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Abstract

We study the problem of finding a near-stationary point for smooth minimax optimization.
The recently proposed extra anchored gradient (EAG) methods achieve the optimal conver-
gence rate for the convex-concave minimax problem in the deterministic setting. However,
the direct extension of EAG to stochastic optimization is not efficient. In this paper,
we design a novel stochastic algorithm called Recursive Anchored IteratioN (RAIN). We
show that the RAIN achieves near-optimal stochastic first-order oracle (SFO) complexity
for stochastic minimax optimization in both convex-concave and strongly-convex-strongly-
concave cases. In addition, we extend the idea of RAIN to solve structured nonconvex-
nonconcave minimax problem and it also achieves near-optimal SFO complexity.

Keywords: Stochastic minimax optimization, ε-stationary point, recursive anchoring

1. Introduction

This work studies the stochastic minimax problem of the form:

min
x∈Rdx

max
y∈Rdy

f(x, y) , E[f(x, y; ξ)], (1)

where the stochastic component f(x, y; ξ) is indexed by some random variable ξ; and the
objective function f(x, y) is L-smooth. This formulation has aroused great interest in
machine learning community (Lin et al., 2020a; Liu and Orabona, 2022; Zhang et al., 2021;
Yang et al., 2020a; Xu et al., 2020; Xian et al., 2021; Zhang et al., 2022a,b) due to its
wide applications, including generative adversarial networks (GANs) (Goodfellow et al.,
2014a,b; Liu et al., 2020), AUC maximization (Guo et al., 2020; Yuan et al., 2021; Liu
et al., 2019; Yang and Ying, 2022), adversarial training (Madry et al., 2017) and multi-
agent reinforcement learning (Omidshafiei et al., 2017; Dai et al., 2018; Wai et al., 2018).
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We focus on using stochastic first-order oracle (SFO) algorithms to find an ε-stationary
point of problem (1), that is, a point (x, y) where the gradient satisfies

‖∇f(x, y)‖ ≤ ε.

The norm of gradient is a generic metric to quantify the sub-optimality for solving smooth
optimization problem. It is always well-defined for differentiable objective functions and
helps us understand general minimax problems without convex-concave assumption. Some
recent works consider making the gradient small in minimax optimization (Yoon and Ryu,
2021; Cai et al., 2022; Diakonikolas et al., 2021; Lee and Kim, 2021), but the understanding
of this task in stochastic setting is still limited.

For convex-concave minimax problems, a popular metric to quantify an approximate
solution (x, y) on the domain X × Y is the duality gap, which is defined as

Gap(x, y) , max
y′∈Y

f(x, y′)− min
x′∈X

f(x′, y).

The optimal SFO algorithms in terms of duality gap have been established (Zhao, 2022;
Alacaoglu and Malitsky, 2022), while the duality gap is difficult to be measured and it is not
always well-defined. In contrast, the norm of gradient is a more general metric in optimiza-
tion problems and it is easy to be measured in practice. Yoon and Ryu (2021) proposed
the extra anchor gradient (EAG) method for finding ε-stationary point of deterministic
(offline) convex-concave minimax problem. They showed that EAG is an optimal deter-
ministic first-order algorithm to find an ε-stationary point and its exact first-order oracle
upper bound complexity is O(Lε−1). For the stochastic convex-concave minimax problem,
Lee and Kim (2021) proved the stochastic EAG (SEAG) can achieve an SFO complexity of
O(σ2L2ε−4 + Lε−1), where σ2 is a bound on the variance of gradient estimates. Recently,
Cai et al. (2022) proposed a variant of stochastic Halpern iteration, which has an SFO com-
plexity of Õ(σ2Lε−3 + L3ε−3) under the additional average-smooth assumption. However,
the tightness of SFO complexity for finding ε-stationary points in stochastic convex-concave
minimax optimization was hitherto unclear.

For nonconvex-nonconcave minimax problems, there exists the counter-example that all
first-order algorithms will diverge (Lee and Kim, 2021). Hence, we are required to introduce
additional assumptions. Grimmer et al. (2023) proposed the intersection dominant condition
to relax the convex-concave assumption and established the convergence guarantee of the
exact proximal point method in such a setting. Later, Diakonikolas et al. (2021) considered
the negative comonotonicity condition as a relaxation of the common monotonicity property
in the convex-concave setting. They proposed a variant of stochastic extragradient named as
EG+, which has SFO upper bound of O(σ2L2ε−4 +L2ε−2) for finding an ε-stationary point,
matching the complexity of ordinary stochastic extragradient (SEG) in convex-concave case.
In addition, Lee and Kim (2021) extend the idea of EAG to solve minimax problem under
the negative comonotonicity condition, but their analysis does not contain the stochastic
algorithms.

In this paper, we propose a novel stochastic algorithm called Recursive Anchored Itera-
tioN (RAIN) to make the gradient small in stochastic minimax optimization. The algorithm
solves a sequence of anchored sub-problems by the variant of the stochastic extragradient
method, resulting the SFO upper bounds complexity of Õ(σ2ε−2 +Lε−1) and Õ(σ2ε−2 +κ)

2



Making the Gradient Small in Stochastic Minimax Optimization

Table 1: We summarize the SFO complexities for finding an ε-stationary point in convex-
concave setting. We denote SCSC and CC as λ-strongly-convex-λ-strongly-concave
case and the general convex-concave case respectively. In the case of SCSC, we
define the condition number as κ , L/λ. We also define D , ‖z0− z∗‖, where z0
is the initial point of the algorithm. The dependency on D in the complexity of
PDHG and RAIN (the case of SCSC) is only contained in the logarithmic term,
which is omitted by using the notation Õ( · ). The results denoted by ∗ indicate the
analysis Cai et al. (2022) requires the additional assumption of average smoothness.

Setting Algorithm Complexity Reference

SCSC

Halpern Õ(λ−2κσ2ε−2 + κ3D2ε−2)∗ Cai et al. (2022)

PDHG Õ(κσ2ε−2 + κ) Zhao (2022)

RAIN Õ(σ2ε−2 + κ) Theorem 4.1

Lower Bound Ω̃(σ2ε−2 + κ) Theorem 6.1

CC

SEG O(σ2L2ε−4 + L2D2ε−2) Diakonikolas et al. (2021)

SEAG O(σ2L2ε−4 + LDε−1) Lee and Kim (2021)

Halpern Õ(σ2LDε−3 + L3D3ε−3)∗ Cai et al. (2022)

RAIN Õ(σ2ε−2 + LDε−1) Theorem 4.2

Lower Bound Ω̃(σ2ε−2 + LDε−1) Theorem 6.2

for finding an ε-stationary point in convex-concave and strongly-convex-strongly-concave
settings respectively, where κ is the condition number. We also provide lower bounds to
show the optimality of RAIN. We summarize our results for the convex-concave problem and
compare them with prior work in Table 1. Additionally, we extend the idea of RAIN and
propose the algorithm for solving stochastic nonconvex-nonconcave minimax problems. We
prove that the SFO upper bound complexity of RAIN++ is near-optimal under both inter-
section dominant (Grimmer et al., 2023) and negative comonotonic conditions (Diakonikolas
et al., 2021). We present the results for these structured nonconvex-nonconcave minimax
in Table 2. To the best of our knowledge, RAIN is the first near-optimal SFO algorithm for
finding near-stationary points of the stochastic convex-concave minimax problem.

