vari-
ance is sufficiently small, and UE(s2)-optimality is equivalent to S-optimality (Shah, 1960)
and MS-optimality (Eccleston and Hedayat, 1974). Thus, as a special type T0 UE(s2)-
optimal design, our design inherits all these advantages, including being UE(s2)-optimal,
D-optimal, Bayesian D-optimal for small prior variance, S-optimal, and MS-optimal.

The major difference is that while the UE(s2)-optimal designs randomly sample rows,
we intelligently sample the rows of Hadamard matrices using sophisticated tools in coding
theory to optimize the coherence criterion widely used in compressed sensing. This signif-
icant difference makes our DOEs superior to the UE(s2)-optimal designs for compressed
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sensing. To demonstrate that the coherence of our DOEs is significantly smaller than that of
the UE(s2)-optimal designs, we conduct simulations and present the results in Appendix B.

2. Compressed Sensing

A compressed sensing procedure consists of two steps. The first step is to acquire a com-
pressed version of a sparse signal via a small number of measurements. The second step is to
reconstruct the original signal from these measurements using a reconstruction algorithm.

Denote the original signal by a p-dimensional vector x with no more than s nonzero
entries (i.e., s-sparse). The n-dimensional measurement vector y can be acquired by

y = Ax, (1)

where A is the n × p sensing matrix (n < p). Without loss of generality, we assume the
measurement error is zero. Instead of storing all the values in x and then compressing them
to obtain y, we simultaneously sense and compress the signal x to obtain y. This means
that in the measurement acquisition stage, x is not observed, and only the measurement
vector y is observed and stored, significantly reducing the number of measurements that
need to be stored (Eldar and Kutyniok, 2012).

There are two main research tasks in compressed sensing. The first task is developing
methods to construct the sensing matrix A to ensure that the measurement vector y captures
sufficient information for accurate signal reconstruction. The second task is developing
algorithms to reconstruct the original sparse signal x from the measurement vector y given
a sensing matrix A. Reconstruction algorithms include Basis Pursuit (Chen et al., 2001)
and Iterative Hard Thresholding (Blumensath and Davies, 2009), among others. We focus
on the first task.

The following restricted isometry property (RIP) is a popular criterion to evaluate sens-
ing matrices:

Definition 1 Let A be an n× p matrix. If there is a constant 0 < δs < 1 such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22
holds for any s-sparse signal x ∈ Rp, then the matrix A satisfies the restricted isometry
property (RIP) of order s. The minimum nonnegative integer δs is called the restricted
isometry constant (RIC) of order s.

The RIP is used to guarantee the exact reconstruction of sparse signals. A sufficient con-
dition for the exact reconstruction of all s-sparse signals is δ2s <

√
2− 1 (Candes and Tao,

2005).
Coherence is another widely used criterion to evaluate sensing matrices. The coherence

of an n× p matrix A is defined as

µ(A) = max
1≤i<j≤p

|a>i aj |
‖ai‖2‖aj‖2

,

where ai is the ith column of A and ‖ · ‖2 is the `2-norm (Bourgain et al., 2011). According
to Welch (1974), for any n× p matrix A with n < p,√

p− n
n(p− 1)

≤ µ(A) ≤ 1.
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In compressed sensing, small µ(A) is preferred. A sufficient condition for the exact recon-
struction of all s-sparse signals is µ(A) < 1/(2s−1) (Eldar and Kutyniok, 2012). Hereinafter,
we use coherence as a guiding criterion.

Sensing matrices can be generated randomly or deterministically, and these two classes
complement each other. Random sensing matrices can be analyzed probabilistically. For
example, random matrices with entries drawn from particular probability distributions sat-
isfy the RIP of order s with high probability (Baraniuk et al., 2008). However, from a
practical viewpoint, there is no guarantee that a specific realization of a random matrix will
work, and random matrices usually require large storage space. In contrast, the RIP and
coherence of deterministic sensing matrices are guaranteed by their constructions, removing
variability and significantly reducing uncertainty in decision-making with compressed sens-
ing methods. Moreover, deterministic sensing matrices usually provide significant storage
savings because their entries are often integers or they are often sparse matrices.

For these reasons, deterministic sensing matrices are gaining popularity, particularly
those based on the coherence criterion. Many methods to construct deterministic sensing
matrices have been proposed. Some construction methods are based on finite fields. DeVore
(2007) used polynomials over finite fields to construct binary deterministic sensing matrices.
Li et al. (2012) generalized DeVore’s work by using algebraic curves over finite fields. Wang
et al. (2019) provided constructions from optimal codebooks and codes, which generalizes
the constructions in DeVore (2007) and Li et al. (2012). Meanwhile, some methods use
error-correcting codes. Jafarpour et al. (2008) used the adjacency matrix of an expander
graph, obtained from Parvaresh-Vardy codes (Parvaresh and Vardy, 2005), to construct
sensing matrices. Howard et al. (2008) used second-order Reed-Muller functions, but their
sensing matrices can only be of size 2m × 2m(m+1)/2, which is inflexible. Yu and Zhao
(2013) proposed real-valued ternary deterministic sensing matrices using optical orthogonal
codes. Additionally, families of sensing matrices, called equiangular tight frames (ETFs)
(Strohmer and Heath, 2003), achieve the well-known Welch bound (Welch, 1974). Several
infinite families of ETFs were given in Sustik et al. (2007) and Fickus et al. (2012). Li and Ge
(2014) provided deterministic sensing matrices arising from these near orthogonal systems.
Lastly, some construction methods are based on knowledge from domains such as signal
processing and lattice theory. Applebaum et al. (2009) used chirps to construct deterministic
sensing matrices for Fourier signals. Guo and Liu (2018) constructed deterministic sensing
matrices using semi-lattices. We focus on deterministic construction of sensing matrices
with real numbers and flexible sizes. The existing deterministic sensing matrices mentioned
above often contain complex numbers, have restrictive sizes, and are constructed using
non-statistical methods.

