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Abstract

This paper studies a policy optimization problem arising from collaborative multi-agent
reinforcement learning in a decentralized setting where agents communicate with their
neighbors over an undirected graph to maximize the sum of their cumulative rewards. A
novel decentralized natural policy gradient method, dubbed Momentum-based Decentral-
ized Natural Policy Gradient (MDNPG), is proposed, which incorporates natural gradient,
momentum-based variance reduction, and gradient tracking into the decentralized stochas-
tic gradient ascent framework. The O(n−1ε−3) sample complexity for MDNPG to converge
to an ε-stationary point has been established under standard assumptions, where n is the
number of agents. It indicates that MDNPG can achieve the optimal convergence rate
for decentralized policy gradient methods and possesses a linear speedup in contrast to
centralized optimization methods. Moreover, superior empirical performance of MDNPG
over other state-of-the-art algorithms has been demonstrated by extensive numerical ex-
periments.
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1. Introduction

Reinforcement learning (RL) is a sequential decision-making task in which an agent seeks
a strategy that maximizes the long-term return received from the environment via interac-
tion with the system. Recent years have witnessed considerable theoretical and empirical
advances in RL, see for example Kaelbling et al. (1996); Arulkumaran et al. (2017); Ra-
jeswaran et al. (2020); Agarwal et al. (2021) and references therein. In particular, when
combined with deep learning, RL has achieved the most recent state of the art in various
data-driven applications, including robotics (Kober et al., 2013), finance (Liu et al., 2020a)
and game playing (Mnih et al., 2013).

Markov decision processes (MDPs) are widely used to model how agents interact with
an environment. An MDP can be defined as a tuple 〈S,A, P, r, γ〉, where S is a finite state
space, A is a finite action space, P : S × A → ∆(S) is the state transition model which
determines the probability from (s,a) to state s′, r: S ×A×S → [−1, 1] is the immediate
reward function associated with the transition from (s,a) to s′, and γ ∈ [0, 1) is the discount
factor. Moreover, a policy, denoted π : S → ∆(A), specifies a decision-making strategy,
that is, π(a|s) is the probability of executing action a at state s. Given an initial state
distribution ρ(s0), let τ = (s0,a0, r0, s1,a1, r1, · · · , sH−1,aH−1, rH−1, sH) be a trajectory
of time horizon H induced by a policy π, where rh = r(sh,ah, sh+1). The overall goal of
RL is to find a policy that maximizes the expected discounted cumulative rewards, which
can be formulated as the following optimization problem:

max
π∈Π

{
V (π) := Eτ∼p(·|π) {R(τ)}

}
, (1)

where R(τ) =
∑H−1

h=0 γ
hrh is the discounted return obtained from the trajectory τ , p(·|π) is

the distribution of the trajectories, and Π represents the policy space.
There are several classical categories of RL algorithms. Model-based approaches, such as

policy iteration and value iteration (see e.g., Puterman, 2014) find the optimal policy based
on the ideas of of fixed point iteration. Whereas in model-free settings, value-based methods,
like temporal difference learning and Q-learning (see e.g., Sutton and Barto, 2018; Bertsekas,
2019) solely use reward obtained from the environment to seek the optimal strategy. These
methods can be roughly thought of as approximate dynamic programming with Monte
Carlo learning. In contrast, policy gradient methods (Williams, 1992; Sutton et al., 1999;
Konda and Tsitsiklis, 1999) maximize the objective function in (1) by gradient ascent with
a differentiable parameterized policy in the model-free manner. Gradient-based approaches
have a few advantages. For example, they can generate stochastic policies, which are more
exploratory and are easily extended to continuous control problems. Coupled with neural
networks, they have gained tremendous success in many applications due to their flexibility
and adaptability. Moreover, the theoretical guarantees for gradient-based methods are
relatively more complete, even in conjunction with simple function approximations (Sutton
et al., 1999; Xu et al., 2020c; Agarwal et al., 2021).

In this paper, we restrict our attention to policy optimization based methods. Using
a parameterized policy πθ where θ ∈ Rd, (1) can be expressed as a finite dimensional
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optimization problem:

max
θ∈Rd

{
V (θ) := Eτ∼p(·|θ) {R(τ)}

}
. (2)

After parameterization, the distribution of the trajectories, denoted p(τ |θ), is given by

p(τ |θ) := ρ(s0)
H−1∏
h=0

πθ(ah|sh)P (sh+1|sh,ah), (3)

where we recall that ρ(s0) is the initial state distribution.
A direct method for solving problem (2) is policy gradient (PG). Despite its simplic-

ity, PG is not invariant to reparameterization. As an alternative, natural policy gradient
(NPG) methods (Kakade, 2001; Bagnell and Schneider, 2003; Peters and Schaal, 2008; Bhat-
nagar et al., 2007) utilize the intrinsic distance between policies, i.e., the Kullback-Leibler
(KL) divergence, to modify the search direction so that parameterization invariance can
be preserved. As two variants of NPG methods, trust region policy optimization (TRPO),
see Schulman et al. (2015), combines NPG with a line search procedure to guarantee im-
provement, whereas proximal policy optimization (PPO), see Schulman et al. (2017), uses
a simplified objective with a penalty term or a clipped ratio rather than the KL constraint.

1.1 Collaborative Multi-Agent Reinforcement Learning

More recently, there has been a growing interest in multi-agent reinforcement learning
(MARL) which allows agents to address problems simultaneously in more complicated set-
tings, such as fully cooperative, fully competitive, and mixed of the two (Busoniu et al.,
2008; Nowé et al., 2012; Zhang et al., 2021b). MARL arises in many applications, including
autonomous driving (Shalev-Shwartz et al., 2016), game playing (Vinyals et al., 2019), and
wireless networks (Yao and Jia, 2019). In this paper, we study an n-agent fully cooperative
setting in which the goal of agents is to cooperatively maximize the global value function
defined as follows:

max
θ∈Rd

{
V (θ) :=

1

n

n∑
i=1

Vi(θ)

}
, (4)

where θ ∈ Rd is the parameter of policy and Vi(θ) is the value function of the i-th agent.
Let τi = (s0,a0, r0

i , s
1,a1, r1

i , · · · , sH−1,aH−1, rH−1
i , sH) be the trajectory induced by the

policy πθ for the i-th agent1. The discounted return R(τi) of the i-th agent over trajectory
τi is given by

R(τi) =
H−1∑
h=0

γhi r
h
i .

Therefore, Vi(θ) in (4) has the following expression:

Vi(θ) := Eτi∼p(·|θ) {R(τi)} .

Problem (4) can be used to model different cooperative MARL settings. Next we give
two examples.

1. For ease of notation, we drop the subscript i for shi and ahi but only keep the subscript for rhi .
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1.1.1 Collaborative Reinforcement Learning

In this setting, agents aim to maximize the sum of their cumulative rewards in a global
environment (Zhang et al., 2018; Jiang et al., 2022). Consider an n-agent MDP denoted by
a tuple 〈S, {Ai}ni=1, P, {ri}ni=1, {γi}ni=1〉, where

• S is the global state space shared by all agents,

• A := A1 × · · · × An is the joint action space of all agents,

• P : S ×A → ∆(S) is the state transition model,

• ri : S ×A× S → [−1, 1] is the reward function of agent i,

• γi is the discount factor for the i-th agent.

Let s ∈ S be the global state. The action space of the i-th agent is denoted by Ai. Let
A = A1×· · ·×An be the joint action space. In collaborative RL setting, the state s ∈ S and
joint action a ∈ A are globally observable, while the reward is locally observed. The joint
policy is denoted as π : S → ∆(A). We assume that the joint policy is parameterized by
θ ∈ Rd, specifically represented as πθ(a|s). Since each agent makes decisions independently,
we have that π(a|s) =

∏n
i=1 πi(ai|s). Further, suppose that the i-th policy is parameterized

by θ[i] ∈ Rdi , denoted πθ[i] : S → ∆(Ai). The probability of executing a at sate s can be
rewritten as

πθ(a|s) :=
n∏
i=1

πθ[i](ai|s). (5)

In this scenario, θ in (4) is given by θ =
[
θT[1] · · · θT[n]

]T
∈ Rd and d =

∑n
i=1 di. It

is worth noting that the policy is a mapping onto joint action space. Consequently, the
action spaces can either be identical, completely disjoint, or partially overlapping, without
affecting the formulation of the policy. A trajectory of collaborative RL induced by πθ is
given by

τ =
{
s0,a0, (r0

1, · · · , r0
n), s1,a1, (r1

1, · · · , r1
n), · · · , sH−1,aH−1, (rH−1

1 , · · · , rH−1
n ), sH

}
,

where the superscript denotes time in trajectory and subscript indicates agent. The distri-
bution of τ can be written as

p(τ |θ) := ρ(s0)
H−1∏
h=0

πθ(ah|sh)p(sh+1|sh,ah).

The value function for the i-th agent is given by

Vi(θ) = Eτ∼p(·|θ)

{
H−1∑
h=0

γhi r
h
i

}
.

Then, the objective function in collobrative RL is defined as V (θ) := n−1
∑n

i=1 Vi(θ).
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1.1.2 Multi-Task Reinforcement Learning

Multi-task reinforcement learning (MTRL) refers to the problem of different agents learning
a shared policy in different but similar environments so that the learned policy can perform
well in all the environments. MTRL utilizes similarities across different environments to
enhance learning efficiency and generalization. Such an approach has received a lot of
attention in recent years (Hessel et al., 2019; Yu et al., 2020; Zeng et al., 2021). In the
MTRL setting, the MDP for the i-th agent is expressed as 〈Si,A, Pi, ri, γi〉. The setup for
different agents can differ in terms of:

• Si, the state space for the i-th environment,

• Pi : Si ×A → ∆(Si), the transition model for the i-th environment,

• ri : Si ×A× Si → [−1, 1], the reward function for the i-th agent,

• γi, the discount factor for the i-th agent.

In this case, the action spaces are constrained to be identical in order for the agents to share
a common parameterized policy, while each local state space Si can either be identical,
completely disjoint, or partially overlapping. Consider Si as the state space for the i-th
agent, and we define S as the union of all Si, i.e., S = ∪iSi. The policies of various agents
share a common parameterization denoted as θ ∈ Rd, implying that πi(a|s) = πθ(a|s)
holds for all a ∈ A and s ∈ S. The trajectory for the i-th agent is given by

τi =
{
s0
i ,a

0
i , r

0
i , · · · , sH−1

i ,aH−1
i , rH−1

i , sHi

}
,

whose distribution is given by

p(τi|θ) := ρ(s0
i )
H−1∏
h=0

πθ(ahi |shi )p(sh+1
i |shi ,ahi ).

The value function for the i-th agent is defined as

Vi(θ) = Eτi∼p(·|θ)

{
H−1∑
h=1

γhi r
h
i

}
.

Thus the objective function in MTRL can also be written as (4).
Roughly speaking, collaborative RL shares a global state space, while MTRL shares a

common action space. For conciseness, we refer to both of the aforementioned settings as
collaborative multi-agent reinforcement learning. It should be easy to see whether “collab-
orative” refers to two tasks or the particular one task from the context.

1.2 Decentralized Optimization Setup

Since each agent only has access to local information, solving problem (4) needs to aggre-
gate all local computations to update the learning parameter. The centralized optimization
method uses a central coordinator for data collection and information transmission, in-
evitably leading to high communication costs. Moreover, the central coordinator does not
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exist or may be too expensive to deploy in real applications. By contrast, in a decentralized
framework that is considered in this paper each agent only communicates with its neighbors
through a communication network. Let G = (N , E) be the communication network which is
indeed an undirected graph, where N = {1, · · · , n} is the set of agents, and E ⊆ N ×N is
the collection of edges. Note that a pair (i, j) ∈ E represents that i can communicate with
j. For the i-th agent, define the set of its neighbors as N (i) = {j ∈ N|(i, j) ∈ E or i = j}.
In addition, we can associate a weight matrix W = [Wij ] ∈ Rn×n with the graph G, where
Wij > 0 if (i, j) ∈ E , and Wij = 0 otherwise. Assuming G is a connected graph, it is not
hard to see that problem (4) is equivalent to

max
θ1,··· ,θn∈Rd

1

n

n∑
i=1

Vi(θi) subject to θi = θj , for all (i, j) ∈ E . (6)

1.3 Main Contributions and Outline of This Paper

The main contributions of this work are summarized as follows.

• Roughly speaking, NPG is preconditioned gradient method which is suitable for solv-
ing optimization problems over probability distribution. Some classic methods in
single-agent RL, such as TRPO (Schulman et al., 2015), PPO (Schulman et al., 2017),
and NAC (Peters and Schaal, 2008), are essentially variants of NPG. Thus, it is nat-
ural to extend NPG from the single-agent setting to the decentralized multi-agent
setting, which motivates our work. Specifically, we develop a Momentum-based De-
centralized Natural Policy Gradient (MDNPG) method for the collaborative MARL
problem. MDNPG combines natural gradient with momentum-based variance reduc-
tion and gradient tracking to solve the decentralized optimization problem. Extensive
numerical experiments show that introducing this preconditioning in the decentralized
setting is also able to improve the empirical performance for collaborative MARL.

• Theoretical guarantees for MDNPG have been obtained, showing that MDNPG is
able to converge to an ε-stationary point in O(n−1ε−3) iterations provided a mini-
batch initialization. Even though the variance reduced decentralized policy gradient
has been studied in the collaborative MARL scenario, the existing proof techniques
cannot directly apply to MDNPG due to the complexity in handling the additional
precondition matrices. To overcome this difficulty, a novel stochastic ascent inequality
(see Lemma 13) has been established to accommodate the preconditioned gradients
for the non-convex objective in the decentralized setting. Moreover, the presence of
precondition matrices requires a distinct approach to derive the bound of the consensus
errors among different agents (see Lemma 14). To the best of our knowledge, this is
first work to study the convergence of the NPG method in the decentralized multi-
agent setting. Furthermore, these intermediate technical results are of independent
interest and may be available for analyzing other preconditioned stochastic gradient
methods in decentralized non-convex optimization.

