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Abstract

Traditional statistical methods are faced with new challenges due to streaming data. The
major challenge is the rapidly growing volume and velocity of data, which makes storing
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such huge data sets in memory impossible. The paper presents an online inference frame-
work for regression parameters in high-dimensional semiparametric single-index models
with unknown link functions. The proposed online procedure updates only the current
data batch and summary statistics of historical data instead of re-accessing the entire raw
data set. At the same time, we do not need to estimate the unknown link function, which
is a highly challenging task. In addition, a generalized convex loss function is used in the
proposed inference procedure. To illustrate the proposed method, we use the Huber loss
function and the negative log-likelihood of the logistic regression model. In this study, the
asymptotic normality of the proposed online debiased Lasso estimators and the bounds
of the proposed online Lasso estimators are investigated. To evaluate the performance
of the proposed method, extensive simulation studies have been conducted. We provide
applications to Nasdaq stock prices and financial distress data sets.

Keywords: high-dimensional data; lasso; single-index models; statistical inference;
streaming data

1. Introduction

The rapid development of data collection techniques brings new challenges to developing
online approaches to handle data in a streaming fashion. In such a data environment, it is
often numerically challenging or sometimes infeasible to store the entire data set in memory.
Consequently, the classical offline methods that involve the entire data set are less attractive
or even infeasible due to computationally expensive. Instead, online methods can be used
to process the out-of-memory data and make real-time decisions, which have been prevalent
in economics, finance, machine learning, and statistics. Up to now, various online methods
have been proposed. For example, the stochastic gradient descent (SGD) algorithm and its
variants have been extended to the streaming settings; see Duchi and Singer (2009), Xiao
(2010), Dekel et al. (2012), Chen et al. (2020), and Zhu et al. (2023). In addition, Lin and
Xi (2011) considered an aggregated estimating equation for generalized linear models. Schi-
fano et al. (2016) proposed online-updating algorithms and inferences applicable to linear
models and estimation equations. Luo and Song (2020) suggested a renewable estimation
and incremental inference to analyze streaming data sets using generalized linear models.
The aforementioned online methods are developed for low-dimensional settings where the
number of regressors is fixed and much smaller than the total sample size.

In recent years, a large amount of high-dimensional data streams, such as network flows,
wireless sensor networks data, and multimedia streams have been generated; see Wang
et al. (2017), Braverman et al. (2017), and Din et al. (2021). To analyze the above high-
dimensional data streams, many online methods have been studied. For example, Langford
et al. (2009) proposed an online `1-regularized method via a variant of the truncated SGD.
Fan et al. (2018) developed the diffusion approximation approach to investigate SGD esti-
mators. Gepperth and Pfülb (2021) presented an approach for the Gaussian mixture model
via SGD with non-stationary, high-dimensional streaming data. Shi et al. (2021) introduced
a valid inference method for single or low-dimensional regression coefficients via a recursive
online-score estimation technique. Deshpande et al. (2023) considered a class of online es-
timators in a high-dimensional auto-regressive model. Han et al. (2021) proposed an online
debiased lasso estimator for statistical inference with high-dimensional streaming data and
further extended to the generalized linear models in Luo et al. (2023). The above existing
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estimation and inference procedures only focused on the linear or generalized linear models.
However, much less is known under the potential misspecification of these commonly used
models or more general models.

The single-index models (SIMs), which accommodate possible nonlinearity and avoid the
curse of dimensionality simultaneously, are useful extensions of the linear regression model.
Over the last few decades, the SIMs have been widely investigated in both the statistics and
econometrics literature. In low-dimensional settings, the SIMs have been studied extensively
in the literature, see Carroll et al. (1997), Xia et al. (2009), and Cui et al. (2011), among
others. In high-dimensional settings, the SIMs have also attracted interest with various
studies such as variable selection, estimation, and hypothesis testing. For example, Alquier
and Biau (2013) introduced a PAC-Bayesian estimation approach for the sparse SIMs.
Ganti et al. (2017) provided a suite of algorithms to learn the SIMs. Radchenko (2015)
proposed a non-parametric least squares with an equality `1 constraint to simultaneous
variable selection and estimation. Sign support recovery for the regression coefficient vector
was studied by Neykov et al. (2016). Yang et al. (2017) considered the estimation problems
of the parametric component of the SIMs. Zhang et al. (2020) proposed flexible regularized
single-index quantile regression models for high-dimensional data. Eftekhari et al. (2021)
conducted pointwise inference based on least squares. However, existing SIM estimation
or inference methods have been studied on the fixed sample size before data collection and
might not be suitable to implement the situations where data arrive in a streaming manner.

In this paper, we develop an online framework for real-time estimation and inference of
regression parameters in SIMs with streaming data. Our proposed procedure is established
based on general convex loss functions. We consider the Huber loss function (Huber, 1964)
and the negative log-likelihood of the logistic regression model as two special examples
to illustrate the proposed method. Unlike previous works, the proposed online estimators
are updated via the current data batch and summary statistics of historical data without
accessing the entire raw data set. Meanwhile, we do not need to estimate any unknown
link functions at each stage. In addition, the proposed online method accounts for the
sparsity features in a candidate set of covariates and provides a valid statistical inference
procedure for regression parameters. Under certain regular conditions, we also show the
consistency and asymptotic normality of the proposed online estimators, which provides us
with a theoretical basis for carrying out real-time statistical inference with streaming data.
In summary, in comparison with the literature, our contributions lie in the following four-
fold. (i) Unlike traditional high-dimensional offline SIMs (Neykov et al., 2016; Eftekhari
et al., 2021; Han et al., 2022, 2023), which have access to the entire raw data set, our
proposed method utilizes the current data batch along with summary statistics of historical
data. (ii) In contrast to high-dimensional linear or generalized linear models with streaming
data (Han et al., 2021; Luo et al., 2023) that presuppose a second-order differentiable loss
function, our proposed method targets the SIMs that focus on accommodating possible
nonlinearity. Moreover, it suffices for our method that the loss function only has a first-
order derivative. The Huber loss, known for its robustness to responses, serves as a notable
example within our framework. (iii) To conduct the inference procedure, we need to obtain
an approximated inverse matrix estimator for the inverse of the second-order derivative of
the expected loss function. Different from the works of Han et al. (2021) and Luo et al.
(2023), we utilize the methodology of Cai et al. (2011) to obtain this estimator instead of
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imposing stronger exact `0 sparsity conditions on the population inverse of the second-order
derivative of the expected loss function. (iv) Our work presents the upper bounds for the
proposed online Lasso estimators with sub-Gaussian random covariates, thereby easing the
constraints on bounded covariates as shown in Luo et al. (2023). In addition, we provide
an improved understanding of how the number of data batches impacts oracle inequalities
within an online framework, differing from traditional oracle inequalities (Negahban et al.,
2012).

The rest of this paper is organized as follows. In Section 2.1, we present the model
settings. The proposed online estimation procedure with its theoretical property is pre-
sented in Section 2.2. Section 2.3 introduces the proposed online one-step procedure. Some
examples are provided to illustrate the proposed method in Section 3. We evaluate the
performance of the proposed procedure through simulation studies in Section 4. In Section
5, we apply the proposed method to the Nasdaq stock and financial distress data sets. Some
discussions are given in Section 6. Technical details are deferred to the Appendices.

2. Model and Methodology

2.1 Single-Index Models

We consider the following high-dimensional SIMs (Neykov et al., 2016):

Y = f(X>β0, ε), (1)

where Y is a response variable, X is a p-dimensional covariate vector, β0 is a p-dimensional
vector of regression parameters, f is an unknown link function, and ε is an error term whose
distribution is unspecified. Without loss of generality, we assume E(X) = 0. Assume
that E(β>0 Σβ0) = 1 (Neykov et al., 2016; Eftekhari et al., 2021) for identifiability, where
Σ = E(XX>). Consider a time point m ≥ 2 with a total of Nm =

∑m
j=1 nj independent

copies of (Y,X) arriving in a sequence of m data batches, denoted by {D1, . . . ,Dm}, where
nj is the size of the batch Dj . For any 1 ≤ j ≤ m, denote the observations in Dj by

{Y (j)
i ,X

(j)
i }

nj
i=1. The SIMs involve many existing models as special cases, such as the linear

regression model and the logistic regression model.

2.2 Online Consistent Estimation

The recovery of β0 up to a scale under model (1) often depends on the linearity of expec-
tation assumption (Li and Duan, 1989; Li, 1991; Neykov et al., 2016) given below:
Definition 1 (Linearity of Expectation) A p-dimensional random variable W is said
to satisfy linearity of expectation in the direction of β if for any direction b ∈ Rp:

E(W>b|W>β) = cbW
>β + ab,

where ab and cb are two constants which may depend on the direction b.
We consider estimating β0 up to a scalar by using a loss function l(Y,X>β). The

following conditions are for the following Proposition 2.

(C1) X satisfies the linearity of expectation assumption in the direction of β0. In addition,
X is independent of ε.

4



Inference on High-dimensional Single-index Models with Streaming Data

(C2) The function (Y,X>β) → l(Y,X>β) is convex in X>β ∈ R, and the function β →
E{l(Y,X>β)} has a unique minimizer β∗ 6= 0.

The linearity of expectation assumption for X in condition (C1) is commonly used for
the SIMs (Li and Duan, 1989; Neykov et al., 2016). Moreover, the independence between X
and ε in condition (C1) is also adopted by Neykov et al. (2016). Condition (C2) is for the
parameter identification. Based on conditions (C1) and (C2) and the Jensen’s inequality,
we can obtain that β∗ equals to β0 up to a scalar.

Remark 1 The linearity of expectation assumption in condition (C1) is widely assumed
in the sufficient dimension reduction literature, including SIMs as special cases; see Li and
Duan (1989), Li (1991), Eftekhari et al. (2021), Cai et al. (2023) and references therein for
further discussions on such assumptions and their applicability. It is worth that this linearity
of expectation is satisfied uniformly in all directions when W has an elliptical symmetric
distribution, including the multivariate normal distribution and Student’s t distribution; see
Cambanis et al. (1981). The assumption of elliptical symmetry plays an important role in
numerous theoretical developments and applications. Various tests have been proposed to
test whether that assumption holds true or not; see Cassart et al. (2008) and Babić et al.
(2021).

To test the linearity of expectation assumption in condition (C1), one promising way
is to test whether several principal components of covariates X is an elliptical symmetric
distribution. When the assumption of elliptical symmetry for covariates X is violated, we
can apply coordinatewise Gaussianization to transform covariates X into normal distribu-
tions, i.e., T̂j = Φ−1{nF̂j/(n+1)}. Here, Φ(·) is the cumulative distribution function of the

standard normal distribution, and F̂j denotes the empirical cumulative distribution function
of the jth component of X. Further details on coordinatewise Gaussianization can be found
in Mai et al. (2023).

Proposition 2 Suppose that conditions (C1) and (C2) hold. Then there exists some non-
zero constant k1 depending on l(Y,X>β) such that β∗ = k1β0.

Proposition 2 indicates that the loss function l(Y,X>β) can provide a leeway to perform
estimation and inference for β0 up to the scalar k1.

Remark 3 Notice that our objective is to conduct estimation and inference for β0 up to
the scalar k1, it is not essential to let k1 → 1 or determine k1. In fact, since it is impossible
to derive the explicit expression of k1, determining it is not feasible. In addition, as the
expression of the loss function l(Y,X>β) does not incorporate the link function f , the
estimation of f could be avoided. The `1 and `2 bounds of the differences between β0 up
to the scalar k1 and its corresponding Lasso estimators, and the asymptotic distributions of
the debiased Lasso estimators are provided in the following Theorems 4 and 5, respectively.

By Proposition 2, a consistent estimator of β0 up to the scalar k1 can be derived by minimiz-
ing the following penalized empirical version of E{l(Y,X>β)} under some mild condition:

1

Nm

m∑
j=1

nj∑
i=1

l(Y
(j)
i ,X

(j)>
i β) + λn‖β‖1,
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where λn is a tuning parameter, ‖β‖1 =
∑p

l=1 |βl| is the `1-norm of β, and βl is the lth
element of β. However, under the streaming data setting, since new data arrives continually,
data volume accumulates very fast over time. This leads to the result that the raw data
can not be stored in memory for a long time and we can not access the entire data set
{D1, . . . ,Dm} at the time point m, making it impossible to implement the algorithm above.
To tackle this problem, we consider an online updating procedure which just exploit the
current data and the summary statistics from the historical raw data for estimating β∗. To
remove the dependence between an estimator of β∗ and the observed data, we employ a
sample-splitting technique. Without this technique, it is difficult to obtain an upper bound
for the ‖ · ‖∞ of the difference between H and its corresponding estimator when the second
order derivative of l(Y,X>β) does not exist, where ‖ · ‖∞ is the maximum absolute value
of the entries in a matrix. Without loss of generality, assume that n1, . . . , nm are all even

numbers. Let Dj,1 = {Y (j)
i ,X

(j)
i }

nj/2
i=1 , and Dj,2 = {Y (j)

i ,X
(j)
i }

nj
i=nj/2+1, for j = 1, . . . ,m.

Define

H =
∂2

∂β∂β>
E{l(Y,X>β)}|β=β∗ .

When the batch D1 arrives, let β̂
(1)

1 be the minimizer of

2

n1

n1/2∑
i=1

l(Y
(1)
i ,X

(1)>
i β) + λ1‖β‖1, (2)

and β̂
(1)

2 be the minimizer of

2

n1

n1∑
i=n1/2+1

l(Y
(1)
i ,X

(1)>
i β) + γ1‖β‖1, (3)

where λ1 and γ1 are two tuning parameters. Then we store {β̂(1)

1 , β̂
(1)

2 , n1H
(1)
1 , n1H

(1)
2 },

where H
(1)
1 , and H

(1)
2 are empirical versions of H which are obtained by using {D1,1, β̂

(1)

2 },
and {D1,2, β̂

(1)

1 }, respectively. For any time point 2 ≤ s ≤ m, as the raw data {D1, . . .Ds−1}
is not stored, we consider replacing the cumulative objective function

2

Ns

s∑
j=1

nj/2∑
i=1

l(Y
(j)
i ,X

(j)>
i β) + λs‖β‖1, (4)

with another function just including historical summary statistics {β̂(s−1)
2 ,

∑s−1
j=1 njH

(j)
1 },

and the current data set Ds,1 to estimate β∗ at the sth time point, where λs is a tuning

parameter, Ns =
∑s

j=1 nj , β̂
(s−1)
2 is an estimator of β∗ at the (s− 1)th time point by using

{β̂(s−2)
1 ,Ds−1,2,

∑s−2
j=1 njH

(j)
2 }, and H

(j)
1 is an empirical version of H which is acquired by

using {Dj,1, β̂
(j)

2 } at the jth time point, j = 1, . . . , s−1. (β− β̂(s−1)
2 )>H

(j)
1 (β− β̂(s−1)

2 )/2+

2
∑nj/2

i=1 l(Y
(j)
i ,X

(j)>
i β̂

(s−1)
2 )/nj can be considered as an approximated second-order Tay-

lor expansion of 2
∑nj/2

i=1 l(Y
(j)
i ,X

(j)>
i β)/nj at β̂

(s−1)
2 . Then, motivated by Luo and Song
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(2020), by replacing 2
∑nj/2

i=1 l(Y
(j)
i ,X

(j)>
i β)/nj with (β − β̂(s−1)

2 )>H
(j)
1 (β − β̂(s−1)

2 )/2 +

2
∑nj/2

i=1 l(Y
(j)
i ,X

(j)>
i β̂

(s−1)
2 )/nj in (4), for j = 1 . . . , s−1, and removing constant terms, we

can obtain the updating estimator β̂
(s)

1 at the sth time point by minimizing the following
objective function:

L1s(β) + λs‖β‖1, (5)

where L1s(β) = [(β − β̂(s−1)
2 )>

∑s−1
j=1 njH

(j)
1 (β − β̂(s−1)

2 )/2 + 2
∑ns/2

i=1 l(Y
(s)
i ,X

(s)>
i β)]/Ns.

Similarly, the updating estimator β̂
(s)

2 is given by

β̂
(s)

2 = argmin
β∈Rp

{L2s(β) + γs‖β‖1}, (6)

where L2s(β) = [(β−β̂(s−1)
1 )>

∑s−1
j=1 njH

(j)
2 (β−β̂(s−1)

1 )/2+2
∑ns

i=ns/2+1 l(Y
(s)
i ,X

(s)>
i β)]/Ns,

γs is a tuning parameter, β̂
(s−1)
1 is an estimator of β∗ at the (s− 1)th time point by using

{β̂(s−2)
2 ,Ds−1,1,

∑s−2
j=1 njH

(j)
1 }, and H

(j)
1 is an empirical version of H which is got by using

{Dj,2, β̂
(j)

1 } at the jth time point, j = 1, . . . , s − 1. Then we take β̂
(s)

ave = {β̂(s)

1 + β̂
(s)

2 }/2
as the final estimator at the sth step and store {β̂(s)

1 , β̂
(s)

2 ,
∑s

j=1 njH
(j)
1 ,
∑s

j=1 njH
(j)
2 },

where H
(s)
1 , and H

(s)
2 are empirical versions of H which are obtained by using {Ds,1, β̂

(s)

2 },
and {Ds,2, β̂

(s)

1 }, respectively. Since the loss function l(Y,X>β) does not incorporate the
link function f , both L1s(β) + λs‖β‖1 and L2s(β) + γs‖β‖1 also exclude f . Consequently,
the estimation of f is avoided in our proposed estimation procedure, which is detailed in
Algorithm 1.

Algorithm 1 Online estimation for the SIMs.

Input: Streaming data sets D1 . . .Ds . . ., and the tuning parameters λ1 . . . λs . . .,
γ1 . . . γs . . .;

1. Calculate the offline lasso penalized estimators β̂
(1)
1 , β̂

(1)
2 via (2) and (3) based on

D1;

2. Update n1H
(1)
1 and n2H

(1)
2 ;

3. for s = 2, 3, . . . , do
(i). Read the current data set Ds;
(ii). Calculate the online lasso penalized estimators β̂

(s)
1 and β̂

(s)
2 via (5) and (6);

(iii). Update and store the summary statistics {β̂(s)
1 , β̂

(s)
2 ,
∑s

j=1 njH
(j)
1 ,
∑s

j=1 njH
(j)
2 };

(iv). Calculate β̂
(s)

ave = {β̂(s)

1 + β̂
(s)

2 }/2;
(v). Release data set Ds from the memory;
end for

Output: β̂
(s)
ave for s = 1, 2, . . .

