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Abstract

Mean-Field Control (MFC) has recently been proven to be a scalable tool to approximately
solve large-scale multi-agent reinforcement learning (MARL) problems. However, these
studies are typically limited to unconstrained cumulative reward maximization framework. In
this paper, we show that one can use the MFC approach to approximate the MARL problem
even in the presence of constraints. Specifically, we prove that, an N -agent constrained
MARL problem, with state, and action spaces of each individual agents being of sizes |X |,
and |U| respectively, can be approximated by an associated constrained MFC problem with
an error, e , O

(
[
√
|X |+

√
|U|]/

√
N
)
. In a special case where the reward, cost, and state

transition functions are independent of the action distribution of the population, we prove
that the error can be improved to e = O(

√
|X |/
√
N). Also, we provide a Natural Policy

Gradient based algorithm, and prove that it can solve the constrained MARL problem
within an error of O(e) with a sample complexity of O(e−6).

1. Introduction

Consider the situation of a policy-maker that is tasked with allocating a certain amount of
budget to improve the health of a number of infrastructures in a post-disaster scenario. If,
due to the repair, the health of a certain infrastructure improves, it provides the perception
of a high reward to the planner. However, such improvement comes at the “cost” of the
amount of money that is allocated to it. How should the planner allocate the money over a
long period of time? To answer such a question is the same as assigning a policy to each
infrastructure that states how much money should that infrastructure draw from the budget
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pool based on the global state of all infrastructures. The aim of designing such policies
should be to maximize the expected cumulative reward while obeying the budget constraint.

Strategizing the decisions of a large pool of interacting agents under certain constraints
is a frequently appearing problem in many branches of social science and engineering. For
example, such a framework can be applied to power-constrained wireless sensor networks
(Buratti et al., 2009), energy harvesting communication networks (Wang et al., 2015), queuing
systems with stability constraints (Xiang et al., 2014), etc. A common way to deal with
such problems is to use the framework of constrained multi-agent reinforcement learning
(CMARL). In cooperative CMARL, the goal is to maximize the aggregate reward of the
whole population while obeying some specified constraints. Unfortunately, as the number of
agents increases, the size of the joint state space increases exponentially, rendering the task
of maximizing reward incredibly hard.

The phenomenon of state-space explosion is not unique to CMARL, unconstrained MARL
problems also have to deal with the same issue. There have been several attempts to alleviate
this obstacle. For example, one idea is to confine oneself to local policies. This approach
has yielded a number of useful algorithms e.g., Independent Q-Learning (IQL) (Tan, 1993),
centralized training and decentralized execution (CTDE) (Son et al., 2019; Sunehag et al.,
2018; Rashid et al., 2020, 2018; Zhou et al., 2022) based algorithms, etc. Despite their
empirical success, none of the above algorithms can provide theoretical guarantees. Moreover,
it is difficult to train policies using these algorithms when the number of agents is very high.
Another alternative is the framework of mean-field control (MFC) which builds upon the
idea that in an infinite population of identical agents, studying one representative agent
is sufficient to infer the statistics of their collective behavior (Angiuli et al., 2022). MFC
has recently been applied to approximate N -agent unconstrained MARL problems with
theoretical guarantees (Gu et al., 2021). In contrast to the existing approaches, the benefit
of the MFC is that its optimality gap decreases with an increase in the number of agents.
It is, however, still unknown whether similar approximation results can be established for
CMARL problems. In this paper, we provide an affirmative answer to this question.

Establishing MFC-based approximation bounds for CMARL is particularly challenging for
the following reason. Unlike in unconstrained MARL, the set of feasible policies of CMARL
may not be identical to the sets of feasible policies of its associated constrained MFC (CMFC)
problem. In general, a feasible policy for CMARL may overshoot the constraints of CMFC
and vice versa. Clearly, the sets of feasible policies of CMARL and CMFC may partially
overlap but none is a subset of another. The lack of structural hierarchy between the feasible
policy sets makes it difficult to compare the optimal values of CMARL and CMFC. The trick
is not to deal with the original CMARL, and CMFC problems but to consider variants of
those with smaller feasible sets. We show that these variants can be judiciously chosen to
enforce hierarchy, and thereby create a way to compare values.

1.1 Our Contribution

We consider an N -agent CMARL problem where at each instant the agents receive rewards as
well as incur costs depending on their joint states, and actions. The goal is to maximize the
time-discounted sum of rewards (called reward value or simple value) while ensuring that the
discounted cumulative cost lies below a certain threshold. We show that the stated N -agent
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CMARL problem can be well approximated by a CMFC problem with an appropriately
adjusted constraint. In particular, our result (Lemma 1) states that the optimal value of
the stated CMFC is at most at the distance of O(e) from the optimal CMARL value where
e = 1√

N
[
√
|X | +

√
|U|]. The terms |X |, |U| denote the sizes of state, and action spaces of

individual agents respectively. We also show that if the optimal policy obtained by solving
the CMFC is adopted into the N -agent system, then it does not violate the constraint of
CMARL, and yields an N -agent cumulative reward that is O(e) error away from the optimal
N -agent value (Theorem 2). In a special case where the reward, cost, and state transition
functions are independent of the action distribution of the population, we prove that the
error improves to, e =

√
|X |/
√
N (Theorem 4).

The key idea behind Lemma 1 is a novel sandwiching technique. Specifically, we consider
three distinct problems− a CMARL with zero constraint bound (target problem), a CMFC
with slightly more restrictive constraint, and a CMARL with even more restrictive constraint.
We prove that the optimal value for the CMFC problem must be trapped between the optimal
values of the CMARL problems with a small margin of error. Next, we establish that the
CMARL values themselves must be close for large N . This forces the CMFC value to lie in
the vicinity of our target value.

Finally, using the global convergence result of (Ding et al., 2020), we devise a natural
policy gradient-based primal-dual (NPG-PD) algorithm and show that the policy obtained
from the stated algorithm satisfies the constraint of CMARL and approximates the optimal
N -agent value within an error of O(e). The sample complexity of the algorithm is shown to
be O(e−6) (Theorem 5).

1.2 Related Works

Unconstrained Single Agent RL: One of the early attempts to address the problem
of single agent RL was made by the tabular Q-learning (Watkins and Dayan, 1992), and
subsequently by the SARSA algorithm (Rummery and Niranjan, 1994). However, such
approaches work only when the state space is small. Neural Network-based Deep Q-learning
(Mnih et al., 2015), and deep policy gradient algorithms (Li et al., 2019) have been introduced
relatively recently to tackle large state space. One cannot, however, scale these approaches
to a large number of agents due to the exponential blow-up of their joint state space.

Constrained Single Agent RL: Decision making under constraint is typically modeled
via Constrained Markov Decision Problems (CMDPs) (Chow et al., 2017). Several policy
gradient (PG) or direct policy search methods have been proposed to solve CMDPs (Achiam
et al., 2017; Bhatnagar and Lakshmanan, 2012). However, the convergence guarantees of
these algorithms are local. Recently, a series of PG-type algorithms have been proposed that
ensure global convergence (Paternain et al., 2022; Ding et al., 2020; Mondal and Aggarwal,
2024a). The advantage of the mean-field approach is that it effectively reduces a multi-agent
problem to a single-agent problem, thereby allowing us to utilize these existing guarantees of
CMDPs.

MFC-based Approximation of MARL: There have been a number of recent advances
that show that MFC well-approximates MARL problems in the regime of a large population.
(Gu et al., 2021) showed that an N -agent homogeneous MARL problem can be approximated
by MFC within O( 1√

N
) error. (Mondal et al., 2022a) later extended this idea to heterogeneous
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MARL. Their approaches, however, cannot be directly adopted for CMARL. MFC has also
been used to design local policies (Mondal et al., 2022b) and approximate cooperative MARL
with non-uniform interactions (Mondal et al., 2022c).

Algorithms for MFC: In the model-free set up, both Q-learning based (Angiuli et al.,
2022; Gu et al., 2021), and PG-based algorithms (Carmona et al., 2019) have been proposed
to solve MFC problems. Model-based algorithms are also available in the literature (Pásztor
et al., 2023). However, none of these algorithms apply to CMFC problems.

Application of MFC: MFC has found its application in a multitude of social and
engineering applications ranging from epidemic control (Watkins et al., 2016; Lee et al.,
2021), ride-hailing (Al-Abbasi et al., 2019), network traffic engineering (Geng et al., 2020),
congestion management (Wang et al., 2020) etc.

2. Model for Cooperative CMARL

We consider a collection of N agents interacting with each other in discrete time t ∈ {0, 1, · · · }.
The state of i-th agent at time t is denoted as xit which can take values from the finite state
space, X . The joint state of N -agents at time t is symbolised as xNt , {xit}i∈{1,··· ,N}. Upon
observing xNt , the i-th agent chooses an action uit from the finite action set, U according to
the following probability law: uit ∼ πi(xNt ). The symbol, πi(·), is defined to be the policy of
the i-th agent which is assumed to be a function of the form πi : XN → P(U) where P(·)
defines a probability simplex over its argument. The joint action of N -agents at time t is
indicated as uNt , {uit}i∈{1,··· ,N}. As a consequence of these actions, the i-th agent receives a
reward ri(xNt ,uNt ), a constraint cost ci(xNt ,uNt ) at time t, and its state changes in the next
time step according to the following transition rule: xit+1 ∼ Pi(xNt ,uNt ). Here we implicitly
assume that the elements of uNt are conditionally independent given xNt and the elements of
xNt+1 are conditionally independently given (xNt ,u

N
t ).