The rest of this paper is organized as follows. In Section 2, we present a complete
description of MDNPG and provide theoretical guarantees for it. In addition, more closely
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related works are reviewed. In Section 3, we compare MDNPG with other state-of-the-art
algorithms in single-agent and multi-agent experiments, which demonstrate the efficiency
of the proposed method. The proofs of the main results and key lemmas are presented
in Sections 4 and 5. Finally, in Section 6, we conclude this paper with future research
directions.

Throughout this paper, we refer to A ⊗ B as the Kronecker product. We denote by
1n ∈ Rn the all-one vector (i.e., all entries of 1n are 1) and by Jn ∈ Rn×n the all-one matrix.
The d×d identity matrix is denoted by Id. Additionally, we denote by ∆(S) (or ∆(A)) the
probability simplex over the state (or action) space.

2. MDNPG and Convergence Results

The Momentum-based Decentralized Natural Policy Gradient (MDNPG) algorithm is sum-
marized in Algorithm 1. In the algorithm, agents perform the following steps at each
iteration t: gradient estimator calculation, gradient tracking, and parameter update. No-
tice that each step is simultaneously executed by all agents but is only presented from agent
i’ s view for simplicity. Overall, there are three pillars in MDNPG, which will be detailed
next. Compared with policy gradient based decentralized optimization algorithms (Jiang
et al., 2022; Zeng et al., 2021; Zhao et al., 2021) for collaborative MARL, the key difference
is in the parameter update step where a natural gradient direction is used for each agent.

Algorithm 1 Momentum-based Decentralized Natural Policy Gradient (MDNPG)

Input: number of iterations T , horizon H, batch size B, learning rate η, momentum
parameter β, initial parameter θ̄0 ∈ Rd, initial estimator v−1

i = 0 ∈ Rd, initial tracker
y0
i = 0 ∈ Rd.

Initialization: θ0
i = θ̄0, v0

i = 1
B

∑B
b=1 gi(τ

0
i,b|θ0

i ) and y1
i =

∑
j∈N (i)Wijv

0
j for i = 1, · · · , n,

where {τ0
i,b}Bb=1 represents the B trajectories i.i.d sampled from p(·|θ0

i ).
for t = 1, 2, . . . , T do

Generate an estimator vti of ∇Vi(θt):

vti = βgi(τ
t
i |θti) + (1− β)

(
vt−1
i + gi(τ

t
i |θti)− ω(τ ti |θt−1

i ,θti) · gi(τ ti |θt−1
i )

)
.

Gradient Tracking:

yt+1
i =

∑
j∈N (i)

Wij

(
ytj + vtj − vt−1

j

)
.

Parameter Update:

θt+1
i =

∑
j∈N (i)

Wij

(
θtj + ηHt

jy
t+1
j

)
.

end for
Output: θout ∈ Rd chooses randomly from {θti}i=1,...,n,t=0,...,T .
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2.1 Three Pillars in MDNPG Algorithm

2.1.1 Pillar I: Decentralized Optimization

To solve problem (6), each agent can first perform a local gradient update and then seek
consensus with its neighbors in order to fulfill the equality constraint. This is the basic idea
behind the decentralized gradient ascent method which can be expressed as

θt+1
i =

∑
j∈N (i)

Wij(θ
t
j + η∇Vj(θtj)), (7)

where η represents the learning rate, ∇Vj(θtj) represents the gradient of Vj(θj) with respect
to θtj , and Wij are the elements of the weight matrix W associated with the communication
network G. Note that W here plays a role of weighted average for consensus which should
satisfy certain properties (see Assumption 1). Despite its simplicity, the original decentral-
ized gradient ascent suffers from slow convergence. To address this issue, a gradient tracking
technique has been developed in Li et al. (2020); Pu and Nedić (2021), of which the central
idea is to correct biases between local copies of θ via tracking the average gradient, i.e.,
1
n

∑n
i=1∇Vi(θi). The modified version of update (7) with gradient tracking consists of the

following two steps:

yt+1
i =

∑
j∈N (i)

Wij

(
ytj +∇Vj(θtj)−∇Vj(θt−1

j )
)
,

θt+1
i =

∑
j∈N (i)

Wij

(
θtj + ηyt+1

j

)
,

(8)

where yi denotes the gradient tracker for agent i. Simple calculation shows that (8) satisfies
the dynamic average consensus property:

1

n

n∑
i=1

yt+1
i =

1

n

n∑
i=1

∇Vi(θti), t ≥ 1,

which implies that the average of ∇Vi(θti) is dynamically tracked by the average of yt+1
i .

Further, it can be proved that decentralized optimization methods equipped with gradient
tracking can achieve better convergence rate (Li et al., 2020).

2.1.2 Pillar II: Variance Reduction

Consider the optimization problem

max
θ∈Rd

E {f(θ; ξ)} ,

where ξ represents a random variable drawn from an unknown distribution D. The stochas-
tic gradient ascent at the t-th iteration is given as

θt+1 = θt + η · g(θt; ξt),

where η is the learning rate and g(θt; ξt) = ∇f(θt; ξt) is the gradient estimator with ξt

being independently sampled from D. Due to the high variance incurred by the stochastic
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evaluation of the gradient, vanilla stochastic gradient methods suffer from slow convergence.
Thus, in order to accelerate the methods, various variance reduction methods have been
proposed and studied in the past decades, such as SVRG (Johnson and Zhang, 2013),
SAGA (Defazio et al., 2014), SARAH (Nguyen et al., 2017), and SPIDER (Fang et al., 2018).
More recently, a momentum-based variance reduction method (Cutkosky and Orabona,
2019; Tran-Dinh et al., 2019) is proposed, in which the gradient estimator is given by

vt = β g(θt; ξt)︸ ︷︷ ︸
SGD

+(1− β)
(
vt−1 + g(θt; ξt)− g(θt−1; ξt)

)︸ ︷︷ ︸
SARAH

, (9)

where β ∈ (0, 1] is the momentum parameter. A key feature of the momentum-based method
is that it is a single-loop algorithm which leverages the benefits of both the unbiased SGD
estimator (Bottou, 2012) and the novel SARAH estimator (Nguyen et al., 2017). Thus it
can avoid the high computational cost of batch gradients to reduce variance.

In this work, we will adopt the momentum-based variance reduction method for the
policy gradient estimation. The gradient of Vi(θi) in (6) with respect to θi can be computed
as follows

∇Vi(θi) = ∇θiEτi∼p(·|θi) {R(τi)}

=

∫
τi

∇θip(τi|θi)R(τi)dτi

=

∫
τi

p(τi|θi)
∇θip(τi|θi)
p(τi|θi)

R(τi)dτi

= Eτi∼p(·|θi) {∇θi log p(τi|θi)R(τi)} . (10)

The commonly used gradient estimators of policy gradient include REINFORCE (Williams,
1992) or GPOMDP (Baxter and Bartlett, 2001). For the i-th agent, we adopt REINFORCE
with a baseline bi as the policy gradient estimator:

gi(τi|θi) =

[
H−1∑
h=0

∇θi log πθi(a
h|sh)

]
·

[
H−1∑
h=0

γhrhi − bi

]
, (11)

where τi denotes a trajectory generated under policy πθi . Without loss of generality, we use
the same γ for all agents.

Note that in the momentum-based gradient estimator (9) for the ordinary stochastic
optimization, the ξt sampled from D is independent of θt. However, in (11), the sampled
trajectory τ ti is determined by the distribution p(·|θti). It is easily seen that gi(τ

t
i |θ

t−1
i )

is a biased estimator for ∇V (θt−1
i ). To ensure the unbiased property, we can utilize the

importance sampling technique,

Eτ ti∼p(·|θti)
{
ω(τ ti |θt−1

i ,θti)gi(τ
t
i |θt−1

i )
}

= ∇Vi(θt−1
i ),

where ω(τ ti |θ
t−1
i ,θti) represents the importance weight defined as

ω(τ ti |θt−1
i ,θti) =

p(τ ti |θ
t−1
i )

p(τ ti |θti)
=

H−1∏
h=0

πθt−1
i

(ah|sh)

πθti (a
h|sh)

. (12)
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Therefore, the momentum-based variance reduction (9) for the policy gradient of the i-th
agent, denoted vti , is given by Huang et al. (2020):

vti = βgi(τ
t
i |θti) + (1− β)

(
vt−1
i + gi(τ

t
i |θti)− ω(τ ti |θt−1

i ,θti) · gi(τ ti |θt−1
i )

)
.

2.1.3 Pillar III: Natural Policy Gradient

In order to introduce the natural policy gradient method, we consider the policy optimiza-
tion problem (2):

max
θ∈Rd

{
V (θ) = Eτ∼p(·|θ) {R(τ)}

}
,

where τ is the H-horizon trajectory and p(τ |θ) given by (3). The PG update θt+1 =
θt + η∇V (θt) is a gradient ascent method over the parameter space, which is also the
minimizer of the following problem

min
θ

〈
−∇V (θt),θ − θt

〉
+

1

2η

∥∥θ − θt∥∥2

2
. (13)

However, since the objective function essentially relies on the distributions of τ , it is more
natural to conduct a search over distribution space, leading to the following sub-problem
for updating θt:

min
θ

〈
−∇V (θt),θ − θt

〉
+

1

2η
KL(p(τ |θt); p(τ |θ)), (14)

where the KL divergence is used to enable the search around p(τ |θt) over the distribution
space.

Since KL(p(τ |θt); p(τ |θt)) = 0 and ∇θt KL(p(τ |θt); p(τ |θ)) = 0, one can approximate
KL(p(τ |θt); p(τ |θ)) by its second order information and thus approximate (14) by

min
θ

〈
−∇V (θt),θ − θt

〉
+

1

2η
(θ − θt)TF (θt)(θ − θt), (15)

where F (θt) = Eτ∼p(·|θt)
{
∇θ log p(τ |θt)

(
∇θ log p(τ |θt)

)T }
is the Fisher information ma-

trix (FIM) of p(τ |θt) and F (θt)† is the Moore-Penrose pseudoinverse of F (θt). It can be
easily seen that the optimal solution to (15) is given by

θt+1 = θt + ηF (θt)†∇V (θt), (16)

which yields the natural policy gradient update.
Given the definition of p(τ |θ) in (3), the FIM can be further expressed as

F (θ) = Eτ∼p(·|θ)


(
H−1∑
h=0

∇θ log πθ(ah|sh)

)(
H−1∑
h=0

∇θ log πθ(ah|sh)

)T


= Eτ∼p(·|θ)

{
H−1∑
h=0

∇θ log πθ(ah|sh)
(
∇θ log πθ(ah|sh)

)T}
. (17)

Here the second line has used the fact that the cross term is equal to 0, which can be easily
verified. When H →∞, the FIM may not be well determined. There are two typical ways
to deal with this issue:

10
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• Averaged case. Let τ be a trajectory induced by πθ up to horizon H. The FIM in the
average case is given by

F (θ) = lim
H→∞

1

H
Eτ∼p(·|θ)

{
H−1∑
h=0

∇θ log πθ(ah|sh)
(
∇θ log πθ(ah|sh)

)T}
, (18)

It has been shown by Bagnell and Schneider (2003); Peters et al. (2003) that (18) is
equivalent to

F (θ) = Es∼dπθ ,a∼πθ(·|s)

{
∇θ log πθ(a|s) (∇θ log πθ(a|s))T

}
,

where dπθ is the stationary distribution of state.

• Discounted case. On the other hand, one can consider infinite horizon but introduce
a discounted factor γ ∈ [0, 1). In this situation, the FIM is given by

F (θ) = Eτ∼p(·|θ)

{
+∞∑
h=0

γh∇θ log πθ(ah|sh)
(
∇θ log πθ(ah|sh)

)T}
. (19)

Moreover, letting τ be the H-horizon trajectory induced by πθ, where H obeys the
geometric distribution with parameter 1 − γ, then F (θ) in (19) is indeed the FIM
associated with the random-length trajectory τ . That is (Bagnell and Schneider,
2003; Peters et al., 2003),

F (θ) = EH∼Geo(1−γ)

{
Eτ∼p(·|θ)

{
H−1∑
h=0

∇θ log πθ(ah|sh)
(
∇θ log πθ(ah|sh)

)T ∣∣∣∣∣H
}}

=
1

1− γ
Es∼dπθρ ,a∼πθ(·|s)

{
∇θ log πθ(a|s) (∇θ log πθ(a|s))T

}
,

where dπθρ (s) = Es0∼ρ
{

(1− γ)
∑∞

h=0 γ
hP (sh = s|s0, πθ)

}
is the discounted state visi-

tation distribution under the initial distribution ρ. Such formulation has been widely
used in the literature (Kakade, 2001; Bhatnagar et al., 2007; Agarwal et al., 2021).

With a slight abuse of notation, we will use the following definition of FIM in this paper:

F (θ) = Eτ∼p(·|θ)

{
1

H

H−1∑
h=0

∇θ log πθ(ah|sh)
(
∇θ log πθ(ah|sh)

)T}
, (20)

which agrees with (17) up to a scale.
In contrast to PG, NPG can be approximately viewed as a second-order method since

the FIM serves as a structured precondition based on the underlying structure of the pa-
rameterized policy space (Amari, 1996; Martens, 2020). Such a precondition can adaptively
adjust the update direction to improve the convergence rate. In Algorithm 1, we have
extended the NPG update (16) to the decentralized multi-agent setting (6). For the i-th
agent at the t-th iteration, we have

θt+1
i =

∑
j∈N (i)

Wij

(
θtj + ηHt

j∇Vj(θtj)
)
,

11
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where Ht
j ∈ Rd×d denotes the Moore-Penrose pseudoinverse of Fj(θ

t
j). Namely, each agent

searches along the (preconditioned) natural gradient direction of its own before the consen-
sus.

In addition, the following lemma establishes that the FIM in the collaborative RL setting
mentioned in Section 1.1 is indeed a block diagonal matrix for each agent due to the product
structure of the joint policy, see (5).