2. Notation and Preliminaries

We use ‖ · ‖ to present the Euclidean norm of matrix and vector respectively. For differ-
entiable function f(x, y), we denote ∇xf(x, y) and ∇yf(x, y) as its partial gradients with
respect to x and y respectively, and introduce the gradient operator

F (x, y) ,

[
∇xf(x, y)
−∇yf(x, y)

]
.

For ease of presentation, we define z = (x, y) and also write the gradient operator at
z = (x, y) as F (z).

We consider the following assumptions for our stochastic minimax problems.
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Table 2: We summarize the SFO complexities for finding an ε-stationary point in two spe-
cific nonconvex-nonconcave settings. We denote NC as the ρ-comonotonicity as-
sumption with ρ ∈ [− 1

2L , 0) and denote ID as the (τ, α)-intersection-dominant

assumption with α > 0 and τ ≥ 2L. We also define D , ‖z0− z∗‖, where z0 is the
initial point of the algorithm. The dependency on D in the complexity of RAIN
(the case of ID) is only contained in the logarithmic term, which is omitted by
using the notation Õ( · ).

Setting Algorithm Complexity Reference

NC

SEG+ O(σ2L2ε−4 + L2D2ε−2) Diakonikolas et al. (2021)

RAIN++ Õ(σ2ε−2 + LDε−1) Theorem 5.4

Lower Bound Ω̃(σ2ε−2 + LDε−1) Corollary 6.1

ID
RAIN++ Õ(σ2ε−2 + L/α) Theorem 5.3

Lower Bound Ω̃(σ2ε−2 + L/α) Corollary 6.2

Assumption 2.1 (stochastic first-order oracle) We suppose the stochastic first-order
oracle F (z; ξ) is unbiased and has bounded variance such that E[F (z; ξ)] = F (z) and
E‖F (z; ξ)− F (z)‖2 ≤ σ2 for all z = (x, y) and random index ξ.

Assumption 2.2 (smoothness) We suppose the function f(x, y) is L-smooth, that is
there exists some L > 0 such that

‖F (z)− F (z′)‖ ≤ L‖z − z′‖

for all z = (x, y) and z′ = (x′, y′).

Assumption 2.3 (convex-concave) We suppose the function f(x, y) is convex-concave
(CC), that is the function f( · , y) is convex for any given y and the function f(x, · ) is
concave for any given x.

Assumption 2.4 (strongly-convex-strongly-concave) We suppose the function f(x, y)
is λ-strongly-convex-λ-concave for some λ > 0, that is the function f(x, y) + λ

2‖x‖
2− λ

2‖y‖
2

is convex-concave.

For smooth and convex-concave objective function, the corresponding gradient operator F
has the monotonicity properties Rockafellar (1970) as follows.

Lemma 2.1 (monotonicity) Under Assumption 2.2 and 2.3, it holds that

(F (z)− F (z′))>(z − z′) ≥ 0

for all z = (x, y) and z′ = (x′, y′).

Lemma 2.2 (strong monotonicity) Under Assumption 2.2 and 2.4, it holds that

(F (z)− F (z′))>(z − z′) ≥ λ‖z − z′‖2

for all z = (x, y) and z′ = (x′, y′).
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We are interested in finding an ε-stationary point of the differentiable function f(x, y),
that is the point where the norm of its gradient (gradient operator) is small.

Definition 2.1 (nearly-stationary point) We say ẑ = (x̂, ŷ) is an ε-stationary point of
the differentiable function f(x, y) if it satisfies ‖∇f(ẑ)‖ ≤ ε, or equivalently ‖F (ẑ)‖ ≤ ε.

Throughout this paper, we always assume there exists a stationary point for f(x, y) and
the initial point z0 = (x0, y0) of the considered algorithm is in a bounded set.

Assumption 2.5 We suppose there exists some z∗ = (x∗, y∗) such that ∇f(z∗) = 0, or
equivalently, F (z∗) = 0.

Assumption 2.6 We suppose the initial point z0 = (x0, y0) satisfies ‖z0 − z∗‖ ≤ D for
some D > 0, where z∗ = (x∗, y∗) is a stationary point of f(x, y).

3. The Recursive Anchored Iteration

In this section, we focus on stochastic minimax optimization in the convex-concave setting.
We propose the Recursive Anchored InteratioN (RAIN) method in Algorithm 1. The RAIN
calls the subroutine Epoch-SEG (Algorithm 2) to find the point zs+1 = (xs+1, ys+1) that is
an approximate solution of the two-sided regularized minimax problem

min
x∈Rdx

max
y∈Rdy

f (s)(x, y), (2)

where f (s)(x, y) is defined as follows

f (s)(x, y) ,

f(x, y), s = 0,

f (s−1)(x, y) +
λs
2
‖x− xs‖2 −

λs
2
‖y − ys‖2, s ≥ 1.

(3)

We call the sequence {(xs, ys)}Ss=1 as the anchors of RAIN, which plays an important role
in our convergence analysis.

For strongly-convex-strongly-concave objective function f(x, y), the corresponding gra-
dient operator F (x, y) is strongly-monotone and the output of RAIN has the following
property.

Lemma 3.1 (recursively anchoring lemma) Suppose the function f(x, y) is L-smooth
and λ-strongly-convex-λ-strongly-concave. Let z∗s be the unique solution to sub-problem (2),
then the output of RAIN (Algorithm 1) with γ = 1 holds that

‖F (zS)‖ ≤ 16λγ

S∑
s=1

(1 + γ)s−1‖z∗s−1 − zs‖.