Note that, the reward, cost, and state transition law of an agent are not only affected by
its own state, and action but also by states, and actions of other agents. Such interlacing is
one of the main obstacles in solving large multi-agent problems. To ease the analysis, we shall
assume a special structure of the reward, cost, and transition functions that are routinely
adopted in the mean-field literature (Gu et al., 2021; Angiuli et al., 2022). Specifically, we
assume that for some r, c : X×U×P(X )×P(U)→ R, and P : X×U×P(X )×P(U)→ P(X ),
the following holds ∀i ∈ {1, · · · , N},

ri(x
N
t ,u

N
t ) = r(xit, u

i
t,µ

N
t ,ν

N
t ) (1)

Pi(x
N
t ,u

N
t ) = P (xit, u

i
t,µ

N
t ,ν

N
t ) (2)

ci(x
N
t ,u

N
t ) = c(xit, u

i
t,µ

N
t ,ν

N
t ) (3)

where µNt , νNt denote the empirical N -agent state, and action distributions respectively.
Formally,

µNt =
1

N

N∑
i=1

δ(xit = x), ∀x ∈ X , and νNt =
1

N

N∑
i=1

δ(uit = u), ∀u ∈ U (4)

where δ(·) is the indicator function. The equations (1) − (3) are applicable to a system
where agents are identical and exchangeable (Mondal et al., 2022a). These relations suggests
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that the effect of the population on any agent is mediated only through the mean-field
distributions. We would also like to point out that the functions, r, P , and c are identical for
all agents. Therefore, the system of agents described above is essentially homogeneous. As a
consequence, we can rewrite the policy functions, πi as follows for some π : X×P(X )→ P(U),
and ∀i{1, · · · , N},

πi(x
N
t ) = π(xit,µ

N
t ) (5)

In simple words, due to homogeneity, we can describe the policy of an agent as a
(stochastic) process of choosing its action upon observing its own state, and the state
distribution of the whole population. The policy of an agent at time t is denoted as πt where
its sequence is denoted as π , {πt}t∈{0,1,··· }. For a given initial joint state, xN0 , the N -agent
reward, and cost-value (indicated respectively as V R

N , V C
N ) of a policy-sequence π are defined

as follows.

V R
N (xN0 ,π) ,

∞∑
t=0

γtE

[
1

N

N∑
i=1

r(xit, u
i
t,µ

N
t ,ν

N
t )

]
(6)

V C
N (xN0 ,π) ,

∞∑
t=0

γtE

[
1

N

N∑
i=1

c(xit, u
i
t,µ

N
t ,ν

N
t )

]
(7)

where the expectation is computed over all joint state-action trajectories induced by π, and
γ ∈ [0, 1) is a discount factor. Let the set of all admissible policies be Π, and Π∞ , Π×Π×· · ·
be the collection of all admissible policy sequences. The goal of N -agent CMARL is to solve
the following optimization problem for a given initial joint state xN0 .

sup
π∈Π∞

V R
N (xN0 ,π) subject to : V C

N (xN0 ,π) ≤ 0 (CMARL)

We shall denote the solution to (CMARL) as π∗N . The existence of an optimal solution
is guaranteed via Slater’s condition described later. Obtaining a solution of (CMARL), is, in
general, difficult. In the next section, we shall demonstrate how π∗N can be approximated
via the constrained mean field control (CMFC) approach.

3. Model for Constrained Mean-Field Control (CMFC)

A mean-field system comprises an infinite collection of agents. Due to homogeneity, it is
sufficient to track only a representative agent to describe the behavior of the population.
Let the state, and action of this representative at time t be denoted as xt ∈ X , ut ∈ U
respectively while the distributions of states, and actions of the whole population be denoted
as µ∞t ∈ P(X ), and ν∞t ∈ P(U). Observe that, for a given policy sequence, π , {πt}t∈{0,1,··· },
the action distribution, ν∞t can be derived from the state distribution, µ∞t as follows.

ν∞t = νMF(µ∞t , πt) ,
∑
x∈X

πt(x,µ
∞
t )µ∞t (x) (8)

Similarly, the state distribution at time t+1 can be obtained from µ∞t using the following
update equation.

µ∞t+1 = PMF(µ∞t , πt) ,
∑
x∈X

∑
u∈U

P (x, u,µ∞t , ν
MF(µ∞t , πt))πt(x,µ

∞
t )(u)µ∞t (x) (9)
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Finally, the average reward, and constraint cost at time t can be computed as

rMF(µ∞t , πt) =
∑
x∈X

∑
u∈U

r(x, u,µ∞t , ν
MF(µ∞t , πt))πt(x,µ

∞
t )(u)µ∞t (x) (10)

cMF(µ∞t , πt) =
∑
x∈X

∑
u∈U

c(x, u,µ∞t , ν
MF(µ∞t , πt))πt(x,µ

∞
t )(u)µ∞t (x) (11)

For an initial state distribution, µ∞0 = µ0, and a policy-sequence π, we define the value
functions related to reward, and constraint cost as follows.

V R
∞(µ0,π) =

∞∑
t=0

γtrMF(µ∞t , πt) (12)

V C
∞(µ0,π) =

∞∑
t=0

γtcMF(µ∞t , πt) (13)

The goal of CMFC is to solve the following optimization problem.

sup
π∈Π∞

V R
∞(µ0,π) subject to : V C

∞(µ0,π) ≤ 0 (CMFC)

where Π∞, as stated in section 2, is the set of admissible policy sequences. In the forthcoming
section, we shall establish that the solution of a variant of (CMFC) closely approximates the
solution of (CMARL) for large N .

4. Main Result: Approximation of CMARL via CMFC

Before stating the approximation result, we would like to enlist the set of assumptions needed
to prove it. Our first assumption is on the reward, cost, and state transition function.

Assumption 1 There exists constants MR,MC , LR, LC , LP > 0 such that the following
relations hold ∀x ∈ X , ∀u ∈ U , ∀µ1,µ2 ∈ P(X ), and ∀ν1,ν2 ∈ P(U).

(a)|r(x, u,µ1,ν1)| ≤MR,

(b)|c(x, u,µ1,ν1)| ≤MC ,

(c)|r(x, u,µ1,ν1)− r(x, u,µ2,ν2)| ≤ LR [|µ1 − µ2|1 + |ν1 − ν2|1] ,

(d)|c(x, u,µ1,ν1)− c(x, u,µ2,ν2)| ≤ LC [|µ1 − µ2|1 + |ν1 − ν2|1] ,

(e)|P (x, u,µ1,ν1)− P (x, u,µ2,ν2)|1 ≤ LP [|µ1 − µ2|1 + |ν1 − ν2|1]

where | · |1 denotes L1-distance.

Assumption 1(a), and 1(b) states that the reward, r, and the cost function, c are bounded.
The very definition of the transition function, P makes it bounded. Hence, it is not listed as
an assumption. On the other hand, Assumption 1(c)-(e) dictate that the functions r, c, and
P are Lipschitz continuous with respect to their state, and action distribution arguments.
Assumption 1 is common in the literature (Angiuli et al., 2022; Carmona et al., 2018). Our
next assumption is on the class of admissible policies, Π.
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Notation Interpretation Used In
π∗N Optimal solution of (CMARL) Theorem 2
π∗0 Optimal solution of (CMARL) Section 5
π∗∞ Optimal solution of (G-CMFC) for ζ = −GC Theorem 2, 4
π∗1 Optimal solution of (G-CMFC) for ζ = −GC Section 5
π∗2 Optimal solution of (G-CMARL) for ζ = −2GC Section 5

V R
N (xN0 ,π), Reward, constraint values of N -agent system Theorem 2, 4, 5,
V C
N (xN0 ,π) for initial states xN0 , and policy sequence π Lemma 3
V R
∞(µ0,π), Reward, constraint values of MFC system for Theorem 2, 4, 5,
V C
∞(µ0,π) initial distribution µ0, and policy sequence π Lemma 3

V ∗N (xN0 , ζ), Optimal objective values of (G-CMARL) and Lemma 1, Theorem 4, 5
V ∗∞(xN0 , ζ) (G-CMFC) respectively with constraint ζ Section 5

Table 1: Notations. Note that V ∗N (xN0 ,−2GC) = V R
N (xN0 ,π

∗
2), V ∗∞(µ0,−GC) = V R

∞(µ0,π
∗
1)

= V R
∞(µ0,π

∗
∞), and V ∗N (xN0 , 0) = V R

N (xN0 ,π
∗
0) = V R

N (xN0 ,π
∗
N ).

Assumption 2 There exists a constant LQ > 0 such that ∀π ∈ Π the following holds.

|π(x,µ1)− π(x,µ2)| ≤ LQ|µ1 − µ2|1

∀x ∈ X , and ∀µ1,µ2 ∈ P(X ).

Assumption 2 dictates that the admissible policies are Lipschitz continuous with respect
to the state distributions. The assumption stated above is also common in the literature and
holds for neural network-based policies with bounded weights (Gu et al., 2021; Pásztor et al.,
2023). Before stating the main result, we need to introduce some notations. Consider the
following optimization problem.

sup
π∈Π∞

V R
N (xN0 ,π) subject to : V C

N (xN0 ,π) ≤ ζ (G-CMARL)

Problem (G-CMARL) is a generalization of the problem (CMARL). Specifically, it uses
an arbitrary real, ζ ∈ R, as the constraint upper bound, instead of ζ = 0 as considered
in (CMARL). With slight abuse of notation, we define the optimal objective value of (G-
CMARL) as V ∗N (xN0 , ζ). In a similar fashion, V ∗∞(µ0, ζ) denotes the optimal objective value
of the following optimization problem for ζ ∈ R.

sup
π∈Π∞

V R
∞(µ0,π) subject to : V C

∞(µ0,π) ≤ ζ (G-CMFC)

Clearly, (G-CMFC) generalizes the problem, (CMFC). Table 1 summarizes the notations
used in the paper. The following Assumption is required (in addition to Assumption 1, 2) to
establish the main result.

Assumption 3 There exists ζ0 > 0 such that the set of feasible solutions of (G-CMARL)
for ζ = −ζ0 is non-empty. In other words, there exists a policy-sequence, π ∈ Π∞ such that
V C
N (xN0 ,π) ≤ −ζ0 for any given joint initial state, xN0 .
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Assumption 3 ensures that no pathological example with an empty feasible set arises in
our analysis. This assumption is similar to Slater’s condition in the optimization literature.
Below we state an intermediate result that will be useful to prove our main theorem.

Lemma 1 Let xN0 denote the initial joint state in an N -agent system, and µ0 be its empirical
distribution. If assumptions 1− 3 hold, then there exists a sufficiently large N0 > 0 such that
∀N ≥ N0 the following inequality holds whenever γSP < 1.

|V ∗N (xN0 , 0)− V ∗∞(µ0,−GC)| ≤ GR +GC

[
4

ζ0

(
MR

1− γ

)]
(14)

The terms GR, GC are defined as shown below.

GJ ,

(
1

1− γ

)[
MJ√
N

+
LJ
√
|U|√
N

]
+

[√
|X |+

√
|U|
]

√
N

(
SJCP
SP − 1

)[
1

1− γSP
− 1

1− γ

]
(15)

where CP , 2 + LP , SJ , (MJ + 2LJ) + LQ(MJ + LJ), SP , (1 + 2LJ) + LQ(1 + LJ), and
J ∈ {R,C}. The terms {MR,MC , LR, LC , LP , ζ0} are defined in Assumptions 1, 2, and 3.