Compared to existing deterministic sensing matrices, the sensing matrices constructed
from our DOEs have four advantages. First, they have smaller coherence for many values of
n and p, leading to better signal reconstruction. Second, our method can construct sensing
matrices with any number of rows, offering much more flexibility than existing methods.
This flexibility is important in many real applications. Third, they align with the Fast
Hadamard Transform technique, enabling the matrix-vector multiplication between a p× p
matrix and a p-dimensional vector to be computed at a lower cost ofO(p log p) (Wang, 2012).
Lastly, the entries in our sensing matrices are ±1. Compared to floating-point numbers, ±1
entries require much less storage space and lower computational complexity. Moreover, the
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corresponding hardware implementation is much easier, especially in the analog domain,
where the multiplication between a signal value and a ±1 can be readily implemented as a
simple switch.

3. The Proposed Method

The key idea of our method is to intelligently take n rows of the p × p Walsh Hadamard
matrix to form an n × p (n < p) submatrix with small coherence, which will then be used
as the sensing matrix in compressed sensing.

When n and p are large, an exhaustive search over all submatrices is computationally
prohibitive. Our method overcomes this difficulty in two steps. The first step is to convert
the task of finding an n × p sub-Walsh Hadamard matrix to an equivalent task based on
coding theory. The second step is to develop an efficient algorithm to solve the equivalent
coding theory task. The details are discussed below.

3.1 Walsh Hadamard Matrix and Binary Linear Code

We establish a connection between Walsh Hadamard matrices and binary linear codes fol-
lowing the well-known link between Hadamard matrices and binary codes (Hedayat et al.,
2012).

We first state some definitions. A p × p matrix H is called a Hadamard matrix if its
entries take values −1 and +1 and H>H = pIp, where Ip is the p× p identity matrix. The
p× p Walsh Hadamard matrix Hp is a Hadamard matrix recursively constructed by

Hp =

(
Hp/2 Hp/2

Hp/2 −Hp/2

)
,

where p = 2m for some positive integer m and

H2 =

(
1 1
1 −1

)
.

The first column and the first row of Hp consist of all 1’s. Throughout, let Hn,p denote an
n× p submatrix formed by n rows of Hp, where n < p = 2m.

A binary code of length n and size p is a subset of {0, 1}n with p elements. Write it as
a p× n binary matrix Cp,n = [c1, . . . , cp]

>, where each row ci ∈ {0, 1}n is a codeword. Let
w(ci) denote the number of nonzero entries of ci, also called the Hamming weight of ci. The
Hamming distance between two codewords ci and cj , denoted by ∆(ci, cj), is w(ci − cj).
Then d(Cp,n) is defined as the minimum distance of code Cp,n, i.e., mini 6=j ∆(ci, cj). A
binary linear code is a binary code the codewords of which form a linear space. A binary
linear code has full rank if its generator matrix has full row rank. The minimum distance of a
full rank binary linear code Cp,n equals its minimum nonzero weight, given as (MacWilliams
and Sloane, 1977)

d(Cp,n) = min
c∈Cp,n,c 6=0

w(c). (2)

The Walsh Hadamard matrix is closely related to a special binary linear code, called
the binary first-order Reed-Muller code (MacWilliams and Sloane, 1977). We construct a
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binary first-order Reed-Muller code1 C2p,p by

C2p,p =

(
Bp

B̄p

)
, (3)

where

Bp =
1

2
(Jp,p −H>p ), B̄p =

1

2
(Jp,p +H>p ),

and hereinafter Jp,q denotes a p×q matrix the entries of which are all 1’s (MacWilliams and
Sloane, 1977). The construction in (3) indicates a direct one-to-one mapping between the
first-order Reed-Muller code C2p,p and the Walsh Hadamard matrix Hp, which holds only for
a Walsh Hadamard matrix, but not for a general Hadamard matrix. The same relationship
extends to sub-codes and submatrices. For a sub-code C2p,n obtained by taking n columns
of C2p,p, we have

C2p,n =

(
Bp,n

B̄p,n

)
, (4)

where

Bp,n =
1

2
(Jp,n −H>n,p), B̄p,n =

1

2
(Jp,n +H>n,p).

We can use (4) to obtain sub-Walsh Hadamard matrices via sub-codes.

The following theorem connects the coherence of a sub-Walsh Hadamard matrix Hn,p

and the minimum nonzero weight of its corresponding sub first-order Reed-Muller code
C2p,n.

Theorem 2 If µ(Hn,p) < 1, C2p,n constructed in (4) is a full rank binary linear code and

µ(Hn,p) = 1− 2

n
min

c∈C2p,n,c 6=0
w(c). (5)

Here (5) does not hold when µ(Hn,p) = 1, because one can find an Hn,p with µ(Hn,p) of 1
but the minimum nonzero weight not being 0, using the fact that (2) does not hold for a
linear code without full rank.

According to Theorem 2, a sub-code with a large minimum nonzero weight, or equiva-
lently a large minimum distance, leads to a sub-Walsh Hadamard matrix with small coher-
ence. The fact that C2p,n consists of Bp,n and B̄p,n stacked together is critical for Theorem 2.
For example, consider two codewords of Bp,4, ci = (0, 0, 1, 1)> and cj = (1, 1, 0, 0)>. They
have the largest possible distance 4, but the coexistence of these two codewords results in
two columns with opposite signs in the sub-Walsh Hadamard matrix H4,p, thus yielding the
largest possible coherence 1. If we only use Bp,4 with a large minimum distance, we cannot
rule out the coexistence of ci and cj since they already have the largest possible distance.
However, if we attach B̄p,4 under Bp,4 to obtain C2p,4, there will be a pair of codewords
ci = (0, 0, 1, 1)> and c̄j = (0, 0, 1, 1)>, which has the smallest possible distance 0. This
makes it possible to correctly rule out the coexistence of ci and cj . Small coherence requires
that the distance between any two codewords of Bp,n is neither too small nor too large.

