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Abstract

It is common to evaluate a set of items by soliciting people to rate them. For example,
universities ask students to rate the teaching quality of their instructors, and conference
organizers ask authors of submissions to evaluate the quality of the reviews. However, in
these applications, students often give a higher rating to a course if they receive higher
grades in a course, and authors often give a higher rating to the reviews if their papers
are accepted to the conference. In this work, we call these external factors the “outcome”
experienced by people, and consider the problem of mitigating these outcome-induced biases
in the given ratings when some information about the outcome is available. We formulate
the information about the outcome as a known partial ordering on the bias. We propose
a debiasing method by solving a regularized optimization problem under this ordering
constraint, and also provide a carefully designed cross-validation method that adaptively
chooses the appropriate amount of regularization. We provide theoretical guarantees on
the performance of our algorithm, as well as experimental evaluations.

Keywords: Crowdsourcing, bias mitigation, fairness, statistical estimation, shape con-
straints

1. Introduction

It is common to aggregate information and evaluate items by collecting ratings on these items
from people. In this work, we focus on the bias introduced by people’s observable outcome
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or experience from the entity under evaluation, and we call it the “outcome-induced bias”.1

We now describe this notion of bias with the help of two common applications — teaching
evaluation and peer review.

Many universities use student ratings for teaching evaluation. However, numerous studies
have shown that student ratings are affected by the grading policy of the instructor (Green-
wald and Gillmore, 1997; Johnson, 2003; Boring et al., 2016). For instance, as noted in John-
son (2003, Chapter 4):

“...the effects of grades on teacher-course evaluations are both substantively and statisti-
cally important, and suggest that instructors can often double their odds of receiving high
evaluations from students simply by awarding A’s rather than B’s or C’s.”

As a consequence, the association between student ratings and teaching effectiveness can
become negative (Boring et al., 2016), and student ratings serve as a poor predictor on the
follow-on course achievement of the students (Carrell and West, 2010; Braga et al., 2014):

“...teachers who are associated with better subsequent performance receive worst evalua-
tions from their students.” (Braga et al., 2014)

The outcome we consider in teaching evaluation is the grades that the students receive in
the course under evaluation2 and the goal is to correct for the bias in student evaluations
induced by the grades given by the instructor.

An analogous issue arises in peer review, where it has been proposed (Crowcroft et al.,
2009) and implemented (Journal of Systems Research, 2021; Goldberg et al., 2023) that
authors rate their received reviews as a method to measure and improve the quality of the
review process. It is well understood that authors are more likely to give higher ratings to
a positive review than to a negative review (Weber et al., 2002; Papagiannaki, 2007; Khosla
et al., 2013; Goldberg et al., 2023):

“Satisfaction had a strong, positive association with acceptance of the manuscript for
publication... Quality of the review of the manuscript was not associated with author
satisfaction.” (Weber et al., 2002)

Due to this problem, an author feedback experiment (Papagiannaki, 2007) conducted at the
PAM 2007 conference concluded that:

“...some of the TPC members from academia paralleled the collected feedback to faculty
evaluations within universities... while author feedback may be useful in pinpointing ex-
treme cases, such as exceptional or problematic reviewers, it is not quite clear how such
feedback could become an integral part of the process behind the organization of a confer-
ence.”

1. Throughout the paper we restrict the scope of the bias to the outcome-induced bias. Note that this
concept is not related to the statistical notion of the bias.

2. We use the term “grades” broadly to include letter grades, numerical scores, and rankings. We do not
distinguish the difference between evaluation of a course and evaluation of the instructor teaching the
course, and use them interchangeably.
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By comparing scores given to reviews by authors, (other) paper reviewers, external reviewers,
and meta-reviewers at NeurIPS 2022, a similar conclusion was made that “caution must be
taken when asking authors to evaluate reviews on their own papers” (Goldberg et al., 2023).
With this motivation, for the application of peer review, the outcome we consider is the
review rating or paper decision received by the author, and the goal is to correct for the bias
induced by it in the feedback provided by the author.

Although the existence of such bias is widely acknowledged, student and author rat-
ings are still widely used (Becker and Watts, 1999), and such usage poses a number of
issues. First, these biased ratings can be uninformative and unfair for instructors and
reviewers who are not lenient. Second, instructors, under the possible consideration of
improving their student-provided evaluation, may be incentivized to “teach to the test”,
raising concerns such as inflating grades and reducing content (Carrell and West, 2010).
Furthermore, author-provided ratings can be a factor for selecting reviewer awards (Khosla
et al., 2013), and reviewers with a history of poor reviews may risk being removed from
the editorial board (Journal of Systems Research, 2021); student-provided ratings can be a
heavily-weighted component for salary or promotion and tenure decision of the faculty mem-
bers (Becker and Watts, 1999; Carrell and West, 2010; Boring et al., 2016). If the ratings
are highly unreliable and sometimes even follow a trend that reverses the true underlying
ordering, then naïvely using these ratings or simply taking their mean or median will not
be sufficient. Therefore, interpreting and correcting these ratings properly is an important
and practical problem.

The goal of this work is to mitigate such outcome-induced bias in ratings. Incidentally,
in teaching evaluation and peer review, the “outcome” that people (students or authors)
encounter in the process is the evaluation they receive (grades from instructors or reviews
from reviewers), and hence we call this bias “evaluations that are biased by evaluations”.
That said, we note that the general problem we consider here is applicable to other settings
with outcomes that are not necessarily evaluations. For example, in evaluating whether a
two-player card game is fair or not, the outcome can be whether the player wins or loses the
game (Molina et al., 2019).

The key insight we use in this work is that the outcome (e.g., grades and paper decisions)
is naturally available to those conduct the evaluation (e.g., universities and conference or-
ganizers). These observed outcomes provide directional information about the manner that
evaluators are likely to be biased. For example, it is known (Greenwald and Gillmore, 1997;
Johnson, 2003; Boring et al., 2016) that students receiving higher grades are biased towards
being more likely to give higher ratings to the course instructor than students receiving lower
grades. To use this structural information, we model it as a known partial ordering con-
straint on the biases given people’s different outcomes. This partial ordering, for instance,
is simply a relation on the students based on their grades or ranking, or on the authors in
terms of acceptance decisions of their papers.

The code to reproduce our results is available at https://github.com/jingyanw/outcome-
induced-debiasing.
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1.1 Our contributions

We identify and formulate a problem of mitigating biases in evaluations that are biased
by evaluations (Section 2). Specifically, this bias is induced by observable outcomes, and
the outcomes are formulated as a known partial ordering constraint. We then propose an
estimator that solves an optimization jointly in the true qualities and the bias, under the
given ordering constraint (Section 3). The estimator includes a regularization term that
balances the emphasis placed on bias versus noise. To determine the appropriate amount
of regularization, we further propose a cross-validation algorithm that chooses the amount
of regularization in a data-dependent manner by minimizing a carefully-designed validation
error (Section 3.2).

We then provide a theoretical analysis of the performance of our proposed algorithm
(Section 4). First, we show that our estimator, under the two extremal choices of the reg-
ularization hyperparameter (0 and ∞), converges to the true value in probability under
the only-bias (Section 4.2) and only-noise (Section 4.3) settings respectively. Moreover, our
estimator reduces to the popular sample-mean estimator when the regularization hyperpa-
rameter is set to∞, which is known to be minimax-optimal in the only-noise case. We then
show (Section 4.4) that the cross-validation algorithm correctly converges to the solutions
corresponding to hyperparameter values of 0 and∞ in probability in the two aforementioned
settings, under various conditions captured by our general formulation. We finally conduct
experiments on synthetic, semi-synthetic, and real-world data (Section 5), including various
settings not covered by the theoretical results.

A short version of this paper is published at the AAAI 2021 conference (Wang et al.,
2021). In comparison to the conference version, the current paper extends the theoretical
results (Theorem 5(b)), conducts simulation studies (Sections 5.1-5.4), and conducts an
experiment using real-world data from peer review (Section 5.6).

1.2 Related work

In terms of correcting rating biases, past work has studied the problem of adjusting student
GPAs due to different grading policies across courses and disciplines. Proposed models in-
clude introducing a single parameter for each course and each student solved by linear regres-
sion (Caulkins et al., 1996), and more complicated parametric generative models (Johnson,
1997). Though grade adjustment seems to be a perfect counterpart of teaching evaluation
adjustment, the non-parametric ordering constraint we consider is unique to teaching evalu-
ation, and do not have obvious counterpart in grade adjustment. For the application of peer
review, there are many works (Ge et al., 2013; Lee, 2015; Tomkins et al., 2017; Noothigattu
et al., 2021; Stelmakh et al., 2021; Wang and Shah, 2019; Stelmakh et al., 2019; Fiez et al.,
2020; Jecmen et al., 2020; Manzoor and Shah, 2021) addressing various biases and other
issues in the review process, but to the best of our knowledge none of them addresses biases
in author-provided feedback. It is of interest in the future to design schemes that combine
our present work with these past works in order to jointly address multiple problems such
as simultaneous existence of outcome-dependent bias and miscalibration.

In terms of the models considered, one statistical problem related to our work is the
isotonic regression, where the goal is to estimate a set of parameters under a total ordering
constraint (see, e.g. Barlow et al., 1972; Zhang, 2002; Mammen and Yu, 2007; Groeneboom
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and Jongbloed, 2014). Specifically, our problem becomes isotonic regression, if in our exact
formulation (2) to be presented, we set λ = 0, x = 0 and the partial ordering to a total
ordering.

Another type of related models in statistics literature concerns the semiparametric ad-
ditive models (e.g., Hastie and Tibshirani, 1990; Cuzick, 1992; Wood, 2004; Yu et al., 2011)
with shape constraints (Chen and Samworth, 2016). In particular, one class of semipara-
metric additive models involves linear components and components with ordering (isotonic)
constraints (Huang, 2002; Cheng, 2009; Meyer, 2013; Rueda, 2013). Our optimization (2)
falls within this class of semiparametric models, if we set the second term of `2-regularization
to 0. To see the connection, we write the first term of (2) in a linearized form as ‖y−Ax−b‖22,
where y, b ∈ Rdn, x ∈ Rd and A ∈ Rdn×d is a 0/1 matrix that specifies the course membership
of each rating: if a rating is from course i, then in corresponding of row of A, the ith entry
is 1 and all other entries are 0. Past work has studied the least-squares estimator for this
problem, but the results such as consistency and asymptotic normality rely on assumptions
such as A being random design or each coordinate of x being i.i.d., which are not applicable
to our setting. The special 0/1 structure of A makes our problem unique and differ from
past work in terms of the theoretical analysis.

In terms of the technical approach, our estimator (Equation 2) is partly inspired by
permutation-based models (Shah et al., 2017; Shah, 2017) which focuses only on shape
constraints rather than parameters, but with the key difference that here we can exploit the
crucial information pertaining to the ordering of the bias.

The idea of adopting cross-validation to select the right amount of penalization is clas-
sical in statistics literature (e.g., Stone, 1974; Kohavi, 1995; Hastie et al., 2009). Yet, this
generic scheme cannot be directly applied to models where training samples are not ex-
changeable — in which case, both the sub-sampling step and the test-error estimation are
highly non-trivial. Therefore caution needs to be exercised when order restrictions, therefore
non-exchangeability, are involved. The cross-validation algorithm proposed in this work is
partly inspired by the cross-validation used in nearly-isotonic regression (Tibshirani et al.,
2011). In nearly-isotonic regression, the hard ordering constraint is replaced by a soft regu-
larization term, and the extent of regularization is determined by cross-validation. However,
introducing the linear term of x as the quantity of interest significantly changes the problem.
Thus, our cross-validation algorithm and its analysis are quite different.

Finally, our work is complementary to prior work in psychology, human-computer in-
teraction, and mechanism design that aims at designing interventions to reduce cognitive
biases in human decision making. On the psychology front, while in this work we do not aim
at establishing the cognitive mechanism of the outcome-induced bias, we note in part it can
be seen as an anchoring bias (Tversky and Kahneman, 1974; Strack and Mussweiler, 1997;
Mussweiler and Strack, 2001) — students being unable to move away from their satisfaction
with their own performance — or substitution bias (Kahneman and Frederick, 2002) —
students substituting the complex question of teaching evaluation with a simpler question of
measuring their overall satisfaction with the course. It has been observed that when the task
is framed in a rational manner and requires analytical judgement, the reliance on cognitive
heuristics can be reduced (Stanovich, 1999; Kahneman and Frederick, 2002). On the human-
computation interaction front, recent work (Rastogi et al., 2022) observes that when people
are required to spend more time on the task, the impact of the anchoring bias decreases.
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On the mechanism design front, an extensive line of literature concerns incentivizing truth-
ful reporting, in settings where ground-truth answers are available (Brier, 1950; Shah and
Zhou, 2016) or unavailable (Prelec, 2004; Wolfers and Zitzewitz, 2004; Miller et al., 2005;
Dasgupta and Ghosh, 2013). The technique designed in this paper can be coupled with the
aforementioned interventions to further reduce the impact of the outcome-induced bias on
the evaluations.

2. Problem formulation

For ease of exposition, throughout the paper we describe our problem formulation using the
running example of course evaluation, but we note that our problem formulation is general,
and we comment on how the problem formulation maps to other applications such as paper
review where appropriate. Consider a set of d courses. Each course i ∈ [d] has an unknown
true quality value x∗i ∈ R to be estimated. Each course is evaluated by n students.3 Denote
yij ∈ R as the rating given by the jth student in course i, for each i ∈ [d] and j ∈ [n]. Note
that we do not require the same set of n students to take all d courses; students in different
courses are considered different individuals. We assume that each rating yij is given by:

yij = x∗i + bij + zij , (1)

where bij represents a bias term, and zij represents a noise term. We now describe these
terms in more detail.

The term zij captures the noise involved in the ratings, assumed to be i.i.d. across i ∈ [d]
and j ∈ [n]. The term bij captures the bias that is induced by the observed “outcome” of
student j experienced in course i. In the example of teaching evaluation, the outcome can
be the grades of the students that are known to the university, and the bias captures the
extent that student ratings are affected by their received grades. Given these observed
outcomes (grades), we characterize the information provided by these outcomes as a known
partial ordering, represented by a collection of ordering constraints O ⊆ ([d] × [n])2. Each
ordering constraint is represented by two pairs of (i, j) indices. An ordering constraint
((i, j), (i′, j′)) ∈ O indicates that the bias terms obey the relation bij ≤ bi′j′ . We say that
this ordering constraint is on the elements {(i, j)}i∈[d],j∈[n] and on the bias {bij}i∈[d],j∈[n]

interchangeably. We assume the terms {bij}i∈[d],j∈[n] satisfy the partial ordering O. In
teaching evaluations, the partial ordering O can be constructed by, for example, taking
((i, j), (i′, j′)) ∈ O if and only if student j′ in course i′ receives a strictly higher grade than
student j in course i.

For ease of notation, we denote Y ∈ Rd×n as the matrix of observations whose (i, j)th

entry equals yij for every i ∈ [d] and j ∈ [n]. We define matrices B ∈ Rd×n and Z ∈ Rd×n
likewise. We denote x∗ ∈ Rd as the vector of {x∗i }i∈[d].

Goal. Our goal is to estimate the true quality values x∗ ∈ Rd. For model identifiability,
we assume E[zij ] = 0 and

∑
i∈[d],j∈[n] E[bij ] = 0. An estimator takes as input the observations

Y and the partial ordering O, and outputs an estimate x̂ ∈ Rd. We measure the performance
of any estimator in terms of its (normalized) squared `2 error 1

d‖x̂− x
∗‖22.

3. For ease of exposition, we assume that each course is evaluated by n students, but the algorithms and
the results extend to the regime where the number of students is different across courses.
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3. Proposed estimator

Our estimator takes as input the observations Y and the given partial ordering O. The
estimator is associated with a tuning parameter λ ≥ 0, and is given by:

x̂(λ) ∈ arg min
x∈Rd

min
B∈Rd×n

B satisfies O

‖Y − x1T −B‖2F + λ‖B‖2F , (2)

where 1 denotes the all-one vector of dimension n. We let B̂(λ) denote the value of B
that attains the minimum of the objective (2), so that the objective (2) is minimized at
(x̂(λ), B̂(λ)). Ties are broken by choosing the solution (x,B) such that B has the minimal
Frobenius norm ‖B‖2F . We show that the estimator under this tie-breaking rule defines
a unique solution in Proposition 14 of Appendix C.2.1. Furthermore,as explained in Ap-
pendix B.1, the optimization (2) is a convex quadratic programming (QP) in (x,B), and
therefore can be solved in polynomial time in terms of (d, n).

While the first term ‖Y − x1T − B‖2F of (2) captures the squared difference between
the bias-corrected observations (Y −B) and the true qualities x1T , the second term ‖B‖2F
captures the magnitude of the bias. Since the observations in (1) include both the bias B
and the noise Z, there is fundamental ambiguity pertaining to the relative contributions
of the bias and noise to the observations. The penalization parameter λ is introduced to
balance the bias and the variance, and at the same time preventing overfitting to the noise.
More specifically, consider the case when the noise level is relatively large and the partial
ordering O is not sufficiently restrictive — in which case, it is sensible to select a larger λ
to prevent B overly fitting the observations Y .

For the rest of this section, we first describe intuition about the tuning parameter λ by
considering two extreme choices of λ which are by themselves of independent interest. We
then propose a carefully-designed cross-validation algorithm to choose the value of λ in a
data-dependent manner.

3.1 Behavior of our estimator under some fixed choices of λ

To facilitate understandings of the estimator (2), we discuss its behavior for two important
choices of λ — 0 and ∞ — that may be of independent interest.

λ = 0: When λ = 0, intuitively the estimator (2) allows the bias term B to be arbitrary
in order to best fit the data, as long as it satisfies the ordering constraint O. Consequently
with this choice, the estimator attempts to explain the observations Y as much as possible
in terms of the bias. One may use this choice if domain knowledge suggests that bias
considerably dominates the noise. Indeed, as we show subsequently in Section 4.2, our
estimator with λ = 0 is consistent in a noiseless setting (when only bias is present), whereas
common baselines are not.

λ = ∞: We now discuss the other extremity, namely when λ approaches infinity.
Intuitively, this case sets the bias term to zero in (2) (note that B̂ = 0 trivially satisfies
any partial ordering O). Therefore, it aims to explain the observations in terms of the
noise. Formally we define (x̂(∞), B̂(∞)) := limλ→∞(x̂(λ), B̂(λ)). In the subsequent result
of Proposition 7, we show that this limit exists, where we indeed have B̂(∞) = 0 and our
estimator simply reduces to the sample mean as [x̂(∞)]i = 1

n

∑n
j=1 yij for every i ∈ [d].

We thus see that perhaps the most commonly used estimator for such applications — the
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sample mean — also lies in our family of estimators specified in (2). Given the well-known
guarantees of the sample mean in the absence of bias (under reasonable conditions of the
noise), one may use this choice if domain knowledge suggests that noise is highly dominant
as compared to the bias.

λ ∈ (0,∞): More generally, the estimator interpolates between the behaviors at the
two extremal values λ = 0 and ∞ when both bias and noise is present. As we increase λ
from 0, the magnitude of the estimated bias B̂(λ) gradually decreases and eventually goes
to 0 at λ =∞. The estimator hence gradually explains the observations less in terms bias,
and more in terms of noise. Our goal is to choose an appropriate value for λ, such that the
contribution of bias versus noise determined by the estimator approximately matches the
true relative contribution that generates the observations. The next subsection presents a
principled method to choose the value for λ.

3.2 A cross-validation algorithm for selecting λ

We now present a carefully designed cross-validation algorithm to select the tuning param-
eter λ in a data-driven manner. Our cross-validation algorithm determines an appropriate
value of λ from a finite-sized set of candidate values Λ ⊆ [0,∞] that is provided to the
algorithm. For any matrix A ∈ Rd×n, we define its squared norm restricted to a subset of
elements Ω ⊆ [d]× [n] as ‖A‖2Ω =

∑
(i,j)∈ΩA

2
ij . Let T denote the set of all total orderings (of

the dn elements) that are consistent with the partial ordering O. The cross-validation algo-
rithm is presented in Algorithm 1. It consists of two steps: a data-splitting step (Lines 1-8)
and a validation step (Lines 9-19).

Data-splitting step. In the data-splitting step, our algorithm splits the observations
{yij}i∈[d],j∈[n] into a training set Ωt ⊆ [d] × [n] and a validation set Ωv ⊆ [d] × [n]. To
obtain the split, our algorithm first samples uniformly at random a total ordering π0 from
T (Line 2). For every course i ∈ [d], we find the sub-ordering of the n elements within this
course (that is, the ordering of the elements {(i, j)}j∈[n]) according to π0 (Line 4). For each
consecutive pair of elements in this sub-ordering, we assign one element in this pair to the
training set and the other element to the validation set uniformly at random (Lines 5-7). We
note that in comparison to classical cross-validation methods, our algorithm uses the total
ordering π0 to guide the split, instead of independently assigning each individual element to
either the training set or the validation set uniformly at random. This splitting procedure
ensures that for each element in the validation set there is an element that is “close” in the
training set with respect to the partial ordering O. This property is useful for interpolation
in the subsequent validation step.

Validation step. Given the training set and the validation set, our algorithm iterates
over the choices of λ ∈ Λ as follows. For each value of λ, the algorithm first computes
our estimator with penalization parameter λ on the training set Ωt to obtain (x̂(λ), B̂(λ)).
The optimization (Line 10) is done by replacing the Frobenius norm on the two terms in
the original objective (2) by the Frobenius norm restricted to Ωt. Note that this modified
objective is independent from the parameters {bij}(i,j)∈Ωv . Therefore, by the tie-breaking
rule of minimizing ‖B̂(λ)‖F , we have [B̂(λ)]ij = 0 for each (i, j) ∈ Ωv.

Next, our algorithm evaluates these choices of λ by their corresponding cross-validation
(CV) errors. The high-level idea is to evaluate the fitness of (x̂(λ), B̂(λ)) to the validation set
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Algorithm 1: Cross-validation. Inputs: observations Y , partial ordering O, and
set Λ.
/* Step 1: Split the data */

1 Initialize the training and validation sets as Ωt ← {}, Ωv ← {}.
2 Sample a total ordering of π0 uniformly at random from the set T of all total

orderings (of the dn elements) consistent with the partial ordering O.
3 foreach i ∈ [d] do
4 Find the sub-ordering of the n elements in course i according to π0, denoted in

increasing order as (i, j(1)), . . . , (i, j(n)).
5 for t = 1, . . . , n2 do
6 Assign (i, j(2t−1)), (i, j(2t)) to Ωt and Ωv, one each uniformly at random. If n

is odd, assign the last element (i, j(n)) to the validation set.
7 end
8 end

/* Step 2: Compute validation error */

9 foreach λ ∈ Λ do
10 Obtain (x̂(λ), B̂(λ)) as a solution to the following optimization problem:

(x̂()λ, B̂(λ)) ∈ arg min
x∈Rd, B∈Rd×n,
B satisfies O

‖Y − x1T −B‖2Ωt + λ‖B‖2Ωt ,

where ties are broken by minimizing ‖B̂(λ)‖F .
11 foreach (i, j) ∈ Ωv do
12 foreach π ∈ T do
13 Find the element (iπ, jπ) ∈ Ωt that is closest to (i, j) with respect to π,

and set [̃b
(λ)
π ]ij = b̂

(λ)
iπjπ . There may be two closest elements at equal

distance to (i, j), in which case call them (iπ1 , j
π
1 ) and (iπ2 , j

π
2 ) and set

[̃b
(λ)
π ]ij =

b̂
(λ)

iπ1 j
π
1

+b̂
(λ)

iπ2 j
π
2

2 .
14 end
15 Interpolate the bias as B̃(λ) = 1

|T |
∑

π∈T B̃
(λ)
π .

16 end
17 Compute the CV error e(λ) := 1

|Ωv|‖Y − x̂λ1
T − B̃(λ)‖2Ωv .

18 end
19 Output λcv ∈ arg minλ∈Λ e

(λ). (Ties are broken arbitrarily)
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Ωv, by computing 1
|Ωv|‖Y − x̂

(λ)1T − B̂(λ)‖2Ωv . However, recall that the estimate B̂(λ) only

estimates the bias on the training set meaningfully, and we have B̂(λ)
ij = 0 for each element

(i, j) in the validation set Ωv. Therefore, we “synthesize” the estimated bias B̃(λ) on the
validation from the estimated bias B̂(λ) on the training set via an interpolation procedure
(Lines 11-16), as explained below.

Interpolation. We now discuss how the algorithm interpolates the bias b̃(λ)
ij at each

element (i, j) ∈ Ωv from B̂(λ). We first explain how to perform interpolation with respect
to some given total ordering π (Line 13), and then compute a mean of these interpolations
by iterating over π ∈ T (Line 15).

• Interpolating with respect to a total ordering (Line 13): Given some total
ordering π, we find the element in the training set that is the closest to (i, j) in the
total ordering π. We denote this closest element from the training set as (iπ, jπ), and
simply interpolate the bias at (i, j) with respect to π (denoted [̃b

(λ)
π ]ij) using the value

of b̂iπjπ . That is, we set [̃b
(λ)
π ]ij = b̂

(λ)
iπjπ . If there are two closest elements of equal

distance to (i, j) (one ranked higher than (i, j) and one lower than (i, j) in π), we use
the mean of the estimated bias B̂(λ) of these two elements. This step is similar to the
CV error computation in Tibshirani et al. (2011).

• Taking the mean over all total orderings in T (Line 15): After we find the
interpolated bias B̃(λ)

π on the validation set with respect to each π, the final interpo-
lated bias b̃(λ) is computed as the mean of the interpolated bias over all total orderings
π ∈ T . The reason for taking the mean over π ∈ T is as follows. When we interpolate
by sampling a single ordering π ∈ T , this sampling of the ordering introduces ran-
domness in terms of which training elements are chosen for which validation elements,
and hence increasing the variance of the CV error.4 Taking the mean over all total
orderings eliminates this source of the variance of the CV error due to sampling, and
therefore leads to a better choice of λ.

After interpolating the bias B̃(λ) on the validation set, the CV error is computed as
1
|Ωv|‖Y − x̂

(λ)1T − B̃(λ))‖Ωv (Line 17). Finally, the value of λcv ∈ Λ is chosen by minimizing
the CV error (with ties broken arbitrarily). This completes the description of the cross-
validation algorithm.

Implementation. Now we comment on two important operations in Algorithm 1:
sampling a total ordering from the set T of total orderings consistent with the partial order-
ing O (Line 2), and iterating over the set T (Line 12). For sampling a total ordering from T
uniformly at random, many algorithms have been proposed that are approximate (Matthews,
1991; Bubley and Dyer, 1999) or exact (Huber, 2006). For iterating over T which can be
computationally intractable, we approximate the true mean over T by sampling from T

4. In more detail, this variance on the CV error due to sampling causes the algorithm to choose an excessively
large λ to underestimate the bias. A large λ shrinks the the magnitude of the estimated bias towards 0,
and therefore the estimated bias becomes closer to each other, reducing this variance — in the extreme
case, if the estimated bias is 0 on all elements from the training set, then the interpolated bias is 0 in
the validation set regardless of the ordering π, giving no variance due to sampling π.
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multiple times, and take their empirical mean. In many practical settings, the partial order-
ing contains a structure on which these two operations are simple to implement and run in
polynomial time — we discuss a subclass of such partial orderings termed “group orderings”
in the theoretical results (Section 4.1); this subclass of partial orderings is also evaluated in
the experiments (Section 5).

4. Theoretical guarantees

We now present theoretical guarantees for our proposed estimator (2) along with our cross-
validation algorithm (Algorithm 1). In Section 4.2 and 4.3, we establish properties of our
estimator at the two extremal choices of λ (λ = 0 and λ = ∞) for no noise and no bias
settings respectively. Then in Section 4.4, we analyze the cross-validation algorithm. The
proofs of all results are in Appendix C.

4.1 Preliminaries

Model assumptions: To introduce our theoretical guarantees, we start with several model
assumptions that are used throughout the theoretical result of this paper. Specifically, we
make the following assumptions on the model (1):

(A1) Noise: The noise terms {zij}i∈[d],j∈[n] are i.i.d. N (0, η2) for some constant η ≥ 0.

(A2) Bias: The bias terms {bij}i∈[d],j∈[n] are marginally distributed as N (0, σ2) for some
constant σ ≥ 0 unless specified otherwise, and obey one of the total orderings (se-
lected uniformly at random from the set of total orderings) consistent with the partial
ordering O. That is, we first sample dn values i.i.d. from N (0, σ2), and then sample
one total ordering uniformly at random from all total orderings consistent with the
partial ordering O. Then we assign these dn values to {bij} according to the sampled
total ordering.

(A3) Number of courses: The number of courses d is assumed to be a fixed constant.

All theoretical results hold for any arbitrary x∗ ∈ Rd. It is important to note that the
estimator (2) and the cross-validation algorithm (Algorithm 1) requires no knowledge of
these distributions or standard deviation parameters σ and η. Throughout the theoretical
results, we consider the solution x̂(λcv) as solution at λ = λcv on the training set.

Our theoretical analysis focuses on a general subclass of partial orderings, termed “group
orderings”, where each rating belongs to a group, and the groups are totally ordered.

Definition 1 (Group ordering). A partial ordering O is called a group ordering with r groups
if there is a partition G1, . . . , Gr ⊆ [d]× [n] of the dn ratings such that ((i, j), (i′, j′)) ∈ O if
and only if (i, j) ∈ Gk and (i′, j′) ∈ Gk′ for some 1 ≤ k < k′ ≤ r.

Note that in Definition 1, if two samples are in the same group, we do not impose any
relation restriction between these two samples.

Group orderings arise in many practical settings. For example, in course evaluation, the
groups can be letter grades (e.g., {A,B,C,D,F} or {Pass,Fail}), or numeric scores (e.g., in
the range of [0, 100]) of the students. Intuitively a group ordering assumes that a student

11



Wang, Stelmakh, Wei, and Shah

receiving a strictly higher grade is more positively biased in rating than a student receiving a
lower grade, irrespective of their course membership. A total ordering is also group ordering,
with the number of groups equal to the number of samples. We assume that the number of
groups is r ≥ 2 since otherwise groups are vacuous. In paper review, the groups can be the
decisions for the papers (e.g., strong accept, weak accept, borderline, etc.) or scores (e.g.,
on a scale of 1 to 10).

Denote `ik as the number of students of group k ∈ [r] in course i ∈ [d]. We further
introduce some regularity conditions used in the theoretical results. The first set of regularity
conditions is motivated from the case where students receive a discrete set of letter grades.

Definition 2 (Group orderings with the single constant-fraction assumption). A group
ordering is said to satisfy the single c-fraction assumption for some constants c ∈ (0, 1) if
there exists some group k ∈ [r] such that `ik > cn ∀ i ∈ [r].

Definition 3 (Group orderings with the all constant-fraction assumption). A group ordering
of r groups is said to satisfy the all c-fraction assumption for some constant c ∈ (0, 1

r ), if
`ik ≥ cn ∀ i ∈ [d], k ∈ [r].

Note that group orderings with all c-fractions is a subset of group orderings with single
c-fraction. Such assumptions naturally arise in practice. For example, in the peer review
process of NeurIPS 2016 (Shah et al., 2018), the criteria for a paper receiving scores 5, 4, or 3
are explicitly defined as the paper being the top 1/1000, 3%, or 30% among all submissions,
respectively. The final regularity condition below is motivated from the scenario where
student performances are totally ranked in the course.

Definition 4 (Total orderings with the constant-fraction interleaving assumption). Let O
be a total ordering (of the dn elements {(i, j)}i∈[d],j∈[n]). We define an interleaving point as
any number t ∈ [dn−1], such that the tth and the (t+1)th highest-ranked elements according
to the total ordering O belong to different courses. A total ordering O is said to satisfy
the c-fraction interleaving assumption for some constant c ∈ (0, 1), if there are at least cn
interleaving points in O.

Let us understand this condition through some examples from teaching evaluation, where
this condition is or is not satisfied. Assume the total ordering is derived from real-valued
grades, where grades for each course is sampled from a distribution specific to this course.
Then if any pair of distributions has overlapping density of constant mass (such as two
Gaussian distributions whose means are a constant away from each other), then Definition 4
is satisfied. On the other hand, if the grades in one course are all higher than the grades
in another course, Definition 4 is not satisfied. With these preliminaries in place, we now
present our main theoretical results.

4.2 λ = 0 is consistent when there is no noise

We first consider the extremal case where there is only bias but no noise involved. The
following theorem states that our estimator with λ = 0 is consistent in estimating the
underlying quantity x∗, that is x̂(0) → x∗ in probability.

12



Debiasing Evaluations Biased by Evaluations

Theorem 5 (Consistency in estimating x∗). Suppose the assumptions (A1), (A2) and (A3)
hold. Suppose there is no noise, or equivalently suppose η = 0 in (A1). Consider any
x∗ ∈ Rd. Suppose the partial ordering is one of:

(a) any group ordering of r groups satisfying the all c-fraction assumption, where c ∈ (0, 1
r ]

is a constant, or

(b) any group ordering with d = 2 courses and 2 groups, or

(c) any total ordering.

Then for any ε > 0 and δ > 0, there exists an integer n0 (dependent on ε, δ, c, d, η), such that
for every n ≥ n0 and every partial ordering satisfying at least one of the conditions (a), (b)
or (c):

P
(
‖x̂(0) − x∗‖2 < ε

)
≥ 1− δ.

The proof of this result is provided in Appendix C.3. The convergence of the estimator
to the true qualities x∗ implies the following corollary on ranking the true qualities x∗. In
words, our estimator x̂(0) is consistent in comparing the true qualities x∗i and x

∗
i′ of any pair

of courses i, i′ ∈ [d] with i 6= i′, as long as their values are distinct.

Corollary 6 (Consistency on the ranking of x∗). Suppose the assumptions (A1), (A2)
and (A3) hold. Consider any x∗ ∈ Rd. Assume there is no noise, or equivalently assume η =
0 in (A1). Then for any δ > 0, there exists an integer n0 (dependent on x∗, δ, c, d, η), such
that for all n ≥ n0 and every partial ordering satisfying at least one of the conditions (a), (b)
or (c) in Theorem 5:

P
(

sign(x̂i − x̂i′) = sign(x∗i − x∗i′)
)
≥ 1− δ for all i, i′ ∈ [d] such that i 6= i′ and x∗i 6= x∗i′ .

In Appendix A.1, we also evaluate the mean estimator. We show that under the condi-
tions of Theorem 5, the mean estimator is provably not consistent. This is because the mean
estimator does not account for the biases and only tries to correct for the noise. In order to
obtain a baseline that accommodates the outcome-dependent bias (since to the best of our
knowledge there is no prior literature on it), in Appendix A.2 we then propose a reweighted
mean estimator. It turns out that our estimator at λ = 0 also theoretically outperforms this
reweighted mean estimator (see Proposition 13 in Appendix A.2).

4.3 λ =∞ is minimax-optimal when there is no bias

We now move to the other extremity of λ = ∞, and consider the other extremal case
when there is only noise but no bias. Recall that we define the estimator at λ = ∞ as
x̂(∞) = limλ→∞ x̂

(λ). The following proposition states that this limit is well-defined, and
our estimator reduces to taking the sample mean at this limit.

Proposition 7 (Estimator at λ = ∞). The limit of (x̂(∞), B̂(∞)) := limλ→∞(x̂(λ), B̂(λ))
exists, and is given by

x̂
(∞)
i =

1

n

n∑
j=1

yij , for each i ∈ [d], and

B̂(∞) = 0.

(3)
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The proof of this result is provided in Appendix C.4. With no bias, estimating the true
quality x∗ reduces to estimating the mean of a multivariate normal distribution with the
covariance matrix η2Id, where Id denotes the identity matrix of size d× d. Standard results
in the statistics literature imply that taking the sample mean is minimax-optimal in this
setting if d is a fixed dimension, formalized in the following proposition for completeness.

