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Abstract

Adversarial training is a popular method to robustify models against adversarial attacks.
However, it exhibits much more severe overfitting than training on clean inputs. In this work,
we investigate this phenomenon from the perspective of training instances, i.e., training
input-target pairs. Based on a quantitative metric measuring the relative difficulty of an
instance in the training set, we analyze the model’s behavior on training instances of different
difficulty levels. This lets us demonstrate that the decay in generalization performance of
adversarial training is a result of fitting hard adversarial instances. We theoretically verify
our observations for both linear and general nonlinear models, proving that models trained
on hard instances have worse generalization performance than ones trained on easy instances,
and that this generalization gap increases with the size of the adversarial budget. Finally,
we investigate solutions to mitigate adversarial overfitting in several scenarios, including fast
adversarial training and fine-tuning a pretrained model with additional data. Our results
demonstrate that using training data adaptively improves the model’s robustness.
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1. Introduction

The existence of adversarial examples (Szegedy et al., 2014) causes serious safety concerns
when deploying modern deep learning models. For example, for classification tasks, impercep-
tible perturbations of the input instance can fool state-of-the-art classifiers. Many strategies
to obtain models that are robust against adversarial attacks have been proposed (Buckman
et al., 2018; Dhillon et al., 2018; Ma et al., 2018; Samangouei et al., 2018; Pang et al., 2019,
2020; Xiao et al., 2020), but most of them have been found to be ineffective in the presence
of adaptive attacks (Athalye et al., 2018; Croce and Hein, 2020b; Tramer et al., 2020; Croce
and Hein, 2021). Ultimately, this leaves adversarial training (Madry et al., 2018) and its
variants (Alayrac et al., 2019; Carmon et al., 2019; Hendrycks et al., 2019; Kumari et al.,
2019; Zhang et al., 2019a; Gowal et al., 2020; Wu et al., 2020; Gowal et al., 2021; Jiang et al.,
2023; Wang et al., 2023; Cui, 2024; Zhong et al., 2024) as the most effective and popular
approaches to construct robust models. Unfortunately, adversarial training yields much
worse performance on the test data than vanilla training. In particular, it strongly suffers
from overfitting (Rice et al., 2020), with the model’s performance decaying significantly on
the test set in the later phase of adversarial training. Because modern deep neural networks
have sufficient capacity to fit the training data perfectly, even under adversarial attacks,
overfitting remains one of the primary challenges for improving model robustness on the
test data. While the overfitting issue can be mitigated by early stopping (Rice et al., 2020)
or model smoothing (Chen et al., 2021b), the reason behind the overfitting of adversarial
training remains poorly understood.

In this paper, we study this phenomenon from the perspective of training instances, i.e.,
training input-target pairs. We first introduce a quantitative metric, based on the percentile
of the instance’s loss objective, to measure the relative difficulty of an instance within a
training set. Then, we analyze the model’s behavior, such as its loss and intermediate
activations, on training instances of different difficulty levels. This lets us discover that the
model’s generalization performance decays significantly when it fits the hard adversarial
instances in the later training phase.

To more rigorously study this phenomenon, we conduct theoretical analyses on both linear
and nonlinear models. For linear models, we study logistic regression on a Gaussian mixture
model, in which we can calculate the analytical expression of the model parameters upon
convergence and thus the robust test accuracy. Our theorem demonstrates that adversarial
training on harder instances leads to larger generalization gaps. Furthermore, the difference
in robust accuracy between the models trained by the hard instances and the ones trained by
the easy instances increases with the size of the adversarial budget. In the case of nonlinear
models, we derive the lower bound of the model’s Lipschitz constant when the model is
well fit to the training instances under adversarial attacks. This bound increases with the
difficulty level of the training instances and the size of the adversarial budget. Since a larger
Lipschitz constant indicates a higher adversarial vulnerability (Ruan et al., 2018; Weng
et al., 2018a,b), our theoretical analysis confirms our empirical observations.

Our empirical and theoretical analyses indicate that avoiding fitting the hard training
instances can mitigate adversarial overfitting. We therefore study this in three different
scenarios: standard adversarial training, fast adversarial training and adversarial fine-tuning
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with additional training data. We show that existing approaches that successfully mitigate
adversarial overfitting (Balaji et al., 2019; Chen et al., 2021b; Huang et al., 2020) implicitly
avoid fitting the hard adversarial input-target pairs, by either adaptive inputs or adaptive
targets. By contrast, the methods that focus on fitting hard adversarial (Zhang et al., 2021)
instances are not truly robust under adaptive attacks (Hitaj et al., 2021).

Contributions. Our contributions are as follows: 1) Based on a quantitative metric
of instance difficulty, we show that fitting hard adversarial instances leads to degraded
generalization performance in adversarial training. 2) We conduct rigorous theoretical
analyses on both linear and nonlinear models. For linear models, we show analytically that
models trained on harder instances have larger robust test error than the ones trained on
easy instances; the gap increases with the size of the adversarial budget. For nonlinear
models, we derive a lower bound of the model’s Lipschitz constant. It increases with the
difficulty of the training instances and the size of the adversarial budget, indicating that
both factors exacerbate adversarial overfitting. 3) We show that existing approaches to
mitigating adversarial overfiting implicitly avoid fitting hard adversarial instances.

Notation and terminology. In this paper, x and x′ are the clean input and its adversarial
counterpart. We use fw to represent a model parameterized by w and omit the subscript w
unless ambiguous. o = fw(x) and o′ = fw(x′) are the model’s output of the clean input and
the adversarial input. Lw(x,y) and Lw(x′,y) represent the loss of the clean and adversarial
instances, receptively, in which we sometimes omit w and y for notation simplicity. We use
‖w‖ and ‖X‖ to represent the l2 norm of the vector w and the spectral norm of the matrix
X, respectively. sign is an elementwise function which returns +1 for positive elements, −1
for negative elements and 0 for 0. 1y is the one-hot vector with only the y-th dimension
being 1. The term adversarial budget refers to the allowable perturbations applied to the
input instance. It is characterized by lp norm and the size ε as a set S(p)(ε) = {∆|‖∆‖p ≤ ε}.
A notation table is provided in Appendix A.

Based on the notations above, given the training set D, the robust learning problem can
be formulated as the following min-max optimization problem. Unless explicitly stated, we
usually omit y in the loss function for notation simplicity.

min
w

E(x,y)∼D max
∆∈S(p)(ε)

Lw(x+ ∆, y) (1)

In this paper, vanilla training refers to training on the clean inputs, and vanilla adversarial
training to the adversarial training method in Madry et al. (2018). RN18 and WRN34
are the 18-layer ResNet (He et al., 2016) and the 34-layer WideResNet (Zagoruyko and
Komodakis, 2016) with the width factor 10 used in Madry et al. (2018) and Wong et al.
(2020), respectively. To avoid confusion with the general term overfitting, which refers to the
gap between the training error and the test error, we use the term adversarial overfitting to
indicate the phenomenon where the robust error on the test set significantly increases in the
late phase of training. Adversarial overfitting often results in a significant generalization gap,
because the model’s robust error on the training set decreases during training, an increase
in robust test error indicates that the model is not effectively generalizing to new data.

The code to reproduce the results of this paper is publicly available on Github1.

1. https://github.com/IVRL/RobustOverfit-HardInstance.git
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2. Related Work

We concentrate on white-box attacks, where the attacker has access to the model parameters.
Such attacks are usually based on first-order information and stronger than black-box
attacks (Andriushchenko et al., 2020; Dong et al., 2018). For example, the fast gradient
sign method (FGSM) (Goodfellow et al., 2014) perturbs the input based on its gradient’s
sign. The iterative fast gradient sign method (IFGSM) (Kurakin et al., 2016) iteratively
runs FGSM using a smaller step size and projects the perturbation to the adversarial budget
after each iteration. On top of IFGSM, projected gradient descent (PGD) (Madry et al.,
2018) uses random initialization and restarts to boost the strength of the attack.

It is challenging to defend models against adversarial examples. Some early defense meth-
ods (Pang et al., 2019, 2020; Xiao et al., 2020) are shown to utilize obfuscated gradients (Atha-
lye et al., 2018), which means they can only tackle some specific types of attacks instead of
achieving true robustness. Models trained by these methods are vulnerable to stronger adap-
tive attacks Athalye et al. (2018); Croce and Hein (2020b); Tramer et al. (2020); Croce and
Hein (2021). In contrast, several works have designed training algorithms to obtain provably
robust models (Raghunathan et al., 2018; Wong and Kolter, 2018; Cohen et al., 2019; Gowal
et al., 2019; Salman et al., 2019). Unfortunately, these methods either do not generalize to
modern network architectures or have a prohibitively large computational complexity. As a
consequence, adversarial training (Madry et al., 2018) and its variants (Alayrac et al., 2019;
Carmon et al., 2019; Hendrycks et al., 2019; Kumari et al., 2019; Zhang et al., 2019a; Gowal
et al., 2020; Wu et al., 2020; Gowal et al., 2021; Jiang et al., 2023; Wang et al., 2023; Cui,
2024; Zhong et al., 2024) have become the de facto approach to obtain robust models in
practice. In essence, these methods generate adversarial examples, usually using PGD, and
use them to optimize the model parameters.

While effective, adversarial training is more challenging than vanilla training. It was shown to
require larger models (Xie and Yuille, 2020) and to exhibit a poorer convergence behavior (Liu
et al., 2020). Furthermore, as observed in Rice et al. (2020), it suffers from adversarial
overfitting : the robust accuracy on the test set significantly decreases in the late adversarial
training phase. Rice et al. (2020) thus proposed to perform early stopping based on a
separate validation set to improve the generalization performance in adversarial training.
Furthermore, Chen et al. (2021b) introduced logit smoothing and weight smoothing strategies
to reduce adversarial overfitting. In parallel to this, several techniques to improve the model’s
robust test accuracy were proposed (Wang et al., 2020; Wu et al., 2020; Zhang et al., 2021),
but without solving the adversarial overfitting issue. By contrast, other works (Balaji et al.,
2019; Huang et al., 2020) were empirically shown to mitigate adversarial overfitting but
without providing any explanations as to how this phenomenon was addressed.

In addition to adversarial training, there are some previous works studying the training
dynamics and generalization properties of vanilla training (Neyshabur et al., 2017; Zhang
et al., 2017; Toneva et al., 2018; Swayamdipta et al., 2020). Unlike adversarial training,
models usually have pretty good generalization performance (Bartlett et al., 2020; Li
et al., 2021; Kou et al., 2023) despite over-parameterization, which are usually the cases
of deep neural networks. This phenomenon is called benign overfitting. There are some
works connecting benign overfitting with adversarial robustness. Bubeck and Sellke (2021)
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theoretically proves that at least Ω(nm) trainable parameters are needed for interpolating n
m-dimensional instances. Sanyal et al. (2020) studies the overparameterization regime in the
context of label noise, and demonstrates that label noise in the training data dramatically
hurts adversarial robustness.

In this paper, we study the causes of adversarial overfitting from both an empirical and a
theoretical point of view. We address how adversarial perturbations affect the generalization
properties of deep neural networks. We also identify the reasons why prior attempts (Balaji
et al., 2019; Chen et al., 2021a; Huang et al., 2020) successfully mitigate it.

3. A Metric for Instance Difficulty

Parametric models are trained to minimize a loss objective based on several input-target pairs
called training set, and are then evaluated on a held-out set called test set. By comparing
the loss value of each instance, we can understand which ones, in either the training or the
test set, are more difficult for the model to fit. Therefore, our metric for instance difficulty
is based on an instance’s loss during the training process.

To this end, considering that we train the model for M epochs, we use {wi}Mi=1 to represent
the model parameters in each epoch. In addition, we introduce the perturbation algorithm
A and use A(x,w) to denote the adversarial examples of the input x given the model
parameters w. In vanilla training, Aclean does not perturb the input, i.e., Aclean(x,w) = x;
in adversarial training in (Madry et al., 2018), APGD(x,w) is the adversarial example of
x generated by PGD. Under this notation, the average loss L is calculated as L(x,A) :=
1
M

∑M
i=1 Lwi(A(x,wi), y), where the loss function L is defined in Equation (1). We then

study the relative difficulty level of an instance within a finite set, and define the difficulty
function d of an instance x within a set D for the perturbation algorithm A as

d(x,A) = P(L(x,A) > L(x̃,A)|x̃ ∼ U(D)) +
1

2
P(L(x,A) = L(x̃,A)|x̃ ∼ U(D)) , (2)

where x̃ ∼ U(D) indicates that x̃ is uniformly sampled from the finite set D. d(x,A) is
defined based on the model, the attack algorithm A and the set D. Since d(x,A) denotes
the relative difficulty, it is a bounded function, close to 1 for the hardest instances and close
to 0 for the easiest ones.