1. It corresponds to a resolution IV two-level fractional factorial design.
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Now, our problem is converted into finding a sub first-order Reed-Muller code C2p,n

with a large minimum nonzero weight. The computational complexity of finding an Hn,p

with small coherence is

O
((

p

n

)
np2
)

since it entails computing the dot product of every two columns for every given sub-Walsh
Hadamard matrix. In contrast, the computational complexity of the transferred problem is

O
((

p

n

)
np

)
since it computes the minimum nonzero weight by one pass over the codewords. However,
it is still computationally prohibitive. Next, we provide an efficient algorithm in the context
of binary linear code to overcome this difficulty.

3.2 Back-Elimination Algorithm

We develop a back-elimination algorithm to intelligently select n columns of the code C2p,p.
Let D−j be a sub-code removing the column j of a code D and Ai(D) be the number
of codewords with weight i in a code D. The algorithm has two versions: the sequential
version in Algorithm 1 and the weighted average version in Algorithm 2.

Algorithm 1. Sequential Back-Elimination

Input n, p (n < p)
Set n0 = p and D = C2p,p

While n0 > n
Compute Ai(D−j) for i = d(D)− 1, . . . , n0 − d(D) and j = 1, . . . , n0
Select one of the columns j = j∗ sequentially minimizing

Ad(D)−1(D−j), . . . , An0−d(D)(D−j)

n0 ← n0 − 1 and D ← D−j∗

Output Hn,p = Jn,p − 2B>p,n, where Bp,n consists of the first p rows of D

Algorithm 1 uses backward elimination to remove p − n columns one by one from the
code C2p,p according to the minimum nonzero weight criterion. The resulting n × p sub-
Walsh Hadamard matrix Hn,p has guaranteed small coherence and is a suitable deterministic
sensing matrix for compressed sensing.

Here are some remarks for Algorithm 1. First, for a tie in selecting j∗, the algorithm
picks the column with the largest index. Second, the algorithm obtains the outputs for all
integers between n and p with a computational complexity of O(p3). These outputs are
nested since the columns selected for n are contained in the columns selected for n + 1.
Third, one can start with any code C2p,n0 , not necessarily C2p,p, if C2p,n0 has a relatively
large minimum nonzero weight. For example, suppose one has a code C2p,n0 of length n0 and
wants to obtain a code C2p,n of length n, where n < n0 � p. Then starting the algorithm
with C2p,n0 instead of C2p,p would dramatically reduce the computational cost. If C2p,n0 has
a relatively large minimum nonzero weight, then the C2p,n given by the algorithm would
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have a large minimum nonzero weight as well. Fourth, once computed, the indices of the
selected rows can be saved and reused for many compressed sensing problems with no need
to rerun the algorithm, which is desirable in practice.

We present the weighted average version of the back-elimination algorithm in Algo-
rithm 2, which simultaneously takes account of all Ai(D−j) in deleting a column. The only
difference between this version and the previous sequential version is that we now minimize

Ã(D−j) =
n0−1∑
i=1

biAi(D−j) with n0 being the length of code D and certain b1, . . . , bp defined

below, instead of sequentially minimizing Ad(D)−1(D−j), . . . , An0−d(D)(D−j). The weighted
average version is more computationally expensive but yields smaller coherence for some
values of n and p.

Algorithm 2. Weighted Average Back-Elimination

Input n, p (n < p)
Set bp = 1 and bi−1 = bi(1.5p+ i)/i for i = p, . . . , 2
Set n0 = p and D = C2p,p

While n0 > n

Ã(D−j)←
n0−1∑
i=1

biAi(D−j) for j = 1, . . . , n0

Select one of the columns j = j∗ minimizing Ã(D−j)
n0 ← n0 − 1 and D ← D−j∗

Output Hn,p = Jn,p − 2B>p,n, where Bp,n consists of the first p rows of D

Next, we provide examples of sub-Walsh Hadamard matrices Hn,p and sub-codes C2p,n

constructed by the algorithm. Tables 1 and 2 present results for p = 64, 128, 256, 512,
1024, 2048 and different sampling rates n/p. If Algorithms 1 and 2 yield two submatrices
with different coherence, we display the coherence of Algorithm 2 in the parentheses. More
results can be found in the Supplementary Materials.
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p = 64 p = 128 p = 256

n/p n µ(Hn,p) n µ(Hn,p) n µ(Hn,p)

0.80 51 0.098 102 0.078 205 0.054
0.75 48 0.125 96 0.083 192 0.062
0.70 45 0.111 90 0.089 (0.111) 179 0.073
0.65 42 0.143 83 0.108 166 0.084
0.60 38 0.158 77 0.117 154 0.091
0.55 35 0.200 70 0.143 141 0.092
0.50 32 0.250 64 0.156 128 0.109
0.45 29 0.241 58 0.172 115 0.113
0.40 26 0.231 51 0.176 102 0.137
0.35 22 0.273 45 0.200 90 0.156
0.30 19 0.368 38 0.263 (0.211) 77 0.169
0.25 16 0.375 32 0.250 64 0.188
0.20 13 0.385 26 0.308 51 0.216

Table 1: Examples for p = 64, 128, 256

p = 512 p = 1024 p = 2048

n/p n µ(Hn,p) n µ(Hn,p) n µ(Hn,p)

0.80 410 0.039 819 0.028 1638 0.022
0.75 384 0.042 (0.047) 768 0.031 (0.034) 1536 0.023
0.70 358 0.050 717 0.038 1434 0.028
0.65 333 0.057 666 0.039 (0.042) 1331 0.031
0.60 307 0.068 (0.062) 614 0.046 1229 0.035
0.55 282 0.071 563 0.052 1126 0.037
0.50 256 0.078 512 0.055 1024 0.041
0.45 230 0.087 461 0.063 922 0.046
0.40 205 0.093 410 0.073 (0.068) 819 0.050
0.35 179 0.106 358 0.078 717 0.057
0.30 154 0.130 307 0.088 614 0.065
0.25 128 0.141 256 0.109 (0.102) 512 0.074
0.20 102 0.157 (0.176) 205 0.122 410 0.088

Table 2: Examples for p = 512, 1024, 2048
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4. Theoretical Analysis

We provide theoretical analysis for our constructed sensing matrices. All proofs are deferred
to Appendix A. Our goal is to show how the proposed method makes the minimum distance
of the sub-code as large as possible, because (2) and (5) showed that a larger minimum
distance of the sub-code leads to smaller coherence of the sensing matrix and Section 2
showed that smaller coherence leads to higher signal reconstruction quality.