Proposition 8 (Implication of Example 15.8 in Wainwright, 2019). Let d ≥ 1 be a fixed
constant. Let Y = x∗1T + Z, where x∗ ∈ Rd is an unknown vector and each entry of Z is
i.i.d. N (0, η2) with unknown η. Then the sample mean estimator x̂ = 1

nY 1 is minimax-
optimal for the squared `2-risk 1

dE‖x̂ − x
∗‖22, up to a constant factor that is independent of

d.

This concludes the properties of our estimator at the two extremal cases.

4.4 Cross-validation effectively selects λ

This section provides the theoretical guarantees for our proposed cross-validation algorithm.
Specifically, we show that in the two extremal cases, cross-validation outputs a solution that
converges in probability to the solutions at λ = 0 and λ = ∞, respectively. Note that the
cross-validation algorithm is agnostic to the values of σ and η, or any specific shape of the
bias or the noise.

The first result considers the case when there is only bias and no noise, and we show
that cross-validation obtains a solution that is close to the solution using a fixed choice of
λ = 0. The intuition for this result is as follows. The CV error ‖Y − x̂(λ)1T − B̃(λ)‖2Ωv

measures the difference between the bias-corrected observations Y − B̃(λ) and the estimated
qualities x̂(λ)1T . By construction, the values in x̂(λ)1T are identical within each row. Hence,
to minimize the CV error we want B̃(λ) to capture as much variance as possible within each
row of Y . Now consider λ = 0. In this case B̂(λ) correctly captures the intra-course variance
of the bias on the training set due to the noiseless assumption. Due to the nearest-neighbor
interpolation, we expect that the interpolated B̃(λ) captures most of the intra-course variance
of the bias on the validation set, giving a small CV error. However, for larger λ > 0,
the bias estimated from the training set shrinks in magnitude due to the regularization
term. The bias B̂(λ) and hence B̃(λ) only capture a partial extent of the actual bias in
the observations. The rest of the uncaptured bias within each course contributes to the
residue ‖Y − x̂(λ)1T − B̃(λ)‖2Ωv , giving a larger CV error. Hence, cross-validation is likely
to choose λ = 0 (or some sufficiently small value of λ). The following theorem shows that
cross-validation is consistent in estimating x∗ under the only-bias setting.

Theorem 9. Suppose the assumptions (A1), (A2) and (A3) hold. Consider any x∗ ∈ Rd.
Suppose there is no noise, or equivalently suppose η = 0 in (A1). Suppose c ∈ (0, 1) is a
constant. Suppose the partial ordering is either:

(a) any group ordering satisfying the all c-fraction assumption, or

(b) any total ordering with d = 2.
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Let 0 ∈ Λ. Then for any δ > 0 and ε > 0, there exists some integer n0 (dependent on
ε, δ, c, d, σ), such that for every n ≥ n0 and every partial ordering satisfying (a) or (b):

P
(
‖x̂(λcv) − x∗‖2 < ε

)
≥ 1− δ.

The proof of this result is provided in Appendix C.5. From Theorem 5 we have that
the estimator x̂(0) (at λ = 0) is also consistent under the only-bias setting. Combining
Theorem 5 with Theorem 9, we have x̂(λcv) approaches x̂(0). Formally, under the conditions
of Theorem 9, we have

P
(
‖x̂(λcv) − x̂(0)‖2 < ε

)
≥ 1− δ.

The next result considers the case when there is only noise and no bias, and we show that
cross-validation obtains a solution that is close to the solution using a fixed choice of λ =∞
(sample mean). Intuitively, at small values of λ the estimator still tries to estimate a non-
trivial amount of the interpolated bias B̃(λ). However, any such non-trivial interpolated bias
is erroneous since there is no bias in the observations to start with, increasing the CV error
‖Y − x̂(λ)1T − B̃(λ)‖2Ωv by doing a wrong bias “correction”. On the other hand, at λ =∞ (or
some λ that is sufficiently large), the interpolated bias B̃(λ) is zero (or close to zero), which
is the right thing to do and hence gives a smaller CV error. The following theorem shows
that cross-validation is consistent in estimating x∗ under the only-noise setting.

Theorem 10. Suppose the assumptions (A1), (A2) and (A3) hold. Consider any x∗ ∈ Rd.
Suppose there is no bias, or equivalently assume σ = 0 in (A2). Suppose c1, c2 ∈ (0, 1) are
constants. Suppose the partial ordering is either:

(a) any group ordering satisfying the single c1-fraction assumption, or

(b) any total ordering satisfying the c2-fraction interleaving assumption with d = 2.

Let ∞ ∈ Λ. Then for any δ > 0 and ε > 0, there exists some integer n0 (dependent on
ε, δ, c1, c2, d, η), such that for every n ≥ n0 and every partial ordering satisfying (a) or (b):

P
(
‖x̂(λcv) − x∗‖2 < ε

)
≥ 1− δ.

The proof of this result is provided in Appendix C.6. By the consistency of x̂(∞) implied
from Proposition 8 under the only-noise setting, this result implies that the estimator x̂(λcv)

approaches x̂(∞). Formally, under the conditions of Theorem 10, we have

P
(
‖x̂(λcv) − x̂(∞)‖2 < ε

)
≥ 1− δ.

Recall that the sample mean estimator is commonly used and minimax-optimal in the ab-
sence of bias. This theorem suggests that our cross-validation algorithm, by adapting the
amount of regularization in a data-dependent manner, recovers the sample mean estimator
under the setting when sample mean is suitable (under only noise and no bias).

These two theorems, in conjunction to the properties of the estimator at λ = 0 and
λ =∞ given in Sections 4.2 and 4.3 respectively, indicate that our proposed cross-validation
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algorithm achieves our desired goal in the two extremal cases. The main intuition underlying
these two results is that if the magnitude of the estimated bias from the training set aligns
with the true amount of bias, the interpolated bias from the validation set also aligns with
the true amount of bias and hence gives a small CV error. Extending this intuition to the
general case where there is both bias and noise, one may expect cross-validation to still able
to identify an appropriate value of λ.

5. Experiments

We now conduct experiments to evaluate our estimator and our cross-validation algorithm
under various settings. We consider the metric of the squared `2 error. To estimate the
qualities using our cross-validation algorithm, we first use Algorithm 1 to obtain a value
of the hyperparameter λcv; we then compute the estimate x̂(λcv) as the solution to (2) at
λ = λcv (that is, we solve (2) on the entire data combining the training set and the validation
set).5 Implementation details for the cross-validation algorithm (Algorithm 1) are provided
in Appendix B.1. Throughout the experiments, we use Λ = {2i : −9 ≤ i ≤ 5, i ∈ Z}∪{0,∞}.
We also plot the error incurred by the best fixed choice of λ ∈ Λ, where for each point in
the plots, we pick the value of λ ∈ Λ which minimizes the empirical `2 error over all fixed
choices in Λ. Note that this best fixed choice is not realizable in practice since we cannot
know the actual value of the `2 error.

To generate the ratings {yij}, we follow model (1). We assume that the noise terms
{zij}i∈[d],j∈[n] and the bias terms {bij}i∈[d],j∈[n] follow the assumptions (A1) and (A2) re-
spectively for our theoretical results in Section 4.1. Namely, the noise terms {zij} are i.i.d.
N (0, η2) for some parameter η ≥ 0, and the bias terms {bij} are marginally distributed as
N (0, σ2) for some parameter σ ≥ 0 while obeying a total ordering uniformly sampled from
all total orderings that are consistent with the given partial ordering. In our simulations,
we consider three cases for the amounts of bias and noise: only bias (σ = 1, η = 0), only
noise (σ = 0, η = 1), and both bias and noise (σ = 0.5, η = 0.5). Throughout the experi-
ments we set x∗ = 0 without loss of generality, because, as explained in Proposition 18 in
Appendix C.2.1, the results remain the same for any value of x∗.

We compare our cross-validation algorithm with the mean, median, and also the reweighted
mean estimator introduced in Appendix A.2. The mean estimator is the sample mean for
each course (same as our estimator at λ = ∞) defined as [x̂mean]i = 1

n

∑
j∈[n] yij for each

i ∈ [d], and the median estimator is defined as [x̂med]i = median(yi1, . . . , yin) for each i ∈ [d].
The reweighted mean estimator is not applicable to total orderings or general partial order-
ings. Each point in all the plots is computed as the empirical mean over 250 runs. Error
bars in all the plots represent the standard error of the mean.

5.1 Dependence on n

We first focus on group orderings. We evaluate the performance of our estimator under
different values of n, under the following types of group orderings.

5. Note that this is different from the theoretical results in Section 4.4, where we solve (2) at λ = λcv only
on the training set.
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• Non-interleaving total ordering: We call a total ordering a “non-interleaving”
total ordering, if the total ordering is b11 ≤ . . . ≤ b1n ≤ b21 ≤ . . . ≤ b2n ≤ . . . ≤ bd1 ≤
. . . bdn. In the non-interleaving total ordering, the values of the bias terms vary quite
significantly across courses. Our goal is to evaluate whether our estimator provides
good estimates under such imbalanced bias.

• Interleaving total ordering: We call a total ordering an “interleaving” total order-
ing, if the total ordering is b11 ≤ b21 ≤ . . . ≤ bd1 ≤ b12 ≤ . . . ≤ bd2 ≤ b1n ≤ . . . ≤ bdn.
In contrast to the non-interleaving total ordering, in the interleaving total ordering the
bias terms are more balanced across different courses, and we expect the mean and
the median baselines to work well in this setting. Our goal is to evaluate whether the
cross-validation algorithm deviates much from the baselines when the baselines work
well.

• Binary ordering: We call a group ordering a “binary” ordering, if there are r = 2
groups. Specifically, we consider a group distribution where (`i1, `i2) = (0.9n, 0.1n)
for half of the courses i, and (`i1, `i2) = (0.1n, 0.9n) for the other half of the courses i.

We consider d = 3 courses for the non-interleaving and interleaving total orderings,
and consider d = 4 for the binary ordering. The results are shown in Fig. 1. In the non-
interleaving case (Fig. 1a) and the binary case (Fig. 1c) where the distribution of the bias is
quite imbalanced, our estimator performs better than the mean and median baselines when
there is bias (with or without noise). The improvement is the most significant in the case
when there is only bias and no noise. In the case where there is only noise, our estimator still
performs reasonably as compared to the the baselines — the performance of our estimator
is worse, but this is not unexpected, because while our algorithm tries to compensate for
possible bias, the mean and median baselines do not. Indeed, as the theory (Proposition 8)
suggests, the mean estimator is ideal for the only-noise setting, but in practice we do not
know whether we operate in this only-noise setting a priori. In the interleaving case where
the bias is more balanced (Fig. 1b), our estimator performs on par with the baselines, and
is still able to correct the small amount of bias in the only-bias case.

We also compare our estimator with the reweighted mean estimator in the binary case.
Recall that the reweighted mean estimator is more specialized and not applicable to total
orderings or more general partial orderings. Our estimator performs slightly better than the
reweighted mean estimator in the two extremal (only-bias and only-noise) cases. In the noisy
case, the best fixed λ is better than the reweighted mean estimator but the cross-validation
algorithm is worse. In general, we observe that there remains a non-trivial gap between
the best fixed λ and cross-validation in the noisy case (also see the non-interleaving total
ordering in the noisy case). If prior knowledge about the relative amounts of bias and noise
is given, we may be able to achieve better performance with our estimator by setting the
value of λ manually.

5.2 Choices of λ by cross-validation

We inspect the choices of the hyperparameter λ made by our cross-validation algorithm.
We use the binary setting from Section 5.1, with n = 50. The histograms in Fig. 2 plot
the fraction of times that each value of λ ∈ Λ is chosen by cross-validation. When there
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(c) Binary ordering

Figure 1: The performance of our estimator (with cross-validation and with the best fixed
λ) for various values of n, compared to the mean, median and reweighted mean estimators.

is only bias, the chosen value of λ is small (with λ = 0 as the most chosen); when there is
only noise, the chosen value of λ is large (with λ = ∞ as the most chosen). When there
is both bias and noise, the value of λ lies in the middle of the two extremal cases. These
trends align with our intuition and theoretical results about cross-validation in Section 4.4,
and show that cross-validation is indeed able to adapt to different amounts of bias and noise
present in the data.
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Figure 2: The histogram on the fraction of times each value of λ is chosen by cross-validation.
Cross-validation is able to choose the value of λ adaptive to different amounts of bias and
noise.

5.3 The regime of d > n

In our theoretical results from Section 4, we restricted our attention to the case where the
number of courses d is a fixed constant. We now evaluate the regime where the number of
courses d becomes large compared to the number of students n, in order to test the general
applicability of our estimator. We again consider the three types of group orderings from
Section 5.1. We set n = 10 for the non-interleaving and interleaving total orderings, and
n = 20 for the binary ordering.

The results with different choices of d are shown in Fig. 3. The mean baseline has a flat
curve (except for the small sample-size regime of small values of d) and converges to some
non-zero constant in all of the settings. The flat curves come from the fact that the number
of parameters (i.e., the number of courses d) grows linearly in the number of observations.
The median baseline also has a relatively flat curve, with the exception that in the only-
bias case for the interleaving ordering, the error decreases rapidly for small values of d, and
eventually converges to a very small constant (not shown), because the median observations
across courses have very close bias due to the interleaving ordering). Again, our estimator
performs better than the mean and median baselines when there is bias. In the binary case,
our estimator also performs better than the reweighted mean estimator for large values of
d. One notable setting where our estimator does not perform as well is the only-noise case
for the non-interleaving ordering. Note that this is a case not covered by the theory in
Theorem 10(b) because the non-interleaving ordering does not satisfy the constant-fraction
interleaving assumption. In this case, our estimator at λ = 0 (or small values of λ) incurs
a large error. Therefore, despite the fact that we empirically observe that cross-validation
still chooses large values of λ for a large fraction of times, due to the very large error when
small values of λ are chosen, the overall error is still large. The reason that our estimator
at λ = 0 (or small values of λ) gives a large error is that our estimator attempts to explain
the data (that has no bias and only noise) as much as possible by the bias. Since in the
non-interleaving ordering, course i has smaller bias than course (i + 1), our estimator at
λ = 0 mistakenly estimates that x̂i is about a constant larger than x̂i+1 for each i ∈ [d− 1],
incurring a large error.

19



Wang, Stelmakh, Wei, and Shah

mean

median

weighted mean

CV

best fixed λ

Only bias
(σ = 1, η = 0)

Both bias and noise
(σ = 0.5, η = 0.5)

Only noise
(σ = 0, η = 1)

2 4 8 16 32
d

10−1

100

sq
u

ar
ed
` 2

er
ro

r

2 4 8 16 32
d

10−1

2× 10−1

3× 10−1

4× 10−1

6× 10−1

2 4 8 16 32
d

10−1

100

(a) Non-interleaving total ordering

2 4 8 16 32
d

10−2

sq
u

ar
ed
` 2

er
ro

r

2 4 8 16 32
d

10−1

6× 10−2

2 4 8 16 32
d

10−1

9× 10−2

1.1× 10−1

1.2× 10−1

1.3× 10−1

1.4× 10−1

1.5× 10−1

(b) Interleaving total ordering

2 4 8 16 32
d

10−2

10−1

sq
u

ar
ed
` 2

er
ro

r

2 4 8 16 32
d

10−1

4× 10−2

6× 10−2

2× 10−1

3× 10−1

2 4 8 16 32
d

10−1

6× 10−2

(c) Binary ordering

Figure 3: The performance of our estimator (with cross-validation and with the best fixed
λ) for various values of d, compared to the mean, median, and reweighted mean estimators.

5.4 General partial orderings

In our theoretical results from Section 4, we restricted our attention to group orderings.
While group orderings cover a large range of common cases in practice, there may exist
other types of partial orderings. We now consider the following two types of general partial
orderings that are not group orderings to test the general applicability of our estimator.
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A tree ordering arises in elimination-based tournaments, where participants are divided
into groups. Within each group, a winner is determined to proceed in the tournament, and
all losing participants are eliminated. In such elimination-based tournaments, it is natural
to assume that a participant is more negatively biased than the winner they lose to.

• Total binary tree: We consider a binary tree, and denote the number of levels
(depth) of the tree as `. Each node in the tree represents a single element from the
observations. Each node has a direct edge to both of its children, and the partial
ordering is the set of all directed edges. Specifically, we consider d = 2 courses. In this
case, the total number of observations dn is even. Therefore, we construct a binary
tree with one (arbitrary) leaf node removed. We assign all the 2`−1 − 1 nodes from
levels 1 to (` − 1) to the first course, and assign all the 2`−1 − 1 nodes from level `
(leaf nodes) to the second course. This construction is conceptually similar to total
orderings in group orderings, where each element takes a distinct role in the partial
ordering. In this construction we have the relation dn = 2` − 2.

• Binary tree of 3 levels: We consider a binary tree of 3 levels and therefore 7 nodes
in total. Each node contains k elements. There is an ordering constraint between two
elements if and only if there is an edge between the corresponding nodes they belong
to. We have the relation dn = 7k. We consider d = 3, and therefore we have n = 7

3k.
The three courses have the following assignment, where the elements in each level are
sampled uniformly at random from all elements in this level:

– Course 1: all k elements from level 1; k elements from level 2; k
3 elements from

level 3,
– Course 2: k elements from level 2; 4

3k elements from level 3,
– Course 3: 7

3k elements from level 3.

This construction is conceptually similar to a group ordering with a constant number
of groups.

We evaluate our estimator under these two types of tree partial orderings for various
values of n (setting the values of ` and k accordingly). Given that the reweighted mean
estimator is defined only for group orderings, we also consider its two extensions that are
tailored to tree orderings, termed “reweighted mean (node)” and “reweighted mean (level)”
as explained in Appendix B.2. Similar to the case of group orderings, these two reweighted
mean estimators are applicable to the binary tree of 3 levels but not the total binary tree.

The results are shown in Fig. 4. Again, when there is noise, we observe that our estimator
performs better than the mean and median baselines in both of these two tree orderings.
In the binary tree of 3 levels, the construction procedure specifies the number of elements
in each course from each level, but there is randomness in which nodes in the level these
elements from belong to. Due to this randomness, the reweighted mean (node) estimator
is not always applicable, and we use hollow squares to indicate these settings and only
compute the error across the runs where the estimator is applicable. We observe that our
cross-validation algorithm performs better than the two reweighted mean estimators in the
only-bias case. When there is noise (with or without bias), our cross-validation algorithm
performs on par while the best fixed λ performs better than the reweighted mean estimators.
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Figure 4: The performance of our estimator (with cross-validation and with the best fixed
λ) compared to the mean, median, and two reweighted mean estimators, under two types
of partial orderings that are not group orderings.
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5.5 Semi-synthetic grading data

In this section we conduct a semi-synthetic experiment using real grading statistics. We
use the grading data from Indiana University Bloomington Indiana University Bloomington
(2020), where the possible grades that students receive are A+ through D-, and F. We
consider three ways to construct the group orderings:

• Fine grades: The 13 groups correspond to the grades of A+ through D-, and F.

• Coarse grades: The fine grades are merged to 5 groups of A, B, C, D and F, where
grades in {A+,A,A-} are all considered A, etc.

• Binary grades: The grades are further merged to 2 groups of P and F (meaning
pass and fail), where all grades except F are considered P. According to the university’s
policies, D- is the lowest passing grade.

We use the grading data from the course “Business Statistics” from Spring 2020. This
course consists of 10 sessions taught by multiple instructors. The average number of students
per session is 50. We choose this course because this course has multiple sessions, so that the
grading distributions across different sessions are more balanced. Therefore, many common
grades (A+ through B) appear in all sessions, allowing the reweighted mean estimator to use
more observations and perform well. Instead, if we consider all 31 statistics courses taught
in the semester, then the only grade appearing in all courses is A, and the reweighted mean
estimator has to discard the data from all other grades.

We use the number of students and the grade distribution from this course, and synthesize
the observations using our model (1) under the Gaussian assumptions (A2) and (A1). The
bias is generated according to the group ordering induced by the fine grades, with a marginal
distribution of N (0, σ2), and the noise is generated i.i.d. from N (0, η2). We set η = 1− σ,
and consider different choices of σ. The true quality is set as x∗ = 0 (again the results
are independent from the value of x∗, the results are independent from the value of x∗,
by Proposition 18 in Appendix C.2.1). The estimators are given one of the three group
orderings listed above.

Note that the number of students is unequal in different sessions of the course. The
mean and median baselines are still defined as taking the mean and median of each course
respectively. The precise definitions of the reweighted mean estimator and our estimator are
in Appendix B.3. We estimate the quality of the 10 sessions of the course individually, even
if some sessions are taught by the same instructor.

The results are shown in Fig 5. As in previous simulations, the mean and median
baselines do not perform well when there is considerable bias (corresponding to a large
value of σ). As the number of groups increases from the binary grades to coarse grades
and then to the fine grades, the performance of both our estimator and the reweighted
mean estimator improves, because the finer orderings provide more information about the
bias. Our estimator performs slightly better than the reweighted mean estimator for the fine
grades (Fig. 5b), and slightly better on a subset of values of σ for the coarse grades (Fig. 5c).
For the binary grades, the error of both our estimator and the reweighted mean estimator
increases as the relative amount of bias increases (Fig. 5d). This increase is likely due to
the model mismatch as the data is generated from fine grades. In this case our estimator
performs better than the reweighted mean estimator for large values of σ.
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Figure 5: The performance of our estimator (with cross-validation) on semi-synthetic grad-
ing data, compared to the mean, median and reweighted mean estimators.

5.6 Real-world data from proposal review

We now move to a real-world data (Kerzendorf et al., 2020) collected for proposal peer review
at the European Southern Observatory (ESO). In their review process, each proposer submits
one proposal, and each proposal is assigned to around 8 reviewers. Each reviewer provides a
grade in the range of 1.0–5.0 (with one decimal point allowed) to each proposal that they are
assigned, where 5.0 means the highest quality.6 After the reviews are collected, each proposer
is given access to each individual review comment in text and the mean score of all reviewers
(without individual reviewers’ scores). The proposer then scores each individual review in
terms of its helpfulness by an integral number in the range of 1–4, where 4 means the most
helpful. The data contains 706 helpfulness scores and the respective proposal grade, between
120 proposers and 136 reviewers. A positive correlation between the proposal grades given
by the reviewers and the helpfulness scores given by the proposers has been qualitatively
observed (see Figure 4d in Kerzendorf et al., 2020).

Our objective is to evaluate each reviewer’s overall helpfulness across all their reviews,
while reducing the outcome-induced bias due to this positive correlation. To apply our pro-
posed method, we construct a set of ordering constraints as follows. Within each proposal,
we assume that the proposer is more positively biased towards a review if the reviewer pro-
vides a higher grade to the proposal. That is, a proposer’s biases towards all the reviewers

6. In the original data, a grade of 1.0 means the highest quality. We flip the scale by replacing each grade
g ∈ [1, 5] by the grade (6− g) to align with our notation.
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Figure 6: The estimated bias for each reviewer’s helpfulness, as a function of the mean
proposal grade given by the reviewer.

are in the same order as the one induced by the proposal grades given by these reviewers.
Note that in the review process, the proposers do not have access to reviewers’ individual
proposal grades. Hence, this ordering constraint is constructed under the assumption that
proposers are able to perceive how positive the reviewers are from the reviewers’ text com-
ments. We do not assume ordering constraints in terms of the bias terms across different
proposers, because proposers may have different calibration and may also respond to the
received proposal grades and text comments to different extent.

Note that there is no ground-truth available (i.e., a reviewer’s “true” helpfulness) for this
real-world data. Hence, we focus on providing qualitative interpretations on the output of
our algorithm. The cross-validation algorithm identifies the value of the hyperparameter as
λ = 2, suggesting a mixture of bias and noise in the data. In Figure 6, we plot the mean
proposal grade given by each reviewer, and the amount of estimated bias in their mean
helpfulness score. We observe a positive correlation (Pearson’s r = 0.519) for the bias terms
computed by our algorithm, where the estimated bias is more positive if the reviewer gives
higher grades to the proposals.

We further qualitatively inspect the two reviewers whose bias terms are estimated to be
the minimum and maximum in Tables 1 and 2. In Table 1, we show the reviewer (“u758”
in the data) whose bias is estimated to be the minimum and accordingly receives the most
increase in its estimated quality by the algorithm. Table 1 shows the three proposers who give
helpfulness scores to this reviewer (in bold), along with other reviewers that these proposers
give scores to. We observe that these three proposers give lower helpfulness scores of 1 and
2 primarily, compared to the mean helpfulness score 2.54 given by all proposers in the data.
Since the ordering constraints are imposed only within each individual reviewer, the bias
terms account for both proposer calibration (whether a proposer tends to give high or low
scores in general) and outcome-induced bias within the proposer. In this case, we observe
that bias primarily accounts for proposer calibration, as there is no clear positive correlation
between the proposal grade received and the helpfulness score given by the proposer.
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proposer proposal grade review helpfulness estimated bias

p136

2.5 1 -0.31
2.6 1 -0.31
3.3 2 -0.20
4.0 1 -0.20
4.0 1 -0.20
4.5 3 0.29

p334

2.2 2 -0.22
2.5 1 -0.19
3.0 2 -0.19
3.4 2 -0.19
3.4 2 -0.19
3.5 1 -0.19
3.5 2 -0.19

p341

2.0 2 -0.17
2.5 1 -0.17
3.0 2 -0.13
3.3 2 -0.13
4.5 1 -0.13
4.6 1 -0.13

Table 1: Information about the proposers associated to the reviewer with the minimum
estimated bias.

We also show in Table 2 the reviewer (“u178”) whose estimated bias term is the maximum
by the algorithm. We observe both proposer calibration and outcome-induced bias in the
estimated bias terms. For example, proposers “p241” tend to give higher helpfulness scores in
general, but also appears to favor reviewers who give high proposal grades to their proposal,
where the two proposers who give the lowest proposal grade (3.3 and 3.5) in turn receive
the lowest helpfulness score of 1. Hence, the positive bias terms suggest that the quality of
this reviewer may be over-estimated.

In this experiment, we observe that the bias terms estimated by our algorithm capture
both trends due to proposer calibration and outcome-induced bias. The outcome-induced
bias presented in this data is not notably strong, potentially due to careful phrasing when
eliciting proposer responses (by explaining to proposers that “positive comments like ‘best
proposal I ever read’ can be ranked as not helpful as it does not improve the proposal
further” (Kerzendorf et al., 2020)), and not presenting individual reviewer scores to proposers
but only the mean score. Our qualitative observations align with our theoretical intuition
developed for the algorithm, and it remains important future work to quantitatively validate
our algorithm on other real data where ground-truth quality is available. While it may not be
feasible to directly measured the “true quality”, proxies to this ground-truth can be obtained
by, for example, collecting helpfulness scores from program chairs or organization chairs
who are experts in the field while being impartial to reviewers’ grades given to individual
proposals.
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proposer proposal grade review helpfulness estimated bias

p057

2.9 1 -0.28
3.0 1 -0.28
3.5 1 -0.28
3.5 2 -0.28
3.6 1 -0.28
4.0 3 0.20
4.1 3 0.20

p241

3.3 1 -0.10
3.5 1 0.02
3.5 4 0.02
4.0 4 0.16
4.4 2 0.16
4.5 3 0.16
4.5 4 0.16

p492

3.0 4 0.16
3.7 3 0.16
4.0 3 0.16
4.2 1 0.16
4.5 3 0.21

p632

2.4 1 -0.56
2.8 1 -0.44
3.9 1 -0.36
4.5 4 0.64
4.5 4 0.64

Table 2: Information about the proposers associated to the reviewer with the maximum
estimated bias.

6. Discussion

Evaluations given by participants in various applications are often spuriously biased by
the evaluations received by the participant. We formulate the problem of correcting such
outcome-induced bias, and propose an estimator and a cross-validation algorithm to address
it. The cross-validation algorithm adapts to data without prior knowledge of the relative
extents of bias and noise. Access to any such prior knowledge can be challenging in practice,
and hence not requiring such prior knowledge provides our approach more flexibility.

Open problems. There are a number of open questions of interest resulting out of
this work. An interesting and important set of open questions pertains to extending our
theoretical analysis of our estimator and cross-validation algorithm to more general settings:
in the regime where there is both bias and noise, in a non-asymptotic regime, in a high-
dimensional regime with d� n, under other types of partial orderings, and under a model
mismatch where the provided partial ordering O is inaccurate. In addition, while our work
aims to correct biases that already exist in the data, it is also helpful to mitigate such biases
during data elicitation itself. This may be done from a mechanism design perspective where
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we align the users with proper incentives to report unbiased data, or from a user-experience
perspective where we design multitude of questions that jointly reveal the nature of any
bias.

Limitations. There are several caveats that need to be kept in mind when interpreting
or using our work. First, our work only claims to address biases obeying the user-provided
information such as biases associated with the grading practice of the instructor (which follow
the ordering constraints), and does not address biases associated with aspects such as the
demographics of the instructor, course difficulty, whether the course content is interesting to
students, and whether the course is mandatory or elective. All of these confounding factors
are not addressed by supplying an ordering due to grading bias. Second, the user should be
careful in supplying the appropriate ordering constraints to the algorithm, ensuring these
constraints have been validated separately. One potential caveat of using student grades as
an ordering constraint in teaching evaluation is that teaching evaluation is often conducted
before the grades are released to students, already mitigating such outcome-induced biases.
However, it remains possible that students may still hold expectations about what final
grades they will receive, based on their performance in the course so far. Another potential
caveat is that students who find the course material interesting are more motivated and
receive higher grades in the course as a result. In this case, their higher ratings to the
instructors are an indication of teaching quality as opposed to bias. Third, introducing the
debiasing algorithm may induce strategic behaviors. For example, would the instructors
intentionally provide lower grades under the expectation that the debiasing algorithm may
over-correct? Finally, our theoretical guarantees hold under specific shape assumptions of
the bias and the noise. Our algorithm is designed distribution-free, and we speculate similar
guarantees to hold under other reasonable, well-behaved shape assumptions; however, formal
guarantees under more general models remain open. With these limitations in mind, we
recommend using our algorithm as an assistive tool along with other existing practices (e.g.,
sample mean) when making decisions, particularly in any high-stakes scenario. Aligned
results between our algorithm and other practices give us more confidence that the result
is correct; different results between our algorithm and other practices suggests need for
additional information or deliberation before drawing a conclusion.
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Appendix A. Comparison with other estimators

In this section, we present auxiliary theoretical results on comparing our estimator with
the mean estimator (Appendix A.1) and a reweighted mean estimator that we introduce
(Appendix A.2).

A.1 Comparison with the mean estimator

Recall from Section 5 that the mean estimator for estimating x∗ is defined as [x̂mean]i =
1
n

∑
j∈[n] yij for each class i ∈ [d]. Taking the mean ignores the bias, and hence it is natural

to expect that this estimator does not perform well when the bias in the data is distributed
unequally across classes. Intuitively, let us consider two classes of different quality. If
students in a stronger class receive lower grades than students in a weaker class, then the
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bias induced by this distribution of grades may result in the mean estimator ranking the
classes incorrectly. The following proposition formalizes this intuition and shows that the
mean estimator indeed fails to compare the qualities of courses in the only-bias setting.

Proposition 11. Suppose the assumptions (A1), (A2) and (A3) hold and there is no noise,
or equivalently η = 0 in (A1). Suppose the partial ordering satisfies any one of the conditions
in Theorem 5:

(a) any group ordering of r groups with all c-fractions, where c ∈ (0, 1
r ) is a constant, or

(b) any group ordering with d = 2 courses and r = 2 groups, or

(c) any total ordering.

Then there exist a partial ordering that satisfies any one of the conditions (a) (with any
number of groups r ≥ 2), (b) or (c), true qualities x∗ ∈ Rd, a pair of courses i, i′ ∈ [d], and
an integer n0 (dependent on the standard parameter σ of the distribution of the bias and the
number of groups r in condition (a)), such that for all n ≥ n0, we have

P
(

sign ([x̂mean]i − [x̂mean]i′) = sign(x∗i − x∗i′)
)
< 0.01.

The proof of this result is provided in Appendix C.7. Note that in condition (a) we
require c 6= 1

r . This requirement is necessary because if c = 1
r , then the number of students

in any course i ∈ [d] and any group k ∈ [r] has to be exactly cn. In this case, the bias is evenly
distributed across all courses, and in this case the mean estimator is consistent. This negative
result on comparing pairs of courses (combined with the fact that both model (1) and the
mean estimator are shift invariant) implies the following negative result on estimation —
the mean estimator x̂mean does not converge to the true x∗ in probability.

Corollary 12. Suppose the assumptions (A1), (A2) and (A3) hold and there is no noise,
or equivalently η = 0 in (A1). Consider any x∗ ∈ Rd. Then there exist a partial ordering
that satisfies any one of the conditions (a), (b) or (c), and there exists a constant ε > 0 such
that for all n ≥ 1 we have

P
(
‖x̂mean − x∗‖22 < ε

)
< 0.01.

Recall that our estimator at λ = 0 is consistent in both comparing the quality of any pair
of courses (Corollary 6) and estimating the qualities (Theorem 5). In contrast, the negative
results in Proposition 11 and Corollary 12 show that the mean estimator is not consistent in
comparison or estimation. Moreover, these negative results are stronger, in that they show
the probability of correct comparison or estimation not only does not converge to 1, but
also can be arbitrarily small. The negative results on the mean estimator stem from the fact
that the mean estimator completely ignores the fact that the bias is not evenly distributed
across different courses. We remedy this issue by proposing a second baseline — termed a
reweighted mean estimator in the following subsection.
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A.2 A reweighted mean estimator

The second baseline, defined on group orderings only, re-weighs the observations to make
the bias evenly distributed across courses, allowing to then take the mean. For each group
k ∈ [r], denote `k,min := mini∈[d] `ik as the minimum number of students in group k among
all courses. Denote R = {k ∈ [r] : `k,min > 0} as the set of groups that appear in all courses.
The reweighted mean estimator consists of the following two steps.

Reweighting step The estimator computes a weighted mean of each course i ∈ [d] as

[x̂rw]i =
∑
k∈R

`k,min∑
k′∈R `k′,min

∑
j:(i,j)∈Gk

yij
`ik
. (4)

Intuitively, the observations are reweighted in a way such that the bias distribution is bal-
anced among courses. Specifically, for each course i ∈ [d] and each group k ∈ [r], this
reweighted mean estimator computes its group mean

∑
j:(i,j)∈Gk

yij
`ik

, and weighs the contri-

bution of this group mean to the overall mean by the factor of `k,min∑
k′∈R `k′,min

. This reweighting
can bee seen as the expected version of a sampling procedure, where for each course i ∈ [d]
and each group k ∈ [r], we sample `k,min out of `ik observations so that the number of
observations in group k is equal across all courses, and then take the mean on the sampled
observations. Note that there are an infinite number choices for the weights to balance the
biases, and the choice in (4) motivated by sampling is quite natural. It has the property
that if all courses have the same group distribution, then the reweighted mean reduces to
sample mean.

Recentering step We use the assumption that the bias and noise are centered, that is,∑
i∈[d]j∈[n] E[bij ] = 0 and

∑
i∈[d],j∈[n] E[zij ] = 0. Under this assumption, we have

1

n

∑
i∈[d],j∈[n]

E[yij ] =
1

n

∑
i∈[d],j∈[n]

E[x∗i + bij + zij ] =
∑
i∈[d]

x∗i . (5)

Hence, we shift x̂rw by a constant such that the empirical version of (5) holds, that is,∑
i∈d[x̂rw]i = 1

n

∑
i∈[d],j∈[n] yij .

x̂rw ← x̂rw +

−1

d

∑
i∈[d]

[x̂rw]i +
1

dn

∑
i∈[d],j∈[n]

yij

1 (6)

This recentering step is necessary, because the expected mean of the bias over all courses after
the reweighting step may not be 0, as the reweighting step only aligns the bias across courses,
but not necessarily to 0. From (22b) in Lemma 17, our estimator also satisfies

∑
i∈[d] x̂i =

1
n

∑
i∈[d],j∈[n] yij for all λ ∈ [0,∞], so this recentering also ensures a fair comparison with

our estimator. Empirically we observe that the reweighted mean estimator always performs
better after the recentering step.