Lemma 1 provides a recipe for approximately solving the N -agent constrained MARL
problem (CMARL). In particular, inequality (14) ensures that the optimal value function
of N -agent problem (CMARL), and that of generalized constrained mean-field problem
(G-CMFC) for ζ = −GC are at most O(GR +GC) distance away from each other. Note that
GR, GC = O

(
1√
N

)
. Thus for sufficiently large N , obtaining a solution for (G-CMFC) for

ζ = −GC is approximately equivalent to solving the original N -agent problem (CMARL).
We would like to mention that, GR, GC = O(

√
|X |+

√
|U|) where |X |, |U| denote the sizes of

state, and action spaces respectively. Therefore, as the state and action spaces of individual
agents become larger, the approximation progressive becomes worse.

Although (14) establishes the proximity of the value-functions of N -agent, and infinite
agent systems, it does not clarify whether the policy sequence obtained by solving (G-CMFC)
for ζ = −GC would obey the constraint of (CMARL) if the policy is adopted in an N -agent
system. It also does not comment on how the said policy sequence would perform (in terms
of cumulative reward) in an N -agent system in comparison to the optimal N -agent value.
These important questions are answered in the following Theorem. The proof of Theorem 2
is relegated to Appendix A.

Theorem 2 Let π∗N , π
∗
∞ be solutions of (CMARL), and (G-CMFC) with ζ = −GC respec-

tively. If Assumptions 1− 3 hold, then the following inequality holds for ∀N ≥ N0 whenever
one has γSP < 1.

V R
N (xN0 ,π

∗
N )− V R

N (xN0 ,π
∗
∞) ≤ 2GR +GC

[
4

ζ0

(
MR

1− γ

)]
, (16)

and V C
N (xN0 ,π

∗
∞) ≤ 0 (17)

where V R
N (·, ·), and V C

N (·, ·) are defined in (6), and (7) respectively. The notations xN0 , µ0,
GR, GC , SP , and N0 carry the same meaning as stated in Lemma 1.
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Inequalities (16), (17) dictate that if the policy-sequence, π∗∞, obtained by solving the
mean-field problem (G-CMFC) for ζ = −GC is adopted in the N -agent system, then the
value obtained for such a system is O( 1√

N
) error away from the optimum. Also, π∗∞ does

not violate (CMARL) constraint.

5. Proof of Lemma 1

The proof of Lemma 1 hinges on Lemma 3. The proof of Lemma 3 is given in Appendix B.

Lemma 3 Let xN0 denote the initial joint state in an N -agent system, and µ0 be its empirical
distribution. If Assumption 1− 3 hold, then there exists sufficiently large N0 > 0 such that
∀N ≥ N0, and ∀π ∈ Π∞, the following inequalities hold whenever γSP < 1.

|V J
N (xN0 ,π)− V J

∞(µ0,π)| ≤ GJ (18)

where J ∈ {R,C}. The value functions V R
N , V

C
N , V

R
∞, V

C
∞ are provided by (6), (7), (12), (13)

respectively, and the terms GR, GC , SP are defined in Lemma 1.

Intuitively, Lemma 3 dictates that the value function pairs (V R
N , V

R
∞), (V C

N , V
C
∞) are close in

the sense that for every policy-sequence π, the differences |V J
N (xN0 ,π)−V J

∞(µ0,π)|, |V J
N (xN0 ,π)−

V J
∞(µ0,π)|, J ∈ {R,C} are of the form O( 1√

N
). Below we explain how such a result helps us

to establish Lemma 1. Consider the three distinct constrained maximizations stated below.

• Problem 0: (G-CMARL) with ζ = 0. It is the same as the original N -agent problem
(CMARL).

• Problem 1: (G-CMFC) with ζ = −GC .

• Problem 2: (G-CMARL) with ζ = −2GC .

Let, Πk
∞ ⊂ Π∞ be the set of admissible policy sequences that satisfy the constraint of

k-th optimization problem stated above, k ∈ {0, 1, 2}. Note that, if π ∈ Π2
∞, then

V C
∞(µ0,π)

(a)

≤ V C
N (xN0 ,π) +GC

(b)

≤ −GC (19)

Inequality (a) follows from (18) and (b) is a consequence of the fact that π ∈ Π2
∞. Thus,

Π2
∞ ⊂ Π1

∞. Similarly, if π ∈ Π1
∞, then

V C
N (xN0 ,π)

(a)

≤ V C
∞(µ0,π) +GC

(b)

≤ 0 (20)

which shows Π1
∞ ⊂ Π0

∞. Combining, we get Π2
∞ ⊂ Π1

∞ ⊂ Π0
∞. Finally, assume that π∗k ∈ Πk

∞
indicate the solution of k-th maximization problem described above, k ∈ {0, 1, 2}. Then,

V R
∞(µ0,π

∗
1)

(a)

≤ V R
N (xN0 ,π

∗
1) +GR

(b)

≤ V R
N (xN0 ,π

∗
0) +GR = V ∗N (xN0 , 0) +GR, (21)

V R
∞(µ0,π

∗
1)

(c)

≥ V R
∞(µ0,π

∗
2)

(d)

≥ V R
N (xN0 ,π

∗
2)−GR = V ∗N (xN0 ,−2GC)−GR (22)

9
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Inequalities (a), and (d) follow from (18). Relation (b) is a consequence of the fact that
π∗0 is a maximizer of V R

N (xN0 , ·) over Π0
∞, and π∗1 ∈ Π1

∞ ⊂ Π0
∞. Similarly, π∗1 is a maximizer

of V R
∞(µ0, ·) over Π1

∞, and π∗2 ∈ Π2
∞ ⊂ Π1

∞. This establishes relation (c).
The gist of the above exercise is that the value V ∗∞(µ0,−GC) is sandwiched between

V ∗N (xN0 , 0) +GR, and V ∗N (xN0 ,−2GC)−GR. To prove (14), one needs to bound the distance
between V ∗N (xN0 , 0), and V ∗N (xN0 ,−2GC). This can be accomplished utilizing the concavity
property of V ∗N (xN0 , ·) in the domain [−ζ0, 0] where ζ0 is given in Assumption 3. The concavity
property is a consequence of Proposition 1 of (Paternain et al., 2019). If N ≥ N0 where N0

is a sufficiently large value, then 2GC < ζ0. In such a case,

V ∗N (xN0 ,−2GC) ≥
(

1− 2GC
ζ0

)
V ∗N (x, 0) +

2GC
ζ0

V ∗N (xN0 ,−ζ0)

Equivalently, V ∗N (xN0 , 0)− V ∗N (x,−2GC) ≤ 2GC
ζ0

[
V ∗N (xN0 , 0)− V ∗N (xN0 ,−ζ0)

]
Using Assumption 1(a), one can trivially deduce, |V ∗N (xN0 , ζ)| ≤MR/(1− γ), ∀ζ ≥ −ζ0.

More specifically, this is true for ζ = −ζ0, 0. Hence,

V ∗N (xN0 , 0)− V ∗N (xN0 ,−2GC) ≤ GC
[

4

ζ0

(
MR

1− γ

)]
(23)

Using (22), (23), we obtain,

V ∗N (xN0 , 0)− V ∗∞(µ0,−GC) ≤ GR +GC

[
4

ζ0

(
MR

1− γ

)]
(24)

Combining with (21), we conclude the result.

6. Improvement of Optimality Gap in a Special Case

In this section, we shall impose the following additional restriction on the structure of reward,
r, cost, c, and transition function, P to improve the approximation bound of Lemma 1.

Assumption 4 The functions r, c, and P are independent of the action distribution of the
population. Mathematically, ∀x ∈ X , ∀u ∈ U , ∀µ ∈ P(X ), and ∀ν ∈ P(U),

(a) r(x, u,µ,ν) = r(x, u,µ), (b) c(x, u,µ,ν) = c(x, u,µ), (c) P (x, u,µ,ν) = P (x, u,µ)

Assumption 4 removes the dependence of r, c, and P on the action distribution. However,
for each agent, those functions still take the action executed by the same agent as an argument.
Below we present our improved approximation result.

Theorem 4 Let xN0 denote an initial joint state in an N -agent system, and µ0 its empirical
distribution. If Assumptions 1− 4 are true, then there exists a sufficiently large N0 > 0 such
that ∀N ≥ N0 the following inequality holds whenever γSP < 1.

|V ∗N (xN0 , 0)− V ∗∞(µ0,−G0
C)| ≤ G0

R +G0
C

[
4

ζ0

(
MR

1− γ

)]
(25)

10
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The terms G0
R, G

0
C are defined as shown below.

G0
J ,

MJ√
N

(
1

1− γ

)
+

√
|X |√
N

(
2SJ

SP − 1

)[
1

1− γSP
− 1

1− γ

]
(26)

where J ∈ {R,C}, and the termsMR,MC , SR, SC , SP , ζ0 are given in Lemma 1. Additionally,
if π∗∞ is a solution of (G-CMFC) with ζ = −G0

C , then the following inequalities hold ∀N ≥ N0

whenever γSP < 1.

V ∗N (xN0 , 0)− V R
N (xN0 ,π

∗
∞) ≤ 2G0

R +G0
C

[
4

ζ0

(
MR

1− γ

)]
, (27)

and V C
N (xN0 ,π

∗
∞) ≤ 0 (28)

where V R
N (·, ·), and V C

N (·, ·) are defined in (6), and (7) respectively.

Inequality (25) states that the optimal value function obtained by solving (CMARL) is
approximated by the optimal value function obtained by solving (G-CMFC) with ζ = −GC
within an error of O(

√
|X |/
√
N). On the other hand, (27), (28) suggest that if the optimal

policy sequence obtained by solving (G-CMFC), with ζ = −GC is adopted in an N -agent
system, then the value generated in such a system is at most O(

√
|X |/
√
N) distance away

from the optimal N -agent value function. Moreover, the said policy does not violate the
constraint of (CMARL).

Note that, the dependence of the approximation error on N is still O(1/
√
N). However,

its dependence on the sizes of state, and action spaces has been reduced to O(
√
|X |) from

O(
√
|X |+

√
|U|) stated in Lemma 1. Therefore, the stated approximation result may be

useful in those situations where reward, cost, and transition functions are independent of the
action distribution, and the size of action space of individual agents is large. Interestingly,
we could not derive an approximation error that is independent of the size of the state space,
|X |, by imposing the restriction that r, c, and P are independent of the state distribution.
This indicates an inherent asymmetry between the roles played by state, and action spaces
in mean-field approximation.