7



Han, Xie, Liu, Sun, Huang, Jiang and Kong

In what follows, we will provide the convergence rates of β̂
(s)
1 , β̂

(s)
2 , and β̂

(s)

ave, for s =
1, · · · ,m. Let ‖ · ‖2 be the `2-norm (Euclidean norm). Define

N1 = n1, gβ(Y,X) = ∂l(Y,X>β)/∂β ,Z = gβ∗(Y,X),

l
(j)
1 (β) = 2

nj/2∑
i=1

l(Y
(j)
i , X

(j)>
i β)/nj , l

(j)
2 (β) = 2

nj∑
i=nj/2+1

l(Y
(j)
i ,X

(j)>
i β)/nj ,

Ol(j)1 (β) = 2

nj/2∑
i=1

gβ(Y
(j)
i ,X

(j)
i )/nj , andOl(j)2 (β) = 2

nj∑
i=nj/2+1

gβ(Y
(j)
i ,X

(j)
i )/nj .

For a p-dimensional random vector ξ, define

||ξ||ψ2 = sup
a∈Rp,||a||2=1

sup
k≥1

(E|a>ξ|k)1/k/
√
k.

In addition to conditions (C1) and (C2), the following conditions are required.

(C3) There exists a positive constant M1 such that

||Z||ψ2 ≤M1.

(C4) β0 is s0-sparse with s30 log p = o(nα1
1 ) for some 0 < α1 < 1, where s0 is the number of

nonzero elements in β0.
(C5) There exist two positive constant M2 and M3 such that

M2 ≤ inf
‖∆‖2=1

‖H1/2∆‖22 ≤ sup
‖∆‖2=1

‖H1/2∆‖22 ≤M3.

(C6) There exist two positive constants M4 and M5 such that for any 1 ≤ s ≤ m, with
probability at least 1− P (ns, p),

l
(s)
1 (β∗ + ∆)− l(s)1 (β∗)−∆>Ol(s)1 (β∗) ≥M4||∆||22 −M5

√
log p

ns
||∆||1||∆||2,

and

l
(s)
2 (β∗ + ∆)− l(s)2 (β∗)−∆>Ol(s)2 (β∗) ≥M4||∆||22 −M5

√
log p

ns
||∆||1||∆||2,

for all ||∆||2 ≤ 1, where Ω(nj , p) is a function of nj .
(C7) There exists a positive number M6 ≥ 1 such that for any 1 ≤ s ≤ m, with probability

at least 1− Ps(n1, · · · , ns, p),

max


∥∥∥∥∥∥ 1

Ns

s∑
j=1

njH
(j)
1 −H

∥∥∥∥∥∥
∞

,

∥∥∥∥∥∥ 1

Ns

s∑
j=1

njH
(j)
2 −H

∥∥∥∥∥∥
∞


≤ 1

Ns

s∑
j=1

njM
j
6

√
s0 max{ log p

nj
,

√
log p

nj
}.

where Ps(n1, · · · , ns, p) is a function of n1, · · · , ns and p.
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(C8) Suppose that for some positive constant a0 and any 1 ≤ s ≤ m, 2ss0
√

log p/Ns = o(1)
and

lim
p→∞

1− P (ns, p)− Ps−1(n1, . . . , ns−1, p)− 2ep−a0Ns/ns = 1.

Condition (C3) assumes that Z has a sub-Gaussian tail. Condition (C4) is similar to
the assumption in Janková and Van De Geer (2016). Condition (C5) indicates that H is
positive definite and has finite eigenvalues. Many commonly-used loss functions such as
the Huber loss (Huber, 1964) and the negative log-likelihood of generalized linear models
satisfy condition (C6). The compliance of the Huber loss and the negative log-likelihood
associated with the logistic regression model with condition (C6) is demonstrated in Lemmas
14 and 15 of the Appendix B, respectively. Moreover, condition (C7) is verifiable through
mathematical induction, as detailed in the proofs of Corollaries 6 and 10. Condition (C8) can
ensure the consistency of our online Lasso estimators. In Section 3, we provide the concrete
forms of P (ns, p) and Ps(n1, · · · , ns, p) for specific examples and show that the condition
limp→∞ 1−P (ns, p)−Ps−1(n1, . . . , ns−1, p)−2ep−a0Ns/ns = 1 in (C8) is satisfied under some
mild conditions. Neykov et al. (2016) concentrated on variable selection consistency, while
our work focuses on point estimation and pointwise inference for the regression parameter
vector. In addition, Neykov et al. (2016) investigated the ordinary high-dimensional data,
whereas our research is centered on high-dimensional streaming data. These distinctions
markedly distinguish condition (C5) from the assumptions 2.3.1 and 2.3.2 presented in
Neykov et al. (2016). Similarly, conditions (C4) and (C8) are notably different from the
assumptions regarding n, p and s0 in Neykov et al. (2016). It is worth pointing out that the
condition (C5) has been used in high dimensional statistical inference, see Fan et al. (2017),
van de Geer et al. (2014), Eftekhari et al. (2021) and references therein. The following

Theorem 4 provides the consistency of β̂
(s)

1 , β̂
(s)

2 and β̂
(s)

ave, for s = 1, · · · ,m.

Theorem 4 Suppose that conditions (C1)-(C8) are satisfied. For any 1 ≤ s ≤ m, assume
λs = c1s

√
log p/Ns, and γs = c2s

√
log p/Ns, where c1s and c2s could be any constants which

belong to [2M1

√
2(a0 + 1)/a1, a2], a1 is a positive constant not depending on any parameter,

and a2 could be any constant no less than 2M1

√
2(a0 + 1)/a1. If

max
1≤s≤m−1

d21a
2s−2
3 Nα1/2−1/2

s sM s
6 ≤ A1,

where A1 could be any positive constant, d1 = max{3a2/M4, 4}, and

a3 = max{(2M3 + 3a2/2)/min{M2/3,M4/2}, 8 + 2M3/{M1

√
2(a0 + 1)/a1}}.

Then for any 1 ≤ s ≤ m, we have that with probability at least 1−P (ns, p)−Ps−1(n1, . . . , ns−1,
p)− 2ep−a0Ns/ns,

||β̂(s)

1 − β∗||2 ≤ ds
√
s0 log p

Ns
, ||β̂(s)

1 − β∗||1 ≤ d2ss0
√

log p

Ns
,

||β̂(s)

2 − β∗||2 ≤ ds
√
s0 log p

Ns
, ||β̂(s)

2 − β∗||1 ≤ d2ss0
√

log p

Ns
,

||β̂(s)

ave − β∗||2 ≤ ds
√
s0 log p

Ns
, and ||β̂(s)

ave − β∗||1 ≤ d2ss0
√

log p

Ns
,

where e is Euler’s number and ds = d1a
s−1
3 .

9
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It is inevitable that the constants ds and d2s in Theorem 4 inherently depend on s due to
the propagation of the estimation errors in the previous step to the current estimators. This
dependency marks a deviation from the approach in traditional oracle inequalities (Van de
Geer, 2008; Huang et al., 2013). This phenomenon is also observed in Theorem 1 of Luo
et al. (2023). More details can be found in Remark 3 of Luo et al. (2023). In addition,
we also conduct simulation studies in Section 4.1 to gain a clearer insight into how the
upper bounds of the proposed estimator are influenced by the number of data batches m,
in contrast to the traditional offline lasso estimator.

2.3 Online Pointwise Inference

We construct pointwise inference for the lth component of the regression parameter vector

β∗, for l = 1, · · · , p. Since β̂
(s)

1 , β̂
(s)

2 and β̂
(s)

ave are not N
1/2
s consistent by Theorem 4, we

cannot obtain the asymptotic normalities of these estimators. Let β∗l be the lth element of

β∗, Ω = H−1, and Ω̂
(s)
1 and Ω̂

(s)
2 be two estimators of Ω which will be specified later. To

tackle this issue, we first consider the following one-step estimator for β∗l based on β̂
(s)

1 to
increase the convergence rate:

β̂one1,l = β̂
(s)
1,l − Ω̂

(s)>
1,l

{ s−1∑
j=1

njH
(j)
1 (β̂

(s)

1 − β̂
(s−1)
2 ) + nsOl

(s)
1 (β̂

(s)

1 )

}
/Ns,

where β̂
(s)
1,l is the lth element of β̂

(s)

1 , and Ω̂
(s)
1,l is the lth column of Ω̂

(s)
1 . It can be shown

that

β̂one1,l − β∗l = β̂
(s)
1,l − β

∗
l − Ω̂

(s)>
1,l

{ s−1∑
j=1

njH
(j)
1 (β̂

(s)

1 − β̂
(s−1)
2 ) + nsOl

(s)
1 (β̂

(s)

1 )

}
/Ns

=Ω>l H(β̂
(s)

1 − β∗)− Ω̂
(s)>
1,l

{ s−1∑
j=1

njH
(j)
1 (β̂

(s)

1 − β̂
(s−1)
2 ) + nsOl

(s)
1 (β̂

(s)

1 )

}
/Ns

=Ω>l

s∑
j=1

nj(H −H(j)
1 )(β̂

(s)

1 − β∗)/Ns

− (Ω̂
(s)
1,l −Ωl)

>
{ s−1∑
j=1

njH
(j)
1 (β̂

(s)

1 − β̂
(s−1)
2 ) + nsOl

(s)
1 (β̂

(s)

1 )

}
/Ns

−Ω>l

{ s−1∑
j=1

njH
(j)
1 (β∗ − β̂(s−1)

2 ) + nsOl
(s)
1 (β̂

(s)

1 )− nsH(s)
1 (β̂

(s)

1 − β∗)
}
/Ns, (7)

where Ωl is the lth column of Ω. By the proof of Theorem 5 in the Appendix A, the

first two terms in (7) are op(N
−1/2
s ) under some mild conditions. By the Taylor expansion,∑s

j=1 njH
(j)
1 (β∗−β̂(j)

2 ) can be estimated by
∑s

j=1 njOl
(j)
1 (β∗)−

∑s
j=1 njOl

(j)
1 (β̂

(j)

2 ). Inspired

10
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by this, we consider the following decomposition for the third term,

Ω>l

{ s−1∑
j=1

njH
(j)
1 (β∗ − β̂(s−1)

2 ) + nsOl
(s)
1 (β̂

(s)

1 )− nsH(s)
1 (β̂

(s)

1 − β∗)
}
/Ns

=Ω>l

{ s∑
j=1

njH
(j)
1 (β∗ − β̂(j)

2 )

}
/Ns

+ Ω>l

{ s−1∑
j=1

njH
(j)
1 (β̂

(j)

2 − β̂
(s−1)
2 ) + nsOl

(s)
1 (β̂

(s)

1 ) + nsH
(s)
1 (β̂

(s)

2 − β̂
(s)

1 )

}
/Ns,

=Ω>l

{ s∑
j=1

njH
(j)
1 (β∗ − β̂(j)

2 )−
s∑
j=1

njOl
(j)
1 (β∗) +

s∑
j=1

njOl
(j)
1 (β̂

(j)

2 )

}
/Ns

+ Ω>l

{ s−1∑
j=1

njH
(j)
1 (β̂

(j)

2 − β̂
(s−1)
2 )−

s∑
j=1

njOl
(j)
1 (β̂

(j)

2 )

+ nsOl
(s)
1 (β̂

(s)

1 ) + nsH
(s)
1 (β̂

(s)

2 − β̂
(s)

1 )

}
/Ns

+ Ω>l

s∑
j=1

njOl
(j)
1 (β∗)/Ns

=Ω>l

{ s∑
j=1

njH
(j)
1 (β∗ − β̂(j)

2 )−
s∑
j=1

njOl
(j)
1 (β∗) +

s∑
j=1

njOl
(j)
1 (β̂

(j)

2 )

}
/Ns

+ (Ωl − Ω̂
(s)
1,l )
>
{ s−1∑
j=1

njH
(j)
1 (β̂

(j)

2 − β̂
(s−1)
2 )−

s∑
j=1

njOl
(j)
1 (β̂

(j)

2 )

+ nsOl
(s)
1 (β̂

(s)

1 ) + nsH
(s)
1 (β̂

(s)

2 − β̂
(s)

1 )

}
/Ns

+ Ω̂
(s)>
1,l

{ s−1∑
j=1

njH
(j)
1 (β̂

(j)

2 − β̂
(s−1)
2 )−

s∑
j=1

njOl
(j)
1 (β̂

(j)

2 )

+ nsOl
(s)
1 (β̂

(s)

1 ) + nsH
(s)
1 (β̂

(s)

2 − β̂
(s)

1 )

}
/Ns

+ Ω>l

s∑
j=1

njOl
(j)
1 (β∗)/Ns. (8)

Based on (7) and (8), we have

β̂one1,l − β∗l =(I) + (II) + (III) + (IV ) + (V ) + (V I), (9)

11
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where

(I) =Ω>l

s∑
j=1

nj(H −H(j)
1 )(β̂

(s)

1 − β∗)/Ns,

(II) =− (Ω̂
(s)
1,l −Ωl)

>


s−1∑
j=1

njH
(j)
1 (β̂

(s)

1 − β̂
(s−1)
2 ) + nsOl

(s)
1 (β̂

(s)

1 )

 /Ns,

(III) =−Ω>l

{
s∑
j=1

njH
(j)
1 (β∗ − β̂(j)

2 )−
s∑
j=1

njOl
(j)
1 (β∗) +

s∑
j=1

njOl
(j)
1 (β̂

(j)

2 )

}
/Ns,

(IV ) =− (Ωl − Ω̂
(s)
1,l )
>

{
s−1∑
j=1

njH
(j)
1 (β̂

(j)

2 − β̂
(s−1)
2 )−

s∑
j=1

njOl
(j)
1 (β̂

(j)

2 ) + nsOl
(s)
1 (β̂

(s)

1 )

+ nsH
(s)
1 (β̂

(s)

2 − β̂
(s)

1 )

}
/Ns,

(V ) =− Ω̂
(s)>
1,l

{
s−1∑
j=1

njH
(j)
1 (β̂

(j)

2 − β̂
(s−1)
2 )−

s∑
j=1

njOl
(j)
1 (β̂

(j)

2 ) + nsOl
(s)
1 (β̂

(s)

1 )

+ nsH
(s)
1 (β̂

(s)

2 − β̂
(s)

1 )

}
/Ns,

(V I) =Ω>l

s∑
j=1

njOl
(j)
1 (β∗)/Ns.

According to the proof of Theorem 5 in the Appendix A, we have shown that (I)-(IV) are

op(N
−1/2
s ), and (VI) multiply by N

−1/2
s converges weakly to a normal distribution under

some mild conditions. In addition, the order of (V) may be larger than N
−1/2
s . The

decomposition of β̂one1,l − β∗l implies that we need to minus (V) from (9) to acquire a new
estimator of β∗l which converges weakly to a normal distribution. As a result, we propose
the following estimator for β∗l :

β̂
d(s)
1,l =β̂one1,l + Ω̂

(s)>
1,l

{ s−1∑
j=1

njH
(j)
1 (β̂

(j)

2 − β̂
(s−1)
2 )−

s∑
j=1

njOl
(j)
1 (β̂

(j)

2 )

+ nsOl
(s)
1 (β̂

(s)

1 ) + nsH
(s)
1 (β̂

(s)

2 − β̂
(s)

1 )

}
/Ns

=β̂
(s)
1,l + Ω̂

(s)>
1,l


s∑
j=1

njH
(j)
1 (β̂

(j)

2 − β̂
(s)

1 )−
s∑
j=1

njOl
(j)
1 (β̂

(j)

2 )

 /Ns. (10)

Similarly, we propose the following estimator for β∗l based on β̂
(s)

2 :

β̂
d(s)
2,l = β̂

(s)
2,l + Ω̂

(s)>
2,l


s∑
j=1

njH
(j)
2 (β̂

(j)

1 − β̂
(s)

2 )−
s∑
j=1

njOl
(j)
2 (β̂

(j)

1 )

 /Ns, (11)

12
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where β̂
(s)
2,l is the lth element of β̂

(s)

2 , and Ω̂
(s)
2,l is the lth column of Ω̂

(s)
2 . Subsequently, we

propose an averaged estimator to avoid efficiency loss due to sample splitting:

β̂
da(s)
l =

β̂
d(s)
1,l + β̂

d(s)
2,l

2
.

For a matrix M ∈ Rp0×p1 , let

‖M‖1 =

p0∑
j1=1

p1∑
j2=1

|Mj1,j2 |, and ‖M‖∞,∞ = max
1≤j2≤p1

p0∑
j1=1

|Mj1,j2 |,

where Mj1,j2 is the (j1, j2)th element of M . To derive upper bounds for ‖Ω − Ω̂
(s)
1 ‖∞,∞

and ‖Ω− Ω̂
(s)
2 ‖∞,∞ easily, we use the method of Cai et al. (2011) to obtain Ω̂

(s)
1 and Ω̂

(s)
2 .

For simplicity, we only present the construction of Ω̂
(s)
1 . Note that Ω̂

(s)
2 can be obtained

via a similar way based on
∑s

j=1 njH
(j)
1 with the corresponding tuning parameter κs. Let

Ω̂ be the solution of the following optimization problem:

min ‖Ω̃‖1 subject to

∥∥∥∥∥∥
s∑
j=1

njH
(j)
1 Ω̃/Ns − Ip

∥∥∥∥∥∥
∞

≤ hs, (12)

where hs is a tuning parameter and Ip is a unit matrix of size p. Note that the solution of

(12) is not symmetric in general. The final estimator Ω̂
(s)
1 is obtained by symmetrizing Ω̂

as follows:

Ω̂
(s)
1,j1,j2

= Ω̂
(s)
1,j2,j1

= Ω̂j1,j2I(|Ω̂j1,j2 | ≤ |Ω̂j2,j1 |) + Ω̂j2,j1I(|Ω̂j2,j1 | < |Ω̂j1,j2 |),

where Ω̂
(s)
1,j1,j2

, and Ω̂j1,j2 are the (j1, j2)th elements of Ω̂
(s)
1 and Ω̂, respectively, and Ω̂

(s)
1,j2,j1

,

and Ω̂j2,j1 are the (j2, j1)th elements of Ω̂
(s)
1 , and Ω̂, respectively. Both (10) and (11) imply

that {
∑s−1

j=1 njH
(j)
1 β̂

(j)

2 −
∑s−1

j=1 njOl
(j)
1 (β̂

(j)

2 )} and {
∑s−1

j=1 njH
(j)
2 β̂

(j)

1 −
∑s−1

j=1 njOl
(j)
2 (β̂

(j)

1 )}
should be stored as historical summary statistics at the (s− 1)th step to acquire β̂

d(s)
1,l and

β̂
d(s)
2,l . In addition, we should also store Ts, which is defined as

Ts =
1

Ns

{
s∑
j=1

nj/2∑
i=1

g
β̂
(j)
2

(Y
(j)
i ,X

(j)
i )g>

β̂
(j)
2

(Y
(j)
i ,X

(j)
i )

+

s∑
j=1

nj∑
i=nj/2+1

g
β̂
(j)
1

(Y
(j)
i ,X

(j)
i )g>

β̂
(j)
1

(Y
(j)
i ,X

(j)
i )

}

to estimate the asymptotic variance of
√
Ns(β̂

da(s)
l −β∗l ). DenoteQ

(s−1)
1 =

∑s−1
j=1 njH

(j)
1 β̂

(j)

2 −∑s−1
j=1 njOl

(j)
1 (β̂

(j)

2 ) and Q
(s−1)
2 =

∑s−1
j=1 njH

(j)
2 β̂

(j)

1 −
∑s−1

j=1 njOl
(j)
2 (β̂

(j)

1 ). The proposed de-
biasing procedure is presented in the following Algorithm 2.