Deleting an arbitrary column from a sub-code C2p,n makes the minimum distance either
decrease by one or remain the same. Theorem 3 shows that Algorithm 1 will not decrease
the minimum distance to zero until n0 ≤ m, which means the speed at which the minimum
distance decreases is controlled much better than a random deletion algorithm.

Theorem 3 Let p = 2m. The sub-code C2p,n constructed by Algorithm 1 is a full rank
binary linear code for every n = m+ 1, . . . , p− 1 and d(C2p,m+1) = 1.

Theorem 3 guarantees that during the while loop of Algorithm 1, the sub-code has full rank
and the connection between coherence and minimum nonzero weight in Theorem 2 holds.
More importantly, d(C2p,m+1) = 1 indicates that the minimum distance will not decrease to
zero until n0 ≤ m. This is the best possible decreasing speed, because as shown in the proof
of Theorem 3, any sub first-order Reed-Muller code with n ≤ m has a minimum distance
of exactly zero. The following corollary of Theorem 3 shows that on average Algorithm 1
decreases the minimum distance by one in every two deletions.

Corollary 4 For Algorithm 1, the decreasing rate of minimum distance is asymptotically
1/2 for large p.

A stronger result on how Algorithm 1 controls the decreasing speed of minimum distance
is given in Theorem 6. First, Lemma 5 gives a simple fact.

Lemma 5 Suppose that m + 1 < n < p = 2m and d(C2p,n) = d > 1. Let Ad(C2p,n) = a.
If C2p,n−1 is a sub-code obtained by deleting a column of C2p,n using Algorithm 1, then
Ad−1(C2p,n−1) ≤ da/n.

Theorem 6 Suppose t is a positive integer such that m + t + 1 < n < p = 2m and
d(C2p,n) = d > t + 1. Let Ad(C2p,n) = a. If C2p,n−t−1 is a sub-code obtained by deleting
(t+ 1) columns of C2p,n using Algorithm 1 and

a <
t∏

i=0

n− i
d− i

, (6)

then d(C2p,n−t−1) ≥ d− t.

Theorem 6 indicates that if (6) holds, at least one out of t+ 1 consecutive deletions in the
process of Algorithm 1 keeps minimum distance the same. This result is conservative since
d(C2p,n−t−1) can be much greater than d− t. On the contrary, a random deletion algorithm
has no such guarantee and decreases the minimum distance much faster. Here is a corollary
of Theorem 6.
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Corollary 7 Suppose that t is a positive integer such that m + t + 1 < n < p = 2m and
d(C2p,n) = d < n/2. If C2p,n−t−1 is a sub-code obtained by deleting (t+ 1) columns of C2p,n

using Algorithm 1 and

p− 1 <
t∏

i=0

n− i
d− i

, (7)

then d(C2p,n−t−1) ≥ d− t.

When t = m − 1, (7) holds under the basic assumptions of the corollary, because p − 1 <
p = 2m = 2t+1 <

∏t
i=0{(n − i)/(d − i)}. Therefore, Corollary 7 indicates that, as long

as d < n/2, at least one out of m consecutive deletions in the process of Algorithm 1
keeps minimum distance the same. Moreover, when d/n is smaller, the decreasing speed of
minimum distance will be even lower than this.

For Algorithm 1, we provide another lower bound for d(C2p,n) in the following theorem.

Theorem 8 If C2p,n is the sub-code constructed by Algorithm 1, z is a nonnegative integer,
and

p− 1 <

ty∏
i=0

p− 1−
∑

1≤j<y(tj + 1)− i
p/2− 1−

∑
1≤j<y tj − i

for all 1 ≤ y ≤ z, then d(C2p,n−1−
∑

1≤j<z(tz+1)) ≥ p/2− 1−
∑

1≤j<z tz.

Finally, we provide analysis for Algorithm 2 below.

Theorem 9 If t is an integer such that

p/2∏
i=t+1

(
1 +

1.5p

i

)
≥ (2p− 2)

p∏
i=n+1

(
1 +

1.5p

i

)
,

then d(C2p,n) ≥ t+ 1, where C2p,n is the sub-code constructed by Algorithm 2.

Corollary 10 If C2p,n is the sub-code constructed by Algorithm 2, then

d(C2p,n) ≥ p

2
− 2(p− n)

3
− m

2
− 1

2
.

Corollary 10 indicates that, when Algorithm 2 is used, at least one out of three deletions
keeps minimum distance the same, which is a stronger guarantee than Algorithm 1.

5. Comparison with Existing Methods

We conduct extensive comparisons with some existing methods to demonstrate the supe-
riority of our method in terms of coherence, probabilities of signal reconstructions and
performance of signal reconstructions in real image applications.
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5.1 Comparison of Coherence

We compare the coherence of our proposed method with the coherence of four deterministic
construction methods proposed by DeVore (2007), Li et al. (2012), Yu and Zhao (2013) and
Guo and Liu (2018).