Lemma 1 In collaborative RL, let τi be the H-horizon trajectory induced by the policy πθi
for agent i. The FIM of the i-th agent Fi(θi) ∈ Rd×d is given by

Fi(θi) = diag
(
Fi(θ[1]), · · · ,Fi(θ[n])

)
,

where

Fi(θ[j]) =
1

H
Eτi∼p(·|θ)

{
H−1∑
h=0

∇θ[j] log πθ[j](a
h
j |sh)

(
∇θ[j] log πθ[j](a

h
j |sh)

)T}
∈ Rdj×dj (21)

for j = 1, · · · , n.

2.2 Theoretical Result

Before stating the main convergence result in Theorem 9, we first introduce some standard
assumptions.

Assumption 1 The weight matrix W ∈ Rn×n associated with the communication graph G
is doubly stochastic, i.e., W1n = 1n and 1TnW = 1Tn .

Remark 2 Assumption 1 can be easily satisfied and is commonly used in the convergence
analysis of decentralized optimization methods (see for example Boyd et al. (2006); Tang
et al. (2018); Nedić et al. (2018); Xin et al. (2021)). Under this assumption, one can show
that

ρ :=

∥∥∥∥W − 1

n
1n1

T
n

∥∥∥∥ ∈ [0, 1). (22)

Assumption 2 Let πθ(a|s) be the policy parameterized by θ ∈ Rd. There are constants G
and M such that the gradient and Hessian of the log-density of the policy function satisfy

‖∇θ log πθ(a|s)‖22 ≤ G and
∥∥∇2

θ log πθ(a|s)
∥∥ ≤M

for any a ∈ A and s ∈ S.

Remark 3 Assumption 2 is widely used in the studies of policy gradient methods (Pirotta
et al., 2015; Papini et al., 2018; Liu et al., 2020b; Ding et al., 2021; Fatkhullin et al., 2023)
and can be satisfied for simple policy parameterization such as softmax tabular policy, log-
linear policy with bounded feature vectors. Moreover, it also holds for Gaussian policy with
bounded action and bounded mean parameterization (Fatkhullin et al., 2023).

12
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Assumption 3 The variance of ω(τ |θ̃,θ), the importance sampling weight defined in (12),
is bounded,

Var(ω(τ |θ̃,θ)) ≤W,

for any θ, θ̃ ∈ Rd and τ ∼ pi(·|θ).

Remark 4 Assumption 3 is commonly adopted in the analysis of variance reduced policy
gradient methods (Papini et al., 2018; Xu et al., 2020b,a; Shen et al., 2019; Liu et al., 2020b;
Huang et al., 2020; Ding et al., 2021). For two Gaussian policies πθ1(·|s) = N (θ1, σ

2
1) and

πθ2(·|s) = N (θ2, σ
2
2), it is shown in (Cortes et al., 2010) that the variance of the importance

sampling weight is bounded provided σ2 >
√

2
2 σ1. That being said, it is worth noting that

such an assumption might be violated in practice (Huang et al., 2020; Ding et al., 2021).
To deal with the challenge, many tricks have been proposed, e.g., clipping the importance
sampling weights (Huang et al., 2020), applying truncated policy gradient (Zhang et al.,
2021a).

The following two auxiliary lemmas can be derived from the above assumptions directly.

Lemma 5 (Xu et al., 2020a, Proposition 5.2) Under Assumption 2, one has the following
facts:

• The objective function V (θ) is L-smooth with L = H(M +HG)/(1− γ).

• Let gi(τ ;θ) be the gradient estimator defined in (11). Then for all θ, θ̃ ∈ Rd, one has∥∥∥gi(τ ;θ)− gi(τ ; θ̃)
∥∥∥

2
≤ Lg

∥∥∥θ − θ̃∥∥∥
2

and ‖gi(τ ;θ)‖2 ≤ Cg for all i ∈ [n], where Lg = HM(1 + |b|)/(1 − γ) and Cg =
HG1/2(1 + |b|)/(1− γ).

Lemma 6 (Jiang et al., 2022, Lemma 3) Under Assumption 2 and 3, one has

Var(ω(τ |θ̃,θ)) = Eτ∼p(·|θ)

{(
ω(τ |θ̃,θ)− 1

)2
}
≤ C2

ω

∥∥∥θ̃ − θ∥∥∥2

2
, (23)

where C2
ω = H(2HG+M)(W + 1).

The next lemma states that the variance of the gradient estimator (11) is bounded,
which is a direct consequence of Assumption 2.

Lemma 7 (Yuan et al., 2022, Lemma 4.2). Under Assumption 2, consider the gradient
estimator (11). One has

Var(gi(τ ;θ)) = E
{
‖gi(τ ;θ)−∇Vi(θ)‖22

}
≤ ν2

i (24)

for all policy πθ, where νi =
√
HG

1−γ and τ ∼ p(·|θ). Define ν̄2 = 1
n

∑n
i=1 ν

2
i .

13
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Assumption 4 Let F (θ) ∈ Rd×d be the FIM defined in (20). There exists a constant
µF > 0 such that F (θ) � µF Id for all θ ∈ Rd.

Remark 8 Assumption 4 indicates the positive definiteness of FIM, which is fairly standard
in the analysis of single-agent NPG algorithm, e.g., Liu et al. (2020b); Ding et al. (2021);
Fatkhullin et al. (2023). The assumpition on the positive definiteness of preconditioned
matrices is also needed for establishing the convergence of preconditioned algorithms in
both convex and nonconvex optimizations (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970;
Shanno, 1970). In addition to some Gaussian polices, this assumption can also be satisfied
by a subclass of exponential family policies and certain neural policies. We refer to Liu
et al. (2020b); Ding et al. (2021); Fatkhullin et al. (2023) for more discussions. Moreover,
this assumption can be always satisfied if we use F + εId for ε > 0 instead of F as the
precondition matrix.

Let Hi be the inverse FIM F (θi) for the i-th agent with policy parameter θi ∈ Rd.
Then Assumptions 2 and 4 imply that

1

G
Id 4H

t
i 4

1

µF
Id, (25)

where the lower bound holds since the fact ‖F (θ)‖ ≤ G. Moreover, this fact can be proved
as follows:

‖F (θ)‖ =

∥∥∥∥∥Eτ∼p(·|θ)

{
1

H

H−1∑
h=0

∇θ log πθ(ah|sh)
(
∇θ log πθ(ah|sh)

)T}∥∥∥∥∥
≤ 1

H

H−1∑
h=0

Eτ∼p(·|θ)

{∥∥∥∥∇θ log πθ(ah|sh)
(
∇θ log πθ(ah|sh)

)T∥∥∥∥ }
≤ G,

where the last line is due to Assumption 2.
We are in position to present the main result of this paper.

Theorem 9 Let θout ∈ Rd be the output of Algorithm 1. Suppose that

0 < η <
µF (1− ρ2)3

κF
√

1632000(L2 + Φ2)

and choose β such that
1632000(L2+Φ2)κ2F η

2

nµ2F (1−ρ2)6
≤ β < 1

n , where Φ2 = L2
g+C2

gC
2
ω and κF = G/µF .

Then under Assumptions 1-4, one has

E
{
‖∇V (θout)‖22

}
≤ 8G2∆

TηµF
+

76ν̄2κ2
F

nTβB
+

152βν̄2κ2
F

n

+
44ρ2ν̄2κ2

F

TB(1− ρ2)
+

352β2ν̄2κ2
F

(1− ρ2)2
+

352βν̄2κ2
F

TB(1− ρ2)2

+
704ν̄2κ2

Fβ
3

(1− ρ2)2
+

44ρ2κ2
F

nT (1− ρ2)

∥∥∥∇̃V (θ0)
∥∥∥2

2
. (26)
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Remark 10 If we choose η and β according to Theorem 9, then the mean squared stationary

gap E
{
‖∇V (θout)‖22

}
converges to a steady-state error as T → ∞ at a rate of O(1/T ),

i.e.,

E
{
‖∇V (θout)‖22

}
→ O

(
βν̄2

n
+

β2ν̄2

(1− ρ2)2

)
, T →∞.

It can be seen that the steady-state error will decrease as the number of agents increases.
Moreover, the second term in the steady-state error indicates that the impact of communi-
cation graph G through ρ can be reduced with small β.

Corollary 11 Choose step size η, momentum parameter β, and batch size B in initializa-

tion such that η = µFn
2/3

κF
√
L2+Φ2T 1/3 , β = n1/3

T 2/3 and B =
⌈
T 1/3

n2/3

⌉
. Then for all T > 16320003/2n2

(1−ρ2)9
,

one has

E
{
‖∇V (θout)‖22

}
≤

8∆κ3
F

√
L2 + Φ + 228ν̄2κ2

F

(nT )2/3

+
44ρ2κ2

F

∥∥∥∇̃V (θ0)
∥∥∥2

2

(1− ρ2)
· 1

nT
+

396κ2
F ν̄

2

(1− ρ2)2
· n

2/3

T 4/3
+

1056ν̄2κ2
F

(1− ρ2)2
· n
T 2
.

Remark 12 Corollary 11 implies that

E
{
‖∇V (θout)‖22

}
= O((nT )−2/3)

when T is large enough. Thus one can achieve ε-stationary, i.e., E
{
‖∇V (θout)‖22

}
. ε2, in

O(n−1ε−3) iteration complexity, which shows that MDNPG also enjoys the linear speedup
convergence rate.

2.3 Related Work

In this section, we discuss the recent progress that is mostly related to our work, espe-
cially those gradient based methods in reinforcement learning and decentralized stochastic
optimization.

Single-agent policy gradient and natural policy gradient. Inspired by stochastic optimiza-
tion, there has been extensive research in designing variance reduction methods for policy
gradient estimator (Papini et al., 2018; Xu et al., 2020b,a; Shen et al., 2019; Huang et al.,
2020). For instance, Papini et al. (2018) show that SVRPG achieves an ε-stationary point
given O(ε−4) trajectories. Xu et al. (2020a) improve this sample complexity to O(ε−10/3).
Moreover, SRVR-PG (Xu et al., 2020b) and HAPG (Shen et al., 2019) can obtain an ε-
stationary point provided O(ε−3) trajectories, both of which are nearly optimal in the
sample complexity (Arjevani et al., 2022). However, these methods require large batches or
double-loop updates. Recently, Huang et al. (2020) incorporate the momentum-based vari-
ance reduction technique in policy gradient methods and achieve the sample complexity of
O(ε−3) with a single trajectory at each iteration. The global convergence of policy gradients
with variance reduction has also been studied in Ding et al. (2021); Liu et al. (2020b). As
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already mentioned, NPG (Kakade, 2001) and its generalizations, such as TRPO (Schulman
et al., 2015) and PPO (Schulman et al., 2017), are widely used in RL. There has been a
lot of interest in understanding the theoretical performance of this class of methods, see
Agarwal et al. (2021); Cen et al. (2021); Lan (2022) and the references therein. Different
variance reduction techniques have also been utilized in NPG. For example, SRVR-NPG is
proposed in Liu et al. (2020b) which reaches a sample complexity of O(ε−3). In addition,
two variance reduced mirror ascent methods, named VRMPO and VR-BGPO, are devel-
oped in Yang et al. (2022) and Huang et al. (2021), respectively. These methods reduces to
NPG with variance reduction if a special mirror mapping is used.

Multi-agent policy gradient. For collaborative RL problem, many decentralized policy
gradient algorithms have been developed. Lu et al. (2021) study a decentralized policy
gradient method in safe MARL and show that an ε-stationary point can be achieved from
O(ε−4) iterations. Zhao et al. (2021) study the convergence of decentralized policy gradient
with variance reduction and gradient tracking in collaborative RL and establish the sample
complexity of O(ε−3). However, the method in Zhao et al. (2021) requires very large batch
gradients to obtain this optimal complexity. In contrast, Jiang et al. (2022) adopt the
momentum-based variance reduction technique for decentralized policy gradient which also
achieves the optimal sample complexity but only uses a single trajectory in each iteration.
For the MTRL problem, various policy gradient methods have been developed and studied.
In Espeholt et al. (2018); Hessel et al. (2019), a distributed framework is used to solve the
learning problem. However, in these works, each agent collects local data, which are then
shared to a centralized coordination. In a subsequent work, a decentralized policy gradient
method is proposed in Zeng et al. (2021). However, the proposed method only adopts the
vanilla gradient ascent without gradient tracking and variance reduction, thus resulting in
a sample complexity of O(ε−4). In addition, decentralized optimization methods have also
been studied in the framework of policy evaluation (Qu et al., 2019; Doan et al., 2019; Lin
and Ling, 2021).

Decentralized optimization. In general, decentralized optimization has been extensively
studied for non-convex problems. There are many algorithms developed toward this line
of research, including DSGD (Lian et al., 2017), EXTRA (Shi et al., 2015), and Exact
Diffusion (Yuan et al., 2018). To achieve the lower oracle complexity, various kinds of
variance reduced techniques have been utilized. The D-GET proposed in Sun et al. (2020)
is built upon gradient tracking and the SARAH gradient estimator and achieves an oracle
complexity of O(ε−3). The same oracle complexity is also obtained by D-SPIDER-SFO
(Pan et al., 2020) which uses SPIDER in the variance reduction step. Recently, built on
the hybrid variance reduction scheme introduced in Cutkosky and Orabona (2019); Tran-
Dinh et al. (2022), the GT-HSGD is developed in Xin et al. (2021) which can achieve an
ε-approximate first-order stationary point within O(n−1ε−3) samples for each node.

Our work distinguishes from the existing analysis in common decentralized optimization
in two aspects. First and foremost, the introduction of the precondition matrix (i.e., the
Fisher information matrix) proposes new challenges in the establishment of the convergence
of the algorithm. To this end, a novel stochastic gradient ascent inequality (see Lemma 13)
is derived, where the effect of preconditioning is carefully analyzed. In addition, a distinct
approach is needed to derive the bound of the consensus errors among different agents (see
Lemma 14). Secondly, the randomness of data samples is independent of the optimized
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parameters in common decentralized optimization, so the unbiased property of the gradient
estimation based on the last iteration is satisfied automatically. In contrast, for the RL
problem, the importance sampling weight is needed to guarantee the unbiased property,
which causes new difficulties in the analysis.