Let σ2l = Ω>l E(ZZ>)Ωl. Additional conditions are needed to prove Theorem 5.

13
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Algorithm 2 Online pointwise inference for the SIMs.

Input: Streaming data sets D1 . . .Ds . . .;
1. Calculate the offline lasso penalized estimators β̂

(1)
1 , β̂

(1)
2 via (2) and (3) based on

D1;

2. Update n1H
(1)
1 , n1H

(1)
2 , Q

(1)
1 , Q

(1)
2 and T1;

3. for s = 2, 3, . . . , do
(i). Read the current data set Ds;
(ii). Update online lasso penalized estimators β̂

(s)
1 and β̂

(s)
2 via Algorithm 1;

(iii). Update and store the summary statistics {
∑s

j=1 njH
(j)
1 ,
∑s

j=1 njH
(j)
2 , Q

(s)
1 , Q

(s)
2 ,

Ts};
(iv). Calculate Ω̂

(s)
1 and Ω̂

(s)
2 by using (12);

(v). Update the online debiasing estimators β̂
d(s)
1,l and β̂

d(s)
2,l via (10) and (11);

(vi). Compute β̂
da(s)

l = {β̂da(s)1,l + β̂
da(s)

2,l }/2 and σ̂2l,s by (13);
(vii). Release data set Ds from the memory;
end for

Output: β̂
da(s)

l and σ̂2l,s for s = 1, 2, . . .

(D1) For any 1 ≤ l ≤ p,

σ2l ≥ G1,

where G1 is a positive constant.
(D2) There exists a positive number v(p) depending on p, and a positive constant ω which

belongs to [0, 1) such that for any 1 ≤ s ≤ m,

max{‖Ω̂(s)
1 −Ω‖∞,∞, ‖Ω̂

(s)
2 −Ω‖∞,∞} = Op((g(s, s0)‖Ω‖4∞,∞ log p/Ns)

(1−ω)/2v(p)),

where g(s, s0) is a function of s and s0.
(D3) For any 1 ≤ s ≤ m,

‖Ω‖∞,∞

∥∥∥∥∥∥


s∑
j=1

njH
(j)
1 (β∗ − β̂(j)

2 ) +
s∑
j=1

njOl
(j)
1 (β̂

(j)

2 )−
s∑
j=1

njOl
(j)
1 (β∗)

 /N1/2
s

∥∥∥∥∥∥
∞

=op(1),

and

‖Ω‖∞,∞

∥∥∥∥∥∥


s∑
j=1

njH
(j)
2 (β∗ − β̂(j)

1 ) +
s∑
j=1

njOl
(j)
2 (β̂

(j)

1 )−
s∑
j=1

njOl
(j)
2 (β∗)

 /N1/2
s

∥∥∥∥∥∥
∞

=op(1).
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(D4) For any 1 ≤ s ≤ m,

{g(s, s0)}(1−ω)/2‖Ω‖2(1−ω)∞,∞ a2s−23 s0(log p)1−ω/2v(p)Nω/2−1/2
s = o(1),

‖Ω‖∞,∞a2s−23 d21N
α1/2−1/2
s s

√
log pM s

6 ≤ A1,

and

{g(s, s0)}(1−ω)/2‖Ω‖2(1−ω)∞,∞ sv(p)(log p)1−ω/2a2s−23 d21N
α1/2+ω/2−1
s M s

6 ≤ A1.

Condition (D1) assumes that the asymptotic variance of
√
Ns(β̂

da(s)
l − β∗l ) is bounded

away from zero. Condition (D2) provides an upper bound for max{‖Ω̂(s)
1 −Ω‖∞,∞, ‖Ω̂

(s)
2 −

Ω‖∞,∞}. When Ol(j)1 (β) is differentiable with respect to β for 1 ≤ j ≤ s, the expression

Ol(j)1 (β̂
(j)

2 ) + H
(j)
1 (β∗ − β̂(j)

2 ) is the first order Taylor expansion of Ol(j)1 (β∗) at β̂
(j)

2 . In
particular, we do not impose stronger exact `0 sparsity conditions on the population inverse
of the second-order derivative of the expected loss function, in contrast to the node-wise
lasso method in Han et al. (2021) and Luo et al. (2023). As a result, condition (D3)
presents an upper bound for the orders of the ‖ · ‖∞ norm between the difference of the

weighted summations of these Ol(j)1 (β∗) and that of the corresponding first order Taylor
expansions. Under the setting that s = 1 and p is fixed, this condition is equivalent to

‖β̂(1)

2 − β∗‖2 = op(N
−1/4
1 ), which is easily verified under some mild conditions. For the

high-dimensional setting with streaming data, it is challenging to obtain explicit orders of

these ‖β̂(j)

2 − β∗‖2 under this condition. However, we have shown that conditions (D2)
and (D3) are satisfied in Corollaries 8 and 12 for the Huber loss and the negative log-
likelihood associated with the logistic regression model, respectively. In addition, when
max{log{g(s, s0)}, log(‖Ω‖∞,∞), s, log s0, log log p, log{v(p)}} = o(log(Ns)), condition (D4)
is fulfilled. Conditions (D2)-(D4) can ensure that the first four terms on the right side of (9)

are op(N
−1/2
s ) by the proof of Theorem 5 in the Appendix A. As described in Subsection

2.2, the distinct data structures and statistical problems addressed in our work and by
Neykov et al. (2016) lead to a significant divergence in condition (D4) from the assumptions
regarding n, p, and s0 found in Propositions 2.2.1 and 2.2.3, and Theorem 2.3.4 of Neykov

et al. (2016). The following theorem demonstrates the asymptotic properties of
√
Ns(β̂

da(s)
l −

β∗l ).

Theorem 5 Under the conditions of Theorem 4, suppose that conditions (D1)-(D4) are

satisfied. Then for any 1 ≤ s ≤ m and 1 ≤ l ≤ p, we have that σ−1l
√
Ns(β̂

da(s)
l − β∗l )

converges to a standard normal random variable in distribution as p→∞.

The asymptotic variance of
√
Ns(β̂

da(s)
l − β∗l ) can be estimated by

σ̂2l,s =(Ω̂
(s)
1,l + Ω̂

(s)
2,l )
>Ts(Ω̂

(s)
2,l + Ω̂

(s)
2,l )/4. (13)

Then for any given significant level α ∈ (0, 1), a (1− α) confidence interval for β∗l is

[β̂
da(s)
l −N−1/2s σ̂l,szα/2, β̂

da(s)
l +N−1/2s σ̂l,szα/2],

where zα/2 is the upper α/2-quantile of the standard normal distribution.
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3. Examples

In this section, we provide two concrete examples to illustrate the proposed method.

3.1 Huber Loss

Actually, we often encounter data subject to heavily-tailed errors in finance and economics
(Fan et al., 2017, 2021). The Huber loss as an important way of robustification has been
well studied recently (Fan et al., 2017; Sun et al., 2020; Loh, 2021; Wang et al., 2021). The
Huber loss function is defined as follows:

l(Y,X>β) = ρτ (Y −X>β),

where

ρτ (x) =
x2

2
I(|x| ≤ τ) + (τ |x| − τ2

2
)I(|x| > τ),

for some constant τ > 0. We can observe that the Huber loss is robust to the heavy-
tailed observation noise due to the fact that the linear part of the Huber loss penalizes
the residuals. Let β∗τ = argminβ∈RpE{ρτ (Y −X>β)}, and ετ = Y −X>β∗τ . If ετ is a
continuous random variable, then we have

Hτ =
∂2

∂β∂β>
E{ρτ (Y −X>β)}|β=β∗τ = E{XX>I(|ετ | ≤ τ)},

H
(s)
1 =

2

ns

ns/2∑
i=1

X
(s)
i X

(s)>
i I(|Y (s)

i −X(s)>
i β̂

(s)

2 | ≤ τ),

and

H
(s)
2 =

2

ns

ns∑
i=ns/2+1

X
(s)
i X

(s)>
i I(|Y (s)

i −X(s)>
i β̂

(s)

1 | ≤ τ), s = 1, · · · ,m.

We can obtain the estimators β̂
(s)

1 , β̂
(s)

2 and β̂
(s)

ave by using the estimation procedure in
Algorithm 1, for s = 1, · · · ,m.

The following conditions are needed to establish the consistency of β̂
(s)

1 , β̂
(s)

2 and β̂
(s)

ave.

(E1) There exists a positive constant e1 such that for any τ > e1, E{XX>I(|Y −X>β| ≤
τ)} > 0 for any β ∈ Rp, and 0 is not the minimizer of the function β → E{ρτ (Y −
X>β)}.

(E2) There exists a positive constant B1 such that ‖X‖ψ2 ≤ B1.
(E3) There exist two positive constants B2 and B3 such that for any τ > e1,

E|ετ | ≤ B2, andB3 ≤ inf
‖∆‖2=1

‖H1/2
τ ∆‖22 ≤ sup

‖∆‖2=1
‖H1/2

τ ∆‖22 ≤ B2.

(E4) There exist two positive constants B4 and 0 < α2 < 1 such that for any 2 ≤ s ≤ m,

log p

ns
≤ B4 or log p/ns > (log p)α2 .
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(E5) For any given τ > e1, there exists a positive constant Lτ depending on τ such that
sup
x∈R

fετ |X(x) ≤ Lτ almost surely, where fετ |X(·) is the conditional density function of

ετ given X.
(E6) 2ss0

√
log p/Ns = o(1) for 1 ≤ s ≤ m. There exists a positive number a′0 such that

m = o(min(pa
′
0 , pg1)), where g1 is a positive number depending on e1, B1, B2, B3 and

B4.

The assumption E{XX>I(|Y −X>β| ≤ τ)} > 0 for any β ∈ Rp in condition (E1)
suggests that E{ρτ (Y −X>β)} is a strictly convex function of β. Both this assumption and
0 is not the minimizer E{ρτ (Y −X>β)} imply that condition (C2) is satisfied. Condition
(E2) implies condition (C3). Conditions (E2)-(E4) suggest condition (C6). Conditions
(E2)-(E5) lead to condition (C7). According to Lemma 14 and the proof of Corollary 6 in
the Appendix B, we can obtain Ps(n1, . . . , ns, p) = 4sp−a

′
0 −

∑s
j=1{exp(−g4nj − g1 log p) +

2ep−a
′
0Nj/nj} and P (ns, p) = exp(−g4ns − g1 log p). This implies that condition (C8) is

satisfied under condition (E6). Condition (E4) indicates that p can be arbitrary large as
log p/ns > (log p)α2 satisfies, which seems contrary to common sense of high-dimensional
analysis. However, to derive the subsequent Corollary 6, condition (C4) (i.e., s30 log p =
o(nα1

1 )) is also required. When considered in conjunction, these two assumptions become
coherent. The data structure in this work is notably more complex compared to that in
Han et al. (2022). Consequently, the assumptions for ns(Ns), p, s and s0 (i.e., conditions
(C4), (E4) and (E6)) in our analysis are more complicated than the single condition (C4)
presented in Han et al. (2022).

The following Corollary 6 provides the `1 and `2 bounds for β̂
(s)

1 , β̂
(s)

2 and β̂
(s)

ave with
sub-Gaussion predictor scenario.

Corollary 6 Suppose that conditions (C1), (C4) and (E1)-(E6) hold. For any 1 ≤ s ≤
m, assume λs = c′1s

√
log p/Ns and γs = c′2s

√
log p/Ns, where c′1s and c′2s could be any

constants which belong to [2τB1

√
2(a′0 + 1)/a1, a

′
2], and a′2 could be any constant no less

than 2τB1

√
2(a′0 + 1)/a1. If τ ≥ g2 and

max
1≤s≤m−1

d′21 a
′2s−2
3 Nα1/2−1/2

s sM s
τ ≤ A′1,

where

a′3 = max{(2B2 + 3a′2/2)/min{B3/3, g3/2}, 8 + 2B2/{τB1

√
2(a′0 + 1)/a1}},

Mτ = [max{
√

32B4
1(a′0 + 2)/a′4, 8B

2
1(a′0 + 2)/a′4}+ 4

√
2LτB

3
1 + 1]a′3d

′
1,

A′1 could be any constant, d′1 = max{3a′2/g3, 4}, a′4 is a positive constant not depending on
any parameter, and g2 and g3 are two positive constants depending on e1, B1, B2, B3 and
B4. Then for any 1 ≤ s ≤ m, we have that with probability at least 1 − 4(s − 1)p−a

′
0 −
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∑s
j=1{exp(−g4nj − g1 log p) + 2ep−a

′
0Nj/nj},

||β̂(s)

1 − β∗τ ||2 ≤ d′s

√
s0 log p

Ns
, ||β̂(s)

1 − β∗τ ||1 ≤ d′2s s0
√

log p

Ns
,

||β̂(s)

2 − β∗τ ||2 ≤ d′s

√
s0 log p

Ns
, ||β̂(s)

2 − β∗τ ||1 ≤ d′2s s0
√

log p

Ns
,

||β̂(s)

ave − β∗τ ||2 ≤ d′s

√
s0 log p

Ns
, and ||β̂(s)

ave − β∗τ ||1 ≤ d′2s s0
√

log p

Ns
,

where g4 is a positive constant depending on e1, B1, B2, B3 and B4 and d′s = d′1a
′s−1
3 .

Based on the condition max1≤s≤m−1 d
′2
1 a
′2s−2
3 N

α1/2−1/2
s sM s

τ ≤ A′1 and Corollary 6, we

can obtain that the `1 and `2 norms of the difference between the estimators β̂
(s)

1 , β̂
(s)

2 , and

β̂
(s)

ave and β∗τ are of orders

√
s20 log p/(M s

τ sN
α1/2+1/2
s ) and

√
s0 log p/(M

s/2
τ
√
sN

α1/4+3/4
s ),

respectively. When X follows a Gaussian distribution, we can simplify the assumptions
and obtain a similar result. The following conditions are required.

(E7) X follows a Gaussian distribution and sup
‖∆‖2=1

‖Σ1/2∆‖22 ≤ B5.

(E8) There exist two positive constants B2 and B3 such that for any τ > e1,

E|ετ | ≤ B2, and inf
‖∆‖2=1

‖H1/2
τ ∆‖22 ≥ B3.

(E9) 2ss0
√

log p/Ns = o(1) for 1 ≤ s ≤ m. There exists a positive number a′0 such that
m = o(min(pa

′
0 , pg5)), where g5 is a positive number depending on e1, B2, B3, B4 and

B5.

Under condition (E7), we have sup
‖∆‖2=1

‖H1/2
τ ∆‖22 ≤ B5 and ‖X‖ψ2 ≤ B6 by the proof

of Corollaries 7, 9, 11 and 13 in the Appendix B, where B6 is a positive number depending
on B5. As a result, conditions (E7) and (E8) imply conditions (E2) and (E3). Condition
(E9), which is similar to condition (E6), leads to condition (C8). In particular, when the
predictors X follows the Gaussian distribution, the next Corollary 7 develops the `1 and `2

bounds for β̂
(s)

1 , β̂
(s)

2 and β̂
(s)

ave.

Corollary 7 Suppose that conditions (C1), (C4), (E1), (E4), (E5), and (E7)-(E9) hold.
For any 1 ≤ s ≤ m, assume λs = c′3s

√
log p/Ns and γs = c′4s

√
log p/Ns, where c′3s and

c′4s could be any constants which belong to [2τB6

√
2(a′0 + 1)/a1, a

′
5], and a′5 could be any

constant no less than 2τB6

√
2(a′0 + 1)/a1. If τ ≥ g6 and

max
1≤s≤m−1

d̃21a
′2s−2
6 Nα1/2−1/2

s sM ′sτ ≤ A′1,

where

a′6 = max{(2B5 + 3a′5/2)/min{B3/3, g7/2}, 8 + 2B2/{τB6

√
2(a′0 + 1)/a1}},

M ′τ = [max{
√

32B4
6(a′0 + 2)/a′4, 8B

2
6(a′0 + 2)/a′4}+ 4

√
2LτB

3
6 + 1]a′6d̃1,
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A′1 could be any constant, d̃1 = max{3a′5/g7, 4}, and g6 and g7 are two positive constants
depending on e1, B2, B3, B4 and B5. Then for any 1 ≤ s ≤ m, we have that with probability
at least 1− 4(s− 1)p−a

′
0 −

∑s
j=1{exp(−g8nj − g5 log p) + 2ep−a

′
0Nj/nj},

||β̂(s)

1 − β∗τ ||2 ≤ d̃s
√
s0 log p

Ns
, ||β̂(s)

1 − β∗τ ||1 ≤ d̃2ss0
√

log p

Ns
,

||β̂(s)

2 − β∗τ ||2 ≤ d̃s
√
s0 log p

Ns
, ||β̂(s)

2 − β∗τ ||1 ≤ d̃2ss0
√

log p

Ns
,

||β̂(s)

ave − β∗τ ||2 ≤ d̃s
√
s0 log p

Ns
, and ||β̂(s)

ave − β∗τ ||1 ≤ d̃2ss0
√

log p

Ns
,

where g8 is a positive constant depending on e1, B2, B3, B4 and B5 and d̃s = d̃1a
′s−1
6 .

The following conditions are required for the asymptotic normality of β̂
da(s)
l in the case

of sub-Gaussian predictor.

(E10) There exist a constant G′1 such that for any τ ≥ e1 and 1 ≤ l ≤ p,

σ2τ,l ≥ G′1.

(E11) For any τ ≥ e1,

max
1≤j≤p

p∑
k=1

|Ωτ,k,j |ω ≤ v(p),

where Ωτ,k,j is the (k, j)th element of Ωτ .
(E12) For any τ ≥ e1 and 1 ≤ s ≤ m,

{s2M2s
τ s0}(1−ω)/2‖Ωτ‖2(1−ω)∞,∞ a′2s−23 s0(log p)1−ω/2v(p)Nω/2−1/2

s = o(1),

‖Ωτ‖∞,∞a′2s−23 d′21 N
α1/2−1/2
s s

√
log pM s

τ ≤ A′1,

‖Ωτ‖∞,∞a′s−13 s
1/2
0 N−1/2s log p = o(1),

{s2M2s
τ s0}(1−ω)/2‖Ωτ‖2(1−ω)∞,∞ sv(p)(log p)1−ω/2a′2s−23 d′21 N

α1/2+ω/2−1
s M s

τ ≤ A′1,
and

‖Ωτ‖∞,∞a′2s−23 d′21 sN
α1−1/2
s ≤ A′1.