First, we introduce each competing method. For a given prime number q and a positive
integer r < q, DeVore (2007) constructed an n × p deterministic sensing matrix A with
n = q2, p = qr+1 and µ(A) = r/q. For given positive integers r and s, Li et al. (2012)
constructed an n × p deterministic sensing matrix A with n = 2r(Nr − 1), p = 2rs and
µ(A) ≤ s/(Nr − 1), where n < p, s < Nr − 1, and

Nr =


2r + 1 r ≡ 2, 6 mod 8

2r + 1 + 2(r+2)/2 r ≡ 4 mod 8

2r + 1− 2(r+2)/2 r ≡ 0 mod 8

2r + 1 + 2(r+1)/2 r ≡ 1, 7 mod 8

2r + 1− 2(r+1)/2 r ≡ 3, 5 mod 8

.

For a given prime number q and a nonnegative integer δ ≤ q with q+ δ+ 1 ≡ 0 mod 4, Yu
and Zhao (2013) constructed an n× p deterministic sensing matrix A with n = q2 + q + 1,
p = (q+ δ+ 1)n and µ(A) ≤ max{1/(q+ 1), δ/(q+ 1)}. For a given integer q ≥ 2, Guo and
Liu (2018) constructed an n × p deterministic sensing matrix A with n = (q2 + 1)(q + 1),
p = (q2 + 1)(q2 + q + 1) and µ(A) = 1/(q + 1).

Tables 3 to 6 give the coherence of each of the four methods and the proposed method
for some n and p.

DeVore Proposed

q r n p µ(A) p µ(Hn,p)

3 2 9 27 0.667 32 0.556
5 2 25 125 0.400 128 0.360
5 3 25 625 0.600 1024 0.520
5 4 25 3125 0.800 4096 0.600
7 2 49 343 0.286 512 0.265
7 3 49 2401 0.429 4096 0.388
11 3 121 14641 0.273 16384 0.256

Table 3: Coherence of DeVore (2007)’s method and the proposed method
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Li et al. Proposed

r s n p µ(A) p µ(Hn,p)

2 3 16 64 0.750 64 0.375
3 2 32 64 0.500 64 0.250
3 3 32 512 0.750 512 0.375
4 3 384 4096 0.125 4096 0.104
5 2 768 1024 0.083 1024 0.031

Table 4: Coherence of Li et al. (2012)’s method and the proposed method

Yu and Zhao Proposed

q δ n p µ(A) p µ(Hn,p)

7 4 57 684 0.500 1024 0.298
11 4 133 2128 0.333 4096 0.203
13 6 183 3660 0.429 4096 0.169
13 10 183 4392 0.714 8192 0.191
17 6 307 7368 0.333 8192 0.140
17 10 307 8596 0.556 16384 0.153
17 14 307 9824 0.778 16384 0.153
19 4 381 9144 0.200 16384 0.134
19 8 381 10668 0.400 16384 0.134
19 12 381 12192 0.600 16384 0.134
19 16 381 13716 0.800 16384 0.134
23 4 553 15484 0.167 16384 0.107

Table 5: Coherence of Yu and Zhao (2013)’s method and the proposed method

Guo and Liu Proposed

q n p µ(A) p µ(Hn,p)

4 85 357 0.200 512 0.176
5 156 806 0.167 1024 0.141
6 259 1591 0.143 2048 0.120
7 400 2850 0.125 4096 0.105
8 585 4745 0.111 8192 0.091
9 820 7462 0.100 8192 0.073
10 1111 11211 0.091 16384 0.068

Table 6: Coherence of Guo and Liu (2018)’s method and the proposed method
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As shown in the tables above, the coherence of our method is smaller than that of the four
competing methods, even when our sensing matrices have more columns. In addition, given
the number of columns p, our method is more flexible as it constructs sensing matrices with
any number of rows less than p, whereas the four competing methods all have restrictions
on the numbers of rows of the sensing matrices.

5.2 Comparison of Reconstruction Probability

We compare the reconstruction probabilities of our method with those of DeVore (2007)’s
method and Guo and Liu (2018)’s method by simulations.

To make our simulations effective, we deviate from the conventional choice of fixing
the original signal x to a specific predetermined value. This choice may be potentially
unconvincing, as it focuses on a particular instance of the signal. To be more statistical,
we randomly generate the original signal x in the simulations, while maintaining fixed
values for the parameters p and n. This random approach gives a more comprehensive
assessment to capture a broader spectrum of scenarios and provide a better understanding
of the performance of different methods under varying signal conditions.

For each sparsity level s, we randomly generate a total of 5000 s-sparse original sig-
nals. Then we compress each original signal x by a sensing matrix and use the Orthogonal
Matching Pursuit (OMP) algorithm (Pati et al., 1993) to obtain the reconstructed signal
x̂. Let the successful and unsuccessful reconstructions correspond to the outcomes of 1
and 0 respectively, where success means the Signal-to-Noise Ratio (SNR), calculated as
10 log10(‖x‖2/‖x− x̂‖2), surpasses a threshold of 100. For each sparsity level s, we compute
the reconstruction probability as the mean of the 5000 binary outcomes.

5.2.1 Comparison with DeVore (2007)

Let the dimensions of the original signals and the measurement vectors be 125 and 25,
respectively. We follow DeVore’s method to construct a sensing matrix with p = 125 and
n = 25, corresponding to q = 5 and r = 2. We construct our sensing matrix with p = 128
and n = 25, and append 3 zeros to the end of each original signal to apply our sensing
matrix. The probabilities of reconstructions across varying sparsity levels are plotted in
Figure 1, where the probabilities of reconstructions of a random Gaussian sensing matrix
are provided as a benchmark.
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Figure 1: The probabilities of reconstructions of a random Gaussian matrix, a matrix con-
structed by DeVore’s method and a matrix constructed by our method.

Figure 1 shows that for every s, the probability of reconstruction of our sensing matrix is
significantly higher than that of DeVore’s sensing matrix and the random Gaussian matrix,
because of the smaller coherence of our sensing matrix. In addition, DeVore’s sensing
matrix performs equally well as the random Gaussian matrix but without variability, which
demonstrates the superiority of deterministic sensing matrices.