We discuss the motivation for and properties of d(x,A) in Appendix D.1. In particular, in
Appendix D.1, we demonstrate that the difficulty function d mainly depends on the original
data x and the perturbation algorithm A; the model architecture and the training duration
have negligible effects on d. Therefore, we use x and A as the parameters of the function
d, and omit the others for notation simplicity. In other words, d(x,A) can represent the
difficulty of x within a set under a specific type of attack A.

We show some of the easiest and hardest examples according to our metric in adversarial
training in Figure 1, which indicates that our metric aligns well with human perception.
The easiest instances are visually highly similar, with consistent and typical features of the
corresponding category. By contrast, the hardest ones are much more diverse and with
non-typical visual features. Some of them are ambiguous or even incorrectly labeled.
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0.9994 0.9987 0.9984

0.9959 0.9951 0.9949

0.9947 0.9946 0.9940

(a) Easy@CIFAR10.

0.0004 0.0022 0.0024

0.0029 0.0029 0.0047

0.0050 0.0056 0.0057

(b) Hard@CIFAR10.

0.9985 0.9974 0.9973

0.9971 0.9968 0.9965

0.9958 0.9952 0.9948

(c) Easy@SVHN.

0.0001 0.0002 0.0003

0.0005 0.0014 0.0019

0.0042 0.0043 0.0043

(d) Hard@SVHN.

Figure 1: Some examples of the easiest and the hardest instances in CIFAR10 (Krizhevsky
et al., 2009) and SVHN (Netzer et al., 2011) datasets. We pick some examples from the
“plane” category in CIFAR10 and “0” category in SVHN. The number on top of each image
indicates the corresponding value of the difficulty function

In the remainder of this paper, we use the difficulty metric as defined by Equation (2), which
not only aligns well with human perception but also is straightforward, easy to obtain, and
facilitates our theoretical analysis. Although other instance difficulty metrics have been
proposed, such as the ones in Baldock et al. (2021); Paul et al. (2021) based on margins to
the decision boundary, comparing them with our metric is subjective and out of the scope
of this work. We focus on using the difficulty metric as a tool to analyze the adversarial
overfitting phenomenon. In the following sections, we study how easy and hard training
instances affect adversarial overfitting.

4. Hard Instances Lead to Overfitting

We empirically study how easy and hard instances impact the performance of adversarial
training, with a focus on the adversarial overfitting phenomenon. Unless otherwise mentioned,
we use the general experimental settings in Appendix C.1.

4.1 Using a Subset of Training Data

We start by training RN18 models for 200 epochs using either the 10000 easiest, random or
hardest instances of the CIFAR10 training set via either vanilla training, FGSM or PGD
adversarial training. For FGSM and PGD adversarial training, the adversarial budget
is based on the l∞ norm and ε = 8/255. Note that the instance’s difficulty is defined
based on Equation (2) with the same perturbations as in training. The perturbations of
vanilla training are considered to be zero. In addition, we enforce the training subsets to be
class-balanced. For example, the easiest 10000 instances consist of the easiest 1000 instances
in each class. We provide the learning curves under different perturbations in Figure 2.

For PGD adversarial training, in Figure 2a, while we observe adversarial overfitting as
in Rice et al. (2020) when using the random instances, no such phenomenon occurs when
using the easiest instances: the performance on the test set does not degrade during training.
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(a) PGD Adversarial Training.
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(b) FGSM Adversarial Training.
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(c) Vanilla Training.

Figure 2: Learning curves obtained by training on the 10000 easiest, random and hardest
instances of CIFAR10 under different scenarios. The training error (dashed lines) is the
error on the selected instances, and the test error (solid lines) is the error on the whole test
set. The y-axis of each subfigure indicates the training or test error under the corresponding
perturbation, so the error rates of different subfigures are not comparable.
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(b) Different Optimizers.
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(c) Hard Instance Removal.

Figure 3: (a) The training error (dashed line) and the test error (solid line) when we
conduct adversarial training on the 10000 hardest training instances for more epochs until
convergence. (b) The learning curves of training on the 10000 hardest training instances
when we use a different optimizer, including different learning rates and a different algorithm.
(c) The learning curves on the training (dash lines) and the test (solid lines) sets when we
remove the hardest training instances.

However, PGD adversarial training fails and suffers more severe overfitting when using the
hardest instances. Note that this failure is not due to improper optimization. In Figure 3a
and 3b, we use longer training duration and different optimizers to conduct PGD adversarial
training on the hardest training instances, but the models’ performance on the test set are
always near trivial. All these phenomena indicate that the cause of overfitting is fitting the
hard adversarial instances generated by PGD.

By contrast, FGSM adversarial training and vanilla training (Figure 2b, 2c) do not suffer
from severe adversarial overfitting. In these cases, the models trained with the hardest
instances also achieve non-trivial test accuracy. Furthermore, the gaps in robust test accuracy
between the models trained by easy instances and by hard ones are much smaller. Since
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vanilla training can be considered as PGD adversarial training with ε = 0, FGSM adversarial
training does not yield truly robust models (Madry et al., 2018); the observations in Figure 2
indicate that adversarial overfitting happens when we aim to obtain models robust against
an adversarial budget of a large size ε.

In Appendix D.3, we perform additional and comprehensive experiments, evidencing that
our conclusions hold for various difficulty metrics, datasets and values of ε, and for an
adversarial budget based on the l2 norm. Specifically, we show that more severe adversarial
overfitting happens when the size of the adversarial budget ε increases. That is to say, in
term of model generalization, fitting hard training instances is more harmful when we are
training against stronger perturbations.

Despite harmful, the experiments discussed below show that simply removing hard instances is
not the optimal choice. In Figure 3c, we conduct PGD adversarial training using increasingly
more training instances, starting with the easiest ones. The learning curves on the test set
indicate that the models can still benefit from more data, but only when combined with
early stopping used in (Rice et al., 2020). It means that the hard instances can still benefit
adversarial training, but need to be utilized in an adaptive manner.

4.2 Using the Whole Training Set
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Figure 4: Analysis on the groups G0, G3, G6 and G9 in the training set. The right vertical
axis corresponds to the training (dashed grey line) and test (solid grey line) error under
adversarial attacks for both plots. Left plot: The left vertical axis represents the average
loss of different groups. Right plot: The left vertical axis represents the average l2 norm of
features extracted during training for different groups.

Let us now turn to the more standard setting where we train the model with the entire
training set. To nonetheless analyze the influence of instance difficulty in this scenario, we
divide the training set D into 10 non-overlapping groups {Gi}9i=0, with Gi = {x ∈ D|0.1× i ≤
d(x,APGD) < 0.1× (i+ 1)}, where d(x,APGD) is the difficulty of x based on PGD attacks.
That is, G0 is the easiest group, whereas G9 is the hardest one. We then train a RN18 model
on the entire CIFAR10 training set by PGD adversarial training and monitor the training
behavior of the different groups. In particular, in Figure 4a, we plot the average loss of
the instances in the groups G0, G3, G6 and G9. The results show that, in the early training
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stages, the model first fits the easy instances, as evidenced by the average loss of group
G0 decreasing much faster than that of the other groups. By contrast, in the late training
phase, the model tries to fit the more difficult instances, with the average loss of groups
G9 and G6 decreasing much faster than that of the other groups. In this period, however,
the robust test error (solid grey line) increases, which indicates that adversarial overfitting
arises from the model’s attempt to fit the hard adversarial instances.

In addition to average losses, inspired by Ilyas et al. (2019), which showed that the penultimate
layer’s activations of a robust model correspond to its robust features that cannot be
misaligned by adversarial attacks, we monitor the group-wise average magnitudes of the
penultimate layer’s activations. As shown in Figure 4b, the model first focuses on extracting
robust features for the easy instances, as evidenced by the comparatively large activations
of the instances in G0. In the late phase of training, the norm of the activations of the hard
instances increases significantly, bridging the gap between easy and hard instances. This
further indicates that the model focuses more on the hard instances in the later phase, at
which point it starts overfitting.

5. Theoretical Analysis

The empirical study in Section 4 indicates that adversarial overfitting arises from fitting hard
adversarial training instances. We now study this relationship from a theoretical viewpoint.
We start with a linear model: the logistic regression model on a Gaussian Mixture Model.
In this toy example, the adversarial examples and the corresponding loss function have
analytical expressions, allowing us to precisely draw the relationship between the instance
difficulty and the generalization performance. We then generalize our analysis to general
nonlinear models and use the models’ Lipschitz constant as a proxy for their robustness on
the test set. Our conclusions are consistent with the empirical study.

We use {xi, yi}ni=1 to represent the training data, and (X,y) as its matrix form. {x′i, yi}ni=1

and (X′,y) are their adversarial counterparts. Here, xi ∈ Rm, yi ∈ {−1,+1}, X ∈ Rn×m
and y ∈ {−1,+1}n. Note that these adversarial examples are generated based on the model
parameters w to maximize the loss objective, so they depend on the model parameters w
and are generated on the fly during training, which is consistent with adversarial training in
practice. For simplicity, we do not explicitly represent this dependence in the notation.

The notation is summarized in Table 4 of Appendix A.

5.1 Linear Models

We study the logistic regression model under an l2 norm based adversarial budget. In this
case, the model is parameterized by w ∈ Rm and outputs sign(wTx′i) given the adversarial
example x′i of the input xi. The loss function for this instance is 1

1+eyiw
T x′

i
. We assume

over-parameterization, which means n < m.

The following theorem shows that, under mild assumptions, the parameters of the adversari-
ally trained model converge to the l2 max-margin direction of the training data.
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Theorem 1. For a dataset {xi, yi}ni=1 that is linearly separable under the adversarial budget
S(2)(ε), any initial point w0 and step size α ≤ 2‖X‖−2, the gradient descent wu+1 =
wu − αOwLwu(X′) converges asymptotically to the l2 max-margin vector of the training
data. That is,

lim
u→∞

wu

‖wu‖
=

ŵ

‖ŵ‖
, where ŵ = arg min

w
‖w‖

s.t. ∀i ∈ {1, 2, ..., n}, wTxi ≥ 1 .

(3)

The proof is in Appendix B.1. Theorem 1 extends the conclusion in Soudry et al. (2018),
which only studies the non-adversarial case. It also indicates that the optimal parameters
are only determined by the support vectors of the training data, which are the ones with
the smallest margin. According to the loss function, the smallest margin means the largest
loss values and thus the hardest training instances based on our definition in Section 3.

To further study how the training instances’ difficulty influences the model’s generalization
performance, we assume that the data points are drawn from a K-mode Gaussian mixture
model (GMM). Specifically, the k-th component has a probability pk of being sampled and
is formulated as:

xi ∼ N (yirkη, I) (4)

Here, η ∈ Rm is the unit vector indicating the direction of the mean for each mode, and
rk ∈ R+ controls the average distance between the positive and negative instances. The
mean values of all modes in this GMM are colinear, so rk indicates the difficulty of instances
sampled from the k-th component. In Appendix D.2, we demonstrate the strong correlation
of rk and the difficulty defined in Section 3.

Without the loss of generality, we assume that r1 < r2 < ... < rK−1 < rK . Same as in
Section 4.1, we consider models trained with the subsets of the training data, e.g., n instances
from the l-th component. l = 1 then indicates training on the hardest examples, while l = K
means using the easiest. In matrix form, we have X = rlyη

T + Q for the instances sampled
from the l-th component, where the rows of noise matrix Q are sampled from N (0, I).

Although the max-margin direction in Equation (3), where the parameters converge based on
Theorem 1, does not have an analytical expression, the results in Wang and Thrampoulidis
(2020) indicate that, in the over-parameterization regime and when the training data is
sampled from a GMM, the max-margin direction is the min-norm interpolation of the data
with high probability. Since the latter has an analytical form given by XT (XXT )−1y, we
can then calculate the exact generalization performance of the trained model as stated in
the following theorem.