7. Natural Policy Gradient Algorithm to Solve CMFC Problem

In section 4, we demonstrated that the N -agent problem (CMARL) is well-approximated
by the mean-field problem (G-CMFC) with appropriate choice of ζ. In this section, we
shall discuss how one can employ a Natural Policy Gradient (NPG) based algorithm to
approximately solve (G-CMFC). Recall that in a mean-field setup, it is sufficient to track only
one representative agent. At time t, the representative chooses an action ut ∈ U based upon
its observation of its own state, xt ∈ X , and the mean-field state distribution, µ∞t ∈ P(X ).
Thus, (G-CMFC) can be described as a constrained single agent problem with state space
X × P(X ), and action space, U . Without loss of generality, we can therefore assume the
policy-sequences to be stationary (Dolgov and Durfee, 2005). With slight abuse of notations,
we denote both an arbitrary policy, and its associated stationary sequence by the same
notation, π. The class of all admissible policies is, Π. Let, the elements of Π be parameterized
by the parameter, Φ ∈ Rd. For a given policy, πΦ, the Q-function, QRΦ(·, ·, ·), value function,

11



Mondal, Aggarwal, and Ukkusuri

V R
Φ (·, ·), and the advantage function, ARΦ(·, ·, ·) are defined as follows.

QRΦ(x,µ, u) , E

[ ∞∑
t=0

γtr(xt, ut,µ
∞
t ,ν

∞
t )
∣∣∣x0 = x,µ0 = µ, u0 = u

]
, (29)

V R
Φ (x,µ) , E

[
QRΦ(x,µ, u)

]
, ARΦ(x,µ, u) = QΦ(x,µ, u)− V R

Φ (x,µ) (30)

The expectation in (29) is obtained over xt+1 ∼ P (xt, ut,µt,νt), ut ∼ πΦ(xt,µt), ∀t ∈
{0, 1, · · · }. The deterministic quantities, {µ∞t ,ν∞t }t∈{0,1,··· } are evaluated using relations
(9), and (8) respectively. On the other hand, the expectation in (30) is computed over,
u ∼ πΦ(x,µ). The functions, QCΦ , V

C
Φ , and ACΦ are defined similarly for the cost function, c.

In the parametric form, (G-CMFC) can be rewritten as the following primal problem.

sup
Φ∈Rd

V R
∞(µ0, πΦ) subject to : V C

∞(µ0, πΦ) ≤ ζ (PRIMAL)

Its corresponding dual problem is as follows.

sup
Φ∈Rd

inf
λ≥0

V R
∞(µ0, πΦ) + λ

[
ζ − V C

∞(µ0, πΦ)
]

(DUAL)

Let Φ∗ ∈ Rd be a solution of (DUAL). Ideally, Φ∗ should be obtained via the following
primal-dual natural policy gradient (NPG) updates that start from Φ0, λ0 = 0 and utilize
η1, η2 > 0 as learning parameters (Ding et al., 2020).

Φj+1 = Φj +
η1

1− γ
wj ,wj , arg minw∈Rd E

ξ
Φj
µ0

(w,Φj , λj), (31)

λj+1 = P[0,∞)

[
λj + η2[V C

∞(µ0, πΦj )− ζ]
]

(32)

The function, P[0,∞) projects its argument onto the set [0,∞). The term ξ
Φj
µ0

indicates
the occupancy measure induced by policy, πΦj from the initial distribution, µ0. The function,
E
ξ
Φj
µ0

(·, ·, ·) and the occupancy measure ξΦj
µ0

are mathematically defined below.

ξ
Φj
µ0

,
∞∑
τ=0

γτ (x,µ, u)P(xτ = x,µτ = µ, uτ = u|µ0 = µ, πΦj )(1− γ), (33)

E
ξ
Φj
µ0

(w,Φj , λj) , E
(x,µ,u)∼ξ

Φj
µ0

[(
A
λj
Φj

(x,µ, u)−wT∇Φj log πΦj (x,µ)(u)
)2]

(34)

where AλjΦj
(·, ·, ·) is defined as AλjΦj

, ARΦj
− λjACΦj

. Due to the sampling-based nature of the
algorithm, we focus on the following approximate updates.

Φj+1 = Φj +
η1

1− γ
ŵj , (35)

λj+1 = P[0,∞)

[
λj + η2[V̂ C

∞(µ0, πΦj )− ζ]
]

(36)

where V̂ C
∞(µ0, πΦj ) is an unbiased estimate of V C

∞(µ0, πΦj ), which is obtained via Algorithm
2 (Appendix O). To obtain ŵj (approximation of wj), we need to solve another minimization
problem. We apply the stochastic gradient descent (SGD) updates described as follows to

12
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solve this sub-problem: wj,l+1 = wj,l − αhj,l where the gradient hj,l is given below (Ding
et al., 2020), and α > 0 is the learning parameter.

hj,l ,

(
wT
j,l∇Φj log πΦj (x,µ)(u)− ÂλjΦj

(x,µ, u)

)
∇Φj log πΦj (x,µ)(u) (37)

where (x,µ, u) ∼ ξΦj
µ0

, and ÂλjΦj
is an unbiased estimator of AλjΦj

, ARΦj
−λjACΦj

. The sampling
process is detailed in Algorithm 2 (Appendix O). Algorithm 1 summarizes the NPG process.

Algorithm 1 Natural Policy Gradient Algorithm to solve the Dual Problem
Input: η1, η2, α: Learning rates, J, L: Number of execution steps
w0,Φ0, λ0 = 0: Initial parameters, µ0: Initial state distribution, Constraint bound: ζ

1: for j ∈ {0, 1, · · · , J − 1} do
2: wj,0 ← w0

3: for l ∈ {0, 1, · · · , L− 1} do
4: Sample (x,µ, u) ∼ ζΦj

µ0
and ÂλjΦj

(x,µ, u) using Algorithm 2
5: Compute hj,l using (37)

wj,l+1 ← wj,l − αhj,l
6: end for
7: ŵj ← 1

L

∑L
l=1 wj,l

8: Φj+1 ← Φj +
η1

1− γ
ŵj

9: Sample (x,µ, u) ∼ ζΦj
µ0

and V̂ C
Φj

(x,µ) using Algorithm 2

10: λj+1 ← P[0,∞)

[
λj + η2[V̂ C

Φj
(x,µ)− ζ]

]
11: end for
Output: {Φ1, · · · ,ΦJ}: Policy parameters

Recall that Lemma 1 proves that the optimal solution of (G-CMFC) with appropriate
choice of ζ approximately solves the N -agent problem (CMARL). However, Algorithm 1 can
only approximately solve (G-CMFC). One, therefore, naturally asks whether the solution of
Algorithm 1 is close to the optimal solution of (CMARL). Theorem 5 (stated below) provides
an affirmative answer to this question. The proof of Theorem 5 is relegated to Appendix N.
The following assumptions are needed to establish this result.

Assumption 5 There exists ζ1 < 0 such that the (G-CMFC) problem associated with ζ = ζ1

has a feasible solution.

Assumption 6 ∀Φ ∈ Rd, ∀µ ∈ P(X ), ∀x ∈ X , ∀u ∈ U ,

|∇Φ log πΦ(x,µ)(u)|1 ≤ G

for some positive constant G.

Assumption 7 ∀Φ1,Φ2 ∈ Rd, ∀µ ∈ P(X ), ∀x ∈ X , ∀u ∈ U ,

|∇Φ1 log πΦ1(x,µ)(u)−∇Φ2 log πΦ2(x,µ)(u)|1 ≤M |Φ1 − Φ2|1

for some positive constant M .

13
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Assumption 8 ∀Φ ∈ Rd, ∀µ0 ∈ P(X ),

EξΦ∗
µ0

(w∗Φ,Φ) ≤ εbias, w∗Φ , arg minw∈RdEξΦ
µ0

(w,Φ)

where Φ∗ is the parameter of the optimal policy.

Assumption 9 The gradient iterates {wj,l}j∈{0,··· ,J−1},l∈{0,··· ,L−1}, and {wj}j∈{0,··· ,J−1} of
Algorithm 1 are such that,

E
[
|wj,l|21

]
≤W 2

0 , and E
[
|wj |21

]
≤W 2

1

for some constants W0, W1.

Assumption 5 expresses Slater’s condition for the (G-CMFC) problem. Assumption 6, and 7
ensure that the log-likelihood function is Lipschitz and smooth with respect to the parameters.
Assumption 8 says that the expressivity error of the parameterized policy class is bounded by
a term εbias. If the policy class is complete (e.g., in softmax parameterization), then εbias = 0.
Although, in general, εbias > 0, for rich policy classes (e.g., where policies are represented by
dense/wide neural networks), its value is negligibly small. Finally, Assumption 9 dictates
that the gradient estimates used in our algorithm are bounded. All of the above assumptions
are standard in the policy gradient literature. For a detailed discussion on their validity, see
Ding et al. (2020).

Theorem 5 Let xN0 be the initial joint state in an N -agent system, and µ0 its empirical
distribution. Let {Φj}Jj=1 denote the policy parameters yielded from Algorithm 1 for an initial
parameter, Φ0, and ζ = −2GC . If Assumptions 1− 3, and 5− 9 hold, then for appropriate
choices of η1, η2, α, J, L, and sufficiently large N , the following relations hold when γSP < 1.∣∣∣ V ∗N (xN0 , 0)− 1

J

J∑
j=1

V R
∞(µ0, πΦj )

∣∣∣ ≤ K1e+K2
√
εbias, (38)

1

J

J∑
j=1

V C
N (xN0 , πΦj ) ≤ 0 (39)

where εbias is defined in Assumption 8, K1,K2 are constants, and e , 1√
N

[
√
|X | +

√
|U|].

The sample complexity of the process is O(e−6).