Condition (E10) implies condition (D1). Condition (E11) is analogous to the uniformity
class of matrices assumption in Cai et al. (2011). This condition is for deriving the upper

bound of max{‖Ω̂(s)
1 −Ωτ‖∞,∞, ‖Ω̂

(s)
2 −Ωτ‖∞,∞}. When Hτ =

(
ρ−|k1−k2|

)
1≤k1,k2≤p, then

v(p) = O(1), where ρ could be any constant which belongs to (0, 1). Condition (E12) leads to
conditions (D3) and (D4). In condition (E12), g(s, s0) = s2M2s

τ s0. Moreover, this condition
is satisfied when max{s, log s0, log(‖Ωτ‖∞,∞), log log p, log{v(p)}} = o(log(Ns)). Given the
more complex data structure in this study compared to that in Han et al. (2023), condition
(E12) in our work is inherently more intricate than the second assumption in condition
(C8) of Han et al. (2023). The following corollary provides the asymptotic distribution of√
Ns(β̂

da(s)
l − β∗τ,l) with the sub-Gaussian predictor scenario, where β∗τ,l is the lth element

of β∗τ .
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Corollary 8 Under the same conditions of Corollary 6, suppose in addition that conditions

(E10)-(E12) are satisfied and for any 1 ≤ s ≤ m, hs = c′5ssM
s
τ s

1/2
0 ‖Ωτ‖∞,∞

√
log p/Ns and

κs = c′6ssM
s
τ s

1/2
0 ‖Ωτ‖∞,∞

√
log p/Ns, where c′5s and c′6s could be any constants no less than

1. Then for any 1 ≤ s ≤ m and 1 ≤ l ≤ p, we have σ−1τ,l
√
Ns(β̂

da(s)
l − β∗τ,l) converges to a

standard normal random variable in distribution as p→∞.

By replacing the positive numbers Mτ , a′3 and d′1 with M ′τ , a′6 and d̃1 in condition

(E12), we get the following condition (E13) for the asymptotic normality of β̂
da(s)
l under

the Gaussian predictor case.

(E13) For any τ ≥ e1 and 1 ≤ s ≤ m,

{s2M ′2sτ s0}(1−ω)/2‖Ωτ‖2(1−ω)∞,∞ a′2s−26 s0(log p)1−ω/2v(p)Nω/2−1/2
s = o(1),

‖Ωτ‖∞,∞a′2s−26 d̃21N
α1/2−1/2
s s

√
log pM ′sτ ≤ A′1,

‖Ωτ‖∞,∞a′s−16 s
1/2
0 N−1/2s log p = o(1),

{s2M ′2sτ s0}(1−ω)/2‖Ωτ‖2(1−ω)∞,∞ sv(p)(log p)1−ω/2a′2s−26 d̃21N
α1/2+ω/2−1
s M ′sτ ≤ A′1,

and

‖Ωτ‖∞,∞a′2s−26 d̃21sN
α1−1/2
s ≤ A′1.

Under the Gaussian predictor scenario, we also establish the corresponding asymptotic

distribution of
√
Ns(β̂

da(s)
l − β∗τ,l) in the next corollary.

Corollary 9 Under the same conditions of Corollary 7, suppose in addition that conditions

(E10), (E11) and (E13) hold and for any 1 ≤ s ≤ m, hs = c′7ssM
′s
τ s

1/2
0 ‖Ωτ‖∞,∞

√
log p/Ns

and κs = c′8ssM
′s
τ s

1/2
0 ‖Ωτ‖∞,∞

√
log p/Ns, where c′7s and c′8s could be any constants no less

than 1. Then for any 1 ≤ s ≤ m and 1 ≤ l ≤ p, we have σ−1τ,l
√
Ns(β̂

da(s)
l − β∗τ,l) converges

to a standard normal random variable in distribution as p→∞.

3.2 Logistic Loss

If Y is a binary outcomes that takes only the value 0 or 1, the logistic regression model is
widely used in finance, business, computer science, and genetics (Hosmer Jr et al., 2013;
Sur and Candès, 2019; Ma et al., 2021). In this example, we consider the following negative
log-likelihood as the loss function:

l(Y,X>β) = log{1 + exp(X>β)} − YX>β.
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We then have

H =
∂2

∂β∂β>
E{l(Y −X>β)}|β=β∗ = E[XX>

exp(X>β)

{1 + exp(X>β)}2
],

H
(s)
1 =

2

ns

ns/2∑
i=1

X
(s)
i X

(s)>
i

exp(X
(s)>
i β̂

(s)

2 )

{1 + exp(X
(s)>
i β̂

(s)

2 )}2
,

and

H
(s)
2 =

2

ns

ns∑
i=ns/2+1

X
(s)
i X

(s)>
i

exp(X
(s)>
i β̂

(s)

1 )

{1 + exp(X
(s)>
i β̂

(s)

1 )}2
, s = 1, · · · ,m.

We first consider the sub-Gaussian predictor case. An additional condition is required for
Corollary 10.

(E14) 2ss0
√

log p/Ns = o(1) for 1 ≤ s ≤ m. There exists a positive number a′′0 such that
m = o(min(pa

′′
0 , pg

′
1)), where g′1 is a positive number depending on M2, B1 and B4.

Based on Lemma 15 and the proof of Corollary 10 below in the Appendix B, we
can obtain Ps(n1, . . . , ns, p) = 4sp−a

′′
0 +

∑s
j=1{exp(−g′3nj − g′1 log p) + 2ep−a

′′
0Nj/nj} and

P (ns, p) = exp(−g′3ns − g′1 log p). This indicates that condition (C8) is satisfied under con-
dition (E14). As outlined in Subsection 3.1, the data structure in this research is more
complicated than that in Negahban et al. (2010). As a result, the assumptions for ns(Ns),
p, s and s0 (i.e., conditions (C4),(E4), and (E14)) related to the following Corollary 10 in

the case of sub-Gaussian predictor. We then obtain that the consistency of β̂
(s)

1 , β̂
(s)

2 and

β̂
(s)

ave, is more complex than that in Corollary 5 of Negahban et al. (2010).

Corollary 10 Assume that conditions (C1), (C4), (C5), (E2), (E4) and (E14) are satis-
fied. For any 1 ≤ s ≤ m, assume λs = c′′1s

√
log p/Ns and γs = c′′2s

√
log p/Ns, where c′′1s

and c′′2s could be any constants which belong to [2B1

√
2(a′′0 + 1)/a1, a

′′
2], and a′′2 could be any

constant no less than 2B1

√
2(a′′0 + 1)/a1. Suppose in addition that

max
1≤s≤m−1

a′′2s−23 d′′21 N
α1/2−1/2
s sM̃ s ≤ A′′1,

where

a′′3 = max{(2M3 + 3a′′2/2)/min{M2/3, g
′
2/2}, 8 + 2M3/{B1

√
2(a′′0 + 1)/a1}},

M̃ = [max{
√

32B4
1(a′′0 + 2)/a′4, 8B

2
1(a′′0 + 2)/a′4}+ 4

√
2B3

1 + 1]a′′3d
′′
1,

A′′1 could be any constant, d′′1 = max{3a′′2/g′2, 4}, and g′2 is a positive constant depending
on M2, M3, B1, and B4. Then for any 1 ≤ s ≤ m, we have that with probability at least
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1− 4(s− 1)p−a
′′
0 −

∑s
j=1{exp(−g′3nj − g′1 log p) + 2ep−a

′′
0Nj/nj},

||β̂(s)

1 − β∗||2 ≤ d′′s

√
s0 log p

Ns
, ||β̂(s)

1 − β∗||1 ≤ d′′2s s0
√

log p

Ns
,

||β̂(s)

2 − β∗||2 ≤ d′′2s

√
s0 log p

Ns
, ||β̂(s)

2 − β∗||1 ≤ d′′2s s0
√

log p

Ns
,

||β̂(s)

ave − β∗τ ||2 ≤ d′′s

√
s0 log p

Ns
, and ||β̂(s)

ave − β∗||1 ≤ d′′2s s0
√

log p

Ns
,

where g′3 is a positive constant depending on M2, M3, B1 and B4, and d′′s = a′′s−13 d′′1, .

By applying the condition max1≤s≤m−1 a
′′2s−2
3 d′′21 N

α1/2−1/2
s sM̃ s ≤ A′′1 and Corollary 10,

we have that the `1 and `2 norms of the difference between the estimators in Corollary 10 and

β∗ are of orders

√
s20 log p/(M̃ ssN

α1/2+1/2
s ) and

√
s0 log p/(M̃ s/2

√
sN

α1/4+3/4
s ), respectively.

Under the Gaussian predictor case, since condition (E7) implies sup
‖∆‖2=1

‖H1/2∆‖22 ≤ B5 and

‖X‖ψ2 ≤ B6, we can replace conditions (C5) and (E2) with (E7) and the following (E15).

(E15) There exists a positive constant M2 such that

inf
‖∆‖2=1

‖H1/2∆‖22 ≥M2.

(E16) 2ss0
√

log p/Ns = o(1) for 1 ≤ s ≤ m. There exists a positive number a′0 such that
m = o(min(pa

′
0 , pg

′
4)), where g′4 is a positive number depending on M2, B4 and B5.

Condition (E16) is similar to condition (E14). The following Corollary 11 also establishes

the consistency of β̂
(s)

1 , β̂
(s)

2 and β̂
(s)

ave with Gaussian predictor scenario.

Corollary 11 Assume that conditions (C1), (C4), (E4), (E7), (E15) and (E16) are sat-
isfied. For any 1 ≤ s ≤ m, assume λs = c′′3s

√
log p/Ns and γs = c′′4s

√
log p/Ns, where c′′3s

and c′′4s could be any constants which belong to [2B6

√
2(a′′0 + 1)/a1, a

′′
4], and a′′4 could be any

constant no less than 2B6

√
2(a′′0 + 1)/a1. Suppose in addition that

max
1≤s≤m−1

a′′2s−25 d̃′′21 N
α1/2−1/2
s sM̃ ′s ≤ A′′1,

where

a′′5 = max{(2B5 + 3a′′4/2)/min{M2/3, g
′
5/2}, 8 + 2B5/{B6

√
2(a′′0 + 1)/a1}},

M̃ ′ = [max{
√

32B4
6(a′′0 + 2)/a′4, 8B

2
6(a′′0 + 2)/a′4}+ 4

√
2B3

6 + 1]a′′5 d̃
′′
1,

A′′1 could be any constant, d̃′′1 = max{3a′′4/g′5, 4}, and g′5 is a positive constant depending
on M2, B4, and B5. Then for any 1 ≤ s ≤ m, we have that with probability at least
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1− 4(s− 1)p−a
′′
0 −

∑s
j=1{exp(−g′6nj − g′4 log p) + 2ep−a

′′
0Nj/nj},

||β̂(s)

1 − β∗||2 ≤ d̃′′s

√
s0 log p

Ns
, ||β̂(s)

1 − β∗||1 ≤ d̃′′2s s0
√

log p

Ns
,

||β̂(s)

2 − β∗||2 ≤ d̃′′2s

√
s0 log p

Ns
, ||β̂(s)

2 − β∗||1 ≤ d̃′′2s s0
√

log p

Ns
,

||β̂(s)

ave − β∗τ ||2 ≤ d̃′′s

√
s0 log p

Ns
, and ||β̂(s)

ave − β∗||1 ≤ d̃′′2s s0
√

log p

Ns
,

where g′6 is a positive constant depending on M2, B4, and B5, and d̃′′s = a′′s−15 d̃′′1.

Two additional conditions are needed to prove the asymptotic normality of β̂
da(s)
l in the

case of sub-Gaussian predictor.

(E17) max1≤j≤p
∑p

k=1 |Ωk,j |ω ≤ v(p).
(E18) For any 1 ≤ s ≤ m,

{s2M̃2ss0}(1−ω)/2‖Ω‖2(1−ω)∞,∞ a′′2s−23 s0(log p)1−ω/2v(p)Nω/2−1/2
s = o(1),

‖Ω‖∞,∞a′′2s−23 d′′21 N
α1/2−1/2
s s

√
log pM̃ s ≤ A′′1,

‖Ω‖∞,∞a′′s−13 s
1/2
0 N−1/2s log p = o(1),

{s2M̃2ss0}(1−ω)/2‖Ω‖2(1−ω)∞,∞ sv(p)(log p)1−ω/2a′′2s−23 d′′21 N
α1/2+ω/2−1
s M̃ s ≤ A′′1,

and

‖Ω‖∞,∞a′′2s−23 d′′21 sN
α1−1/2
s ≤ A′′1.

Conditions (E17) and (E18) are similar to conditions (E11) and (E12). In the case
of H =

(
ρ−|k1−k2|

)
1≤k1,k2≤p, v(p) = O(1), where ρ could be any constant which belongs

to (0, 1). Furthermore, in condition (E18), g(s, s0) = s2M̃2ss0. This condition is met
if max{s, log s0, log(‖Ω‖∞,∞), log log p, log{v(p)}} = o(log(Ns)). Additionally, due to the
complex data structure in our study, condition (E18) presents more intricacies compared to
condition (C8) in van de Geer et al. (2014). The following corollary 12 demonstrates the

asymptotic properties of
√
Ns(β̂

da(s)
l − β∗l ) with sub-Gaussian predictor scenario.

Corollary 12 Under the conditions of Corollary 10, suppose that conditions (D1), (E17)

and (E18) are satisfied and for any 1 ≤ s ≤ m, hs = c′′5ssM̃
ss

1/2
0 ‖Ω‖∞,∞

√
log p/Ns and

κs = c′′6ssM̃
ss

1/2
0 ‖Ω‖∞,∞

√
log p/Ns, where c′′5s and c′′6s could be any constants no less than

1. Then for any 1 ≤ s ≤ m and 1 ≤ l ≤ p, we have that σ−1l
√
Ns(β̂

da(s)
l − β∗l ) converges to

a standard normal random variable in distribution as p→∞.

By replacing M̃ , a′′3 and d′′1 with M̃ ′, a′′5 and d̃′′1 in condition (E18), we obtain the following

condition (E19) for the asymptotic normality of β̂
da(s)
l in the case of Gaussian predictor.
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(E19) For any 1 ≤ s ≤ m,

{s2M̃ ′2ss0}(1−ω)/2‖Ω‖2(1−ω)∞,∞ a′′2s−25 s0(log p)1−ω/2v(p)Nω/2−1/2
s = o(1),

‖Ω‖∞,∞a′′2s−25 d̃′′21 N
α1/2−1/2
s s

√
log pM̃ ′s ≤ A′′1,

‖Ω‖∞,∞a′′s−15 s
1/2
0 N−1/2s log p = o(1),

{s2M̃ ′2ss0}(1−ω)/2‖Ω‖2(1−ω)∞,∞ sv(p)(log p)1−ω/2a′′2s−25 d̃′′21 N
α1/2+ω/2−1
s M̃ ′s ≤ A′′1,

and

‖Ω‖∞,∞a′′2s−25 d̃′′21 sN
α1−1/2
s ≤ A′′1.

Similarly, the following corollary 13 also provides the asymptotic properties of
√
Ns(β̂

da(s)
l −

β∗l ) with Gaussian predictor scenario.

Corollary 13 Under the conditions of Corollary 11, suppose that conditions (D1), (E17)

and (E19) are satisfied and for any 1 ≤ s ≤ m, hs = c′′7ssM̃
′ss

1/2
0 ‖Ω‖∞,∞

√
log p/Ns and

κs = c′′8ssM̃
′ss

1/2
0 ‖Ω‖∞,∞

√
log p/Ns, where c′′7s and c′′8s could be any constants no less than

1. Then for any 1 ≤ s ≤ m and 1 ≤ l ≤ p, we have that σ−1l
√
Ns(β̂

da(s)
l − β∗l ) converges to

a standard normal random variable in distribution as p→∞.

4. Simulation Studies

In this section, we conduct extensive simulation studies to examine the finite-sample per-
formance of the proposed online lasso and debiasing procedures.

4.1 Evaluation of the Online Consistent Estimation

In this subsection, we first investigate the performance of the proposed online lasso method
and randomly generate a total of Nm samples that arrive in a sequence of m data batches,
denoted by {D1, . . . ,Dm}, from the following two examples with the continuous and discrete
outcome described in Section 3:
Model 1: Y

(j)
i = 3X

(j)>
i β0 + 10 sin(X

(j)>
i β0) + ε

(j)
i , i = 1, . . . , nj , j = 1, . . . ,m,

where X
(j)
i is generated from a multivariate normal distribution N (0,Σ) with covariance

matrix Σ =
(
2−|k1−k2|

)
1≤k1,k2≤p, and the true parameter β0 = β̃/‖Σ1/2β̃‖2 with

β̃l =

{
s0 + 1− l, for 1 ≤ l ≤ s0,
0, for s0 + 1 ≤ l ≤ p.

The random error ε
(j)
i is generated from four types of distributions: (i) standard normal

distribution, denoted asN (0, 1); (ii) log-normal distribution with the log location parameter
0 and log shape parameter 1, denoted as LN(0, 1); (iii) Student’s t-distribution with 3
degrees of freedom, denoted as t(3); (iv) Weibull distribution with shape parameter 0.5 and
scale parameter 0.5, denoted as Weibull(0.5; 0.5).

Model 2: Pr(Y
(j)
i |X(j)

i ) =
exp{X(j)>

i β0+sin(X
(j)>
i )β0}

1+exp{X(j)>
i β0+sin(X

(j)>
i β0)}

, i = 1, . . . , nj , j = 1, . . . ,m,

where X
(j)
i is generated from a multivariate normal distribution N (0,Σ) with the same

24



Inference on High-dimensional Single-index Models with Streaming Data

true parameter β0 as in Model 1. For the design matrix, we consider two scenarios: (i)
Σ is Toeplitz with Σk1,k2 = 0.5|k1−k2|; (ii) Σ = I. For each type of models, we con-
sider the following combinations of (Nm,m, nj , p, s0), j = 1, . . . ,m: (i) (Nm,m, nj , p, s0) =
(1600, 16, 100, 200, 5); (ii) (Nm,m, nj , p, s0) = (3200, 16, 200, 400, 10).

For comparison, we also consider the following methods: (i) the proposed online lasso
estimator at several intermediate points for s = 1, . . . ,m, denoted by “online”; (ii) the
offline lasso estimator at the terminal time point m, denoted by “offline”; (iii) the offline
lasso estimator with final data batch Dm, denoted by “final”. To measure the estimation
accuracy, we calculate the sine distance between the estimator β̂τ and true parameter β0
defined as follows:

sin θ
(
β̂τ , β0

)
= 1− < β̂τ , β0 >

‖β̂τ‖2 ‖β0‖2
,

where < a, b > is the inner product of vectors a and b. Here, we report the sine distance
instead of ‖β̂τ − cτβ0‖2 for all simulation configurations. As cτ may take different values
under different models and different settings, the sine distance is free of cτ .