Remark 3.1 We directly set γ = 1 for the simplification of the proof. In fact, setting γ to
be any positive constant would lead to the upper bound of the same order.
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Algorithm 1 RAIN (f, z0, λ, L, {Ns}S−1s=0 , {Ks}S−1s=0 , γ)

1: f0 , f, λ0 = λγ, S = blog(1+γ)(L/λ)c
2: for s = 0, 1, · · · , S − 1

3: zs+1 ← Epoch-SEG(fs, zs, λs, 2L,Ns,Ks)

4: λs+1 ← (1 + γ)λs

5: fs+1(z) , fs(z) + λs+1

2 ‖x− xs+1‖2 − λs+1

2 ‖y − ys+1‖2

6: return zS

Lemma 3.1 indicates we can make ‖F (zS)‖ small if the subroutine provide zs that is suffi-
ciently close to z∗s−1 at each round. The recursive definition of fs(x, y) means the condition
numbers of the sub-problems is decreasing with the iteration of RAIN. Hence, achieving an
accurate solution to sub-problem (2) will not be too expensive for large s. We will show
that the total SFO complexity of RAIN could nearly match the lower bound by designing
the sub-problem solver carefully.

For general convex-concave objective function f(x, y), we use the initial point z0 =
(x0, y0) as the additional anchor and then we apply RAIN to find an ε-stationary point of
the following strongly-convex-strongly-concave function

g(x, y) , f(x, y) +
λ

2
‖x− x0‖2 −

λ

2
‖y − y0‖2. (4)

We denote the gradient operator of g(x, y) as G(x, y). Then the following lemma provides
the connection between the norms of F (x, y) and G(x, y).

Lemma 3.2 (anchoring lemma) Suppose the function f(x, y) is smooth and convex-
concave. We define g(x, y) , f(x, y) + λ

2‖x − x0‖2 − λ
2‖y − y0‖2 for some (x0, y0) and

denote its gradient operator as

G(x, y) ,

[
∇xg(x, y)
−∇yg(x, y)

]
,

then it holds that

‖F (z̃)‖ ≤ 2‖G(z̃)‖+ λ‖z0 − z∗‖,

for any z̃ = (x̃, ỹ), where z∗ = (x∗, y∗) is the stationary point of f(x, y) and z0 = (x0, y0).

According to Assumption 2.6 and Lemma 3.2, setting λ = Θ(ε/D) leads to finding an ε-
stationary point of f(x, y) can be reduced into finding an O(ε)-stationary point of g(x, y),
which can be done by applying RAIN (Algorithm 1) on the strongly-convex-strongly-concave
function g(x, y).

Connection to Related Work We provide some discussion on comparing RAIN with
related work.

• In convex optimization, Allen-Zhu (2018) proposed the recursive regularization tech-
nique for finding the nearly stationary point stochastically, which can be regarded as
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a special case of our anchored framework. However, Allen-Zhu’s analysis depends on
the convexity of the objective function, which is not suitable for minimax problem.
In contrast, the analysis of RAIN is mainly based on the monotonicity of the gradient
operator, which is more general than convex optimization.

• In minimax optimization, Yoon and Ryu (2021); Lee and Kim (2021) considered
variants of (stochastic) extragradient method by using initial point z0 as the fixed
anchor. In contrast, the proposed algorithm RAIN adjusts the anchoring point zs
with iterations, which leads to the sequence of anchoring points {zs} converges to z∗.
As a result, the RAIN achieves near-optimal SFO complexity in the stochastic setting
(see Table 1).

• Several existing methods (Lin et al., 2020b; Zhao, 2022; Kovalev and Gasnikov, 2022;
Luo et al., 2021; Yang et al., 2020b) introduce the proximal point iteration

(xs+1, ys+1) ≈ arg min
x∈Rdx

max
y∈Rdy

f(x, y) +
β

2
‖x− xs‖2,

which is useful to establish the near-optimal algorithms for unbalanced minimax op-
timization in the offline scenario. However, it is questionable whether the one-sided
regularization is helpful in finding near-stationary points in stochastic minimax prob-
lem (1).

4. Complexity Analysis for RAIN

In this section, we analyze the sub-problem solver Epoch Stochastic ExtraGradient (Epoch-
SEG) and show our RAIN has near-optimal SFO upper bound for finding ε-stationary point
of stochastic convex-concave minimax problem.

The procedure of Epoch-SEG (Algorithm 2) depends on the ordinary stochastic extra-
gradient method (SEG, Algorithm 3), which has the following property.

Lemma 4.1 (SEG) Suppose the function f(x, y) is L-smooth and λ-strongly-convex-λ-
strongly-concave, and the SFO F (x, y; ξ) is unbiased and has variance bounded by σ2. Then
SEG(Algorithm 3) holds that

λE‖zt+1/2 − z∗‖2 ≤
1

η
E
[
‖zt+1 − z∗‖2 − ‖zt − z∗‖2

]
+ 16ησ2 (5)

for any 0 < η < 1/(4L).

Taking the average on (5) over t = 0, . . . , T − 1 and applying Lemma 2.2, we know the
output of SEG satisfies

E‖z̄ − z∗‖2 ≤ 1

ληT
E‖z0 − z∗‖2 +

16ησ2

λ
,

which means SEG is able to decrease the distance from the output z̄ to the optimal solution
z∗ with iterations. However, it only converges to a neighborhood of z∗ by using the fixed
stepsize.
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Algorithm 2 Epoch-SEG (f, z0, λ, L,N,K)

1: for k = 0, 1, · · · , N − 1 do

2: zk+1 ← SEG
(
f, zk,

1
4L ,

8L
λ

)
3: for k = N,N + 1, · · · , N +K − 1 do

4: zk+1 ← SEG
(
f, zk,

1
2k−N+3L

, 2
k−N+5L

λ

)
5: return zN+K .

Algorithm 3 SEG (f, z0, η, T )

1: for t = 0, 1, · · · , T − 1 do

2: ξi ← a random index

3: zt+1/2 ← zt − ηF (zt; ξi)

4: ξj ← a random index

5: zt+1 ← zt − ηF (zt+1/2; ξj)

6: return z̄ by uniformly sampling from {zt+1/2}T−1t=0

Then we consider the epoch stochastic extragradient (Epoch-SEG, Algorithm 2), which
consists of two phases and each of them calling SEG as subroutine by different parameters.
The Epoch-SEG targets to reduce both the optimization error and statistical error in the
iterations:

• In the first phase, we call SEG by fixed stepsize and fixed iteration numbers to decrease
the optimization error, which is related to the number κ , L/λ and the distance
‖z0 − z∗‖.

• In the second phase, the statistical error aroused from the variance of stochastic oracle
has accumulated. Hence, we call SEG by decreasing stepsizes and increasing iteration
numbers to reduce the statistical error.

The formal theoretical guarantee of Epoch-SEG is shown in Lemma 4.2.