Theorem 2. If a logistic regression model is adversarially trained on n separable training
instances sampled from the l-th component of the GMM described in (4), {pk}Kk=1 are the
probabilities of sampling from the k-th component of the GMM; when m

n logn is sufficiently

large2, then with probability 1 − O( 1
n), the expected adversarial test error R under the

adversarial budget S(2)(ε), which is a function of rl and ε, on the whole GMM described in

2. Specifically, m and n need to satisfy m > 10n logn+ n− 1 and m > Cnrl
√

log 2n‖η‖. The constant C is
derived in the proof of Theorem 1 in Wang and Thrampoulidis (2020).
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(4) is given by

R(rl, ε) =

K∑
k=1

pkΦ (rkg(rl)− ε)

where g(rl) = (C1 −
1

C2r2
l + o(r2

l )
)
1
2 , C1, C2 ≥ 0.

(5)

C1, C2 are non-negative numbers independent of ε and rl. The function Φ is defined as
Φ(x) = P(Z > x), Z ∼ N (0, 1).

We defer the proof of Theorem 2 to Appendix B.2, in which we calculate the exact expression
of R(rl, ε), C1, C2, and show that C1, C2 are positive numbers almost surely. Since C1 and
C2 are independent of rl, and Φ(x) is a monotonically decreasing function, we conclude
that the robust test error R(rl, ε) becomes smaller when rl increases. Since the training
set is separable, our results indicate that when the training instances become easier, the
corresponding generalization error under adversarial attack becomes smaller.

Theorem 2 holds for any ε as long as the training data is separable under the corresponding
adversarial budget. The following corollary shows that the difference in the robust test error
between models trained with easy instances and the ones with hard ones increases when ε
becomes larger, i.e., under a larger adversarial budget.

Corollary 3. Under the conditions of Theorem 2 and the definition of R in Equation (5),
if ε1 < ε2, then we have ∀ 0 ≤ i < j ≤ K,R(ri, ε1)−R(rj , ε1) < R(ri, ε2)−R(rj , ε2).

The proof is in Appendix B.3. R(ri, ε) − R(rj , ε) is the gap in robust accuracy between
the models trained on the easy instances and the ones on the hard instances under the
adversarial budget S(2)(ε). Corollary 3 shows that such a gap increases with the size of the
adversarial budget. This indicates that, compared with training on the clean inputs, i.e.,
ε = 0, the generalization performance of adversarial training, i.e., ε > 0, is more sensitive
to the difficulty of the training instances. Furthermore, overfitting in adversarial training
becomes increasingly severe as ε becomes larger. This is consistent with our empirical
observations in Figures 2, 13, 14.

5.2 General Nonlinear Models

In this section, we study the binary classification problem using a general nonlinear model.
We consider a model with b parameters, i.e., w ∈ Rb. Without loss of generality, we assume
the output of the function fw to lies in [−1,+1]. Similarly to the K-mode Gaussian mixture
model studied in the linear case, we assume the data distribution to be a composition of K
sub-distributions. Furthermore, each of these distributions are isoperimetric.

Assumption 4. The data distribution µ is a composition of K c-isoperimetric distributions
on Rm, each of which has a positive conditional variance. That is, µ =

∑K
k=1 αkµk, where

αk > 0 and
∑K

k=1 αk = 1. We define σ2
k = Eµk [V ar[y|x]], and without loss of generality

assume that σ1 ≥ σ2 ≥ ... ≥ σK > 0. Furthermore, given any L-Lipschitz function fw,

11
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i.e., ∀x1,x2, ‖fw(x1) − fw(x2)‖ ≤ L‖x1 − x2‖, we have the following inequality satisfied
∀k ∈ {1, ...,K}

P(x ∼ µk, ‖fw(x)− Eµk(fw)‖ ≥ t) ≤ 2e−
mt2

2cL2 . (6)

This is a benign assumption; the data distribution is a mixture of K components and each of
them contains samples from a sub-Gaussian distribution. These components correspond to
training instances of different difficulty levels measured by the conditional variance. This is
because the conditional variance σ2

k is the expected test error of a well-trained model (Bubeck
and Sellke, 2021). Subsets with large σ2

k have higher loss and the difficulty function defined
by the average training loss

We now study the properties of the model fw under adversarial attacks.

Definition 5. Given the dataset {xi, yi}ni=1, the model fw, the adversarial budget S(p)(ε)
and a positive constant C, we define the function h(C, ε) as:

h(C, ε) = min
w∈T (C,ε)

min
i
hi,w(ε)

where T (C, ε) =

{
w

∣∣∣∣ 1n
n∑
i=1

(fw(x′i)− yi)2 ≤ C

}
,

hi,w(ε) = max ζ, s.t. [fw(xi)− ζ, fw(xi) + ζ] ⊂
{
fw(xi + ∆)

∣∣∣∣∆ ∈ S(p)(ε)

}
.

(7)

Here, x′i is the adversarial example of xi. We omit the superscript (p) for notation simplicity.

By definition, hi,w(ε) ≥ 0 depicts the bandwidth ζ of the model’s output range in the domain
of the adversarial budget on a training instance. T (C, ε) represents the set of well-trained
models whose adversarial training loss is smaller than C. Therefore, h(C, ε) is the minimum
bandwidth among such well-trained models. The following lemma demonstrates monotonicity
properties of the function h.

Lemma 6. ∀C, ε1 < ε2, h(C, ε1) ≤ h(C, ε2); ∀ε, C1 < C2, h(C1, ε) ≥ h(C2, ε).

Based on the definitions of T and hi,w, and for a fixed value of C, we have ∀ε1 < ε2,
hi,w(ε1) ≤ hi,w(ε2) and T (C, ε2) ⊂ T (C, ε1). As a result, ∀ε1 < ε2, h(C, ε1) ≤ h(C, ε2). In
addition, since ∀C1 < C2, T (C1, ε) ⊂ T (C2, ε) for a fixed value of ε, we have ∀C1 < C2,
h(C1, ε) ≥ h(C2, ε). That is to say, h(C, ε) is a monotonically non-decreasing function on ε
and a monotonically non-increasing function on C. In practice, when fw represents a deep
neural network, h(C, ε) increases with ε almost surely, because the attack algorithm usually
generates adversarial examples at the boundary of the adversarial budget. Based on the
monotonicity properties of h, We then state our main theorem below.

Theorem 7. Given n training pairs {xi, yi}ni=1 sampled from the l-th component µl of the
distribution in Assumption 4, the parametric model fw, the adversarial budget S(p)(ε) and
the corresponding function h defined in Definition 5, we assume that the model fw is in the
function space F = {fw,w ∈ W} with W ⊂ Rb having a finite diameter diam(W) ≤ W
and, ∀w1,w2 ∈ W, ‖fw1 − fw2‖∞ ≤ J‖w1 −w2‖∞. We train the model fw adversarially
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using these n data points. Let x′i be the adversarial example of the data point xi, i.e., x′i =
arg maxxadv(fw(xadv)− yi)2 s.t. ‖xadv − xi‖p ≤ ε. ∀δ ∈ (0, 1), if we have 1

n

∑n
i=1(fw(x′i)−

yi)
2 = C and γ := σ2

l + h2(C, ε)− C ≥ 0, then with probability at least 1− δ, the Lipschitz
constant of fw is lower bounded as

Lip(fw) ≥ γ

27

√
nm

c
(
b log(4WJγ−1)− log(δ/2− 2e−2−11nγ2)

) , (8)

Lip(fw) is the Lipschitz constant of fw: ∀x1,x2, ‖fw(x1)− fw(x2)‖ ≤ Lip(fw)‖x1 − x2‖.

The proof is deferred to Appendix B.4. Theorem 7 extends the results in Bubeck and
Sellke (2021) to the case of adversarial training. The Lipschitz constant is widely used
to bound a model’s adversarial vulnerability on the test set (Ruan et al., 2018; Weng
et al., 2018a,b); larger Lipschitz constants indicate higher adversarial vulnerability on
the test set. Note that modern deep neural network models typically have millions of
parameters, so b� max{c,m, n}. In this case, we can approximate the lower bound (8) by

Lip(fw) & γ
27

√
nm

bc log(4WJγ−1)
, and the right hand side increases with γ.

Lemma 6 indicates that γ monotonically increases with the decrease of C, and Theorem 7
assumes γ > 0, so the conclusion of Theorem 7 is based on a sufficient small adversarial
training loss C. That is to say, our theorem is applicable when the model is well fit to the
adversarial training instances, i.e., small adversarial training loss, which is exactly when
adversarial overfitting occurs. By contrast, there is usually no adversarial overfitting with
large adversarial training loss when adversarial training does not or cannot fit the training
set. For example, when ε is too large for adversarial training to converge, we will obtain a
constant classifier as indicated in Liu et al. (2020). While the model has a high robust test
error, the adversarial overfitting does not happen in this case.

Theorem 7 is applicable to any lp norm based adversarial budget based on the definition of
h(C, ε). Since γ := σ2

l + h2(C, ε)− C, we can conclude that the Lipschitz upper bound and
thus the adversarial vulnerability on the test set is affected by three factors: it increases
when σl , ε increase or C decreases. We elaborate the conclusion in the following paragraphs.

First, as the training processes, the adversarial training loss C becomes smaller, and
correspondingly h(C, ε) becomes bigger based on Lemma 6. Therefore, γ = σ2

l +h2(C, ε)−C
increases and the condition γ ≥ 0 will be satisfied in the late phase of adversarial training. In
this context, as γ ≥ 0 increases during this period, the Lipschitz lower bound also increases
based on (8), indicating a higher adversarial test loss. In summary, in the final stages of
training, which ensure that γ ≥ 0, the training loss C decreases while the test loss increases.
As a result, the generalization gap increases.

Second, with fixed C, i.e., the adversarial training loss is fixed, and the generalization gap
is indicated by the adversarial test loss, represented by the Lipschitz lower bound in (8).
When ε is fixed, the Lipschitz lower bound increases with the increase of σl. That is, under
the same adversarial budget, the generalization gap increases with the instances’ difficulty,
measured by σl in our theorem. When σl is fixed, the Lipschitz lower bound increases
with the increase of ε. Therefore, using the same training instances, the generalization gap
increases with the size of the adversarial budget, measured by ε.
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Finally, Theorem 7 discusses the case where the model is trained on samples from one
components of the data distribution, i.e., a subset of the training set. This is exactly the
case of Section 4.1. Furthermore, we can utilize Theorem 7 to analyze the cases when
the model is trained on samples from the entire data distribution, which consists from K
components. Similarly to the analysis in Section 4.2, we calculate the training loss {Ci}Ki=1

for all K components. Correspondingly, we can define the function hi(C, ε) same as in
Definition 5 except that it is based on, instead of all training instances, the training instances
sampled from the i-th component from the data distribution. Based on this, we define
γi := σ2

i + h2
i (Ci, ε) − Ci for i ∈ {1, 2, ...,K}. We can then utilize Theorem 7 for training

samples from each distribution component and then obtain the lower bound of the model’s
Lipschitz constant. Formally, we have the following:

Corollary 8. Given the assumptions of Theorem 7, except that the training data is sampled
from all K components and contains ni training instances from the i-th component, {Ci}Ki=1,
{hi}Ki=1, {γi}Ki=1 defined for each components of the data distribution, then with probability
at least 1− δ, the Lipschitz constant of fw is lower bounded as

Lip(fw) ≥ max

 γi
27

√
nim

c
(
b log(4WJγ−1

i )− log(δ/2− 2e−2−11nγ2i )
)∣∣∣∣γi ≥ 0

 (9)

Corollary 8 is straightforward from Theorem 7: We calculate the Lipschitz lower bound
based on the adversarial training loss of each component as long as it is valid, i.e., γi ≥ 0.
The formal proof is provided in Appendix B.5. Corollary 8 indicates the Lipschitz lower
bound of the model when it is trained on the whole training distribution consisting of
instances of different difficulty levels. Similarly to the analysis of Theorem 8, the value of γi
for each component of the data distribution increases as the training processes. That is to
say, the size of the set {i|γi ≥ 0} increases during training, i.e., there are more and more
numbers fed to the max operator in (9). In addition, the Lipschitz lower bound derived
by the training instances from each components monotonically increases during training.
Combining these two points together, we conclude that the Lipschitz lower bound provided
by (9) monotonically increases during training, indicating more and more severe overfitting.
As in Theorem 7, the Lipschitz lower bound also increases with the increase of ε, indicating
that using a larger adversarial budget in adversarial training suffers more from overfitting.