Theorem 5 states that the solution of (G-CMFC) with ζ = −2GC , obtained via Algorithm
1 closely (within an error of O(e)) approximates the optimal objective value obtained by
solving the N -agent problem (CMARL). Moreover, the obtained policy also satisfies the
constraint of (CMARL). The sample complexity of the whole process is O(e−6). Since the
submission of this paper, some new developments have occurred in the field of algorithm
design for CMDPs (Bai et al., 2023; Mondal and Aggarwal, 2024b). In particular, Mondal and
Aggarwal (2024b) have recently proposed an algorithm that can achieve e+

√
εbias optimality

error and zero constraint violation with Õ(e−2) sample complexity. We believe that the
result of Theorem 5 can be improved to Õ(e−2) if one utilizes the algorithm suggested by
(Mondal and Aggarwal, 2024b) for solving our CMARL problem. However, the verification
of such a possibility is left for future research.
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8. Experimental Results

We consider the following setting (taken from (Subramanian and Mahajan, 2019) with
slight modifications) for our numerical experiment. Consider a network of N firms that
produce the same product but with different qualities. At time t ∈ {0, 1, · · · }, the product
quality of i-th, i ∈ {1, 2, · · · , N}, firm is denoted as xit which can assume value from the
set Q , {0, 1, · · · , Q − 1}. Each firm has two options. It can either remain unresponsive
or invest some money to improve the quality of its product. These two possibilities are
symbolised as the elements of the action set, U , {0, 1} where 0 indicates unresponsiveness
and 1 denotes investment. If at time t, the i-th firm chooses the action, uit ∈ U , then its
state in the next time step changes according to the following transition law.

xit+1 =

xit +

⌊
χ

(
1− µ̄Nt

Q− 1

)
(Q− 1− xit)

⌋
if uit = 1,

xit otherwise

where χ is a uniform random variable in [0, 1], and µ̄Nt is empirical average product quality
defined as the mean of the distribution, µNt defined in (4). Hence, if uit = 0 (unresponsiveness),
then the product quality does not change. On the other hand, if the firm invests, i.e., uit = 1,
then its product quality increases. The increase in the product quality, however, is dependent
on the average product quality, µ̄Nt , in the economy. If µ̄Nt is high, then it is difficult to
improve the product quality of any individual firm. The reward, and cost received by the
i-th firm at time t are given as follows.

r(xit, u
i
t,µ

N
t ,ν

N
t ) = αRx

i
t − βRµ̄Nt − λRuit

c(xit, u
i
t,µ

N
t ,ν

N
t ) = λCu

i
t

The reward consists of three parts. The first part, αRxit, is earned as revenue; the second
part, βRµ̄Nt expresses dependence on the whole population; the third part, λRuit, is due to
the investment. The cost is a constant, λC , if money is invested, otherwise it is zero. The
objective of this N -agent RL problem is to maximize the expected time-discounted sum
of rewards while ensuring that the cumulative time-discounted cost is bounded above by a
certain constant, ζ. Let π∗∞ be the optimal policy of its associated constraint mean-field
control (CMFC) problem. In Fig. 1a, we demonstrate how the following error changes as a
function of N .

Error =

∣∣∣∣V R
N (xN0 , π

∗
∞)− V R

∞(µ0, π
∗
∞)

V R
∞(µ0, π

∗
∞)

∣∣∣∣× 100% (40)

The value functions V N
R and V R

∞ are defined in (6) and (12), respectively. The initial state
distribution, µ0, is taken to be a uniform distribution over Q, and xN0 is obtained by taking
N -independent samples from µ0. The policy, π∗∞, is obtained via Algorithm 1. Values of
other relevant parameters are stated in Fig. 1. We observe that the error decreases as a
function of N . Essentially, Fig. 1a shows that if N is large, then the N -agent cumulative
average reward generated by π∗∞ is well approximated by the optimal mean-field value. In
Fig. 1b, we exhibit that the N -agent and mean-field cost values generated by π∗∞ are close
for large N , and both of them lie below the specified upper bound, ζ.
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(a) (b)

Figure 1: Fig. (1a) portrays the percentage error (defined by (40)) as a function of N . On
the other hand, Fig. (1b) plots the N -agent (orange), and infinite-agent (blue) cost-values
corresponding to the optimal mean-field policy as a function of N . It also shows that both
of these values lie below the specified upper bound, ζ (green). The values of different system
parameters are given as: αR = 1, βR = 0.5, λR = 0.5, λC = 1, ζ = 5, γ = 0.9, and Q = 10.
The hyperparameters used in Algorithm 1 are chosen as follows: η1 = η2 = α = 10−3,
J = L = 102. The bold lines, and the half-width of the shaded regions respectively denote
the mean values, and the standard deviation values obtained over 25 random seeds. The
experiments were performed on a 1.8 GHz Dual-Core Intel i5 processor with 8 GB 1600 MHz
DDR3 memory.

9. Conclusions

This paper shows that a constrained multi-agent reinforcement learning (CMARL) problem
can be well-approximated via a constrained mean-field control (CMFC) problem with a
suitably adjusted constraint bound. We have characterized the approximation error as a
function of population size, and the sizes of state, and action spaces respectively. We also state
an algorithm to solve the CMFC problem and analyze its sample complexity. One limitation
of this study is that it only considers constraints in the form of time-discounted cumulative
costs. Studying the same problem with other forms of constraints such as instantaneous cost,
average cost, etc. could be a potential future direction.
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Appendix A. Proof of Theorem 2

Using Lemma 3, we obtain,

V C
N (xN0 ,π

∗
∞) ≤ V C

∞(µ0,π
∗
∞) +GC

(a)

≤ 0 (41)

Inequality (a) follows from the fact that π∗∞ is a feasible solution of (G-CMFC) with
ζ = −GC . Due to (41), π∗∞ can be treated as a feasible solution of (CMARL). Therefore,

V R
N (xN0 ,π

∗
N )− V R

N (xN0 ,π
∗
∞)

= V R
N (xN0 ,π

∗
N )− V R

∞(µ0,π
∗
∞) + V R

∞(µ0,π
∗
∞)− V R

N (xN0 ,π
∗
∞)

(a)
= V ∗N (xN0 , 0)− V ∗∞(µ0,−GC) + V R

∞(µ0,π
∗
∞)− V R

N (xN0 ,π
∗
∞)

(b)

≤ 2GR +GC

[
4

ζ0

(
MR

1− γ

)]
Relation (a) follows from the fact that V R

N (xN0 ,π
∗
N ) = V ∗N (xN0 , 0), and V R

∞(µ0,π
∗
∞) =

V ∗∞(µ0,−GC). Please refer to Table 1 for a detailed explanation. Inequality (b) follows from
Lemma 1, and Lemma 3. This concludes the result.

Appendix B. Proof of Lemma 3

In order to establish Lemma 3, the following results are necessary. We use the notation πt to
indicate the t-th component of the policy sequence, π. Moreover, the π-induced empirical
N -agent state, and action distributions at time t are denoted as µNt ,νNt respectively. Their
counterparts for infinite agent system are µ∞t , and ν∞t . Following the notation of section 2,
the (π-induced) joint state, and action at time t are denoted as xNt , {xit}i∈{1,··· ,N},uNt ,
{uit}i∈{1,··· ,N} respectively.

B.1 Lipschitz Continuity Lemmas

Lemma 6 If νMF(·, ·) is defined by (8), then the following holds ∀t ∈ {0, 1, · · · }.

|νMF(µNt , πt)− νMF(µ∞t , πt)|1 ≤ (1 + LQ)|µNt − µ∞t |1 (42)

Lemma 7 If PMF(·, ·) is defined by (9), then the following holds ∀t ∈ {0, 1, · · · }.

|PMF(µNt , πt)− PMF(µ∞t , πt)|1 ≤ SP |µ− µ̄|1 (43)

where SP , 1 + 2LP + LQ(1 + LP ).

Lemma 8 If rMF(·, ·) is defined by (10), then the following holds ∀t ∈ {0, 1, · · · }.

|rMF(µNt , πt)− rMF(µ∞t , πt)| ≤ SR|µNt − µ∞t |1 (44)

where SR ,MR + 2LR + LQ(MR + LR).
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Lemma 9 If cMF(·, ·) is defined by (11), then the following holds ∀t ∈ {0, 1, · · · }.

|cMF(µNt , πt)− cMF(µ∞t , πt)| ≤ SC |µNt − µ∞t |1 (45)

where SC ,MC + 2LC + LQ(MC + LC).

Lemma 6− 9 shows that the state and action evolution functions, average reward, and
cost functions of an infinite agent system are Lipschitz continuous with respect to the state
distribution argument. Lemma 6 is an essential ingredient in the proof of Lemma 7, and 8.
The proofs of Lemma 6, 7, and 8 are presented in Appendix D, E, and F respectively. The
proof of Lemma 9 is identical to that of Lemma 8.

B.2 Large-N Approximation Lemmas

Lemma 10 The following inequality holds ∀t ∈ {0, 1, · · · }.

E
∣∣νNt − νMF(µNt , πt)

∣∣
1
≤ 1√

N

√
|U|

Lemma 11 The following inequality holds ∀t ∈ {0, 1, · · · }.

E
∣∣µNt+1 − PMF(µNt , πt)

∣∣
1
≤ CP√

N

[√
|X |+

√
|U|
]

where CP , 2 + LP .

Lemma 12 The following inequality holds ∀t ∈ {0, 1, · · · }.

E

∣∣∣∣∣ 1

N

∑
i=1

r(xit, u
i
t,µ

N
t ,ν

N
t )− rMF(µNt , πt)

∣∣∣∣∣ ≤ MR√
N

+
LR√
N

√
|U|

Lemma 13 The following inequality holds ∀t ∈ {0, 1, · · · }.

E

∣∣∣∣∣ 1

N

∑
i=1

c(xit, u
i
t,µ

N
t ,ν

N
t )− cMF(µNt , πt)

∣∣∣∣∣ ≤ MC√
N

+
LC√
N

√
|U|

The proofs of Lemma 10, 11, and 12 are given in Appendix G, H, and I, respectively.
The proof of Lemma 13 can be obtained by replacing r,MR, LR with c,MC , LC respectively
in the proof of Lemma 12. Finally, invoking Lemma 7, and 11, we obtain the following.

Lemma 14 The following inequality holds ∀t ∈ {0, 1, · · · }.

E|µNt − µ∞t | ≤
CP√
N

[√
|X |+

√
|U|
](StP − 1

SP − 1

)
where SP is defined in Lemma 7 while CP is given in Lemma 11.

The proof of Lemma 14 is given in Appendix J.
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B.3 Proof of the Lemma

We shall establish (18) only for J = R. The proof for J = C is identical. Consider the
following difference,

|V R
N (xN0 ,π)− V R

∞(µ0,π)|
(a)

≤
∞∑
t=0

γt

∣∣∣∣∣ 1

N

N∑
i=1

E
[
r(xit, u

i
t,µ

N
t ,ν

N
t )
]
− rMF(µ∞t , πt)

∣∣∣∣∣
≤
∞∑
t=0

γtE
∣∣∣∣ 1

N
r(xit, u

i
t,µ

N
t ,ν

N
t )− rMF(µNt , πt)

∣∣∣∣︸ ︷︷ ︸
,J1

+
∞∑
t=0

γtE
∣∣rMF(µNt , πt)− rMF(µ∞t , πt)

∣∣
︸ ︷︷ ︸

,J2

Inequality (a) follows from the definition of the functions V R
N (·, ·), V R

∞(·, ·) given in (6),
and (12) respectively. The first term, J1 can be bounded using Lemma 12 as follows.