Note that reweighted mean is undefined for total orderings. For group orderings with
all constant fractions, reweighted mean is also consistent. In this case, we present a simple
example below, where our estimator at λ = 0 still performs better than reweighted mean by
a constant factor (uniform bias is assumed for analytical tractability).
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Proposition 13. Suppose the number of courses is d = 2. Suppose the number of groups is
r = 2, with a grade distribution of (`11, `12) = ((rn, (1− r)n) and (`21, `22) = ((1− r)n, rn)
for some r ∈ (0, 1). Suppose there is no noise. Suppose bias in group 1 is generated i.i.d.
from Unif[−1, 0], and bias in group 2 is generated i.i.d. from Unif[0, 1]. Then the squared
`2-risk for the reweighted mean estimator is x̂rw and for our estimator x̂(0) at λ = 0 is
respectively

1

2
E‖x̂rw − x∗‖22 =

1

24n
+

1

96r(1− r)n
≥ 1

12n

1

2
E‖x̂(0) − x∗‖22 =

1

24n
+O

(
1

n2

)
.

The proof of this result is provided in Appendix C.8. Note that the risk of our estimator
is at most half of the error of reweighted mean, if ignoring the higher-order term O

(
1
n2

)
.

Appendix B. Additional experimental details

In this section, we provide additional details for the experiments in Section 5.

B.1 Implementation

We now discuss the implementation of our estimator.

Solving the optimization (Line 10 in Algorithm 1): We describe the implementation
of solving the optimization (2) depending on the value of λ.

• λ = ∞: The estimator is computed as taking the mean of each course according to
Proposition 7.

• λ ∈ (0,∞): In the proof of Proposition 14 we show that the objective 1 is strictly
convex in (x,B) on a convex domain. Hence, the problem is a QP with a unique
solution. We solve for the QP using the CVXPY package.

• λ = 0: It can be shown that the objective (1) is still convex, but there may exist
multiple solutions before the tie-breaking. We first obtain one solution of the QP using
CVXPY, denoted (x0, b0). The optimization (2) only has the first term, which is an
`2-projection from y to the convex domain {x1T + b : x ∈ Rd, b ∈ Rd×n, b satisfies O}.
Hence, the value of (x1T + b) is unique among all solutions (x, b), and the set of
solutions can be written as {(x, b) : x = x0 + u, b = b0 − u1T , u ∈ Rd}. We implement
the tie-breaking by solving u using CVXPY, minimizing ‖b‖2F = ‖b0 − u1T ‖2F subject
to the ordering constraints on b = b0 − u1T .

Finally, we discuss a speed-up technique for solving the QP. For total orderings, the
number of constraints in O is linear in the number of samples, whereas for general group
orderings, the number of constraints in O can become quadratic, making the QP solver
slow. To speed up the optimization, it can be shown that for all elements within any course
and any group, the ordering of the estimated bias B̂ at these elements is the same as the
ordering of the observations Y at these elements. Therefore, among the constraints in O
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involving these elements, we only keep the constraints that involve the maximum and the
minimum elements in this course and this group. Then we add the ordering of Y at these
elements to the partial ordering O. This replacement reduces the number of constraints in
O and speeds up the QP solver.

Sampling a total ordering from the partial ordering O (Line 2 in Algorithm 1):
When O is a group ordering, sampling a total ordering uniformly at random is implemented
by first sorting the elements according to their group, and then permuting the them uni-
formly at random within each group.

When O is a tree or a group tree, we sample a total ordering using the following proce-
dure. We first take all elements at the root of the tree, and place them in the total ordering
as the lowest-ranked elements (if there are multiple elements at the root, then permute them
uniformly at random in the total ordering). Consider each sub-tree consisting of a child node
of the root and all its descendants. For the remaining positions in the total ordering, we
assign these positions to the sub-trees uniformly at random. Then we proceed recursively to
sample a total ordering for each sub-tree, and fill them back to their positions in the total
ordering.

Interpolation (Line 15 in Algorithm 1): We sample 100 total orderings to approximate
the interpolation.

B.2 Extending the reweighted mean estimator to tree orderings

We introduce the definitions of the two reweighted mean estimators on tree orderings used
in the simulation in Section 5.4. Note that the reweighted mean estimator defined in Ap-
pendix A.2 is with respect to the groups {Gk}k∈[r]. We replace the groups in the reweighted
mean estimator by the following two partitions of the elements.
Reweighted mean (node): Each subset in the partition consists of all elements in the
same node of the tree.
Reweighted mean (level): Each subset in the partition consists of all elements on the
same level of the tree.

B.3 Extending our estimator and the reweighted mean estimator to an
unequal number of students per course

In the semi-synthetic experiment in Section 5.5, the number of students is unequal in different
courses. We describe a natural extension of the reweighted mean estimator and our estimator
to this case.

First, we explain how to format the observations back to a matrix form. Denote ni
as the number of students in course i ∈ [d]. Let n = maxi∈[d] ni. Construct a matrix
Y ∈ Rd×n, where the first ni elements in each row i ∈ [d] correspond to the observations
in this course, and the values of the remaining elements are set arbitrarily. Construct the
set of observations Ω ∈ [d] × [n], where the first ni elements in each row i ∈ [d] are in
Ω. Estimation under an unequal number of students per course is equivalent to estimation
given Y (and its corresponding partial ordering O) restricted to the set Ω. It remains to
define the reweighted mean estimator and our estimator restricted to any set Ω ∈ [d]× [n].
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The reweighted mean estimator: In the definition of the the reweighted mean estimator
in Appendix A.2, the reweighting step is the same (only using the observations in Ω). The
recentering step restricted to Ω is defined as:

x̂rw ← x̂rw +

−∑
i∈[d]

ni
|Ω|

[x̂rw]i +
1

|Ω|
∑

i∈[d],j∈[n]

yij

1

Similar to Appendix A.2, after this recentering step, the reweighted mean estimator satisfies
the empirical version of an equality (Eq. (21b) in Appendix C.2.1) that our estimator also
satisfies.

Our estimator: We extend Algorithm 1 naturally to being restricted to a set Ω as follows.
In the data-splitting step, in Line 2, we replace the number of elements from dn to

∑
i∈[d] ni;

in Lines 4-7, we replace the number of students from n to ni, and only find the sub-ordering
of the ni elements in Ω. The validation step remains the same.

Appendix C. Proofs

In this section, we provide proofs for all the theoretical claims made earlier. We begin by
introducing some additional notation in Section C.1 which is used throughout the proofs.
In Section C.2, we then provide certain preliminaries that are useful for the proofs. We then
present the proofs in subsequent subsections.

For ease of notation, we ignore rounding throughout the proofs as it does not affect the
claimed results.

C.1 Notation

Training-validation split (Ωt,Ωv): By Algorithm 1, the number of elements restricted
to the set Ωt or Ωv is the same for each course i. Hence, we denote nt and nv as the number
of students per course in Ωt and Ωv respectively. Throughout the proofs, for simplicity we
assume that n is even. In this case we have

nt = nv =
n

2
. (7)

All the proofs extend to the case where n is odd under minor modifications.
We define the elements in each course i ∈ [d] restricted to Ωt or Ωv as:

Ωt
i := {(i, j) ∈ Ωt}

Ωv
i := {(i, j) ∈ Ωv}.

We slightly abuse the notation and say j ∈ Ωt
i if (i, j) ∈ Ωt

i . Likewise for Ωv
i .

Group orderings: Recall that from Definition 1 that Gk denotes the set of elements in
group k ∈ [r]. We define

Gt
k := Gk ∩ Ωt

Gv
k := Gk ∩ Ωv.
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We denote the elements of group k ∈ [r] in course i ∈ [d] restricted to Ωv as:

Gik := Gk ∩ Ωi.

Furthermore, we define the elements of Gik restricted to Ωv as

Gt
ik := Gt

k ∩ Ωt
i Gv

ik := Gv
k ∩ Ωv

i .

Again, we slightly abuse the notation and say j ∈ Gv
ik if (i, j) ∈ Gv

ik.
We define `ik as the the number of students of group k ∈ [r] in course i ∈ [d]. We define

`k as the number of students of group k ∈ [r]. We denote `−i,k as the number of students of
group k ∈ [r] and not in course i. Namely,

`ik := |Gik| (8a)

`k := |Gk| =
∑
i∈[d]

`ik (8b)

`−i,k := |Gk \Gik| =
∑
i′ 6=i

`i′k. (8c)

Furthermore, we define

`tk :=
∣∣Gt

k

∣∣ `vk := |Gv
k|, (9a)

`tik :=
∣∣Gt

ik

∣∣ `vik := |Gv
ik|. (9b)

Total ordering: Consider the dn elements. We say that the element (i, j) is of rank
t ∈ [dn] if (i, j) is the tth-smallest element in among the dn elements.

We denote tij as the rank of each element (i, j) ∈ [d] × [n]. We denote (it, jt) as the
element of rank t ∈ [dn].

Observations Y and bias B: Denote the mean of all observations as

y =
1

dn

∑
i∈[d],j∈[n]

yij . (10)

Denote the mean of the observations in any course i ∈ [d] as

yi =
1

n

n∑
j=1

yij . (11)

Likewise we denote the mean of the bias in any course i ∈ [d] as bi. We denote the mean of
the bias of any course i ∈ [d] as

bGk =
1

`k

∑
(i,j)∈Gk

bij .

39



Wang, Stelmakh, Wei, and Shah

Now restrict to group orderings. For any course i ∈ [d] and any group k ∈ [r], denote
the smallest and the largest observation in course i and group k as

yik,max := max
j:(i,j)∈Gk

yij (12a)

yik,min := min
j:(i,j)∈Gk

yij (12b)

We define bik,max and bik,min likewise. In addition, we define the smallest and the bias of
any group k ∈ [r] as

bk,min = min
(i,j)∈Gk

bij

bk,max = max
(i,j)∈Gk

bij .
(13)

Statistics: We g as the p.d.f. of N (0, 1). Denote G and G−1 as the corresponding c.d.f.,
and the inverse c.d.f., respectively. We slightly abuse notation and write P(X) as the p.d.f.
of any continuous variable X.

For a set of i.i.d. random variables X1, . . . , Xn, we denote X(k) as the kth order statistics
of {Xi}ni=1. We use the notation X(k:n) when we emphasize the sample size n.

Let d ≥ 2 be any integer, and let π be a total ordering of size d. We denote the monotonic
cone with respect to π as M :=

{
θ ∈ Rd : θπ(1) ≤ . . . ≤ θπ(d)

}
. For any vector x ∈ Rd, we

denote the isotonic projection of x as

ΠM(x) := arg min
u∈Mπ

‖x− u‖22. (14)

We denoteM as the monotonic cone with respect to the identity ordering.

Our estimator and the cross-validation algorithm: Recall from Line 10 of Algo-
rithm 1 that our estimator restricted to any set of elements Ω ⊆ [d] × [n] is defined as the
solution to:

arg min
x∈Rd

min
B∈Rd×n

B satisfies O

∥∥Y − x1T −B∥∥2

Ω
+ λ‖B‖2Ω, (15)

with the ties broken by minimizing ‖B‖2F .
We use the shorthand notation (x̂, B̂) to denote the solution (x̂(λ), b̂(λ)) to (15) when the

value λ is clear from the context. Likewise we use the shorthand notation B̃(λ) to denote
the interpolated bias B̃(λ) obtained in Line 15 of Algorithm 1.

Recall from Line 13 in Algorithm 1 that we find the element (iπ, jπ) ∈ Ωt (or two
elements (iπ1 , j

π
1 ), (iπ2 , j

π
2 ) ∈ Ωt) that is close to the considered element (i, j) ∈ Ωv in any

total ordering π. We call these one or two elements from Ωt as the “nearest-neighbor” of
(i, j) with respect to π, denoted NN(i, j;π). Recall from Line 17 in Algorithm 1 that e(λ)

denotes the CV error at λ.
Define the random variable Λε as the set

Λε := {λ ∈ [0,∞] : ‖x̂(λ)‖2 > ε}. (16)

Under x∗ = 0, the set Λε consists of the “bad” choices of λ whose estimate x̂(λ) incurs a large
squared `2-error.
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Taking the limit of n → ∞: For ease of notation, we define the limit of taking n → ∞
as follows. For example, in the statement of Theorem 5(a), we consider any fixed ε > 0.
Then the notation

lim
n→∞

P
(
‖x̂(0) − x∗‖2 < ε

)
= 1 (17)

is considered equivalent to the original statement of Theorem 5(a) that for any δ > 0, there
exists an integer n0, such that for every n ≥ n0 and every partial ordering satisfying the
condition (a) we have

P
(
‖x̂(0) − x∗‖2 < ε

)
= 1.

The notation (17) has the alternative interpretation as follows. We construct a sequence of
partial orderings {On}∞n=1, where the partial ordering On is on d courses and n students
and satisfies the condition (a). With n students, the estimator x̂(0) is provided the partial
ordering On. We consider any such fixed sequence {On}∞n=1. Then the limit of n → ∞
in (17) is well-defined.

C.2 Preliminaries

In this section we present preliminary results that are used in the subsequent proofs. Some
of the preliminary results are defined based on a set of elements Ω ⊆ [d] × [n]. We define
the elements in each course i ∈ [d] as

Ωi := {(i, j) ∈ Ω}.

Again we say j ∈ Ωi if (i, j) ∈ Ωi. We define the number of elements in each course i ∈ [d]
as ni := |Ωi|.

Throughout the proofs, whenever a set Ω ⊆ [d]× [n] is considered, we assume the set Ω
satisfies ni > 0 for each i ∈ [d] to avoid pathological cases. For ease of presentation, the
order of the preliminary results does not exactly follow the sequential order that they are
proved.

C.2.1 Properties of the estimator

In this section we present a list of properties of our estimator. We start with the following
proposition. This proposition shows the existence and uniqueness of the solution to our
estimator (15) under its tie-breaking rule for any λ ∈ [0,∞). That is, the estimator is
well-defined on λ ∈ [0,∞).

Proposition 14 (Existence of the estimator at λ ∈ [0,∞)). For any λ ∈ [0,∞) and any
Ω ⊆ [d]× [n], there exists a unique solution to our estimator (2) under the tie-breaking rule,
given any inputs Y ∈ Rd×n and any partial ordering O.

The proof of this result is provided in Appendix C.9.1. Recall that the solution to (15)
at λ =∞ is defined by taking the limit of λ→∞ as:

x̂(∞) := lim
λ→∞

x̂(λ) (18a)

B̂(∞) := lim
λ→∞

B̂(λ). (18b)
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The following proposition shows the existence of the solution (18). That is, the limit in (18)
is well-defined. This proposition is a generalization of Proposition 7 to any set Ω ⊆ [d]× [n],
and its proof is a straightforward generalization of the proof of Proposition 7 (Appendix C.4).

Proposition 15 (Existence of the estimator at λ =∞). For any Ω ⊆ [d]× [n], the solution
(x̂(∞), B̂(∞)) defined in (18) exists. Moreover, we have

[x̂(∞)]i =
1

ni

∑
j∈Ωi

yij ∀i ∈ [d]

B̂(∞) = 0.

The following lemma gives a relation between x̂(λ) and B̂(λ) for any λ ∈ [0,∞]. This basic
relation is used in proving multiple properties of the estimator to be presented subsequently
in this section.

Lemma 16. For any λ ∈ [0,∞], and any Ω ⊆ [d] × [n], the solution (x̂(λ), B̂(λ)) to the
estimator (15) satisfies

x̂
(λ)
i =

1

ni

∑
j∈Ωi

(
yij − b̂(λ)

ij

)
∀i ∈ [d]. (19)

In particular, in the special case of Ω = [d]× [n], we have

x̂
(λ)
i =

1

n

∑
j∈[n]

(
yij − b̂(λ)

ij

)
∀i ∈ [d]. (20)

The proof of this result is provided in Appendix C.9.2 The following property gives
expressions of the sum of the elements in x̂ and the sum of the elements in B̂.

Lemma 17. For any λ ∈ [0,∞], any Ω ⊆ [d]× [n], the solution (x̂(λ), B̂(λ)) given any partial
ordering O and any observations Y satisfies∑

(i,j)∈Ω

b̂
(λ)
ij = 0 (21a)

∑
i∈[d]

nix̂
(λ)
i =

∑
(i,j)∈Ω

yij . (21b)

In particular, in the special case of Ω = [d]× [n], we have∑
i∈[d],j∈[d]

b̂
(λ)
ij = 0 (22a)

n
∑
i∈[d]

x̂
(λ)
i =

∑
i∈[d],j∈[n]

yij . (22b)

The proof of this result is provided in Appendix C.9.3. The following property shows a
shift-invariant property of our estimator. This property is used so that we assume x∗ = 0
without loss of generality all the proofs.
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Proposition 18 (Shift-invariance of the estimator). Consider any Ω ⊆ [d] × [n], and any
partial ordering O. Fix any λ ∈ [0,∞]. Let (x̂(λ), B̂(λ)) be the solution of our estimator for
any observations Y ∈ Rd×n given (O, λ,Ω). Consider any ∆x ∈ Rd. Then the solution of
our estimator for the observations Y + ∆x1T given (O, λ,Ω) is (x̂(λ) + ∆x, B̂(λ)).

The proof of this result is provided in Appendix C.9.4. Note that the observation
model (1) is shift-invariant by definition. That is, consider any fixed B,Z ∈ Rd×n, denote
the observations with x∗ = 0 as Y . Then the observations with x∗ = ∆x is (Y + ∆x1T ).
Hence, Proposition 18 implies the following corollary.

Corollary 19. Under the observation model (1), consider any fixed bias B ∈ Rd×n and
noise Z ∈ Rd×n. Suppose the solution of our estimator under x∗ = 0 is (x̂(λ), B̂(λ)) given
any (O, λ,Ω). Then the solution under x∗ = ∆x is (x̂(λ) + ∆x, B̂(λ)).

Based on the result of Corollary 19, it can be further verified that the cross-validation
algorithm (Algorithm 1) that uses our estimator is shift-invariant. Therefore, for all the
proofs, we assume x∗ = 0 without loss of generality.

The following pair of lemmas (Lemma 20 and Lemma 21) converts between a bound
on the difference of a pair of courses |x̂i − x̂i′ | and a bound on ‖x̂‖2. Lemma 20 is used
in Theorem 9 and Theorem 10; Lemma 21 is used in Theorem 5. Recall the notation
Λε := {λ ∈ [0,∞] : ‖x̂(λ)‖2 > ε}.

Lemma 20. Suppose x∗ = 0. Consider random Ωt obtained by Algorithm 1. Suppose the
observations are generate from either:

(a) The bias is marginally distributed as N (0, σ2) following assumption (A2) and there is
no noise, or

(b) The noise is generated from N (0, η2) following assumption (A1), and there is no bias.

For any constant ε > 0, our estimator x̂(λ) restricted to Ωt satisfies

lim
n→∞

P
(

max
i,i′∈[d]

(
x̂

(λ)
i − x̂

(λ)
i′

)
>

ε√
d
, ∀λ ∈ Λε

)
= 1,

where the probability is taken over the randomness in the observations Y and the training
set Ωt.

The proof of this result is provided in Appendix C.9.5.

Lemma 21. Suppose x∗ = 0. Suppose the observations follow part (a) of Lemma 20.
Suppose the estimator is restricted to the set of either

(a) Ω = [d]× [n], or

(b) random Ωt obtained by Algorithm 1.

Fix any λ ∈ [0,∞] and any ε > 0. Suppose we have

lim
n→∞

P
(

max
i,i′∈[n]

∣∣∣x̂(λ)
i − x̂

(λ)
i′

∣∣∣ < ε

)
= 1. (23)
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Then we have

lim
n→∞

P
(
‖x̂(λ)‖2 < ε

)
= 1,

where the probabilities are taken over the randomness in the observations Y and (for part (b))
in Ωt.

The proof of this result is provided in Appendix C.9.6. The following proposition gives
a closed-form solution under d = 2 courses and r = 2 groups at λ = 0. This proposition
is used for proving Theorem 5(b) and Proposition 13. Recall the definitions of y, yi, yik,min

and yik,max from (10), (11) and (12).

Proposition 22. Consider d = 2 courses and any group ordering O with r = 2 groups. Let
Ω = [d]×[n]. Suppose the bias B satisfies the partial ordering O, and there is no noise. Then

the solution of our estimator (2) at λ = 0 has the closed-form expression x̂(0) = y+

[
−1
1

]
· γ2 ,

where

γ =


y22,min − y11,max if y22,min − y11,max < y2 − y1

y21,max − y12,min if y21,max − y12,min > y2 − y1

y2 − y1 o.w.
(24)

If some of {y11,max, y21,max, y12,min, y22,min} do not exist (i.e., when a certain course doesn’t
have students of a certain group), then the corresponding case in (24) is ignored.

The proof of this result is provided in Appendix C.9.7

C.2.2 Order statistics

This section presents a few standard properties of order statistics.
Consider n i.i.d. random variables {Xi}i∈[n] ordered as

X(1) ≤ . . . ≤ X(n).

Define the maximal spacing as

Mn := max
1≤i≤n−1

(X(i+1) −X(i)). (25)

The following standard result from statistics states that the maximum difference between
adjacent order statistics converges to 0 for the Gaussian distribution.

Lemma 23. Let n > 1 be any integer. Let X1, . . . , Xn be i.i.d. N (0, 1). Then for any
ε > 0, we have

lim
n→∞

P(Mn < ε) = 1.

For completeness, the proof of this result is provided in Appendix C.9.8. Denote G−1

as the inverse c.d.f. of N (0, 1). The following standard result from statistics states that the
order statistics converges to the inverse c.d.f.
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Lemma 24. Let X1, . . . , Xn be N (0, 1). Fix constant p ∈ (0, 1) and c ∈ R. Let {kn}∞n=1 be
a sequence such that kn

n = p+ c√
n

+ o
(

1√
n

)
. We have

X(kn:n) P−→ G−1(p).

For completeness, the proof of this result is provided in Appendix C.9.9.
The following standard result from statistics provides a simple bound on the maximum

(and the minimum) of a set of i.i.d. Gaussian random variables.

Lemma 25. Let X1, . . . , Xn be i.i.d. N (0, σ2). Then we have

lim
n→∞

P
(

max
i∈[n]

Xi < 2σ
√

log n

)
= 1

lim
n→∞

P
(

max
i∈[n]

Xi −min
i∈[n]

Xi < 4σ
√

log n

)
= 1.

C.2.3 Additional preliminaries

In this section, we present several more additional preliminary results that are used in the
subsequent proofs.

The following result considers the number of students under the all constant-fraction
assumption given any training-validation split (Ωt,Ωv). Recall the definitions of `ik, `k, `vik, `

t
k

and `vk from (8) and (9).

Lemma 26. Assume `ik ≥ 4 for each i ∈ [d] and k ∈ [r]. Consider any training-validation
split (Ωt,Ωv) obtained by Algorithm 1. Then we have the deterministic relations

`ik
4
≤ `vik ≤

3`ik
4

∀i ∈ [d], k ∈ [r] (26a)

`ik
4
≤ `tik ≤

3`ik
4

∀i ∈ [d], k ∈ [r] (26b)

and

`k
4
≤ `vk ≤

3`k
4

∀k ∈ [r] (27a)

`k
4
≤ `tk ≤

3`k
4

∀k ∈ [r]. (27b)

The proof of this result is provided in Appendix C.9.10. The following result considers
any total ordering. It states that the ranks of the adjacent elements within Ωt, or the ranks
of the adjacent elements between Ωt and Ωv differ by at most a constant. Formally, for any
1 ≤ k1 < k2 ≤ dn, the element of rank k1 and the element of rank k2 are said to be adjacent
within Ωt, if both elements are in Ωt, and elements of ranks k1 + 1 through k2− 1 are all in
Ωv. The two elements are said be be adjacent between Ωt and Ωv, if one of the following is
true:

• The elements of ranks k1 through (k2 − 1) are in Ωt, and the element of rank k2 is in
Ωv;
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• The elements of ranks k1 through (k2 − 1) are in Ωv, and the element of rank k2 is in
Ωt.

Lemma 27. For any partition (Ωt,Ωv) obtained by Algorithm 1, for any 1 ≤ k1 < k2 ≤ dn,
suppose that the element of rank k1 and the element of rank k2 are

(a) adjacent within Ωt, or

(b) adjacent between Ωt and Ωv.

Then we have

k2 − k1 ≤ 2d+ 1.

The proof of this result is provided in Appendix C.9.11. The following lemma bounds the
mean of the bias terms using standard concentration inequalities.

Lemma 28. Consider any partial ordering O and any random Ωt obtained by Algorithm 1.
Suppose that the bias is marginally distributed as N (0, 1) following assumption (A2). For
any ε > 0, we have

lim
n→∞

P

∣∣∣∣∣∣ 1

nt

∑
j∈Ωt

i

bij −
1

n

∑
j∈[n]

bij

∣∣∣∣∣∣ < ε

 = 1 ∀i ∈ [d], (28a)

lim
n→∞

P

∣∣∣∣∣∣ 1

|Ωt|
∑

(i,j)∈Ωt

bij

∣∣∣∣∣∣ < ε

 = 1, (28b)

where the probabilities are over the randomness in B and in Ωt.

The proof of this result is provided in Appendix C.9.12.

C.3 Proof of Theorem 5

The proof follows notation in Appendix C.1 and preliminaries in Appendix C.2. By Corol-
lary 19, we assume x∗ = 0 throughout the proof without loss of generality. We also assume
without loss of generality that the standard deviation of the Gaussian bias is σ = 1. Given
x∗ = 0 and the assumption that there is no noise, model (1) reduces to

Y = B. (29)

Recall that `ik denotes the number of observations in course i ∈ [d] of group k ∈ [r], and `k
denotes the number of observations of group k summed over all courses. For any positive
constant c > 0, we define the set Sc as

Sc :=

{
(i, i′) ∈ [d]2 : ∃k ∈ [r] such that

`ik
`k
,
`i′,k+1

`k+1
≥ c
}
. (30)

In words, the definition (30) says that for any pair of courses (i, i′) ∈ Sc, we have that course
i takes at least c-fraction of observations in some group k ∈ [r], and course i′ takes at least
c-fraction of observations in group (k + 1).
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Before proving the three parts separately, we first state a few lemmas that are used for
more than one part. The first lemma states that any (i, i′) ∈ Sc imposes a constraint on our
estimator x̂(0) at λ = 0.

Lemma 29. Assume x∗ = 0. Consider bias marginally distributed as N (0, 1) following
assumption (A2) and no noise. Let x̂(0) be the solution of our estimator at λ = 0. Fix any
c > 0. For any (i, i′) ∈ Sc, we have that for any ε > 0,

lim
n→∞

P
(
x̂

(0)
i′ − x̂

(0)
i < ε

)
= 1. (31)

The proof of this result is provided in Appendix C.10.1. To state the next lemma, we
first make the following definition of a “cycle” of courses.

Definition 30. Let L ≥ 2 be an integer. We say that (i1, i2, . . . , iL) ∈ [d]L is a “cycle” of
courses with respect to Sc, if

(im, im+1) ∈ Sc ∀m ∈ [L− 1], (32a)
and (iL, i1) ∈ Sc. (32b)

The following lemma states that if there exists a cycle of courses, then the difference of
the estimated quality x̂ between any two courses in this cycle converges to 0 in probability.

Lemma 31. Fix any c > 0. Suppose d is a fixed constant. Let (i1, i2, . . . , iL) ∈ [d]L for
some L ≥ 2 be a cycle with respect to Sc. Then for any ε > 0 we have

lim
n→∞

P
(

max
m,m′∈[L]

∣∣x̂im′ − x̂im∣∣ < ε

)
= 1.

The proof of this result is provided in Appendix C.10.2. Now we prove the three parts
of Theorem 5 respectively.

C.3.1 Proof of part (a)

For clarity of notation, we denote the constant in the all constant-fraction assumption as cf .
Consider any i, i′ ∈ [d] and any k ∈ [r − 1]. We have

`ik
`k

(i)
≥ cfn

dn
=
cf

d
,

where step (i) is true by the all c-fraction assumption from Definition 3. Hence, by the
definition (30) of Sc, we have (i, i′) ∈ S cf

d
for every i, i′ ∈ [d]. Hence, (1, 2, . . . , d) is a cycle

with respect to S cf
d
according to Definition 30. Applying Lemma 31 followed by Lemma 21(a)

completes the proof.

C.3.2 Proof of part (b)

Without loss of generality we assume course 1 has more (or equal) students in group 1 than
course 2, that is, we assume

`11 ≥ `21. (33)
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Since we assume there are only two courses and two groups, we have

`12 = n− `11 ≤ n− `21 = `22. (34)

We fix any constant ε > 0. We now bound the probability that |x̂2 − x̂1| < ε. Specifically,
we separately bound the probability of x̂2 − x̂1 < ε, and the probability of x̂2 − x̂1 > −ε.
Finally, we invoke Lemma 21 to complete the proof.

Bounding the probability of x̂2− x̂1 < ε: By the definition (30) of Sc, it can be verified
that given (33) and (34) we have (1, 2) ∈ S0.5 (taking k = 1). By Lemma 29, we have

lim
n→∞

P(x̂2 − x̂1 < ε) = 1. (35)

Bounding the probability of x̂2 − x̂1 > −ε: By the closed-form solution in Proposi-
tion 22, we have x̂2 − x̂1 = γ where γ is defined in (24) as

γ =


y22,min − y11,max if y22,min − y11,max < y2 − y1

y21,max − y12,min if y21,max − y12,min > y2 − y1

y2 − y1 o.w.
(36)

Recall from the model (29) that Y = B, and hence we have the deterministic relation
y22,min − y11,max = b22,min − b11,max ≥ 0 due to the assumption (A2) under the group
ordering, and similarly we have the deterministic relation y21,max − y12,min ≤ 0. Consider
the case of y2 − y1 ≥ 0. In this case, only the first and the third cases in (36) are possible,
and therefore we have 0 ≤ γ ≤ y2 − y1. Now consider the case of y2 − y1 < 0. In this
case, only the second and the third cases in (36) are possible, and we have y2 − y1 ≤ γ ≤ 0.
Combining the two cases, we have the relation

x̂2 − x̂1 = γ > −ε if y2 − y1 > −ε. (37)

It suffices to bound the probability of y2 − y1 > −ε.
In what follows we show that limn→∞ P(y2 − y1 > −ε) = 1. That is, we fix some small

δ > 0 and show that P(y2 − y1 > −ε) ≥ 1 − δ for all sufficiently large d. The intuition
is that course 2 has more students in group 2, which is the group of greater values of the
bias. Since according to assumption (A2) the bias is assigned within each group uniformly
at random, the set of observations in course 2 statistically dominates the set of observations
in course 1. Therefore, y2 should not be less than y1 by a large amount.

We first condition on any fixed values of bias ranked as b∗(1) ≤ . . . ≤ b∗(2n) (since
we assume the number of courses is d = 2). Denote the mean of bias of group 1 as
b
∗
G1

= 1
`1

∑`1
k=1 b

∗(k) and the mean of bias of group 2 as b∗G2
= 1

`2

∑2n
k=`1+1 b

∗(k). Denote
∆B∗ := b∗(2n) − b∗(1) and denote ∆B := b∗(2n) − b∗(1). By Hoeffding’s inequality without
replacement (Hoeffding, 1963, Section 6) on group 1 of course 1, we have

P

∣∣∣∣∣∣
∑
j∈G11

b1j − `11b
∗
G1

∣∣∣∣∣∣ ≥ ∆B∗

√
`11 log

(
1

δ

) ∣∣∣∣∣∣ B∗
 ≤ 2 exp

(
−

2 ·∆2
B∗` log(1

δ )

`∆2
B

)
= 2δ2

(i)
≤ δ

8
,
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where (i) holds for any δ ∈ (0, 1
16). We apply Hoeffding’s inequaltiy without replacement

for any i ∈ {1, 2} and any k ∈ {1, 2}. Using the fact that `ik ≤ n for any i ∈ {1, 2} and any
k ∈ {1, 2}, we have

P

∣∣∣∣∣∣
∑
j∈Gik

bij − `ikb
∗
Gk

∣∣∣∣∣∣ ≥ ∆B∗

√
n log

(
1

δ

) ∣∣∣∣∣∣ B∗
 ≤ δ

8
. (38)

Taking a union bound of (38) over i ∈ {1, 2} and k ∈ {1, 2}, we have that with probability
at least 1− δ

2 ,

y2 − y1 =
1

n

 ∑
j∈G21

b2j +
∑
j∈G22

b2j −
∑
j∈G11

b1j −
∑
j∈G12

b1j


(i)
≥ 1

n

(
`21b

∗
G1

+ `22b
∗
G2
− `11b

∗
G1
− `12b

∗
G2
− 4∆B∗

√
n log

(
1

δ

))

=
1

n

(
(`21 − `11)b

∗
G1

+ (`22 − `12)b
∗
G2
− 4∆B∗

√
n log

(
1

δ

))
(ii)
=

1

n

(
(`21 − `11)(b

∗
G1
− b∗G2

)− 4∆B∗

√
n log

(
1

δ

))
(iii)
≥ −4∆B∗

√
log
(

1
δ

)
n

, (39)

where inequality (i) is true by (38), step (ii) is true because `11 + `12 = `21 + `22 and hence
`21−`11 = −(`22−`12), and finally step (iii) is true by b∗G1

≤ b∗G2
due to the assumption (A2)

of the bias and the group orderings.
Now we analyze the term ∆B in (39). By Lemma 25, there exists integer n0 such that

for any n ≥ n0,

P
(

∆B ≤ 4
√

log 2n
)
≥ 1− δ

2
. (40)

Let n1 be a sufficiently large such that n1 ≥ n0 and 16
√

log 2n1 ·
√

log( 1
δ

)

n1
< ε. Then

combining (40) with (39), we have that for any n ≥ n0,

P (y2 − y1 > −ε) =

∫
B∈R2×n

P (y2 − y1 > −ε | B) · P(B) dB

≥
∫

B∈R2×n:
∆B≤4

√
logn

P(y2 − y1 > −ε | B) · P(B) dB

(i)
≥
(

1− δ

2

)
· P(∆B ≤ 4

√
log 2n)

(ii)
≥
(

1− δ

2

)2

≥ 1− δ, (41)
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where inequality (i) is true by (39) due to the choice of n1, and inequality (ii) is true by (40).
Combining (41) with (37), for any n ≥ n1, we have

P(x̂2 − x̂1 = γ > −ε) ≥ P(y2 − y1 > −ε) ≥ 1− δ.

That is,

lim
n→∞

P(x̂2 − x̂1 > −ε) = 1. (42)

Finally, combining Step 1 and Step 2, we take a union bound of (35) and (42), we have

lim
n→∞

P
(
|x̂2 − x̂1| < ε

)
= 1. (43)

Given (43), we invoke Lemma 21 and obtain

lim
n→∞

P
(
‖x̂‖2 < ε

)
= 1,

completing the proof.

C.3.3 Proof of part (c)

For total orderings, each observation forms its own group of size 1 (that is, `k = 1 for all
k ∈ [dn]). A bias term belonging to group some k ∈ [dn] is equivalent to the bias term being
rank k. By the definition 30 of Sc, if course i contains rank k and course i′ contains rank
k + 1 then we have (i, i′) ∈ S1, because `ik

`k
=

`i′,k+1

`k+1
= 1 due to the total ordering.

The proof consists of four steps:

• In Step 1, we find a partition of the courses, where each subset in this partition consists
of courses i whose estimated qualities x̂i are close to each other.