3. Numerical Experiments

In this section, we empirically compare MDNPG with other state-of-the-art algorithms in
several typical RL environments2. In our implementations, we use the sample version of
(20) with one random trajectory to approximately compute the FIM for the single-agent
experiments as well as the experiments about multi-task GridWorld:

F (θ) ≈ 1

H

H−1∑
h=0

∇θ log πθ(ah|sh)
(
∇θ log πθ(ah|sh)

)T
.

Regrading the experiments for the collaborative RL setting on cooperative navigation, the
FIM Fi(θ[j]) is computed via (21) of Lemma 1,

Fi(θ[j]) ≈
1

H

H−1∑
h=0

∇θ[j] log πθ[j](a
h
j |sh)

(
∇θ[j] log πθ[j](a

h
j |sh)

)T
.

3.1 Single-Agent Experiments

When n = 1, MDNPG reduces to the single-agent NPG with momentum-based variance
reduction, which can also be viewed as BGPO (Huang et al., 2021) with special mirror
mappings. In this subsection, we compare the single-agent version of MDNPG with the
momentum-based policy gradient (Huang et al., 2020), PPO (Schulman et al., 2017), and
SRVR-NPG (Liu et al., 2020b) over two single-agent environments: GridWorld and Moun-
tainCar.

In a 10×10 GridWorld, an agent at a random initial position try to reach the grid labeled
as “goal” and at the same time avoid grids labeled as “obstacle” in a minimum number of
steps. Five obstacle grids are set up in our experiments. The agent can select one of four
discrete actions (up, down, right, and left) to move to another grid, and the state is simply
the location of the agent. The received reward is −0.1 × (distance to the goal) ± 10, up
to whether the goal is reached or the agent falls into an obstacle. The other environment,
called MountainCar, is a continuous control task from OpenAI Gym (Brockman et al.,
2016), in which the goal of an agent is to reach the top of the hill. A detailed description
of the environment is provided in Brockman et al. (2016).

In our implementation, a one-hidden-layer (of size 128) neural network with ReLU ac-
tivation function is used to parameterize the policy. For the GirdWorld task, the parame-
terized policy can be obtained via a softmax layer. For the MountainCar task, the outputs
of the network are (µθ(s), σθ(s)), the mean and standard deviation of a Gaussian distri-
bution. Moreover, we also use a value network (one hidden layer of size 128, with ReLU

2. Codes for reproducing the computational results in this section are available at https://github.com/

fccc0417/mdnpg.
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as the activation function) for the estimation of value functions. All the parameters in the
algorithms are finely tuned for the pursuit of better performance.

The plots of average return and standard deviation over five random instances against
the number of iterations are presented in Figure 1. It can be observed that overall the
momentum-based NPG method displays better convergence and stability than the other
algorithms for both tasks. Note that even though SRVR-NPG is competitive with the
momentum-based NPG method, the former one costs significantly more time and memory
due to its double-loop nature for variance reduction.

(a) (b)

Figure 1: Average return and standard deviation over five random instances against the
number of iterations. The parameter β in GridWorld (a) and MountainCar (b) is set to 0.6
and 0.8 for the momentum-based NPG and PG methods.

3.2 Multi-Agent Experiments

3.2.1 Cooperative Navigation

For the collaborative RL setting in Section 1.1, we compare MDNPG with other state-of-
the-art algorithms such as MDPGT (Jiang et al., 2022) and value propagation (Qu et al.,
2019) on a simulated cooperative navigation environment introduced by Lowe et al. (2017).
As a benchmark multi-agent environment, it has been modified in several previous works
such as Zhang et al. (2018); Qu et al. (2019); Jiang et al. (2022) to be compatible with the
collaborative RL setting. In the n-agent cooperative navigation, each agent at a randomly
initialized location needs to find its specific landmark and avoid collisions with other agents
in a rectangle region of size 2 × 2. Agents can move up, down, right, left, or keep still
at each step. The globally observed state consists of the positions of all agents as well
as their landmarks. The received reward of each agents is −(distance to the landmark) −∑

1{if colliding with an agent}.

More precisely, there are 5 agents in our experiments. The policy-based methods, MD-
NPG as well as MDPGT, utilize a policy network and a value network, both of which have
two hidden layers with 64 and 128 units and use ReLU as the activation function. Addition-
ally, the value propagation method utilizes another auxiliary network to approximate the
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dual function. Since MDNPG and MDPGT are both on-policy algorithms, the on-policy
version of value propagation is implemented here.

(a) Ring (b) Fully-connected (c) Bi-partite

Figure 2: Three network topologies.

In order to demonstrate the influence of the communication network on the algorithms’
performance, we follow the work in Jiang et al. (2022) and test three network topologies
(see Figure 2): ring, fully-connected, and bi-partite. The empirical results are displayed in
Figure 3. It is evident from Figure 3a—3c that the performance of MDNPG is superior
to the other two test methods in all the three network topologies. We have also tested
the influence of the momentum parameter β on the performance of MDNPG. Since similar
trend has been observed for different topologies, only the results for the ring topology is
presented in Figure 3d.

3.2.2 Multi-Task GridWorld

For the MTRL setting in Section 1.1, experiments have been conducted on a multi-task
GridWorld problem, whose setup is overall similar to the single-agent case in Section 3.1
but with multiple individual environments. Each agent has its own environment but uses
the same policy. By doing so, it is expected to obtain a policy with better generalization.

Five different yet similar environments are considered in our experiments and we com-
pare the proposed MDNPG with MDPGT (Jiang et al., 2022) and PG with entropy regu-
larization (Zeng et al., 2021). As with the single-agent case, one-hidden-layer (of size 128)
policy network and value network with ReLU have been utilized, and all of the hyperpa-
rameters are properly tuned. Again, three network topologies have been tested and the
empirical results are presented in Figure 4a—4c, which clearly shows that MDNPG outper-
forms the other two test methods. The influence of β on the performance of MDNPG for
the ring topology is presented in Figure 4d.

To evaluate the generalization effect of the learned policies in the multi-task experiments,
we compare them with the policies learned by training each agent separately (that is, by
solving maxθ Vi(θ) for each i instead of solving maxθ

∑n
i=1 Vi(θ) as in (4)). Table 1 contains

the average returns over 100 random trajectories computed from the policies trained in the
multi-task environment (for the ring topology) as well as in each single environment. Note
that even though the single-agent versions of MDNPG, MDPGT, and PG with entropy
regularization are all tested for training each agent separately, only results for the single-
agent MDNPG are presented due to its superior performance. It is clear that the shared
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(a) Ring (b) Fully-connected

(c) Bi-partite (d) Influence of β for the ring topology

Figure 3: Empirical results on cooperative navigation. In (a)—(c), plots of average return
and standard deviation against number of iterations over five random instances, where
β = 0.2 for MDNPG and MDPGT. In (d), influence of β on the performance MDNPG for
the ring topology.

policy learned by MDNPG overall generalizes better than the other two methods, and it is
competitive with (or better than) the policy learned by training the individual agents in 4
out of 5 environments.

3.2.3 Influence of Variance Reduction and Gradient Tracking

Here we empirically study the influence of variance reduction and gradient tracking in
MDNPG using the aforementioned two tasks based on the ring topology. To this end,
we compare MDNPG with DNPG (where variance reduction is missing), MDNPG-noGT
(where gradient tracking is missing), and DNPG-noGT (where both ingredients are missing).
As illustrated in Figure 5, the numerical results demonstrate the superior performance of
MDNPG over DNPG, MDNPG-noGT, and DNPG-noGT, thus suggesting the substantial
effect of variance reduction and gradient tracking.
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(a) Ring (b) Fully-connected

(c) Bi-partite (d) Influence of β for the ring topology

Figure 4: Empirical results on multi-task GridWorld. In (a)—(c), plots of average return
and standard deviation against number of iterations over five random instances where β =
0.2 for MDNPG and MDPGT. In (d), influence of β on the performance MDNPG for the
ring topology.

4. Proof of Main Results

We first introduce some convenient notations. Letting θi ∈ Rd be the local variable for i-th
agent, we define the aggregated variable θ ∈ Rnd by

θ =
[
θT1 · · · θTn

]T
.

Let Ht = diag(Ht
1, · · · ,Ht

n) ∈ Rnd×nd be the block diagonal matrix and define dti =
Ht
iy

t+1
i ∈ Rd. We apply the same aggregation rules to obtain other concatenated variables

y,v,d ∈ Rnd. Using these notations, the key steps in Algorithm 1 can be rewritten in a
more compact form:

yt+1 = (W ⊗ Id) (yt + vt − vt−1) and θt+1 = (W ⊗ Id) (θt + ηdt). (27)

Let θ̄ ∈ Rd be the average of θ̄i over all the agents, i.e,

θ̄ =
1

n

n∑
i=1

θi =
1

n
(1Tn ⊗ Id)θ.
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Table 1: Average returns over 100 random trajectories based on different learned policies.
Agent i means that the policy is learned by training the i-th agent in the i-th grid using the
single-agent MDNPG (i.e., the momentum-based NPG). In contrast, MDNPG, MDPGT,
and PG with entropy regularization learn a shared policy by training the multi-task envi-
ronment.

Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 Sum

Agent 1 7.64 -13.24 -81.66 -136.32 -14.1 -237.68
Agent 2 -10.95 5.93 -81.09 -11.94 -15.99 -114.03
Agent 3 -10.92 -17.97 6.76 -97.5 -67.04 -186.68
Agent 4 -10.92 -126.05 -14.24 9.25 -14.04 -156.01
Agent 5 -11.02 -18.01 -3.95 -57.9 2.5 -88.37

MDNPG 7.94 -17.93 6.74 9.25 4.42 10.43

MDPGT -7.5 -18.82 -7.04 -3.37 -20.25 -56.98

PG with entropy 0.51 -11.82 -0.22 2.89 -19.46 -28.1

(a) Empirical results on cooperative navigation (b) Empirical results on multi-task GridWorld

Figure 5: Influence of gradient tracking and variance reduction. In (a) and (b), plots
of average return and standard deviation against number of iterations over five random
instances where β = 0.2 for MDNPG and MDNPG-noGT.

Similarly, ȳ, v̄, d̄ ∈ Rd also denote the averages of related variables. By the update described
in (27), it is straightforward to obtain that

ȳt+1 = v̄t and θ̄t+1 = θ̄t + ηd̄t.

Moreover, we define the aggregated gradient and averaged gradient by

∇̃V (θ) =
[
∇V1(θ1)T · · · ∇Vn(θn)T

]T ∈ Rnd, and ∇V (θ) =
1

n

n∑
i=1

∇Vi(θi) ∈ Rd.

Throughout this work, we will frequently use the following relationship∥∥((W − n−1J)⊗ Id
)
a
∥∥

2
=
∥∥((W − n−1J)⊗ Id

)
(a− 1n ⊗ ā)

∥∥
2

(28)
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for any a =
[
aT1 · · · aTn

]T ∈ Rnd, where ā = n−1
∑n

i=1 ai ∈ Rd and J = 1n1
T
n ∈ Rn×n.

The following key lemma establishes the ascent property of MDNPG. This lemma may
be of broader interest in analyzing preconditioned stochastic first order methods in decen-
tralized non-convex optimization.

Lemma 13 Let {θti} be generated by Algorithm 1 and ∆ = V ? − V (θ0) where V ? :=
supθ∈Rd V (θ). Suppose 0 < η ≤ µF

8L . Under Assumption 2, one has

1

n

T∑
t=0

n∑
i=1

∥∥∇V (θti)
∥∥2

2
≤ 8G2∆

ηµF
− G2

n

T∑
t=0

∥∥dt∥∥2

2
+

76G2

µ2
F

T∑
t=0

∥∥∇V (θt)− v̄t
∥∥2

2

+
10G2

nµ2
F

T∑
t=0

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2
+

82G2L2

nµ2
F

T∑
t=0

∥∥θt − 1n ⊗ θ̄t
∥∥2

2
.

Next, we will look for conditions on the step size η and weight factor β such that

− G2

nT

T∑
t=0

∥∥dt∥∥2

2
+

76G2

Tµ2
F

T∑
t=0

∥∥∇V (θt)− v̄t
∥∥2

2

+
10G2

nTµ2
F

T∑
t=0

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2
+

82G2L2

nTµ2
F

T∑
t=0

∥∥θt − 1n ⊗ θ̄t
∥∥2

2
= O

(
η, β,

1

B
,

1

T

)
.

Assuming this holds, then the application of Lemma 13 will yield

1

n

T∑
t=0

n∑
i=1

∥∥∇V (θti)
∥∥2

2
≤ 8G2∆

ηµF
+O

(
η, β,

1

B
,

1

T

)
,

which implies the convergence of Algorithm 1. To achieve this goal, we need several lemmas
whose proofs are either deferred to Section 5 or already given in the literature.

Lemma 14 Under Assumptions 1, 2 and 4, for all t ≥ 0, one has

∥∥θt+1 − 1n ⊗ θ̄t+1
∥∥2

2
≤ 1 + ρ2

2

∥∥θt − 1n ⊗ θ̄t
∥∥2

2

+
4η2

µ2
F (1− ρ2)

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2
+

G2η2

µ2
F (1− ρ2)

∥∥dt∥∥2

2
. (29)

Moreover, one has

∥∥θt+1 − 1n ⊗ θ̄t+1
∥∥2

2
≤ 2ρ2

∥∥θt − 1n ⊗ θ̄t
∥∥2

2
+

4η2ρ2

µ2
F

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2
+
G2η2ρ2

µ2
F

∥∥dt∥∥2

2
.