In the early phase of adversarial training, the difference in the adversarial training loss for
easy and hard instances is large. That is, the value of Ci dominates the calculation of γi.
In this stage, the Lipschitz lower bound in (9) is dominated by the easy instances, because
for hard instances sampled from the i-th component, Ci is huge and the corresponding γi
does not satisfy the condition γi ≥ 0. However, in the late phase of adversarial training, the
adversarial training loss for all training instances is close to 0. As a result, the value of σi
dominates the calculation of γi. In this stage, the Lipschitz lower bound in (9) is dominated
by the hard instances, because ∀i, Ci ' 0, and γi increase with the increase of σi.

Corollary 8 explains the phenomena shown in Section 4.2 and confirms that fitting hard
adversarial instances is harmful for the generalization performance.
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5.3 Numerical Simulation

We conduct numerical simulation to confirm the validity of Theorem 7 in our settings. To this
end, we use the CIFAR10 dataset and an RN18 network architecture. However, calculating
the Lipschitz constant of a deep neural network is NP-hard (Scaman and Virmaux, 2018),
exactly calculating the Lipschitz constant (Jordan and Dimakis, 2020) is so far infeasible
for modern deep neural networks. Instead, we therefore estimate the upper bound of the
Lipschitz constant numerically, as in (Scaman and Virmaux, 2018).

Value of ε
Lipschitz in l∞ Cases (×104)

2/255 4/255 8/255

Easy10K 5.91± 0.00 6.06± 0.00 14.54± 0.02
Random10K 28.98± 0.03 79.96± 0.16 93.63± 0.34
Hard10K 72.42± 0.48 117.60± 2.18 567.24± 0.59

Value of ε
Lipschitz in l2 Cases (×104)

0.50 0.75 1.00

Easy10K 3.34± 0.01 3.67± 0.00 3.91± 0.00
Random10K 30.01± 0.08 31.28± 0.04 39.34± 0.08
Hard10K 60.62± 0.07 80.06± 0.16 77.55± 0.61

Table 1: Upper bound of the Lipschitz constant under different settings of the adversarial
budget when the model is adversarially trained for the easiest, random, or the hardest 10000
instances of the training set. The experiments are run 20 times, and we report both the
mean and the standard deviation in the form of “mean ± standard deviation”.

Table 1 provides the upper bound of the Lipschitz constant of models trained by different
subsets of the training data and different adversarial budget. Due to the stochasticity
introduced by the algorithm of Scaman and Virmaux (2018), we run it 20 times and report
the average and standard deviation; we observed that the standard deviation is negligible
compared with the magnitude of the mean value. Based on the results in Table 1, it is clear
that the models adversarially trained on the hard training instances have a much larger
Lipschitz constant than the ones trained on the easy instances.

Figure 5 depicts the curves of the Lipschitz upper bound when the model is adversarially
trained by the easiest, random, the hardest 10000 instances or the whole training set. The
adversarial budget is based on the l∞ norm with ε = 8/255. We can clearly see that,
as training progresses, the Lipschitz upper bound increases in all cases. Furthermore, in
the last phase of training, the Lipschitz estimation of the models adversarially trained on
hard instances is bigger than the ones on easy instances. These results are consistent with
Theorem 7. In addition, when we conduct adversarial training on the whole training set,
the Lipschitz bound is close to the one trained on the easy instances in the early phase
of training, while it is close to the one trained on hard instances in the late phase. This
observations is consistent with what Corollary 8 indicates.
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Figure 5: Curves of the Lipschitz upper bound when the model is adversarially trained by
the easiest, random, the hardest 10000 instances or the whole training set. The y-axis is in
log-scale. Left: the adversarial budget is based on the l∞ norm with ε = 8/255. Right: the
adversarial budget is based on the l2 norm with ε = 1.

6. Case Study and Discussion

Our empirical and theoretical analyses indicate that fitting hard adversarial leads to adversar-
ial overfitting. In this section, we first review existing approaches to mitigating overfitting in
adversarial training. Specifically, we show that they implicitly avoid fitting hard adversarial
instances, which provides an explanation for their success. We also show that the methods
that encourage fitting hard adversarial instances fail to yield truly robust models.

We believe that our discovery is broadly applicable to different tasks aiming to achieve
adversarial robustness against a norm-based adversarial budget. In this regard, we study
the cases of fast adversarial training and adversarial fine-tuning with additional training
data. Our results indicate that avoiding to fit hard adversarial instances also improves the
performance in these cases. More detailed discussions are deferred to Appendix D.4.

6.1 Standard Adversarial Training: A New Perspective on Existing Methods

Existing methods aiming to mitigate adversarial overfitting can be generally divided into
two categories: those that use adaptive inputs, such as Balaji et al. (2019), and those that
rely on adaptive targets, such as Chen et al. (2021b); Huang et al. (2020). We show below
that both categories implicitly aim to prevent the model from fitting hard input-target pairs.

We use instance-wise adversarial training (IAT) (Balaji et al., 2019) and self-adaptive
training (SAT) (Huang et al., 2020) as examples of these two categories. IAT uses an
instance-adaptive adversarial budget during training. It adaptively adjusts ε, the size of the
adversarial budget, for each training instance. SAT uses self-supervised adaptive targets
instead of the ground truth during training. We run both algorithms using the settings
in their original papers, except that we train the model for 200 epochs for a consistent
comparison. The details are provided in Appendix D.4.

Let us study how these algorithms adaptively use instances of different difficulty levels.
For IAT, we plot the relationship between the instance difficulty d(xi) and its adaptive
adversarial budget’s size εi in Figure 6a, which shows a high correlation (0.884) between
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Figure 6: Results of our case study. The model is always an RN18 and the target adversarial
budget’s size ε = 8/255. (a) Relationship between instance difficulty d(xi) and its adversarial
budget size in IAT for the CIFAR10 training set. (b) Average weights of different groups in
the CIFAR10 training set during training in SAT. The warmup period is 90 epochs, and SAT
is enabled after that. (c) Training accuracy of different groups on the CIFAR10 training set
during training in SAT. The solid lines and the dashed lines represent the accuracy on the
ground truth and on the adaptive targets, respectively. The warmup period is 90 epochs,
and SAT is enabled after that.

them. Specifically, we find that the hard instances are assigned smaller adversarial budgets
for training, which indicates that IAT prevents the model from fitting the hard adversarial
instances. For SAT, we show the average weights assigned to the instances in each group of
{Gi}9i=0 during training in Figure 6b. The hard instances are clearly assigned much smaller
weights to calculate the loss, which indicates that they are downplayed during training. We
also provide the average accuracy of each group during training in Figure 6c, given both the
ground truth or the adaptive target.3 We observe that the hard instances have much higher
accuracy on their adaptive targets compared with the ground truth, while such a difference
is much smaller for the easy instances. Our results thus indicate that the adaptive targets
used by SAT are much easier to fit, which avoids having to directly fit the hard adversarial
input-target pairs.

In addition to IAT and SAT, other methods have introduced regularization terms to mitigate
adversarial overfitting, such as Zhang et al. (2019b) and Chen et al. (2021b). These
regularization terms calculate the distance between the adversarial output logits and their
anchor points. The anchor points are the adaptive targets, and can be the clean output
logits in Zhang et al. (2019b) or a teacher network’s outputs in Chen et al. (2021b). The
regularizers used in these methods encourage the adversarial output logits to be closer to
the anchor points other than to the ground truth for the hard instances. In other words,
these methods also use adaptive targets to avoid fitting the hard input-target pairs.

In contrast to the methods above, Zhang et al. (2021) proposed an instance-adaptive
reweighting strategy which assigns larger weights to the training instances that PGD breaks
in fewer iterations. In other words, this approach assigns larger weights to the hard adversarial
instances, which contrasts with what our analysis revealed. As a matter of fact, this method
was recently shown to be vulnerable to adaptive attacks (Hitaj et al., 2021).

3. For the adaptive target t, the prediction o is considered correct if and only if arg maxi ti = arg maxi oi.
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6.2 Alternative Training Scenarios

We believe that our findings can be applied to improve the generalization performance of
robust models in various situations. In this regard, we conduct preliminary analyses on two
examples: fast adversarial training and fine-tuning a pre-trained model using additional
data. In these examples, we show consistent observations with standard adversarial training.
Our focus in this section is to showcase the general applicability of our findings rather than
proposing entirely new algorithms. Our results below demonstrate that avoiding fitting hard
adversarial instances can consistently mitigate overfitting and improve models’ robustness
in various scenarios.

6.2.1 Fast Adversarial Training

Adversarial training in Madry et al. (2018) introduces a significant computational overhead.
Thus it is desirable to accelerate this method. This section studies how adaptive training
based on the instances’ difficulty mitigates overfitting and improves fast adversarial training.
Specfically, our experiments in this section are based on adversarial training with transferable
adversarial examples (ATTA in Zheng et al. (2020)), which stores the adversarial perturbation
for each training instance as an initial point for the next epoch.

First, we use a reweighting scheme to assign lower weights to hard instances when calculating
the loss objective: each training instance is assigned a weight equal to the adversarial output
probability of the true label. Then this weight is normalized to ensure that the weights in a
mini-batch sum to 1. Note that our reweighting scheme is based on the adversarial output
instead of the clean output, because the adversarial output probability will also be used
to calculate the loss objective. As a result, the computational overhead of the reweighting
scheme is negligible.

In addition to reweighting, we adapt SAT (Huang et al., 2020) to fast adversarial training
and quantitatively study how adaptive targets for hard adversarial training instances
mitigate adversarial overfitting. For each training instance (x, y), we maintain an adaptive
moving average target t̃. t̃ is updated in an exponential averaging manner for each epoch:
t̃← ρt̃+(1−ρ)o′ where ρ is the momentum factor and o′ is the logit of the adversarial input
x′. Like the reweighting scheme, compared with Huang et al. (2020), we use the adversarial
output o′ instead of the clean output o to avoid computational overhead. The final adaptive
target we use is t = β1y + (1− β)t̃ and thus the loss objective is Lw(x′, t). The factor β
controls how “adaptive” our target is: β = 0 yields a fully adaptive moving average target t̃
and β = 1 yields a one-hot target 1y. We provide the pseudocode as Algorithm 1.

Our experiment is on CIFAR10 and use l∞ norm based adversarial budget with ε = 8/255,
the standard setting where most fast adversarial training algorithms are benchmarked Croce
et al. (2020). Unless specified, we use the same settings as in Zheng et al. (2020). we train
the model for 38 epochs, the learning rate is 0.1 on the first 30 epochs, it decays to 0.01 in
the next 6 epochs and further decays to 0.001 in the last 2 epochs. We evaluate the model’s
robust accuracy on the test set by AutoAttack Croce and Hein (2020b), the popular and
reliable attack for evaluation. More hyper-parameter details are deferred to Appendix C.2
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Algorithm 1 One epoch of the accelerated adversarial training.

Input: training data D, model f , batch size B, PGD step size α, adversarial budget
S(p)(ε), coefficient ρ, β.
for Sample a mini-batch {xi, yi}Bi=1 ∼ D do
∀i, obtain the initial perturbation ∆i as in Zheng et al. (2020).
∀i, one step PGD update: ∆i ← ΠS(p)(ε) [∆i + αsign(O∆iLθ(xi + ∆i, yi)]).
∀i, update the cached adversarial perturbation ∆i as in Zheng et al. (2020).
if use reweight then
∀i, weight wi = softmax[f(xi + ∆i)]yi

else
∀i, weight wi = 1

end if
∀i, query the adaptive target t̃i and update: t̃i ← ρt̃i + (1− ρ)softmax[f(xi + ∆i)].
∀i, the final adaptive target ti = β1yi + (1− β)t̃i
Calculate the loss 1∑B

i wi

∑B
i wiLθ(xi + ∆i, ti) and update the parameters.

end for

Method Model Epochs Complexity AutoAttack(%)

Shafahi et al. (2019) WRN34 200 2 41.17
Wong et al. (2020) RN18 15 4 43.21
Zheng et al. (2020) WRN34 38 4 44.48
Zhang et al. (2019a) WRN34 105 3 44.83
Chen et al. (2021a) WRN34 100 7 51.12

Reweighting (Ours) WRN34 38 4 46.15
Adaptive Target (Ours) WRN34 38 4 51.17

Table 2: Comparison between different accelerated adversarial training methods in robust test
accuracy against AutoAttack (AA). The baseline results are from RobustBench. Complexity
shows the total number of forward passes and backward passes in one mini-batch update.