5.2.2 Comparison with Guo and Liu (2018)

Let the dimensions of the original signals and the measurement vectors be 252 and 45
respectively. We follow Guo and Liu’s method to construct a sensing matrix with p = 252
and n = 45 according to Example 3.1 of Guo and Liu (2018), which corresponds to d = 2,
l = 5 and N = 10 in the context of their Example 3.1. We construct our sensing matrix
with p = 256 and n = 45, and append 4 zeros to the end of each original signal to apply
our sensing matrix. The probabilities of reconstructions across varying sparsity levels are
plotted in Figure 2.
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Figure 2: The probabilities of reconstructions of a matrix constructed by Guo and Liu’s
method and a matrix constructed by our method.

Figure 2 shows a consistent pattern across varying sparsity levels: the probability of
reconstruction of our method consistently surpasses that of Guo and Liu’s method. This
significant difference is due to the smaller coherence of our sensing matrix.

5.3 Real Applications

We compare our method with DeVore (2007)’s method in real image examples. Our setup
here follows the standard practice in image processing to provide a meaningful evaluation
of the image reconstruction performance.

We use three images Boat, Baboon and Peppers. Each image is represented as a 512×512
matrix of pixels. The Daubechies 9/7 wavelet basis is commonly used in image processing
to capture and represent complex image features in a sparse and efficient manner, which
balances between localization and frequency representation. We use the Daubechies 9/7
wavelet basis to represent each of the three images as a sparse vector in the wavelet domain.
This sparse vector is compressible, which is the original sparse signal we will compress in
the next step.

Since the dimension of the original sparse signal 5122 = 262144 is large, we use the
following block diagonal sensing matrix A to compress it:

A =


M

M
. . .

M

 ,
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where each block M is an ` × k matrix constructed by either DeVore’s method or our
Algorithm 1, and the remaining entries are all zero. Because µ(A) = µ(M) due to this
block diagonal structure, the coherence of A remains small. Let ` = 9, k = 32 and use 8192
blocks, resulting in a sensing matrix A with p = 8192× 32 = 262144, n = 8192× 9 = 73728
and a sampling rate of 73728/262144 ≈ 28%.

After compressing the original sparse signal by the above block diagonal sensing matrix,
we reconstruct the signal by the GPSR software (Figueiredo et al., 2007) and obtain the
reconstructed image by applying the inverse wavelet transform on the reconstructed signal.
The GPSR software employs gradient-based optimization techniques commonly used for
sparse signal recovery in compressed sensing.

We use the Peak Signal-to-Noise Ratio (PSNR) to evaluate the quality of the recon-
structed image. The PSNR is defined as 10 log10(2552/MSE(x, x̂)), where x is the original
image and x̂ is the reconstructed image. A higher PSNR indicates a higher quality of the
reconstruction.

In Figures 3 to 5, for each image of Boat, Baboon and Peppers, we show the original
image and the images reconstructed from the compressions given by DeVore’s method and
our proposed method. We also provide the PSNRs in the figure captions. For all the
three examples, the PSNRs of the images reconstructed from our compressions are signif-
icantly higher than those reconstructed from DeVore’s compressions. Furthermore, visual
inspection of the reconstructed images reveals some significant advantage of our method.
The images reconstructed from DeVore’s compressions exhibit blurring, which indicates a
compromised fidelity, whereas the images reconstructed from our compressions are sharper
and more faithful. These findings demonstrate the superiority of our method in preserving
the image information during the compression process, and its accuracy and robustness in
achieving superior image reconstruction results. In addition, these image reconstruction
examples underscore the effectiveness of the block diagonal sensing matrix constructed by
our method, particularly in handling scenarios with very large p.
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(a) (b) (c)

Figure 3: 512 × 512 Boat image reconstruction. (a) Original Boat image (b) DeVore’s
method (PSNR: 22.69 dB) (c) Our method (PSNR: 26.42 dB).

(a) (b) (c)

Figure 4: 512×512 Baboon image reconstruction. (a) Original Baboon image (b) DeVore’s
method (PSNR: 18.79 dB) (c) Our method (PSNR: 20.70 dB).

(a) (b) (c)

Figure 5: 512×512 Peppers image reconstruction. (a) Original Peppers image (b) DeVore’s
method (PSNR: 25.88 dB) (c) Our method (PSNR: 29.50 dB).
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6. Discussion

We proposed a method for constructing a new class of deterministic compressed sensing
matrices by intelligently selecting some rows of a Walsh Hadamard matrix. Compared to
existing deterministic sensing matrices, the proposed method constructs sensing matrices
with smaller coherence for many values of n and p. It also constructs sensing matrices for
any numbers of rows n and columns p with n < p. Depending on the required number of
columns, one can either choose a subset of columns of our sensing matrices or use a block
diagonal version of our sensing matrices, for which the coherence would further decrease
or remain the same. Recall that the proposed algorithm has a computational complexity
of O(p3). It would be computationally expensive for our method to construct a standard
non-block diagonal sensing matrix with very large p, e.g., p = 32768, 65536. However, as
shown in Section 5.3, it is still feasible to apply our method in real applications with very
large p, e.g., p = 262144 by using a block diagonal sensing matrix. Moreover, our method
aligns with the Fast Hadamard Transform technique. In addition, the row indices of the
submatrices given by our back-elimination algorithms can be saved and reused without
the need to rerun the algorithms. Finally, our sensing matrices, which consist of only ±1,
significantly reduce the cost of storage, computation and hardware implementation. The
superiority of our method is demonstrated by numerical simulations and real applications
in image reconstruction.

Some possible directions for future work are as follows. First, one can propose a new
criterion to delete columns in the back-elimination algorithms. It is of interest to find better
criteria to make the algorithms more efficient or yield smaller coherence. Second, one can
apply our method to other statistical applications requiring design or model matrices with
small coherence.