The tuning parameters λs and γs, s = 1, . . . ,m, are chosen by the modified BIC (Wang
et al., 2007). For example, we obtain λs by minimizing

BIC(λs) = log

[
(β̂(λs)− β̂

(s−1)
2 )>

s−1∑
j=1

nj
2Ns

H
(j)
1 (β̂(λs)− β̂

(s−1)
2 )

+
2

Ns

ns/2∑
i=1

l(Y
(s)
i ,X

(s)>
i β̂(λs))

]
+ CNs

log(Ns/2)

Ns/2

∥∥β̂(λs)
∥∥
0
,

where β̂(λs) is obtained from (5), CNs = c log log(p), c is a constant, and ‖ · ‖0 denotes
the number of nonzero elements in a vector. Furthermore, we choose the robustification
parameter τ in the Huber loss such that 80% of the prediction errors are in [−τ, τ ].

Table 1 summarizes the results for Models 1 and 2 averaged over 200 replications. We
can see that, as the number of data batches s increases, i.e. the sample size grows, the sine
distance associated with the proposed online lasso estimator decreases rapidly. To illustrate
this, for the continuous response in Model 1 with (Nm,m, nj , p, s0) = (1600, 16, 100, 200, 5)
and the random error following the standard normal distribution N(0, 1), the sine distance
drops from 0.031 to 0.002 as the batch index s increases from 4 to 16. The analogous results
are observed for the binary response in Model 2. As expected, these findings validate the
estimation consistency of our proposed online lasso method. Meanwhile, the sine distance of
the proposed online estimator closely matches that of the offline benchmark, which uses the
full data set. This suggests that the proposed online method effectively captures key infor-
mation despite relying primarily on summary statistics from historical batches. Moreover,
the performance of the proposed online method employing the Huber loss is comparable to
that using the least squares (LS) loss with continuous responses across various types of error
term. In particular, when the error terms follow heavy-tailed distributions, the Huber loss
is proved to be considerably more robust and is thus preferred. In comparison to the lasso
estimator, which utilizes only the data from the final batch without retaining information
from earlier batches, our proposed method achieves a significantly reduced sine distance.
This reduction underscores the superior effectiveness of the proposed online approach. More
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generally, the proposed method consistently demonstrates a notably low sine distance across
all scenarios, affirming its strong and reliable performance.

Table 1: The sine distance under different settings in Section 4.1 are summarized.

online offline final

Model Batch index s 4 8 12 16

(Nm,m, nj , p, s0) = (1600, 16, 100, 200, 5)

N (0,1) 0.031 0.010 0.004 0.002 0.002 0.025

Model 1 LN(0,1) 0.056 0.020 0.008 0.004 0.004 0.044

Huber t(3) 0.045 0.015 0.006 0.003 0.003 0.037

Weibull(0.5,0.5) 0.057 0.021 0.008 0.004 0.004 0.042

N (0,1) 0.030 0.013 0.006 0.004 0.004 0.041

Model 1 LN(0,1) 0.057 0.026 0.013 0.007 0.008 0.071

LS t(3) 0.048 0.022 0.011 0.006 0.008 0.060

Weibull(0.5,0.5) 0.062 0.029 0.014 0.008 0.009 0.074

(Nm,m, nj , p, s0) = (3200, 16, 200, 400, 10)

N (0,1) 0.036 0.012 0.005 0.003 0.003 0.029

Model 1 LN(0,1) 0.064 0.023 0.009 0.004 0.005 0.051

Huber t(3) 0.048 0.016 0.006 0.003 0.004 0.040

Weibull(0.5,0.5) 0.073 0.026 0.009 0.005 0.006 0.057

N (0,1) 0.035 0.015 0.007 0.004 0.005 0.048

Model 1 LN(0,1) 0.066 0.030 0.015 0.009 0.010 0.081

LS t(3) 0.049 0.021 0.010 0.006 0.007 0.065

Weibull(0.5,0.5) 0.079 0.037 0.018 0.010 0.012 0.092

(Nm,m, nj , p, s0) = (1600, 16, 100, 200, 5)

Model 2 Σ = I 0.183 0.083 0.060 0.052 0.038 0.371

logistic Σ = (0.5|k1−k2|) 0.113 0.064 0.052 0.049 0.038 0.340

(Nm,m, nj , p, s0) = (3200, 16, 200, 400, 10)

Model 2 Σ = I 0.165 0.078 0.057 0.049 0.035 0.339

logistic Σ = (0.5|k1−k2|) 0.117 0.070 0.055 0.048 0.040 0.339

To gain deeper insights into how the upper bounds of the proposed estimator are af-
fected by the number of data batches m, in contrast to the traditional offline lasso estima-
tor, we conduct a series of simulation studies. These studies follow the same setting and
data-generating process as described in Model 1, but with different sample sizes. Specif-
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ically, we fix the full data sample size Nm = 2100 and vary different batch sizes, i.e.,
m = 21, 41, 51, 101, 201. The sample size for the first batch is set to n1 = 100 to en-
sure a sufficiently large initial sample, while the sample sizes for the remaining batches
are evenly distributed according to the total number of batches. Correspondingly, (i) Case
1: (Nm,m, n1, nj , p, s0) = (2100, 21, 100, 100, 200, 5); (ii) Case 2: (Nm,m, n1, nj , p, s0) =
(2100, 41, 100, 50, 200, 5); (iii) Case 3: (Nm,m, n1, nj , p, s0) = (2100, 51, 100, 40, 200, 5); (iv)
Case 4: (Nm,m, n1, nj , p, s0) = (2100, 101, 100, 20, 200, 5); (v) Case 5: (Nm,m, n1, nj , p, s0) =
(2100, 201, 100, 10, 200, 5).

Table 2: The sine distance (×10−1) under different settings in Section 4.1 for Model 1 with
Huber loss are summarized. Note that Q1, Q2, Q3 and Q4 represent the (1 +
m∗/4)th, (1 +m∗/2)th, (1 +m∗3/4)th (m∗ = m− 1) and mth batch, respectively.

online

Model cases (m− 1, nj) Q1 Q2 Q3 Q4

1 (20, 100) 0.247 0.061 0.024 0.012

2 (40, 50) 0.119 0.034 0.019 0.016

N (0,1) 3 (50, 40) 0.109 0.039 0.031 0.032

4 (100, 20) 0.130 0.094 0.100 0.118

5 (200, 10) 0.497 0.419 0.514 0.605

1 (20, 100) 0.452 0.116 0.043 0.020

2 (40, 50) 0.225 0.059 0.030 0.022

LN(0,1) 3 (50, 40) 0.185 0.051 0.035 0.032

4 (100, 20) 0.167 0.103 0.103 0.118

5 (200, 10) 0.513 0.428 0.520 0.610

The detailed simulation results for the sine distance across different quantile batches
over 200 replications are presented in Table 2. The following conclusions can be drawn: (1)
When the batch size is not large, with an increase in the number of data batches s, i.e.,
as the sample size grows, the sine distance linked to the proposed online lasso estimator
decreases, and consistency is achieved. For example, in Case 1 with normal errors, as s
increases from 6 to 21, and the sine distance decreases from 0.0247 to 0.0012. (2) For larger
batch sizes, the sine distance initially decreases as s increases but subsequently increases,
indicating that while consistency is achieved in the initial batches, it is not consistently
maintained in later batches. For instance, in Case 4 with normal errors, as s increases
from 26 to 51, the sine distance decreases from 0.0130 to 0.0094. However, as s increases
further from 76 to 101, the sine distance rises from 0.0100 to 0.0118. (3) When the full
sample size is held constant, increasing the number of data batches m leads to an increase
in the sine distance of the proposed online lasso estimator, suggesting that consistency is
not maintained when the batch size becomes too large. For example, with normal errors, as
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m increases from 21 to 201, the sine distance rises from 0.0012 to 0.0605. In summary, the
proposed online lasso estimators remain consistent as long as the number of data batches
m does not increase too rapidly.

4.2 Evaluation of the Online Pointwise Inference

In this subsection, we conduct simulations to check the performance of the online debiasing
estimator via the null hypothesis H0,l : β∗l = 0, l ∈ {1, . . . , p}, which is equivalent to the
null hypothesis H0,l : β0,l = 0. We consider two types of example under the same settings
as in Section 4.1 except for the different combinations of (Nm,m, nj , p, s0), j = 1, . . . ,m: (i)
(Nm,m, nj , p, s0) = (1600, 16, 100, 200, 5); (ii) (Nm,m, nj , p, s0) = (2400, 12, 200, 400, 10).

For comparison, we consider the following methods: (i) the proposed online debiasing
estimator at several intermediate points for s = 1, . . . ,m, denoted by “online-deb”; (ii) the
offline debiasing estimator at the terminal time point m, denoted by “offline-deb”; (iii) the
offline debiasing estimator with final data batch Dm, denoted by “final-deb”. To evaluate
the performance of different methods, we compute the following measurements:
(a) FPR: the average False Positive Rate corresponding to zero coefficients βl, s0+1 ≤ l ≤ p;
(b) TPR(l): the True Positive Rate corresponding to βl, 1 ≤ l ≤ s0.

The detailed calculations for the sth batch are given by

FPR =Average
{ 1

p− s0

p∑
l=s0+1

I
(√

Ns|β̂da(s)l |/σ̂l,s ≥ zα/2
)}
,

TPR(l) =Average
{
I
(√

Ns|β̂da(s)l |/σ̂l,s ≥ zα/2
)}
,

where “Average” represents the average rate over 200 replications.
The tuning parameters hs and κs, s = 1, · · · ,m, are determined as follows. Following Cai

et al. (2011), we can use the offline cross-validation scheme to select the tuning parameters
h1 and κ1 in (12) with only the first data batch D1. However, it is infeasible for streaming
data since we can not access the entire raw data at the same time. Motivated by Tashman
(2000) and Han et al. (2021), we adopt the following “rolling-original-recalibration” scheme
to select the tuning parameters hs, κs, s = 1, . . . ,m. Here, we just present the selection of
hs, the similar idea can be used for κs. For s ≥ 2, we regard the previous cumulative data

set {D1, . . . ,Ds−1} as the training set that trains the estimator Ω̂
(s−1)
1 (h) for a sequence

of h in a candidate set Sh while the current data batch Ds is the validation set. Thus,
when the data batch Ds arrives, we select hs by choosing the smallest likelihood loss on the
validation sample as follows:

hs = arg min
h∈Sh

(
tr
{

2H
(s)
1 Ω̂

(s−1)
1 (h)/ns

}
− log[det{Ω̂(s−1)

1 (h)}]
)
.

For Models 1 and 2 with (Nm,m, nj , p, s0) = (1600, 16, 100, 200, 5), Tables 3 and 4
present the FPRs and TPRs the proposed online pointwise tests at a significance level of
0.05 across 200 replications. Similarly, for (Nm,m, nj , p, s0) = (2400, 12, 200, 400, 10), Ta-
ble 6 presents the results for Model 2, while the results for Model 1 with Huber and least
squares (LS) losses are summarized in Tables 5 and 7, respectively. The results show that
the average FPRs for all zero coefficients consistently remain around 0.05, indicating that

28



Inference on High-dimensional Single-index Models with Streaming Data

the proposed method successfully maintains the nominal level for these coefficients, suggest-
ing the asymptotic normality of the proposed online debiased lasso estimator. For nonzero
coefficients, as the number of data batches s increases (and thus the sample size grows),
the TPR of the proposed estimator approaches 1. For example, in Model 1 with continu-
ous response and (Nm,m, nj , p, s0) = (2400, 12, 20, 400, 10) and random error N(0, 1), the
TPR(9) in Table 5 increases from 0.76 to 1 as the batch index s grows from 3 to 12. Similar
patterns are observed for the binary response in Model 2. Moreover, the FPRs and TPRs
of the proposed online estimator closely align with those of the offline benchmark method,
illustrating the effectiveness of our approach in preserving essential information, even when
primarily relying on summary statistics from historical batches. Furthermore, the TPRs
(or empirical power) of the proposed online method surpass those of the final-deb method,
highlighting its superior performance. Overall, the simulation results across various settings
confirm the robustness and effectiveness of the proposed method.

5. Real Data Example

5.1 Nasdaq Stock Data

In this subsection, we illustrate the proposed method with the Nasdaq stock data set, which
is collected from January 1, 2008 to November 2, 2018. For this data set, the response
variable is the return of the Nasdaq 100 index for every three days, and the covariates are
p = 226 stock returns for every three days during this period. Similar to Lan et al. (2016),
our goal in this study is to find the most relevant stocks that can be used to construct a
small portfolio, which tracks the return of the Nasdaq 100 index.

To apply our proposed procedure, the data are split into m = 10 batches. We take
the first two-year data set as the first data batch (n1 = 164) to guarantee a sufficiently
large sample size at the initial stage and the next one-year data set as the subsequent
data batch (nj = 82, j = 2, · · · ,m − 1). In addition, the sample size of the final batch
is nm = 72. Hence, the streaming data consists of m = 10 data batches with a total
sample size Nm = 892. Before applying the proposed procedure, we carry out two elliptical
tests, i.e., Pseudo-Gaussian test (Cassart et al., 2008) and Skew Optimal test (Babić et al.,
2021), for every two principal components of covariates to test roughly the assumption
of the linearity of expectation in condition (C1). For the resulting p-values, we consider
their mean, standard deviation, and the frequency of p-values that are larger than 0.05. In
addition, when the assumption of elliptical distribution is violated and the performance of
the elliptical test is unsatisfactory, we apply the coordinatewise Gaussianization (Mai et al.,
2023) to transform the original covariates into normal distributions. The associated p-values
of the elliptical test for original and transformed covariates are summarized in Table 8. From
Table 8, we observe that both tests of the frequency of p-values for transformed covariates of
Nasdaq stock data are above 0.7, which is notably higher than 0.4, the frequency of original
covariates. This suggests that applying the coordinatewise Gaussianization transformation
is more reasonable in this example.

To identify important stocks that are associated with the Nasdaq 100 index, we apply the
proposed online procedure to sequentially test the significance of each regression coefficient
at a prespecified level α = 0.05, i.e., testing H0,l : β0,l = 0 for l = 1, . . . , p. The selection
methods of the tuning parameters λs, γs, hs, and κs, s = 1, . . . ,m are the same as those
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Table 3: The average True/False positive rates under different settings for Model 1 with
(Nm,m, nj , p, s0) = (1600, 16, 100, 200, 5) in Section 4.2 are summarized.

online-deb offline-deb final-deb

Batch index s 4 8 12 16

FPR 0.045 0.044 0.050 0.050 0.053 0.050

TPR(1) 1.000 1.000 1.000 1.000 1.000 1.000

N (0,1) TPR(2) 1.000 1.000 1.000 1.000 1.000 1.000

TPR(3) 1.000 1.000 1.000 1.000 1.000 1.000

Huber TPR(4) 1.000 1.000 1.000 1.000 1.000 1.000

TPR(5) 0.965 1.000 1.000 1.000 1.000 0.910

FPR 0.046 0.045 0.050 0.053 0.053 0.052

TPR(1) 1.000 1.000 1.000 1.000 1.000 1.000

LN(0,1) TPR(2) 1.000 1.000 1.000 1.000 1.000 1.000

TPR(3) 1.000 1.000 1.000 1.000 1.000 1.000

Huber TPR(4) 1.000 1.000 1.000 1.000 1.000 1.000

TPR(5) 0.955 1.000 1.000 1.000 1.000 0.880

FPR 0.046 0.053 0.054 0.056 0.052 0.052

TPR(1) 1.000 1.000 1.000 1.000 1.000 1.000

N (0,1) TPR(2) 1.000 1.000 1.000 1.000 1.000 1.000

TPR(3) 1.000 1.000 1.000 1.000 1.000 0.995

LS TPR(4) 0.975 1.000 1.000 1.000 1.000 0.995

TPR(5) 0.475 1.000 1.000 1.000 1.000 0.785

FPR 0.041 0.047 0.048 0.052 0.053 0.051

TPR(1) 1.000 1.000 1.000 1.000 1.000 1.000

LN(0,1) TPR(2) 1.000 1.000 1.000 1.000 1.000 1.000

TPR(3) 0.985 1.000 1.000 1.000 1.000 1.000

LS TPR(4) 0.885 1.000 1.000 1.000 1.000 0.985

TPR(5) 0.340 1.000 1.000 1.000 1.000 0.715

in the simulation studies. To ensure the stability of selection in this online framework, the
identified stocks are required to be significant at the level of 0.1 for the m− 1 batch. It is
reasonable for financial managers to track the stocks for more time and establish a portfolio
cautiously, especially for risk-averse investors. We find that 22 stocks are identified as
important stocks at the significance level of 0.05. Correspondingly, the p-values of these
regression coefficients over the 10 batches are plotted in Figure 1. From this figure, as we
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Table 4: The average True/False positive rates under different settings for Model 2 with
(Nm,m, nj , p, s0) = (1600, 16, 100, 200, 5) in Section 4.2 are summarized.

online-deb offline-deb final-deb

Σ Batch index s 4 8 12 16

FPR 0.038 0.047 0.050 0.048 0.048 0.043

TPR(1) 1.000 1.000 1.000 1.000 1.000 0.990

TPR(2) 1.000 1.000 1.000 1.000 1.000 0.845

I TPR(3) 0.980 1.000 1.000 1.000 1.000 0.595

TPR(4) 0.720 0.970 1.000 1.000 1.000 0.315

TPR(5) 0.225 0.555 0.760 0.850 0.930 0.105

FPR 0.044 0.047 0.049 0.052 0.048 0.045

TPR(1) 1.000 1.000 1.000 1.000 1.000 0.990

TPR(2) 1.000 1.000 1.000 1.000 1.000 0.995

(0.5|k1−k2|) TPR(3) 0.955 1.000 1.000 1.000 1.000 0.985

TPR(4) 0.670 0.910 0.985 1.000 0.995 0.700

TPR(5) 0.250 0.510 0.685 0.780 0.635 0.315

collect data more and more, the most selected stocks are more significant and relatively
stable. In addition, we use a Kolmogorov-Smirnov test for the residuals obtained from the
proposed SIMs, where the nonparametric function is estimated by the nonparametric local
linear kernel method. We also consider the residuals obtained from the linear model based
on least squares (LM-LS) and Huber (LM-Huber) losses. The detailed results are presented
in Table 9. The p-values of ten batches based on SIMs are all larger than 0.05. Therefore,
this example demonstrates that our proposed method can be effectively applied to analyze
the stock data set and performs reasonably well.

5.2 Financial Distress Data

In this section, we illustrate our method with the financial distress data set, which is avail-
able from https://www.kaggle.com/datasets/shebrahimi/financial-distress. This data set is
collected from a sample of companies. Time series varies between 1 to 10 for each company.
For this data set, the financial distress index can be regarded as the response variable and
other 82 variables are covariates that consist of some financial and non-financial character-
istics of the sampled companies. In addition, this data set consists of a total of Nm = 1008
observations, and the response and the covariates have been standardized to have zero mean
and unit variance. Our goal of this study is to select the variables that significantly affect
the companies’ financial distress.