Lemma 4.2 (Epoch-SEG) Suppose the function f(x, y) is L-smooth and λ-strongly-convex-
λ-strongly-concave, and the stochastic first-order oracle F (x, y; ξ) is an unbiased estimator
of F (x, y) and has variance bounded by σ2. Then Epoch-SEG (Algorithm 2) holds that

E‖zN+K − z∗‖2 ≤
1

2N+2K
E‖z0 − z∗‖2︸ ︷︷ ︸

optimization error

+
8σ2

2KλL
.︸ ︷︷ ︸

statistical error

Additionally, the total number of SFO calls is no more than 16κN+2K+6κ, where κ = L/λ.

Combining the above results, we obtain the SFO upper bound complexity of RAIN
(Algorithm 1) for the strongly-convex-strongly-concave case.
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Theorem 4.1 (RAIN, SCSC) Suppose the function f(x, y) is L-smooth and λ-strongly-
convex-λ-strongly-concave, and the stochastic first-order oracle F (x, y; ξ) is an unbiased
estimator of F (x, y) and has variance bounded by σ2. If we run RAIN (Algorithm 1) with

N0 =


⌈

log2

(
512λ2S2D2

ε2

)⌉
, s = 0,

3, s ≥ 1,

and Ks =

⌈
log2

(
2048λsS

2σ2

Lε2

)⌉
, (6)

then the output zS satisfies E‖F (zS)‖ ≤ ε and the total number of SFO calls is no more
than

O
(
L

λ
+
L

λ
log

(
λD

ε
log

(
L

λ

))
+
σ2

ε2
log3

(
L

λ

))
.

We can find nearly stationary points for the general convex-concave case by introducing
the regularized function g(x, y) defined in (4). Applying Theorem 4.1 and Theorem 3.2, we
achieve the SFO upper bound complexity as follows.

Theorem 4.2 (RAIN, CC) Suppose the function f(x, y) is L-smooth and convex-concave,
and the stochastic first-order oracle F (x, y; ξ) is an unbiased estimator of F (x, y) and has
variance bounded by σ2. Running RAIN (Algorithm 1) on function

g(x, y) , f(x, y) +
λ

2
‖x− x0‖2 −

λ

2
‖y − y0‖2

with λ = min {ε/D,L} outputs a 3ε-stationary point in expectation, and the total number
of SFO calls is no more than

O
(
LD

ε
+
LD

ε
log log

(
LD

ε

)
+
σ2

ε2
log3

(
LD

ε

))
.

The comparison in Table 1 shows both the results of Theorem 4.1 and Theorem 4.2 are better
than existing algorithms and nearly match the lower bound. Additionally, the theoretical
results in this section are not limited to convex-concave minimax optimization. In fact, our
analysis is mainly based on the Lipschitz continuity and the monotonicity of the gradient
operator, which means the results are also applicable to more general problems of variational
inequality with Lipschitz continuous and monotone operator (Rockafellar, 1970).

5. Extension to Nonconvex-Nonconcave Settings

In this section, we extend RAIN to solve nonconvex-nonconcave minimax problems. We
focus on two settings of comonotone and intersection dominant conditions. The comono-
tonicity is defined as follows.

Definition 5.1 (comonotonicity) We say the operator F (·) is ρ-comonotone if there ex-
ists some ρ ∈ R such that

(F (z)− F (z′))>(z − z′) ≥ ρ‖F (z)− F (z′)‖2

for all z and z′. We also say F (·) is a negative comonotonic operator when ρ < 0.
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Remark 5.1 In the case of ρ = 0, the ρ-comonotonicity reduces to monotonicity shown in
Lemma 2.1. In the case of ρ < 0, the ρ-comonotone gradient operator allow the objective
function be nonconvex-nonconcave. Typically, we additionally require ρ ≥ −O(1/L) in the
convergence analysis for optimization algorithms in the negative comonotone setting (Di-
akonikolas et al., 2021; Lee and Kim, 2021).

The intersection dominant condition (Grimmer et al., 2023) also allows the objective func-
tion be nonconvex-nonconcave, which is defined as follows.

Definition 5.2 (intersection dominant condition) For a twice differentiable function
f(x, y), we say it satisfies the (τ, α)-intersection-dominant condition if there exist some
τ > 0 and α > 0 such that

∇2
xxf(x, y) +∇2

xyf(x, y)(τI −∇2
yyf(x, y))−1∇2

yxf(x, y) � αI

and

−∇2
yyf(x, y) +∇2

yxf(x, y)(τI +∇2
xxf(x, y))−1∇2

xyf(x, y) � αI

for all (x, y).

Remark 5.2 Typically, we also require τ ≥ Ω(L) in conditions of intersection dominant
for the analysis for minimax optimization (Grimmer et al., 2023; Lee and Kim, 2021).

Remark 5.3 For smooth minimax optimization, the intersection dominant condition is
stronger than negative comonotonicity. Concretely, the intersection dominant condition
needs the function f(x, y) to be twice differentiable, which is unnecessary to negative comono-
tonicity. Furthermore, if the function f(x, y) is L-smooth and satisfies the (τ, α)-intersection-
dominant condition for some α > 0 and τ > L, then its gradient operator F (·) must satisfy
the −1/τ -comonotonic condition (see Example 1 of Lee and Kim (2021)).

It turns out that both of these two conditions are related to the saddle envelope, which
is a natural generalization of Moreau envelope for minimax problems.

Definition 5.3 (saddle envelope) Given some τ > 0, we define the saddle envelope of
function f(x, y) as

fτ (x, y) , min
x′∈Rdx

max
y′∈Rdy

f(x′, y′) +
τ

2
‖x′ − x‖2 − τ

2
‖y′ − y‖2.

The saddle envelope has the following properties.

Proposition 5.1 Suppose function f(x, y) is L-smooth and satisfies the (τ, α)-intersection
dominant condition for τ ≥ 2L, then f2L(x, y) is λ-strongly-convex-λ-strongly-concave,
where

λ =

(
1

2L
+

1

α

)−1
= Θ(α). (7)
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Proposition 5.2 Suppose the function f(x, y) is L-smooth and convex-concave, and its
gradient operator F (x, y) is −ρ-comonotonic with 0 < ρ ≤ 1/(2L), then its saddle envelope
f2L(x, y) is convex-concave.

Based on the observation that the stationary points of f2L(x, y) are exactly the same
as those of f(x, y) (Grimmer et al., 2023, Corollary 2.2), it is possible to apply RAIN on
the saddle envelope f2L(x, y) for nonconvex-nonconcave minimax optimization. However,
accessing the (stochastic) gradient operator of f2L(x, y) is non-trivial since it cannot be
obtained by the gradient of f(x, y) directly. Hence, we maintain the stochastic estimator
for the gradient operator of f2L(x, y) as follows:

1. We first denote the gradient operator of f2L(x, y) by

F2L(x, y) =

[
∇xf2L(x, y)
−∇yf2L(x, y)

]
,

which also can be written as (Grimmer et al., 2023):

F2L(z) = F (z+) = 2L(z − z+),

where z = (x, y) and

z+ = (x+, y+) = arg min
x′∈Rdx

max
y′∈Rdy

f(x′, y′) + L‖x′ − x‖2 − L‖y′ − y‖2.