J1 ≤
(

1

1− γ

)[
MR√
N

+
LR√
N

√
|U|
]

The second term, J2, can be bounded as follows.

J2 ,
∞∑
t=0

γtE|rMF(µNt , πt)− rMF(µ∞t , πt)|

(a)

≤ SR

∞∑
t=0

γtE|µNt − µ∞t |

(b)

≤ 1√
N

[√
|X |+

√
|U|
]( SRCP

SP − 1

)[
1

1− γSP
− 1

1− γ

]
Inequality (a) follows from Lemma 8, whereas (b) is a consequence of Lemma 14.

Appendix C. Proof of Theorem 4

The proof of Theorem 4 hinges on the following Lemma.

Lemma 15 Let xN0 be the initial joint state in an N -agent system, and µ0 its empirical
distribution. If Assumption 1 − 3 hold, then there exists N0 > 0 such that ∀N ≥ N0, and
∀π ∈ Π∞, the following inequalities hold whenever γSP < 1.

|V J
N (xN0 ,π)− V J

∞(µ0,π)| ≤ G0
J (46)

where J ∈ {R,C}. The value functions V R
N , V

C
N are given by (6), (7) respectively, and the

terms G0
R, G

0
C , SP are defined in Theorem 4.

The role of Lemma 15 in establishing Theorem 4 is analogous to the role of Lemma 3 in
proving Lemma 1. In this section, we shall primarily focus on proving Lemma 15. Once it
is established, Theorem 4 can be proven following an argument similar to that is used in
section 5.
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C.1 Auxiliary Lemmas

To prove Lemma 15, the following results are necessary. The notations are the same as used
in Appendix B.

Lemma 16 The following inequality holds ∀t ∈ {0, 1, · · · }.

E
∣∣µNt+1 − PMF(µNt , πt)

∣∣
1
≤ 2√

N

√
|X | (47)

Lemma 17 The following inequality holds ∀t ∈ {0, 1, · · · }.

E

∣∣∣∣∣ 1

N

∑
i=1

r(xit, u
i
t,µ

N
t )− rMF(µNt , πt)

∣∣∣∣∣ ≤ MR√
N

Lemma 18 The following inequality holds ∀t ∈ {0, 1, · · · }.

E

∣∣∣∣∣ 1

N

∑
i=1

c(xit, u
i
t,µ

N
t )− cMF(µNt , πt)

∣∣∣∣∣ ≤ MC√
N

Lemma 19 The following inequality holds ∀t ∈ {0, 1, · · · }.

E|µNt − µ∞t | ≤
2√
N

√
|X |
(
StP − 1

SP − 1

)
The term SP is defined in Lemma 7.

The proofs of Lemma 16, 17, 19 are relegated to Appendix K, L, and M , respectively.
The proof of Lemma 18 can be obtained by replacing r with c, and MR with MC in the
proof of Lemma 17.

C.2 Proof of Lemma 15

We use the same notations as in Appendix B.3. Consider the following difference,

|V R
N (xN0 ,π)− V R

∞(µ0,π)|
(a)

≤
∞∑
t=0

γt

∣∣∣∣∣ 1

N

N∑
i=1

r(xit, u
i
t,µ

N
t )

]
− E

[
rMF(µ∞t , πt)

∣∣
≤
∞∑
t=0

γtE
∣∣∣∣ 1

N
r(xit, u

i
t,µ

N
t )− rMF(µNt , πt)

∣∣∣∣︸ ︷︷ ︸
,J1

+

∞∑
t=0

γtE
∣∣rMF(µNt , πt)− rMF(µ∞t , πt)

∣∣
︸ ︷︷ ︸

,J2

Inequality (a) follows from the definition of the value functions V R
N (·, ·), V C

∞(·, ·) given in
(6), and (12) respectively. The first term, J1 can be bounded using Lemma 12 as follows.

J1 ≤
MR√
N

(
1

1− γ

)
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The second term, J2, can be bounded as follows.

J2 ,
∞∑
t=0

γtE|rMF(µNt , πt)− rMF(µ∞t , πt)|

(a)

≤ SR

∞∑
t=0

γtE|µNt − µ∞t |
(b)

≤ 1√
N

√
|X |
(

2SR
SP − 1

)[
1

1− γSP
− 1

1− γ

]
Inequality (a) follows from Lemma 8, whereas (b) is a consequence of Lemma 19. This
establishes (46) for J = R. The other case, J = C, can be proven similarly.

Appendix D. Proof of Lemma 6

Note the following inequalities.

|νMF(µNt , πt)− νMF(µ∞t , πt)|1
(a)
=

∣∣∣∣∣∑
x∈X

πt(x,µ
N
t )µNt (x)−

∑
x∈X

πt(x,µ
∞
t )µ∞t (x)

∣∣∣∣∣
1

=
∑
u∈U

∣∣∣∣∣∑
x∈X

πt(x,µ
N
t )(u)µNt (x)−

∑
x∈X

πt(x,µ
∞
t )(u)µ∞t (x)

∣∣∣∣∣
≤
∑
x∈X

∑
u∈U
|πt(x,µNt )(u)µNt (x)− πt(x,µ∞t )(u)µ∞t (x)|

≤
∑
x∈X
|µNt (x)− µ∞t (x)|

∑
u∈U

πt(x,µ
N
t )(u)︸ ︷︷ ︸

=1

+
∑
x∈X

µ∞t (x)
∑
u∈U
|πt(x,µNt )(u)− πt(x,µ∞t )(u)|

(b)

≤ |µNt − µ∞t |1 + LQ|µNt − µ∞t |
∑
x∈X

µ∞t (x)︸ ︷︷ ︸
=1

(c)
= (1 + LQ)|µNt − µ∞t |1

Equality (a) follows from the definition of νMF(·, ·) as given in (8). On the other hand,
inequality (b) is a consequence of Assumption 2, and the fact that πt(x,µNt ) is probability
distribution ∀x ∈ X . Finally, (c) follows because µ∞t is a probability distribution. This
concludes the result.

Appendix E. Proof of Lemma 7

Note that,

|PMF(µNt , πt)− PMF(µ∞t , πt)|1
(a)
=

∣∣∣∣∣∑
x∈X

∑
u∈U

P (x, u,µNt , ν
MF(µNt , πt))πt(x,µ

N
t )(u)µNt (x)

− P (x, u,µ∞t , ν
MF(µ∞t , πt))πt(x,µ

∞
t )(u)µ∞t (x)

∣∣∣∣∣
1

≤ J1 + J2
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Equality (a) follows from the definition of PMF(·, ·) as stated in (9). The first term can
be bounded as follows.

J1 ,
∑
x∈X

∑
u∈U

∣∣∣P (x, u,µNt , ν
MF(µNt , πt))− P (x, u,µ∞t , ν

MF(µ∞t , πt))
∣∣∣
1
× πt(x,µNt )(u)µNt (x)

(a)

≤ LP
[
|µNt − µ∞t |1 + |νMF(µNt , πt)− νMF(µ∞t , πt)|1

]
×
∑
x∈X

µNt (x)
∑
u∈U

πt(x,µ
N
t )(u)︸ ︷︷ ︸

=1

(b)

≤ LP (2 + LQ)|µNt − µ∞t |1

Inequality (a) is a result of Assumption 1(e) while (b) follows from Lemma 6, and the
fact that πt(x,µNt ), µNt are probability distributions ∀x ∈ X . The second term, J2 can be
bounded as follows.

J2 ,
∑
x∈X

∑
u∈U
|P (x, u,µ∞t , ν

MF(µ∞t , πt))|1︸ ︷︷ ︸
=1

×|πt(x,µNt )(u)µNt (x)− πt(x,µ∞t )(u)µ∞t (x)|

≤
∑
x∈X
|µNt (x)− µ∞t (x)|

∑
u∈U

πt(x,µ
N
t )(u)︸ ︷︷ ︸

=1

+
∑
x∈X

µ∞t (x)
∑
u∈U
|πt(x,µNt )(u)− πt(x,µ∞t )(u)|

(a)

≤ |µNt − µ∞t |1 + LP |µNt − µ∞t |1
∑
x∈X

µ∞t (x)︸ ︷︷ ︸
=1

= (1 + LP )|µNt − µ∞t |1

Inequality (a) follows from the fact that πt(x,µNt ) is a probability distribution ∀x ∈ X
while (b) uses Assumption 2, and the fact that µ∞t is a probability distribution. This
concludes the result.

Appendix F. Proof of Lemma 8

Notice the following inequality,

|rMF(µNt , πt)− rMF(µ∞t , πt)|

(a)
=

∣∣∣∣∣∑
x∈X

∑
u∈U

r(x, u,µNt , ν
MF(µNt , πt))πt(x,µ

N
t )(u)µNt (x)

− r(x, u,µ∞t , νMF(µ∞t , πt))πt(x,µ
∞
t )(u)µ∞t (x)

∣∣∣∣∣ ≤ J1 + J2
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Equality (a) follows from the definition of rMF(·, ·) as depicted in (10). The first term
can be bounded as follows.

J1 ,
∑
x∈X

∑
u∈U

∣∣∣r(x, u,µNt , νMF(µNt , πt))− r(x, u,µ∞t , νMF(µ∞t , πt))
∣∣∣× πt(x,µNt )(u)µNt (x)

(a)

≤ LR
[
|µNt − µ∞t |1 + |νMF(µNt , πt)− νMF(µ∞t , πt)|1

]
×
∑
x∈X

µNt (x)
∑
u∈U

πt(x,µ
N
t )(u)︸ ︷︷ ︸

=1

(b)

≤ LR(2 + LQ)|µNt − µ∞t |1

Inequality (a) is a result of Assumption 1(c) while relation (b) follows from Lemma 6,
and the fact that πt(x,µ∞t ), µNt are probability distributions ∀x ∈ X . The term, J2 can be
bounded as follows.

J2 ,
∑
x∈X

∑
u∈U
|r(x, u,µ∞t , νMF(µ∞t , πt))| × |πt(x,µNt )(u)µNt (x)− πt(x,µ∞t )(u)µ∞t (x)|

(a)

≤ MR

∑
x∈X

∑
u∈U
|πt(x,µNt )(u)µNt (x)− πt(x,µ∞t )(u)µ∞t (x)|

≤MR

∑
x∈X
|µNt (x)− µ∞t (x)|

∑
u∈U

πt(x,µ
N
t )(u)︸ ︷︷ ︸

=1

+MR

∑
x∈X

µ∞t (x)
∑
u∈U
|πt(x,µNt )(u)− πt(x,µ∞t )(u)|

(b)

≤ MR|µNt − µ∞t |1 +MRLQ|µNt − µ∞t |1
∑
x∈X

µ∞t (x)︸ ︷︷ ︸
=1

(c)
= MR(1 + LQ)|µNt − µ∞t |1

Inequality (a) follows from Assumption 1(a). On the other hand, (b) is a consequence of
Assumption 2. Finally, (c) follows from the fact that µ∞t is a probability distribution. This
concludes the result.