(30)

Lemma 15 Let {yt} be generated by Algorithm 1. Under Assumptions 1 and 2-4, we have

E
{∥∥y1 − 1n ⊗ ȳ1

∥∥2

2

}
≤ nρ2ν̄2

B
+ ρ2

n∑
i=1

∥∥∇Vi(θ̄0)
∥∥2

2
. (31)
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Furthermore, if η ≤ µF (1−ρ2)

24
√

2Φ
and 0 ≤ β ≤ 1, then for all t ≥ 1, one has

E
{∥∥yt+1 − 1n ⊗ ȳt+1

∥∥2

2

}
≤ 3 + ρ2

4
E
{∥∥yt − 1n ⊗ ȳt

∥∥2

2

}
+

8nβ2ν̄2

1− ρ2
+

144Φ2G2η2

µ2
F (1− ρ2)

E
{∥∥dt−1

∥∥2

2

}
+

8β2

1− ρ2
E
{∥∥∥∇̃V (θt−1)− vt−1

∥∥∥2

2

}
+

216Φ2

1− ρ2
E
{∥∥θt−1 − 1n ⊗ θ̄t−1

∥∥2

2

}
. (32)

Lemma 16 (Lemma 6 in Xin et al. (2021)) Let {at}, {bt} and {ct} be nonnegative se-
quences and d > 0 be some constant such that at ≤ γat−1 + γbt−1 + ct + d for t ≥ 1, where
γ ∈ (0, 1). Then for T ≥ 1, we have

T∑
t=0

at ≤
1

1− γ
a0 +

1

1− γ

T−1∑
t=0

bt +
1

1− γ

T∑
t=1

ct +
dT

1− γ
. (33)

Moreover, if at+1 ≤ γat + bt−1 + d for t ≥ 1, then for T ≥ 2, one has

T∑
t=1

at ≤
1

1− γ
a1 +

1

1− γ

T−2∑
t=0

bt +
dT

1− γ
. (34)

Lemma 17 Let

A1 =
4nρ2ν̄2

B(1− ρ2)
+

32nTβ2ν̄2

(1− ρ2)2
+

32nβν̄2

B(1− ρ2)2
+

64nT ν̄2β3

(1− ρ2)2
+

4ρ2

1− ρ2

∥∥∥∇̃V (θ0)
∥∥∥2

2
.

Suppose η ≤ µF (1−ρ2)

24
√

2Φ
and β < 1. Then one has

T∑
t=1

E
{∥∥yt − 1n ⊗ ȳt

∥∥2

2

}
≤ A1 +

1632Φ2

(1− ρ2)2

T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
+

960Φ2κ2
F η

2

(1− ρ2)2

T−1∑
t=0

E
{∥∥dt∥∥2

2

}
. (35)

Lemma 18 Suppose 0 < η < µF (1−ρ2)3

κF
√

1632000(L2+Φ2)
and β < 1. Then for any T ≥ 1, one has

T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
≤ 16A1η

2

µ2
F (1− ρ2)2

+
10G2η2

µ2
F (1− ρ2)3

T∑
t=0

E
{∥∥dt∥∥2

2

}
.

Lemma 19 (Lemma 8 in Jiang et al. (2022)) Let vt and θt be generated by Algorithm
1 and let Φ2 = L2

g + C2
gC

2
ω. Then under Assumption 2, 7 and 3, for any t ≥ 1, one has

T∑
t=0

E
{∥∥v̄t −∇V (θt)

∥∥2

2

}
≤ ν̄2

nβB
+

2βν̄2T

n
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+
12Φ2η2

nβ

T−1∑
t=0

E
{∥∥d̄t∥∥2

2

}
+

24Φ2

βn2

T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
(36)

and

T∑
t=0

E
{∥∥∥vt − ∇̃V (θt)

∥∥∥2

2

}
≤ nν̄2

βB
+ 2nβT ν̄2

+
12nη2Φ2

β

T−1∑
t=0

E
{∥∥d̄t∥∥2

2

}
+

24Φ2

β

T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
.

(37)

4.1 Proof of Theorem 9

Lemma 13 implies that

1

n

T∑
t=0

n∑
i=1

E
{∥∥∇V (θti)

∥∥2

2

}
≤ 8G2∆

ηµF
− G2

n

T∑
t=0

E
{∥∥dt∥∥2

2

}
+

10G2

nµ2
F

T∑
t=0

E
{∥∥yt+1 − 1n ⊗ ȳt+1

∥∥2

2

}
+

82G2L2

nµ2
F

T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
+

76G2

µ2
F

T∑
t=0

E
{∥∥∇V (θt)− v̄t

∥∥2

2

}
(a)

≤ 8G2∆

ηµF
− G2

n

T∑
t=0

E
{∥∥dt∥∥2

2

}
+

10G2

nµ2
F

T∑
t=0

E
{∥∥yt+1 − 1n ⊗ ȳt+1

∥∥2

2

}
+

82G2L2

nµ2
F

T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
+

76G2

µ2
F

(
ν̄2

nβB
+

2βν̄2T

n

+
12Φ2η2

nβ

T−1∑
t=0

E
{∥∥d̄t∥∥2

2

}
+

24Φ2

βn2

T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

})

=
8G2∆

ηµF
+

76ν̄2G2

nβBµ2
F

+
152βT ν̄2G2

nµ2
F

− G2

n
E

{
T∑
t=0

∥∥dt∥∥2

2

}
+

912Φ2η2G2

nβµ2
F

T−1∑
t=0

E
{∥∥d̄t∥∥2

2

}
+

(
1824Φ2G2

βn2µ2
F

+
82G2L2

nµ2
F

) T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
+

10G2

nµ2
F

T∑
t=0

E
{∥∥yt+1 − 1n ⊗ ȳt+1

∥∥2

2

}
(b)

≤ 8G2∆

ηµF
+

76ν̄2G2

nβBµ2
F

+
152βT ν̄2G2

nµ2
F

− G2

n

T∑
t=0

E
{∥∥dt∥∥2

2

}
+

912Φ2η2G2

n2βµ2
F

T−1∑
t=0

E
{∥∥dt∥∥2

2

}
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+

(
1824Φ2G2

βn2µ2
F

+
82G2L2

nµ2
F

) T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
+

10G2

nµ2
F

T∑
t=0

E
{∥∥yt+1 − 1n ⊗ ȳt+1

∥∥2

2

}
, (38)

where step (a) follows from (36) and step (b) is due to
∥∥d̄∥∥2

2
≤ 1

n ‖d‖
2
2. Since 0 < η <

µF (1−ρ2)3

κF
√

1632000(L2+Φ2)
and

1632000(L2+Φ2)κ2F η
2

nµ2F (1−ρ2)6
≤ β < 1

n , it implies that

912Φ2η2G2

n2βµ2
F

≤ 912Φ2η2G2

n2µ2
F

·
nµ2

F (1− ρ2)6

1632000(L2 + Φ2)κ2
F η

2
≤ G2

2n
,

1824Φ2G2

βn2µ2
F

+
82G2L2

nµ2
F

≤ 1824(L2 + Φ2)G2

nµ2
F

(
1 +

1

βn

)
≤ 1824(L2 + Φ2)G2

nµ2
F

· 2

βn

≤ 1824(L2 + Φ2)G2

nµ2
F

·
2(1− ρ2)6µ2

F

1632000(L2 + Φ2)κ2
F η

2

≤ (1− ρ2)6G2

100nκ2
F η

2
.

Plugging these inequalities into (38) yields that

1

n

T∑
t=0

n∑
i=1

E
{∥∥∇V (θti)

∥∥2

2

}
≤ 8G2∆

ηµF
+

76ν̄2G2

nβBµ2
F

+
152βT ν̄2G2

nµ2
F

− G2

2n

T∑
t=0

E
{∥∥dt∥∥2

2

}
+

(1− ρ2)6G2

100nκ2
F η

2

T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
+

10G2

nµ2
F

T∑
t=0

E
{∥∥yt+1 − 1n ⊗ ȳt+1

∥∥2

2

}
(a)

≤ 8G2∆

ηµF
+

76ν̄2G2

nβBµ2
F

+
152βT ν̄2G2

nµ2
F

− G2

2n
E

{
T∑
t=0

∥∥dt∥∥2

2

}

+
(1− ρ2)6G2

100nκ2
F η

2

T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
+

10G2

nµ2
F

(
A1 +

1632Φ2

(1− ρ2)2

T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
+

960Φ2κ2
F η

2

(1− ρ2)2

T−1∑
t=0

E
{∥∥dt∥∥2

2

})
=

8G2∆

ηµF
+

76ν̄2G2

nβBµ2
F

+
152βT ν̄2G2

nµ2
F

+
10A1G

2

nµ2
F

−
(
G2

2n
− 10G2

nµ2
F

·
960Φ2κ2

F η
2

(1− ρ2)2

) T∑
t=0

E
{∥∥dt∥∥2

2

}
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+

(
(1− ρ2)6G2

100nκ2
F η

2
+

16320G2Φ2

nµ2
F (1− ρ2)2

) T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
, (39)

where step (a) follows from (35). Using the conditions for η and β again gives that

10G2

nµ2
F

·
960Φ2κ2

F η
2

(1− ρ2)2
≤ 10G2

nµ2
F

·
960Φ2κ2

F

(1− ρ2)2
·

µ2
F (1− ρ2)6

κ2
F · 1632000(L2 + Φ2)

≤ G2

4n
,

(1− ρ2)6G2

100nκ2
F η

2
+

16320G2Φ2

nµ2
F (1− ρ2)2

=
(1− ρ2)6G2

100nκ2
F η

2
+

16320κ2
FΦ2

n(1− ρ2)2

≤ (1− ρ2)6G2

100nκ2
F η

2
+

16320κ2
F (L2 + Φ2)

n(1− ρ2)2

≤ (1− ρ2)6G2

100nκ2
F η

2
+

16320

n(1− ρ2)2
·
µ2
F (1− ρ2)6

1632000η2

=
(1− ρ2)6G2

100nκ2
F η

2
+
G2(1− ρ2)4

100nκ2
F η

2

≤ (1− ρ2)4G2

50nκ2
F η

2
.

Substituting these inequalities into (39) leads to

1

n

T∑
t=0

n∑
i=1

E
{∥∥∇V (θti)

∥∥2

2

}
≤ 8G2∆

ηµF
+

76ν̄2G2

nβBµ2
F

+
152βT ν̄2G2

nµ2
F

+
10A1G

2

nµ2
F

− G2

4n

T∑
t=0

E
{∥∥dt∥∥2

2

}
+

(1− ρ2)4G2

50nκ2
F η

2

T∑
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E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
≤ 8G2∆

ηµF
+

76ν̄2G2

nβBµ2
F

+
152βT ν̄2G2

nµ2
F

+
10A1G

2

nµ2
F

− G2

4n

T∑
t=0

E
{∥∥dt∥∥2

2

}
+

(1− ρ2)4G2

50nκ2
F η

2

(
16A1η

2

µ2
F (1− ρ2)2

+
10G2η2

µ2
F (1− ρ2)3

T∑
t=0

E
{∥∥dt∥∥2

2

})

≤ 8G2∆

ηµF
+

76ν̄2G2

nβBµ2
F

+
152βT ν̄2G2

nµ2
F

+
10A1G

2

nµ2
F

+
16A1G

2

50nµ2
F

−
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G2

4n
− G2

5n
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t=0
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{∥∥dt∥∥2

2

}
≤ 8G2∆

ηµF
+

76ν̄2G2

nβBµ2
F

+
152βT ν̄2G2

nµ2
F

+
11A1G

2

nµ2
F

,

where the second inequality follows from Lemma 18. Since θout is sampled uniformly from
{θti}i=1,...,n;t=0,...,T , we have

E
{
‖∇V (θout)‖22

}
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=
1

n(T + 1)

T∑
t=0

n∑
i=1

E
{∥∥∇V (θti)

∥∥2

2

}
≤ 1

nT
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∥∥2

2
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+
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+
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F

+
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2
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F

=
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+
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F
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+
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F
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B(1− ρ2)
+

32nTβ2ν̄2

(1− ρ2)2
+

32nβν̄2

B(1− ρ2)2
+
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+

4ρ2
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=
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F
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+

152βν̄2κ2
F

n

+
44ρ2ν̄2κ2

F
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+

352β2ν̄2κ2
F

(1− ρ2)2
+

352βν̄2κ2
F
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+
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Fβ

3
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+

44ρ2κ2
F

nT (1− ρ2)

∥∥∥∇̃V (θ0)
∥∥∥2

2
,

which completes the proof of the main result.

4.2 Proof of Corollary 11

Since η = µFn
2/3

κF
√
L2+ΦT 1/3 , β = n1/3

T 2/3 and B =
⌈
T 1/3

n2/3

⌉
, we have

8∆G2

ηTµF
=

8∆G2

TµF
· κF
√
L2 + ΦT 1/3

µFn2/3
=

8∆κ3
F

√
L2 + Φ

(nT )2/3
,

76ν̄2κ2
F

nβTB
≤ 76ν̄2κ2

F ·
1

nT
· T

2/3

n1/3
· n

2/3

T 1/3
=

76ν̄2κ2
F

(nT )2/3
,

152βν̄2κ2
F

n
=

152ν̄2κ2
F

(nT )2/3
,

44ρ2ν̄2κ2
F

BT (1− ρ2)
≤

44ρ2ν̄2κ2
F

(1− ρ2)2
· n

2/3

T 4/3
,

352β2ν̄2κ2
F

(1− ρ2)2
≤

352ν̄2κ2
F

(1− ρ2)2
· n

2/3

T 4/3
,

352βν̄2κ2
F

BT (1− ρ2)2
≤

352ν̄2κ2
F

(1− ρ2)2
· 1

T
· n

1/3

T 2/3
· n

2/3

T 1/3
=

352ν̄2κ2
F

(1− ρ2)2
· n
T 2
,

704ν̄2κ2
Fβ

3

(1− ρ2)2
=

704ν̄2κ2
F

(1− ρ2)2
· n
T 2
.

Thus it can be seen that

E
{
‖∇V (θout)‖22

}
≤

8∆κ3
F

√
L2 + Φ + 228ν̄2κ2

F

(nT )2/3
+

44ρ2κ2
F

∥∥∥∇̃V (θ0)
∥∥∥2

2

(1− ρ2)
· 1

nT

+
396κ2

F ν̄
2

(1− ρ2)2
· n

2/3

T 4/3
+

1056ν̄2κ2
F

(1− ρ2)2
· n
T 2
,
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which completes the proof of the corollary.

5. Proofs

5.1 Proof of Lemma 1

For simplicity, let θi = [x1T, · · · ,xnT]T ∈ Rd, where xj ∈ Rdj and d =
∑n

j=1 dj . From the
definition (5) of the policy in collaborative RL, we have

∇θi log πθi(a
h|sh) = ∇θi

n∑
j=1

log πxj (a
h
j |sh) =

∇x1 log πx1(ah1 |sh)
...