• In Step 2, we use this partition to analyze |x̂i − x̂i′ |.

• In Step 3, we upper-bound the probability that |x̂i − x̂i′ | is large. If |x̂i − x̂i′ | is
large, then we construct an alternative solution according to the partition and derive
a contradiction that x̂ cannot be the optimal compared to the alternative solution.

• In Step 4, we invoke Lemma 21 to convert the bound on |x̂i − x̂i′ | to a bound on ‖x̂‖2.

Step 1: Constructing the partition We describe the procedure to construct the parti-
tion of courses based on any given total ordering O. Without loss of generality, we assume
that the minimal rank in course i is strictly less than the minimal rank in course (i+ 1) for
every i ∈ [d− 1]. That is, we have

min
j∈[n]

tij < min
j∈[n]

ti+1,j ∀i ∈ [d− 1]. (44)

The partition is constructed in steps. We first describe the initialization of the partition.
After the partition is initialized, we specify a procedure to “merge” subsets in the partition.
We continue merging the subsets until there are no more subsets to merge according to a
specified condition, and arrive at the final partition.
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course 1 1 2 6 7
course 2 3 4 5 8
course 3 9 10 11 12

students

(a) The total ordering

1 2 3

1 2 3

𝑉" 𝑉# 𝑉$

𝑉" 𝑉#
(b) The procedure of constructing
the partition

Figure 7: An example for constructing the partition of hypernodes.

Initialization We construct a directed graph of d nodes, where each node i ∈ [d] represents
course i. We put a directed edge from node i to node i′ for every (i, i′) ∈ S1. Let V1, . . . , Vd ⊆
[d] be a partition of the d nodes. We initialize the partition as Vi = {i} for all i ∈ [d]. We
also call each subset Vi as a “hypernode”.

Merging nodes We now merge the partition according to the following procedure. We
find a cycle (of directed edges) in the constructed graph, such that the nodes (courses) in
this cycle belong to at least two different hypernodes. If there are multiple such cycles, we
arbitrarily choose one. We “merge” all the hypernodes involved in this cycle. Formally, we
denote the hypernodes involved in this cycle as Vi1 , Vi2 , . . . , ViL . To merge these hypernodes
we construct a new hypernode V = Vi1 ∪ Vi2 ∪ . . . ∪ ViL . Then we remove the hypernodes
Vi1 , Vi2 , . . . , ViL from the partition, and add the merged hypernode V to the partition.

We continue merging hypernodes, until there exist no such cycles that involve at least two
different hypernodes. When we say we construct a partition we refer to this final partition
after all possible merges are completed.

An example is provided in Fig. 7. In this example we consider d = 3 courses and n = 4
students per course. We consider the total ordering in Fig. 7(a), where each integer in the
table represents the rank of the corresponding element with respect to this total ordering.
The top graph of Fig. 7(b) shows the constructed graph and the initialized partition. At
initialization there is a cycle between course 1 and course 2 (that belong to different hyper-
nodes V1 and V2), so we merge the hypernodes V1 and V2 as shown in the bottom graph of
Fig. 7(b). At this point, there are no more cycles that involve more than one hypernode, so
the bottom graph is the final constructed partition.

In what follows we state two properties of the partition. We define the length of a cycle
as the number of edges in this cycle. The first lemma states that within the same hypernode,
any two courses included in a cycle whose length is upper-bounded.

Lemma 32. Consider the partition constructed from any total ordering O. Let V be any
hypernode in this partition. Then for any i, i′ ∈ V with i 6= i′, there exists a cycle whose
length is at most 2(d− 1), such that the cycle includes both course i and course i′.

The proof of this result is provided in Appendix C.10.3. The following lemma provides
further properties on the constructed partition. We say that there exists an edge from
hypernode V to V ′, if and only if there exists an edge from some node i ∈ V to some node
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i′ ∈ V ′. Denote s as the number of hypernodes in the partition. Denote the hypernodes as
V1, . . . , Vs.

Lemma 33. Consider the partition constructed from any total ordering O. The hypernodes
in this partition can be indexed in a way such that the only edges on the hypernodes are
(Vm, Vm+1) for all m ∈ [s − 1]. Under this indexing of hypernodes, the nodes within each
hypernodes are consecutive, and increasing in the indexing of the hypernodes. That is, there
exist integers 0 = i1 < i2 < . . . < is+1 = d, such that Vm = {im + 1, . . . , im+1} for each
m ∈ [s].

Moreover, for each m ∈ [s], the ranks of elements (with respect to the total ordering
O) contained in the nodes of hypernode Vm are consecutive and increasing in the indexing
of the hypernodes. That is, there exists integers 0 = t1 < t2 . . . < ts+1 = dn, such that
∪i∈Vm ∪j∈[n] {tij} = {tm + 1, . . . , tm+1}.

The proof of this result is provided in Appendix C.10.4. When we refer to a partition
(V1, . . . , Vs), we specifically refer to the indexing of the hypernodes that satisfies Lemma 33.

As an example, in Fig. 7 we have V1 = {1, 2} and V2 = {3}. The ranks of elements in
V1 are {1, . . . , 8}, and the ranks of elements in V2 are {9, . . . , 12}.

Step 2: Analyzing |x̂i − x̂i′ | using the partition Our goal in Step 2 and Step 3 is to
prove the that for any ε > 0, we have

lim
n→∞

P
(

max
i,i′∈[n]

|x̂i′ − x̂i| < ε

)
= 1.

Equivalently, denote the “bad” event as

Ebad :=

{
max
i,i′∈[n]

|x̂i′ − x̂i| > 4d2ε

}
. (45)

The goal is to prove limn→∞ P(Ebad) = 0. In Step 2, we define some high-probability event
(namely, E1 ∩ E2 ∩ E3 to be presented), and show that it suffices to prove

lim
n→∞

P(Ebad, E1 ∩ E2 ∩ E3) = 0.

The event E1 bounds |x̂i′ − x̂i| within each hypernode We first bound |x̂i′ − x̂i|
for i, i′ ∈ [d] within each hypernode. By Lemam 32, there exists a cycle of length at most
2(n− 1) between any two courses i, i′ within the same hypernode. Given assumption (A3)
that n is a constant, by Lemma 31 we have that for each hypernode V ,

lim
n→∞

P
(

max
i,i′∈V

|x̂i − x̂i′ | < ε

)
= 1. (46)

Since the number of hypernodes is at most d, taking a union bound of (46) across all
hypernodes in the partition, we have

lim
n→∞

P
(

max
i,i′∈V

|x̂i − x̂i′ | < ε, ∀V hypernode in the partition︸ ︷︷ ︸
E1

)
= 1. (47)

We denote this event in (47) as E1.
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The event E2 bounds |x̂i′ − x̂i| across hypernodes We then bound |x̂i′ − x̂i| across
different hypernodes. We consider adjacent hypernodes Vm and Vm+1 for any m ∈ [s − 1].
By Lemma 33, there exists an edge from Vm to Vm+1. That is, there exists i ∈ Vm and
i′ ∈ Vm+1 such that (i, i′) ∈ S1. By Lemma 29, we have

lim
n→∞

P (x̂i′ − x̂i < ε) = 1. (48)

Since the number of hypernodes s is at most d, taking a union bound of (48) over all
m ∈ [s− 1], we have

lim
n→∞

P
(

min
i∈Vm,i′∈Vm+1

x̂i′ − x̂i < ε, ∀m ∈ [s− 1]︸ ︷︷ ︸
E2

)
= 1. (49)

We denote this event in (49) as E2.

Define E3: Finally, we define E3 as the event that B is not a constant matrix. That is,

E3 = {∃i, i′ ∈ [d], j, j′ ∈ [n] : bij 6= bi′j′}.

Since by assumption (A2) (setting σ = 1) the bias terms {bij}i∈[d],j∈[n] are marginally
distributed as N (0, 1), it is straightforward to see that the event E3 happens almost surely:

P(E3) = 1. (50)

Decompose Ebad: We decompose the bad event Ebad as

P(Ebad) = P(Ebad, E1 ∩ E2 ∩ E3) + P(Ebad, E1 ∩ E2 ∩ E3)

≤ P(Ebad, E1 ∩ E2 ∩ E3) + P(E1 ∩ E2 ∩ E3). (51)

Combining (47), (49) and (50), we have

lim
n→∞

P
(
E1 ∩ E2 ∩ E3

)
= lim

n→∞
P(E1 ∪ E2 ∪ E3) ≤ lim

n→∞

[
P(E1) + P(E2) + P(E3)

]
= 0.

(52)

Combining (51) and (52), in order to show limn→∞ P(Ebad) = 0 it suffices to show limn→∞ P(Ebad, E1∩
E2 ∩ E3) = 0.

Step 3: Analyzing the event Ebad ∩ E1 ∩ E2 ∩ E3 In this step, we analyze the event
Ebad ∩ E1 ∩ E2 ∩ E3, and identify a new partition (namely, {VL, VH} to be defined) of the
nodes. This new partition is used to drive a contradiction in Step 4.

First consider the case that the number of hypernodes is s = 1. In this case E1 and
Ebad gives a direct contradiction, and we have Ebad ∩ E1 ∩ E2 ∩ E3 = ∅. We now analyze
the case when the number of hypernodes is s ≥ 2. We arbitrarily find one course from each
hypernode and denote them as i1 ∈ V1, . . . , is ∈ Vs.

We condition on Ebad ∩ E1 ∩ E2 ∩ E3. Recall that by definition (45), the event Ebad

requires that there exists i, i′ ∈ [d] such that

|x̂i′ − x̂i| > 4d2ε. (53)
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By the definition (47) of E1, we have that i and i′ cannot be in the same hypernode. Hence,
we assume i ∈ Vm and i′ ∈ Vm′ , and assume m < m′ without loss of generality. We bound
x̂i′ − x̂i as

x̂i′ − x̂i = (x̂i′ − x̂im′ ) + (x̂im′ − x̂im′−1
) + . . .+ (x̂im+1 − x̂im) + (x̂im − x̂i′)

(i)
< 2ε+ dε < 4d2ε, (54)

where (i) is true by events E1 and E2. Combining (53) and (54), we must have x̂i′ − x̂i <
−4d2ε, or equivalently

x̂i − x̂i′ > 4d2ε. (55)

We decompose x̂i − x̂i′ as

x̂i − x̂i′ = (x̂i − x̂im) + (x̂im − x̂im+1) + . . .+ (x̂im′−1
− x̂im′ ) + (x̂im′ − x̂i′)

(i)
< 2ε+ (x̂im − x̂im+1) + . . .+ (x̂im′−1

− x̂im′ ), (56)

where (i) is due to event E1. Combining (55) and (56), we have

2ε+ (x̂im − x̂im+1) + . . .+ (x̂im′−1
− x̂im′ ) > x̂i − x̂i′ > 4d2ε

(x̂im − x̂im+1) + . . .+ (x̂im′−1
− x̂im′ ) > (4d2 − 2)ε > 3d2ε.

Hence, we have

d ·max{(x̂im − x̂im+1), . . . , (x̂im′−1
− x̂im′ )} > 3d2ε

max{(x̂im − x̂im+1), . . . , (x̂im′−1
− x̂im′ )} > 3dε. (57)

Without loss of generality, we assume that in (57) we have integer m∗ with m ≤ m∗ < m′

such that

x̂im∗ − x̂im∗+1
> 3dε. (58)

Now consider any m,m′ ∈ [s] such that m ≤ m∗ < m′, and for any i ∈ Vm and i′ ∈ Vm′ , we
have

x̂i − x̂i′ = (x̂i − x̂im) + (x̂im − x̂im+1) + . . .+ (x̂i∗m − x̂im∗+1
) + . . .+ (x̂im′−1

− x̂im′ ) + (x̂im′ − x̂i′)
(i)
> −2ε+ 3dε− dε > ε,

where (i) is by events E1 and E2 combined with (58). Equivalently, denote VL := V1∪. . .∪Vm∗
and VH := Vm∗+1 ∪ . . . ∪ Vs, we have

x̂i − x̂i′ > ε ∀i ∈ VL, i
′ ∈ VH. (59)

Step 4: Showing P(Ebad, E1∩E2∩E3) = 0 by deriving a contradiction We consider
any solution (x̂, B̂) of our estimator at λ = 0 conditional on Ebad ∩E1 ∩E2∩E3, and derive
a contradiction. Hence, we have P(Ebad, E1 ∩ E2 ∩ E3) = 0.
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Analyzing properties of B̂ By Lemma 33, any bias term b̂ij for i ∈ VL has a smaller
rank than any bias term b̂ij for i ∈ VH. Therefore, the mean of B̂ over elements in VL is less
than or equal to the mean of B̂ over VH. That is, with the definition of b̂L and b̂H as

b̂L :=
1

|VL| · n
∑
i∈VL

∑
j∈[n]

b̂ij (60a)

b̂H :=
1

|VH| · n
∑
i∈VH

∑
j∈[n]

b̂ij , (60b)

We have the deterministic relation b̂L ≤ b̂H.
First consider the case of b̂L = b̂H. Since B̂ obeys the total ordering O, we have B̂ = c for

some constant c. Conditional on E3, it can be verified that for any c ∈ R, the objective (2)
attained at (x̂, B̂) is strictly positive. Recall from the model (29) that Y = B. Hence, an
objective (2) of 0 can be attained by the solution (0, B). Contradiction to the assumption
that (x̂, B̂) is the minimizer of the objective.

Now we consider the case of b̂L < b̂H. We have that either b̂L < 0 or b̂H > 0 (or both).
Without loss of generality we assume b̂H > 0.

Constructing an alternative solution We now construct an alternative solution by
increasing x̂i for every course i ∈ VH by a tiny amount, and prove for contradiction that this
alternative solution is preferred by the tie-breaking rule of minimizing ‖B‖2F . We construct
the alternative solution (x̂′, B̂′) as

x̂′i =

{
x̂i if i ∈ VL

x̂i + ∆ if i ∈ VH

B̂′ = Y − x̂′1T ,

(61)

for some sufficiently small ∆ > 0 whose value is specified later. Since (x̂, B̂) is a solution,
as discussed previously it has to attain an objective of 0. By the construction (61), it can
be verified that (x̂′, B̂′) also attains an objective of 0. In what remains for this step, we
first show that the alternative solution (x̂′, B̂′) satisfies all ordering constraints by the total
ordering O. Then we show that ‖B̂′‖2F < ‖B̂‖2F , and therefore (x̂′, B̂′) is preferred by the
tie-breaking rule over (x̂, B̂), giving a contradiction.

The alternative solution (x̂′, B̂′) satisfies all ordering constraints in O Since both
(x̂, B̂) and (x̂′, B̂′) attain an objective of 0, we have the deterministic relation

yij = x̂i + b̂ij = x̂′i + b̂′ij ∀i ∈ [d], j ∈ [n]. (62)

Consider any constraint ((i, j), (i′, j′)) ∈ O. If i, i′ ∈ VL, then we have

b̂′ij − b̂′i′j′ = yij − x̂′i − (yi′j′ − x̂′i′)
= yij − x̂i − (yi′j′ − x̂i′)

= b̂ij − b̂i′j′
(i)
< 0,
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where (i) is true because by assumption (x̂, B̂) is the optimal solution, and hence B̂ satisfies
the ordering constraint of b̂ij ≤ b̂i′j′ . Similarly if i, i′ ∈ VH, then (x̂′, B̂′) also satisfies this
ordering constraint. Finally, consider the case where one of {i, i′} is in VL and the other is
in VH. Due to Lemma 33 regarding the ranks combined with the definition of (VL, VH), it
can only be the case that i ∈ VL and i′ ∈ VH. For any ∆ ∈ (0, ε), we have that conditional
on Ebad ∩ E1 ∩ E2 ∩ E3,

b̂′ij − b̂′i′j′ = (yij − x̂′i)− (yi′j′ − x̂′i′)
= (bij − x̂i)− (bi′j′ − x̂i′ −∆)

= (bij − bi′j′) + (x̂i′ + ∆− x̂i)
(i)
< 0,

where (i) is true because the ordering constraint ((i, j), (i′, j′)) gives bij ≤ bi′j′ . Moreover,
we have x̂i′ − x̂i < −ε due to (59). Hence, all ordering constraints are satisfied by the
alternative solution (x̂′, B̂′).

The alternative solution (x̂′, B̂′) satisfies ‖B̂′‖F < ‖B̂‖F , thus preferred by tie-
breaking Plugging in the construction (61), we compute ‖B̂′‖2F as

‖B̂′‖2F =
∑
i∈VL

∑
j∈[n]

(yij − x̂i)2 +
∑
i∈VH

∑
j∈[n]

(yij − x̂i −∆)2

(i)
=
∑
i∈VL

∑
j∈[n]

(̂bij)
2 +

∑
i∈VH

∑
j∈[n]

(̂bij −∆)2, (63)

where (i) is true by (62). Taking the partial derivative of (63) with respect to ∆, we have

∂‖B̂′‖2F
∂∆

= 2

|VH| · n∆−
∑
i∈VH

∑
j∈[n]

b̂ij

 = 2|VH| · n(∆− b̂H). (64)

By the assumption of b̂H > 0, the partial derivative (64) is strictly negative for any ∆ ∈[
0, b̂H

)
. Contradiction to the fact that B̂ (corresponding to ∆ = 0) is the solution with the

minimal Frobenius norm ‖B̂‖2F . Hence, (x̂, B̂) cannot be a solution, and we have

P(Ebad, E1 ∩ E2 ∩ E3) = 0.

Step 4: Invoking Lemma 21 Recall from Step 2 that limn→∞ P(Ebad, E1∩E2∩E3) = 0
implies limn→∞ P(Ebad) = 0. Equivalently, for any ε > 0 we have

lim
n→∞

P
(

max
i,i′∈[d]

|x̂i′ − x̂i| < ε

)
= 1.

Invoking Lemma 21 completes the proof.
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C.4 Proof of Proposition 7

We denote (x̂(∞), B(∞)) as the values given by expression (3). We prove that

(x̂(∞), B(∞)) = lim
λ→∞

(x̂(λ), B̂(λ)).

Denote the minimal value of the first term in the objective (2) as

V ∗ := min
x∈Rd,B∈Rd×n
B satisfies O

∥∥Y − x1T −B∥∥2

F
.

Denote V as the value of the first term attained at (x̂(∞), B̂(∞)). By the definition of V ∗ as
the minimal value over the domain, we have V ≥ V ∗. We discuss the following two cases
depending on the value of V .

Case of V = V ∗: We have that (x̂(∞), B̂(∞)) is the solution for any λ ∈ (0,∞), because
it attains the minimal value separately for the two terms in the objective (2). By Propo-
sition 14, a unique solution exists for any λ ∈ (0,∞). Hence, the limit limλ→∞(x̂(λ), B̂(λ))
exists and we have (x̂(∞), B̂(∞)) = limλ→∞(x̂(λ), B̂(λ)).

Case of V > V ∗: We first show that limλ→∞ B̂
(λ) = 0. That is, we show that for any

ε > 0, there exists some λ0 > 0, such that ‖B̂(λ)‖2F < ε for all λ ∈ (λ0,∞).
Take λ0 = V−V ∗

ε , and assume for contradiction that there exists some λ∗ > λ0 such that
‖B̂(λ∗)‖2F > ε. The objective (2) (setting λ = λ∗) attained by (x̂(λ∗), B̂(λ∗)) is lower-bounded
by

‖Y − x̂(λ∗) − B̂(λ∗)‖22 + λ∗‖B̂(λ∗)‖2F > V ∗ + λ0ε > V ∗ + (V − V ∗) = V.

On the other hand, the objective attained by (x̂(∞), B̂(∞)) is V . Hence, (x̂(∞), B̂(∞)) attains
a strictly smaller value of the objective than (x̂(λ∗), B̂(λ∗)) at λ = λ∗. Contradiction to the
assumption that (x̂(λ∗), B̂(λ∗)) is the solution at λ = λ∗. Hence, we have limλ→∞ B̂

(λ) = 0.
Combining the fact that limλ→∞ B̂

(λ) = 0 with the relation (20) in Lemma 16 (at any
λ ∈ [0,∞)), we have that for each i ∈ [d],

x̂
(λ)
i =

1

n

∑
j∈[n]

(
yij − b̂(λ)

ij

)
→ 1

n

∑
j∈[n]

yij as λ→∞,

completing the proof.

C.5 Proof of Theorem 9

The proof follows notation in Appendix C.1 and preliminaries in Appendix C.2. By Corol-
lary 19, we assume x∗ = 0 without loss of generality. We also assume without loss of
generality that the standard deviation of the Gaussian bias distribution is σ = 1. Given
x∗ = 0 and the assumption that there is no noise, model (1) reduces to:

Y = B. (65)
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Both part (a) and part (b) consist of 3 similar steps. We start with the first step, and
proceed separately for the two remaining steps for the two parts.
Step 1: Showing the consistency of our estimator at λ = 0 restricted to the
training set Ωt.

In the first step, we show that our estimator is consistent under group orderings satisfying
part (a) and part (b), on any fixed training set Ωt ⊆ [d]× [n] obtained by Algorithm 1. Note
that Theorem 5(a) and Theorem 5(c) give the desired consistency result when the data is full
observations Ω = [d]× [n]. It remains to extend the proof of Theorem 5(a) and Theorem 5(c)
to any Ωt given by Algorithm 1. The following theorem states that part (a) and part (c) of
Theorem 5 still hold for the estimator (15) restricted to Ωt. We use (x̂(0), B̂(0)) to denote
the solution to (15) restricted to Ωt for the remaining of the proof of Theorem 9.

Theorem 34 (Generalization of Theorem 5 to any Ωt). Consider any fixed Ωt ⊆ [d] × [n]
obtained by Algorithm 1. Suppose the partial ordering is one of

(a) any group ordering satisfying the all c-fraction assumption, or

(b) any total ordering.

Then for any ε > 0 and δ > 0, there exists an integer n0 (dependent on ε, δ, c, d), such that
for every n ≥ n0 and every partial ordering satisfying one of the conditions (a) or (b), the
estimator x̂(0) (as the solution to (15) restricted to Ωt) satisfies

P
(
‖x̂(0) − x∗‖2 < ε

)
≥ 1− δ. (66)

Equivalently, for any ε > 0, we have

lim
n→∞

P
(
‖x̂(0) − x∗‖2 < ε

)
= 1. (67)

The proof of this theorem is in Appendix C.11.1. Now we consider the consistency of
the bias term B̂. Given the model (65), the objective (15) at λ = 0 equals 0 at the values
of (x̂, B̂) = (0, B). Hence, objective (15) attains a value of 0 at the solution (x̂(0), B̂(0)).
Therefore, we have the deterministic relation YΩt = [x̂(0)1T + B̂(0)]Ωt . For any (i, j) ∈ Ωt,
we have

b̂
(0)
ij = Yij − x̂(0)

i

(i)
= bij − x̂(0)

i , (68)

where equality (i) is true because of the model (65). Combining (68) with (67), we have
that for any ε > 0,

lim
n→∞

P
(∣∣∣̂b(0)

ij − bij
∣∣∣ < ε, ∀(i, j) ∈ Ωt

)
= 1. (69)

This completes Step 1 of the proof. The remaining two steps are presented separately for
the two parts.
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C.5.1 Proof of part (a)

We fix some constant ε1 > 0 whose value is determined later. For clarity of notation, we
denote the constant in the all constant-fraction assumption as cf .
Step 2: Computing the validation error at λ = 0

We first analyze the interpolated bias B̃(0). Recall that Gt
k and Gv

k denote the set of
elements of group k ∈ [r] in the training set Ωt and the validation set Ωv, respectively. By
symmetry of the interpolation expression in Line 15 of Algorithm 1 and Definition 1 of the
group ordering, it can be verified that the interpolated bias b̃ij is identical for all elements
within any group k ∈ [r]. That is, for each k ∈ [r], we have

b̃ij = b̃i′j′ , for any (i, j), (i′, j′) ∈ Gv
k. (70)

Denote b̃k := b̃ij for any (i, j) ∈ Gt
k. By (70), we have that b̃k is well-defined. Denote the

random variables btk and bvk as the mean of the (random) bias B in group k ∈ [r], over Gt
k

and Gv
k, respectively. Denote the random variable bvik as the mean of the (random) B of

group k ∈ [r] in course i ∈ [d] over Ωv. That is, we define

btk :=
1∣∣Gt
k

∣∣ ∑
(i,j)∈Gt

k

bij (71)

bvk :=
1∣∣Gv
k

∣∣ ∑
(i,j)∈Gv

k

bij (72)

bvik :=
1∣∣Gv
ik

∣∣ ∑
j∈Gv

ik

bij . (73)

Denote b̂tk likewise as the mean of the estimated bias B̂ over Gt
k. Given Y = B from

model (65), the validation error at λ = 0 is computed as:

e(0) =
1

|Ωv|
∑

(i,j)∈Ωv

(
yij − x̂(0)

i − b̃ij
)2

=
1

|Ωv|
∑

i∈[d],k∈[r]

∑
j∈Gv

ik

(
bij − x̂(0)

i − b̃k
)2
. (74)

We first analyze the term b̃k in (74). The following lemma shows that the interpolation
procedure in Algorithm 1 ensures that b̃k is close to b̂tk, the mean of the estimated bias over
Gt
k.

Lemma 35. Consider any group ordering O that satisfies the all cf-fraction assumption,
and any Ωt ⊆ [d] × [n] obtained by Algorithm 1. Then for any λ ∈ [0,∞] we have the
deterministic relation: ∣∣∣̃bk − b̂tk∣∣∣ ≤ 12

cfdn
· max

(i,j)∈Ωt

∣∣∣̂bij∣∣∣ ∀k ∈ [r].

The proof of this result is provided in Appendix C.11.2. Combining Lemma 35 with the
consistency (69) of B̂(0) from Step 1 and a bound on max(i,j)∈Ωt |bij | from Lemma 25, we
have the following lemma.
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Lemma 36. Under the same condition as Lemma 35, the interpolated bias at λ = 0 satisfies

lim
n→∞

P
(∣∣∣̃bk − btk∣∣∣ < ε, ∀k ∈ [r]

)
= 1.

The proof of this result is provided in Appendix C.11.3. Recall that bGk denotes the the
mean of the bias of any group k ∈ [r]. The following lemma gives concentration inequality
results that the quantities bvik and btk are close to bk. Note that this lemma is on the bias B
and does not involve any estimator.

Lemma 37. Consider any group ordering O that satisfies the all cf-fraction assumption.
Consider any fixed training-validation split (Ωt,Ωv) obtained by Algorithm 1. For any ε > 0,
we have

lim
n→∞

P
(∣∣bvik − bGk ∣∣ < ε, ∀i ∈ [d], k ∈ [r]

)
= 1 (75a)

lim
n→∞

P
(∣∣btk − bGk ∣∣ < ε, ∀k ∈ [r]

)
= 1. (75b)

The proof of this result is provided in Appendix C.11.4. Combining Lemma 36 and (75)
from Lemma 37 with a union bound, we have the following corollary.

Corollary 38. Consider any group ordering O that satisfies the all cf-fraction assumption.
Consider any fixed Ωt ⊆ [d] × [n] obtained by Algorithm 1. For any ε > 0, the interpolated
bias at λ = 0 satisfies

lim
n→∞

P
(∣∣∣bvik − b̃k∣∣∣ < ε, ∀i ∈ [d], k ∈ [r]

)
= 1.

Consider each i ∈ [d] and k ∈ [r]. The terms in the validation error (74) involving course
i and group k are:

e
(0)
ik :=

1

|Ωv|
∑
j∈Gv

ik

(
bij − x̂(0)

i − b̃k
)2

=
1

|Ωv|

 ∑
j∈Gv

ik

(
bij − b̃k

)2
+ |Gv

ik| · x̂2
i − 2

∑
j∈Gv

ik

(
bij − b̃k

)
x̂i


(i)
=

1

|Ωv|
∑
j∈Gv

ik

(
bij − b̃k

)2

︸ ︷︷ ︸
T1

+
|Gv

ik|
|Ωv|

x̂2
i︸ ︷︷ ︸

T2

−
2|Gv

ik|
|Ωv|

· (bvik − b̃k)x̂i︸ ︷︷ ︸
T3

,

where (i) is true by the definition (73) of bvik. We now consider the three terms T1, T2 and
T3 (dependent on i and k), respectively.

Term T2: By the convergence (67) of x̂(0) in Theorem 34(a), we have

lim
n→∞

P
(
T2 ≤

|Gv
ik|
|Ωv|

ε21, ∀i ∈ [d], k ∈ [r]

)
= 1. (76)
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Term T3: We have

T3 ≤ 2
|Gv

ik|
|Ωv|

·
∣∣∣bvik − b̃k∣∣∣ · |x̂i| ≤ 2

∣∣∣bvik − b̃k∣∣∣ · |x̂i|.
By combining the convergence (67) of x̂(0) in Theorem 34(a) and Corollary 38 with a union
bound, we have

lim
n→∞

P
(
T3 ≤

2|Gv
ik|

|Ωv|
ε21, ∀i ∈ [d], k ∈ [r]

)
= 1. (77)

Term T1: We have

T1 =
1

|Ωv|
∑
j∈Gv

ik

(
bij − b̃k

)2
=

1

|Ωv|
∑
j∈Gv

ik

(
bij − bvik + bvik − b̃k

)2

=
1

|Ωv|

 ∑
j∈Gv

ik

(bij − bvik)2 + |Gv
ik| · (bvik − b̃k)2 + 2

∑
j∈Gv

ik

(bij − bvik)(bvik − b̃k)


(i)
=

1

|Ωv|

 ∑
j∈Gv

ik

(bij − bvik)2 + |Gv
ik| · (bvik − b̃k)2


where inequality (i) holds because

∑
j∈Gv

ik
(bij − bvik) = 0 by the definition (73) of bvik. By

Corollary 38, we have

lim
n→∞

T1 <
1

|Ωv|
∑
j∈Gv

ik

(bij − bvik)2 +
|Gv

ik|
|Ωv|

ε21, ∀i ∈ [d], k ∈ [r]

 = 1. (78)

Combining the three terms from (76), (77) and (78), we bound e(0)
ik as

lim
n→∞

e(0)
ik = T1 + T2 + T3 <

1

|Ωv|
∑
j∈Gv

ik

(bij − bvik)2 +
4|Gv

ik|
|Ωv|

ε21, ∀i ∈ [d], k ∈ [r]

 = 1.

(79)

By the all cf -fraction assumption, the number of groups is upper-bounded by a constant as
r ≤ 1

cf
. Taking a union bound of (79) over i ∈ [d] and k ∈ [r], we have

lim
n→∞

P

e(0) =
∑

i∈[d],k∈[r]

e
(0)
ik <

1

|Ωv|
∑

i∈[d],k∈[r]

 ∑
j∈Gv

ik

(bij − bvik)2 + 4|Gv
ik| · ε21

 = 1

lim
n→∞

P

e(0) <
1

|Ωv|
∑

i∈[d],k∈[r]

∑
j∈Gv

ik

(bij − bvik)2 + 4ε21

 = 1. (80)

This completes Step 2 of bounding the validation error at λ = 0.
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Step 3: Computing the validation error at general λ ∈ Λε, and showing that it is
greater than the validation error at λ = 0

Recall from (16) the definition of the random set Λε := {λ ∈ [0,∞] : ‖x̂(λ)‖2 > ε}. In
this step, we show that

lim
n→∞

P
(
e(λ) > e(0), ∀λ ∈ Λε

)
= 1. (81)

From (81), we have that the estimated quality x̂(λcv) by cross-validation satisfies

lim
n→∞

(λcv 6∈ Λε) = 1

and consequently by the definition of Λε

lim
n→∞

P
(
‖x̂(λcv)‖2 < ε

)
= 1.

It remains to prove (81).

Proof of (81) For any i ∈ [d] and k ∈ [r], the terms in the validation error at any
λ ∈ [0,∞] involving course i and group k are computed as:

e
(λ)
ik =

1

|Ωv|
∑
j∈Gv

ik

(
bij − x̂(λ)

i − b̃
(λ)
k

)2
=

1

|Ωv|
∑
j∈Gv

ik

(
bij − bvik + bvik − x̂i − b̃k

)2

(i)
=

1

|Ωv|
∑
j∈Gv

ik

(bij − bvik)
2 +
|Gv

ik|
|Ωv|

(
bvik − x̂i − b̃k

)2

︸ ︷︷ ︸
Tik

,

(82)

where (i) is true because
∑

j∈Gv
ik

(bij − bvik) = 0 by the definition (73) of bvik. Note that the
first term in (82) is identical to the first term in (79) from Step 2. We now analyze the
second term Tik in (82). On the one hand, by Lemma 20(a), we have

lim
n→∞

P
(

max
i,i′∈[d]

x̂i − x̂i′ >
ε√
d
, ∀λ ∈ Λε

)
= 1. (83)

On the other hand, taking a union bound of (75a) in Lemma 37 over i, i′ ∈ [d], we have

lim
n→∞

P
(
|bvik − bvi′k| <

ε

2
√
d
, ∀i, i′ ∈ [d], k ∈ [r]

)
= 1. (84)

Conditional on (83) and (84), for every λ ∈ Λε and for every k ∈ [r],

max
i,i′∈[d]

∣∣∣(bvik − x̂i − b̃k)− (bvi′k − x̂i′ − b̃k)∣∣∣ = max
i,i′∈[d]

|(bvik − bvi′k)− (x̂i − x̂i′)|

≥ max
i,i′∈[d]

(x̂i − x̂i′)− max
i,i′∈[d]

|bvik − bvi′k|

>
ε√
d
− ε

2
√
d

=
ε

2
√
d
.
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Hence, conditional on (83) and (84),

max
i,i′∈[d]

{
(bvik − x̂i − b̃k)2, (bvi′k − x̂i′ − b̃k)2

}
≥ ε2

16d
∀k ∈ [r],∀λ ∈ Λε. (85)

Now consider the terms Tik. By (26a) from Lemma 26 combined with the all cf -fraction
assumption, we have

|Gv
ik|
|Ωv|

≥ 1

|Ωv|
· |Gik|

4
≥ cfn

4|Ωv|
=
cf

2d
. (86)

Conditional on (83) and (84), for every λ ∈ Λε and i ∈ [d],

max
i,i′∈[d]

(Tik + Ti′k)
(i)
≥ cf

2d

[(
bvik − x̂i − b̂tk

)2
+
(
bvi′k − x̂i′ − b̂tk

)2
]

(ii)
≥ cf

2d

ε2

16d
=

cfε
2

32d2
,

where inequality (i) is true by (86), and inequality (ii) is true by (85). Now consider the
validation error e(λ). Conditional on (83) and (84), for every λ ∈ Λε,

e(λ) =
∑

i∈[d],k∈[r]

e
(λ)
ik

(i)
≥ 1

|Ωv|
∑

i∈[d],k∈[r]

∑
j∈Gv

ik

(bij − bvik)2 +
∑

i∈[d],k∈[r]

(Tik + Ti′k)

>
1

|Ωv|
∑

i∈[d],k∈[r]

∑
j∈Gv

ik

(bij − bvik)2 +
cfε

2

32d2
,

where inequality (i) is true by plugging in (82). Hence,

lim
n→∞

e(λ) >
1

|Ωv|
∑

i∈[d],k∈[r]

∑
j∈Gv

ik

(bij − bvik)2 +
cfε

2

32d2
, ∀λ ∈ Λε

 = 1. (87)

We set ε1 to be sufficient small such that 4ε21 <
cfε

2

32d2 . Taking a union bound of (87) with
(80) from Step 2, we have

lim
n→∞

P
(
e(λ) > e(0), ∀λ ∈ Λε

)
= 1,

completing the proof of (81).