The results are provided in Table 2, where the results of the baseline methods are taken from
RobustBench Croce et al. (2020). We also report the number of epochs and the number of
forward and backward passes in a mini-batch update of each method. The product of these
two values indicates the training complexity. We can clearly see that both reweighting and
adaptive targets improve the performance on top of ATTA Zheng et al. (2020). Note that
our method based on adaptive targets achieve the best performance while needing only 1/4
of the training time of Chen et al. (2021a), the strongest baseline. Wong et al. (2020) is the
only baseline consuming less training time than ours, but its performance is much worse
than ours; it suffers from catastrophic overfitting when using a WRN34 model.

We also conduct ablation study in the context of fast adversarial training. In Figure 7,
we plot the learning curves for different values of β in Algorithm 1, we also compare the
learning curves of ATTA with and without reweighting. Lower the value of β is, more
weights assigned to the adaptive part of the target: β = 0 means we directly utilize the
moving average target as the final target, β = 1 means we use the one-hot groundtruth
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label. In the left part of Figure 7, the generalization gap decreases with the decrease in
β. That is to say, the adaptive target can indeed improve the generalization performance.
In addition, the right part of Figure 7 confirm that the reweighting scheme can prevent
adversarial overfitting and decrease the generalization gap.
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Figure 7: The learning curves of Algorithm 1 when we use different values of β (left) or
compare the performance with and without reweighting (right). The solid curve and the
dashed curve represent the robust test error and the robust training error, respectively.

6.2.2 Adversarial Fine-tuning with Additional Data

In this section, we study fine-tuning an adversarially pretrained model using additional
training data. We observe that adversarial overfitting occurs when using a small learning
rate in Section 4. Since we also use a small learning rate to conduct adversarial fine-tuning
with additional data, it is important to address the adversarial overfitting issue in this
context. While additional training data was shown to be beneficial in Alayrac et al. (2019);
Carmon et al. (2019), we demonstrate that letting the model adaptively fit the easy and
hard instances of the additional data further improve the performance.

We conduct experiments on both CIFAR10 and SVHN, using WRN34 and RN18 models,
respectively. The model is fine-tuned for either 1 epoch or 5 epochs, which means that each
additional training instance is used either 5 times or only once. This is because we observed
the performance of vanilla adversarial training to start decaying after 5 epochs. As such,
methods requiring many epochs such as Balaji et al. (2019) and Huang et al. (2020) are not
applicable here. More hyper-parameter details are deferred to Appendix C.2.

Our first technique, reweighting, is the same as in the previous section. In addition to
reweighting, we can also add a KL regularization term measuring the KL divergence between
the output probability of the clean instance and of the adversarial instance. The KL
term encourages the adversarial output to be close to the clean one. In other words, the
clean output probability serves as the adaptive target. For hard instances, the clean and
adversarial inputs are usually both misclassified. Therefore, the clean outputs of these
instances constitute simpler targets compared with the ground-truth labels. Ultimately, the
loss objective of a mini-batch {xi}Bi=1 used for fine-tuning is expressed as LFT ({xi}Bi=1) =
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∑B
i=1wi [Lw(x′i) + λKL(oi||o′i)] where wi is the adaptive weight when we use re-weighting,

or 1/B otherwise. λ is 6 when using the regularization term and 0 otherwise.

We use reweighting and KL regularization to fine-tune the model. Results in Table 3 clearly
show that both techniques benefit the performance of the finetuned model. This shows that
avoiding fitting hard adversarial examples helps to improve the generalization performance
in adversarial fine-tuning with additional training data.

Duration Method AutoAttack(%) Duration Method AutoAttack(%)

WRN34 on CIFAR10, ε = 8/255 RN18 on SVHN, ε = 0.02

No Fine Tuning 52.01 No Fine Tuning 67.77

1 Epoch

Vanilla AT 54.11

1 Epoch

Vanilla AT 70.81
RW 54.69 RW 70.83
KL 54.73 KL 72.29
RW + KL 54.69 RW + KL 72.53

5 Epoch

Vanilla AT 55.49

5 Epoch

Vanilla AT 72.18
RW 56.41 RW 72.72
KL 56.55 KL 73.17
RW + KL 56.99 RW + KL 73.35

Table 3: Robust accuracy of fine-tuned models against AutoAttack(AA). We conduct ablation
study on both reweighting (RW) and KL regularization (KL).

7. Conclusion

We have investigated adversarial overfitting from the perspective of training instances’
difficulty. By introducing a quantitative metric to measure the instance difficulty, we have
shown that a model’s generalization performance under adversarial attacks degrades during
the later phase of training as the model fits the hard adversarial instances. We have conducted
theoretical analyses on both linear and nonlinear models. On an over-parameterized logistic
regression model, we have shown that training on harder adversarial instances leads to
poorer generalization performance. We have also proven that the performance of adversarial
training is more sensitive to hard instances than vanilla training. On general nonlinear
models, we have shown that the lower bound of a well-trained model’s Lipschitz constant
increases when trained with more difficult instances. Finally, we have shown that existing
approaches to mitigating adversarial overfitting implicitly avoid fitting hard adversarial
instances. We believe that our findings shed some light on adversarial training, and will allow
the community to design new algorithms and improve robustness in diverse applications.
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Appendix A. Notation

A Section 3 Perturbation method.
b Section 5.2 The number of parameters in a general nonlinear model.
c Assumption 4, Section 5.2 The coefficient in isoperimetry.
C Section 5.2 The mean squared error on the adversarial training set.
d Equation 2, Section 3 The function representing the difficulty metric.
D Section 3 The data set.
fw Section 1 The model parameterized by w.
F Theorem 7, Section 5.2 The function space of the model.
G Section 4.2 Groups of the training set divided by instance difficulty.
h Definition 5, Section 5.2 The bandwidth of the model’s output range.
J Theorem 7, Section 5.2 The Lipschitz constant of fw w.r.t w.
K Section 5 The number of components in the data distribution.
l Section 5 The component index where the training data is sampled.
L Assumption 4, Section 5.2 The Lipschitz constant of fw w.r.t the input.
L Section 1 The loss function.
m Section 5 Dimension of the input data.
M Section 3 The number of total training epochs.
n Section 5 The number of training instances.
o, o′ Section 6 Model’s output of the clean and the adversarial input.
p Section 1 Shape of the adversarial budget.
pk Section 5.1 The probability of k-th component in the GMM model.
r Equation 4, Section 5.1 The coefficient in the GMM model.
R Theorem 2, Section 5.1 The robust test error.

t, t̃ Section 6.2 The adaptive target and the moving average target.
w Section 5 Model parameters.
W Theorem 7, Section 5.2 The diameter upper bound of the parameter space.
W Theorem 7, Section 5.2 The space of model parameters.
x,x′,X Section 1 & Section 5 Clean input, adversarial input and its matrix form.
y, y Section 1 & Section 5 Label and its vector form.
α Algorithm 1 The step size of the adversarial attacks.
β Section 6.2 The coefficient controlling how adaptive the target is.
γ Theorem 7, Section 5.2 The non-negative variable introduced in Theorem 7.
δ Theorem 7, Section 5.2 The probability introduced in Theorem 7.
ε Section 1 The size of the adversarial budget.
η Equation 4, Section 5.1 The direction of the mean of each GMM’s component.
ρ Section 6.2 The momentum calculating the moving average target.
µl, µl Assumption 4, Section 5.2 Data distribution and its l-th component.
σ Assumption 4, Section 5.2 The conditional variance of the data distribution.

Table 4: The notation in this paper. In addition to what they represent, we provide the
section of their definition or first appearance.
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Appendix B. Proofs in Theoretical Analysis

B.1 Proof of Theorem 1

Similar to Soudry et al. (2018), we can assume all instances are positive without the loss of
generality, this is because we can always redefine yixi as the input. In this regard, the loss
to optimize in a logistic regression model under the adversarial budget S(2)(ε) is:

Lw(X) =
n∑
i=1

l(wTxi − ε‖w‖) (10)

Here l(·) is the logistic function: l(x) = 1
1+e−x . We use X ∈ Rn×m to represent the training

set as said in Section 5, then the loss function L(w) is ‖X‖2-smooth, where ‖X‖2 is the
maximal singular value of X. Since function Lw is convex on w, so gradient descent of step
size smaller than 2‖X‖−2 will asymptotically converge to the global infimum of the function
Lw on w.

Before proving Theorem 1, we first introduce the following lemma:

Lemma 9. Consider the max-margin vector ŵ of the vanilla case defined in Equation (3),

we then introduce the max margin vector ŵ′ defined under the adversarial attack of budget
S(2)(ε) as follows:

ŵ′ = arg min
w

‖w‖ s.t. ∀i ∈ {1, 2, ..., n}, wTxi − ε‖w‖ ≥ 1 (11)

Then we have ŵ′ is collinear with ŵ, i.e., ŵ′

‖ŵ′‖
= ŵ
‖ŵ‖

Proof We show that ŵ = 1

1+ε‖ŵ′‖
ŵ′ and prove it by contraction.

Let’s assume ∃v, s.t. ‖v‖ < ‖ŵ′‖
1+ε‖ŵ′‖

and ∀i ∈ {1, 2, ..., n}, vTxi ≥ 1, then we can consider

v′ = (1 + ‖ŵ′‖)v. The l2 norm of v′ is smaller than that of ŵ′, and we have

∀i ∈ {1, 2, ..., n},v′Txi − ε‖v′‖ = (1 + ε‖ŵ′‖)vTxi − ε‖v′‖ > (1 + ε‖ŵ′‖)− ε‖ŵ′‖ = 1
(12)

Inequality 12 shows we can construct a vector v′ whose l2 norm is smaller than ŵ′ and
satisfying the condition (11), this contracts with the optimality of ŵ′. Therefore, there is no

solution of condition (3) whose norm is smaller than ‖ŵ′‖
1+ε‖ŵ′‖

.

On the other hand, 1

1+ε‖ŵ′‖
ŵ′ satisfies the condition (3) and its l2 norm is ‖ŵ′‖

1+ε‖ŵ′‖
. As a

result, we have ŵ = 1

1+ε‖ŵ′‖
ŵ′. That means ŵ and ŵ′ are collinear.

With Lemma 9, Theorem 1 is more straightforward, whose proof is shown below. Regarding
the convergence analysis of the logistic regression model in non-adversarial cases, we encourage
the readers to find more details in Ji and Telgarsky (2019); Soudry et al. (2018).
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Proof Theorem 1 in Ji and Telgarsky (2019) and Theorem 3 in Soudry et al. (2018) proves
the convergence of the direction of the logistic regression parameters in different cases. In this
regard, we can let w∞ = limu→∞

w(u)
‖w(u)‖ . That is to say, for sufficiently large u, the direction

of the parameter w(u) can be considered fixed. As a result, the adversarial perturbations of
each data instance xi is fixed, i.e., εw∞.

We can then apply the conclusion of Theorem 3 in Soudry et al. (2018) here, the only
difference is the data points are {xi − εw∞}ni=1. Therefore, the parameter w(u) will
converge to the l2 max margin of the dataset {xi − εw∞}ni=1. When t → ∞, we have
w(u)T (xi − εw∞) = w(u)Txi − ε‖w(u)‖. This is exactly the adversarial max margin condi-

tion in (11). Based on Lemma 9, we have limu→∞
w(u)
‖w(u)‖ = ŵ′

‖ŵ′‖
= ŵ
‖ŵ‖

B.2 Proof of Theorem 2

Given the parameter w of the logistic regression model, we can first calculate the robust
error for the k-th component of the GMM model defined in (4).

Lemma 10. The 0-1 classification error of a linear classifier w under the adversarial attack
of the budget S(2)(ε) for the k-th component of the GMM model defined in (4) is:

R̂k(ε) = Φ(
rkw

Tη

‖w‖
− ε) (13)

where Φ(x) = P(Z > x), Z ∼ N (0, 1).