2. Then we estimate z+ by ẑ+, which is obtained by solving the minimax problem:

ẑ+ = (x̂+, ŷ+) ≈ arg min
x′∈Rdx

max
y′∈Rdy

g(x′, y′;x, y), (8)

where g(x′, y′;x, y) , f(x′, y′) + L‖x′ − x‖2 − L‖y′ − y‖2.

3. Finally, we construct F̂2L(z) = 2L(z − ẑ+) as the estimator of F2L(z).

We would like to regard F̂2L( · ) as the stochastic estimator of F2L( · ), then it looks
reasonable to run RAIN on the saddle envelope f2L(·) by using its approximate gradient
operator F2L( · ). Since the function g(x′, y′;x, y) is strongly-convex in x′ and strongly-
concave in y′, it is desired to obtain ẑ+ by Epoch-SEG efficiently. However, directly using
Epoch-SEG on g only leads to E‖ẑ+− z+‖2 be small, while the output ẑ+ may be a biased
estimator of z+. Consequently, the constructed F̂2L(z) would also be biased, violating the
assumption of unbiased stochastic oracle in RAIN. We address this issue by the following
strategies:

1. We propose Epoch-SEG+ (Algorithm 4) by integrating the step of multilevel Monte-
Carlo (MLMC) (Asi et al., 2021) with Epoch-SEG, which makes the bias of ẑ+ decrease
exponentially. The formal theoretical result is described in Theorem 5.1.

2. We show that RAIN also works for stochastic oracles with low bias. Since the basic
component of RAIN is SEG, it is sufficient to analyze the complexity of SEG with low
biased stochastic oracle. The formal theoretical result is described in Theorem 5.2.

11
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Algorithm 4 Epoch-SEG+ (f, z0, λ, L,N,K,M)

1: for m = 0, 1, · · · ,M − 1 do

2: draw J ∼ Geom (1/2)

3: get zm,N , zm,N+J−1, zm,N+J by Epoch-SEG(f, z0, λ, L,N, J)

4: ẑm ← zm,N + 2J(zm,N+J − zm,N+J−1)I [J ≤ K]

5: return ẑ ← 1
M

∑M−1
m=0 ẑm.

Theorem 5.1 Suppose the function f(x, y) is L-smooth and λ-strongly-convex-λ-strongly-
concave, and the stochastic first-order oracle F (x, y; ξ) is unbiased estimator of F (x, y) and
has variance bounded with σ2, then Epoch-SEG+ (Algorithm 4) holds that

‖E[ẑ∗]− z∗‖2 ≤ 1

2N+2K
E‖z0 − z∗‖2 +

8σ2

2KλL

and

E‖ẑ∗ − E[ẑ∗]‖2 ≤ 22

2NM
E‖z0 − z∗‖2 +

112Kσ2

MλL
.

Additionally, the total number of SFO calls is no more than 16κMN + 64MKL/λ in ex-
pectation.

Theorem 5.2 (SEG with biased oracle) Suppose the function f(x, y) is L-smooth and
λ-strongly-convex-λ-strongly-concave. We run SEG (Algorithm 3) on f(x, y) and denote

bt , ‖EF (zt; ξi)− F (zt)‖, bt+1/2 , ‖EF (zt+1/2; ξj)− F (zt+1/2)‖,
σ2t , E‖F (zt; ξi)− F (zt)‖2, σ2t+1/2 , E‖F (zt+1/2; ξj)− F (zt+1/2)‖2.

Then it holds that

E
[
λ‖zt+1/2 − z∗‖2

]
≤ 1

η
E
[
‖zt − z∗‖2 − ‖zt+1 − z∗‖2

]
− 1

2η
E‖zt+1 − zt+1/2‖2

+ 6η(e2t + e2t+1/2)︸ ︷︷ ︸
mean square error

+
2b2t+1/2

λ︸ ︷︷ ︸
bias

for any 0 < η < 1/(4L), where e2t , b2t + σ2t and e2t+1/2 , b2t+1/2 + σ2t+1/2.

The above theorem suggests that if it satisfies

σ2t ≤
σ2

2
, σ2t+1/2 ≤

σ2

2
, b2t ≤

σ2

2
, and b2t+1/2 ≤ 2λησ2, (9)

we are able to obtain the result of (5) in Lemma 4.1. Then we can follow the complexity
analysis of RAIN to establish the theoretical guarantee of applying RAIN on the saddle
envelope.1 As a result, we can find an ε-stationary point of f2L(x, y):

1. We only need to replace every L with 6L in Theorem 4.1 and Theorem 4.2 since f2L(x, y) is 6L-smooth.

12
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Algorithm 5 RAIN++ (f, z0, λ, L, {Ns}S−1s=0 , {Ks}S−1s=0 )

1: λ0 = λγ, S = blog(1+γ)(6L/λ)c, w0 ← z0

2: for s = 0, 1, · · · , S − 1

3: zs,0 ← zs, ws,0 ← ws

4: for k = 0, 1, · · · , Ns − 1 do

5: (zs,k+1, ws,k+1)← SEG++
(
f, zs,k, ws,k,

1
48L ,

96L
λs
, s, {zi}si=0, γ, λ

)
6: for k = Ns, Ns + 1, · · · , Ns +Ks + 1 do

7: (zs,k+1, ws,k+1)← SEG++
(
f, zs,k, ws,k,

1
2k−Ns+3×12L ,

2k−Ns+5×12L
λs

, s, {zi}si=0, γ, λ
)

8: end for

9: (zs+1, ws+1)← (zNs+Ks , wNs+Ks)

10: λs+1 ← (1 + γ)λs

11: end for

12: return zS

• For (τ, α)-intersection-dominant condition with τ ≥ 2L, it requires Õ(σ2ε−2 + L/α)
times evaluations of F̂2L( · ).

• For −ρ-comonotone condition with ρ ≤ 1/(2L), it requires Õ(σ2ε−2 + L/ε) times
evaluations of F̂2L( · ).