In this example, the covariates include 190 interaction terms (products of 20 pairs of
the original covariates). As a result, the dimension of the feature vector is p = 272. Before
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Table 5: The average True/False positive rates under the Huber loss for Model 1 with
(Nm,m, nj , p, s0) = (2400, 12, 200, 400, 10) in Section 4.2 are summarized.

online-deb offline-deb final-deb
Batch index s 3 6 9 12

FPR 0.046 0.046 0.049 0.050 0.050 0.049
TPR(1) 1.000 1.000 1.000 1.000 1.000 1.000
TPR(2) 1.000 1.000 1.000 1.000 1.000 1.000
TPR(3) 1.000 1.000 1.000 1.000 1.000 1.000

N (0,1) TPR(4) 1.000 1.000 1.000 1.000 1.000 1.000
TPR(5) 1.000 1.000 1.000 1.000 1.000 1.000
TPR(6) 1.000 1.000 1.000 1.000 1.000 1.000

Huber TPR(7) 1.000 1.000 1.000 1.000 1.000 0.990
TPR(8) 0.975 1.000 1.000 1.000 1.000 0.920
TPR(9) 0.760 0.925 0.965 1.000 1.000 0.680
TPR(10) 0.350 0.480 0.680 0.800 0.800 0.370

FPR 0.046 0.047 0.050 0.050 0.050 0.049
TPR(1) 1.000 1.000 1.000 1.000 1.000 1.000
TPR(2) 1.000 1.000 1.000 1.000 1.000 1.000
TPR(3) 1.000 1.000 1.000 1.000 1.000 1.000

LN(0,1) TPR(4) 1.000 1.000 1.000 1.000 1.000 1.000
TPR(5) 1.000 1.000 1.000 1.000 1.000 1.000
TPR(6) 1.000 1.000 1.000 1.000 1.000 1.000

Huber TPR(7) 1.000 1.000 1.000 1.000 1.000 0.995
TPR(8) 0.965 1.000 1.000 1.000 1.000 0.900
TPR(9) 0.700 0.880 0.965 0.995 1.000 0.640
TPR(10) 0.305 0.480 0.625 0.745 0.750 0.330

applying the proposed procedure, we conduct the same elliptical tests as in Section 5.1.
From Table 8, we can see that both tests of the frequency of p-values for the financial
distress data are above 0.6. Therefore, we assume that the covariates approximately follow
an elliptical distribution. Subsequently, we split the data into m = 10 batches randomly,
take the n1 = 108 observations as the first batch, and set each of the remaining 9 batches
containing nj = 100 observations. To identify the influential variables, we aim to test:
H0,l : β0,l = 0 for l = 1, . . . , p. The tuning parameters λs, γs, hs and κs, s = 1, . . . ,m are
determined by the same methods as described in the simulation studies. Given a prespecified
level α = 0.05, we observe that 37 variables are significant in the online framework, and the
associated p-values of the 10 batches are presented in Figure 2. From this figure, we can
find that the most variables are more significant and reach relative stability as more and
more data are collected. This example indicates that our proposed method can be applied
to analyze the data set with binary outcomes and perform reasonably well.
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Figure 2: p-values for financial distress data
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Table 6: The average True/False positive rates under different settings for Model 2 with
(Nm,m, nj , p, s0) = (2400, 12, 200, 400, 10) in Section 4.2 are summarized.

online-deb offline-deb final-deb
Σ Batch index s 3 6 9 12

FPR 0.041 0.049 0.050 0.050 0.050 0.043
TPR(1) 1.000 1.000 1.000 1.000 1.000 0.990
TPR(2) 1.000 1.000 1.000 1.000 1.000 0.975
TPR(3) 1.000 1.000 1.000 1.000 1.000 0.900
TPR(4) 0.985 1.000 1.000 1.000 1.000 0.785

I TPR(5) 0.970 1.000 1.000 1.000 1.000 0.745
TPR(6) 0.850 0.990 1.000 1.000 1.000 0.485
TPR(7) 0.625 0.975 1.000 1.000 1.000 0.385
TPR(8) 0.390 0.875 1.000 0.990 1.000 0.190
TPR(9) 0.250 0.510 0.670 0.710 0.830 0.160
TPR(10) 0.085 0.016 0.200 0.290 0.375 0.080

FPR 0.046 0.047 0.048 0.046 0.049 0.046
TPR(1) 0.995 1.000 1.000 1.000 1.000 0.935
TPR(2) 0.995 1.000 1.000 1.000 1.000 0.980
TPR(3) 0.960 0.995 1.000 1.000 1.000 0.980
TPR(4) 0.945 0.995 1.000 1.000 1.000 0.940

(0.5|k1−k2|) TPR(5) 0.875 1.000 1.000 1.000 1.000 0.865
TPR(6) 0.715 0.945 1.000 1.000 1.000 0.775
TPR(7) 0.570 0.935 0.995 1.000 1.000 0.605
TPR(8) 0.395 0.640 0.820 0.930 0.925 0.350
TPR(9) 0.185 0.345 0.490 0.650 0.675 0.180
TPR(10) 0.090 0.225 0.305 0.370 0.305 0.125

6. Discussion

In this paper, we studied the statistical inference of SIMs with streaming data under the
high-dimensional regime. The proposed procedure was applicable to the streaming data,
that is, only depended on the current batch of the data stream with summary statistics
from the historical data. In addition, our method was developed for general convex loss
functions, which could be effectively used to handle heavy-tailed errors or discrete responses.
Meanwhile, we established the `1 and `2 bounds of the proposed online lasso estimators and
the asymptotic normality of the proposed online debiased lasso estimators. Simulation
studies were conducted to show the effectiveness of the proposed method and applications
to two real data examples were provided to illustrate our method.

There are several other interesting avenues for the future work. First, the current work
relies on the assumption of homogeneous data, that is, the streaming data is assumed to be
i.i.d. sampled. It would be an interesting topic to address the problem of non-homogeneous
data. Second, we require that the data is completely observed in our framework. It is unclear
how to extend the proposed method in the presence of incomplete data such as missing
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Table 7: The average True/False positive rates under the least squares (LS) loss for Model
1 with (Nm,m, nj , p, s0) = (2400, 12, 200, 400, 10) in Section 4.2 are summarized.

online-deb offline-deb final-deb
Batch index s 3 6 9 12

FPR 0.038 0.046 0.047 0.048 0.051 0.054
TPR(1) 1.000 1.000 1.000 1.000 1.000 1.000
TPR(2) 1.000 1.000 1.000 1.000 1.000 1.000
TPR(3) 1.000 1.000 1.000 1.000 1.000 1.000

N (0,1) TPR(4) 1.000 1.000 1.000 1.000 1.000 1.000
TPR(5) 1.000 1.000 1.000 1.000 1.000 1.000
TPR(6) 1.000 1.000 1.000 1.000 1.000 1.000

LS TPR(7) 1.000 1.000 1.000 1.000 1.000 1.000
TPR(8) 1.000 1.000 1.000 1.000 1.000 0.940
TPR(9) 0.995 1.000 1.000 1.000 1.000 0.735
TPR(10) 0.960 1.000 1.000 1.000 1.000 0.310

FPR 0.043 0.051 0.052 0.052 0.056 0.053
TPR(1) 1.000 1.000 1.000 1.000 1.000 1.000
TPR(2) 1.000 1.000 1.000 1.000 1.000 1.000
TPR(3) 1.000 1.000 1.000 1.000 1.000 1.000

LN(0,1) TPR(4) 1.000 1.000 1.000 1.000 1.000 1.000
TPR(5) 1.000 1.000 1.000 1.000 1.000 1.000
TPR(6) 1.000 1.000 1.000 1.000 1.000 1.000

LS TPR(7) 1.000 1.000 1.000 1.000 1.000 0.995
TPR(8) 1.000 1.000 1.000 1.000 1.000 0.890
TPR(9) 0.990 1.000 1.000 1.000 1.000 0.630
TPR(10) 0.870 0.970 1.000 1.000 0.980 0.240

Table 8: The elliptical tests for two real data examples. The mean and standard deviation
of p-values, and averaged frequency of p-values larger than 0.05 are summarized.

Original Data Coordinatewise Gaussianization

X Test mean sd Freq mean sd Freq

Nasdaq Pseudo-Gaussian 0.10301 0.15494 0.45763 0.52709 0.41507 0.71186

stock SkewOptimal 0.11425 0.17902 0.38983 0.45782 0.33594 0.75424

Financial Pseudo-Gaussian 0.28603 0.30536 0.69118

distress SkewOptimal 0.33737 0.37347 0.60294

data or censored data. Third, the selection of the parameter τ is crucial for the Huber
loss function in real implementation. It is challenging to provide a data-driven selector to
determine τ in a streaming manner with theoretical guarantees. We leave space here for
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Table 9: The residual test for Nasdaq stock data. The p-values based on single index model
(SIM), linear model with the huber loss (LM-Huber) and least squared loss (LM-
LS) are summarized for Nasdaq stock data.

online

model 1 2 3 4 5 6 7 8 9 10

SIM 0.422 0.853 0.653 0.543 0.785 0.059 0.901 0.671 0.103 0.769

LM-Huber 0.198 0.000 0.232 0.673 0.005 0.002 0.101 0.098 0.184 0.257

LM-LS 0.000 0.019 0.504 0.483 0.286 0.546 0.004 0.645 0.915 0.000

future research. Fourth, we neither prove nor guarantee that the estimators β̂
(s)
1 , β̂

(s)
2 and

β̂
(s)
ave attain the optimal convergence rate. The development of estimators that achieve the

optimal convergence rate presents a significant challenge and warrants further investigation.
Lastly, very few methods have been developed on the goodness of fit test for the high
dimensional SIMs. To the best of our knowledge, the most relevant works are Tan and Zhu
(2019) and Tan and Zhu (2022), which accommodate the goodness of fit test for parametric
single and multiple index models with continuous responses, respectively. However, both
studies focus on parametric models and scenarios with diverging dimensional predictors.
It remains an open and challenging problem to conduct the goodness of fit test for high-
dimensional SIMs, especially in the online setting. Investigating this would be an interesting
and important research problem for a separate study in the future.
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Appendix A. Proofs of Proposition and Theorems

This Appendix contains technical proofs for Proposition 2 and Theorems 4-5 in Section 2.

A.1 Proof of Proposition 2

Proof By conditions (C1) and (C2), and the Jensen’s inequality, we have

E{l(Y,X>β)} = E[E{l(Y,X>β)|X>β0, ε}] ≥ E{l(Y, cβX>β0)}, (14)

where cβ is a constant depending on β. Condition (C2) and (14) imply that there exists
some constant k1 6= 0 such that β∗ = k1β0. We finish the proof of Proposition 2.

A.2 Proof of Theorem 4

Proof We will prove the theorem by mathematical induction. In what follows, we assume
that n1 is sufficient large. Using condition (C3), a Hoeffding-type inequality (Vershynin,
2012, Proposition 5.10) and the union inequality, we can show

P (|| 2

n1

n1/2∑
i=1

Z
(1)
i ||∞ ≥

λ1
2

) ≤ ep exp(−a1λ
2
1n1

8M2
1

) ≤ ep−a0 , (15)

where a1 is a positive constant not depending on any parameter, λ1 = c11
√

log p/n1, c11
could be any constant which belongs to [2M1

√
2(a0 + 1)/a1, a2], and a2 could be any con-

stant no less than 2M1

√
2(a0 + 1)/a1. For any ∆ ∈ Rp, define ∆S = {∆j |β∗j 6= 0}, and

∆Sc = {∆j |β∗j = 0}, where ∆j is the jth element of ∆. Let ∆̂
(1)
1 = β̂

(1)

1 − β∗, and

∆̂
(1)
2 = β̂

(1)

2 −β∗. According to the fact that β̂
(1)

1 is the minimizer of (2) and the convexity

of l
(1)
1 (β), one can show

∆̂
(1)>
1 Ol(1)1 (β∗) ≤ l(1)1 (β̂

(1)

1 )− l(1)1 (β∗) ≤ λ1‖β∗‖1 − λ1‖β̂
(1)

1 ‖1 ≤ λ1‖∆̂
(1)
1S ‖1 − λ1‖∆̂

(1)
1Sc‖1.

(16)

In light of the Hölder’s inequality, (15) and (16), we can prove that with probability at least
1− ep−a0 ,

−λ1
2
‖∆̂(1)

1 ‖1 ≤ −‖Ol
(1)
1 (β∗)‖∞‖∆̂

(1)
1 ‖1 ≤ λ1‖∆̂

(1)
1S ‖1 − λ1‖∆̂

(1)
1Sc‖1.

This implies that with probability at least 1− ep−a0 ,

‖∆̂(1)
1Sc‖1 ≤ 3‖∆̂(1)

1S ‖1,

which indicates that with probability at least 1− ep−a0 ,

∆̂
(1)
1 ∈ C1 ≡ {∆|‖∆Sc‖1 ≤ 3‖∆S‖1}. (17)
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Let C2 ≡ {∆|‖∆‖1 ≤ 1}. Based on conditions (C4), (C6), (15), the triangle inequality, the
Hölder’s inequality and the Cauchy-Schwarz inequality, we can show that with probability
at least 1− P (n1, p)− ep−a0 ,

l
(1)
1 (β∗ + ∆) + λ1‖β∗ + ∆‖1 − l(1)1 (β∗)− λ1‖β∗‖1

≥∆>Ol(1)1 (β∗) +M4||∆||22 −M5

√
log p

n1
||∆||1||∆||2 + λ1‖∆Sc‖1 − λ1‖∆S‖1

≥− ‖∆‖1‖Ol(1)1 (β∗)‖∞ +M4||∆||22 −M5

√
log p

n1
||∆||1||∆||2 + λ1‖∆Sc‖1 − λ1‖∆S‖1

≥M4||∆||22 −M5

√
log p

n1
||∆||1||∆||2 −

3λ1
2
‖∆S‖1

≥M4||∆||22 − 4M5

√
log p

n1
||∆||2||∆S ||1 −

3λ1
2
‖∆S‖1

≥(M4 − 4M5

√
s0 log p

n1
)||∆||22 −

3
√
s0λ1
2
‖∆‖2

≥M4

2
||∆||22 −

3
√
s0λ1
2
‖∆‖2, (18)

for all ∆ ∈ C1 ∩ C2. Some algebra shows that the right side of (18) is positive as long
as ||∆||2 > 3

√
s0λ1/M4. It follows from Lemma 4 of Negahban et al. (2012) that with

probability at least 1− P (n1, p)− ep−a0 ,

||∆̂(1)
1 ||2 ≤ 3

√
s0λ1/M4. (19)

Thus, by the Cauchy-Schwarz inequality and (17), we have that with probability at least
1− P (n1, p)− ep−a0 ,

||∆̂(1)
1 ||1 ≤ 4||∆̂(1)

1S ||1 ≤ 4
√
s0||∆̂

(1)
1S ||2 ≤ 4

√
s0||∆̂

(1)
1 ||2 ≤ 12s0λ1/M4. (20)

Let γ1 = c21
√

log p/n1, where c21 could be any constant which belongs to [2M1

√
2(a0 + 1)/a1,

a2]. Similar to (19) and (20), we can obtain that with probability at least 1−P (n1, p)−ep−a0 ,

||∆̂(1)
2 ||2 ≤ 3

√
s0γ1/M4, and ||∆̂(1)

2 ||1 ≤ 12s0γ1/M4. (21)

Using (19)-(21), and the triangle inequality, one can prove that with probability at least
1− P (n1, p)− 2ep−a0 ,

||β̂(1)

ave − β∗||2 ≤ 3
√
s0(λ1 + γ1)/(2M4), and ||β̂(1)

ave − β∗||1 ≤ 6s0(λ1 + γ1)/M4.

Let d1 = max{3a2/M4, 4}. Then we can show that with probability at least 1− P (n1, p)−
2ep−a0 ,

||∆̂(1)
1 ||2 ≤ d1

√
s0 log p

n1
, ||∆̂(1)

1 ||1 ≤ d21s0
√

log p

n1
,

||∆̂(1)
2 ||2 ≤ d1

√
s0 log p

n1
, ||∆̂(1)

2 ||1 ≤ d21s0
√

log p

n1
,

||β̂(1)

ave − β∗||2 ≤ d1
√
s0 log p

n1
, and ||β̂(1)

ave − β∗||1 ≤ d21s0
√

log p

n1
. (22)
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Similar to (15), we have

P (|| 2

N2

n2/2∑
i=1

Z
(2)
i ||∞ ≥

λ2
2

) ≤ ep−a0N2/n2 , (23)

where λ2 = c12
√

log p/N2, and c12 can be any constant which belongs to [2M1

√
2(a0 + 1)/a1,

a2]. Define ∆̂
(2)
1 = β̂

(2)

1 −β∗, and ∆̂
(2)
2 = β̂

(2)

2 −β∗. Using the fact that β̂
(2)

1 is the minimizer
of (5) in the main manuscript and the triangle inequality, one can prove

L12(β̂
(2)

1 )− L12(β
∗) ≤ λ2‖β∗‖1 − λ2‖β̂

(2)

1 ‖1 ≤ λ2‖∆̂
(2)
1S ‖1 − λ2‖∆̂

(2)
1Sc‖1. (24)

By the convexity of L12(β), the Cauchy-Schwarz inequality, the Hölder’s inequality, con-
ditions (C4), (C5), (C7), (22) and (23), we can show that with probability at least 1 −
P1(n1, p)− ep−a0N2/n2 ,

L12(β̂
(2)
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Both (24) and (25) imply that with probability at least 1− P1(n1, p)− ep−a0N2/n2 ,

‖∆̂(2)
1Sc‖1 ≤ 7‖∆̂(2)

1S ‖1 +
2M3d1

M1

√
(a0 + 1)/a1

√
s0‖∆̂

(2)
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It is straightforward to verify

L12(β
∗ + ∆) + λ2‖β∗ + ∆‖1 − L12(β

∗)− λ2‖β∗‖1

=
n1
N2
{∆>H(1)

1 ∆/2 + ∆>H
(1)
1 (β∗ − β̂(1)

2 )}+
n2
N2
{l(2)1 (β∗ + ∆)− l(2)1 (β∗)}

+ λ2‖β∗ + ∆‖1 − λ2‖β∗‖1. (28)

Let b0 = 2M3d1/{M1

√
2(a0 + 1)/a1}, and D2 ≡ {∆|‖∆Sc‖1 ≤ 7‖∆S‖1 + b0

√
s0‖∆‖2}.