Proof For a random drawn data instance (x, y), the adversarial perturbation is −yε w
‖w‖ .

Let’s decompose x as rkyη + z, where z ∼ N (0, I). Then, we have

R̂k(ε) = P(ywT (x− yε w
‖w‖

) < 0) = P(ywT (rkyη + z − yε w
‖w‖

) < 0)

= P(−ywTz > rkw
Tη − ε‖w‖)

(14)

Since z ∼ N (0, I), we have −ywTz ∼ N (0, (−ywT )T (−ywT )) = N (0,wTw). Furthermore
−ywT z
‖w‖ ∼ N (0, 1), and we can further simplify R̂k(ε) as follows:

R̂k(ε) = P(
−ywTz

‖w‖
>
rkw

Tη

‖w‖
− ε) = Φ(

rkw
Tη

‖w‖
− ε) (15)

With Lemma 10, we can straightforwardly calculate the robust error for all components of
the GMM model defined in (4):

R̂(ε) =
K∑
k=1

pkΦ(
rkw

Tη

‖w‖
− ε) (16)
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On the other hand, Theorem 1 indicates the parameter w will converge to the l2 max
margin. However, for arbitrary training set, we do not have the closed form of w, which is a
barrier for the further analysis. Nevertheless, results from Wang and Thrampoulidis (2020)
indicates in the over-parameterization regime, the parameter w will converge to min-norm
interpolation of the data with high probability.

Lemma 11. (Directly from Theorem 1 in Wang and Thrampoulidis (2020)) Assume n
training instances drawn from the l-th mode of the described distribution in (4) and each of
them is a m-dimensional vector. If m

n logn is sufficiently large4, then the l2 max margin vector
in Equation (3) will be the same as the solution of the min-norm interpolation described
below with probability at least (1−O( 1

n)).

w̄ = arg min
w

‖w‖ s.t. ∀i ∈ {1, 2, ..., n}, yi = wTxi (17)

Since the min-norm interpolation has a closed solution w̄ = XT (XXT )−1y, Lemma 11 will
greatly facilitate the calculation of R(w) in Theorem 2. To simplify the notation, we first
define the following variables.

U = QQT , d = Qη, s = yTU−1y, t = dU−1d, v = yTU−1d (18)

The proof of Theorem 2 is then presented below.

Proof Based on (16), the key is to simplify the term wTη
‖w‖ , let’s denote it by A, then we

have:

A2 =
ηTwwTη

wTw
=

(yT (XXT )−1Xη)2

yT (XXT )−1y
(19)

The key challenge here is to calculate the term (XXT )−1 where X = rlyη
T + Q. Here

we utilize Lemma 3 of Wang and Thrampoulidis (2020) and Woodbury identity Horn and
Johnson (2012), we have:

yT (XX)−1 = yTU−1 −
(r2
l s‖η‖2 + r2

l v
2 + rlv − r2

l st)y
T + rlsd

T

r2
l s(‖η‖2 − t) + (rlv + 1)2

U−1 (20)

Here, s, t, v, U and d are defined in Equation (18). The scalar divisor comes from the
matrix inverse calculation. Base of Equation (20), we can then calculate yT (XXT )−1y and
yT (XXT )−1Xη.

yT (XXT )−1y = s−
(r2
l s‖η‖2 + r2

l v
2 + rlv − r2

l st)s+ rlsv

r2
l s(‖η‖2 − t) + (rlv + 1)2

=
s

r2
l s(‖η‖2 − t) + (rlv + 1)2

(21)

4. Specifically, m and n need to satisfy m > 10n logn+ n− 1 and m > Cnrl
√

log 2n‖η‖. The constant C is
derived in the proof of Theorem 1 in Wang and Thrampoulidis (2020).
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yT (XXT )−1Xη = yT (XXT )−1(rlyη
T +Q)η

= rl‖η‖2yT (XXT )−1y + yT (XXT )−1d

=
rls(‖η‖2 − t) + rlv

2 + v

r2
l s(‖η‖2 − t) + (rlv + 1)2

(22)

Plug Equation (21) and (22) into (19), we have:

A2 =

(
rls(‖η‖2 − t) + rlv

2 + v
)2

s
(
r2
l s(‖η‖2 − t) + (rlv + 1)2

)
=
s(‖η‖2 − t) + v2

s
− ‖η‖2 − t
r2
l s(‖η‖2 − t) + (rlv + 1)2

=
s(‖η‖2 − t) + v2

s
− 1(

s(‖η‖2−t)+v2
‖η‖2−t

)
r2
l + 2v

‖η‖2−trl + 1
‖η‖2−t

(23)

Plug (23) into (16), we then obtain the robust error on all components of the GMM defined
in (4):

R(rl, ε) =
K∑
k=1

pkΦ (rkg(rl)− ε) , g(rl) = (C1 −
1

C2r2
l + C3

)
1
2

C1 =
s(‖η‖2 − t) + v2

s
, C2 =

s(‖η‖2 − t) + v2

‖η‖2 − t
, C3 =

2v

‖η‖2 − t
rl +

1

‖η‖2 − t
.

(24)

We study the sign of C1 and C2. Consider U = QQT is a positive semidefinite matrix,
so s = yU−1yT ≥ 0. In addition, we have ‖η‖2 − t = ηT

(
I− (QQT )−1

)
η. Since I −

(QQT )−1 = (I− (QQT )−1)T (I− (QQT )−1) is a positive semidefinite matrix, we can obtain
I − (QQT )−1 is also a positive semidefinite matrix. As a result, C1 and C2 are both
non-negative.

B.3 Proof of Corollary 3

To prove Corollary 3, we first prove the following lemma:

Lemma 12. Under the condition of Theorem 2 and R in Equation (5), ∂R(rl,ε)
∂rl

is negative
and monotonically decreases with ε.

Proof

Based on Equation (24), we have:
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∂R(rl, ε)

∂rl
=

K∑
k=1

pkΦ
′(rkg(rl)− ε)

∂g(rl)

∂rl
(25)

Since the training data is separable, we have ∀k, rkwTη − ε‖w‖ > 0, which is equivalent to
the following:

∀k, rkg(rl)− ε > 0 (26)

First, pk is a positive number by definition. Consider function Φ(x) monotonically decrease
with x and is convex when x > 0, so ∀k,Φ′(rkg(rl)− ε) is negative and decreases with ε. In

addition, g(rl) increases with rl and is independent on ε, so ∂g(rl)
∂rl

can be considered as a

positive constant. Therefore, ∂R(rl,ε)
∂rl

is negative and monotonically decreases with ε.

Now, we are ready to prove Corollary 3:

Proof

We subtract the left hand side from the right hand side in the inequality of Corollary 3:

[R(rj , ε1)−R(ri, ε1)]− [R(rj , ε2)−R(ri, ε2)] =

∫ rj

ri

∂R(rl, ε1)

∂rl
drl −

∫ rj

ri

∂R(rl, ε2)

∂rl
drl

=

∫ rj

ri

[
∂R(rl, ε1)

∂rl
− ∂R(rl, ε2)

∂rl

]
drl

> 0
(27)

The last inequality is based on the conditions rj > ri, ε2 > ε1 as well as Lemma 12, they

jointly indicate
[
∂R(rl,ε1)

∂rl
− ∂R(rl,ε2)

∂rl

]
is always positive. We reorganize (27) and obtain

R(ri, ε1)−R(rj , ε1) < R(ri, ε2)−R(rj , ε2).

B.4 Proof of Theorem 7

We start with the following lemma.

27



Liu, Huang, Salzmann, Zhang and Süsstrunk.

Lemma 13. Given the assumptions of Theorem 7, we define g(x) = E(y|x), z(x) = y−g(x)
and consider γ = σ2

l + h2(C, ε)− C, then the following inequality holds.

∀a ∈ (0, 1),P(∃fw ∈ F :
1

n

n∑
i=1

(yi − fw(x′i))
2 ≤ C)

≤ 2e−
na2γ2

8 + P(∃fw ∈ F :
1

n

n∑
i=1

fw(xi)z(xi) ≥
1

2
(1− 3a)γ)

(28)

Proof Given the definition of h(C, ε), we have:

(yi − fw(x′i))
2 = [(yi − fw(xi)) + (fw(xi)− fw(x′i))]

2

≥ (yi − fw(xi))
2 + (fw(xi)− fw(x′i))

2

≥ (yi − fw(xi))
2 + h2(C, ε)

(29)

For the first inequality, x′i is the adversarial example which tries to maximize the loss objective,
yi ∈ {−1,+1} and the range of fw is [−1,+1], so 〈yi − fw(xi), fw(xi)− fw(x′i)〉 ≥ 0. The
second inequality is based on the definition of h2(C, ε) in Definition 5. As a result, we can
simplify the left hand side of (28) as follows:

P(∃fw ∈ F :
1

n

n∑
i=1

(yi − fw(x′i))
2 ≤ C) ≤ P(∃fw ∈ F :

1

n

n∑
i=1

(yi − fw(xi))
2 ≤ C − h2(C, ε))

(30)

We consider the sequence {z(xi)}ni=1, it is i.i.d with Eµl(z(x)2) = Eµl [V ar(y|x)] = σ2
l . Since

the range of the prediction is [−1,+1], so z2(x) ∈ [0, 4]. Then, we have the following
inequality by Hoeffding’s inequality Hoeffding (1994).

∀a ∈ (0, 1),P(
1

n

n∑
i=1

z2(xi) ≤ σ2
l − aγ) ≤ e−

na2γ2

8 (31)

Similarly, we consider the sequence {z(xi)g(xi)}ni=1, the following inequality holds based on
the Hoeffding’s inequality and the fact E(z(x)g(x)) = 0, z(x)g(x) ∈ [−2,+2].

∀a ∈ (0, 1),P(
1

n

n∑
i=1

z(xi)g(xi) ≤ aγ) ≤ e−
na2γ2

8 (32)

Now we study the right hand side of (30):

1

n

n∑
i=1

(yi − fw(xi))
2 =

1

n

n∑
i=1

(
z2(xi) + (g(xi)− fw(xi))

2 + 2z(xi)(g(xi)− fw(xi))
)

≥ 1

n

n∑
i=1

(
z2(xi) + 2z(xi)g(xi)− 2z(xi)fw(xi)

) (33)
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Consider the following reasoning:



1

n

n∑
i=1

(yi − fw(xi))
2 ≤ C − h2(C, ε) = σ2

l − γ

1

n

n∑
i=1

z2(xi) ≥ σ2
l − aγ

1

n

n∑
i=1

z(xi)g(xi) ≥ −aγ

=⇒ 1

n

n∑
i=1

z(xi)fw(xi) ≥
1

2
(1− 3a)γ

(34)

As a result, we have:

P(∃fw ∈ F :
1

n

n∑
i=1

(yi − fw(xi) ≤ C − h2(C, ε)))

≤P(∃fw ∈ F :
1

n

n∑
i=1

z2(xi) ≤ σ2
l − aγ) + P(∃fw ∈ F :

1

n

n∑
i=1

z(xi)g(xi) ≥ −aγ)+

P(∃fw ∈ F :
1

n

n∑
i=1

z(xi)fw(xi) ≥
1

2
(1− 3a)γ)

≤2e−
na2γ2

8 + P(∃fw ∈ F :
1

n

n∑
i=1

z(xi)fw(xi) ≥
1

2
(1− 3a)γ)

(35)

The first inequality is based on the reasoning of (34). The second inequality is based on (31)
and (32).

Based on the inequality (30) and (35), we conclude the proof.

To further simplify the right hand side of (28), P(∃fw ∈ F : 1
n

∑n
i=1 z(xi)fw(xi) ≥ 1

2(1−3a)γ)
needs to be bounded, and this is solved by the following lemma.

Lemma 14. Given the assumptions of Theorem 7 and the definition of g(x), z(x) in
Lemma 13, then the following inequality holds.