Based on the above ideas, we proposed RAIN++ in Algorithm 5 as an extension of
RAIN. The iterations of RAIN++ consider the regularized function

f
(s)
2L (x, y) ,

f2L(x, y), s = 0,

f
(s−1)
2L (x, y) +

λs
2
‖x− xs‖2 −

λs
2
‖y − ys‖2, s ≥ 1,

(10)

Compared with the iterations of RAIN applying SEG to solve the sub-problem

min
x∈Rdx

max
y∈Rdy

f (s)(x, y),

the iterations of RAIN++ apply SEG++ to solve the sub-problem

min
x∈Rdx

max
y∈Rdy

f
(s)
2L (x, y).

For SEG++, we apply Epoch-SEG+ (Epoch-SEG with the debias step of MLMC) to achieve

the low-biased gradient estimation of the saddle envelope f
(s)
2L (x, y). Note that the sub-

problems solved by Epoch-SEG+ (Line 5 and 9 of Algorithm 6) are well-conditioned be-
cause they are 3L-smooth and L-strongly-convex-L-strongly-concave. Therefore the SFO
complexity for Epoch-SEG+ only require the complexity of Õ(1) to obtain a sufficiently
accurate solution by carefully choosing the initialization and parameters. As a result, the
total SFO complexity of RAIN++ would be Õ(1) times the one of RAIN.

Below, we present the theoretical result under the intersection-dominant condition.

13
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Theorem 5.3 (RAIN++, ID) Suppose the function f(x, y) is L-smooth and satisfies the
(τ, α)-intersection-dominant condition with τ ≥ 2L, and the stochastic first-order oracle
F (x, y; ξ) is unbiased and has variance bounded by σ2, then running RAIN++ with γ = 1,
λ as defined in (7) and

Ns =


⌈

log2

(
512λ2S2D2

ε2

)⌉
, s = 0,

3, s ≥ 1,

and Ks =

⌈
log2

(
1024λsS

2σ2

3Lε2

)⌉
holds that E‖F2L(zS)‖ ≤ ε, where λ is defined in (7). Additionally, the total number of SFO
calls is no more than Õ(σ2ε−2 + L/α) in expectation.

We can also use the regularization trick to obtain the theoretical guarantee in the negative
comonotone setting. The idea is applying RAIN++ on

g2L(x, y) , f2L(x, y) +
λ

2
‖x− x0‖2 −

λ

2
‖y − y0‖2

for some λ = Θ(ε/D). Note that the function g2L(x, y) is λ-strongly-convex-λ-strongly-
concave and the algorithm solves the minimax sub-problems with objective functions

f
(s)
2L (x, y) ,


f2L(x, y) +

λ

2
‖x− x0‖ −

λ

2
‖y − y0‖2, s = 0,

f
(s−1)
2L (x, y) +

λs
2
‖x− xs‖2 −

λs
2
‖y − ys‖2, s ≥ 1,

(11)

which is similar to what we have done in the general convex-concave case. We formally
present the result in the following theorem.

Theorem 5.4 (RAIN++, NC) Suppose the function f(x, y) is L-smooth and its gradient
operator is −ρ-comonotone with ρ ≤ 1/(2L), and the stochastic first-order oracle F (x, y; ξ)
is unbiased and has variance bounded by σ2. If we run RAIN++ (Algorithm 5) with γ = 1
and λ = min{ε/D, 6L} then it holds that E‖F2L(zS)‖ ≤ 3ε. Additionally, the total number
of SFO calls is no more than Õ(σ2ε−2 + LDε−1).

Corollary 5.3 and Corollary 5.4 indicate RAIN++ can find an ε-stationary point of the
envelope f2L(x, y) in corresponding settings, which easily leads to a nearly-stationary point
of f(x, y) by the following proposition.

Proposition 5.3 Suppose the function f(x, y) is L-smooth and the point ẑ = (x̂, ŷ) is an
ε-stationary point of the function f2L(x, y), then we can find a 2ε-stationary point of f(x, y)
within O(log(ε−1) + σ2ε−2) SFO complexity in expectation.

6. The Lower Complexity Bounds

We first provide the lower complexity bounds for finding near-stationary points of the
stochastic convex-concave minimax problem. Combining the ideas of Luo et al. (2021);
Foster et al. (2019) and Yoon and Ryu (2021), we obtain Theorem 6.2 and Theorem 6.1 for
general convex-concave case and strongly-convex-strongly-concave case respectively, which
nearly match the upper bounds shown in Theorem 4.1 and Theorem 4.2. Hence, the pro-
posed RAIN (Algorithm 1) is near-optimal.
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Algorithm 6 SEG++ (f, z0, w0, η, T, s, {z̃i}si=0, γ, λ)

1: let L be the smoothness coefficient of f(x, y)

2: set N,K,M according to equation (24) and ẑ+−1/2 ← w0

3: for t = 0, 1, · · · , T − 1 do

4: gt(x, y) , f(x, y) + L‖x− xt‖2 − L‖y − yt‖2

5: ẑ+t ← Epoch-SEG+(gt, ẑ
+
t−1/2, L, 3L,N,K,M)

6: F̂
(s)
2L (zt)←

{
2L(zt − ẑ+t ) + λγ

∑s
i=1(1 + γ)i(zt − z̃i), ID case

2L(zt − ẑ+t ) + λγ
∑s

i=0(1 + γ)i(zt − z̃i), NC case

7: zt+1/2 ← zt − ηF̂ (s)
2L (zt)

8: gt+1/2(x, y) , f(x, y) + L‖x− xt+1/2‖2 − L‖y − yt+1/2‖2

9: ẑ+t+1/2 ← Epoch-SEG+(gt+1/2, ẑ
+
t , L, 3L,N,K,M)

10: F̂
(s)
2L (zt+1/2)←

{
2L(zt+1/2 − ẑ+t+1/2) + λγ

∑s
i=1(1 + γ)i(zt+1/2 − z̃i), ID case

2L(zt+1/2 − ẑ+t+1/2) + λγ
∑s

i=0(1 + γ)i(zt+1/2 − z̃i), NC case

11: zt+1 ← zt − ηF̂ (s)
2L (zt+1/2)

12: end for

13: Draw J ∼ Unif([T ])

14: return (zJ+1/2, ẑJ+1/2)

Theorem 6.1 For any stochastic algorithm A based on stochastic first-order oracle (SFO)
under Assumption 2.6 and parameters L ≥ 2, λ ≤ 1 and ε ≤ 0.01λ, there exist an L-smooth
and λ-strongly-convex-λ-strongly-concave function f(x, y) that A needs at least

Ω
(
σ2ε−2 log(Lε−1) + κ log(λε−1)

)
SFO calls to find an ε-stationary point of f(x, y).

Theorem 6.2 For any stochastic algorithm A based on stochastic first-order oracle (SFO)
under Assumption 2.6 and parameters of L ≥ 2 and ε ≤ 0.01, there exists an L-smooth and
convex-concave function f(x, y) such that A needs at least

Ω
(
σ2ε−2 log(Lε−1) + LDε−1

)
SFO calls to find an ε-stationary point of f(x, y).