∇xn log πxn(ahn|sh)

 ∈ Rd×1.

Then the (j, `)-th block of Fi(θi) is given by

[Fi(θi)]j,` = Eτ∼p(·|θi)

{
1

H

H−1∑
h=0

∇xj log πxj (a
h
j |sh)

(
∇x` log πx`(a

h
` |sh)

)T}
∈ Rdj×d` .

We will show that [Fi(θi)]j,` = 0 for any j 6= `. To this end, for any α ∈ [dj ], β ∈ [d`], one
has [

Eτ∼p(·|θi)

{
1

H

H−1∑
h=0

∇xj log πxj (a
h
j |sh)

(
∇x` log πx`(a

h
` |sh)

)T}]
α,β

=
1

H

H−1∑
h=0

[
Eτ∼p(·|θi)

{
∇xj log πxj (a

h
j |sh)

(
∇x` log πx`(a

h
` |sh)

)T}]
α,β

=
1

H

H−1∑
h=0

Eτ∼p(·|θi)

{
∂ log πxj (a

h
j |sh)

∂xjα

∂ log πx`(a
h
` |sh)

∂x`β

}

=
1

H

H−1∑
h=0

∫
p(τ |θi)

∂ log πxj (a
h
j |sh)

∂xjα

∂ log πx`(a
h
` |sh)

∂x`β
dτ

=
1

H

H−1∑
h=0

∫
p(τ−h) · πθi(a

h|sh)
∂ log πxj (a

h
j |sh)

∂xjα

∂ log πx`(a
h
` |sh)

∂x`β
dτ

=
1

H

H−1∑
h=0

∫
p(τ−h)

n∏
i=1

πxi(a
h
i |sh)

∂ log πxj (a
h
j |sh)

∂xjα

∂ log πx`(a
h
` |sh)

∂x`β
dτ

=
1

H

H−1∑
h=0

∫
p(τ−h)

n∏
i 6=j,`

πxi(a
h
i |sh) · πxj (ahj |sh)

∂ log πxj (a
h
j |sh)

∂xjα

· πx`(ah` |sh)
∂ log πx`(a

h
` |sh)

∂x`β
dτ

=
1

H

H−1∑
h=0

∫
p(τ−h)

n∏
i 6=j,`

πxi(a
h
i |sh) ·

∂πxj (a
h
j |sh)

∂xjα
·
∂πx`(a

h
` |sh)

∂x`β
dτ
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=
1

H

H−1∑
h=0

∂2

∂xjα∂x`β

∫
p(τ)dτ

=0,

where p(τ−h) := ρ(s0)
∏
h′ 6=h πθ(ah

′ |sh′)P (sh
′+1|sh′ ,ah′) · P (sh+1|sh,ah). Thus we com-

plete the proof.

5.2 Proof of Lemma 13

Since the objective function V is L-smooth, one has

V (θ̄t+1) ≥ V (θ̄t) +
〈
∇V (θ̄t), θ̄t+1 − θ̄t

〉
− L

2

∥∥θ̄t+1 − θ̄t
∥∥2

2

= V (θ̄t) + η
〈
∇V (θ̄t), d̄t

〉
− Lη2

2

∥∥d̄t∥∥2

2
, (40)

where the second line follows from θ̄t+1 = θ̄t + ηd̄t. Moreover, for any i ∈ [n], one has

ηµF
∥∥dti∥∥2

2

(a)

≤ η
〈
Ht
i
−1
dti,d

t
i

〉
= η

〈
yt+1
i ,dti

〉
= η

〈
yt+1
i − ȳt+1,dti

〉
+ η

〈
ȳt+1,dti

〉
≤ η

∥∥yt+1
i − ȳt+1

∥∥
2
·
∥∥dti∥∥2

+ η
〈
ȳt+1,dti

〉
(b)

≤ η

2µF

∥∥yt+1
i − ȳt+1

∥∥2

2
+
ηµF

2

∥∥dti∥∥2

2
+ η

〈
ȳt+1,dti

〉
=

η

2µF

∥∥yt+1
i − ȳt+1

∥∥2

2
+
ηµF

2

∥∥dti∥∥2

2
+ η

〈
v̄t,dti

〉
, (41)

where step (a) is due to (25), step (b) uses the elementary inequality that x ·y ≤ 1
2αx

2 + α
2 y

2

with α = µF , and the last line follows from ȳt+1 = v̄t. Rearranging (41) yields that

0 ≥ −η
〈
v̄t,dti

〉
+
ηµF

2

∥∥dti∥∥2

2
− η

2µF

∥∥yt+1
i − ȳt+1

∥∥2

2
(42)

holds for any fixed i ∈ [n]. Taking an average over i from 1 to n yields that

0 ≥ −η
n

n∑
i=1

〈
v̄t,dti

〉
+
ηµF
2n

n∑
i=1

∥∥dti∥∥2

2
− η

2nµF

n∑
i=1

∥∥yt+1
i − ȳt+1

∥∥2

2

= −η
〈
v̄t, d̄t

〉
+
ηµF
2n

∥∥dt∥∥2

2
− η

2nµF

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2
. (43)

Summing up (40) and (43), we obtain that

V (θ̄t+1) ≥ V (θ̄t) + η
〈
∇V (θ̄t)− v̄t, d̄t

〉
− η

2nµF

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2

+
ηµF
2n

∥∥dt∥∥2

2
− Lη2

2

∥∥d̄t∥∥2

2
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(a)

≥ V (θ̄t)− η

2γ

∥∥∇V (θ̄t)− v̄t
∥∥2

2
− γη

2

∥∥d̄t∥∥2

2
− η

2nµF

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2

+
ηµF
2n

∥∥dt∥∥2

2
− Lη2

2

∥∥d̄t∥∥2

2

(b)

≥ V (θ̄t)− η

2γ

∥∥∇V (θ̄t)− v̄t
∥∥2

2
− η

2nµF

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2

− γη + Lη2

2n

∥∥dt∥∥2

2
+
ηµF
2n

∥∥dt∥∥2

2

= V (θ̄t)− η

2γ

∥∥∇V (θ̄t)− v̄t
∥∥2

2
− η

2nµF

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2

+
ηµF − 2γη − 2Lη2

4n

∥∥dt∥∥2

2
+
ηµF
4n

∥∥dt∥∥2

2

(c)

≥ V (θ̄t)− 4η

µF

∥∥∇V (θ̄t)− v̄t
∥∥2

2
− η

2nµF

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2

+
ηµF
8n

∥∥dt∥∥2

2
+
ηµF
4n

∥∥dt∥∥2

2
, (44)

where step (a) follows from the elementary inequality that 〈a, b〉 ≤ 1
2γ ‖a‖

2
2+ γ

2 ‖b‖
2
2 with γ >

0 for any a and b, step (b) is due to
∥∥d̄t∥∥2

2
≤ 1

n

∥∥dt∥∥2

2
and step (c) holds by choosing γ = µF

8

and assuming 0 < η ≤ µF
8L (i.e, ηµF−2γη−2Lη2

4n =
ηµF− 1

4
ηµF−2Lη2

4n = η
4n

(
3µF

4 − 2Lη
)
≥ ηµF

8n ).

Moreover, the fact used in step (b) can be proved as follows:

∥∥d̄t∥∥2

2
=

∥∥∥∥∥ 1

n

n∑
i=1

dti

∥∥∥∥∥
2

2

≤ 1

n

n∑
i=1

∥∥dti∥∥2

2
=

1

n

∥∥dt∥∥2

2
,

where we have used the Jensen’s inequality.

Notice that

1

G2

∥∥∇V (θti)
∥∥2

2
≤
∥∥Ht

i∇V (θti)
∥∥2

2
≤ 2

∥∥Ht
i∇V (θti)− dti

∥∥2

2
+ 2

∥∥dti∥∥2

2

holds for any i ∈ [n]. A direct computation yields that

ηµF
4n

∥∥dt∥∥2

2

=
ηµF
4n

n∑
i=1

∥∥dti∥∥2

2

≥ ηµF
4n

n∑
i=1

(
1

2G2

∥∥∇V (θti)
∥∥2

2
−
∥∥Ht

i∇V (θti)− dti
∥∥2

2

)

=
ηµF
8nG2

n∑
i=1

∥∥∇V (θti)
∥∥2

2
− ηµF

4n

n∑
i=1

∥∥Ht
i

(
yt+1
i −∇V (θti)

)∥∥2

2

(a)

≥ ηµF
8nG2

n∑
i=1

∥∥∇V (θti)
∥∥2

2
− ηµF

4n

n∑
i=1

1

µ2
F

∥∥yt+1
i −∇V (θti)

∥∥2

2
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=
ηµF
8nG2

n∑
i=1

∥∥∇V (θti)
∥∥2

2

− η

4nµF

n∑
i=1

∥∥yt+1
i − ȳt+1 + ȳt+1 −∇V (θ̄t) +∇V (θ̄t)−∇V (θti)

∥∥2

2

(b)

≥ ηµF
8nG2

n∑
i=1

∥∥∇V (θti)
∥∥2

2

− η

4nµF

n∑
i=1

(
3
(∥∥yt+1

i − ȳt+1
∥∥2

2
+
∥∥v̄t −∇V (θ̄t)

∥∥2

2
+ L2

∥∥θ̄t − θti∥∥2

2

))
=

ηµF
8nG2

n∑
i=1

∥∥∇V (θti)
∥∥2

2
− 3η

4nµF

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2
− 3η

4µF

∥∥v̄t −∇V (θ̄t)
∥∥2

2

− 3L2η

4nµF

∥∥θt − 1n ⊗ θ̄t
∥∥2

2
, (45)

where step (a) follows from (25) and step (b) is due to the L-smoothness of V . Then
plugging (45) into (44) yields that

V (θ̄t+1)

≥ V (θ̄t)− 4η

µF

∥∥∇V (θ̄t)− v̄t
∥∥2

2
− η

2nµF

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2

+
ηµF
8n

∥∥dt∥∥2

2
+

ηµF
8nG2

n∑
i=1

∥∥∇V (θti)
∥∥2

2

− 3η

4nµF

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2
− 3η

4µF

∥∥v̄t −∇V (θ̄t)
∥∥2

2
− 3L2η

4nµF

∥∥θt − 1n ⊗ θ̄t
∥∥2

2

= V (θ̄t)− 19η

4µF

∥∥∇V (θ̄t)− v̄t
∥∥2

2
+
ηµF
8n

∥∥dt∥∥2

2
+

ηµF
8nG2

n∑
i=1

∥∥∇V (θti)
∥∥2

2

− 5η

4nµF

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2
− 3L2η

4nµF

∥∥θt − 1n ⊗ θ̄t
∥∥2

2
. (46)

Furthermore, it can be seen that∥∥∇V (θ̄t)− v̄t
∥∥2

2
=
∥∥∇V (θ̄t)−∇V (θt) +∇V (θt)− v̄t

∥∥2

2

≤ 2
∥∥∇V (θ̄t)−∇V (θt)

∥∥2

2
+ 2

∥∥∇V (θt)− v̄t
∥∥2

2

≤ 2L2

n

∥∥θt − 1n ⊗ θ̄t
∥∥2

2
+ 2

∥∥∇V (θt)− v̄t
∥∥2

2
, (47)

where the last line follows from the fact that
∥∥∇V (θ̄t)−∇V (θt)

∥∥2

2
≤ L2

n

∥∥θt − 1n ⊗ θ̄t
∥∥2

2
.

Indeed, this fact can be proved as follows:

∥∥∇V (θ̄t)−∇V (θt)
∥∥2

2
=

∥∥∥∥∥ 1

n

n∑
i=1

(
∇Vi(θ̄t)−∇Vi(θti)

)∥∥∥∥∥
2

2
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≤ 1

n

n∑
i=1

∥∥∇Vi(θ̄t)−∇Vi(θti)∥∥2

2

≤ L2

n

n∑
i=1

∥∥θti − θ̄t∥∥2

2

=
L2

n

∥∥θt − 1n ⊗ θ̄t
∥∥2

2
,

where the second line is due to Jensen’s inequality and the third line is due to L-smoothness
of Vi. Thus, plugging (47) into (46) yields that

V (θ̄t+1) ≥ V (θ̄t)− 19η

4µF

(
2L2

n

∥∥θt − 1n ⊗ θ̄t
∥∥2

2
+ 2

∥∥∇V (θt)− v̄t
∥∥2

2

)
+
ηµF
8n

∥∥dt∥∥2

2

+
ηµF
8nG2

n∑
i=1

∥∥∇V (θti)
∥∥2

2

− 5η

4nµF

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2
− 3L2η

4nµF

∥∥θt − 1n ⊗ θ̄t
∥∥2

2

= V (θ̄t)− 19η

2µF

∥∥∇V (θt)− v̄t
∥∥2

2
+
ηµF
8n

∥∥dt∥∥2

2
+

ηµF
8nG2

n∑
i=1

∥∥∇V (θti)
∥∥2

2

− 5η

4nµF

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2
− 41L2η

4nµF

∥∥θt − 1n ⊗ θ̄t
∥∥2

2
. (48)

Rearranging (48) yields that

1

n

n∑
i=1

∥∥∇V (θti)
∥∥2

2
≤ 8G2

ηµF

(
V (θ̄t+1)− V (θ̄t)

)
− G2

n

∥∥dt∥∥2

2
+

76G2

µ2
F

∥∥∇V (θt)− v̄t
∥∥2

2

+
10G2

nµ2
F

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2
+

82G2L2

nµ2
F

∥∥θt − 1n ⊗ θ̄t
∥∥2

2
. (49)

Taking the telescoping sum of (49) over t from 0 to T for any T ≥ 0, one has

1

n

T∑
t=0

n∑
i=1

∥∥∇V (θti)
∥∥2

2
≤ 8G2

ηµF
(V (θ̄T+1)− V (θ̄0)) +

76G2

µ2
F

T∑
t=0

∥∥∇V (θt)− v̄t
∥∥2

2

− G2

n

T∑
t=0

∥∥dt∥∥2

2
+

10G2

nµ2
F

T∑
t=0

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2

+
82G2L2

nµ2
F

T∑
t=0

∥∥θt − 1n ⊗ θ̄t
∥∥2

2

≤ 8G2

ηµF
(V ? − V (θ̄0)) +

76G2

µ2
F

T∑
t=0

∥∥∇V (θt)− v̄t
∥∥2

2

− G2

n

T∑
t=0

∥∥dt∥∥2

2
+

10G2

nµ2
F

T∑
t=0

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2
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+
82G2L2

nµ2
F

T∑
t=0

∥∥θt − 1n ⊗ θ̄t
∥∥2

2
,

where the last line uses the fact that V ? < +∞ as we assume bounded rewards.