By conditions (C4), (C5), (C7), (22), the Hölder’s inequality and the Cauchy-Schwarz
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inequality, we can show that with probability at least 1− P1(n1, p),
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for all ∆ ∈ D2. Using conditions (C6), (23), (27), the Hölder’s inequality and the Cauchy-
Schwarz inequality, one can prove that with probability at least 1− P (n2, p)− ep−a0N2/n2 ,
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for all ∆ ∈ C2∩D2. Based on (28)-(30), condition (C4) and the Cauchy-Schwarz inequality,
we have that with probability at least 1− P (n2, p)− P1(n1, p)− ep−a0N2/n2 ,
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Some algebra shows that the right hand side of (31) is positive when ||∆||2 > d2
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Then by the Cauchy-Schwarz inequality, we have that with probability at least 1−P (n2, p)−
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Let γ2 = c22
√

log p/N2, where c22 could be any constant that belongs to [2M1
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In light of (33), and (34) and the triangle inequality, we can obtain that with probability
at least 1− P (n2, p)− P1(n1, p)− 2ep−a0N2/n2 ,
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Assume that with probability at least 1−P (ns−1, p)−Ps−2(n1, . . . , ns−2, p)−2ep−a0Ns−1/ns−1 ,
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where ds−1 = d1a
s−2
3 . Let λs = c1s

√
log p/Ns, where c1s could be any constant which

belongs to [2M1
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2(a0 + 1)/a1, a2]. Similar to (15) and (24), we have
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Based on the convexity of L1s(β), the Cauchy-Schwarz inequality, the Hölder’s inequal-
ity, conditions (C4)-(C7), (36) and (37), one can prove that with probability at least
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Both (38) and (39) indicate that with probability at least 1−ep−a0Ns/ns−Ps−1(n1, . . . , ns−1,
p),

‖∆̂(s)
1Sc‖1 ≤ 7‖∆̂(s)
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2M3ds−1

M1

√
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1 ‖2. (40)

Using (36), (37), (40) and conditions (C4)-(C7), similar to (31), we can obtain that with
probability at least 1− P (ns, p)− Ps−1(n1, . . . , ns−1, p)− ep−a0Ns/ns ,
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for all ∆ ∈ C2 ∩ Ds, where Ds ≡ {∆|‖∆Sc‖1 ≤ 7‖∆S‖1 + b1
√
s0‖∆‖2}, and b1 =

2M3ds−1/{M1

√
2(a0 + 1)/a1}. Some algebra shows that the right hand side of (41) is pos-

itive as long as ||∆||2 > ds
√
s0 log p/N2, where ds = d1a

s−1
3 . Then it follows from Lemma 4

of Negahban et al. (2012) that with probability at least 1−P (ns, p)−Ps−1(n1, . . . , ns−1, p)−
ep−a0Ns/ns ,
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Let γs = c2s
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log p/Ns, where c2s could be any constant which belongs to [2M1
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a2]. Similar to (42), we have that with probability at least 1−P (ns, p)−Ps−1(n1, . . . , ns−1, p)−
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√
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In light of (40), (42), (43) and the Cauchy-Schwarz inequality, we can show that with
probability at least 1− P (ns, p)− Ps−1(n1, . . . , ns−1, p)− 2ep−a0Ns/ns ,
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Using (42)-(44) and the triangle inequality, we can show that with probability at least
1− P (ns, p)− Ps−1(n1, . . . , ns−1, p)− 2ep−a0Ns/ns ,
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We complete the proof of Theorem 4.
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A.3 Proof of Theorem 5

Proof Recall that
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For (I), by the Hölder’s inequality, conditions (C4), (C7), (D4) and Theorem 4, we can show
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For (II), in light of the Hölder’s inequality, conditions (D2), (D4) and the KKT conditions
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1 , one can show
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Based on the Hölder’s inequality and condition (D3), for (III), we can prove
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For (IV), according to the Hölder’s inequality, the triangle inequality, Theorem 4, and
conditions (C4), (C5), (C7), and (D2)-(D4), we have
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Combining (46)-(50), one can show

β̂
d(s)
1,l − β

∗
l = −Ω>l

s∑
j=1

njOl
(j)
1 (β∗)/Ns + op(N

−1/2
s ). (51)

Similarly, we have

β̂
d(s)
2,l − β

∗
l = −Ω>l

s∑
j=1

njOl
(j)
2 (β∗)/Ns + op(N

−1/2
s ). (52)

46



Inference on High-dimensional Single-index Models with Streaming Data

Both (51) and (52) imply

β̂
da(s)
l − β∗l = −Ω>l

s∑
j=1

njOl
(j)
1 (β∗)/(2Ns)−Ω>l

s∑
j=1

njOl
(j)
2 (β∗)/(2Ns) + op(N

−1/2
s ).

It follows from condition (D1), slutsky’s theorem and the central limit theorem that σ−1l
√
Ns

(β̂
da(s)
l − β∗l ) copnverges to a standard normal random variable in distribution. We accom-

plish the proof of Theorem 5.

Appendix B. Proofs of Corollaries

This Appendix contains technical proofs for Corollaries 6-13 in Section 3. The following
Lemmas 14 and 15 are used to prove these corollaries.

Lemma 14 Suppose that conditions (C1) and (E1)-(E4) are satisfied. Then there exist five
positive constants g1, g2, g3, g4 and g9 depending on e1, B1, B2, B3 and B4 such that for
any τ ≥ g2 and 1 ≤ j ≤ m, with probability at least 1− exp(−g4nj − g1 log p),

l
(j)
1 (β∗ + ∆)− l(j)1 (β∗)−∆>Ol(j)1 (β∗) ≥ g3||∆||22 − g9

√
log p

nj
||∆||1||∆||2,

and

l
(j)
2 (β∗ + ∆)− l(j)2 (β∗)−∆>Ol(j)2 (β∗) ≥ g3||∆||22 − g9

√
log p

nj
||∆||1||∆||2,

for all ||∆||2 ≤ 1.

Proof Let

Qq(x)


x2 if |x| ≤ q

2
,

(q − |x|)2 if
q

2
≤ |x| ≤ q,

0 otherwise.

Let q1 and q2 be two positive numbers which will be specified later. Define g2 = max{q1 +
q2, e1}. Now we show that for any τ ≥ g2,

l
(j)
1 (β∗ + ∆)− l(j)1 (β∗)−∆>Ol(j)1 (β∗) ≥ 1

nj

nj
2∑
i=1

Qq2‖∆‖2{X
(j)>
i ∆I(|y(j)i −X

(j)>
i β∗τ | ≤ q1)},

(53)

for all ‖∆‖2 ≤ 1. If |X(j)>
i ∆| > q2‖∆‖2 or |y(j)i −X

(j)>
i β∗τ | > q1, the right hand side of (53)

is 0. According to the convexity of the Huber loss, (53) holds. When |X(j)>
i ∆| ≤ q2‖∆‖2
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and |Y (j)
i −X(j)>

i β∗τ | ≤ q1, we can obtain

ρτ{Y (j)
i −X(j)>

i (β∗τ + ∆)} − ρτ (Y
(j)
i −X(j)>

i β∗τ )−∆>Oρτ (Y
(j)
i −X(j)>

i β∗τ )

=
(X

(j)>
i ∆)2

2

≥
Qq2‖∆‖2{X

(j)>
i ∆I(|Y (j)

i −X(j)>
i β∗τ | ≤ q1)}

2
,

implying (53) is also satisfied. By (53), to prove Lemma 14, it suffices to show that with
probability at least 1− exp(−g4nj − g1 log p) (g4 and g1 are positive constants and will be
specified later),

2

nj

nj
2∑
i=1

Qq2‖∆‖2{X
(j)>
i ∆I(|Y (j)

i −X(j)>
i β∗τ | ≤ q1)} ≥ 2g3||∆||22 − 2g9

√
log p

nj
‖∆‖1‖∆‖2,

for all ‖∆‖2 ≤ 1. Since Qq2‖∆‖2(x‖∆‖2) = ‖∆‖22Qq2(x), it is equivalent to show that with
probability at least 1− exp(−g4nj − g1 log p),

2

nj

nj
2∑
i=1

Qq2{X
(j)>
i ∆I(|Y (j)

i −X(j)>
i β∗τ | ≤ q1)} ≥ 2g3 − 2g9

√
log p

nj
||∆||1,

for all ‖∆‖2 = 1. Define Q1,∆(X, Y ) = X>∆I(|Y −X>β∗τ | ≤ q1) and Q2,∆(X, Y ) =
Qq2{Q1,∆(X, Y )}. We first show that for any ‖∆‖2 = 1,

E[Q2,∆(X, Y )] ≥ B3

2
. (54)

According to condition (E3), one can prove E(X>∆)2 ≥ B3, so that it suffices to prove

E{(X>∆)2 −Q2,∆(X, Y )} ≤ B3

2
. (55)

Note that when |Y −X>β∗τ | ≤ q1 and |X>∆| ≤ q2/2, Q2,∆(X, Y ) = (X>∆)2. As a result,
we can obtain

E{(X>∆)2 −Q2,∆(X, Y )}
≤E{(X>∆)2I(|Y −X>β∗τ | > q1)}+ E{(X>∆)2I(|X>∆| > q2/2)}. (56)

In light of the Cauchy-Schwarz inequality, the Chebyshev inequality and conditions (E2)
and (E3), we have

E{(X>∆)2I(|Y −X>β∗τ | > q1)} ≤E{(X>∆)4}1/2{P (|Y −X>β∗τ | > q1)}1/2

≤4B2
1{E(|ετ |)/q1}1/2

≤4B2
1

√
B2/q1. (57)

48



Inference on High-dimensional Single-index Models with Streaming Data

By the Cauchy-Schwarz inequality, Lemma 5.5 of Vershynin (2012) and condition (E2), we
can show

E{(X>∆)2I(|X>∆| > q2/2)} ≤E{(X>∆)4}1/2{P (|X>∆| > q2/2)}1/2

≤4B2
1{P (|X>∆| > q2/2)}1/2

≤4
√
eB2

1 exp(−q22q3/4), (58)

where q3 is a positive number which depends on B1. Let

q1 = 256B4
1B2/B

2
3 , and q2 = max{

√
4 max{log(16

√
eB2

1/B3), 1}/q3, 1}.

Then (56)-(58) indicate that (55) is satisfied. Define

Q3(t) = sup
{‖∆‖2=1}∩{‖∆‖1≤t}

| 2

nj

nj
2∑
i=1

Q2,∆(Xi, Yi)− E{Q2,∆(Xi, Yi)}|.

Now we show that there exist two positive numbers q4 and q5 which depends on B1 and B3

such that with probability at most exp(−q4nj − t2 log p),

Q3(t) ≥
B3

8
+ 40q22q5

√
log p

nj
t. (59)

For any positive number z∗(t), based on Theorem 14.2 of Bühlmann and Van De Geer
(2011), one can prove

P (Q3(t) ≥ E{Q3(t)}+ z∗(t)) ≤ exp{−njz
∗2(t)

64q42
}.

Setting z∗(t) = B3/8 + 8q22
√

log p/njt and q4 = B2
3/(4096q42), we have

P (Q3(t) ≥ E{Q3(t)}+ z∗(t)) ≤ exp{−
nj(B3/8 + 8q22

√
log p/njt)

2

64q42
} ≤ exp(−q4nj − t2 log p).

(60)

Let {ωi}
nj/2
i=1 be an independent and identically distributed sequence of Rademacher vari-

ables. By Theorem 14.3 of Bühlmann and Van De Geer (2011) and the Ledoux-Talagrand
contraction theorem (Ledoux-Talagrand, 1991, page 112), we have

E{Q3(t)} ≤2E sup
{‖∆‖2=1}∩{‖∆‖1≤t}

2

nj
|

nj
2∑
i=1

ωiQ2,∆(Xi, Yi)|

≤8q22E sup
{‖∆‖2=1}∩{‖∆‖1≤t}

2

nj
|

nj
2∑
i=1

ωiX
>
i ∆I(|Yi −X>i β∗τ | ≤ q1)|

≤8q22tE{‖
2

nj

nj
2∑
i=1

ωiXiI(|Yi −X>i β∗τ | ≤ q1)‖∞}. (61)
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For any positive number a, in light of the Jensen’s inequality, we can obtain

E{a‖ 2

nj

nj
2∑
i=1

ωiXiI(|Yi −X>i β∗τ | ≤ q1)‖∞}

≤ logE[exp{a‖ 2

nj

nj
2∑
i=1

ωiXiI(|Yi −X>i β∗τ | ≤ q1)‖∞}]. (62)

Define

Ui,l =

{
ωiXi,lI(|Yi −X>i β∗τ | ≤ q1) if 1 ≤ l ≤ p,
− ωiXi,lI(|Yi −X>i β∗τ | ≤ q1) if p+ 1 ≤ l ≤ 2p.

According to Lemma 5.5 of Vershynin (2012), one can prove that there exists a positive
number q5 which is no less than 1 and depends on B1 such that

E[exp{a‖ 2

nj

nj
2∑
i=1

ωiXiI(|Yi −X>i β∗τ | ≤ q1)‖∞}] =E{ max
1≤l≤2p

exp(
2a

nj

nj
2∑
i=1

Ui,l)}

≤2p max
1≤l≤2p

E{exp(
2a

nj

nj
2∑
i=1

Ui,l)}

=2p max
1≤l≤2p

[E{exp(
2a

nj
Ui,l)}]nj/2

≤2p exp(
2a2q25
nj

). (63)

Let a =
√
nj log(2p)/(2q25). Both (62) and (63) imply

E{‖ 2

nj

nj
2∑
i=1

ωiXiI(|Yi −X>i β∗τ | ≤ q1)‖∞}

≤
(

logE[exp{a‖ 2

nj

nj
2∑
i=1

ωiXiI(|Yi −X>i β∗τ | ≤ q1)‖∞}]
)
/a

≤ log(2p)

a
+

2aq25
nj

=2
√

2q25 log(2p)/nj

≤4q5

√
log(p)

nj
.

It follows from (61) that

E{Q3(t)} ≤ 32q22q5

√
log(p)

nj
t. (64)
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Both (60) and (64) indicate that (59) is satisfied. For any positive integer i, define ti =
(2i−1B3 −B3/4)/(80q22q5

√
log p/nj). According to (59), one can prove that there exist two

positive numbers q6 and q7 which depend on B1 and B3 such that

P
(
there exists a ∆ such that ‖∆‖2 = 1 andQ3(‖∆‖1) ≥

B3

4
+ 80q22q5

√
log p

nj
‖∆‖1

)
≤
∞∑
i=1

P
(
there exists a ∆ such that ‖∆‖2 = 1, Q3(‖∆‖1) ≥

B3

4
+ 80q22q5

√
log p

nj
‖∆‖1,

and 2i−3B3 ≤
B3

4
+ 80q22q5

√
log p

nj
‖∆‖1 ≤ 2i−2B3

)
≤
∞∑
i=1

P
(
Q3(ti) ≥ 2i−3B3

)
=
∞∑
i=1

P
(
Q3(ti) ≥

B3

8
+ 40q22q5

√
log p

nj
ti
)

≤
∞∑
i=1

exp(−q4nj − t2i log p)

≤q6 exp(−q7nj), (65)

where the last inequality follows from sum of geometric series. Define g3 = B3/8 and
g9 = 40q22q5. Then by (54), (65) and the triangle inequality, we can obtain that with
probability at least 1− q6 exp(−q7nj),

2

nj

nj
2∑
i=1

Qq2{X
(j)>
i ∆I(|Y (j)

i −X(j)>
i β∗τ | ≤ q1)} ≥ 2g3 − 2g9

√
log p

nj
||∆||1,

for all ‖∆‖2 = 1. Let g1 = q7/(2B4) and g4 = q7/3. When log p/nj ≤ B4, it is easy to
show q6 exp(−q7nj) ≤ exp(−g4nj − g1 log p)/2. Then we have that with probability at least
1− exp(−g4nj − g1 log p)/2,

2

nj

nj
2∑
i=1

Qq2{X
(j)>
i ∆I(|Y (j)

i −X(j)>
i β∗τ | ≤ q1)} ≥ 2g3 − 2g9

√
log p

nj
||∆||1, (66)

for all ‖∆‖2 = 1. If log p/nj > (log p)α2 , then 2g3 − 2g9
√

log p/nj ||∆||1 < 0. This implies
that (66) is also satisfied. By (66), we have that with probability at least 1− exp(−g4nj −
g1 log p)/2,

l
(j)
1 (β∗ + ∆)− l(j)1 (β∗)−∆>Ol(j)1 (β∗) ≥ g3||∆||22 − g9

√
log p

nj
||∆||1||∆||2, (67)
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for all ||∆||2 ≤ 1. Similarly, we can prove that with probability at least 1 − exp(−g4nj −
g1 log p)/2,

l
(j)
2 (β∗ + ∆)− l(j)2 (β∗)−∆>Ol(j)2 (β∗) ≥ g3||∆||22 − g9

√
log p

nj
||∆||1||∆||2, (68)

for all ||∆||2 ≤ 1. Both (67) and (68) suggest that with probability at least 1−exp(−g4nj−
g1 log p),

l
(j)
1 (β∗ + ∆)− l(j)1 (β∗)−∆>Ol(j)1 (β∗) ≥ g3||∆||22 − g9

√
log p

nj
||∆||1||∆||2,

and

l
(j)
2 (β∗ + ∆)− l(j)2 (β∗)−∆>Ol(j)2 (β∗) ≥ g3||∆||22 − g9

√
log p

nj
||∆||1||∆||2,

for all ||∆||2 ≤ 1. We complete the proof of Lemma 14.

Lemma 15 Assume that conditions (C1), (C5), (E2) and (E4) hold. Then there exist
four positive constants g′1, g′2, g′3 and g′7 depending on M2, B1 and B4 such that for any
1 ≤ j ≤ m, with probability at least 1− exp(−g′3nj − g′1 log p),

l
(j)
1 (β∗ + ∆)− l(j)1 (β∗)−∆>Ol(j)1 (β∗) ≥ g′2||∆||22 − g′7

√
log p

nj
||∆||1||∆||2,

and

l
(j)
2 (β∗ + ∆)− l(j)2 (β∗)−∆>Ol(j)2 (β∗) ≥ g′2||∆||22 − g′7

√
log p

nj
||∆||1||∆||2,

for all ||∆||2 ≤ 1.

Proof Applying the second-order Taylor expansion, we can show that there exists a number
x0 ∈ [0, 1] such that

l
(j)
1 (β∗ + ∆)− l(j)1 (β∗)−∆>Ol(j)1 (β∗) =

2

nj

nj
2∑
i=1

Q′1(X
(j)>
i β∗ + x0∆

>X
(j)
i )(∆>X

(j)
i )2,

(69)

where Q′1(x) = ex/(1+ex)2. Let q′1 ≥ q′2 be two positive numbers and q′3 = min|x|≤2q′1 Q
′
1(x).