Our proposed method can also be applied to construct better subsampled Hadamard
transforms in other statistical and machine learning problems, including matrix approxima-
tion, matrix completion, kernel regression and least square. This line of research sheds new
light on how experimental design researchers tackle modern challenges in the big data era.
The combined benefits of the new experimental design thinking and the power of large-scale
statistical analysis can solve larger and more complex problems.
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Appendix A. Proofs

Theorem 2 If µ(Hn,p) < 1, C2p,n constructed in (4) is a full rank binary linear code and

µ(Hn,p) = 1− 2

n
min

c∈C2p,n,c 6=0
w(c). (5)

Proof First, since a first-order Reed-Muller code C2p,p in (3) is a binary linear code, C2p,n

obtained by taking some columns of C2p,p is binary linear as well.
Second, µ(Hn,p) < 1 indicates no two columns of Hn,p have completely identical or

completely opposite signs. By the construction of C2p,n, this implies that C2p,n has no
equal codewords. It then follows that the generator matrix of C2p,n has full row rank.

Finally, by Lemma 1 in Cheng and Tang (2001), h>i hj = n − 2∆(ci, cj) for any i 6= j,
where hi is the ith column of Hn,p and ci is the ith codeword of Bp,n. Thus,

µ(Hn,p)

= max
i 6=j

|h>i hj |
n

= max
i 6=j

|n− 2∆(ci, cj)|
n

= max[max
i 6=j
{1− 2

n
∆(ci, cj)},−min

i 6=j
{1− 2

n
∆(ci, cj)}]

= max{1− 2

n
min
i 6=j

∆(ci, cj),−1 +
2

n
max
i 6=j

∆(ci, cj)}

= max[1− 2

n
min
i 6=j

∆(ci, cj),−1 +
2

n
max
i 6=j
{n−∆(ci, c̄j)}]

= max{1− 2

n
min
i 6=j

∆(ci, cj), 1−
2

n
min
i 6=j

∆(ci, c̄j)}

=1− 2

n
d(C2p,n),

where c̄j = Jn,1− cj is the counterpart of cj in B̄p,n. Since C2p,n has full rank and is linear,

d(C2p,n) = min
c∈C2p,n,c 6=0

w(c),

which completes the proof.

Theorem 3 Let p = 2m. The sub-code C2p,n constructed by Algorithm 1 is a full rank
binary linear code for every n = m+ 1, . . . , p− 1 and d(C2p,m+1) = 1.

Proof First, since C2p,p is binary linear, the sub-code C2p,n obtained by the algorithm is
binary linear as well.

Second, since each step of the algorithm deletes only one column, the minimum distance
decreases at most by 1. Hence, there exists an n0 such that C2p,n0 and C2p,n0−1 constructed
by the algorithm have d(C2p,n0) = 1 and d(C2p,n0−1) = 0, respectively. Since C2p,n0 has
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full rank and is linear, the minimum distance of 1 indicates that it has some rows with
weight 1, i.e., A1(C2p,n0) > 0. Consider the submatrix C2p,n0(1) consisting of the rows with
weight 1. None of its columns can have more than one 1; otherwise it has two equal rows,
which contradicts with d(C2p,n0) = 1. None of its columns consists of only 0’s; otherwise
Algorithm 1 would delete a column consisting of only 0’s in C2p,n0(1) and thus will not
decrease the minimum distance to 0, contradicting with the fact d(C2p,n0−1) = 0. Hence,
C2p,n0(1) is an n0 × n0 submatrix, each row or column of which has exactly one 1. These
n0 rows form a basis of the linear space {0, 1}n0 . Since C2p,n0 is a linear code, 2n0 ≤ 2p,
which means n0 ≤ m+ 1.

Suppose that n0 ≤ m. Since any sub-Walsh Hadamard matrix Hn0,p has at most
2n0 ≤ 2m = p possible different columns, there will either be two identical columns or
two columns with opposite signs, resulting that d(C2p,n0) = 0, which is a contradiction.
Therefore, n0 = m+ 1, implying d(C2p,m+1) = 1.

Finally, since the minimum distance will not increase in the process of deleting columns,
for every n = m+ 1, . . . , p− 1, d(C2p,n) ≥ d(C2p,m+1) = 1, which indicates they all have full
rank.

Corollary 4 For Algorithm 1, the decreasing rate of minimum distance is asymptotically
1/2 for large p.

Proof The decreasing rate of minimum distance is the average amount of decrease in min-
imum distance as n0 decreases from p to m + 1. Since d(C2p,p) = p/2 (MacWilliams and
Sloane, 1977) and d(C2p,m+1) = 1, the decreasing rate equals to (p/2− 1)/(p− (log2 p+ 1)),
which approaches to 1/2 as p goes to infinity.

Lemma 5 Suppose that m + 1 < n < p = 2m and d(C2p,n) = d > 1. Let Ad(C2p,n) = a.
If C2p,n−1 is a sub-code obtained by deleting a column of C2p,n using Algorithm 1, then
Ad−1(C2p,n−1) ≤ da/n.

Proof According to Algorithm 1,

Ad−1(C2p,n−1) = min

{
a∑

i=1

C2p,n(d)i1, . . . ,
a∑

i=1

C2p,n(d)in

}
,

where C2p,n(d) is the submatrix consisting of the rows with weight d in C2p,n, and C2p,n(d)ij
is the (i, j)th entry of C2p,n(d). Since

n∑
j=1

a∑
i=1

C2p,n(d)ij = da,

we have Ad−1(C2p,n−1) ≤ da/n.
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Theorem 6 Suppose t is a positive integer such that m + t + 1 < n < p = 2m and
d(C2p,n) = d > t + 1. Let Ad(C2p,n) = a. If C2p,n−t−1 is a sub-code obtained by deleting
(t+ 1) columns of C2p,n using Algorithm 1 and

a <
t∏

i=0

n− i
d− i

, (6)

then d(C2p,n−t−1) ≥ d− t.

Proof By Lemma 5 and (6),

Ad−t−1(C2p,n−t−1) ≤ a
t∏

i=0

d− i
n− i

< 1.

Hence, Ad−t−1(C2p,n−t−1) = 0, implying d(C2p,n−t−1) ≥ d− t.