∀a ∈ (0, 1), a1 > 0, a2 > 0 and a1 + a2 =
1

2
(1− 3a),

P(∃fw ∈ F :
1

n

n∑
i=1

z(xi)fw(xi) ≥
1

2
(1− 3a)γ) ≤ 2|F|e−

nm
144cL2 a

2
1γ

2

+ 2e−
n
8
a22γ

2
(36)

Proof We recall that the data points {xi, yi}ni=1 are sampled from the distribution µl,
which is c-isoperimetric. For any L-Lipschitz function f , we have:

∀t,P[|fw(x)− Eµl(fw)| ≥ t] ≤ 2e−
mt2

2cL2 (37)
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Since z(x) = y − g(x) ∈ [−2,+2], we can then bound P[z(x)(fw(x)− Eµl(fw)) ≥ t]:

∀t,P[z(x)(fw(x)− Eµl(fw)) ≥ t] ≤ P[|z(x)(fw(x)− Eµl(fw))| ≥ t]

≤ P[|(fw(x)− Eµl(fw))| ≥ t

2
] ≤ 2e−

mt2

8cL2
(38)

Here we utilize the proposition in Vershynin (2018); Van Handel (2014)5, which claims
if {Xi}ni=1 are independent variables and all C-subgaussian, then 1√

n

∑n
i=1Xi is 18C-

subgaussian. Therefore, we have:

∀t,P[
1√
n

n∑
i=1

z(xi)(fw(xi)− Eµl(fw)) ≥ t] ≤ 2e−
mt2

144cL2 (39)

Let t = a1γ
√
n, then we have:

P[
1

n

n∑
i=1

z(xi)(fw(xi)− Eµl(f)) ≥ a1γ] ≤ 2e−
nm

144cL2 a
2
1γ

2

(40)

In addition, we can bound P[ 1
n

∑n
i=1 z(xi)Eµl(fw) ≥ a2γ] by:

P[∃fw ∈ F :
1

n

n∑
i=1

z(xi)Eµl(fw) ≥ a2γ] ≤ P[
1

n

n∑
i=1

|z(xi)| ≥ a2γ] ≤ 2e−
n
8
a22γ

2

(41)

The first inequality is based on the fact Eµl(fw) ∈ [−1,+1]; the second inequality is based
on Hoeffding’s inequality.

Now, we are ready to bound the probability P(∃fw ∈ F : 1
n

∑n
i=1 z(xi)fw(xi) ≥ 1

2(1− 3a)γ).

P(∃fw ∈ F :
1

n

n∑
i=1

z(xi)fw(xi) ≥
1

2
(1− 3a)γ)

≤P[∃fw ∈ F :
1

n

n∑
i=1

z(xi)(fw(xi)− Eµl(f)) ≥ a1γ] + P[∃fw ∈ F :
1

n

n∑
i=1

z(xi)Eµl(fw) ≥ a2γ]

≤2|F|e−
nm

144cL2 a
2
1γ

2

+ 2e−
n
8
a22γ

2

(42)
The first inequality is based on the fact a1 + a2 = 1

2(1− 3a); the second inequality is based
on the Boole’s inequality Boole (1847), inequality (40) and (41).

To simplify the constant notation, we let a = 1
8 , a1 = 3

16 and a2 = 1
8 . We plug this into the

inequality (28) and (36), then:

5. Proposition 2.6.1 in Vershynin (2018) and Exercise 3.1 in Van Handel (2014)
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P(∃fw ∈ F :
1

n

n∑
i=1

(yi − fw(x′i))
2 ≤ C) ≤ 4e−

nγ2

29 + 2|F|e−
nmγ2

212cL2 (43)

Now we turn to the proof of Theorem 7.

Proof

We let FL = {fw|w ∈ W, Lip(fw) ≤ L}, Fγ = {fw|w ∈ W,w = γ
4J � z, z ∈ Zb} and

Fγ,L = Fγ ∩ FL. Correspondingly, we let WL = {w|w ∈ W, Lip(fw) ≤ L}, Wγ = {w|w ∈
W,w = γ

4J � z, z ∈ Zb} and Wγ,L =Wγ ∩WL. Because the diameter of W is W , we have

|Fγ,L| ≤ |Fγ | ≤
(

4WJ
γ

)b
. Here, � means the element-wise multiplication.

Note that the inequality (43) is valid for any values of C as long as it satisfies γ ≥ 0. Based

on this, we apply the substitution


C ← C +

1

2
γ

γ ← 1

2
γ

, then:

P(∃fw ∈ Fγ,L :
1

n

n∑
i=1

(yi − fw(x′i))
2 ≤ C +

1

2
γ) ≤ 4e−

nγ2

211 + 2|F|e−
nmγ2

214cL2

≤ 4e−
nγ2

211 + 2e
b log( 4WJ

γ
)− nmγ2

214cL2

(44)

Based on the definition of Wγ,L, we can conclude that ∀w1 ∈ WL, ∃w2 ∈ Wγ,L s.t.‖w1 −
w2‖∞ ≤ γ

8J . Therefore, ∀fw1 ∈ FL, ∃fw2 ∈ Fγ,Ls.t.‖fw1 − fw2‖∞ ≤
γ
8 . Let choose such

fw2 ∈ Fγ,L given an arbitrary fw1 ∈ FL, then:

(y − fw1(x))2 = (y − fw2(x))2 + (2y − fw1(x)− fw2(x))(fw2(x)− fw1(x))

≥ (y − fw2(x))2 − γ

8
|(2y − fw1(x)− fw2(x))|

≥ (y − fw2(x))2 − γ

2

(45)

The first inequality in (45) is based on Hölder’s inequality; the second inequality is based on
y ∈ {−1,+1} and the range of ∀fw ∈ F is [−1,+1].

We combine (43) with (45), then:

P(∃fw ∈ FL :
1

n

n∑
i=1

(yi − fw(x′i))
2 ≤ C) ≤ P(∃fw ∈ Fγ,L :

1

n

n∑
i=1

(yi − fw(x′i))
2 ≤ C +

1

2
γ)

≤ 4e−
nγ2

211 + 2e
b log( 4WJ

γ
)− nmγ2

214cL2

(46)

Note that FL is the set of functions in F whose Lipschitz constant is no larger than L. We set
the right hand side of (46) to be δ and then get L = γ

27

√
nm

c(b log(4WJγ−1)−log(δ/2−2e−2−11nγ2 ))
.

This concludes the proof.
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B.5 Proof of Corollary 8

Based on the definition of {γi}Ki=1, we can apply Theorem 7 to each subset of the training
set. Each of these subsets is sampled from one component of the data distribution. For
instances sampled from the i-th components, we can derive the lower bound of the model’s
Lipschitz by the following formulation:

Lip(i)(fw) ≥

0, γi < 0 ,
γ
27

√
nm

c(b log(4WJγ−1)−log(δ/2−2e−2−11nγ2 ))
, γi ≥ 0 ,

(47)

Since {Lip(i)(fw)}Ki=1 are all valid Lipschitz lower bounds for the same model, we can refine
the Lipschitz lower bound by choosing the biggest number of them. We can then get the
Lipschitz lower bound as in (9).

Appendix C. Experimental Settings

C.1 General Settings

The ResNet-18 (RN18) architecture is same as the one in Wong et al. (2020); the WideResNet-
34 (WRN34) architecture is same as the one in Madry et al. (2018). Unless specified, the l∞
adversarial budget used for CIFAR10 dataset Krizhevsky et al. (2009) 6 is 8/255 and for
SVHN dataset Netzer et al. (2011) 7 is 0.02. In PGD adversarial training, the step size is
2/255 for CIFAR10 and 0.005 for SVHN; PGD is run for 10 iterations for both datasets.
For adversarial attacks using a different adversarial budget, the step size is always 1/4 of
the adversarial budget’s size, and we always run it for 10 iterations. To comprehensively
and reliably evaluate the robustness of the model, we use AutoAttack Croce and Hein
(2020b), which is an ensemble of 4 different attacks: AutoPGD on cross entropy, AutoPGD
on difference of logits ratio, fast adaptive boundary (FAB) attack Croce and Hein (2020a)
and square attack Andriushchenko et al. (2020). Unless specified, we use stochastic gradient
descent (SGD) with a momentum to optimize the model parameters, we also use weight
decay whose factor is 0.0005. Unless specified, the momentum factor is 0.9, the learning
rate starts with 0.1 and is divided by 10 in the 1/2 and 3/4 of the whole training duration.
The size of the mini-batch is always 128.

We run the experiments on a machine with 4 NVIDIA TITAN XP GPUs. It takes about 6
hours to adversarially train a RN18 model for 200 epochs, and a whole day to adversarially
train a WRN34 model for 200 epochs.

6. Data available for download on https://www.cs.toronto.edu/ kriz/cifar.html. MIT license. Free to use.
7. Data available for download on http://ufldl.stanford.edu/housenumbers/. Free for non-commercial use.
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C.2 Settings in the Case Studies

Fast Adversarial Training Our experiments in this section is on CIFAR10 and use the
l∞ norm based adversarial budget with ε = 8/255. The step size α in Algorithm 1 is 4/255.
Unless explicitly stated, the coefficient ρ and β is 0.9 and 0.1. We train the model for
38 epochs, the learning rate is 0.1 on the first 30 epochs, it decays to 0.01 in the next 6
epochs and further decays to 0.001 in the last 2 epochs. When we use adaptive targets, the
first 5 epochs are the warmup period in which we use fixed targets. Since the goal here is
to accelerate adversarial training, we do not use a validation set to do model selection as
in Rice et al. (2020). We use the standard data augmentation on CIFAR10: random crop
and random horizontal flip.

Adversarial Fine-tuning with Additional Data For CIFAR10, we use 500000 images
from 80 Million Tiny Images dataset Torralba et al. (2008) with pseudo labels in Carmon
et al. (2019) 8. For SVHN, we use the extra held-out set provided by SVHN itself, which
contains 531131 somewhat less difficult samples. When we construct a mini-batch, half of its
instances are sampled from the original training set and the other half are sampled from the
additional data. The experimental settings are the same as Carmon et al. (2019) except the
learning rate. We tune the learning rate and find that fixing it to 10−3 is the best choice.

Appendix D. Additional Experiments and Discussion

D.1 Properties of the Difficulty Metric

To study the factors affecting the difficulty function defined in (2), let us denote by d1, d2 the
difficulty functions obtained under two different training settings, such as different network
architectures and training methods. We then define the difficulty distance (D-distance)
between two such functions d1, d2 under the same perturbation type A as DA(d1, d2), which
is calculated as follows:

DA(d1, d2) = Ex∼U(D)|d1(x,A)− d2(x,A)| . (48)

Similarly, the D-distance between the same function d but under two different perturbation
types A1, A2 is represented by Dd(A1,A2):

Dd(A1,A2) = Ex∼U(D)|d(x,A1)− d(x,A2)| . (49)

For both DA(d1, d2) and Dd(A1,A2), the expected D-distance between two random difficulty
functions with random perturbation types is 0.375, which is calculated based on the random
shuffle of the average loss for each training instance.

We then study the properties of the difficulty functions in Equation (2) by performing exper-
iments on the CIFAR10 and CIFAR10-C (Hendrycks and Dietterich, 2019) dataset, varying
factors of interest and calculating the D-distances between different difficulty functions.

We first study the influence of the network architectures and training durations by using
either a RN18 model, trained for either 100 or 200 epochs (RN18-100 or RN18-200), or a

8. Data available for download on https://github.com/yguooo/semisup-adv. MIT license. Free to use.
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WRN34 model trained for 200 epochs (WRN34). To generate adversarial attacks, we always
use of PGD perturbation APGD with an adversarial budget based on the l∞ norm with
ε = 8/255. This corresponds to the settings used in other works Hendrycks and Dietterich
(2019); Madry et al. (2018). The other hyper-parameters follow the general settings in
Appendix C. In the left part of Table 5, we report the D-distance DAPGD(d1, d2) for all pairs
of settings. Each result is averaged over 4 runs, the variances are all below 0.012 and thus
negligible. The D-distances in all scenarios are very small and close to 0, indicating the
architecture and the training duration have little influence on instance difficulty based on
our definition.

d1\d2 RN18-100 RN18-200 WRN34

RN18-100 0.0189 0.0232 0.0355
RN18-200 0.0232 0.0159 0.0299
WRN34 0.0355 0.0299 0.0178

A1\A2 Clean FGSM PGD

Clean 0.0189 0.0607 0.1713
FGSM 0.0607 0.0843 0.1677
PGD 0.1713 0.1677 0.0857

Table 5: D-distances (DA(d1, d2) for the left table and Dd(A1,A2) for the right table)
between difficulty functions in different settings, including different model architectures,
training duration (left table), and different types of perturbations (right table).