Now we show

Q′1(X
(j)>
i β∗ + x0∆

>X
(j)
i )(∆>X

(j)
i )2 ≥ q′3Qq′2‖∆‖2{X

(j)>
i ∆I(|X(j)>

i β∗| ≤ q′1)}, (70)
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for all ||∆||2 ≤ 1. When |X(j)>
i ∆| > q′2‖∆‖2 or |X(j)>

i β∗| > q′1, the right hand side of (70)

is 0. Since the left hand side of (70) is nonnegative, (70) is satisfied. If |X(j)>
i ∆| ≤ q′2‖∆‖2

and |X(j)>
i β∗| ≤ q′1, we have

|X(j)>
i β∗ + x0∆

>X
(j)
i | ≤ |X

(j)>
i β∗|+ |∆>X(j)

i | ≤ q
′
1 + q′2 ≤ 2q′1, (71)

for all ||∆||2 ≤ 1. It can be shown that

Qq′2‖∆‖2{X
(j)>
i ∆I(|X(j)>

i β∗| ≤ q′1)} ≤ (∆>X
(j)
i )2. (72)

Both (71) and (72) imply that (70) is also satisfied. Using (69) and (70), we can obtain

l
(j)
1 (β∗ + ∆)− l(j)1 (β∗)−∆>Ol(j)1 (β∗) ≥ 2q′3

nj

nj
2∑
i=1

Qq′2‖∆‖2{X
(j)>
i ∆I(|X(j)>

i β∗| ≤ q′1)},

(73)

for all ||∆||2 ≤ 1. Similarly, one can prove

l
(j)
2 (β∗ + ∆)− l(j)2 (β∗)−∆>Ol(j)2 (β∗) ≥ 2q′3

nj

nj∑
i=

nj
2
+1

Qq′2‖∆‖2{X
(j)>
i ∆I(|X(j)>

i β∗| ≤ q′1)},

(74)

for all ||∆||2 ≤ 1. In light of (73) and (74), similar to the proof of Lemma 14, we can show
that there exist four positive constants g′1, g

′
2, g
′
3 and g′7 depending on M2, B1 and B4 such

that for any 1 ≤ j ≤ m, with probability at least 1− exp(−g′3nj − g′1 log p),

l
(j)
1 (β∗ + ∆)− l(j)1 (β∗)−∆>Ol(j)1 (β∗) ≥ g′2||∆||22 − g′7

√
log p

nj
||∆||1||∆||2,

and

l
(j)
2 (β∗ + ∆)− l(j)2 (β∗)−∆>Ol(j)2 (β∗) ≥ g′2||∆||22 − g′7

√
log p

nj
||∆||1||∆||2,

for all ||∆||2 ≤ 1. The proof of Lemma 15 is completed.

B.1 Proof of Corollary 6

Proof Under conditions (C1) and (E1), similar to the proof of Proposition 2, we can show
that for any τ > e1, there exists some non-zero constant kτ depending on ρτ (Y,X>β) such
that β∗τ = kτβ0. Let ζ1 = ετI(|ετ | ≤ τ) + τsgn(ετ )I(|ετ | > τ). It is straightforward to show

Z = −Xζ1.
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Based on the fact that |ζ1| ≤ τ and condition (E2), we can prove

‖Z‖ψ2 = ‖Xζ1‖ψ2 ≤ τB1. (75)

By Lemma 14, we have that for any τ ≥ g2 and 1 ≤ j ≤ m, with probability at least
1− exp(−g4nj − g1 log p),

l
(j)
1 (β∗ + ∆)− l(j)1 (β∗)−∆>Ol(j)1 (β∗) ≥ g3||∆||22 − g9

√
log p

nj
||∆||1||∆||2,

and

l
(j)
2 (β∗ + ∆)− l(j)2 (β∗)−∆>Ol(j)2 (β∗) ≥ g3||∆||22 − g9

√
log p

nj
||∆||1||∆||2, (76)

for all ||∆||2 ≤ 1. It is sufficient to show that condition (C7) is satisfied by mathematical
induction. Let λ1 = c′11

√
log p/n1, γ1 = c′21

√
log p/n1 and d′1 = max{3a′2/g3, 4}, where c′11

and c′21 could be any constants which belong to [2τB1

√
2(a′0 + 1)/a1, a

′
2]. Using (75) and

(76), similar to (22), we can show that with probability at least 1− exp(−g4n1− g1 log p)−
2ep−a

′
0 ,

||∆̂(1)
1 ||2 ≤ d′1

√
s0 log p

n1
, ||∆̂(1)

1 ||1 ≤ d′21 s0
√

log p

n1
,

||∆̂(1)
2 ||2 ≤ d′1

√
s0 log p

n1
, ||∆̂(1)

2 ||1 ≤ d′21 s0
√

log p

n1
,

||β̂(1)

ave − β∗||2 ≤ d′1

√
s0 log p

n1
, and ||β̂(1)

ave − β∗||1 ≤ d′21 s0
√

log p

n1
. (77)

By conditions (E2) and (E5), the Cauchy-Schwarz inequality and (77), one can prove that
with probability at least 1− exp(−g4n1 − g1 log p)− ep−a′0 ,

‖E(H
(1)
1 |β̂

(1)

2 )−Hτ‖∞

=‖E{X(1)
1 X

(1)>
1 I(|Y (1)

1 −X(1)>
1 β̂

(1)

2 | ≤ τ)|β̂(1)

2 }

− E{X(1)
1 X

(1)>
1 I(|Y (1)

1 −X(1)>
1 β∗τ | ≤ τ)}‖∞

≤ max
1≤j≤p
1≤k≤p

E{Lτ |X(1)
1,jX

(1)
1,k ||X

(1)>
1 (β̂

(1)

2 − β∗τ )||β̂(1)

2 }

≤ max
1≤j≤p
1≤k≤p

Lτ{EX(1)2
1,j X

(1)2
1,k }

1/2(E[{X(1)>
1 (β̂

(1)

2 − β∗τ )}2|β̂(1)

2 ])1/2

≤ max
1≤j≤p
1≤k≤p

Lτ{EX(1)4
1,j }

1/4{EX(1)4
1,k }

1/4(E[{X(1)>
1 (β̂

(1)

2 − β∗τ )}2|β̂(1)

2 ])1/2

≤4
√

2LτB
3
1‖β̂

(1)

2 − β∗τ‖2

≤4
√

2LτB
3
1d
′
1

√
s0 log p

n1
, (78)
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where X
(1)
1,j and X

(1)
1,k are the jth and kth elements of X

(1)
1 , respectively. For any random

variable ξ′, let ‖ξ′|β̂(1)

2 ‖ψ1 = supl≥1(E|ξ′|l|β̂
(1)

2 )1/l/l. For any 1 ≤ j, k ≤ p and l ≥ 1, using
the Cauchy-Schwarz inequality and condition (E2), we have

[E{|X(1)l
1,j X

(1)l
1,k |I(|Y (1)

1 −X(1)>

1 β̂
(1)

2 | ≤ τ)|β̂(1)

2 }]1/l/l ≤ (EX
(1)2l
1,j )1/2l(EX

(1)2l
1,k )1/2l/l ≤ 2B2

1 .

This implies

‖X(1)
1,jX

(1)
1,kI(|Y (1)

1 −X(1)>

1 β̂
(1)

2 | ≤ τ)|β̂(1)

2 ‖ψ1 ≤ 2B2
1 .

Then by the triangle inequality, the Cauchy-Schwarz inequality and condition (E2), we have

‖X(1)
1,jX

(1)
1,kI(|Y (1)

1 −X(1)>

1 β̂
(1)

2 | ≤ τ)− E{X(1)
1,jX

(1)
1,kI(|Y (1)

1 −X(1)>

1 β̂
(1)

2 | ≤ τ)|β̂(1)

2 }|β̂
(1)

2 ‖ψ1

≤‖X(1)
1,jX

(1)
1,kI(|Y (1)

1 −X(1)>

1 β̂
(1)

2 | ≤ τ)|β̂(1)

2 ‖ψ1

+ |E{X(1)
1,jX

(1)
1,kI(|Y (1)

1 −X(1)>

1 β̂
(1)

2 | ≤ τ)}|β̂(1)

2 |

≤2B2
1 + (EX

(1)2
1,j )1/2(EX

(1)2
1,k )1/2

≤4B2
1 . (79)

Let

ζ̃j,k

=
2

n1

n1/2∑
i=1

X
(1)
i,j X

(1)
i,k I(|Y (1)

1 −X(1)>

1 β̂
(1)

2 | ≤ τ)− E{X(1)
1,jX

(1)
1,kI(|Y (1)
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2 | ≤ τ)|β̂(1)

2 }.

For any x > 0, according to (79), a Bernstein-type inequality (Vershynin, 2012, Proposition
5.16) and the union inequality, we can show

P (‖H(1)
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(1)
1 |β̂

(1)

2 )‖∞ ≥ x|β̂
(1)

2 ) ≤p2 max
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1

,
xn1
8B2

1

)}, (80)

where a′4 is a positive constant not depending on any parameter. Let

x = max{
√

32B4
1(a′0 + 2)/a′4, 8B

2
1(a′0 + 2)/a′4}

√
log p/n1.

Then we have
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,
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1

)} ≤ 2p−a
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0 .

It follows from the Law of Total Probability that

P
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Using (78), (81) and the triangle inequality, we can obtain that with probability at least
1− exp(−g4n1 − g1 log p)− (2 + e)p−a

′
0 ,

‖H(1)
1 −Hτ‖∞ ≤max{

√
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2
1(a′0 + 2)a′4}

√
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+ 4
√

2LτB
3
1d
′
1

√
s0 log p

n1

≤Mτ

√
s0 log p

n1
, (82)

where

Mτ = [max{
√

32B4
1(a′0 + 2)/a′4, 8B

2
1(a′0 + 2)/a′4}+ 4

√
2LτB

3
1 + 1]a′3d

′
1,

and

a′3 = max{(2B2 + 3a′2/2)/min{B3/3, g3/2}, 8 + 2B2/{τB1

√
2(a0 + 1)/a1}}.

Similarly, one can show that with probability at least 1−exp(−g4n1−g1 log p)−(2+e)p−a
′
0 ,

‖H(1)
2 −Hτ‖∞ ≤Mτ

√
s0 log p

n1
. (83)

Both (82) and (83) indicate that with probability at least 1− exp(−g4n1 − g1 log p)− (4 +
2e)p−a

′
0 ,

max{‖H(1)
1 −Hτ‖∞, ‖H(1)

2 −Hτ‖∞} ≤Mτ

√
s0 log p

n1
. (84)

Assume that with probability at least 1 − 4(s − 2)p−a
′
0 −

∑s−1
j=1{exp(−g4nj − g1 log p) +

2ep−a
′
0Nj/nj},
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√
log p
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, (85)

and with probability at least 1−4(s−1)p−a
′
0 −
∑s−1

j=1{exp(−g4nj− g1 log p) + 2ep−a
′
0Nj/nj},
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where d′s−1 = a′s−23 d′1. Let λs = c′1s
√

log p/Ns and γs = c′2s
√

log p/Ns, where c′1s and c′2s
could be any constants which belong to [2τB1

√
2(a′0 + 1)/a1, a

′
2]. According to (75), (76),

(85), (86), and conditions (C4) and (E3), similar to (45), one can prove that with probability
at least 1− 4(s− 1)p−a

′
0 −

∑s
j=1{exp(−g4nj − g1 log p) + 2ep−a

′
0Nj/nj},
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√

log p

Ns
,
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√

log p
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, (87)

where d′s = a′s−13 d′1. Similar to (78), we can show that with probability at least 1 − 4(s −
1)p−a

′
0 −

∑s
j=1{exp(−g4nj − g1 log p) + 2ep−a

′
0Nj/nj},

‖E(H
(s)
1 |β̂

(s)
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√
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3
1d
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s

√
s0 log p
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. (88)

Similar to (80), for any x > 0, we can show
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Let x = max{
√

32B4
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2
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√
log p/ns, log p/ns}. Then similar

to (81), we can obtain
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2 )‖∞ ≥ x
)
≤ 2p−a
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0 . (89)

By (88), (89) and the triangle inequality, we can obtain that with probability at least
1− 2p−a

′
0 − 4(s− 1)p−a

′
0 −

∑s
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,
√
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}. (90)

Similarly, one can show that with probability at least 1−2p−a
′
0−4(s−1)p−a

′
0−
∑s

j=1{exp(−g4
nj − g1 log p) + 2ep−a
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}. (91)

Both (90) and (91) imply that with probability at least 1 − 4sp−a
′
0 −

∑s
j=1{exp(−g4nj −

g1 log p) + 2ep−a
′
0Nj/nj},
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It follows from (86), (92) and the triangle inequality that with probability at least 1 −
4sp−a

′
0 −
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j=1{exp(−g4nj − g1 log p) + 2ep−a
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}.

The proof of Corollary 6 is completed.

B.2 Proof of Corollary 8

Proof It is sufficient to show that conditions (D2) and (D3) are satisfied. By Corollary 6, we
can show that for any 1 ≤ s ≤ m, with probability at least 1−4sp−a

′
0 −
∑s

j=1{exp(−g4nj−
g1 log p) + 2ep−a

′
0Nj/nj},
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}. (93)

By appealing to (93) and condition (E11), and following the proof of Theorem 6 of Cai
et al. (2011), we can prove that for any 1 ≤ s ≤ m, with probability at least 1− 4sp−a

′
0 −∑s

j=1{exp(−g4nj − g1 log p) + 2ep−a
′
0Nj/nj},
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Based on condition (E6), for any 1 ≤ s ≤ m, we can show
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p→∞
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s∑
j=1
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58



Inference on High-dimensional Single-index Models with Streaming Data

Then for any 1 ≤ s ≤ m, we have

max{‖Ω̂(s)
1 −Ωτ‖∞,∞, ‖Ω̂

(s)
2 −Ωτ‖∞,∞} = Op((‖Ωτ‖4∞,∞s2M2s

τ s0 log p/Ns)
(1−ω)/2v(p)).

For any 1 ≤ s ≤ m, in light of Corollary 6, conditions (C4) and (E12), similar to (78), we
can show
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For any 1 ≤ s ≤ m, using Corollary 6, conditions (E2) and (E12), similar to (81), one can
prove
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Both (94) and (95) imply
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Similarly, we can show
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We complete the proof of Corollary 8.
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B.3 Proof of Corollary 10

Proof It is straightforward to verify

Z = Xζ2,

where ζ2 = exp(X>β∗)/{1 + exp(X>β∗)} − Y . In light of |ζ2| ≤ 1 and condition (E2), we
have

‖Z‖ψ2 ≤ B1. (96)

According to Lemma 15, we have that for any 1 ≤ j ≤ m, with probability at least
1− exp(−g′3nj − g′1 log p),

l
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for all ||∆||2 ≤ 1. Similar to the proof of Corollary 6, we only need to show that condition
(C7) is satisfied by mathematical induction. Let λ1 = c′′11

√
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√
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According to condition (E2), the mean value theorem, the Cauchy-Schwarz inequality and
(98), we can obtain that with probability at least 1− exp(−g′3n1 − g′1 log p)− ep−a′′0 ,
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For any 1 ≤ j, k ≤ p and l ≥ 1, in light of the Cauchy-Schwarz inequality and condition
(E2), we can obtain
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It follows from the triangle inequality, the Cauchy-Schwarz inequality and condition (E2)
that
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According to (100), a Bernstein-type inequality (Vershynin, 2012, Proposition 5.16), the
union inequality and the Law of Total Probability, similar to (81), we have
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By (100), (101) and the triangle inequality, one can prove that with probability at least
1− exp(−g′3n1 − g′1 log p)− (2 + e)p−a
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where M̃ = [max{
√

32B4
1(a′′0 + 2)/a′4, 8B

2
1(a′′0 + 2)/a′4}+ 4

√
2B3

1 + 1]a′′3d
′′
1, and

a′′3 = max{(2M3 + 3a′′2/2)/min{M2/3, g
′
2/2}, 8 + 2M3/{B1

√
2(a′′0 + 1)/a1}}.
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Both (102) and (103) imply that with probability at least 1− exp(−g′3n1 − g′1 log p)− (4 +
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and with probability at least 1−4(s−1)p−a
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njH
(j)
1 −H‖∞, ‖

1

Ns−1

s−1∑
j=1

njH
(j)
2 −H‖∞}

≤ 1

Ns−1

s−1∑
j=1

njM̃
j max{

√
s0 log p

nj
,
√
s0

log p

nj
}, (106)

where d′′s−1 = a′′s−23 d′′1. Let λs = c′′1s
√

log p/Ns and γs = c′′2s
√

log p/Ns, where c′′1s and c′′2s
could be any constants which belong to [2B1

√
2(a′′0 + 1)/a1, a

′′
2]. By (96), (97), (105), and
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(106), and conditions (C4) and (C5), similar to (45), we can show that with probability at
least 1− 4(s− 1)p−a

′′
0 −

∑s
j=1{exp(−g′3nj − g′1 log p) + 2ep−a

′′
0Nj/nj},

||∆̂(s)
1 ||2 ≤ d′′s

√
s0 log p

Ns
, ||∆̂(s)

1 ||1 ≤ d′′ss0
√

log p

Ns
,

||∆̂(s)
2 ||2 ≤ d′′s

√
s0 log p

Ns
, ||∆̂(s)

2 ||1 ≤ d′′ss0
√

log p

Ns
,

||β̂(s)

ave − β∗||2 ≤ d′′s

√
s0 log p

Ns
, and ||β̂(s)

ave − β∗||1 ≤ d′′ss0
√

log p

Ns
, (107)

where d′′s = a′′s−13 d′′1. In light of (107), similar to (104), one can prove that that with
probability at least 1− 4sp−a

′′
0 −

∑s
j=1{exp(−g′3nj − g′1 log p) + 2ep−a

′′
0Nj/nj},

max{‖H(s)
1 −H‖∞, ‖H

(s)
2 −H‖∞} ≤ M̃

s max{
√
s0 log p

ns
,
√
s0

log p

ns
}. (108)

Based on (106), (108) and the triangle inequality, we can show that with probability at
least 1− 4sp−a

′′
0 −

∑s
j=1{exp(−g′3nj − g′1 log p) + 2ep−a

′′
0Nj/nj},

max{‖ 1

Ns

s∑
j=1

njH
(j)
1 −H‖∞, ‖

1

Ns

s∑
j=1

njH
(j)
2 −H‖∞}

≤max{Ns−1
Ns
‖ 1

Ns−1

s−1∑
j=1

njH
(j)
1 −H‖∞ +

ns
Ns
‖H(s)

1 −H‖∞,
Ns−1
Ns
‖ 1

Ns−1

s−1∑
j=1

njH
(j)
2 −H‖∞

+
ns
Ns
‖H(s)

2 −H‖∞},

≤ 1

Ns

s∑
j=1

njM̃
j max{

√
s0 log p

nj
,
√
s0

log p

nj
}.

We complete the proof of Corollary 10.

The proof of Corollary 12 is similar to that of Corollary 8, and thus is not reported here.

B.4 Proof of Corollaries 7, 9, 11 and 13

Proof Under condition (E7), it is easy to show

sup
‖∆‖2=1

‖H1/2∆‖22 ≤ B5, and sup
‖∆‖2=1

‖H1/2
τ ∆‖22 ≤ B5. (109)

For any t ∈ R and any a which satisfies ‖a‖2 = 1, by using condition (E7), we can obtain

E{exp(ta>X)} = exp(t2a>Σa/2) ≤ exp(t2B5/2).

It follows from Lemma 5.5 of Vershynin (2012) that there exists a positive number B6 which
depends on B5 such that

‖X‖ψ2 ≤ B6. (110)
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In light of (109) and (110), similar to the proofs of Corollaries 6, 8, 10 and 12, respectively,
we can obtain the results in Corollaries 7, 9, 11 and 13.
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