5.3 Proof of Lemma 14

A sample computation yields that

1n ⊗ θ̄t+1 = 1n ⊗

(
1

n

n∑
i=1

θt+1
i

)
=

1

n
1n ⊗

(
1Tn ⊗ Id

)
θ̄t+1 =

1

n
(Jn ⊗ Id)θt+1.

Thus by the update rule described in (27), it is straightforward to obtain that∥∥θt+1 − 1n ⊗ θ̄t+1
∥∥2

2

=

∥∥∥∥(W ⊗ Id) (θt + ηdt)− 1

n
(Jn ⊗ Id)(θt + ηdt)

∥∥∥∥2

2

=

∥∥∥∥((W − 1

n
Jn

)
⊗ Id

)
θt + η

((
W − 1

n
Jn

)
⊗ Id

)
dt
∥∥∥∥2

2

(a)

≤
(

1 +
1− ρ2

2ρ2

)∥∥∥∥((W − 1

n
Jn

)
⊗ Id

)
θt
∥∥∥∥2

2

+ η2

(
1 +

2ρ2

1− ρ2

)∥∥∥∥((W − 1

n
Jn

)
⊗ Id

)
dt
∥∥∥∥2

2

(b)
=

(
1 +

1− ρ2

2ρ2

)∥∥∥∥((W − 1

n
Jn

)
⊗ Id

)
(θt − 1n ⊗ θ̄t)

∥∥∥∥2

2

+ η2

(
1 +

2ρ2

1− ρ2

)∥∥∥∥((W − 1

n
Jn

)
⊗ Id

)
(dt − 1n ⊗ d̄t)

∥∥∥∥2

2

≤
(

1 +
1− ρ2

2ρ2

)
·
∥∥∥∥W − 1

n
Jn

∥∥∥∥2

·
∥∥θt − 1n ⊗ θ̄t

∥∥2

2

+ η2

(
1 +

2ρ2

1− ρ2

)
·
∥∥∥∥W − 1

n
Jn

∥∥∥∥2

·
∥∥dt − 1n ⊗ d̄t

∥∥2

2

=

(
1 +

1− ρ2

2ρ2

)
ρ2 ·

∥∥θt − 1n ⊗ θ̄t
∥∥2

2
+ η2

(
1 +

2ρ2

1− ρ2

)
ρ2
∥∥dt − 1n ⊗ d̄t

∥∥2

2

=
1 + ρ2

2

∥∥θt − 1n ⊗ θ̄t
∥∥2

2
+

(1 + ρ2)ρ2η2

1− ρ2

∥∥dt − 1n ⊗ d̄t
∥∥2

2

(c)

≤ 1 + ρ2

2

∥∥θt − 1n ⊗ θ̄t
∥∥2

2
+

2η2

1− ρ2

∥∥dt − 1n ⊗ d̄t
∥∥2

2

(d)

≤ 1 + ρ2

2

∥∥θt − 1n ⊗ θ̄t
∥∥2

2
+

2η2

1− ρ2
·
(
G2

2µ2
F

∥∥dt∥∥2

2
+

2

µ2
F

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2

)
=

1 + ρ2

2

∥∥θt − 1n ⊗ θ̄t
∥∥2

2
+

4η2

µ2
F (1− ρ2)

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2
+

G2η2

µ2
F (1− ρ2)

∥∥dt∥∥2

2
,
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where step (a) follows from the element inequality that ‖a+ b‖22 ≤ (1 + γ) ‖a‖22 + (1 +

γ−1) ‖b‖22 with γ = 1−ρ2
2ρ2

, step (b) is due to the fact that ((W − n−1Jn) ⊗ Id)(1n ⊗ a) =

(W1n−n−1Jn1n)⊗a = 0 for any a ∈ Rd, step (c) is due to (1+ρ2)ρ2 ≤ 2, step (d) follows
from the fact that∥∥dt − 1n ⊗ d̄t

∥∥2

2
≤ G2

2µ2
F

∥∥dt∥∥2

2
+

2

µ2
F

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2
. (50)

Thus we complete the first part of this lemma. For the second part, using the same argument
yields that∥∥θt+1 − 1n ⊗ θ̄t+1

∥∥2

2
≤ 2

∥∥∥∥((W − 1

n
Jn

)
⊗ Id

)
θt
∥∥∥∥2

2

+ 2

∥∥∥∥η((W − 1

n
Jn

)
⊗ Id

)
dt
∥∥∥∥2

2

≤ 2ρ2
∥∥θt − 1n ⊗ θ̄t

∥∥2

2
+ 2η2ρ2

∥∥dt − 1n ⊗ d̄t
∥∥2

2

≤ 2ρ2
∥∥θt − 1n ⊗ θ̄t

∥∥2

2
+

4η2ρ2

µ2
F

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2
+
G2η2ρ2

µ2
F

∥∥dt∥∥2

2
.

It only remains to prove the fact (50) used in step (d). Firstly, we have∥∥dt − 1n ⊗ d̄t
∥∥

2

=

∥∥∥∥(Ind − 1

n
(Jn ⊗ Id)

)
dt
∥∥∥∥

2

=

∥∥∥∥(Ind − 1

n
(Jn ⊗ Id)

)
(Htyt+1)

∥∥∥∥
2

=

∥∥∥∥(Ind − 1

n
(Jn ⊗ Id)

)(
Htyt+1 −

(
1

2µF
+

1

2G

)
yt+1 +

(
1

2µF
+

1

2G

)
yt+1

)∥∥∥∥
2

≤
∥∥∥∥(Ind − 1

n
(Jn ⊗ Id)

)(
Htyt+1 −

(
1

2µF
+

1

2G

)
yt+1

)∥∥∥∥
2

+

(
1

2µF
+

1

2G

)∥∥∥∥(Ind − 1

n
(Jn ⊗ Id)

)
yt+1

∥∥∥∥
2

≤
∥∥∥∥Ind − 1

n
(Jn ⊗ Id)

∥∥∥∥ · ∥∥∥∥Ht −
(

1

2µF
+

1

2G

)
Ind

∥∥∥∥ · ∥∥yt+1
∥∥

2

+

(
1

2µF
+

1

2G

)∥∥∥∥(Ind − 1

n
(Jn ⊗ Id)

)
yt+1

∥∥∥∥
2

=

∥∥∥∥Ind − 1

n
(Jn ⊗ Id)

∥∥∥∥ · ∥∥∥∥Ht −
(

1

2µF
+

1

2G

)
Ind

∥∥∥∥ · ∥∥yt+1
∥∥

2

+

(
1

2µF
+

1

2G

)∥∥yt+1 − 1n ⊗ ȳt+1
∥∥

2

(a)

≤ 1

2

(
1

µF
− 1

G

)∥∥yt+1
∥∥

2
+

1

2

(
1

µF
+

1

G

)∥∥yt+1 − 1n ⊗ ȳt+1
∥∥

2
,

where the last line follows from that
∥∥Ind − 1

n (Jn ⊗ Id)
∥∥ =

∥∥(Id − n−1Id)⊗ In
∥∥ ≤ 1− 1

n ≤
1 and ∥∥∥∥Ht −

(
1

2µF
+

1

2G

)
Ind

∥∥∥∥ ≤ 1

2

(
1

µF
− 1

G

)
.
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Then a direct computation yields that

∥∥dt − 1n ⊗ d̄t
∥∥2

2
≤ 1

2

(
1

µF
− 1

G

)2 ∥∥yt+1
∥∥2

2
+

1

2

(
1

µF
+

1

G

)2 ∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2

(a)

≤ 1

2

(
1

µF
− 1

G

)2

G2
∥∥dt∥∥2

2
+

1

2

(
1

µF
+

1

G

)2 ∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2

=
1

2

(
G

µF
− 1

)2 ∥∥dt∥∥2

2
+

1

2

(
1

µF
+

1

G

)2 ∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2

(b)

≤ G2

2µ2
F

∥∥dt∥∥2

2
+

1

2

(
1

µF
+

1

G

)2 ∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2

≤ G2

2µ2
F

∥∥dt∥∥2

2
+

2

µ2
F

∥∥yt+1 − 1n ⊗ ȳt+1
∥∥2

2
,

where step (a) is due to the fact
∥∥yt+1

∥∥2

2
=
∑n

i=1

∥∥yt+1
i

∥∥2

2
=
∑n

i=1

∥∥∥Ht
i
−1
dti

∥∥∥2

2
≤ G2

∥∥dt∥∥2

2
,

and step (b) is due to G
µF
≥ 1.

5.4 Proof of Lemma 15

5.4.1 Proof of (31)

Recall the initialization in Algorithm 1 that y0
i = 0,v−1

i = 0, and v0
i = 1

B

∑B
b=1 gi(τ

0
i,b|θ0

i ).
A direct computation yields that

E
{∥∥y1 − 1n ⊗ ȳ1

∥∥
2

}2
= E

{∥∥(W ⊗ Id)v0 − 1n ⊗ v̄0
∥∥2

2

}
= E

{∥∥∥∥(W ⊗ Id)v0 − 1

n
(Jn ⊗ Id)v0

∥∥∥∥2

2

}

≤
∥∥∥∥W − 1

n
Jn

∥∥∥∥2

· E
{∥∥v0

∥∥2

2

}
= ρ2

n∑
i=1

E
{∥∥v0

i −∇Vi(θ̄0) +∇Vi(θ̄0)
∥∥2

2

}
= ρ2

n∑
i=1

E
{∥∥v0

i −∇Vi(θ̄0)
∥∥2

2

}
+ ρ2

n∑
i=1

∥∥∇Vi(θ̄0)
∥∥2

2

+ 2ρ2
n∑
i=1

〈
E
{
v0
i

}
−∇Vi(θ̄0),∇Vi(θ̄0)

〉
= ρ2

n∑
i=1

E
{∥∥v0

i −∇Vi(θ̄0)
∥∥2

2

}
+ ρ2

n∑
i=1

∥∥∇Vi(θ̄0)
∥∥2

2
, (51)

where the last line follows from E
{
v0
i

}
= ∇Vi(θ0

i ) = ∇Vi(θ̄0). Moreover, for any i ∈ [n], it
can be seen that

E
{∥∥v0

i −∇Vi(θ̄0)
∥∥2

2

}
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= E


∥∥∥∥∥ 1

B

B∑
b=1

gi(τ
0
i,b|θ̄0)−∇Vi(θ̄0)

∥∥∥∥∥
2

2


= E


∥∥∥∥∥ 1

B

B∑
b=1

(
gi(τ

0
i,b|θ̄0)−∇Vi(θ̄0)

)∥∥∥∥∥
2

2


=

1

B2

B∑
b=1

E
{∥∥gi(τ0

i,b|θ̄0)−∇Vi(θ̄0)
∥∥2

2

}
+

1

B2

∑
b 6=b′

E
{〈
gi(τ

0
i,b|θ̄0)−∇Vi(θ̄0), gi(τ

0
i,b′ |θ̄0)−∇Vi(θ̄0)

〉 }
(a)
=

1

B2

B∑
b=1

E
{∥∥gi(τ0

i,b|θ̄0)−∇Vi(θ̄0)
∥∥2

2

}
(b)

≤ ν2
i

B
, (52)

where step (a) is due to the fact that {τ0
i,b}Bb=1 are independent trajectories and step (b)

follows from Assumption 7. Substituting (52) into (51) yields that

E
{∥∥y1 − 1n ⊗ ȳ1

∥∥2

2

}
≤ ρ2

B

n∑
i=1

ν2
i + ρ2

n∑
i=1

∥∥∇Vi(θ̄0)
∥∥2

2

=
nρ2ν̄2

B
+ ρ2

n∑
i=1

∥∥∇Vi(θ̄0)
∥∥2

2
,

which completes the proof of (31).