C.5.2 Proof of part (b)

We fix some constant ε1 > 0 whose value is determined later. Since the partial ordering O
is assumed to be a total ordering, we also denote it as π.
Step 2: Computing the validation error at λ = 0

For any element (i, j) ∈ Ωv, recall that NN(i, j;π) ⊆ [d] × [n] denotes the set (of size 1
or 2) of its nearest neighbors in the training set Ωt with respect to the total ordering π. We
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use NN(i, j) as the shorthand notation for NN(i, j;π). For any λ ∈ [0,∞], we define the
mean of the estimated bias over the nearest-neighbor set

b̂
(λ)
NN(i,j)

:=
1

|NN(i, j)|
∑

(i′,j′)∈NN(i,j)

b̂
(λ)
i′j′

Similarly, we define

bNN(i,j) :=
1

|NN(i, j)|
∑

(i′,j′)∈NN(i,j)

bi′j′ .

Since O is a total ordering, the set of total orderings consistent with O = π is trivially itself,
that is, T = {π}. Then in Line 15 of Algorithm 1, the interpolated bias for any element
(i, j) ∈ Ωv is b̃(λ)

ij = b̂
(λ)
NN(i,j).

Recall from the model (65) that Y = B. The validation error at λ = 0 is computed as:

e(0) =
1

|Ωv|
∑

(i,j)∈Ωv

(
bij − b̂(0)

NN(i,j) − x̂
(0)
i

)2

≤ 1

|Ωv|
∑

(i,j)∈Ωv

(∣∣bij − bNN(i,j)

∣∣+
∣∣∣bNN(i,j) − b̂

(0)
NN(i,j)

∣∣∣+
∣∣∣x̂(0)
i

∣∣∣)2
. (88)

We consider the three terms inside the summation in (88) separately. For the first term∣∣bij − bNN(i,j)

∣∣, combining Lemma 27(b) with Lemma 23, we have

lim
n→∞

P
(∣∣bij − bNN(i,j)

∣∣ < ε1, ∀(i, j) ∈ Ωv
)

= 1 (89)

For the second term |bNN(i,j)− b̂
(0)
NN(i,j)|, we have |bNN(i,j)− b̂

(0)
NN(i,j)| ≤ maxi∈[d],j∈[n]|bij− b̂

(0)
ij |.

By the consistency (69) of B̂(0) from Step 1, we have

lim
n→∞

P
(
|bNN(i,j) − b̂

(0)
NN(i,j)| < ε1, ∀(i, j) ∈ Ωv

)
= 1. (90)

For the third term x̂
(0)
i , by (67) in Theorem 34(b), we have

lim
n→∞

P
(
|x̂i| < ε1, ∀i ∈ [d]

)
= 1. (91)

Taking a union bound over the three terms (89), (90) and (91) and plugging them back
to (88), the validation error at λ = 0 satisfies

lim
n→∞

P
(
e(0) ≤ 9ε21

)
= 1. (92)

Step 3: Computing the validation error at general λ ∈ Λε, and showing that it is
greater than the validation error at λ = 0

Recall the definition Λε := {λ ∈ [0,∞] : ‖x̂(λ)‖2 > ε}. In this step, we establish

lim
n→∞

(λcv 6∈ Λε) = 1.

64



Debiasing Evaluations Biased by Evaluations

By Lemma 20(a) combined with the assumption that d = 2, we have

lim
n→∞

P
( ∣∣∣x̂(λ)

1 − x̂(λ)
2

∣∣∣ > ε√
2
, ∀λ ∈ Λε︸ ︷︷ ︸

E

)
= 1. (93)

We denote the the event in (93) as E. We define

Λ2>1 :=

{
λ ∈ [0,∞] : x̂

(λ)
2 − x̂(λ)

1 >
ε√
2

}
(94a)

Λ1>2 :=

{
λ ∈ [0,∞] : x̂

(λ)
1 − x̂(λ)

2 >
ε√
2

}
. (94b)

Then we have

Λε ⊆ Λ2>1 ∪ Λ1>2 | E. (95)

We first analyze Λ2>1. We discuss the following two cases, depending on the comparison of
the mean of the bias for the two courses.
Case 1:

∑
j∈[n] b1j ≥

∑
j∈[n] b2j

We denote the event that Case 1 happens as E1 := {
∑

j∈[n] b1j ≥
∑

j∈[n] b2j}. In this
case, our goal is to show

lim
n→∞

P
(
λcv 6∈ Λε ∩ Λ2>1, E1

)
= lim

n→∞
(E1). (96)

To show (96) it suffices to prove

lim
n→∞

P
(

Λε ∩ Λ2>1 = ∅, E1

)
= lim

n→∞
P(E1).

We separately discuss the cases of λ =∞ and λ 6∈ ∞.

Showing ∞ 6∈ Λε ∩ Λ2>1: Denote the mean of the bias in each course in the training set
Ωt as bti := 1

nt

∑
j∈Ωt

i
bij for i ∈ {1, 2}. By (28a) in Lemma 28, we have

lim
n→∞

P

bt1 − 1

n

∑
j∈[n]

b1j < −
ε

8

 = 0 (97a)

lim
n→∞

P

bt2 − 1

n

∑
j∈[n]

b2j >
ε

8

 = 0 (97b)

Taking a union bound of (97), we have

lim
n→∞

P

 bt1 − bt2 >
1

n

∑
j∈[n]

(b1j − b2j)−
ε

4︸ ︷︷ ︸
E′

 = 1. (98)
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Denote this event in (98) as E′. Hence, we have

bt1 − bt2 > −
ε

4

∣∣∣ (E′, E1) (99)

Recall from Proposition 15 that we have our estimator at λ =∞ equals to the sample mean

per course. That is, x̂(∞) =

[
bt1
bt2

]
. Hence, we have

x̂
(∞)
2 − x̂(∞)

1 <
ε

4

∣∣∣ (E′, E1).

By the definition of Λ2>1, we have

∞ 6∈ Λε ∩ Λ2>1 | (E′, E1). (100)

Showing λ 6∈ Λε ∩ Λ2>1 for general λ ∈ [0,∞): As an overview, we assume there exists
some λ ∈ Λε ∩ Λ2>1 \ {∞} and derive a contradiction.

Denote the mean of the bias in the training set Ωt as bt := 1
|Ωv|

∑
(i,j)∈Ωv bij =

bt1+bt2
2 .

Since λ ∈ Λ2>1, we have x̂(λ)
2 − x̂(λ)

1 > ε√
2
. By (21b) in Lemma 17, we have

x̂(λ1) + x̂(λ2) = 2bt,

and hence x̂(λ) can be reparameterized as

x̂(λ) = bt + ∆

[
−1
1

]
, for some ∆ >

ε

2
√

2
. (101)

The following lemma gives a closed-form formula for `2-regularized isotonic regression. Recall
thatM denotes the monotonic cone, and the isotonic projection for any y ∈ Rd is defined
in (14) as ΠM(y) = arg minu∈M‖y − u‖22.

Lemma 39. Consider any y ∈ Rd and any λ ∈ [0,∞). Then we have

min
u∈M

(
‖y − u‖22 + λ‖u‖22

)
=

1

1 + λ
‖y −ΠM(y)‖22 +

λ

1 + λ
‖y‖22. (102)

The proof of this result is provided in Appendix C.11.5. We denote the objective (15)
under any fixed x ∈ Rd as

L(x) := min
B obeys π

∥∥Y − x1T −B∥∥2

Ωt + λ‖B‖2Ωt

(i)
=

1

1 + λ

∥∥(Y − x1T )−Ππ(Y − x1T )
∥∥2

Ωt︸ ︷︷ ︸
L1(x)

+
λ

1 + λ

∥∥Y − x1T∥∥2

Ωt︸ ︷︷ ︸
L2(x)

, (103)

where equality (i) is true by (102) in Lemma 39. We now construct an alternative estimate

x̂′ = bt
[
1
1

]
, and show that

L(x̂) > L(x̂′) ∀λ ∈ Λε ∩ Λ2>1 \ {∞}.

We consider the two terms L1(x) and L2(x) in (103) separately.
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Term L1: Recall from the model (65) that Y = B. Hence, Y satisfies the total ordering

π, and hence Y − x̂′1T = Y − bt
[
1
1

]
1Tn satisfies the total ordering π. That is,

Ππ(Y − x̂′1T ) = Y − x̂′1T .

Hence,

0 = L1(x̂′) ≤ L1(x̂(λ)) ∀λ ∈ [0,∞]. (104)

Term L2: We have

L2(x̂)− L2(x̂′) = ‖Y − x̂(λ)1T ‖2Ωt − ‖Y − x̂′1T ‖2Ωt

=
∑
j∈Ωt

1

(b1j − x̂(λ)
1 )2 +

∑
j∈Ωt

2

(b2j − x̂(λ)
2 )2 −

∑
j∈Ωt

1

(b1j − x̂′1)2 +
∑
j∈Ωt

2

(b2j − x̂′2)2


= nt

[
2bt1(x̂′1 − x̂

(λ)
1 ) + 2bt2(x̂′2 − x̂

(λ)
2 ) + ((x̂

(λ)
1 )2 − (x̂′1)2) + ((x̂

(λ)
2 )2 − (x̂′2)2)

]
= nt[2∆(bt1 − bt2) + 2∆2]

= 2nt∆(bt1 − bt2 + ∆)
(i)
> 0 | (E′, E1),

where inequality (i) is true by combining (99) with (101). Hence, we have

L2(x̂) > L2(x̂′), ∀λ ∈ Λε ∩ Λ2>1 \ {∞}
∣∣ (E′, E1). (105)

Combining the term L1 from (104) and the term L2 from (105), we have

L(x̂(λ)) > L(x̂′), ∀λ ∈ Λε ∩ Λ2>1 \ {∞}
∣∣∣ (E′, E1).

Contradiction to the assumption that x̂(λ) is optimal. Hence, we have

λcv 6∈ Λε ∩ Λ2>1 \ {∞} | (E′, E1). (106)

Combining the cases of λ =∞ from (100) and λ 6=∞ from (106), we have

λcv 6∈ Λε ∩ Λ2>1 | (E′, E1).

Hence,

P (λcv 6∈ Λε ∩ Λ2>1, E1) ≥ P(E′, E1)

= P(E1)− P(E1 ∩ E′)
≥ P(E1)− P(E′) (107)

Taking the limit of (107), we have

lim
n→∞

P (λcv 6∈ Λε ∩ Λ2>1, E1)
(i)
= lim

n→∞
P(E1), (108)

67



Wang, Stelmakh, Wei, and Shah

where (i) is true by (98).
Case 2:

∑
j∈[n] b1j <

∑
j∈[n] b2j

Denote the event that Case 2 happens as E2 :=
{∑

j∈[n] b1j <
∑

j∈[n] b2j

}
. Our goal is

to find a set of elements on which the validation error is large. For any constant c > 0, we
define the set:

Sc := {(j, j′) ∈ [n]2 : 0 < b2j′ − b1j < c}. (109)

Let c′ > 0 be a constant. Denote Ev
c′,c as the event that there exists distinct values

(j1, . . . , jc′n) and distinct values (j′1, . . . , j
′
c′n), such that (jk, j

′
k) ∈ Sc ∩ Ωv for all k ∈ [c′n].

That is, the set Sc ∩ Ωv contains a subset of size at least c′n of pairs (j, j′), such that each
element b1j and b2j′ appears at most once in this subset. We denote this subset as S′.

The following lemma bounds the probability that Ev
c′,c happens under case E2.

Lemma 40. Suppose d = 2. Assume the bias is distributed according to assumption (A2)
with σ = 1. For any c > 0, there exists a constant c′ > 0 such that

lim
n→∞

P
(
Ev
c′,c ∩ E2

)
= lim

n→∞
P(E2).

The proof of this result is provided in Appendix C.11.6. Now consider the the validation
error contributed by the pairs in the set S′. We have

e(λ) ≤ 1

|Ωv|
∑

(j,j′)∈S′

[(
b1j − b̂(λ)

NN(1,j) − x̂
(λ)
1

)2
+
(
b2j′ − b̂

(λ)
NN(2,j′) − x̂

(λ)
2

)2
]
. (110)

We consider each individual term (j, j′) ∈ S′. On the one hand, we have b1j < b2j′ by the
definition (109) of Sc. Therefore, the element (1, j) is ranked lower than (2, j′) in the total
ordering T . According to Algorithm 1, it can be verified that their interpolated bias satisfies

b̃
(λ)
NN(1,j) ≤ b̃

(λ)
NN(2,j′) ∀λ ∈ [0,∞]. (111)

On the other hand, we have

b1j − x̂1 − (b2j′ − x̂2) = (b1j − b2j′) + (x̂2 − x̂1)
(i)
> − ε

2
+

ε√
2

=
ε

5
, ∀λ ∈ Λε ∩ Λ2>1

∣∣∣∣ (Ev
c′, ε

2
, E),

(112)

where (i) is true by the definition of Sc in (109) (setting c = ε
2), and the definition 94 of

Λ2>1. Combining (111) and (112), we have that for all (j, j′) ∈ S′:(
b1j − b̃(λ)

NN(1,j) − x̂
(λ)
1

)2
+
(
b2j′ − b̃

(λ)
NN(2,j′) − x̂

(λ)
2

)2
≥ min

u1,u2∈R
u1≤u2

min
v1,v2∈R
v1−v2>

ε
5

(v1 − u1)2 + (v2 − u2)2

>
ε2

50
, ∀λ ∈ Λε ∩ Λ2>1

∣∣∣∣ (Ev
c′, ε

2
, E).

(113)
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Conditional on Ev
c′, ε

2
, there are at least c′n such non-overlapping pairs. Plugging (113)

to (110), the validation error is lower-bounded as

e(λ) ≥ 1

|Ωv|
c′n · ε

2

50
≥ 2

dn
c′n · ε

2

50
=
c′ε2

25d
, ∀λ ∈ Λε ∩ Λ2>1

∣∣∣∣ (Ev
c′, ε

2
, E). (114)

Setting the constant ε1 to be a sufficiently small constant such that 9ε21 <
c′ε2

25d , we have

P
(
e(λ) ≥ e(0), ∀λ ∈ Λε ∩ Λ2>1, E2

)
≥ P

(
e(λ) >

c′ε2

25d
> 9ε21 > e(0), ∀λ ∈ Λε ∩ Λ2>1, E2

)
≥ P

(
e(λ) >

c′ε2

25d
,E2

)
− P

(
e(0) > 9ε21, E2

)
(i)
≥ P

(
Ev
c′, ε

2
, E,E2

)
− P

(
e(0) > 9ε21

)
(115)

= P
(
Ev
c′, ε

2
, E
)
− P

(
Ev
c′, ε

2
, E,E2

)
− P

(
e(0) > 9ε21

)
,

(116)

where (i) is true by (114). Taking the limit of n→∞ in (116), we have

lim
n→∞

P
(
e(λ) ≥ e(0), ∀λ ∈ Λε ∩ Λ2>1, E2

)
= lim

n→∞
P(E2).

and (ii) is true by combining Lemma 40, (93) and (92) from Step 2. Equivalently,

lim
n→∞

P (λcv 6∈ Λε ∩ Λ2>1, E2) = 1. (117)

Finally, combining the two cases from (108) and (117), we have

lim
n→∞

P (λcv 6∈ Λε ∩ Λ2>1) = lim
n→∞

P (λcv 6∈ Λε ∩ Λ2>1, E1) + lim
n→∞

P (λcv 6∈ Λε ∩ Λ2>1, E2)

= lim
n→∞

P(E1) + lim
n→∞

P(E2) = 1. (118a)

By a symmetric argument on the set Λ1>2, we have

lim
n→∞

P (λcv 6∈ Λε ∩ Λ1>2) = 1. (118b)

Hence, we have

lim
n→∞

P (λcv 6∈ Λε) ≥ lim
n→∞

P (λcv 6∈ Λε, E)

(i)
≥ lim

n→∞
P (λcv 6∈ Λε ∩ Λ1>2, E) + lim

n→∞
P (λcv 6∈ Λε ∩ Λ2>1, E)

≥ lim
n→∞

P (λcv 6∈ Λε ∩ Λ1>2) + P (λcv 6∈ Λε ∩ Λ2>1)− 2 lim
n→∞

P(E)
(ii)
= 1,

where inequality (i) is true by (95), and equality (ii) is true by combining (118) with (93).
This completes the proof.
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C.6 Proof of Theorem 10

The proof follows notation in Appendix C.1 and preliminaries in Appendix C.2. Similar
to the proof of Theorem 9, without loss of generality we assume x∗ = 0 and the standard
deviation of the Gaussian noise is η = 1. Under this setting, the model (1) reduces to:

Y = Z. (119)

The proof consists of 3 steps that are similar to the steps in Theorem 9. Both part (a) and
part (b) share the same first two steps as follows. We fix some constants ε1, ε2 > 0, whose
values are determined later.
Step 1: Showing the consistency of our estimator at λ = ∞ restricted to the
training set Ωt

By Proposition 15, our estimator x̂(∞) at λ =∞ is identical to taking the sample mean
of each course. By the model (119), conditional on any training-validation split (Ωt,Ωv)
given by Algorithm 1, each observation is i.i.d. noise of N (0, 1). Recall from (7) that the
number of observations in each course restricted to the training set Ωt is nt = n

2 . Given the
assumption (A3) that the number of courses d is a constant, sample mean on the training
set Ωt is consistent. That is,

lim
n→∞

P
(
‖x̂(∞)‖∞ < ε1

)
= 1. (120)

By Proposition 15, we have B̂(∞) = 0.
Step 2: Computing the validation error at λ =∞

Recall from Algorithm 1 that the interpolated bias b̃ij for any element (i, j) ∈ Ωv is
computed as the mean of the estimated bias B̂ from its nearest neighbor set in the training
set Ωt. Since the estimated bias is B̂(∞) = 0, the interpolated bias is B̃(∞) = 0. Recall the
model (119) of Y = Z. The validation error at λ =∞ is computed as

e(∞) =
1

|Ωv|
∑

(i,j)∈Ωv

(
yij − x̂(∞)

i − b̃(∞)
ij

)2
=

1

|Ωv|
∑

(i,j)∈Ωv

(
zij − x̂(∞)

i

)2

=
1

|Ωv|

 ∑
(i,j)∈Ωv

zij
2

︸ ︷︷ ︸
T1

−2
∑

(i,j)∈Ωv

zij x̂
(∞)
i︸ ︷︷ ︸

T2

+
∑

(i,j)∈Ωv

(x̂
(∞)
i )2

︸ ︷︷ ︸
T3

 .
(121)

We consider the three terms T1, T2 and T3 in (121) separately. For the term T1, we have
E[z2

ij ] = η2 = 1. The number of samples is |Ωv| = dnv = dn2 . By Hoeffding’s inequality we
have

lim
n→∞

P

 1

|Ωv|
∑

(i,j)∈Ωv

z2
ij < 1 + ε1

 = 1. (122)
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For the term T2, we have E[zij ] = 0. By Hoeffding’s inequality and a union bound over
i ∈ [d] we have

lim
n→∞

P

 1

|Ωv|

∣∣∣∣∣∣
∑
j∈Ωv

i

zij

∣∣∣∣∣∣ < ε1, ∀i ∈ [d]

 = 1. (123)

Combining (123) with the consistency result (120) on x̂(∞) from Step 1, we have

lim
n→∞

P
(

1

|Ωv|
|T2| < dε21

)
= 1. (124)

For the term T3, we have

1

|Ωv|
T3 ≤ max

i∈[d]
|x̂i|2. (125)

Combining (125) with the consistency result (120) on x̂(∞) from Step 1, we have

lim
n→∞

P
(

1

|Ωv|
T3 < ε21

)
= 1. (126)

Taking a union bound of the terms T1, T2 and T3 from (122), (124) and (126) and plugging
them back to (121), we have

lim
n→∞

P
(
e(∞) ≤ (1 + ε1) + dε21 + ε21 = 1 + ε1 + (d+ 1)ε21

)
= 1. (127)

Step 3 (preliminaries): Computing the validation error at general λ ∈ Λε, and
showing that it is greater than the validation error at λ =∞

We set up some preliminaries for this step that are shared between part (a) and part (b).
Then we discuss the two parts separately.

Recall from (16) the definition of Λε := {λ ∈ [0,∞] : ‖x̂(λ)‖2 > ε}. In this step, we show
that

lim
n→∞

P
(
e(λ) > e(∞), ∀λ ∈ Λε

)
= 1. (128)

Then from (128) we have

lim
n→∞

(λcv 6∈ Λε) = 1,

yielding the result of Theorem 10. It is sufficient to establish (128).
We now give some additional preliminary results for this step. By Lemma 20, we have

lim
n→∞

P
(

max
i,i′∈[d]

x̂i − x̂i′ >
ε√
d
, ∀λ ∈ Λε

)
︸ ︷︷ ︸

E

= 1. (129)

We denote this event in (129) as E.
Both parts also use the following lemma that bounds the magnitude of the estimated

bias B̂ given some value of x̂.
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Lemma 41. Let Ω ⊆ [d] × [n] be any non-empty set. For any λ ∈ [0,∞], the solution
(x̂(λ), B̂(λ)) restricted to the set Ω satisfies the deterministic relation

max
(i,j)∈Ω

∣∣∣̂b(λ)
ij

∣∣∣ ≤ max
(i,j)∈Ω

|yij |+ ‖x̂(λ)‖∞. (130)

The proof of this result is provided in Appendix C.12.1. Now we proceed differently for
Step 3 for part (a) and part (b).

C.6.1 Proof of part (a)

Step 3 (continued): For clarity of notation, we denote the constant in the single constant-
fraction as cf .

We analyze the validation error at any λ ∈ Λε similar to Step 2. The difference is that
Step 2 (at λ = ∞) uses the consistency of x̂(∞) from Step 1 on to bound the validation
error. However, x̂(λ) may not be consistent for any general λ ∈ Λε. Hence, we consider the
following two subsets of Λε depending on the value of x̂.

Similar to the proof of Theorem 9(a), by Algorithm 1 the interpolated bias for elements
in each group k ∈ [r] is identical for all (i, j) ∈ Gv

k. That is,

b̃ij = b̃i′j′ ∀(i, j), (i′, j′) ∈ Gv
k. (131)

We denote the interpolated bias for group k as b̃k := b̃ij for (i, j) ∈ Gv
k.

Case 1: Λ1 :=
{
λ ∈ [0,∞] : maxi,i′∈[d] x̂i − x̂i′ > 8

√
d
cf

}
.

Let kf ∈ [r] be a group that satisfies the single cf -fraction assumption. By the definition
of Λ1 we have maxi,i′∈[d]

[
(x̂i + b̃kf

)− (x̂i′ + b̃kf
)
]
> 8

√
d
cf

for any λ ∈ Λ1, which implies
that

max
i∈[d]

∣∣∣x̂i + b̃kf

∣∣∣ > 4

√
d

cf
∀λ ∈ Λ1. (132)

Combining (26a) from Lemma 26 with the single cf -fraction assumption, one can see

`vikf
≥ `ikf

4
>
cfn

4
. (133)

Given (133), by Hoeffding’s inequality we have

lim
n→∞

P

 ∑
j∈Gv

ikf

1{zij > 0} ≥ cfn

12

 = 1 (134a)

lim
n→∞

P

 ∑
j∈Gv

ikf

1{zij < 0} ≥ cfn

12

 = 1. (134b)
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We denote the event

E1 :=


∑
j∈Gv

ikf

1{zij > 0} ≥ cfn

12
, ∀i ∈ [d]

 ∩

∑
j∈Gv

ikf

1{zij < 0} ≥ cfn

12
, ∀i ∈ [d]

 .

(135)

Given that d is a constant by the assumption (A3), taking (134) with a union bound over
i ∈ [d], we have

lim
n→∞

P(E1) = 1. (136)

Let i∗ be a random variable (as a function of λ) defined as i∗ := arg maxi∈[d]

∣∣∣x̂i + b̃kf

∣∣∣ where
the tie is broken arbitrarily. Conditional on E1, for any λ ∈ Λ1 we have the deterministic
relation

e(λ) =
1

|Ωv|
∑
k∈[r]

∑
(i,j)∈Gv

k

(
zij − x̂(λ)

i − b̃
(λ)
k

)2
≥ 1

|Ωv|
∑

(i,j)∈Gv
kf

(zij − x̂i − b̃kf
)2

≥ 1

|Ωv|
∑

j∈Gv
i∗kf

(zi∗j − x̂i∗ − b̃kf
)2

(i)
≥ 1

|Ωv|
cfn

12

(
4

√
d

cf

)2

=
2

dn
· cfn

12

16d

cf
=

8

3
, ∀λ ∈ Λ1

∣∣∣∣ E1. (137)

where (i) is true by (132) and the definition (135) of E1. Combining (137) with (136), we
have

lim
n→∞

P
(
e(λ) ≥ 4

3
, ∀λ ∈ Λ1

)
≥ P (E1) = 1. (138)

Case 2: Λ2 = Λε ∩
{
λ ∈ [0,∞] : maxi,i′∈[d] x̂i − x̂i′ ≤ 8

√
d
cf

}
.

Note that we have Λε ⊆ Λ1 ∪ Λ2 by the definition of Λ1 and Λ2. We decompose the
validation error as:

e(λ) =
1

|Ωv|
∑
k∈[r]

∑
(i,j)∈Gv

k

(
zij − x̂(λ)

i − b̃
(λ)
k

)2

=
1

|Ωv|

 ∑
(i,j)∈Ωv

z2
ij − 2

∑
k∈[r]

∑
(i,j)∈Gv

k

zij

(
x̂

(λ)
i + b̃

(λ)
k

)
+
∑
k∈[r]

∑
(i,j)∈Gv

k

(
x̂

(λ)
i + b̃

(λ)
k

)2


=

1

|Ωv|

 ∑
(i,j)∈Ωv

z2
ij︸ ︷︷ ︸

T1

−2
∑

(i,j)∈Ωv

zij x̂
(λ)
i︸ ︷︷ ︸

T2

+2
∑
k∈[r]

∑
(i,j)∈Gv

k

zij b̃
(λ)
k︸ ︷︷ ︸

T3

+
∑
k∈[r]

∑
(i,j)∈Gv

k

(
x̂

(λ)
i + b̃

(λ)
k

)2

︸ ︷︷ ︸
T4

 .
(139)

We analyze the four terms T1, T2, T3 and T4 in (139) separately.
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Term T1: Similar to (122) from Step 2, by Hoeffding’s inequality we have

lim
n→∞

P

 1

|Ωv|
∑

(i,j)∈Ωv

z2
ij > 1− ε2

 = 1. (140)

Term T2: Recall that d is a constant by the assumption (A3). Similar to (123) from Step
2, by Hoeffding with a union bound over i ∈ [d], we have

lim
n→∞

P

 1

|Ωv|

∣∣∣∣∣∣
∑
j∈Ωv

i

zij

∣∣∣∣∣∣ < ε, ∀i ∈ [d]


︸ ︷︷ ︸

E2

= 1. (141)

Denote this event in (141) as E2.
We now bound ‖x̂‖∞. By Hoeffding’s inequality, on the training Ωt we have:

lim
n→∞

P

 1

|Ωt|

∣∣∣∣∣∣
∑

(i,j)∈Ωt

zij

∣∣∣∣∣∣ <
√

1

dcf


︸ ︷︷ ︸

E′2

= 1. (142)

Plugging (21b) in Lemma 17 to (142), we have∣∣∣∣∣∣
∑
i∈[d]

x̂
(λ)
i

∣∣∣∣∣∣ =
1

nt

∣∣∣∣∣∣
∑

(i,j)∈Ωt

zij

∣∣∣∣∣∣ <
√
d

cf
∀λ ∈ Λ2, conditional on E′2. (143)

Combining (143) with the definition of Λ2, we have

‖x̂‖∞ ≤ 8

√
d

cf
∀λ ∈ Λ2

∣∣∣∣∣ E′2. (144)

To see (144), assume for contradiction that (144) does not hold. Consider the case of
x̂i∗ > 8

√
d
cf

for some i∗ ∈ [d]. Then by the definition of Λ2, we have x̂i > 0 for all i ∈ [d].

Then we have
∣∣∣∑i∈[d] x̂i

∣∣∣ > 8
√

d
cf
. Contradiction to (143). A similar argument applies if

x̂i∗ < −8
√

d
cf
. Hence, (144) holds.

Finally, combining (144) with (141), we have:

1

|Ωv|
|T2| =

1

|Ωv|

∣∣∣∣∣∣
∑

(i,j)∈Ωv

zij x̂i

∣∣∣∣∣∣ (145)

≤ d

|Ωv|
max
i∈[d]

∣∣∣∣∣∣
∑

(i,j)∈Ωv

zij

∣∣∣∣∣∣ · ‖x̂‖∞ < 8d

√
d

cf
ε2 ∀λ ∈ Λ2, conditional on (E2, E

′
2).

(146)
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Hence, we have

lim
n→∞

P

(
1

|Ωv|
|T2| < 8d

√
d

cf
ε, ∀λ ∈ Λ2

)
≥ lim

n→∞
P
(
E2 ∩ E′2

) (i)
= 1,

where (i) is true by (141) and (142).

Term T3: We use the following standard result derived from statistics.

Lemma 42. Consider any fixed d ≥ 1. Let Z ∼ N (0, Id). Then we have

lim
d→∞

P

 sup
‖θ‖2=1
θ1≤...≤θd

θTZ ≤ d
1
4

 = 1.

For completeness, the proof of this lemma is in Appendix C.12.2. We now explain how
to apply Lemma 42 on B̃Ωt .

The ordering of B̃: Take any arbitrary total ordering π ∈ T that is consistent with the
partial ordering O. Recall from (131) that the interpolated bias within each group k ∈ [r]
is identical, so B̃ satisfies the total ordering π.

Bounding ‖B̃‖Ωt: We bound each b̃k. Recall that each b̃k is a mean of B̂ on its nearest-
neighbor set. Hence, we have

max
k∈[r]
|̃bk| ≤ max

(i,j)∈Ωt

∣∣∣̂b(λ)
ij

∣∣∣ (i)≤ max
(i,j)∈Ωt

|yij |+ ‖x̂(λ)‖∞ ∀λ ∈ [0,∞], (147)

where (i) is true by (130) in Lemma 41. We consider the term max(i,j)∈Ωv |yij | on the RHS
of (147). Recall from the model (119) that Y = Z. Hence, we have

lim
n→∞

P
(

max
(i,j)∈Ωv

|yij | < 2
√

log dn

)
︸ ︷︷ ︸

E′′2

(i)
= 1, (148)

where (i) is true by Lemma 25. Plugging (148) and the bound on ‖x̂‖∞ from (144) to (147),
we have that conditional on E′′2 and E′2,

max
k∈[r]
|̃bk|≤ max

(i,j)∈Ωt
|yij |+ ‖x̂(λ)‖∞

≤ 2
√

log dn+ 8

√
d

cf
∀λ ∈ Λ2

∣∣∣∣∣ (E′2, E
′′
2 ).

Hence, we have

‖B̃‖Ωt ≤
√
|Ωt| ·max

k∈[r]

∣∣∣̃bk∣∣∣ ≤ √dnv

(
2
√

log dn+ 8

√
d

cf

)
∀λ ∈ Λ2

∣∣∣∣∣ (E′2, E
′′
2 ).

and therefore

lim
n→∞

P

(
‖B̃‖Ωt ≤

√
dnv

(
2
√

log dn+ 8

√
d

cf

)
, ∀λ ∈ Λ2

)
≥ lim

n→∞
P(E′2 ∩ E′′2 ) = 1. (149)
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Applying Lemma 42: For the term T3, for any constant C > 0, we have

P
(
|T3| < C(dnt)

1
4 , ∀λ ∈ Λ2

)
≥ P

( {∣∣∣∣T3

C

∣∣∣∣ < (dnt)
1
4 , ∀λ ∈ Λ2

}
︸ ︷︷ ︸

E3

∩

{∥∥∥∥∥B̃C
∥∥∥∥∥

Ωt

≤ 1, ∀λ ∈ Λ2

}
︸ ︷︷ ︸

E4

)

(150)

We have

P(E3 ∩ E4) = P(E4) + P(E3 ∩ E4) (151)

Setting C =
√
dnv

(
2
√

log dn+ 8
√

d
cf

)
, by (149) we have

P(E4) = 0. (152)

Applying Lemma 42 on B̃Ωt

C , we have

lim
n→∞

P(E3 ∩ E4) = 0. (153)

Plugging (152) and (153) to (151), we have

lim
n→∞

P(E3 ∩ E4) = 0. (154)

Combining (154) with (150), we have

lim
n→∞

P

(
|T3| < C(dnt)

1
4 = (dnt)

3
4

(
2
√

log dn+ 8

√
d

cf

)
, ∀λ ∈ Λ2

)
= 1.

Hence, we have

lim
n→∞

P
(

1

|Ωv|
|T3| < ε2

)
= 1. (155)

Term T4: Recall that kf denotes a group kf that satisfies the single cf -fraction assumption.
By the definition of E from (129), we have

max
i,i′∈[d]

(x̂i + b̃kf
)− (x̂i′ + b̃kf

) >
ε√
d

∀λ ∈ Λ2,

∣∣∣∣ E. (156)

Therefore, we have

max
i,i′∈[d]

[
(x̂i + b̃kf

)2 + (x̂i′ + b̃kf
)2
]
>
ε2

4d
∀λ ∈ Λ2

∣∣∣∣ E. (157)

We bound the term T4 as

1

|Ωv|
T4 ≥

1

|Ωv|
∑

(i,j)∈Gv
kf

(x̂i + b̃kf
)2

(i)
≥ 2

dn
· cfn

4
· ε

2

4d
=
cfε

2

8d2
∀λ ∈ Λ2

∣∣∣∣∣∣∣ E,
where (i) is true by combining (133) and (157). Hence,

P
(
T4 ≥

cfε
2

8d2
∀λ ∈ Λ2

)
≥ P (E) = 1. (158)
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Putting things together: Plugging the four terms from (140), (141), (155) and (158)
respectively back to (139), we have

lim
n→∞

P

(
e(λ) > (1− ε2) + 8d

√
d

cf
ε2 + ε2 +

cfε
2

8d2
, ∀λ ∈ Λ2

)
= 1. (159)

Finally, combining the two cases from (138) and (159), we have

lim
n→∞

P

(
e(λ) ≥ 8

3
∧

(
1 + 16d

√
d

cf
ε2 +

cfε
2

8d2

)
, ∀λ ∈ Λε

)
= 1. (160)

Recall from (127) that the validation error at λ =∞ is bounded as

lim
n→∞

P
(
e(∞) ≤ 1 + ε1 + (d+ 1)ε21

)
= 1. (161)

Combining (160) and (161) with choices of (ε1, ε2) (dependent on ε, d, cf) such that 8
3 ∧(

1 + 16d
√

d
cf
ε2 + cfε

2

8d2

)
> 1 + ε1 + (d+ 1)ε21, we have

lim
n→∞

P
(
e(∞) > e(0), ∀λ ∈ Λε

)
= 1,

completing the proof.

C.6.2 Proof of part (b)

For clarity of notation, we denote the constant in the constant-fraction interleaving assump-
tion as cf . Since O is a total ordering, we also denote it as π.

Step 3 (continued): Combining (21b) with Hoeffding’s inequality, we have

lim
n→∞

P

 |x̂1 + x̂2| =
1

nt

∣∣∣∣∣∣
∑

(i,j)∈Ωt

zij

∣∣∣∣∣∣ < ε ∧ 16
√
cf
, ∀λ ∈ Λε︸ ︷︷ ︸

E1

 = 1. (162)

We denote this event in (162) as E1.

Analyzing the number of interleaving points Let S ⊆ [2n−1] denotes the interleaving
points. Recall that (it, jt) denotes element of rank t, and tij denotes the rank of the element
(i, j). We slightly abuse the notation to say (i, j) ∈ S if tij ∈ S, and also for other definitions
of subsets of interleaving points later in the proof. Denote Si ⊆ S as the set of interleaving
points in course i ∈ {1, 2}:

Si = S ∩ {t ∈ [2n− 1] : it = i}.