Since the gradient operator of any convex-concave function is negative comonotone,
the lower bound shown in Theorem 6.1 is also valid for the problem under the negative
comonotone condition.

Corollary 6.1 For any stochastic algorithm A based on stochastic first-order oracle (SFO)
under Assumption 2.6 and parameters of L ≥ 2 and ε ≤ 0.01, there exist an L-smooth
function f(x, y) whose gradient operator is negative comonotone such that A needs at least

Ω
(
σ2ε−2 log(Lε−1) + LDε−1

)
SFO calls to find an ε-stationary point of f(x, y).

15



Chen and Luo

0 500 1000 1500 2000 2500 3000

#SFO

10
-2

10
0

10
2

G
ra

d
ie

n
t 
N

o
rm

SEG

R-SEG

SEAG

PDHG

RAIN

0 500 1000 1500 2000 2500 3000

#SFO

10
-2

10
0

10
2

G
ra

d
ie

n
t 
N

o
rm

SEG

R-SEG

SEAG

PDHG

RAIN

0 500 1000 1500 2000 2500 3000

#SFO

10
-2

10
0

10
2

G
ra

d
ie

n
t 
N

o
rm

SEG

R-SEG

SEAG

PDHG

RAIN

(a) σ = 0.001 (b) σ = 0.002 (c) σ = 0.005

Figure 1: The results of the number of SFO calls against gradient norm on problem (12).
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Figure 2: The results of the number of SFO calls against gradient norm on problem (13).
SEAG diverges in (c), which does not contradict its convergence guarantee as the
condition σ2k ≤ ε/(k + 1) in Theorem 6.1 (Lee and Kim, 2021) is unsatisfied.

Similarly, Theorem 6.2 leads to the lower bound for intersection-dominant condition.

Corollary 6.2 For any stochastic algorithm A based on stochastic first-order oracle (SFO)
under Assumption 2.6 and parameters of L ≥ 2, α ≤ 1 and ε ≤ 0.01α, there exist an L-
smooth function f(x, y) satisfying the (τ, α)-intersection-dominant condition with τ ≥ 2L
such that A needs at least

Ω
(
σ2ε−2 log(Lε−1) + Lα−1 log(αε−1)

)
SFO calls to find an ε-stationary point of f(x, y).

Corollary 6.1 and Corollary 6.2 suggest that the proposed RAIN++ (Algorithm 5) is also
near-optimal in negative comonotone and intersection-dominant conditions respectively.

7. Numerical Experiments

In this section, we compare our algorithms with baselines on both convex-concave and
nonconvex-nonconcave minimax problems.
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7.1 The Convex-Concave Case

We conduct numerical experiments by comparing our RAIN with the following baselines:

• SEG: the ordinary stochastic extragradient;

• R-SEG: the stochastic extragradient with regularization trick (Nesterov, 2012);

• SEAG: the stochastic extra anchored gradient (Lee and Kim, 2021, Algorithm 3);

• PDHG: the primal-dual hybrid gradient (Zhao, 2022, Algorithm 1).

The experiments consider two minimax problems as follows.

• The first one is the bilinear minimax problem:

min
x∈Rd

max
y∈Rd

fb(x, y) , x>y, (12)

which reveals some important issues in minimax optimization. For example, the
duality gap is not well defined except at its unique saddle point (0, 0); the classical
method stochastic gradient descent ascent diverges and other first-order algorithms
also converge slowly due to the cycling behaviors (Pethick et al., 2022).

• The second one is the hard case of convex-concave minimax problem

min
x∈Rd

max
y∈Rd

fδ,ν(x, y) , (1− δ)gν(x) + δx>y − (1− δ)gν(y), (13)

where

gν(ui) =

{
ν|ui| − 1

2ν
2, |ui| ≥ ν,

1
2u

2
i , |ui| < ν,

and we set ν = 5× 10−5 and δ = 10−2 by following Yoon and Ryu (2021)’s setting.

We use the stochastic first-order oracles

Fb(x, y; ξ) = Fb(x, y) + ξ and Fδ,ν(x, y; ξ) = Fδ,ν(x, y) + ξ

for problems (12) and (13) respectively, where Fb(x, y) is the gradient operator of fb(x, y),
Fδ,ν(x, y) is the gradient operator of fδ,ν(x, y) and ξ ∼ N (0, σ2I2d). We set d = 1000 for
problem (12) and d = 100 for problem (13). We provide the detailed implementation for the
algorithms in Appendix E and the source code is available2. We present the experimental
results under different levels of noise in Figure 1 and Figure 2, which shows the proposed
RAIN obviously performs better than baseline methods.

2. https://github.com/TrueNobility303/RAIN
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Figure 3: The results of the number of SFO calls against gradient norm on problem (14)
with L = 1 and ρ = −1/(8

√
2).

7.2 The Nonconvex-Nonconcave Case

We also consider the nonconvex-nonconcave problem

min
x∈R

max
y∈R

fρ,L(x, y) ,
ρL2

2
x2 + L

√
1− ρ2L2xy − ρL2

2
y2, (14)

where L, ρ > 0 such that ρL < 1. According to the verification of Lee and Kim (2021), the
gradient operator of function fρ,L(x, y) is L-Lipschitz continuous and ρ-comonotone. We
use the stochastic first-order oracles

Fρ,L(x, y; ξ) = fρ,L(x, y) + ξ

in our experiments, where ξ ∼ N (0, σ2I2).

We compare our proposed RAIN++ with the following baselines:

• SEG+: the extension of SEG under the negative comonotonicity assumption (Di-
akonikolas et al., 2021, Equation (EG+

p ));

• SFEG: the stochastic fast extra gradient method (Lee and Kim, 2021, Algorithm 1),
where we replace the exact gradient operator with the stochastic gradient operator.

We test the algorithms on Problem (14) with L = 1 and ρ = −1/8
√

2 or −1/3, and the
experimental results are shown in Figure 3 and 4, respectively. The implementation details
of the algorithm are deferred to Appendix E. We can observe that our proposed RAIN++

performs better than baselines. We remark that the convergence analysis of SFEG by Lee
and Kim (2021) requires either ρ = 0 or σ = 0, while it also works on our stochastic
nonconvex-nonconcave problem with ρ > 0 and σ > 0 in practice. Note that Figure 4
shows that SEG+ diverges on Problem (14) with ρ = −1/3, which is also observed by the
empirical results of Lee and Kim (2021). The reason is the convergence guarantee of SEG+

(Diakonikolas et al., 2021, Theorem 4.5)) requires the condition ρ ∈ [−1/(4
√

2L), 0), which
is not satisfied in the setting of ρ = −1/3.
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Figure 4: The results of the number of SFO calls against gradient norm on problem (14)
with L = 1 and ρ = −1/3.