Appendix G. Proof of Lemma 10

The following Lemma is required to prove the result.

Lemma 20 If ∀m ∈ {1, · · · ,M}, {Xmn}n∈{1,··· ,N} are independent random variables that
lie in [0, 1], and satisfy

∑
m∈{1,··· ,M} E[Xmn] ≤ 1, ∀n ∈ {1, · · · , N}, then the following holds,

M∑
m=1

E

∣∣∣∣∣
N∑
n=1

(Xmn − E[Xmn])

∣∣∣∣∣ ≤ √MN (48)

Lemma 20 is adapted from Lemma 13 of (Mondal et al., 2022a).
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Observe the following inequalities.

E
∣∣νNt − νMF(µNt , πt)

∣∣
1

= E
[
E
[∣∣νNt − νMF(µNt , πt)

∣∣
1

∣∣∣xNt ]]
(a)
= E

[
E

[∣∣∣∣∣νNt −∑
x∈X

πt(x,µ
N
t )µNt (x)

∣∣∣∣∣
1

∣∣∣∣∣xNt
]]

= E

[
E

[∑
u∈U

∣∣∣∣∣νNt (u)−
∑
x∈X

πt(x,µ
N
t )(u)µNt (x)

∣∣∣∣∣
∣∣∣∣∣xNt

]]
(b)
= E

[∑
u∈U

E

[
1

N

∣∣∣∣∣
N∑
i=1

δ(uit = u)− 1

N

∑
x∈X

πt(x,µ
N
t )(u)

N∑
i=1

δ(xit = x)

∣∣∣∣∣
∣∣∣∣∣xNt

]]

= E

[∑
u∈U

E

[∣∣∣∣∣ 1

N

N∑
i=1

δ(uit = u)− 1

N

N∑
i=1

πt(x
i
t,µ

N
t )(u)

∣∣∣∣∣
∣∣∣∣∣xNt

]]
(c)

≤ 1√
N

√
|U|

Equality (a) follows from the definition of νMF(·, ·) as depicted in (8) while (b) is a
consequence of the definitions of µNt ,νNt . Finally, (c) is an application of Lemma 20.
Specifically, it uses the facts that, {uit}i∈{1,··· ,N} are conditionally independent given xNt , and

E
[
δ(uit = u)

∣∣∣xNt ] = πt(x
i
t,µ

N
t )(u),

∑
u∈U

E
[
δ(uit = u)

∣∣∣xNt ] = 1

∀i ∈ {1, · · · , N},∀u ∈ U . This concludes the lemma.

Appendix H. Proof of Lemma 11

Note that,

E
∣∣µNt+1 − PMF(µNt , πt)

∣∣
1

(a)
=
∑
x∈X

E
∣∣∣∣ 1

N

N∑
i=1

δ(xit+1 = x)

−
∑
x′∈X

∑
u∈U

P (x′, u,µNt , ν
MF(µNt , πt))(x)πt(x

′,µNt )(u)
1

N

N∑
i=1

δ(xit = x′)

∣∣∣∣
=
∑
x∈X

E

∣∣∣∣∣ 1

N

N∑
i=1

δ(xit+1 = x)− 1

N

N∑
i=1

∑
u∈U

P (xit, u,µ
N
t , ν

MF(µNt , πt))(x)πt(x
i
t,µ

N
t )(u)

∣∣∣∣∣
≤ J1 + J2 + J3

Equality (a) follows from the definition of PMF(·, ·) as given in (9). The first term, J1,
can be upper bounded as follows.

J1 ,
1

N

∑
x∈X

E

∣∣∣∣∣
N∑
i=1

δ(xit+1 = x)−
N∑
i=1

P (xit, u
i
t,µ

N
t ,ν

N
t )(x)

∣∣∣∣∣
=

1

N

∑
x∈X

E

[
E

[∣∣∣∣∣
N∑
i=1

δ(xit+1 = x)−
N∑
i=1

P (xit, u
i
t,µ

N
t ,ν

N
t )(x)

∣∣∣∣∣
∣∣∣∣∣xNt ,uNt

]]
(a)

≤ 1√
N

√
|X |
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Inequality (a) can be derived using Lemma 20, and the facts that {xit+1}i∈{1,··· ,N} are
conditionally independent given {xNt ,uNt }, and,

E
[
δ(xit+1 = x)

∣∣∣xNt ,uNt ] = P (xit, u
i
t,µ

N
t ,ν

N
t )(x),

∑
x∈X

E
[
δ(xit+1 = x)

∣∣∣xNt ,uNt ] = 1

∀i ∈ {1, · · · , N}, and ∀x ∈ X . The second term can be upper bounded as follows.

J2 ,
1

N

∑
x∈X

E

∣∣∣∣∣
N∑
i=1

P (xit, u
i
t,µ

N
t ,ν

N
t )(x)−

N∑
i=1

P (xit, u
i
t,µ

N
t , ν

MF(µNt , πt))(x)

∣∣∣∣∣
≤ 1

N

N∑
i=1

E
∣∣P (xit, u

i
t,µ

N
t ,ν

N
t )− P (xit, u

i
t,µ

N
t , ν

MF(µNt , πt))
∣∣
1

(a)

≤ LPE
∣∣νNt − νMF(µNt , πt)

∣∣
1

(b)

≤ LP√
N

√
|U|

Inequality (a) follows from Assumption 3 while (b) follows from Lemma 10. Finally, the
third term can be bounded as follows.

J3 ,
1

N

∑
x∈X

E
∣∣∣∣ N∑
i=1

P (xit, u
i
t,µ

N
t , ν

MF(µNt , πt))(x)

−
N∑
i=1

∑
u∈U

P (xit, u,µ
N
t , ν

MF(µNt , πt))(x)πt(x
i
t,µ

N
t )(u)

∣∣∣∣ (a)

≤ 1√
N

√
|X |

Inequality (a) is a consequence of Lemma 20. Specifically, it uses the facts that,
{uit}i∈{1,··· ,N} are conditionally independent given xNt , and

E
[
P (xit, u

i
t,µ

N
t , ν

MF(µNt , πt))(x)
∣∣∣xNt ] =

∑
u∈U

P (xit, u,µ
N
t , ν

MF(µNt , πt))(x)πt(x
i
t,µ

N
t )(u),

∑
x∈X

E
[
P (xit, u

i
t,µ

N
t , ν

MF(µNt , πt))(x)
∣∣∣xNt ] = 1

∀i ∈ {1, · · · , N}, and ∀x ∈ X . This concludes the Lemma.

Appendix I. Proof of Lemma 12

Note that,

E

∣∣∣∣∣ 1

N

∑
i=1

r(xit, u
i
t,µ

N
t ,ν

N
t )− rMF(µNt , πt)

∣∣∣∣∣
(a)
= E

∣∣∣∣∣ 1

N

N∑
i=1

r(xit, u
i
t,µ

N
t ,ν

N
t )−

∑
x∈X

∑
u∈U

r(x, u,µNt , ν
MF(µNt , πt))πt(x,µ

N
t )(u)

1

N

N∑
i=1

δ(xit = x)

∣∣∣∣∣
= E

∣∣∣∣∣ 1

N

N∑
i=1

r(xit, u
i
t,µ

N
t ,ν

N
t )− 1

N

N∑
i=1

∑
u∈U

r(xit, u,µ
N
t , ν

MF(µNt , πt))πt(x
i
t,µ

N
t )(u)

∣∣∣∣∣
≤ J1 + J2
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Equation (a) is a result of the definition of rMF(·, ·) as given in (10). The first term, J1,
can be bounded as follows.

J1 ,
1

N
E

∣∣∣∣∣
N∑
i=1

r(xit, u
i
t,µ

N
t ,ν

N
t )−

N∑
i=1

r(xit, u
i
t,µ

N
t , ν

MF(µNt , πt))

∣∣∣∣∣
≤ 1

N
E

N∑
i=1

∣∣r(xit, uit,µNt ,νNt )− r(xit, uit,µNt , νMF(µNt , πt))
∣∣

(a)

≤ LRE
∣∣νNt − νMF(µNt , πt)

∣∣
1

(b)

≤ LR√
N

√
|U|

Inequality (a) follows from Assumption 1, and (b) is a consequence of Lemma 10. The
second term, J2, can be bounded as follows.

J2 ,
1

N
E

∣∣∣∣∣
N∑
i=1

r(xit, u
i
t,µ

N
t , ν

MF(µNt , πt))−
N∑
i=1

∑
u∈U

r(xit, u,µ
N
t , ν

MF(µNt , πt))πt(x
i
t,µ

N
t )(u)

∣∣∣∣∣
=

1

N
E

[
E

[∣∣∣∣∣
N∑
i=1

r(xit, u
i
t,µ

N
t , ν

MF(µNt , πt))−
N∑
i=1

∑
u∈U

r(xit, u,µ
N
t , ν

MF(µNt , πt))πt(x
i
t,µ

N
t )(u)

∣∣∣∣∣ ∣∣∣xNt
]]

=
MR

N
E

[
E

[∣∣∣∣∣
N∑
i=1

r0(xit, u
i
t,µ

N
t , ν

MF(µNt , πt))−
N∑
i=1

∑
u∈U

r0(xit, u,µ
N
t , ν

MF(µNt , πt))πt(x
i
t,µ

N
t )(u)

∣∣∣∣∣ ∣∣∣xNt
]]

(a)

≤ MR√
N

where r0(·, ·, ·, ·) , r(·, ·, ·, ·)/MR. Inequality (a) follows from Lemma 20. Specifically, it
uses the fact that {uit}i∈{1,··· ,N} are conditionally independent given xt, and

|r0(xit, u
i
t,µ

N
t , ν

MF(µNt , πt))| ≤ 1,

E
[
r0(xit, u

i
t,µ

N
t , ν

MF(µNt , πt))
∣∣∣xNt ] =

∑
u∈U

r0(xit, u,µ
N
t , ν

MF(µNt , πt))πt(x
i
t,µ

N
t )(u)

∀i ∈ {1, · · · , N},∀u ∈ U .