We then perform experiments by varying the attack strategy using a RN18 network. As
shown by the D-distances Dd(A1,A2) reported in the right portion of Table 5, the discrepancy
between values obtained with clean, FGSM-perturbed and PGD-perturbed inputs is much
larger, thus indicating that our difficulty function correctly reflects the influence of an attack
on an instance. In addition, Table 6 demonstrates the D-distance between the difficulty
functions based on clean instances, FGSM-perturbed instance, PGD-perturbed instances
and different common corruptions from CIFAR10-C Hendrycks and Dietterich (2019)9. Note
that Hendrycks and Dietterich (2019) only provides corrupted instances on the test set, so
we train models on the clean training set and test model on corrupted test set in these cases.
We use RN18 architecture and train it for 100 epochs in all cases, results are reported on
the test set. Compared with the results in the left half of Table 5, the D-distance is much
larger here. This indicates the difficulty function depends on the perturbation type applied
to the input, including the common corruptions.

The results in Table 5 and 6 demonstrate that our difficulty metric mainly depends on the
data and on the perturbation type; not the model architecture or the training duration.
This is why we include the data x and the perturbation type A explicitly in the parameter
list in the definition of the difficulty function d in Equation (2).

In the definition of our difficulty metric in Equation (2), the difficulty of one instance is based
on its average loss values during the training procedure. It is intuitive, because the values of
the loss objective represents the cost that model needs to fit the corresponding data point.
The bigger this cost is, the more difficulty this instance will be. To make the metric stable
and prevent the metric from being sensitive to the stochasticity in the training dynamics,
we use the average value of the loss objective for each instance to define its difficulty. In

9. Data available for download on https://github.com/hendrycks/robustness. Apache License 2.0. Free to
use.
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A1\A2 brightness contrast defocus elastic fog
gaussian

blur

Clean 0.1279 0.3219 0.2646 0.2115 0.2324 0.3069
FGSM 0.1303 0.3128 0.2642 0.2098 0.2289 0.3064
PGD 0.1873 0.3082 0.2616 0.2319 0.2414 0.2959

A1\A2
glass

jpeg
motion

pixelate
gaussian impulse

blur blur noise noise

Clean 0.2809 0.1838 0.2520 0.2365 0.2999 0.2869
FGSM 0.2760 0.1853 0.2520 0.2417 0.2918 0.2807
PGD 0.2825 0.2026 0.2605 0.2551 0.2980 0.2866

A1\A2 saturate
shot

snow spatter
zoom speckle

noise blur noise

Clean 0.1335 0.2832 0.2033 0.1930 0.2654 0.2829
FGSM 0.1329 0.2754 0.2003 0.1946 0.2657 0.2759
PGD 0.1932 0.2841 0.2148 0.2297 0.2711 0.2901

Table 6: D-distances between difficulty functions of vanilla / FGSM / PGD training and
training based on 18 different corruptions on CIFAR10-C. We run each experiment for 4
times and report the average value.
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Figure 8: The relationship between the difficulty function based on the average loss values
and the one based on the average 0-1 errors. The left figure is based on the RN18-200 model;
the right figure is based on the WRN34 model. The correlation between these two metrics
are 0.9466 (left) and 0.9545 (right), respectively.

addition to the average loss objectives, we can also use the average 0-1 error to define the
difficulty function. In Figure 8, we plot the relationship between the difficulty metric based
on the average loss values and the one based on the average 0-1 error for instances in the
CIFAR10 training set when we train a RN18-100 model and a WRN34 model. We can
see a strong correlation between them for both models. The correlation of the difficulty
measured by two metrics for the same instance is 0.9466 in the RN18-100 case and 0.9545 in
the WRN34 case. The high correlation indicates we can use either metric to measure the
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difficulty. Since the loss objective values are continuous and finer-grained, we choose it as
the basis of the difficulty function we use in this paper.

D.2 Consistency of the Difficulty Definition

The difficulty definitions used in our theoretical analyses and empirical experiments are
consistent with the definition of d function in Equation (2) in Section 3.

Theoretical Analyses in Section 5 In the analysis of the linear model, we assume the
data distribution follows a K-component Gaussian mixture model. In our definition (4),
the average distance between the positive instances and the negative instances of the k-th
component is 2rk. Based on symmetry, the average distance between the decision boundary
and the adversarial training instances is rk + ε. Since the loss of the linear model decreases
with the increase of the distance between the input and the decision boundary, bigger the
value of rk is, smaller the average loss objective is. Therefore, in this case, the difficulty level
of such training instances, which are defined on their loss objectives, is lower.

In the analysis of the general model, we use the conditional variance σ2
k to represent the

difficulty of the k-th component of the data distribution. Based on Bubeck and Sellke (2021),
the conditional variance σ2

k is the average error of a well-trained model. Since the difficulty
is defined on the loss objective, it can be concluded that bigger the σk is, more difficulty the
samples from the corresponding component will be.

Case Studies in Section 6

0.0 0.2 0.4 0.6 0.8 1.0
Difficulty Level

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

W
ei

gh
t A

ss
ig

ne
d

Figure 9: The relationship between the
difficulty value and the weight assigned
to each instances when using reweighting.
We use the average weight across epochs.
The correlation between them is 0.8900.
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Figure 10: The relationship between the
difficulty value and the average value of
the true label’s probability when using the
adaptive targets. The correlation between
them is 0.9604.

To confirm that the Algorithm 1 is consistent with our difficulty definition, we study the
relationship between the instance difficulty and the weight assigned to them when using
reweighting, as well as the soft target when using adaptive targets. Since the evaluation of
model robustness is based on the PGD attack, the difficulty value here is also based on the
PGD perturbation. In Figure 9, we demonstrate the relationship between the difficulty value
and the average assigned weight for each instance when using reweighting. We calculate
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the correlation between these two values on the training set, it is 0.8900. This indicates we
indeed assign smaller weights for hard training instances and assign bigger weights for easy
training instances. In Figure 10, we show the relationship between the difficulty value and
the average value of the true label’s probability in the soft target when we use the adaptive
targets. Similarly, we calculate the correlation between these two values on the training
set, it is 0.9604. This indicates the adaptive target is similar to the ground-truth one-hot
target for the easy training instances, while the adaptive target is very different from the
ground-truth one-hot target for the hard training instances. This means, adaptive targets
prevent the model from fitting hard training instances while encourage the model to fit the
easy training instances.

D.3 Training on a Subset

Results on SVHN dataset

Figure 11 demonstrates the learning curves of PGD adversarial training based on a subset of
the easiest, the random and the hardest instances of SVHN dataset. We let the size of each
subset be 20000, because the training set of SVHN is larger than that of CIFAR10. The
model architecture is RN18 in these cases. We have the same observations here: training on
the hardest subset yields trivial performance, training on the random subset has significant
generalization decay in the late phase of training while there is no such phenomenon when
the model is trained on the easiest instances.

In Figure 12, we conduct PGD adversarial training using increasing more training instances
in SVHN dataset, starting with the easiest ones. The observation here is consistent with
Figure 3c: although fitting hard adversarial instances can cause overfitting, they can improve
the model performance if we use easy stopping by a validation set. Therefore, we should not
simply remove the hard training instances, but need to utilize them adaptively.

Different Values of ε and l2-based Adversarial Budget Figure 13 and Figure 14
demonstrate the learning curves of RN18 models under different adversarial budgets on
CIFAR10, in both l∞ and l2 cases. In l∞ cases, the adversarial budgets are 2/255, 4/255
and 6/255; in l2 cases, the adversarial budgets are 0.5, 0.75 and 1. With the increase in the
size of the adversarial budget, we can see a clear transition from the vanilla training: more
and more severe generalization decay when training on the random or the hardest subset.
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Figure 11: Learning curves of training
using the easiest, the random and the
hardest 20000 instances of the SVHN
training set. The training error (dashed
lines) is the robust error on the se-
lected instances, and the robust test
error (solid lines) is always the error
on the entire test set.
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Figure 12: Learning curves of PGD ad-
versarial training using increasing more
training data of SVHN. The dashed lines
represent the robust training error on
the selected training instances; the solid
lines represent the robust test error on
the entire test set.
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(a) ε = 2/255
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(b) ε = 4/255
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(c) ε = 6/255

Figure 13: Learning curves of training on PGD-perturbed inputs against different sizes of
l∞ norm based adversarial budgets using the easiest, the random and the hardest 10000
training instances. The instance difficulty is determined by the corresponding adversarial
budget and is thus different under different adversarial budgets. The dashed lines are robust
training error on the selected training set, the solid lines are robust test error on the entire
test set.

D.4 Revisiting Existing Methods Mitigating Adversarial Overfitting

Existing methods mitigating adversarial overfitting can be generally divided into two cate-
gories: one is to use adaptive inputs, such as Balaji et al. (2019); the other is to use adaptive
targets, such as Chen et al. (2021b); Huang et al. (2020). Both categories aim to prevent
the model from fitting hard input-target pairs. In this section, we pick one example from
each category for investigation. We provide the learning curves of the methods we study in
Figure 15. We use the same hyper-parameters as in these methods’ original paper, except for
the training duration and learning rate scheduler, which follow our settings. These methods
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(a) ε = 0.50
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Figure 14: Learning curves of training on PGD-perturbed inputs against different size of l2
norm based adversarial budgets using the easiest, the random and the hardest 10000 training
instances. The instance difficulty is determined by the corresponding adversarial budget and
is thus different under different adversarial budgets. The dashed lines are robust training
error on the selected training set, the solid lines are robust test error on the entire test set.
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Figure 15: Learning curves of PGD adversarial training (PGD AT), instance-adaptive
training (IAT) and self-adaptive training (SAT). Dashed lines and solid lines represent the
robust training error and the robust test error, respectively.

clearly mitigate adversarial overfitting: The robust test error does not increase much in
the late phase of training, and the generalization gap is much smaller that that of PGD
adversarial training.

Instance-Adaptive Training Using an instance-adaptive adversarial budget has been
shown to mitigate adversarial overfitting and yield a better trade-off between the clean and
robust accuracy Balaji et al. (2019). In instance-adaptive adversarial training (IAT), each
training instance xi maintains its own adversarial budget’s size εi during training. In each
epoch, εi increases to εi + ε∆ if the instance is robust under this enlarged adversarial budget.
By contrast, εi decreases to εi− ε∆ if the instance is not robust under the original adversarial
budget. Here, ε∆ is the step size of the adjustment.

We use the same settings as in Balaji et al. (2019) except that we use the same number
of training epochs and learning rate scheduling as the one in other experiments for fair
comparison. Specially, we set the value of ε and ε∆ to be 8/255 and 1.9/255, respectively,
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same as in Balaji et al. (2019). The first 5 epochs are warmup, when we use vanilla adversarial
training Madry et al. (2018).

Self-Adaptive Training Self-adaptive training (SAT) Huang et al. (2020) solves the
adversarial overfitting issue by adapting the target. By contrast with common practice
consisting of using a fixed target, usually the ground-truth, SAT adapts the target of each
instance to the model’s output. Specifically, after a warm-up period, the target ti for an
instance xi is initialized as a one-hot vector by its ground-truth label yi and updated in an
iterative manner after each epoch as ti ← ρti + (1− ρ)oi. Here, ρ is a predefined momentum
factor and oi is the output probability of the current model on the corresponding clean
instance. SAT uses the loss of TRADES Zhang et al. (2019b) but replaces the ground-
truth label y with the adaptive target ti: LSAT (xi) = L(xi, ti) + λmax∆i∈S(ε)KL(oi||o′i),
where KL refers to the Kullback–Leibler divergence and λ is the weight for the regularizer.
Furthermore, SAT uses a weighted average to calculate the loss of a mini-batch; the weight
assigned to each instance xi is proportional to the maximum element of its target ti but
normalized to ensure that all instances’ weights sum up to 1. By weighted averaging, the
instances with confident predictions are strengthened, whereas the ambiguous instances are
downplayed.

Similarly, we use the same settings as in Huang et al. (2020) except we use the same number
of training epochs and learning rate scheduling: we train the model for 200 epochs and the
first 90 epochs are the warmup period.
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