5.4.2 Proof of (32)

Following the gradient tracking update in (27), we have

E
{∥∥yt+1 − 1n ⊗ ȳt+1

∥∥2

2

}
= E

{∥∥∥∥(W ⊗ Id) (yt + vt − vt−1)− 1

n

(
1n1

T
n ⊗ Id

)
(W ⊗ Id) (yt + vt − vt−1)

∥∥∥∥2

2

}

= E

{∥∥∥∥((W − 1

n
Jn

)
⊗ Id

)
(yt + vt − vt−1)

∥∥∥∥2

2

}

≤
(

1 +
1− ρ2

2ρ2

)
E

{∥∥∥∥((W − 1

n
Jn

)
⊗ Id

)
yt
∥∥∥∥2

2

}

+

(
1 +

2ρ2

1− ρ2

)
E

{∥∥∥∥((W − 1

n
Jn

)
⊗ Id

)
(vt − vt−1)

∥∥∥∥2

2

}

=
1 + ρ2

2ρ2
E

{∥∥∥∥((W − 1

n
Jn

)
⊗ Id

)
(yt − 1n ⊗ ȳt)

∥∥∥∥2

2

}
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+
1 + ρ2

1− ρ2
E

{∥∥∥∥((W − 1

n
Jn

)
⊗ Id

)
(vt − vt−1)

∥∥∥∥2

2

}

≤ 1 + ρ2

2
E
{∥∥yt − 1n ⊗ ȳt

∥∥2

2

}
+

(1 + ρ2)ρ2

1− ρ2
E
{∥∥vt − vt−1

∥∥2

2

}
, (53)

where the third line is due to the element inequality that ‖a+ b‖22 ≤ (1 + c) ‖a‖22 + (1 +

c−1) ‖b‖22 with c = 1−ρ2
2ρ2

for any a and b. Moreover, we have the following relationship:

E
{∥∥vt − vt−1

∥∥2

2

}
≤
(
8(1− β)2L2

g + 8(1− β)2C2
gC

2
ω + 4β2L2

g

)
E
{∥∥θt − θt−1

∥∥2

2

}
+ 4nβ2ν̄2 + 4β2

n∑
i=1

E
{∥∥∇Vi(θt−1

i )− vt−1
i

∥∥2

2

}
, (54)

which has been shown in (61) of Jiang et al. (2022). Substituting (54) into (53) yields that

E
{∥∥yt+1 − 1n ⊗ ȳt+1

∥∥2

2

}
≤ 1 + ρ2

2
E
{∥∥yt − 1n ⊗ ȳt

∥∥2

2

}
+

(1 + ρ2)ρ2

1− ρ2

(
12Φ2E

{∥∥θt − θt−1
∥∥2

2

}
+ 4nβ2ν̄2

+ 4β2
n∑
i=1

E
{∥∥∇Vi(θt−1

i )− vt−1
i

∥∥2

2

})
=

1 + ρ2

2
E
{∥∥yt − 1n ⊗ ȳt

∥∥2

2

}
+

4nβ2ν̄2ρ2(1 + ρ2)

1− ρ2

+
12Φ2(1 + ρ2)ρ2

1− ρ2
E
{∥∥θt − θt−1

∥∥2

2

}
+

4β2ρ2(1 + ρ2)

1− ρ2

n∑
i=1

E
{∥∥∇Vi(θt−1

i )− vt−1
i

∥∥2

2

}
≤ 1 + ρ2

2
E
{∥∥yt − 1n ⊗ ȳt

∥∥2

2

}
+

8nβ2ν̄2

1− ρ2

+
24Φ2

1− ρ2
E
{∥∥θt − θt−1

∥∥2

2

}
+

8β2

1− ρ2

n∑
i=1

E
{∥∥∇Vi(θt−1

i )− vt−1
i

∥∥2

2

}
, (55)

where the first inequality follows from that 8(1−β)2L2
g +8(1−β)2C2

gC
2
ω +4β2L2

g ≤ 12(L2
g +

C2
gC

2
ω) := 12Φ2 for 0 ≤ β ≤ 1 and the last line is due to ρ < 1. Furthermore, the term

E
{∥∥θt − θt−1

∥∥2

2

}
can be bounded as follows:

E
{∥∥θt − θt−1

∥∥2

2

}
= E

{∥∥θt − 1n ⊗ θ̄t + 1n ⊗ θ̄t − 1n ⊗ θ̄t−1 + 1n ⊗ θ̄t−1 − θt−1
∥∥2

2

}
≤ 3E

{∥∥θt − 1n ⊗ θ̄t
∥∥2

2

}
+ 3E

{∥∥θt−1 − 1n ⊗ θ̄t−1
∥∥2

2

}
+ 3E

{∥∥1n ⊗ (θ̄t − θ̄t−1)
∥∥2

2

}
= 3E

{∥∥θt − 1n ⊗ θ̄t
∥∥2

2

}
+ 3E

{∥∥θt−1 − 1n ⊗ θ̄t−1
∥∥2

2

}
+ 3nη2E

{∥∥d̄t−1
∥∥2

2

}
(a)

≤ 6ρ2E
{∥∥θt−1 − 1n ⊗ θ̄t−1

∥∥2

2

}
+

12η2ρ2

µ2
F

E
{∥∥yt − 1n ⊗ ȳt

∥∥2

2

}
+

3G2η2ρ2

µ2
F

E
{∥∥dt−1

∥∥2

2

}
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+ 3E
{∥∥θt−1 − 1n ⊗ θ̄t−1

∥∥2

2

}
+ 3nη2E

{∥∥d̄t−1
∥∥2

2

}
(b)

≤ 6ρ2E
{∥∥θt−1 − 1n ⊗ θ̄t−1

∥∥2

2

}
+

12η2ρ2

µ2
F

E
{∥∥yt − 1n ⊗ ȳt

∥∥2

2

}
+

3G2η2ρ2

µ2
F

E
{∥∥dt−1

∥∥2

2

}
+ 3E

{∥∥θt−1 − 1n ⊗ θ̄t−1
∥∥2

2

}
+ 3η2E

{∥∥dt−1
∥∥2

2

}
(c)

≤ 9E
{∥∥θt−1 − 1n ⊗ θ̄t−1

∥∥2

2

}
+

12η2ρ2

µ2
F

E
{∥∥yt − 1n ⊗ ȳt

∥∥2

2

}
+

6G2η2

µ2
F

E
{∥∥dt−1

∥∥2

2

}
,

(56)

where step (a) is due to (30), step (b) follows from the fact that
∥∥d̄t−1

∥∥2

2
=
∥∥ 1
n

∑n
i=1 d

t−1
i

∥∥2

2
≤

1
n

∑n
i=1

∥∥dt−1
i

∥∥2

2
= 1

n

∥∥dt−1
∥∥2

2
, and step (c) holds since ρ < 1 and µF ≤ G. Substituting (56)

into (55) yields that

E
{∥∥yt+1 − 1n ⊗ ȳt+1

∥∥2

2

}
≤ 1 + ρ2

2
E
{∥∥yt − 1n ⊗ ȳt

∥∥2

2

}
+

8nβ2ν̄2

1− ρ2
+

8β2

1− ρ2

n∑
i=1

E
{∥∥∇Vi(θt−1

i )− vt−1
i

∥∥2

2

}
+

24Φ2

1− ρ2

(
9E
{∥∥θt−1 − 1n ⊗ θ̄t−1

∥∥2

2

}
+

12η2ρ2

µ2
F

E
{∥∥yt − 1n ⊗ ȳt

∥∥2

2

}
+

6G2η2

µ2
F

E
{∥∥dt−1

∥∥2

2

})
=

(
1 + ρ2

2
+

24Φ2

1− ρ2
· 12η2ρ2

µ2
F

)
E
{∥∥yt − 1n ⊗ ȳt

∥∥2

2

}
+

8nβ2ν̄2

1− ρ2

+
8β2

1− ρ2

n∑
i=1

E
{∥∥∇Vi(θt−1

i )− vt−1
i

∥∥2

2

}
+

216Φ2

1− ρ2
E
{∥∥θt−1 − 1n ⊗ θ̄t−1

∥∥2

2

}
+

144Φ2G2η2

µ2
F (1− ρ2)

E
{∥∥dt−1

∥∥2

2

}
≤ 3 + ρ2

4
E
{∥∥yt − 1n ⊗ ȳt

∥∥2

2

}
+

8nβ2ν̄2

1− ρ2
+

8β2

1− ρ2

n∑
i=1

E
{∥∥∇Vi(θt−1

i )− vt−1
i

∥∥2

2

}
+

216Φ2

1− ρ2
E
{∥∥θt−1 − 1n ⊗ θ̄t−1

∥∥2

2

}
+

144Φ2G2η2

µ2
F (1− ρ2)

E
{∥∥dt−1

∥∥2

2

}
=

3 + ρ2

4
E
{∥∥yt − 1n ⊗ ȳt

∥∥2

2

}
+

8nβ2ν̄2

1− ρ2
+

8β2

1− ρ2
E
{∥∥∥∇̃V (θt−1)− vt−1

∥∥∥2

2

}
+

216Φ2

1− ρ2
E
{∥∥θt−1 − 1n ⊗ θ̄t−1

∥∥2

2

}
+

144Φ2G2η2

µ2
F (1− ρ2)

E
{∥∥dt−1

∥∥2

2

}
,

where the second inequality is due to η ≤ µF (1−ρ2)

24
√

2Φ
, i.e., 1+ρ2

2 + 24Φ2

1−ρ2 ·
12η2ρ2

µ2F
≤ 3+ρ2

4 . Now

the proof is complete.
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5.5 Proof of Lemma 17

Applying (34) to (32) yields that

T∑
t=1

E
{∥∥yt − 1n ⊗ ȳt

∥∥2

2

}
≤ 4

1− ρ2
E
{∥∥y1 − 1n ⊗ ȳ1

∥∥2

2

}
+

4T

1− ρ2
· 8nβ2ν̄2

1− ρ2

+
4

1− ρ2

T−2∑
t=0

(
8β2

1− ρ2
E
{∥∥∥∇̃V (θt)− vt

∥∥∥2

2

}
+

216Φ2

1− ρ2
E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
+

144Φ2G2η2

µ2
F (1− ρ2)

E
{∥∥dt∥∥2

2

})
≤ 4

1− ρ2
E
{∥∥y1 − 1n ⊗ ȳ1

∥∥2

2

}
+

32nTβ2ν̄2

(1− ρ2)2
+

576Φ2G2η2

µ2
F (1− ρ2)2

T∑
t=0

E
{∥∥dt∥∥2

2

}
+

864Φ2

(1− ρ2)2

T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
+

32β2

(1− ρ2)2

T∑
t=0

E
{∥∥∥∇̃V (θt)− vt

∥∥∥2

2

}
(a)

≤ 4

1− ρ2
E
{∥∥y1 − 1n ⊗ ȳ1

∥∥2

2

}
+

32nTβ2ν̄2

(1− ρ2)2

+
576Φ2G2η2

µ2
F (1− ρ2)2

T∑
t=0

E
{∥∥dt∥∥2

2

}
+

864Φ2

(1− ρ2)2

T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
+

32β2

(1− ρ2)2

(
nν̄2

βB
+ 2nβT ν̄2

+
12nη2Φ2

β

T−1∑
t=0

E
{∥∥d̄t∥∥2

2

}
+

24Φ2

β

T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

})
(b)

≤ 4

1− ρ2

(
nρ2ν̄2

B
+ ρ2

∥∥∥∇̃V (θ0)
∥∥∥2

2

)
+

32nTβ2ν̄2

(1− ρ2)2
+

576Φ2G2η2

µ2
F (1− ρ2)2

T∑
t=0

E
{∥∥dt∥∥2

2

}
+

864Φ2

(1− ρ2)2
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E
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∥∥2

2

}
+
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(1− ρ2)2

(
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βB
+ 2nβT ν̄2

+
12nη2Φ2

β
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t=0

E
{∥∥d̄t∥∥2

2

}
+

24Φ2

β

T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

})
=

4

1− ρ2

(
nρ2ν̄2

B
+ ρ2

∥∥∥∇̃V (θ0)
∥∥∥2

2

)
+

32nTβ2ν̄2

(1− ρ2)2
+

32β2

(1− ρ2)2

(
nν̄2

βB
+ 2nβT ν̄2
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+

(
864Φ2

(1− ρ2)2
+

32β2

(1− ρ2)2
· 24Φ2

β

) T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
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+
576Φ2G2η2

µ2
F (1− ρ2)2

T∑
t=0

E
{∥∥dt∥∥2

2

}
+

32β2

(1− ρ2)2
· 12nη2Φ2

β

T−1∑
t=0

E
{∥∥d̄t∥∥2

2

}
(c)

≤ 4
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(
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B
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2
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+

32nTβ2ν̄2

(1− ρ2)2
+

32β2

(1− ρ2)2

(
nν̄2

βB
+ 2nβT ν̄2

)
+

(
864Φ2

(1− ρ2)2
+

32β2

(1− ρ2)2
· 24Φ2

β
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t=0

E
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2

}
+
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576Φ2G2η2
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{∥∥dt∥∥2

2
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(
nρ2ν̄2

B
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2
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(1− ρ2)2

(
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2
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where step (a) is due to (37), step (b) follows from (31), step (c) holds since
∥∥d̄t∥∥2

2
≤ 1

n

∥∥dt∥∥2

2
,

and the last inequality is due to β < 1, i.e.,

864Φ2

(1− ρ2)2
+

32β2

(1− ρ2)2
· 24Φ2

β
=

864Φ2

(1− ρ2)2
+

768Φ2β

(1− ρ2)2
≤ 1632Φ2

(1− ρ2)2
.

Thus we complete the proof.

5.6 Proof of Lemma 18

Due to (29), it can be seen that

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2
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≤ 1 + ρ2

2
E
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∥∥2

2

}
+

4η2

µ2
F (1− ρ2)

E
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}
(57)
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for any t ≥ 0. Applying (33) to (57) leads to that

T∑
t=0
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{∥∥θt − 1n ⊗ θ̄t
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2
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where the first inequality has used the fact that θ0
i = θ̄0 for all i ∈ [n] and the second

inequality follows from (35). Since

0 < η <
µF (1− ρ2)3

κF
√

1632000(L2 + Φ2)
,

it can be seen that
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Thus we have

T∑
t=0

E
{∥∥θt − 1n ⊗ θ̄t

∥∥2

2

}
≤ 16A1η

2

µ2
F (1− ρ2)2

+ 2

(
4G2η2

µ2
F (1− ρ2)3

+
8η2

µ2
F (1− ρ2)2

· 960Φ2G2η2

µ2
F (1− ρ2)2

) T∑
t=0

E
{∥∥dt∥∥2

2

}
≤ 16A1η

2

µ2
F (1− ρ2)2

+
10G2η2

µ2
F (1− ρ2)3

T∑
t=0

E
{∥∥dt∥∥2
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which completes the proof.
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6. Conclusions

In this work, we propose a novel decentralized algorithm named MDNPG for MARL. We
have established the sample complexity for local convergence of MDNPG, which achieves
the best available rate. The key ingredient to our development is a new stochastic ascent
inequality for non-convex objectives, which could be of independent interest. Numerical
results have demonstrated the efficiency of the proposed method.

There are several interesting directions for future research. Firstly, it is natural to
study the global convergence of MDNPG and extend our framework to the class of entropy-
regularized natural policy gradient methods in MARL. Secondly, the Fisher information
matrix in this paper is empirically estimated by sample averaging, which may incur large
variance. Thus, we may also consider variance reduction for the estimation of the precon-
dition matrix. Lastly, though importance sampling is widely used to address the varying
data distribution issue when developing variance reduced policy gradient methods, there
are also a few recent works (Shen et al., 2019; Salehkaleybar et al., 2022) which instead
use a hessian-based technique in the single-agent setting. Therefore, it is also interesting to
investigate whether importance sampling can be removed in the multi-agent setting when
developing decentralized (natural) policy gradient methods.
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