Denote Sv
i as the set of interleaving points in Si that are in the validation set:

Sv
i = Si ∩ Ωv.
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We define Spairs as a set of pairs of interleaving points as:

Spairs := {(t, t′) ∈ [2n− 1]2 : t ∈ Sv
1 , t

′ ∈ Sv
2 , t < t′}.

Define Ec as the event that there exists distinct values (t1, t
′
1, . . . , tcn, t

′
cn) such that (tk, t

′
k) ∈

Spairs for all k ∈ [cn]. That is, Spairs includes cn distinct pairs where each interleaving point
appears at most once. We define S′pairs likewise as

S′pairs := {(t, t′) ∈ [2n− 1]2 : t ∈ Sv
2 , t

′ ∈ Sv
1 , t < t′}.

and define E′c likewise.
The following lemma bounds the probability of the event E 1

36
and E′1

36

.

Lemma 43. Suppose d = 2. Then we have

lim
n→∞

P
(
E 1

36
∩ E′1

36

)
= 1.

The proof of this result is provided in Appendix C.12.3. Denote S+ as the set of the
half of the highest interleaving points and S− as the set of the half of the lowest interleaving
points. That is, we define

S+ := S ∩ {t ∈ [2n− 1] : t > median(S)}
S− := S ∩ {t ∈ [2n− 1] : t < median(S)}.

Furthermore, for i ∈ {1, 2}, we define

Sv+
i := S+ ∩ Si ∩ Ωv

Sv−
i := S− ∩ Si ∩ Ωv.

The following lemma lower-bounds the size of Sv+
i and Sv−

i .

Lemma 44. We have

lim
n→∞

P
(
|T | ≥ cfn

36
, ∀T ∈ {Sv+

1 , Sv−
1 , Sv+

2 , Sv−
2 }

)
︸ ︷︷ ︸

E2

= 1.

The proof of this result is provided in Appendix C.12.4. We denote this event in
Lemma 44 as E2.

Bounding the validation error Similar to part (a), we discuss the following two cases
depending on the value of x̂.

Case 1: Λ1 = Λε ∩
{
λ ∈ [0,∞] : x̂

(λ)
1 < − 32√

cf

}
It can be verified that due to (162), we

have

x̂
(λ)
1 < − 32

√
cf
<

16
√
cf
< x̂

(λ)
2 ∀λ ∈ Λ1

∣∣∣∣ E. (163)
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By Hoeffding’s inequality combined with Lemma 44, we have

lim
n→∞

P

 ∑
(i,j)∈Sv−

1

1{zij > 0} > cfn

96

 = 1 (164a)

lim
n→∞

P

 ∑
(i,j)∈Sv+

2

1{zij < 0} > cfn

96

 = 1. (164b)

Denote the event

E3 :=

 ∑
(i,j)∈Sv−

1

1{zij > 0} > cfn

96

 ∩
 ∑

(i,j)∈Sv+
2

1{zij < 0} > cfn

96

 .

Taking a union bound of (164), we have

lim
n→∞

P(E3) = 1. (165)

We slightly abuse the notation and denote b̃t as the value of the interpolated bias on the
element of rank t. That is, we define b̃t := b̃itjt . It can be verified that b̃t is non-decreasing
in t due to the nearest-neighbor interpolation in Algorithm 1. Hence, b̃t ≤ 0 for all t ∈ S−
or b̃t ≥ 0 for all t ∈ S+.

First consider the case b̃t ≤ 0 for all t ∈ S−. We bound the validation error at λ ∈ Λ1

as:

e(λ) ≥ 1

|Ωv|
∑

(i,j)∈Sv−
1

(
zij − x̂(λ)

1 − b̃(λ)
ij

)2
(166)

(i)
≥ 1

|Ωv|
·
∣∣Sv−

1

∣∣ · (0 +
16
√
cf

+ 0

)2 (i)
≥ 1

n

cfn

96

256

cf
=

8

3
, ∀λ ∈ Λ1

∣∣∣∣∣ (E1, E2, E3), (167)

where (i) is true by (163) and the definition of E3, and (ii) is true by the definition of E2.
Hence, we have

lim
n→∞

(
e(λ) ≥ 8

3
∀λ ∈ Λ1, {b̃t ≤ 0 for all t ∈ S−}

)
(i)
≥ P

(
b̃t ≤ 0 for all t ∈ S−

)
, (168a)

where (i) is true by (162), Lemma 44 and (165). By a similar argument, we have

lim
n→∞

(
e(λ) ≥ 8

3
∀λ ∈ Λ1, {b̃t ≥ 0 for all t ∈ S+}

)
≥ P

(
b̃t ≥ 0 for all t ∈ S+

)
, (168b)

Summing over (168), we have

lim
n→∞

P
(
e(λ) ≥ 8

3
, ∀λ ∈ Λ1

)
= 1. (169)
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Case 2: Λ2 = Λε ∩
{
λ ∈ [0,∞] : x̂

(λ)
1 > − 32√

cf

}
It can be verified that due to (162), we

have

− 32
√
cf
< {x̂1, x̂2} <

48
√
cf
. (170)

Similar to Case 2 in part (a), we decompose the validation error at λ ∈ Λ2 as

e(λ) =
1

|Ωv|
∑

(i,j)∈Ωv

(
zij − x̂(λ)

i − b̃
(λ)
ij

)2

=
1

|Ωv|

 ∑
(i,j)∈Ωv

z2
ij︸ ︷︷ ︸

T1

−2
∑

(i,j)∈Ωv

zij x̂
(λ)
i︸ ︷︷ ︸

T2

−2
∑
(i,j)

zij b̃
(λ)
ij︸ ︷︷ ︸

T3

+
∑
(i,j)

(
x̂

(λ)
i + b̃

(λ)
ij

)2

︸ ︷︷ ︸
T4

 .

Given that ‖x̂‖∞ is bounded by a constant by (170), the analysis of the terms T1, T2 and T3

follows the proof in part (a). We have

lim
n→∞

P
(

1

|Ωv|
T1 > 1− ε2

)
= 1. (171a)

lim
n→∞

P

 1

|Ωv|
∑

(i,j)∈Ωv

|T2| <
96
√
cf
ε2

 = 1. (171b)

lim
n→∞

P
(

1

|Ωv|
|T3| < ε2

)
= 1. (171c)

Now we consider the last term T4. Recall from (129) that

|x̂2 − x̂1| >
ε√
2
∀λ ∈ Λ2

∣∣∣∣ E.
First consider the case of Λ2>1 :=

{
λ ∈ [0,∞] : x̂

(λ)
2 − x̂(λ)

1 > ε√
2

}
. Consider any (t, t′) ∈

Spairs. By the definition of Spairs we have t < t′. Hence, we have b̃t ≤ b̃t′ due to the
nearest-neighbor interpolation in Algorithm 1. Hence, we have x̂2 + b̃t′ − (x̂1 + b̃t) >

ε√
2
and

consequently

(x̂1 + b̃t)
2 + (x̂2 + b̃t′)

2 >
ε2

8
∀λ ∈ Λ2 ∩ Λ2>1

∣∣∣∣ E.
We bound the term T4 as:

1

|Ωv|
T4 ≥

1

|Ωv|
∑

(t,t′)∈Spairs

[
(x̂1 + b̃t)

2 + (x̂2 + b̃t′)
2
]

(i)
≥ 1

2n
· cfn

36
· ε

2

8
=
cfε

2

576
∀λ ∈ Λ2 ∩ Λ2>1

∣∣∣∣ (E 1
36
, E), (172a)
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where inequality (i) is true by the definition ofE 1
36
. Define Λ1>2 :=

{
λ ∈ [0,∞] : x̂

(λ)
1 − x̂(λ)

2 > ε√
2

}
.

With a similar argument, we have

1

|Ωv|
T4 ≥

cfε
2

576
, ∀λ ∈ Λ2 ∩ Λ1>2

∣∣∣∣ (E′1
36

, E). (172b)

Combining (172), we have

1

|Ωv|
T4 ≥

cfε
2

576
, ∀λ ∈ Λ2

∣∣∣∣ (E 1
36
, E′1

36

, E).

By Lemma 43 and (129), we have

lim
n→∞

P
(

1

|Ωv|
T4 ≥

cfε
2

576
, ∀λ ∈ Λ2

)
≥ lim

n→∞
P
(
E 1

36
, E′1

36

, E
)

= 1. (173)

Putting things together: Combining the four terms from (171) and (173), we have

lim
n→∞

P
(
e(λ) > 1− ε2 −

128
√
cf
ε2 − 2ε2 +

cfε
2

576
= 1−

(
3 +

128
√
cf

)
ε2 +

cfε
2

576
, ∀λ ∈ Λ2

)
= 1.

(174)

Combining the two cases from (169) and (174), we have

lim
n→∞

P
(
e(λ) >

8

3
∧
[
1−

(
3 +

128
√
cf

)
ε2 +

cfε
2

576

]
, ∀λ ∈ Λ2

)
= 1. (175)

Recall from (127) that the validation error at λ =∞ is bounded as (taking d = 2):

lim
n→∞

P
(
e(∞) ≤ 1 + ε1 + 3ε21, ∀λ ∈ Λε

)
= 1. (176)

Combining (175) and (176) with choices of (ε1, ε2) (dependent on ε, cf) such that 8
3 ∧[

1−
(

3 + 128√
cf

)
ε2 + cfε

2

576

]
> 1 + ε1 + 3ε21, we have

lim
n→∞

P
(
e(∞) > e(0), ∀λ ∈ Λε

)
= 1,

completing the proof.

C.7 Proof of Proposition 11

To prove the claimed result, we construct partial orderings that satisfy each of the con-
ditions (a), (b), and (c) separately, and show that the mean estimator fails under each
construction. Intuitively, the mean estimator does not account for any bias, so we construct
partial orderings where the mean of the bias differs significantly across courses, and show
that the mean estimator fails on these construction. Without loss of generality we assume
that the standard deviation parameter for the Gaussian distribution of the bias is σ = 1.
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C.7.1 Proof of part (a)

We first construct a partial ordering that satisfies the condition (a), and then bound the
mean of each course to derive the claimed result. For clarity of notation, we denote the
constant in the all constant-fraction assumption as cf .

Constructing the partial ordering: Recall from Definition 3 that the all cf -fraction
assumption requires that each course i ∈ [d] has at least `ik ≥ cfn students in each group
k ∈ [r]. Let c0 = 1 − cfr. Due to the assumption that cf ∈ (0, 1

r ), we have that c0 > 0 is
a constant. We construct the following group ordering O, where the number of students in
each course from each group is specified as

• Course 1: The course has (cf + c0)n students from group 1, and cfn students from
each remaining group k ∈ {2, . . . , r}. That is,

`1k =

{
(cf + c0)n if k = 1

cfn if 2 ≤ k ≤ r.
(177a)

• Course 2: The course has (cf + c0)n students from group r, and cfn students from
each remaining group k ∈ [r − 1]. That is,

`2k =

{
(cf + c0)n if 1 ≤ k ≤ r − 1

cfn. if k = r.
(177b)

• Course i ≥ 3: The course has an equal number of students from each group k ∈ [r].
That is, for every 3 ≤ i ≤ d,

`ik =
n

r
∀k ∈ [r].

It can be seen that this construction of the group ordering O is valid, satisfying the equality∑
k∈[r] `ik = n for each i ∈ [d]. Moreover, the group ordering O satisfies the all cf -fraction

assumption. Intuitively, course 1 contains more students associated with negative bias (from
group 1), and course 2 contains more students associated with positive bias (from group k).
The mean estimator underestimates the quality of course 1, and overestimates the quality
of course 2. We construct some true qualities x∗ with x∗1 > x∗2, whose values are specified
later in the proof.

Bounding the mean of each course: Denote the mean of the bias in any course
i ∈ {1, 2} of group k ∈ [r] as bik := 1

`ik

∑
j∈Gik bij . Similar to the proof of Lemma 37

(see Appendix C.3.1 for its statement and Appendix C.11.4 for its proof), due to assump-
tions (A2) and (A3) we establish the following lemma.

Lemma 45. Consider any group ordering O that satisfies the all cf-fraction assumption.
For any ε > 0, we have

lim
n→∞

P
( ∣∣bik − bGk ∣∣ < ε, ∀i ∈ [d], k ∈ [r]︸ ︷︷ ︸

E1

)
= 1.
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Denote this event in Lemma 45 as E1. Recall that `k denotes the number of students
in each group k ∈ [r]. From the construction of the group ordering O, we have `0 := `1 =
`r = (2cf + c0 + d−2

r )n. Recall that b(k) denotes the kth order statistics of {bij}i∈[d],j∈[n]. By
the assumption (A2) of the bias and the construction of the partial ordering O, the group 1
contains the `1 lowest bias terms, {b(1), . . . , b(`0)}, and the group r contains the `r highest
bias terms, {b(dn−`0+1), . . . , b(dn)}. Hence, we have

bG1 <
b(
`0
2

) + b(`0)

2

bGr >
b(dn−`0) + b(dn−

`0
2

)

2
.

By the convergence of the order statistics from Lemma 24, it can be shown that there exists
some constant c > 0 (dependent on d, r and cf), such that

lim
n→∞

P
(
bGr − bG1 > c︸ ︷︷ ︸

E2

)
= 1. (178)

Denote this event in (178) as E2. The mean estimator is computed as

[x̂mean]1 = x∗1 +
1

n

∑
k∈[r]

`1kb1k (179a)

[x̂mean]2 = x∗2 +
1

n

∑
k∈[r]

`2kb2k (179b)

Taking the difference on (178), conditional on E1 and E2,

[x̂mean]2 − [x̂mean]1 = (x∗2 − x∗1) +
1

n

∑
k∈[r]

(`2kb2k − `1kb1k)

(i)
> (x∗2 − x∗1) +

1

n

∑
k∈[r]

(`2kbGk − `1kbGk)− 2ε

(i)
= (x∗2 − x∗1) + c0(br − bG1)− 2ε

(iii)
> (x∗2 − x∗1) + c0c− 2ε. (180)

where inequality (i) is true by the event E1, and equality (i) is true by plugging in the con-
struction of the group ordering from (177), and inequality (iii) is true by the definition (178)
of E2. We set ε = c0c

4 , and set x∗1 = c0c
2 and x∗2 = 0. Then by (180) we have

P([x̂mean]2 − [x̂mean]1 > 0) = 1. (181)

Combining (181) with the fact that x∗2 − x∗1 < 0, completing the proof of part (a).

C.7.2 Proof of part (b)

To construct the partial ordering, we set r = 2 and d = 2 in construction we used for
part (a). This completes the proof of part (b).
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C.7.3 Proof of part (c)

We construct a total ordering where the bias obeys the following order (same as the “non-
interleaving” total ordering described in Section 5.1):

b11 ≤ . . . ≤ b1n ≤ b21 ≤ . . . ≤ b2n ≤ . . . ≤ bd1 ≤ . . . ≤ bdn.

In this construction, course 1 contains the n students with the lowest bias, and course d
contains the n students with the highest bias. Recall that bi denotes the mean of the bias
in course i ∈ [d]. We have

b1 =
1

n

∑
j∈[n]

b1j <
b(
n
2

) + b(n)

2

br =
1

n

∑
j∈[n]

b2j >
b(dn−

n
2

) + b(dn)

2
.

Similar to part (a), by Lemma 24, there exists a positive constant c > 0 (dependent on d),
such that

lim
n→∞

P
(
br − b1 > c

)
= 1.

Let x∗1 = c and x∗2 = 0. We have

lim
n→∞

P([x̂mean]r − [x̂mean]1 = x∗2 − x∗1 + b2 − b1 > 0) = 1. (182)

Combining (182) with the fact that x∗1 > x∗r completes the proof of part (c).

C.8 Proof of Proposition 13

By Corollary 19, we assume x∗ = 0 without loss of generality. Denote the bias of course
1 as {Uj}j∈[rn] in group 1, and {Vj}j∈[(1−r)n] in group 2. Denote the bias of course 2 as
{U ′j}j∈[(1−r)n] in group 1 and {V ′j }j∈[rn] in group 2. We have Uj , U ′j ∼ Unif[−1, 0] and
Vj , V

′
j ∼ Unif[0, 1]. Denote the mean of {Uj}, {Vj}, {U ′j} and {V ′j } as U, V , U ′ and V

′

respectively. We prove the claimed result respectively for the reweighted mean estimator
(Appendix C.8.1) and for our estimator at λ = 0 (Appendix C.8.2). Both parts use the
following standard result regarding the uniform distribution.

Lemma 46. Let X1, . . . , Xn be i.i.d. Unif[0, 1], we have

E
(∑n

i=1Xi

n

)2

=
1

4
+

1

12n
.

C.8.1 The reweighted mean estimator

We follow the definition of the reweighted mean estimator defined in Appendix A.2. In the
reweighting step, by (4) we have

x̂rw =
1

2

[
U + V

U
′
+ V

′

]
. (183)
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In the recentering step, by (6) we have

x̂rw ← x̂rw +

−1

2

∑
i∈{1,2}

[x̂rw]i +
1

2n

∑
i∈{1,2},j∈[n]

yij

1

= x̂rw +

(
− [x̂rw]1 + [x̂rw]2

2
+
rnU + (1− r)nV + (1− r)nU ′ + rnV

′

2n

)
1

=
[x̂rw]1 − [x̂rw]2

2

[
1
−1

]
+

(
rU + (1− r)V + (1− r)U ′ + rV

′

2

)
1

(i)
=
U + V − U ′ − V ′

4

[
1
−1

]
+

(
rU + (1− r)V + (1− r)U ′ + rV

′

2

)
1, (184)

where equality (i) is true by plugging in (183) from the reweighting step. By symmetry, we
have E[x̂rw]21 = E[x̂rw]22, so we only consider course 1. By (184), we have

E[x̂rw]21
(i)
= E

(
U + V − U ′ − V ′

4

)2

+ E

(
rU + (1− r)V + (1− r)U ′ + rV

′

2

)2

=
1

16
E
[
U
′2

+ V
′2

+ U
2

+ V
2 − 4 · 1

2

1

2

]
+

1

4
E
[
(1− r)2U

′2
+ r2V

′2
+ r2U

2
+ (1− r)2V

2 − 2

(
r2

4
+

(1− r)2

4

)]
=

1

8
E
[
U

2
+ V

2 − 1

2

]
+

1

2
E
[
r2U

2
+ (1− r)2V

2 − r2 + (1− r)2

4

]
(ii)
=

1

8

[
1

4
+

1

12rn
+

1

4
+

1

12(1− r)n
− 1

2

]
+

1

2
E
[
r2

4
+

r2

12rn
+

(1− r)2

4
+

(1− r)2

12(1− r)n
− r2 + (1− r)2

4

]
=

1

96n

(
1

r
+

1

1− r

)
+

1

24n

=
1

24n
+

1

96r(1− r)n
.

where (i) is true because it can be verified by algebra that E
[(

U+V−U ′−V ′
4

)(
rU+(1−r)V+(1−r)U ′+rV ′

2

)]
=

0, and (ii) is true by Lemma 46. Finally, we have

1

2
E‖x̂rw‖]22 =

1

2

(
E[x̂rw]21] + E[x̂rw]22

)
= E[x̂rw]21 =

1

24n
+

1

96r(1− r)n
≥ 1

24n
+

1

24n
=

1

12n
,

where the inequality holds because r(1− r) ≤ 1
4 for every r ∈ (0, 1).
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C.8.2 Our estimator at λ = 0

Recall from Proposition 22 that for d = 2 courses and r = 2 groups, our estimator at λ = 0

has the closed-form expression x̂(0) = y +

[
−1
1

]
· γ2 , where

γ =


y22,min − y11,max if y22,min − y11,max < y2 − y1

y21,max − y12,min if y21,max − y12,min > y2 − y1

y2 − y1 o.w.
(185)

By (185), we have

1

2
E‖x̂(0)‖22 =

1

2
E
[(
y − γ

2

)2
+
(
y +

γ

2

)2
]

= E[y2] +
1

4
E[γ2]. (186)

We analyze the two terms in (186) separately.

Term of E[y2] : For ease of notation, we denote the random variables

{Ũj}j∈[n] := {Uj}j∈[rn] ∪ {U ′j}j∈[(1−r)n]

{Ṽj}j∈[n] := {Vj}j∈[(1−r)n] ∪ {V ′j }j∈[rn]

Then {Ũj}j∈[n] is i.i.d. Unif[−1, 0] and {Ṽj}j∈[n] is i.i.d. Unif[0, 1]. We have

E[y2] = E

(∑
i∈[n] Ũi +

∑
i∈[n] Ṽi

2n

)2

=
1

4n2
E

∑
i∈[n]

Ũ2
i +

∑
i∈[n]

Ṽ 2
i + 2

∑
i∈[n],j∈[n]

ŨiṼj +
∑
i∈[n]

∑
j 6=i

ŨiŨj +
∑
i∈[n]

∑
j 6=i

ṼiṼj


=

1

4n2

[
n

3
+
n

3
+ 2n2

(
−1

4

)
+ n(n− 1)

1

4
+ n(n− 1)

1

4

]
=

1

24n
. (187)

Term of E[γ2]: To analyze the term E[γ2], we use the following standard result from
statistics.

Lemma 47. Let X1, . . . , Xn ∼ Unif[0, 1]. Let Xmin = mini∈[n]Xi. We have

E[Xmin] =
1

n+ 1

E[X2
min] =

2

(n+ 1)(n+ 2)
.

We define

Umax := max
j∈[rn]

Uj

Vmin := min
j∈[(1−r)n]

Vj ,
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and define U ′max and V ′min likewise. By (185) it can be verified that we have the deterministic
relation

|γ| ≤ (y22,min − y11,max) ∨ (y12,min − y21,max)

(i)
= (V ′min − Umax) ∨ (Vmin − U ′max)

≤ V ′min − Umax + Vmin − U ′max,

where equality (i) is true by the assumption that there is no noise and the assumption of
x∗ = 0. Therefore,

E[γ2] ≤ E
[
(V ′min − Umax) + (Vmin − U ′max)

]2
= E(V ′min − Umax)2︸ ︷︷ ︸

T1

+E(Vmin − U ′max)2︸ ︷︷ ︸
T2

+2E(V ′min − Umax)(Vmin − U ′max)︸ ︷︷ ︸
T3

. (188)

We consider the three terms T1, T2 and T3 separately. For the term T1, by Lemma 47 we
have

T1 = E[V ′min]2 + E[U2
max]− 2E[V ′minUmax]

= 2 · 2

(rn+ 1)(rn+ 2)
+ 2 · 1

(rn+ 1)2
≤ 6

r2n2
.

Likewise, for the term T2 we have

T2 ≤
6

(1− r)2n2
.

For the term T3, by Lemma 47 we have

T3 =
2

rn+ 1
· 2

(1− r)n+ 1
≤ 4

r(1− r)n2
.

Plugging the three terms back to (188), we have

E[γ2] ≤ 6

r2n2
+

6

(1− r)2n2
+

8

r(1− r)n2
=

c

n2
, (189)

for some constant c > 0.
Finally, plugging (187) and (189) back to (186), we have

1

2
E‖x̂(0)‖2 ≤

1

24n
+

c

4n2
,

completing the proof.

C.9 Proof of preliminaries

In this section, we present the proofs of the preliminary results presented in Appendix C.2.
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C.9.1 Proof of Proposition 14

To avoid clutter of notation, we first prove the case for Ω = [d]× [n], and then comment on
the general case of Ω ⊆ [d]× [n].

Now consider Ω = [d] × [n], where our estimator (15) reduces to (2). We separately
consider the cases of λ = 0 and λ ∈ (0,∞).

Case of λ = 0 The objective (2) becomes

min
x∈Rd

min
B∈Rd×n

B satisfies O

∥∥Y − x1T −B∥∥2

F
= min

W∈Rd×n
W∈{x1T+B|x∈Rd, B∈Rd×n, B satisfies O}

‖Y −W‖2F . (190)

It can be verified that the set {x1T +B | x ∈ Rd, B ∈ Rd×n, B satisfies O} is a closed convex
set. By the Projection Theorem (Bertsekas, 2009, Proposition 1.1.9), a unique minimizer
W0 to the RHS of (190) exists. Therefore, the set of minimizers to the LHS of (190) can be
written as {(x,W0 − x1T ) | x ∈ Rd}. The tie-breaking rule minimizes the Frobenius norm
‖B‖2F . That is, we solve

min
x∈Rd

∥∥W0 − x1T
∥∥2

F
. (191)

It can be verified that a unique solution to (191) exists, because the objective is quadratic
in x. Hence, the tie-breaking rule defines a unique solution (x,B).

Case of λ ∈ (0,∞) It can be verified that the objective (2) is strictly convex in (x,B).
Therefore, there exists at most one minimizer (Bertsekas, 2009, Proposition 3.1.1).

It remains to prove that there exists a minimizer. It is straightforward to see that the
objective is continuous in (x,B). We now prove that the objective is coercive on {(x,B) :
x ∈ Rd, B ∈ Rd×n, B satisfies O}. That is, for any constant M > 0, there exists a constant
RM > 0, such that the objective at (x,B) is greater than M for all (x,B) in the domain
{(x,B) : x ∈ Rd, B ∈ Rd×n, B satisfies O} with

‖x‖22 + ‖B‖2F > RM (192)

Given coercivity, invoking Weierstrass’ Theorem (Bertsekas, 2009, Proposition 3.2.1) com-
pletes the proof.

We set

RM = d

[(
1 +

1√
λ

)√
M + max

i∈[d],j∈[n]
Y

]2

+
1

λ
M. (193)

We discuss the following two cases depending on the value of ‖B‖2F .

Case of ‖B‖2F ≥
M
λ The second term of the objective (15) is lower-bounded as λ‖B‖2F ≥

M . Hence, the objective (2) is at least M .
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Case of ‖B‖2F <
M
λ : Combining (192) and (193), we have

‖x‖22 > RM − ‖B‖2F > d

[
(1 +

1√
λ

)
√
M + max

i∈[d],j∈[n]
yij

]2

.

Hence, there exists some i∗ ∈ [d] such that

|xi∗ | > (1 +
1√
λ

)
√
M + max

i∈[d],j∈[n]
yij . (194)

Consider the (i∗, j) entry in the matrix (Y − x1T −B) for any j ∈ [n]. We have∣∣(Y − x1T −B)i∗j
∣∣ ≥ |xi∗ | − |yi∗j | − |bi∗j |
≥ |xi∗ | − max

i∈[d],j∈[n]
yij − ‖B‖F

(i)
>

(
1 +

1√
λ

)√
M −

√
M

λ
=
√
M,

where (i) is true by (194) and the assumption of the case that ‖B‖2F < 1
λM . Hence, the

second term in the objective (2) is lower-bounded by∥∥Y − x1T −B∥∥2

F
≥
∣∣(Y − x1T −B)i∗j

∣∣2 > M,

and therefore the objective (2) is greater than M .
Combining the two cases depending on ‖B‖2F completes the proof of the coercivity of the

objective (2) in terms of (x,B). Invoking Weierstrass’ Theorem (Bertsekas, 2009, Proposi-
tion 3.2.1) completes the proof of Ω = [d]× [n].

Extending the proof to general Ω ⊆ [d] × [n]: For general Ω ⊆ [d] × [n], by a similar
argument the solution (x̂, {b̂ij}(i,j)∈Ω) exists and is unique. Note that the objective (15) is
independent from {bij}(i,j) 6∈Ω,so we have b̂ij = 0 for each (i, j) 6∈ Ω. Hence, a unique solution
(x̂, B̂) to (15) exists for general Ω.

C.9.2 Proof of Lemma 16

It is sufficient to prove the general version (19). First consider λ =∞. It can be verified that
the closed-form expression (3) for the solution at λ =∞ satisfies the claimed relation (19).

It remains to consider the case of λ ∈ [0,∞). Given the value of the solution B̂(λ), we
solve for x̂(λ) by minimizing the first term of the objective (2) as

min
x∈Rd
‖Y − x1T − B̂(λ)‖2F . (195)

Writing out all the terms in (195) and completing the square yields the claimed relation (19).

C.9.3 Proof of Lemma 17

It is sufficient to prove the general version (21). First consider the case of λ =∞. It can be
verified that the closed-form expression expressions (3) for the solution at λ = ∞ satisfies
the claimed relations (22).
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It remains to consider the case of λ ∈ [0,∞). First we prove (21a). Assume for contradic-
tion that

∑
(i,j)∈Ω b̂ij 6= 0. Consider the set of alternative solutions (x̂γ , B̂γ) parameterized

by some γ ∈ R as

x̂γ = x̂+ γ1d (196a)

B̂γ = B̂ − γ1d1Tn . (196b)

Note that the original solution (x̂, B̂) corresponds to γ = 0.
Since B̂γ in (196) is obtained by subtracting all entries in the matrix by a constant

γ, the bias term b̂γ satisfies the partial ordering O for any γ ∈ R. Moreover, since by
construction (196) the value of (x̂γ1d + b̂γ) is the same for all γ ∈ R, the first term in
the objective (2) is equal for all γ ∈ Rd. Now consider the second term ‖B̂γ‖2Ω. Writing
out the terms in ‖B̂γ‖2Ω and completing the square, we have ‖b̂γ‖2Ω is minimized at γ =
1
|Ω|
∑

(i,j)∈Ω b̂ij 6= 0. Contradiction to the assumption that the solution at γ = 0 minimizes
the objective, completing the proof of (21a).

Now we prove (21b). By (19) from Lemma 16 and summing over i ∈ [d], we have

∑
i∈[d]

nix̂i =
∑
i∈[d]

∑
jΩi

(yij − b̂ij) =
∑

(i,j)∈Ω

(yij − b̂ij)
(i)
=

∑
(i,j)∈Ω

yij ,

where equality (i) is true by (21a), completing the proof of (21b).

C.9.4 Proof of Proposition 18

First consider the case of λ = ∞, the claimed result can be verified using the closed-form
expressions (3) at λ = ∞. It remains to consider the case of any λ ∈ [0,∞). Assume for
contradiction that the solution at Y +∆x1T is not (x̂+∆x, B̂), but instead (x̂+∆x+u, B̂′)
for some non-zero u ∈ Rd. By the optimality of (x̂+ ∆x+ u, B̂′), we have

‖(Y + ∆x1T )− (x̂+ ∆x+ u)1T − B̂′‖2Ω + λ‖B̂′‖2Ω ≤ ‖(Y + ∆x1T )− (x̂+ ∆x)1T − B̂‖2Ω + λ‖B̂‖2Ω
(197)

‖Y − (x̂+ u)1T − B̂′‖2Ω + λ‖B̂′‖2Ω ≤ ‖Y − x̂1T − B̂‖2Ω + λ‖B̂‖2Ω. (198)

If strict inequality in (198) holds, then (x̂ + u, B̂′) attains a strictly smaller objective on
observations Y given (O, λ,Ω) than (x̂, B̂). Contradiction to the assumption that (x̂, B̂) is
optimal on the observations Y . Otherwise, equality holds in (198) and hence in (197). By
the tie-breaking rule of the equality (197) on the observations (Y + ∆x1T ), we have

‖B̂′‖2Ω < ‖B̂‖2Ω, (199)

Combining (199) with the equality of (198) yields a contradiction to the assumption that
(x̂, B̂) is optimal on the observations Y , and hence is chosen by the tie-breaking rule over
the alternative solution (x̂+ u, B̂′).
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C.9.5 Proof of Lemma 20

The proof relies on (21b) from Lemma 17. Assume without loss of generality that x∗ = 0.
We first show that on the RHS of (21b), we have that

∑
(i,j)∈Ωt yij converges to 0 for random

Ωt obtained by Algorithm 1.
Fix some constant ε1 > 0 whose value is determined later.
Part (b): For any fixed Ωt, by Hoeffding’s inequality, we have

lim
n→∞

P

∣∣∣∣∣∣ 1

|Ωt|
∑

(i,j)∈Ωt

yij

∣∣∣∣∣∣ < ε1

 = 1. (200a)

Part (a): Given the assumption that x∗ = 0 and the assumption that there is no noise,
we have Y = B. By (28b) from Lemma 28, we have

lim
n→∞

P

∣∣∣∣∣∣ 1

|Ωt|
∑

(i,j)∈Ωt

yij

∣∣∣∣∣∣ < ε1

 = 1. (200b)

The rest of the proof is the same for both parts. Denote the event in (200) as E. We
now condition on E and consider the LHS of (21b). By (7), the number of students in each
course i ∈ [d] is nt = 1

2n. Consider any λ ∈ [0,∞] ∈ Λε. By the definition of Λε we have
‖x̂(λ)‖2 ≥ ε. There exists some i∗ such that |x̂i∗ | ≥ ε√

d
. Assume without loss of generality

that x̂i∗ > ε√
d
. We now show that there exists some i′ such that x̂i′ ≤ 0. Assume for

contradiction that x̂i > 0 for all i ∈ [d]. Then by (21b), we have∑
(i,j)∈Ωt

yij = nt
∑
i∈[d]

x̂i ≥ ntx̂i∗ >
n

2

ε√
d
.

Therefore,

1

|Ωt|
∑

(i,j)∈Ω

yij =
2

dn

n

3

ε√
d

=
2ε

3d
3
2

.

Setting ε1 to be sufficiently small such that ε1 < 2ε

3d
3
2
yields a contradiction with E. Hence,

conditional on E, there exists some i∗2 such that x̂i∗2 ≤ 0. Therefore, maxi,i′∈[d](x̂i − x̂i′) ≥
x̂i∗ − x̂i∗2 >

ε√
d
. A similar argument applies to the case of x̂i∗ < − ε√

d
. Hence, we have

max
i,i′∈[d]

(x̂i − x̂i′) >
ε√
d
, ∀λ ∈ Λε

∣∣∣∣ E. (201)

Combining (201) with (200), we have

lim
n→∞

(
max
i,i′∈[d]

(x̂i − x̂i′), ∀λ ∈ Λε

)
≥ P(E) = 1,

completing the proof.
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C.9.6 Proof of Lemma 21

We follow the proof of Lemma 20, we assume x∗ = 0 without loss of generality. Then fix
some constant ε1 > 0, and estalish concentration inequalities on the RHS of (21b).

Part (b): Same as (200b) from Lemma 20, we have

lim
n→∞

P

∣∣∣∣∣∣ 1

|Ωt|
∑

(i,j)∈Ωt

yij

∣∣∣∣∣∣ < ε1

 = 1. (202a)

Part (a): By Hoeffding’s inequality, we have

lim
n→∞

P

 1

dn

∣∣∣∣∣∣
∑

i∈[d],j∈[n]

yij

∣∣∣∣∣∣ < ε1

 = 1. (202b)

The rest of the proof is the same for both parts. Combining (202) with (21b), we have

lim
n→∞

P

∣∣∣∣∣∣1d
∑
i∈[d]

x̂i

∣∣∣∣∣∣ < ε1

 = 1. (203)

Fix any value ε > 0. Denote E as the event that the events in both (23) and (203) hold. By
a union bound of (23) and (203), we have

lim
n→∞

(E) = 1. (204)

Condition on E and consider the value of x̂(λ)
1 . First consider the case of x̂1 > ε, then by (23)

we have x̂i > 0 for each i ∈ [d]. Then

1

d

∣∣∣∣∣∣
∑
i∈[d]

x̂i

∣∣∣∣∣∣ =
1

d

∑
i∈[d]

x̂i >
ε

d

∣∣∣∣∣∣ x̂1 > ε,E

A similar argument applies to the case of e x̂1 < −ε, and we have

1

d

∣∣∣∣∣∣
∑
i∈[d]

x̂i

∣∣∣∣∣∣ > ε

d

∣∣∣∣∣∣ |x̂1| > ε,E

The same argument applies to each i ∈ [d]. We have

1

d

∣∣∣∣∣∣
∑
i∈[d]

x̂i

∣∣∣∣∣∣ > ε

d

∣∣∣∣∣∣ ‖x̂‖∞ > ε,E

Taking a sufficiently small ε1 such that ε1 < ε
d in (203) yields a contradiction. Hence, we

have

lim
n→∞

P(‖x̂‖∞ > ε,E) = 0. (205)

Hence,

lim
n→∞

P
(
‖x̂‖2 >

√
dε
)
≤ lim

n→∞
P (‖x̂‖∞ > ε)

(i)
= lim

n→∞

(
‖x̂‖∞ > ε,E

)
≤ lim

n→∞
P(E)

(ii)
= 0,

where inequality (i) is true by (205) and (ii) is true by (204), completing the proof.
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C.9.7 Proof of Proposition 22

Without loss of generality we assume x∗ = 0. By (22b) from Lemma 17 with the assumption
that d = 2, we have 1

2(x̂1 + x̂2) = y, and hence without loss of generality we parameterize x̂
with some γ ∈ R as

x̂γ = y +

[
−1
1

]
· γ

2
(206)

It remains to determine the value of γ.
Given x∗ = 0 and the assumption that there is no noise, we have Y = B. By the

assumption (A2) on the bias, we have B obeys the ordering constraints O. Hence, setting
(x̂, B̂) = (0, B) gives an objective of 0 in (2). Hence, at the optimal solution (x̂γ , B̂γ), the
objective (2) equals 0. At the optimal solution, we have

B̂γ = Y − x̂γ1T . (207)

The rest of the proof consists of two steps in determining the value of γ. First, we find
the set of γ such that B̂γ satisfies the ordering constraint O. Then we find the optimal γ
from this set that is chosen by tie-breaking, minimizing ‖B̂γ‖2F .