Appendix J. Proof of Lemma 14

Observe that,

E|µNt − µ∞t |1 ≤ E
∣∣µNt − PMF(µNt−1, πt−1)

∣∣
1

+ E
∣∣PMF(µNt−1, πt−1)− µ∞t

∣∣
1

(a)

≤ CP√
N

[√
|X |+

√
|U|
]

+ E
∣∣PMF(µNt−1, πt−1)− PMF(µ∞t−1, πt−1)

∣∣
1

Inequality (a) follows from Lemma 11, and relation (9). Using Lemma 7, we get

∣∣PMF(µNt−1, πt−1)− PMF(µ∞t−1, πt−1)
∣∣
1

(a)

≤ SP |µNt−1 − µ∞t−1|1
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Combining, we get,

E|µNt − µ∞t |1 ≤
CP√
N

[√
|X |+

√
|U|
]

+ SPE
∣∣µNt−1 − µ∞t−1

∣∣
1

(49)

Recursively applying the above inequality, we finally obtain,

E|µNt − µ∞t |1 ≤
CP√
N

[√
|X |+

√
|U|
](StP − 1

SP − 1

)

Appendix K. Proof of Lemma 16

Note that,

E
∣∣µNt+1 − PMF(µNt , πt)

∣∣
1

(a)
=
∑
x∈X

E

∣∣∣∣∣ 1

N

N∑
i=1

δ(xit+1 = x)−
∑
x′∈X

∑
u∈U

P (x′, u,µNt )(x)πt(x
′,µNt )(u)

1

N

N∑
i=1

δ(xit = x′)

∣∣∣∣∣
=
∑
x∈X

E

∣∣∣∣∣ 1

N

N∑
i=1

δ(xit+1 = x)− 1

N

N∑
i=1

∑
u∈U

P (xit, u,µ
N
t )(x)πt(x

i
t,µ

N
t )(u)

∣∣∣∣∣ ≤ J1 + J2

Equality (a) follows from the definition of PMF(·, ·) as depicted in (9). The first term, J1,
can be upper bounded as follows.

J1 ,
1

N

∑
x∈X

E

∣∣∣∣∣
N∑
i=1

δ(xit+1 = x)−
N∑
i=1

P (xit, u
i
t,µ

N
t )(x)

∣∣∣∣∣
=

1

N

∑
x∈X

E

[
E

[∣∣∣∣∣
N∑
i=1

δ(xit+1 = x)−
N∑
i=1

P (xit, u
i
t,µ

N
t )(x)

∣∣∣∣∣
∣∣∣∣∣xNt ,uNt

]]
(a)

≤ 1√
N

√
|X |

Inequality (a) can be derived using Lemma 20, and the facts that {xit+1}i∈{1,··· ,N} are
conditionally independent given {xNt ,uNt }, and,

E
[
δ(xit+1 = x)

∣∣∣xNt ,uNt ] = P (xit, u
i
t,µ

N
t )(x),

∑
x∈X

E
[
δ(xit+1 = x)

∣∣∣xNt ,uNt ] = 1

∀i ∈ {1, · · · , N}, and ∀x ∈ X . The second term can be bounded as follows.

J2 ,
1

N

∑
x∈X

E

∣∣∣∣∣
N∑
i=1

P (xit, u
i
t,µ

N
t )(x)−

N∑
i=1

∑
u∈U

P (xit, u,µ
N
t )(x)πt(x

i
t,µ

N
t )(u)

∣∣∣∣∣ (a)

≤
√
|X |√
N

Inequality (a) is a consequence of Lemma 20. Specifically, it uses the facts that,
{uit}i∈{1,··· ,N} are conditionally independent given xNt , and

E
[
P (xit, u

i
t,µ

N
t )(x)

∣∣∣xNt ] =
∑
u∈U

P (xit, u,µ
N
t )(x)πt(x

i
t,µ

N
t )(u),

∑
x∈X

E
[
P (xit, u

i
t,µ

N
t )(x)

∣∣∣xNt ] = 1

∀i ∈ {1, · · · , N}, and ∀x ∈ X . This concludes the Lemma.
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Appendix L. Proof of Lemma 17

Note that,
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N
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N
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N
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t )(u)
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(a)

≤ MR√
N

where r0(·, ·, ·, ·) , r(·, ·, ·, ·)/MR. Inequality (a) follows from Lemma 20. Specifically, it
uses the fact that {uit}i∈{1,··· ,N} are conditionally independent given xNt , and

|r0(xit, u
i
t,µ

N
t )| ≤ 1, E

[
r0(xit, u

i
t,µ

N
t )
∣∣∣xNt ] =

∑
u∈U

r0(xit, u,µ
N
t )πt(x

i
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N
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∀i ∈ {1, · · · , N},∀u ∈ U .

Appendix M. Proof of Lemma 19

Observe that,

E|µNt − µ∞t |1 ≤ E
∣∣µNt − PMF(µNt−1, πt−1)

∣∣
1

+ E
∣∣PMF(µNt−1, πt−1)− µ∞t
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1

(a)

≤ 2√
N

√
|X |+ E

∣∣PMF(µNt−1, πt−1)− PMF(µ∞t−1, πt−1)
∣∣
1

Inequality (a) follows from Lemma 11, and relation (9). Using Lemma 7, we get

∣∣PMF(µNt−1, πt−1)− PMF(µ∞t−1, πt−1)
∣∣
1

(a)

≤ SP |µNt−1 − µ∞t−1|1

Combining, we get,

E|µNt − µ∞t |1 ≤
2√
N

√
|X |+ SPE

∣∣µNt−1 − µ∞t−1
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1
≤ 2√

N

√
|X |
(
StP − 1

SP − 1

)
(50)

the last inequality is obtained via recursion.
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Appendix N. Proof of Theorem 5

Fix J, L. Following Theorem 3 of (Ding et al., 2020), we can write,

∣∣∣V ∗∞(µ0,−2GC)− 1

J

J∑
j=1

V R
∞(µ0, πΦj )

∣∣∣ ≤ C1
1√
J

+ C2

(
√
εbias +

C3√
L

)
(51)

for some constants C1, C2, C3. On the other hand, Lemma 1 suggests,

|V ∗N (xN0 , 0)− V ∗∞(µ0,−GC)| ≤ GR +GC

[
4

ζ0

(
MR

1− γ

)]
(52)

Recall the definition of ζ1 from Assumption 5. If N is sufficiently large, then 2GC < ζ.
Using the concavity of V ∗∞(µ0, ·) (Paternain et al., 2019), we obtain:

V ∗∞(µ0,−2GC) ≥
(
ζ1 − 2GC
ζ1 −GC

)
V ∗∞(µ0,−GC) +

(
GC

ζ1 −GC

)
V ∗∞(µ0,−ζ1),

Equivalently, V ∗∞(µ0,−GC)− V ∗∞(µ0,−2GC) ≤
(

GC
ζ1 −GC

)
[V ∗∞(µ0,−GC)− V ∗∞(µ0,−ζ1)]

≤
(

2GC
ζ1 −GC

)(
MR

1− γ

)
≤
(

2GC
ζ1

)(
MR

1− γ

)
Combining, we obtain,

∣∣∣V ∗N (xN0 , 0)− 1

J

J∑
j=1

V R
∞(µ0, πΦj )

∣∣∣ ≤ C1
1√
J

+ C2

(
√
εbias +

C3√
L

)
+GR

+GC

[
4

ζ0

(
MR

1− γ

)]
+

(
2GC
ζ1

)(
MR

1− γ

) (53)

From Theorem 3 of (Ding et al., 2020), we also obtain the following.

1

J

J∑
j=1

V C
∞(µ0, πΦj ) + 2GC ≤

C3

J
1
4

+
C4

J
1
4

(
ε

1
4
bias +

C5

L
1
4

)
(54)

for some constants C4, C5. Using Lemma 3, we obtain,

1

J

J∑
j=1

V C
N (xN0 , πΦj ) ≤

1

J

J∑
j=1

V C
∞(µ0, πΦj ) +GC ≤

C3

J
1
4

+
C4

J
1
4

(
ε

1
4
bias +

C5

L
1
4

)
−GC (55)

Note that, GR, GC = O(e) where e ,
(

1√
N

[√
|X |+

√
|U|
])

. To make the RHS of (55)

negative, we must have J = O(G−4
C ) = O(e−4). Moreover, if we choose L = O(e−2), then

the RHS of (51) becomes O(e+
√
εbias). Hence, the desired sample complexity is O(e−6).

As discussed earlier, this sample complexity might be improved to Õ(e−2) if the recently
proposed algorithm of Mondal and Aggarwal (2024b) is used.
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Appendix O. Sampling Procedure

Algorithm 2 Sampling Algorithm
Input: µ0, πΦj , P , r
1: Sample x0 ∼ µ0.
2: Sample u0 ∼ πΦj (x0,µ0)
3: ν0 ← νMF(µ0, πΦj )

4: t← 0
5: FLAG← FALSE
6: while FLAG is FALSE do
7: FLAG← TRUE with probability 1− γ.
8: Execute Update
9: end while

10: T ← t
11: Accept (xT ,µT , uT ) as a sample.

12: V̂ R
Φj
← 0, Q̂RΦj

← 0, V̂ C
Φj
← 0, Q̂CΦj

← 0
13: FLAG← FALSE
14: SumRewards← 0
15: SumCosts← 0
16: while FLAG is FALSE do
17: FLAG← TRUE with probability 1− γ.
18: Execute Update
19: SumRewards← SumRewards + r(xt, ut,µt,νt)
20: SumCosts← SumCosts + c(xt, ut,µt,νt)
21: end while

22: With probability 1
2 , V̂

R
Φj
← SumRewards. Otherwise Q̂RΦj

← SumRewards.
23: With probability 1

2 , V̂
C

Φj
← SumCosts. Otherwise Q̂CΦj

← SumCosts.
24: ÂRΦj

(xT ,µT , uT )← 2(Q̂RΦj
− V̂ R

Φj
).

25: ÂCΦj
(xT ,µT , uT )← 2(Q̂CΦj

− V̂ C
Φj

).

26: Â
λj
Φj

(xT ,µT , uT )← ÂRΦj
(xT ,µT , uT )− λjÂCΦj

(xT ,µT , uT )

Output: (xT ,µT , uT ), ÂλjΦj
(xT ,µT , uT ), and V̂ C

Φj

Procedure Update:
1: xt+1 ∼ P (xt, ut,µt,νt).
2: µt+1 ← PMF(µt, πΦj )
3: ut+1 ∼ πΦj (xt+1,µt+1)
4: νt+1 ← νMF(µt+1, πΦj )
5: t← t+ 1

EndProcedure
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