Corollary 7 Suppose that t is a positive integer such that m + t + 1 < n < p = 2m and
d(C2p,n) = d < n/2. If C2p,n−t−1 is a sub-code obtained by deleting (t+ 1) columns of C2p,n

using Algorithm 1 and

p− 1 <
t∏

i=0

n− i
d− i

, (7)

then d(C2p,n−t−1) ≥ d− t.

Proof Because A0(C2p,n) = An(C2p,n) = 1, Ad(C2p,n) = An−d(C2p,n), 0 < d < n/2 < n−d,
and

∑n
z=0Az(C2p,n) = 2p, Ad(C2p,n) ≤ p− 1. By Theorem 6, d(C2p,n−t−1) ≥ d− t.

Theorem 8 If C2p,n is the sub-code constructed by Algorithm 1, z is a nonnegative integer,
and

p− 1 <

ty∏
i=0

p− 1−
∑

1≤j<y(tj + 1)− i
p/2− 1−

∑
1≤j<y tj − i

for all 1 ≤ y ≤ z, then d(C2p,n−1−
∑

1≤j<z(tz+1)) ≥ p/2− 1−
∑

1≤j<z tz.

Proof For z = 0, because d(C2p,p) = p/2, we have d(C2p,p−1) ≥ p/2 − 1. Then the result
can be proved by performing induction on z and repeatedly applying Corollary 7.

Theorem 9 If t is an integer such that

p/2∏
i=t+1

(
1 +

1.5p

i

)
≥ (2p− 2)

p∏
i=n+1

(
1 +

1.5p

i

)
,

then d(C2p,n) ≥ t+ 1, where C2p,n is the sub-code constructed by Algorithm 2.
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Proof Let D = C2p,n0 , the sub-code obtained by deleting p− n0 columns of C2p,p. Since

n0∑
j=1

Ã(D−j) =

n0∑
j=1

n0−1∑
i=1

biAi(D−j)

≤
n0−1∑
i=1

{biAi(D)(n0 − i) + bi−1Ai(D)i}

=

n0−1∑
i=1

{
biAi(D)(n0 − i) +

(
1 +

1.5p

i

)
biAi(D)i

}
= Ã(D)(n0 + 1.5p),

there exists a j such that

Ã(D−j) ≤ (1 +
1.5p

n0
)Ã(D).

Consequently,

Ã(C2p,n0−1) ≤
(

1 +
1.5p

n0

)
Ã(C2p,n0),

where C2p,n0−1 is obtained by deleting a column of C2p,n0 using Algorithm 2. Since
Ã(C2p,p) = (2p− 2)bp/2,

Ã(C2p,n) ≤ Ã(C2p,p)

p∏
i=n+1

(
1 +

1.5p

i

)

= (2p− 2)bp/2

p∏
i=n+1

(
1 +

1.5p

i

)

= (2p− 2)bt

p∏
i=n+1

(
1 +

1.5p

i

)
p/2∏

i=t+1

(
1 +

1.5p

i

)
−1

≤ bt,

which implies d(C2p,n) ≥ t+ 1.

Corollary 10 If C2p,n is the sub-code constructed by Algorithm 2, then

d(C2p,n) ≥ p

2
− 2(p− n)

3
− m

2
− 1

2
.

Proof Since

(2p− 2r)2(p− 3r)3 ≥ 4(p− r)3(p− 4r)2 ≥ (0.5p− 2r)2(2.5p− 3r)3 (0 ≤ r ≤ p

4
),

we have

log
2p− 2r

0.5p− 2r
≥ 3

2
log

2.5p− 3r

p− 3r
(0 ≤ r ≤ p

4
).
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As a result, for any r ∈ [0, p/4],

2

3
log

1.5p+ 0.5p− 2r − 1

0.5p− 2r − 1
≥ log

1.5p+ p− 3r

p− 3r
,

1

3
log

1.5p+ 0.5p− 2r − 1

0.5p− 2r − 1
+

1

3
log

1.5p+ 0.5p− 2r − 2

0.5p− 2r − 2
≥ log

1.5p+ p− 3r − 1

p− 3r − 1
,

2

3
log

1.5p+ 0.5p− 2r − 2

0.5p− 2r − 2
≥ log

1.5p+ p− 3r − 2

p− 3r − 2
.

In addition, for any r ∈ [0, p/2],

1

2
log

1.5p+ 0.5p− r
0.5p− r

≥ log 2.

We have
log(2p− 2) < log 2m+1 = (m+ 1) log 2.

Therefore, letting t = bp/2−2(p−n)/3−m/2−1/2c, where bxc denotes the largest integer
no greater than x, we have

p/2∏
i=t+1

(
1 +

1.5p

i

)
≥ (2p− 2)

p∏
i=n+1

(
1 +

1.5p

i

)
.

Therefore, according to Theorem 9,

d(C2p,n) ≥ t+ 1 ≥ p

2
− 2(p− n)

3
− m

2
− 1

2
,

which completes the proof.
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Appendix B. Comparison with UE(s2)-Optimal Designs

In this section, we compare the coherence of the UE(s2)-optimal designs and the proposed
sensing matrices. Since for given n and p, any n rows of the p × p Walsh Hadamard
matrix form a UE(s2)-optimal design, we construct 30 UE(s2)-optimal designs by randomly
selecting the n rows, compute the coherence for each of the 30 designs and use the median
of the 30 coherence. The proposed sensing matrices are all constructed by Algorithm 1.

For p = 256, 512, 1024, 2048 and each n between 0.125p and 0.5p, we plot the median
coherence of the UE(s2)-optimal designs and the coherence of the proposed sensing matrices
in Figure 6 below. As shown in the figure, the coherence of the proposed sensing matrices
is much smaller than the median coherence of the UE(s2)-optimal designs for all p and n.

Figure 6: Coherence of the UE(s2)-optimal designs and the proposed sensing matrices for
p = 256, 512, 1024, 2048
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