Step 1: Finding the set of γ that satisfies the ordering constraint Given Y = B,
for any γR we have that B̂γ satisfies all ordering constraints in O that are within the same
course, that is, the ordering constraints in the form of ((i, j), (i, j′)) ∈ O with i ∈ {1, 2}.
Hence, we only need to consider ordering constraints involving both courses, that is, the
ordering constraints in the form of ((i, j), (i′, j′)) with {i, i′} = {1, 2}. It can be verified that
these constraints involving both courses are satisfied if and only if{

y11,max − x̂1 ≤ y22,min − x̂2

y21,max − x̂2 ≤ y12,min − x̂1.
(208)

Plugging the parameterization (206) of x̂γ into (208), we have

y21,max − y12,min ≤ γ ≤ y22,min − y11,max. (209)

Note that the range in (209) is always non-empty, because given Y = B, we have
y11,max ≤ y12,min and y21,max ≤ y22,min and hence y21,max − y12,min ≤ y22,min − y11,max.

Step 2: Finding the optimal γ from the range (209) minimizing ‖B̂γ‖2F Using the
parameterizations (206) and (207), we write ‖B̂γ‖2F as

‖B̂γ‖2F = ‖Y − x̂γ1T ‖2F
(i)
=
∑
j∈[n]

(
y1j − y +

γ

2

)2
+
∑
j∈[n]

(
y2j − y −

γ

2

)2
. (210)

Writing out the terms in (210) and completing the square, we have that minimizing
‖b̂γ‖2F is equivalent to minimizing the term:

n

2
(γ − (y2 − y1))2 (211)

Combining (209) and (211) gives the yields expression (24) for the optimal γ.
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C.9.8 Proof of Lemma 23

The lemma is a direct consequence of the following result (given that almost-sure convergence
implying convergence in probability).

Lemma 48 (Theorem 2 in Deheuvels, 1985). Let X1, . . . , Xn be i.i.d. N (0, 1). We have

lim sup
n→∞

√
2 log n

log logn
Mn = 1 almost surely,

where log is the logarithm of base 2.

C.9.9 Proof of Lemma 24

Let g be the p.d.f. of N (0, 1). Let Gn be the empirical c.d.f. and the empirical inverse c.d.f.
of n i.i.d. samples from N (0, 1) and let G−1

n be the inverse of Gn.
The claim is a straightforward combination of the following two lemmas. The first lemma

states that the empirical inverse c.d.f. converges to the true inverse c.d.f. The second lemma
states that order statistics converges to the empirical inverse c.d.f.

Lemma 49 (Example 3.9.21 of van der Vaart and Wellner, 1996; Corollary 21.5 of van der
Vaart, 1998). Consider any fixed p ∈ (0, 1). Assume that G is differentiable at G−1(p) and
g(G−1(p)) > 0. Then we have

√
n
[
G−1
n (p)−G−1(p)

] d−→ N

(
0,

p(1− p)
g2(G−1(p))

)
.

Lemma 50 (Lemma 21.7 in van der Vaart, 1998). Fix constant p ∈ (0, 1). Let {kn}∞n=1 be
a sequence of integers such that kn

n = p+ c√
n

+ o
(

1√
n

)
for some constant c. Then

√
n
[
X(kn:n) −G−1

n (p)
]
P−→ c

g(G−1(p))

C.9.10 Proof of Lemma 26

We consider any fixed i ∈ [d], k ∈ [r], and any fixed total ordering π0 generated by Line 2
of Algorithm 1. Note that the `ik elements in Gik are consecutive with respect to the sub-
ordering of π0 restricted to course i in Line 4 of Algorithm 1. Then it can be verified from
Line 5-7 of Algorithm 1 that

`ik
2
− 1 ≤ `vik ≤

`ik
2

+ 1, (212)

It can be verified that (212) along with the assumption that `ik ≥ 4 yields (26a). Sum-
ming (26a) over i ∈ [d] yields (27a). Finally, replacing the validation set Ωv by the training
set Ωt in the proof of (26a) and (27a) yields (26b) and (27b), respectively.
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C.9.11 Proof of Lemma 27

We prove part (a) and part (b) together. Note that if the element of rank k1 and the element
of rank k2 are adjacent within Ωt, or adjacent between Ωt and Ωv, the (k2−k1−1) elements
of ranks from k1 + 1 through k2 − 1 are within the same set (i.e., Ωt or Ωv). Assume for
contradiction that k2− k1 ≥ 2d+ 2. Then the number of elements from rank k1 + 1 through
k2−1 is at least k2−k1−1 ≥ 2d+1. Consider these elements. There exists a course i∗ such
that the number of such elements within this course is at least 3. Given that these elements
have consecutive ranks, they are consecutive within course i∗. Hence, two of these elements
in course i∗ appear as the same pair of elements in Line 7 of Algorithm 1. According to
Line 7 of Algorithm 1, one element in this pair is assigned to Ωt and the other element is
assigned to Ωv. Contradiction to the assumption that all of these elements are from the
same set.

C.9.12 Proof of Lemma 28

Proof of (28a): We consider any course i ∈ [d]. We first fix any value of B = B∗. Fix any
π0 of the dn elements (in Line 2 of Algorithm 1). Recall from Line 4 of Algorithm 1 that the
sub-ordering of the n elements in course i according to π0 is denoted as (i, j(1)), . . . , (i, j(n)).

Consider each pair (i, j(2t−1)) and (i, j(2t)) for t ∈
[
n
2

]
. Algorithm 1 randomly assigns

one of the two elements to the training set Ωt uniformly at random. Denote Ut as the the
value from this pair that is assigned to training set. Then we have

Ut =

{
b∗
i,j(2t−1) with probability 0.5

b∗
i,j(2t)

with probability 0.5.

Denote ∆B := maxj∈[n] bij−minj∈[n] bij and denote ∆B∗ = maxj∈[n] b
∗
ij−minj∈[n] b

∗
ij . Recall

from (7) that nt = n
2 . Fix any δ > 0. By Hoeffding’s inequality, there exists n1 such that

for all n ≥ n1,

P


∣∣∣∣∣∣∣

1

nt

∑
t∈[n2 ]

Ut −
1

nt
E[Ut]

∣∣∣∣∣∣∣ < ∆B∗

√
log n

n

∣∣∣∣∣∣∣ B = B∗

 ≥ 1− δ

2
.

Equivalently, for all n ≥ n1,

lim
n→∞

P

∣∣∣∣∣∣ 1

nt

∑
j∈Ωt

i

bij −
1

n

∑
j∈[n]

bij

∣∣∣∣∣∣ < ∆B∗

√
log n

n

∣∣∣∣∣∣ B = B∗

 ≥ 1− δ

2
. (213)

Now we analyze the term ∆B. By Lemma 25, we have that there exists n2 such that for all
n ≥ n2,

P
(

∆B ≤ 4
√

log n
)
≥ 1− δ

2
. (214)
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Fix any ε > 0. Take n0 to be sufficiently large such that n0 ≥ max{n1, n2} and 4 logn0√
n0

< ε.
We have that for all n ≥ n0,

P

∣∣∣∣∣∣ 1

nt

∑
j∈Ωt

i

bij −
1

n

∑
j∈[n]

bij

∣∣∣∣∣∣ < ε

 =

∫
B∗∈Rd×n

P

∣∣∣∣∣∣ 1

nt

∑
j∈Ωt

i

bij −
1

n

∑
j∈[n]

bij

∣∣∣∣∣∣ < ε

∣∣∣∣∣∣ B∗
 · P(B∗) dB∗

≥
∫

B∗∈Rd×n:
∆B∗≤4

√
logn

P

∣∣∣∣∣∣ 1

nt

∑
j:(i,j)∈Ωt

bij −
1

n

∑
j∈[n]

bij

∣∣∣∣∣∣ < ε

∣∣∣∣∣∣ B
 · P(B∗) dB∗

(i)
≥
(

1− δ

2

)
· P
(

∆B ≤ 4
√

log n
)

(ii)
≥
(

1− δ

2

)2

≥ 1− δ,

where inequality (i) is true by (213) and inequality (ii) is true by (214), completing the
proof.

Proof of (28b): By Hoeffding’s inequality, we have that for any ε > 0,

lim
n→∞

P

 1

dn

∣∣∣∣∣∣
∑

i∈[d],j∈[n]

bij

∣∣∣∣∣∣ < ε

 = 1. (215)

Recall from assumption (A3) that d is assumed to be a constant. Taking a union bound
of (28a) over i ∈ [d] and (215), folloed by using the triangle inequality yields the claimed
result.

C.10 Proof of auxiliary results for Theorem 5

In this section, we present the proofs of the auxiliary results for Theorem 5.

C.10.1 Proof of Lemma 29

Fix any c > 0 and fix any (i, i′) ∈ Sc. Suppose k ∈ [r] satisfies the definition (30) corre-
sponding to (i, i′). We prove that for any ε > 0 and δ > 0, there exists some n0 such that
for all n ≥ n0,

P
(
x̂

(0)
i′ − x̂

(0)
i < ε

)
≥ 1− δ.

The proof consists of two steps. In the first step, we consider the rank of the maximum bias
in course i of group k (that is, max(i,j)∈Gik tij), and the rank of the minimum bias in course
i′ of group (k + 1) (that is, min(i,j)∈Gi′k+1

tij). We bound the difference between these two
ranks, and then bound the difference between the values of these two terms. In the second
step, we show that the ordering constraint imposed by this pair of bias terms leads to the
claimed bound (31) on x̂(0)

i′ − x̂
(0)
i .
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Step 1: Bounding the difference of a pair of bias terms Recall from (13) that bk,max

denotes the largest bias of group k, and bk+1,min denotes the smallest bias of group k + 1.
We denote the rank of bk,max as t. By the definition of group ordering, the value of t is
deterministic and we have t =

∑k
k′=1 `k′ . Then the rank of bk+1,min is (t+ 1).

Recall that bik,max denotes the largest bias in course i of group k, and bik,min denotes the
smallest bias in course i of group k. Let Tk be a random variable denoting the difference
between the ranks of bk,max and bik,max, and let Tk+1 be a random variable denoting the
difference between the ranks of bk+1,min and bi,k+1,min. Equivalently, the ranks of bik,max

and bi+1,k+1,min are (t− Tk) and (t+ 1 + Tk+1), respectively, and we have Tk, Tk+1 ≥ 0.
Recall that the biases within a group are ordered uniformly at random among all courses.

For any constant integer t0 > 0, if we have Tk ≥ t0, then the bias terms corresponding to
ranks of (t−t0 +1), . . . , t are not assigned to course i. Recall that `−i,k = `k−`ik denotes the
number of observations in group k that are not in course i. We bound the random variable
Tk as

P(Tk ≥ t0) =

t0−1∏
m=0

`−i,k −m
`k −m

<

(
`−i,k
`k

)t0 (i)
≤ (1− c)t0 , (216)

where step (i) is true by the definition (30) of Sc. Similarly we have

P(Tk+1 ≥ t0) ≤ (1− c)t0 . (217)

Taking t0 =
log( 4

δ
)

log(1−c) and taking a union bound of (216) and (217), we have

P
(
Tk + Tk+1 < 2t0

)
≥ P

(
Tk < t0, Tk+1 < t0

)
≥ 1− 2(1− c)t0 = 1− δ

2
. (218)

By Lemma 23, there exists n0 such that for all n ≥ n0, we have

P
(
M <

ε

2t0 + 1

)
> 1− δ

2
, (219)

where M is the maximum difference between a pair of bias terms of adjacent ranks, defined
as M := maxi∈[dn−1] b

(i+1) − b(i). Taking a union bound of (219) with (218), we have that
for all n ≥ n0

bi′,k+1,min − bik,max < [(t+ 1 + Tk+1)− (t− Tk) + 1] ·M
≤ (2t0 + 1)M < ε, with probability at least 1− δ. (220)

Due to the assumption of no noise and the assumption of x∗ = 0, the observation
model (1) reduces to Y = B. In particular, we have yik,max = bik,max and yi′,k+1,min =

bi′,k+1,min. Moreover, the solution (x̂, B̂) = (0, B) gives an objective (2) of 0 at λ = 0 due
to Y = B. Therefore the solution (x̂(0), B̂(0)) by our estimator gives an objective of 0,
satisfying the deterministic relation yij = x̂

(0)
i + b̂

(0)
ij . By definition of the group ordering,

the group ordering includes the constraint requiring b̂(0)
ik,max ≤ b̂

(0)
i′,k+1,min. Therefore, this
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ordering constraint requires the solution (x̂(0), B̂(0)) to satisfy

b̂
(0)
i′,k+1,min − b̂

(0)
ik,max = (yi′,k+1,min − x̂

(0)
i′ )− (yik,max − x̂

(0)
i )

= (bi′,k+1,min − x̂
(0)
i′ )− (bik,max − x̂

(0)
i ) ≥ 0 (221)

Rearranging (221)and combining it with (220), we have that for all n ≥ n0,

P
(
x̂

(0)
i′ − x̂

(0)
i ≤ bi′,k+1,min − bik,max<ε

)
≥ 1− δ,

completing the proof.

C.10.2 Proof of Lemma 31

First of all, we assume that L ≤ d without loss of generality. This is because if L >
d, then there exists a course i that appears twice in this cycle. We write the cycle as
(i1, . . . , i, . . . , i

′, . . . , i, . . . , iL), where i′ ∈ [d] denotes some course appearing in between the
two occurrences of i. We obtain a shortened cycle by replacing the segment (i, . . . , i′, . . . i)
with a single i. By shortening the cycle the set of courses that appear in this cycle remain
the same. We keep shortening the cycle until L ≤ d.

Fix any ε > 0 and δ > 0. Recall from assumption (A3) that d is assumed to be a
constant. By applying Lemma 29 on the L pairs in (32) of Sc, and taking a union bound
over these L pairs, we have that there exists n0 such that for all n ≥ n0, with probability
at least 1− δ we simultaneously have

x̂m2 − x̂m1 <
ε

d
,

x̂m3 − x̂m2 <
ε

d
,

...

x̂mL − x̂mL−1 <
ε

d
,

x̂m1 − x̂mL <
ε

d
.

(222)

Consider any m < m′ with m,m′ ∈ [L]. Conditional on (222) we have

x̂im′ − x̂im = (x̂im′ − x̂im′−1
) + . . .+ (x̂im+1 − x̂im) < ε. (223)

On the other hand, conditional on (222) we also have

x̂im − x̂im′ = (x̂im − x̂im−1) + . . .+ (x̂i2 − x̂i1) + (x̂i1 − x̂iL) + . . .+ (x̂im′+1
− x̂im′ ) < ε

(224)

Combining (223) and (224), we have that for all n ≥ n0,

P
(∣∣x̂im′ − x̂im∣∣ < ε, ∀m,m′ ∈ [L]

)
≥ 1− δ.

Equivalently,

lim
n→∞

P
(

max
m,m′∈[L]

|x̂i′ − x̂i| < ε

)
= 1,

completing the proof.

98



Debiasing Evaluations Biased by Evaluations

C.10.3 Proof of Lemma 32

The proof consists of two steps. We first show that if there exists a cycle including the nodes
i, i′ ∈ V , then this cycle can be modified to construct a cycle of length at most 2(d − 1)
including i and i′. In the second step, we prove the existence of a cycle.

Constructing a cycle of length at most 2(d− 1) given a cycle of arbitrary length
Fix any hypernode V and any i, i′ ∈ V . We assume that there exists a cycle including the
nodes i and i′. By the definition of a cycle, this cycle includes a directed path i→ i′ and a
directed path i′ → i. If the directed path i→ i′ has length greater than (d− 1), then there
exists some course i′′ ∈ [d] (which may or may not equal to i or i′) that appears at least
twice in this cycle. Then we decompose the path into three sub-paths of i → i′′, i′′ → i′′,
and i′′ → i′. We remove the sub-path i′′ → i′′, and concatenate the subpaths i → i′′ and
i′′ → i′, giving a new path i → i′ of strictly smaller length than the original path. We
continue shortening the path until each course appears at most once in the path, and hence
the path is of length at most (d− 1). Likewise we shorten the path i′ → i to have length at
most (d− 1). Finally, combining these two paths i→ i′ and i′ → i gives a cycle of length at
most 2(d− 1), including nodes i and i′.

Existence of a cycle of arbitrary length We prove the existence of a cycle including
i and i′ by induction on the procedure that constructs the partition. At initialization,
each hypernode contains a single course. The claim is trivially satisfied because for any
hypernode V there do not exist i, i′ ∈ V with i 6= i′. Now consider any merge step that
merges hypernodes V1, . . . , VL for some L ≥ 2 during the construction of the partition. By
definition, the merge occurs because there is a cycle that includes at least one course from
each of the hypernodes V1, . . . , VL. We denote the course from Vm that is included the cycle
as im ∈ Vm for each m ∈ [L]. If there exist multiple courses from Vm included in the cycle,
we arbitrarily choose one as im). Denote the merged hypernode as V = V1 ∪ . . . ∪ VL. Now
consider any two courses i and i′ from the same hypernode.

First consider the case of i and i′ are from a hypernode that is not V , then by the
induction hypothesis there is a cycle including both i and i′.

Now consider the case of i, i′ ∈ V . We have that i ∈ Vm and i′ ∈ Vm′ for somem,m′ ∈ [L].
If m = m′, then by the induction hypothesis there is a cycle that includes both m and m′.
If m 6= m′, then by the induction hypothesis, there is a directed path i → im within Vm
(trivially if i = im), and a directed path im′ → i′ within Vm′ (trivially if i′ = im′). Moreover,
by the definition of im and im′ , we have that im and im′ are included in a cycle. Hence, there
exists a directed path im → im′ . Concatenating the paths i → im, im → im′ and im′ → i′

gives a path i→ i′. Likewise there exists a path i′ → i. Hence, for any i, i′ ∈ V , there exists
a cycle that includes both i and i′.

C.10.4 Proof of Lemma 33

The proof consists of four steps. The first step gives a preliminary property on the graph,
to be used in the later steps. The second step shows that each hypernode contains courses
that are consecutive. The third step shows that the ranks of elements in each hypernode
are consecutive. The fourth step shows that the edges only exist between hypernodes that
are adjacent in their indexing.
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Step 1: There exists a path from any course i to any course i′ with i < i′ Denote
the minimal rank in course i and in course i′ as t and t′, respectivly. By the assumption (44),
we have t < t′. We consider the courses corresponding to the elements of ranks t through t′,
denoted as (it, . . . , it′). For any integer k ∈ {t, . . . , t′−1} if ik 6= ik+1, then by the definition
of Sc from (30) we have (ik, ik+1) ∈ S1 because these two elements have consecutive ranks.
Hence, there is an edge ik → ik+1 by the construction of the graph. Concatenating all such
edges {ik → ik+1}k∈{t,...,t′−1}:ik 6=ik+1} gives a path i→ i′.

Step 2: Each hypernode contains consecutive nodes We prove that the nodes within
each hypernode are consecutive. That is, for each hypernode V , there exist courses i, i′ ∈ [d]
with i < i′ such that V = {i, i + 1, . . . , i′}. It suffices to consider any course i′′ such that
i < i′′ < i′ and show that i′′ ∈ V . Assume for contradiction that i′′ 6∈ V . By Step 1, there
exists a path i → i′′ and also a path i′′ → i′. Since i, i′ ∈ V , by Lemma 32 there exists
a path i′ → i. Hence, by concatenating these three paths i → i′′, i′′ → i′ and i′ → i, we
have a cycle that includes courses i, i′′ and i′ that are involved in two different hypernodes.
Contradiction to the definition of the partition that there are no cycles including nodes from
more than one hypernode in the final partition, completing the proof that each hypernode
contains consecutive nodes. Hence, we order the hypernodes as V1, . . . Vs, such that the
indexing of the nodes increases with respect to the indexing of the hypernodes.

Step 3: The ranks in each hypernode are consecutive We show that the ranks of
the elements within each hypernode are consecutive, and also in the increasing order of the
indexing of the hypernodes. Assume for contradiction that there exists some element of
rank t′ in Vm′ , and some element of rank t in Vm with m < m′ and t > t′. Denote the
corresponding courses as i ∈ Vm and i′ ∈ Vm′ . On the one hand, by Step 2 we have i < i′

due to m < m′. Then by Step 1, we have a path i→ i′. On the other hand, we consider the
elements of ranks {t′, . . . , t} and construct a path i′ → i similar to the construction of the
path in Step 1. Concatenating the paths i→ i′ and i′ → i gives a cycle that include courses
i ∈ Vm and i′ ∈ Vm′ that from two different hypernodes. Contradiction to the definition of
the partition that there does not exist cycles including more than one hypernode.

Step 4: The only edges on the hypernodes are (Vm, Vm+1) for all m ∈ [s− 1] For
total orderings, the edges exist between elements of adjacent ranks. That is, consider the
elements of ranks t and t+ 1 for any t ∈ [dn− 1]. If their corresponding courses it and it+1

are different, then there exists an edge it → it+1. Then Step 4 is a direct consequence of
Step 3.

C.11 Proof of auxiliary results for Theorem 9

In this section, we present the proofs of the auxiliary results for Theorem 9.

C.11.1 Proof of Theorem 34

The proof closely follows part (a) and part (c) of Theorem 5 (see Appendix C.3). Therefore,
we outline the modifications to the proof of Theorem 5, in order to extend to any Ωt ⊆ [d]×[n]
obtained by Algorithm 1.
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Proof Theorem 34(a) The proof closely follows the proof of Theorem 5(a) (see Ap-
pendix C.3.1) with the modifications discussed in what follows.

Extending Sc to St
c Recall from (9) that `tik denotes the number of students in course

i ∈ [d] of group k ∈ [r] restricted to the training set Ωt, and `tk denotes the number of
students in group k restricted to the training set Ωt. We extend the definition (30) of Sc
and define

St
c :=

{
(i, i′) ∈ [d]2 : ∃k ∈ [r] such that

`tik
`tk
,
`ti′k+1

`tk+1

≥ c

}
.

Extending Lemma 29 to St
c restricted to the training set Ωt We show that Lemma 29

holds for any (i, i′) ∈ St
c, and the estimator (15) x̂(0) restricted to Ωt.

Denote btik,max as the largest bias in course i of group k restricted to the training set
Ωt, and denote btk,max as the largest bias of group k restricted to the training set Ωt. We
extend (216) to show that the difference between the ranks of btik,max and btk,max is bounded
by some constant with high probability.

Moreover, it can be verified that the difference between the ranks of btk,max and bk,max is
bounded by a constant with high probability. Combining these two bounds, the difference
between the ranks of btik,max and bk,max is bounded by a constant with high probability.
We define bti′k+1,min and bk+1,min likewise, and extend (217) to show that the difference
between the ranks of bti′k+1,min and bk+1,min is bounded by a constant with high probability.
Therefore, we extend 220 to:

bti′k+1,min − btik,max < ε, with probability at least 1− δ.

Following the rest of the original arguments for Lemma 29 (see Appendix C.10) completes
the extension of Lemma 29 to being restricted to Ωt.

Extending Lemma 31 to St
c restricted to Ωt We replace the set Sc in Lemma 31 by

the set St
c. It can be verified that Lemma 31 holds under this extension following its original

proof (see Appendix C.10).

Extending the rest of the arguments For any i ∈ [d], k ∈ [r], by (26b) and (27b) from
Lemma 26 we have

`tik
`tk
≥

`ik
4

3`k
4

=
`ik
3`k

.

Hence, any (i, i′) ∈ S cf
d
, we have (i, i′) ∈ St

cf
3d

. The rest of the arguments follow from the

original proof of Theorem 5(a) (see Appendix C.3.1).

Proof of Theorem 34(b) The proof closely follows the proof of Theorem 5(c) (see Ap-
pendix C.3.3) with the modifications discussed in what follows.
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Extending Sc to St′
c Recall that for total orderings, we have (i, i′) ∈ S1 if and only if

there exists some k ∈ [dn− 1] such that course i contains the element of rank k, and course
i′ contains the element of rank (k + 1). We define the following set St′ , where we consider
the rank with respect to the total ordering restricted to the elements in Ωt. That is, we
extend the definition (30) of Sc and define

St′ :=


(i, i′) ∈ [d]2 : ∃1 ≤ k < k′ ≤ |Ωt|

such that the element of rank k is in Ωt
i ,

the element of rank k′ is in Ωt
i+1,

the elements of ranks (k + 1) through (k′ − 1) are in Ωv

 .

(225)

Extending Lemma 29 By Lemma 27(a) we have that for any (i, i′) ∈ St′ , the corre-
sponding values of k and k′ in (225) satisfy k′ − k ≤ 2d+ 1. We define M ′ as the maximal
difference between elements that are adjacent within Ωt. Then by Lemma 23 we extend the
bound of M in (219) to M ′ as

P
(
M ′ < ε

)
> 1− δ

2
.

Following the rest of the arguments in Appendix C.10.1, we have that Lemma 29 holds
restricted to the training set Ωt.

Extending Lemma 31 to St
c restricted to Ωt We replace the set Sc in Lemma 31 by

the set St′ . It can be verified that Lemma 31 holds under this extension following its original
proof (see Appendix C.10).

Extending the rest of the arguments The rest of the arguments follow from the original
proof of Theorem 5(c) (see Appendix C.3.3). Specifically, we replace the set S1 by St′ . We
consider the total ordering restricted to the training set Ωt. We extend the definition (60)
of (̂bL, b̂H) to (̂b′L, b̂

′
H) defined as:

b̂′L :=
1∑

i∈VL
|Ωt
i|
∑
i∈VL

∑
j∈Ωt

i

b̂ij

b̂′H :=
1∑

i∈VH
|Ωt
i|
∑
i∈VH

∑
j∈Ωt

i

b̂ij .

C.11.2 Proof of Lemma 35

We fix any partial ordering O that satisfies the all cf -fraction assumption, and fix any
training-validation split (Ωt,Ωv) obtained by Algorithm 1. Recall that T denotes the set of
all total orderings that are consistent with the partial ordering O. Recall from Line 15 of
Algorithm 1 that the interpolated bias is computed as:

B̃(λ) =
1

|T |
∑
π∈T

B̃(λ)
π , (226)
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where recall from Line 13 of Algorithm 1 that [B̃
(λ)
π ]ij for any (i, j) ∈ Ωv is computed as

the mean value of B̂ on the nearest-neighbor(s) of (i, j) with respect to the total ordering
π. Recall that NN(i, j;π) denotes the set (of size 1 or 2) of the nearest neighbor(s) of (i, j).
We have

[B̃(λ)
π ]ij =

1

|NN(i, j;π)|
∑

(iπ ,jπ)∈NN

B̂
(λ)
iπjπ . (227)

Plugging (227) to (226), we have

B̃
(λ)
ij =

1

|T |
∑
π∈T

1

|NN(i, j;π)|
∑

(iπ ,jπ)∈NN

B̂
(λ)
iπjπ .

The remaining of the proof is outlined as follows. We decompose the summation over π ∈ T
on the RHS of (226) into two parts: total orderings π ∈ T where the set of nearest-neighbors
NN(i, j;π) is within group k, and total orderings π ∈ T where at least one nearest-neighbor
in NN is outside group k. We show b̃k = b̂tk in the first case, and then show that the second
case happens with low probability.

We consider any group k ∈ [r], and any element in the validation set of group k, that is,
(i, j) ∈ Gv

k. Let Tin ⊆ T denote the subset of total orderings where the nearest-neighbor set
NN(i, j;π) is contained within group k:

Tin := {π ∈ T : NN(i, j;π) ⊆ Gt
k}.

Let Tout := T \ Tin denote the subset of total orderings where at least one nearest-neighbor
from NN(i, j;π) is from outside group k. It can be verified by symmetry that the value
of B̃(λ)

ij is identical for all (i, j) ∈ Gv
k. Recall that we denote this value as b̃k := B̃

(λ)
ij for

(i, j) ∈ Gv
k.

Case of π ∈ Tin: By the definition of Tin, we have NN(i, j;π) ⊆ Gt
k. By symmetry, it can

be verified that the mean of the nearest-neighbor set of the element (i, j) over Tin is simply
the mean of all training elements in Gt

k. That is,

1

|Tin|
∑
π∈Tin

[B̃(λ)
π ]ij =

1∣∣Gt
k

∣∣ ∑
(i′,j′)∈Gt

k

b̂
(λ)
i′j′

(i)
= b̂tk, (228)

where step (i) is true by the definition of b̂tk.

Case of π ∈ Tout: We bound the size of Tout. If a nearest-neighbor of the element (i, j)
is outside group k, then this nearest-neighbor can only come from group (k − 1) or (k + 1).
First consider the case where a nearest-neighbor is from group (k − 1). Assume that the
element (i, j) is ranked t ∈ [`k] within the set Gk of all elements from group k with respect
to π. A nearest-neighbor is from group (k − 1), only if all elements ranked 1 through t− 1
are all in the validation set (otherwise there is some training element whose rank is between
1 and (t−1) within group k, and this element is closer to (i, j) than any element from group
(k − 1), giving a contradiction). Out of the total orderings in T where (i, j) is ranked t
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within group k, the fraction of total orderings that the elements ranked 1 through (t − 1)
within group k are all in the validation set Ωv is:

t−1∏
i=1

`vk − i
`k − i

≤
(
`vk
`k

)t−1 (i)
<

(
3

4

)t
,

where (i) is true due to (27a) from Lemma 26. By symmetry, the fraction of π ∈ T such
that (i, j) is placed in each position t ∈ [`k] is 1

`k
. Therefore, the fraction of total orderings

that a nearest-neighbor is from group (k − 1) is upper-bounded by:

1

`k

`k∑
t=1

(
3

4

)t
≤ 3

`k

(i)
<

3

dcfn
,

where inequality (i) holds because `k =
∑

i∈[d] `ik > dcfn due to the all cf -fraction assump-
tion. By the same argument, the fraction of total orderings that at least one nearest-neighbor
is from group (k + 1) is also upper-bounded by 3

dcfn
. Hence, we have

|Tout|
|T |

<
6

dcfn
. (229)

For any (i, j) ∈ Gv
k, we have

b̃k =
1

|T |

∑
π∈Tin

[B̃(λ)
π ]ij +

∑
π∈Tout

[B̃(λ)
π ]ij

 (i)
=

1

|T |

(
|Tin| · b̂tk +

∑
π∈Tout

[B̃(λ)
π ]ij

)
,

where equality (i) is true by plugging in (228). Hence, we have

∣∣∣̃bk − b̂tk∣∣∣ =
1

|T |

∣∣∣∣∣ ∑
π∈Tout

[B̃(λ)
π ]ij − b̂tk

∣∣∣∣∣
≤ 1

|T |
∑
π∈Tout

(∣∣∣[B̃(λ)
π ]ij

∣∣∣+
∣∣∣̂btk∣∣∣)

(i)
≤ 2|Tout|
|T |

max
i∈[d],j∈[n]

∣∣∣̂bij∣∣∣ (ii)≤ 12

cfdn
· max
i∈[d],j∈[n]

∣∣∣̂bij∣∣∣,
where inequality (i) is true because [B̃

(λ)
π ]ij and b̂tk are both the mean of B̂ on a subset of

its elements, so we have
∣∣∣[B̃(λ)

π ]ij

∣∣∣ ≤ maxi∈[d],j∈[n]

∣∣∣̂bij∣∣∣ and ∣∣∣̂btk∣∣∣ ≤ maxi∈[d],j∈[n]

∣∣∣̂bij∣∣∣. Then
step (ii) is true by plugging in (229). This completes the proof.

C.11.3 Proof of Corollary 36

Fix any ε > 0. By the consistency of B̂(0) from (69), we have

lim
n→∞

P
(∣∣∣B̂(0)

ij −Bij
∣∣∣ < ε

2
, ∀(i, j) ∈ Ωt

)
= 1. (230)
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Since b̂tk and btk are simply the mean of B̂ and B over Gt
k ⊆ Ωt. We have

lim
n→∞

P
(∣∣∣̂btk − btk∣∣∣ < ε

2
, ∀k ∈ [r]

)
= 1. (231)

For each k ∈ [r], we have∣∣∣̃bk − btk∣∣∣ ≤ ∣∣∣̃bk − b̂tk∣∣∣+
∣∣∣̂btk − btk∣∣∣

(i)
≤ 12

cfdn
· max
i∈[d],j∈[n]

∣∣∣̂bij∣∣∣+
∣∣∣̂btk − btk∣∣∣

≤ 12

cfdn

(
max

i∈[d],j∈[n]
|bij |+ max

i∈[d],j∈[n]

∣∣∣bij − b̂ij∣∣∣)+
∣∣∣̂btk − btk∣∣∣, (232)

where (i) is true by combining Lemma 35. In (232), we bound the term maxi∈[d],j∈[n]|bij | by
Lemma 25 as

lim
n→∞

P
(

max
i∈[d],j∈[n]

|bij | < 2
√

log dn

)
= 1. (233)

We bound the term maxi∈[d],j∈[n]

∣∣∣bij − b̂ij∣∣∣ by (230), and the term
∣∣∣̂btk − btk∣∣∣ by (231). Hence,

plugging (233), (230) and (231) into (232), we have

lim
n→∞

P
(∣∣∣̃bk − btk∣∣∣ ≤ 12

cfdn

(
2
√

log dn+
ε

2

)
+
ε

2
, ∀k ∈ [r]

)
= 1.

Equivalently,

lim
n→∞

P
(∣∣∣̃bk − btk∣∣∣ ≤ ε, ∀k ∈ [r]

)
= 1,

completing the proof.

C.11.4 Proof of Lemma 37

We fix any training-validation split (Ωt,Ωv) and fix any ε > 0 and δ > 0. We first condition
on any value of the bias as B = B∗. Then the bias terms in Gv

ik (whose mean is bvik) can
be considered as randomly sampling `vik values from the `k terms in Gk (whose mean is
bk). Denote ∆B∗ := maxi∈[d],j∈[n] b

∗
ij−mini∈[d],j∈[n] b

∗
ij , and denote ∆B := maxi∈[d],j∈[n] bij−

mini∈[d],j∈[n] bij . By Hoeffding’s inequality without replacement (Hoeffding, 1963, Section 6),
we have

P

|bvik − b∗k| > ∆B∗

√
log
(

1
δ

)
`vik

∣∣∣∣∣∣ B = B∗

 ≤ 2 exp

(
−

2`vik∆
2
B∗ log

(
1
δ

)
`vik∆

2
B∗

)
= 2δ2

(i)
<
δ

2
, (234)

where inequality (i) is true for any δ ∈ (0, 1
4). Invoking (26a) from Lemma 26 and using the

all cf -fraction assumption, we have

`vik ≥
`ik
4
>
cfn

4
. (235)
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Combining (234) with (235), we have that for any δ ∈ (0, 1
4),

P

|bvik − b∗k| > 2∆B∗

√
log
(

1
δ

)
cfn

∣∣∣∣∣∣ B = B∗

 <
δ

2
. (236)

Now we analyze the term ∆B in (236). By Lemma 25, there exists integer n0 such that for
any n ≥ n0,

P
(

∆B ≤ 4
√

log dn
)
≥ 1− δ

2
. (237)

Let n1 be a sufficiently large constant such that n1 ≥ n0 and 8
√

log dn ·
√

log( 1
δ )

cfn
< ε. Then

combining (237) with (236), for any n ≥ n1,

P
(
|bvik − bk| < ε

)
=

∫
B∗∈Rd×n

P
(
|bvik − bk| < ε

∣∣∣ B = B∗
)
· P(B∗) dB∗

≥
∫

B∗∈Rd×n
∆B∗≤4

√
log dn

P
(
|bvik − bk| < ε

∣∣∣ B) · P(B) dB∗

(i)
≥
(

1− δ

2

)
· P
(

∆B ≤
√

4 log dn
)

(ii)
≥
(

1− δ

2

)2

≥ 1− δ,

where inequality (i) is true by (236) and inequality (ii) is true by (237). Equivalently, we
have

lim
n→∞

P
(
|bvik − bk| < ε

)
= 1. (238)

Due to the all c-fraction assumption, the number of groups is upper-bounded as r ≤ 1
cf
.

Taking a union bound of (238) over i ∈ [d], k ∈ [r], we have

lim
n→∞

P
(
|bvik − bk| < ε, ∀i ∈ [d], k ∈ [r]

)
= 1,

completing the proof of (75a). A similar argument yields (75b), where in (235) we in-
voke (27b) from Lemma 26 instead of (26a).

C.11.5 Proof of Lemma 39

In the proof, we use the following lemma.

Lemma 51. Let d ≥ 1 be an integer. For any y ∈ Rd, we have

arg min
u∈M

‖y − u‖22 + λ‖u‖22 = arg min
u∈M

‖ΠM(y)− u‖22 + λ‖u‖22 (239)
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Algorithm 2: The Pool-Adjacent-Violators algorithm (PAVA). Input: y ∈ Rd.
1 Initialize u = y
2 Initialize the partition P = {S1, . . . , Sd}, where Si = {i} for every i ∈ [d].
3 while u 6∈ M do
4 Find any i ∈ [d] such that ui > ui+1.
5 Find S, S′ ∈ P such that i ∈ S and i+ 1 ∈ S′.
6 Update ur ← 1

|S|+|S′|(
∑

i∈S ui +
∑

i∈S′ ui) for each r ∈ S ∪ S′.
7 Update the partition as P ← P \ {S, S′}+ {S ∪ S′}.
8 end
9 return u

The proof of Lemma 51 is presented at the end of this section. We now derive a the
closed-form solution to (239). Consider the optimization problem on the RHS of (239). We
take the derivative of the objective with respect to u, and solve for u by setting the derivative
to 0. It can be verified that the unconstrained solution u∗un to the RHS of (239) is:

u∗un =
1

1 + λ
ΠM(y). (240)

Note that this unconstrained solution u∗un satisfies u∗un ∈M, so u∗un is also the (constrained)
solution to (239). Plugging (240) to the objective on the LHS of (239) and rearranging the
terms complete the proof.

Proof of Lemma 51 We apply induction on the Pool-Adjacent-Violators algorithm (PAVA)
(Barlow et al., 1972, Section 1.2). For completeness, the Pool-Adjacent-Violators algorithm
is shown in Algorithm 2. For any integer d ≥ 1 and any input y ∈ Rd, PAVA returns
arg minu∈M‖y − u‖22.

Assume that the while loop in Algorithm 2 is executed T times. Let u(0) → u(1) →
. . . → u(T ) be any sequence of the value of x obtained in Algorithm 2. We have u(0) = y
and u(T ) = ΠMy. In what follows, we show that for any 0 ≤ t ≤ T − 1,

arg min
u∈M

‖u(t) − u‖22 + λ‖u‖22 = arg min
u∈M

‖u(t+1) − u‖22 + λ‖u‖22. (241)

By induction on (241), we have

arg min
u∈M

‖u(0) − u‖22 + λ‖u‖22 = arg min
u∈M

‖u(T ) − u‖22 + λ‖u‖22. (242)

Combining (242) with the fact that u(0) = y and u(T ) = ΠMy completes the proof.

Proof of (241): Consider any t such that 0 ≤ t ≤ T − 1. We consider Line 4-6 of PAVA
in Algorithm 2. For clarity of notation, we denote the partition corresponding to u(t) as
P (t) and the partition corresponding to u(t+1) as P (t+1). Then we have S, S′ ∈ P (t) and
S ∪ S′ ∈ P (t+1).
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First, by PAVA it is straightforward to verify that S and S′ both contain consecutive
indices. That is, there exists integers m1,m2 such that 1 ≤ m1 ≤ i < m2 ≤ d, such that

S = {m1, . . . , i}
S′ = {i+ 1, . . . ,m2}.

Furthermore, by PAVA it can be verified that

a :=u
(t)
i = u

(t)
i′ ∀i, i′ ∈ S (243a)

b :=u
(t)
i = u

(t)
i′ ∀i, i′ ∈ S′ (243b)

z :=u
(t+1)
i = u

(t+1)
i′ ∀i, i′ ∈ S ∪ S′. (243c)

Denote these values in (243) as a, b and z, respectively. By the update of u in Line 6 of
Algorithm 2, we have the relation

z =
1

|S|+ |S′|
(
|S| · a+

∣∣S′∣∣ · b) . (244)

Denote u∗(t) and u∗(t+1) as the minimizer to the LHS and RHS of (241), respectively. Us-
ing (243), it can be verified that

a∗ :=u
∗(t)
i = u

∗(t)
i′ ∀i, i′ ∈ S (245a)

b∗ :=u
∗(t)
i = u

∗(t)
i′ ∀i, i′ ∈ S′ (245b)

u
∗(t+1)
i = u

∗(t+1)
i′ ∀i, i′ ∈ S ∪ S′. (245c)

Denote the values in (245a) and (245b) as a∗ and b∗, respectively.
We now show that a∗ = b∗. Assume for contradiction that a∗ 6= b∗. Since the solution

u∗(t) ∈ M, we have a∗ ≤ b∗. Hence, we have a∗ < b∗. By Line 4 of Algorithm 2, we have
a > b. We construct the alternative solution

v
∗(t)
i =

{
u
∗(t)
i i 6∈ S ∪ S

1
|S|+|S′|(|S| · a

∗ + |S| · b∗) i ∈ S ∪ S′.

It can be verified that v∗(t) attains a strict strictly smaller objective than u∗(t) for the
objective on the LHS of (241). Contradiction to the assumption that u∗(t) is the minimizer
to the LHS of (241). Hence, we have a∗ = b∗, implying

u
∗(t)
i = u

∗(t)
i′ ∀i, i′ ∈ S ∪ S′.

The LHS of (241) is equivalent to

arg min
u∈M,t∈R

t=ui, ∀i,i′∈S∪S′

∑
i 6∈S∪S′

(u
(t)
i − xi)

2 +
∑

i∈S∪S′
(u

(t)
i − xi)

2 + λ‖u‖22

arg min
u∈M

t=ui, ∀i,i′∈S∪S′

∑
i 6∈S∪S′

(u
(t)
i − xi)

2 + |S| · (a− t)2 +
∣∣S′∣∣ · (b− t)2︸ ︷︷ ︸

T

+λ‖u‖22. (246)
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We write the term T as

T = |S| · a2 +
∣∣S′∣∣ · b2 − 2

(
|S| · a+

∣∣S′∣∣ · b) · t+ (|S|+
∣∣S′∣∣) · t2

= (|S|+
∣∣S′∣∣) · ( |S| · a+ |S′|b

|S|+ |S′|
− t
)2

+ term(a, b, S, S′)

(i)
= (|S|+

∣∣S′∣∣) · (z − t)2 + term(a, b, S, S′), (247)

where equality (i) is true by (244).
Using the relation u(t)

i = u
(t+1)
i for every i 6∈ S ∪ S′, the RHS of (241) is equivalent to

arg min
u∈M,t∈R

t=ui, ∀i∈S∪S′

∑
i 6∈S∪S′

(u
(t+1)
i − xi)2 +

∑
i∈S∪S′

(u
(t+1)
i − xi)2 + λ‖u‖22

arg min
u∈M,t∈R

t=ui, ∀i∈S∪S′

∑
i 6∈S∪S′

(u
(t)
i − xi)

2 + (|S|+
∣∣S′∣∣) · (z − t)2 + λ‖u‖22. (248)

The equivalence of the LHS and RHS of (241) can be verified by combining (246), (247),
and (248).

C.11.6 Proof of Lemma 40

Let c′ > 0 be a constant. Denote Ec′,c as the event that the number of non-overlapping
pairs in Sc (instead of Sc ∩ Ωv defined for the event Ev

c′,c) is at least c′n. We delegate the
main part of this proof to the following lemma.

Lemma 52. Suppose d = 2. Assume the bias is distributed according to assumption (A2)
with σ = 1. For any c > 0, there exists a constant c′ > 0 such that

lim
n→∞

P
(
Ec′,c ∩ E2

)
= lim

n→∞
P(E2).

The proof this result is provided at the end of this section. We first explain how to
complete the proof of Lemma 40 given Lemma 52. The proof of Lemma 52 is presented at
the end of this section.

Conditional on Ec′,c, consider the c′n non-overlapping pairs in Sc. We denote this subset
of non-overlapping pairs as S′′. For each t ∈ [n2 ] in Lines 5-7 in Algorithm 1, consider the
elements (1, j(2t−1)) and (1, j(2t)) in Line 6 of Algorithm 1. If both (1, j(2t−1)) and (1, j(2t))
are involved in some pairs in S′′, then we arbitrarily remove one of the pairs involving either
(1, j(2t−1)) or (1, j(2t)) from S′′. After the removal, the size of the remaining S′′ is at least
c′n
2 . We repeat the same procedure to consider the elements (2, j(2t−1)) and (2, j(2t)) and
remove elements. After this second removal, the size of the remaining S′′ is at least c′n

4 . We
now denote this set of non-overlapping pairs after the two removals as S′′. Now consider
any remaining pair (j, j′) ∈ S′′. The probability of (1, j) ∈ Ωv is 1

2 and the probability of
(2, j′) ∈ Ωv is 1

2 . Hence, the probability of (j, j′) ∈ S′′ ∩ Ωv is 1
4 . Due to the removal, all of

the elements involved in S′′ appear in different pairs during the training-validation split in
Lines 5-7 in Algorithm 1. Hence, the probability of (j, j′) ∈ Ωv is independent for each pair
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(j, j′) ∈ S′′. By Hoeffding’s inequality, we have

lim
n→∞

P
(∣∣S′′ ∩ Ωv

∣∣ ≥ c′n

32

∣∣∣∣ Ec′,c) = 1.

That is,

lim
n→∞

P
(
Ev

c′
32
,c

∣∣∣∣ Ec′,c) = 1. (249)

Hence, we have

P(Ev
c′
32
,c
∩ E2) ≥ P(Ev

c′
32
,c
∩ Ec′,c ∩ E2)

= P(Ec′,c ∩ E2)− P(Ev
c′
32
,c
∩ Ec′,c ∩ E2)

≥ P(Ec′,c ∩ E2)− P(Ev
c′
32
,c
∩ Ec′,c). (250)

Taking the limit of n→∞ in (250), we have

lim
n→∞

P(Ev
c′
32
,c
∩ E2)

(i)
≥ lim

n→∞
P(E2),

where inequality (i) is true by combining Lemma 52 and (249), completing the proof of
Lemma 40. It remains to prove Lemma 52.

Proof of Lemma 52 Recall the definition (109) of Sc = {(j, j′) ∈ [n]2 : 0 < b2j′−b1j < c}.
We first convert the constraint 0 < b2j′−b1j < c to a constraint on the ranks of the elements
(1, j) and (2, j′).

Recall that g denotes the p.d.f. of N (0, 1). Recall that t(ij) is the rank of the element
(i, j) (in the total ordering of all 2n elements since we assume d = 2). For any constant
γ ∈ (0, 1/2), we define the following set of pairs:

Rγ,c =

{
(j, j′) ∈ [n]2 : γn < t1j < t2j′ < (2− γ)n,

t2j′ − t1j ≤ cg(γ2 )n

}
.

The following lemma shows that Rγ,c is a subset of Sc for each γ > 0 with high probability,
and therefore we only need to lower-bound the number of non-overlapping pairs in Rγ,c.

Lemma 53. For each c > 0, for any γ ∈
(
0, 1

2

)
, we have

lim
n→∞

P
(
Rγ,c ⊆ S2c

)
= 1.

The proof of this result is provided in Appendix C.11.7. Denote Eγ,c′,c as the event that
the set Rγ,c contains at least c′n non-overlapping pairs. We have that Eγ,c′,c is deterministic
(depending on γ, c′, c and the total ordering π). Then Lemma 53 implies that for any
γ ∈

(
0, 1

2

)
and any c′ ∈ (0, 1),

lim
n→∞

P
(
Eγ,c′,c ∩ Ec′,2c

)
= 0. (251)

In what follows, we establish that there exists γ > 0 and c′ > 0 such that

lim
n→∞

P
(
Eγ,c′,c ∩ E2

)
= 0, (252)

where the choices of γ and c′ are specified later.
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1 2𝑛𝛾𝑛 (2 − 𝛾)𝑛𝑗) 𝑗* 𝑗+

ℓ- ℓ) ℓ+

Figure 8: The definition (255) of `.

Proof of (252): Assume there exists maximally t such non-overlapping pairs in Rγ,c (that
is, Rγ,c does not have any subset of non-overlapping pairs of size greater than t). Assume
for contradiction that

t < min

{
cg(γ2 )

2
, γ

}
· n. (253)

We “remove” these t pairs from the total ordering of 2n elements, and then there are 2(n− t)
remaining elements after the removal. In what follows, we derive a contradiction by using
the fact that theses elements are not in Rγ,c.

Denote the ranks corresponding to the remaining elements from course 2 with rank
between (γn, (2− γ)n] as j1 < . . . < jT . Since t elements are removed from each course, we
have

T ≤ n− t. (254)

Since there are (n − t) remaining elements in course 2, and the number of elements whose
rank is outside the range (γn, (2− γ)n] is 2γn, we also have T ≥ n− t− 2γn > 0. Denote
the difference of the ranks between adjacent remaining elements in course 2 as

`i =


j1 − γn− 1 if i = 0

ji+1 − ji − 1 if 1 ≤ i ≤ T − 1

(2− γ)n− ji if i = T.

(255)

The definition (255) of ` is also visualized in Fig. 8.
By in the definition of (255), we have

T∑
i=0

`i = (2− 2γ)n− T
(i)
≥ (1− 2γ)n+ t,

where inequality (i) is true by (254).
There are also (n− t) remaining elements in course 1. We consider the ranks where these

elements can be placed. Again, the number of positions outside the range (γn, (2− γ)n] is
2γn. Therefore, at least (1 − 2γ)n − t elements form course 1 need to placed within the
range of (γn, (2 − γ)n]. Inside this range, the cg

(γ
2

)
n ranks before each element in course

2 cannot be placed, because otherwise this element from course 1 and the corresponding
element from course 2 form a pair in Rγ,c. Contradiction to the assumption that a maximal
subset of non-overlapping pairs has been removed. Hence, inside the range, the number of
ranks where elements from course 1 can be placed is

T−1∑
i=0

max
{
`i − cg

(γ
2

)
n, 0
}

+ `T .
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Since we need to place at least (1− 2γ)n− t elements from course 1 to these ranks, we have

T−1∑
i=0

max
{
`i − cg

(γ
2

)
n, 0
}

+ `T ≥ (1− 2γ)n− t. (256)

Now we separately discuss the following two cases.
Case 1: `i ≥ cg

(γ
2

)
n for some 0 ≤ i ≤ T − 1. Then consider the interval [ji − cg(γ2 )n, ji).

On the one hand, there cannot be elements from course 2 in this interval, because we define
`i as the difference of ranks between elements ji+1 and ji that are already adjacent among
elements in course 2. On the other hand, there cannot be elements j from course 1 in this
interval, because otherwise we have (j, ii) ∈ Rγ,c. Contradiction to the assumption that the
removed subset of non-overlapping pairs is maximal. Hence, all of the cg

(γ
2

)
n elements from

this interval [ji − cg(γ2 )n, ji) have been removed, and we have t ≥ cg( γ2 )n
2 . Contradiction to

the assumption (253).
Case 2: `i < cg

(γ
2

)
n for all 0 ≤ i ≤ T − 1. Then inequality (256) reduces to

`T ≥ (1− 2γ)n− t
(i)
≥ (1− 3γ)n, (257)

where inequality (i) is true by the assumption (253) that t < γn.
In what follows, we consider the construction of ranks of all elements (either removed or

not) that maximizes
∑

j∈[n](b2j − b1j). Then we show that under the assumption (253), we
have

lim
n→∞

P

∑
j∈[n]

(b2j − b1j) < 0

 = 1.

Construction of the ranks: To maximize
∑

j(b2j − b1j), we want to assign elements in
course 2 to higher ranks, and elements in course 1 to lower ranks. We consider the course
assigned to the following ranges of the rank.

• Ranks ((2 − γ)n, 2n] : The size of this range is 2γn. We assign elements from the
course 2 to these ranks, since these are the highest possible ranks.

• Ranks ((1 + 2γ)n, (2− γ)n]: The size of this range is (1− 3γ)n. Note that the rank
jT is

jT
(i)
= (2− γ)n− `T
(ii)
≤ (2− γ)n− (1− 3γ)n = (1 + 2γ)n,

where equality (i) is true by the definition (255), and inequality (ii) is true by (257).
We consider the number of elements from course 2 in this range, remaining or removed.
By the definition of jT from (255) there cannot exist remaining elements from course
2 in this range. The number of removed elements from course 2 is t ≤ γn by assump-
tion (253). Hence, the number of elements from course 2 in this range is at most γn.
The other elements in this range are from course 1. Hence, the number of elements
from course 1 in this range is at least (1 − 4γ)n. We assign the elements in course 2
to higher ranks than the elements in course 1.
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1 2𝑛

4𝛾𝑛 (1 − 2𝛾)𝑛 (1 − 4𝛾)𝑛 2𝛾𝑛

course 1 course 1course 2 course 2

𝑆*+ 𝑆,+ 𝑆*- 𝑆,-

4𝛾𝑛 (0.5 + 3𝛾)𝑛 (1 + 2𝛾)𝑛 (2 − 2𝛾)𝑛1.5𝑛

𝑎, 𝑎4 𝑎5 𝑎6 𝑎7𝑎* 𝑎8

rank

number	of the	elements

sum	of	the	elements

Figure 9: Assignment of biases to the 2 courses.

• Ranks [1, (1 − 2γ)n] There are 4γn elements from course 1, and (1 − 2γ)n elements
from course 2 that have not been assigned to ranks. We simply assign the (1 − 2γ)n
elements from course 2 to be higher ranks than the 4γn elements from course 1.

This construction of ranks is also shown in Fig. 9. We denote S1L, S2L, S1H , S2H respectively
as the sums of the subset of elements as shown in Fig. 9.

The following lemma now bounds the difference between the sums of the bias in the two
courses, under this construction.

Lemma 54. Consider 2n i.i.d. samples from N (0, 1), ordered as X(1) ≤ . . . ≤ X(2n). Let

I1L := {1, . . . , 4γn}
I2L := {4γn+ 1, . . . , (1 + 2γ)n}
I1H := {(2− 2γ)n, . . . , 2n}
I2H := {(2− 2γ)n, . . . , 2n},

and let

I1 := I1L ∪ I1H ,

I2 := I2L ∪ I2H .

Then there exists some constant γ > 0, such that

lim
n→∞

∑
i∈I2

X(i) −
∑
i∈I1

X(i) < 0

 = 1.

The proof of this result is provided in Appendix C.11.8. Denote the constant γ in

Lemma 54 as γ0. By Lemma 54, we have that under the assumption (253) of t < min

{
cg( γ0

2 )
2 , γ0

}
n,

then

lim
n→∞

P

∑
j∈[n]

(b2j − b1j) < 0

 = 1.

Equivalently, let c′0 = min

{
cg( γ0

2 )
γ0

}
, we have

lim
n→∞

P
(
Eγ0,c′0,c

∩ E2

)
= 0,

completing the proof of (252).
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Combining (251) and (252): We have

lim
n→∞

P
(
Ec′0,c ∩ E2

)
= P(E2)− P(E2 ∩ Ec′,c)

= P(E2)− P(E2 ∩ Ec′,c)
= P(E2)− P(E2 ∩ Ec′,c ∩ Eγ0,c′0,c

)− P(E2 ∩ Ec′0,c ∩ Eγ0,c′0,c
). (258)

Taking the limit of n→∞ in (258), we have

P
(
Ec′0,c ∩ E2

) (i)
= lim

n→∞
P(E2),

where equality (i) is true by combining (251) and (252). This completes the proof of
Lemma 52.

C.11.7 Proof of Lemma 53

We show that for any (j, j′) ∈ Rγ,c we have (j, j′) ∈ S2c due to the assumption ((A2)). First,
by the definition of Rγ,c we have t1j < t2j′ , and hence b2j′ > b1j . It remains to show that
b2j′ − b1j < c. We denote (t0, . . . , tT ) := (γ, γ + cg(γ2 ), . . . , (2− γ)), where T = 2−2γ

cg( γ
2

)
which

is a constant. Recall that b(k : 2n) denotes the kth order statistics among the 2n random
variables. Recall that G−1 denotes the inverse c.d.f. of N (0, 1). By Lemma 24 we have

b(tin : 2n) P−→ G−1

(
ti
2

)
∀0 ≤ i ≤ T. (259)

Taking a union bound of (259) over 0 ≤ i ≤ T , we have

lim
n→∞

( ∣∣∣∣b(tin : 2n) −G−1

(
ti
2

)∣∣∣∣ < c

2
∀0 ≤ i ≤ T︸ ︷︷ ︸

E

)
= 1. (260)

Denote this event in (260) as E. By the definition of Rγ,c, for any (j, j′) ∈ Rγ,c we have
γn < t1j < t2j′ < (2 − γ)n and t2j′ − t1j < cg(γ2 )n. Hence, there exists some integer
0 ≤ i ≤ T − 2 such that tin ≤ t1j < t2j′ ≤ ti+2n. Conditional on the event E from (260),
for any (j, j′) ∈ Rγ,c,

b2j′ − b1j ≤ b(ti+2n : 2n) − b(tin : 2n) < G−1

(
ti+2

2

)
−G−1

(
ti
2

)
+ c

<
(ti+2 − ti)

2
· max
x∈( γ

2
,1− γ

2
)
(G−1)′(x) + c

(i)
= cg

(γ
2

)
· max
x∈( γ2 ,1−

γ
2 )

1

g(x)
+ c

= cg
(γ

2

)
· 1

g
(γ

2

) + c = 2c

∣∣∣∣∣ E.
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where (i) holds due to the equality (G−1)′(x) = 1
G′(x) = 1

g(x) for all x ∈ (0, 1). Hence,
Rγ,c ⊆ S2c conditional on E, and we have

lim
n→∞

P(Rγ,c ⊆ S2c) ≥ lim
n→∞

P(E)
(i)
= 1,

where equality (i) is true by (260), completing the proof.

C.11.8 Proof of Lemma 54

We denote the random variables S1L, S2L, S1H and S2H as the sums over I1L, I2L, I1H and
I2H , respectively. To bound these sums, we consider the values of X(i) at the following 7
ranks:

i ∈ {1, 4γn, (0.5 + 3γ)n, (1 + 2γ)n, 1.5n, (2− 2γ)n, 2n},

as shown by the cross marks in Fig. 9. Let a ∈ R7. In what follows we condition on the
event that [

X(1), X(4γn), X((0.5+3γ)n), X((1+2γ)n), X(1.5n), X((2−2γ)n), X(2n)
]T

= a.

Denote the expected means of S1L, S2L, S1H and S2H conditional on a as µ1L|a, µ2L|a, µ1H|a
and µ2H|a, respectively.

Bounding the sums S1L, S2L, S1H and S2H conditional on a: We first consider the
sum S2H . By Hoeffding’s inequality, we have

lim
n→∞

P
(∣∣S1L − 4γnµ1L|a

∣∣ < (a7 − a1)
√
n log n

∣∣∣ a) = 1 (261a)

lim
n→∞

P
(∣∣S2L − (1− 2γ)nµ2L|a

∣∣ < (a7 − a1)
√
n log n

∣∣∣ a) = 1 (261b)

lim
n→∞

P
(∣∣S1H − (1− 4γ)nµ1H|a

∣∣ < (a7 − a1)
√
n log n

∣∣∣ a) = 1 (261c)

lim
n→∞

P
(∣∣S2H − 2γnµ2H|a

∣∣ < (a7 − a1)
√
n log n

∣∣∣ a) = 1. (261d)

Taking a union bound of (261) and using the equality
∑

i∈I2 X
(i) −

∑
i∈I1 X

(i) = S2L +
S2H − S1L − S1H , we have

lim
n→∞

P

∑
i∈I2

X(i) −
∑
i∈I1

X(i)

≤ n

 (1− 2γ)µ2L|a − (1− 4γ)µ1H|a + 2γµ2H|a − 4γµ1L|a + 4(a7 − a1)

√
log n

n︸ ︷︷ ︸
T

∣∣∣∣∣∣ a
  = 1.

We rearrange the terms in T as

T = (1− 4γ)(µ2L|a − µ1H|a) + 4γ(µ2H|a − µ1L|a) + 2γ(µ2L|a − µ2H|a) + 4(a7 − a1)

√
log n

n
.

(262)

In what follows, we define a range A on the values of a, show that limn→∞ P(a ∈ A) = 1
and show that T < 0 conditional on any a ∈ A.
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Defining the range A and showing limn→∞ P(a ∈ A) = 1: We define the range A ⊆ R7

as

A :=



a1 < G−1(1.5γ)
a2 > G−1(1.99γ)
a3 < G−1(0.25 + 1.5γ) + 0.01
a5 > G−1(0.75)− 0.01
a6 < G−1(1− 0.99γ)
a7 > G−1(1− 0.5γ)


∩
{
a1 > −2

√
log 2n

a7 < 2
√

log 2n

}
. (263)

By Lemma 24, we have

a2
P−→ G−1(2γ) (264a)

a3
P−→ G−1(0.25 + 1.5γ) (264b)

a5
P−→ G−1(0.75) (264c)

a6
P−→ G−1(1− γ). (264d)

Moreover, for the extremal values a1 and a7, we have that for any c ∈ R,

lim
n→∞

P(a1 < c) = 1 (265a)

lim
n→∞

P(a7 > c) = 1. (265b)

Combining (264), (265) and Lemma 25, we have that for any γ > 0,

lim
n→∞

P(E) = 1.

Analyzing the expected means µ1L|a, µ2L|a, µ1H|a, µ2H|a: We analyze the terms on the
RHS of (262).

Term (µ2L|a − µ1H|a): We have µ2L ≤ a3+a4
2 and µ1H ≥ a4+a5

2 . Therefore, conditional
on any a ∈ A, for any γ < 0.1,

µ2L|a − µ1H|a ≤
a3 − a5

2

(i)
≤ −0.5, (266)

where inequality (i) is true by the definition (263) of A.

Term (µ2H−µ1L): Let X denote a random variable of N (0, 1). Conditional on any a ∈ A,

µ2H|a =
1√
2π

1

P (a6 < X < a7)

∫ a7

a6

xe−
x2

2 dx

=
1√
2π

1

P (a6 < X < a7)

[
−e−

x2

2

]a7

x=a6

≤ 1√
2π

1

P (a6 < X < a7)
e−

a2
6
2

(i)
≤ 1√

2π

1

0.49γ
e−

[G−1(1−0.99γ)]
2

2 , (267a)
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where (i) is true by the definition (263) of A. Similarly, conditional on the event E and on
any a,

µ1L|a > −
1√
2π

1

0.49γ
e−

[G−1(1.99γ)]
2

2 . (267b)

Term: (µ2L|a − µ2H|a): For any a ∈ R7, we have

(µ2L|a − µ2H|a) < 0. (268)

Showing T < 0: Plugging the three terms from (266), (267) and (268) back to (262),
conditional on any a ∈ A,

T < −0.5(1− 4γ) + 4 · 1√
2π

1

0.49

(
e−

[G−1(1−0.99γ)]2

2 + e−
[G−1(1.99γ)]2

2

)
+ 8
√

log n

√
log 2n

n
.

As γ → 0, we have G−1(1.99γ) → −∞ and G−1(1 − 0.99γ) → ∞. It can be verified that
there exists some sufficiently small γ0 > 0, such that

lim
n→∞

T < 0
∣∣∣ a ∈ A.

Hence, we have

lim
n→∞

P

∑
i∈I2

X(i) −
∑
i∈I1

X(i) ≤ 0

 ≥ lim
n→∞

∫
a∈R7

P (T < 0 | a)P(a)

≥ lim
n→∞

P(a ∈ A) = 1,

completing the proof.

C.12 Proof of auxiliary results for Theorem 10

In this section, we present the proofs of the auxiliary results for Theorem 10.

C.12.1 Proof of Lemma 41

First, at λ =∞ we have B̂(∞) = 0 by Proposition 7, and hence the claimed result is trivially
true.

Now consider any λ ∈ [0,∞). We fix any value of Y ∈ Rd×n and any value of x ∈ Rd.
Denote U := Y − x1T . By triangle’s inequality, we have max(i,j)∈Ω|uij | ≤ max(i,j)∈Ω|yij |+
‖x‖∞. It then suffices to establish the inequality

max
(i,j)∈Ω

|b(λ)
ij | ≤ max

(i,j)∈Ω
|uij |,

where B(λ) is the solution to the optimization

arg min
B satisfies O

‖U −B‖2Ω + λ‖B‖2Ω, (269)
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with ties broken by minimizing ‖B‖2Ω. Assume for contradiction that we have

max
(i,j)∈Ω

|b(λ)
ij | > max

(i,j)∈Ω
|uij |. (270)

Denote umax := max(i,j)∈Ω uij and umin := min(i,j)∈Ω uij . Then we consider an alternative
solution B′ constructed from B(λ) as:

b′ij =


max(i,j)∈Ω uij if b(λ)

ij ∈ (umax,∞)

b
(λ)
ij b

(λ)
ij ∈ [umin, umax]

min(i,j)∈Ω uij if b(λ)
ij ∈ (−∞, umin).

By the assumption (270), there exists some (i, j) ∈ Ω such that b(λ)
ij 6∈ [umin, umax]. Hence,

we have B′ 6= B(λ). It can be verified that B′ satisfies the partial ordering O because B(λ)

satisfies O. Furthermore, it can be verified that

‖U −B′‖2Ω < ‖U −B(λ)‖2Ω

and also

‖B′‖2Ω < ‖B(λ)‖2Ω

Hence, B′ attains a strictly smaller objective of (269) than B(λ). Contradiction to the
assumption that B̂(λ) is the optimal solution of (269).

C.12.2 Proof of Lemma 42

Recall that the monotone cone is denoted as M := {θ ∈ Rd : θ1 ≤ . . . ≤ θd}, and ΠM

denotes the projection (14) onto M .
From known results on the monotone cone (see (Amelunxen et al., 2014, Section 3.5)), we

have E‖ΠMZ‖2 ≤ c
√

log d for some fixed constant c > 0. Using the Moreau decomposition,
we have (see (Wei et al., 2019, Eq. 20)):

E

[
sup
‖θ‖2=1
θ∈M

θTZ

]
= E‖ΠMZ‖2 ≤ c

√
log d.

Note that we have the deterministic equality supθ∈M,‖θ‖2=1 θ
TZ ≥ 0 by taking θ = 0. By

Markov’s inequality, we have

P

(
sup
‖θ‖2=1
θ∈M

θTZ > d
1
4

)
≤

E
[
supθ∈M,‖θ‖2=1 θ

TZ
]

d
1
4

≤ c
√

log d

d
1
4

,

completing the proof.

C.12.3 Proof of Lemma 43

In the proof, we first bound the event E 1
36
, and then combine the events E 1

36
and E′1

36

.
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Bounding E 1
36

We denote the interleaving points in Spairs as t(1) < . . . < t(|Spairs|). It can
be verified that for any k ∈ [|Spairs| − 1], if t(k) ∈ S1 then then we have t(k+1) ∈ S2, and vice
versa. Hence, we have

−1 ≤ |S1| − |S2| ≤ 1. (271)

By Definition 4 of the cf -fraction interleaving assumption, we have

|S1|+ |S2| = |S| ≥ cfn. (272)

Combining (271) and (272), we have

|S1|, |S2| >
cfn

3
.

Suppose the smallest interleaving point in S1 is t1 := minS1. We now denote the interleaving
points in the increasing order of their rank as:

. . . < t1 < t′1 < . . . < t cfn
3
< t′cfn

3

< . . . .

Then we have tk ∈ S1 and t′k ∈ S2 for all k ∈
[
cfn
3

]
.

we construct the set of distinct pairs as:

Sv :=
{

(t2k−1, t
′
2k) : k ∈

[cfn

6

]}
∩ (Ωv × Ωv).

Now we lower-bound the size of Sv. For each k ∈
[
cfn
6

]
, consider the probability that the

pair (t2k−1, t
′
2k) is in Ωv. It can be verified that the elements of ranks {t2k−1}k∈[ cfn6 ] are

not adjacent in the sub-ordering of π restricted to course 1, and hence appear in distinct
pairs in Line 5-7 of Algorithm 1 when generating the training-validation split of (Ωt,Ωv).
Hence, the probability that each element {t2k−1}k∈[ cfn6 ] is assigned to Ωv is independently
1
2 . Similarly, the probability that each element {t′2k}k∈[ cfn6 ] is assigned to Ωv is 1

2 . Hence,

the probability of each pair (t2k−1, t
′
2k) is assigned to Ωv is 1

4 . By Hoeffding’s inequality, we
have

lim
n→∞

P
(
|Sv| > cfn

36

)
= 1.

That is, limn→∞ P
(
E 1

36

)
= 1.

Combining E 1
36

and E′1
36

By a similar argument, we have limn→∞ P
(
E′1

36

)
= 1. Taking

a union bound of E 1
36

and E′1
36

completes the proof.

C.12.4 Proof of Lemma 44

Consider any T ′ ∈ {S+ ∩S1, S
− ∩S1, S

+ ∩S2, S
− ∩S2}. Similar to the proof of Lemma 43,

using the fact that the interleaving points alternate between S1 and S2, we have∣∣T ′∣∣ > cfn

6
.
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We write the elements in T ′ in the increasing order as k1 < . . . < k cfn
6
< . . . < k|T ′|. It

can be verified that the elements in {t2k}k∈[ cfn12 ] appear in different pairs when generating
the training-validation split (Ωt,Ωv) in Line 5-7 of Algorithm 1. Hence, each element in
{t2k}k∈[ cfn12 ] is assigned to Ωv independently with probability 1

2 . Using Hoeffding’s inequality,
we lower-bound the size of T ′ ∩ Ωv as:

lim
n→∞

P
(∣∣T ′ ∩ Ωv

∣∣ > cfn

36

)
= 1. (273)

Taking a union bound of (273) over T ′ ∈ {S+ ∩ S1, S
− ∩ S1, S

+ ∩ S2, S
− ∩ S2} completes

the proof.
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