8. Conclusion

In this work, we propose the Recursive Anchor IteratioN (RAIN) algorithm for stochastic
minimax optimization. The theoretical analysis has shown that the framework of RAIN
with appropriate sub-problem solvers could achieve the near-optimal SFO complexity for
finding nearly stationary points in convex-concave and strongly-convex-strongly-concave
minimax optimization problems. We also extend the idea of RAIN to solve two specific
nonconvex-nonconcave minimax problems and the proposed method RAIN++ also achieves
the near-optimal SFO complexity in these settings.
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Appendix A. The Proofs in Section 3

We first provide the non-expansiveness lemma, then give detailed proofs for results in Sec-
tion 3.

Lemma A.1 (non-expansiveness) Suppose the operator F ( · ) is monotone. We define
G(z) , F (z) + λ(z − z0) for some λ > 0 and z0 ∈ Rd, then it holds that

‖w∗ − z0‖ ≤ ‖z∗ − z0‖ and ‖w∗ − z∗‖ ≤ ‖z∗ − z0‖,

where z∗ is the solution to F (z) = 0 and w∗ is the solution to G(w) = 0.

Proof The monotonicity of F means G is λ-strongly monotone. Therefore, the operator
G must has an unique solution w∗. Then we have

λ‖w∗ − z∗‖2

≤G(z∗)>(z∗ − w∗)
=(F (z∗) + λ(z∗ − z0))>(z∗ − w∗)
=λ(z∗ − z0)>(z∗ − w∗)

=
λ

2
‖w∗ − z∗‖2 +

λ

2
‖z∗ − z0‖2 −

λ

2
‖w∗ − z0‖2,

which implies the result of this lemma.

A.1 The Proof of Lemma 3.1

Proof Let F (s)(·) be the gradient operator of f (s)(x, y). It is clear that F (s)(·) is equivalent
to the following definition:

F (s)(z) , F (z) + λ
s∑
i=1

2i(z − zi), s = 0, · · · , S − 1.

Based on the setting of S = blog2(L/λ)c, we have

λ2S ≤ L ≤ λ2S+1,

then it holds that

λ+ λ

s∑
i=1

2i > 2sλ

and

L+ λ

S−1∑
i=1

2i ≤ 2L.
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Hence, we know that each F (s) is at least 2sλ-strongly monotone and 2L-smooth. Further,
we have

‖F (zS)‖ ≤ ‖F (S−1)(zS)‖+ λ
S−1∑
i=1

2i‖zS − zi‖

≤ ‖F (S−1)(zS)‖+ λ
S−1∑
i=1

2i‖zS − z∗S−1‖+ λ
S−1∑
i=1

2i‖z∗S−1 − zi‖

≤ 2‖F (S−1)(zS)‖+ λ

S−1∑
i=1

2i‖z∗S−1 − zi‖

≤ 2‖F (S−1)(zS)‖+ λ
S−1∑
i=1

2i‖z∗i−1 − zi‖+ λ
S−1∑
i=1

2i‖z∗S−1 − z∗i−1‖

≤ 2‖F (S−1)(zS)‖+ λ
S−1∑
i=1

2i‖z∗i−1 − zi‖+ λ
S−1∑
i=1

2i
S−1∑
j=i

‖z∗j − z∗j−1‖

= 2‖F (S−1)(zS)‖+ λ
S−1∑
i=1

2i‖z∗i−1 − zi‖+ λ
S−1∑
j=1

‖z∗j − z∗j−1‖
j∑
i=1

2i

≤ 2‖F (S−1)(zS)‖+ λ

S−1∑
i=1

2i‖z∗i−1 − zi‖+ λ

S−1∑
j=1

2j+1‖z∗j − z∗j−1‖

= 2‖F (S−1)(zS)‖+ λ
S−1∑
i=1

2i‖z∗i−1 − zi‖+ λ
S−1∑
i=1

2i+1‖z∗i − z∗i−1‖

≤ 4L‖zS − z∗S−1‖+ 3λ

S−1∑
i=1

2i‖z∗i−1 − zi‖

≤ 16λ

S∑
i=1

2i−1‖z∗i−1 − zi‖.

Above, the third line follows from F (S−1) is at least
(
λ
∑S−1

i=1 2i
)
-strongly monotone; the

second last line relies on the non-expansiveness after anchoring shown in Lemma A.1 such
that ‖z∗i − z∗i−1‖ ≤ ‖z∗i−1 − zi‖; in the last line we use F (S−1) is at most 2L-Lipschitz and
L ≤ λ2S+1; the other steps only requires triangle inequality and simple calculation.

A.2 The Proof of Lemma 3.2

Proof Let z∗g = (x∗g, y
∗
g) be the unique stationary point of g(x, y) such that G(z∗g) = 0.

Then we have

‖F (z̃)‖ ≤ ‖G(z̃)‖+ λ‖z̃ − z0‖
≤ ‖G(z̃)‖+ λ‖z̃ − z∗g‖+ λ‖z∗g − z0‖
≤ 2‖G(z̃)‖+ λ‖z∗ − z0‖,
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where the last step we use G is λ-strongly-monotone and ‖z∗g − z0‖ ≤ ‖z∗ − z0‖ from
Lemma A.1.

Appendix B. The Proofs in Section 4

We provide detailed proofs for results in Section 4 except Lemma 4.1. Note that Lemma 4.1
is a special case of Theorem 5.2 with bt = bt+1/2 = 0 and σt = σt+1/2 = σ. Hence, it can be
proved by directly using the analysis for Theorem 5.2 in Appendix C.4.

B.1 The Proof of Lemma 4.2

Proof Denote ηk and Tk be the step size and epoch length in the kth epoch. From
Lemma 4.1 and strong monotone we know that

E‖zk+1 − z∗‖2 ≤
1

ληkTk
E‖zk − z∗‖2 +

16ηkσ
2

λ
. (15)

Telescoping from k = 0, 1, · · · , N − 1, we obtain

E‖zN − z∗‖2 ≤
1

2N
E‖z0 − z∗‖2 +

8σ2

λL
.

Then we can use induction from N,N+1, · · · , N+K−1 to show inequality in this theorem:
suppose it is true for the case N + k, then for the case N + k + 1, we have

E‖zN+k+1 − z∗‖2

≤1

4
E‖zN+k − z∗‖2 +

2σ2

2kλL

≤1

4

(
1

2N+2k
E‖z0 − z∗‖2 +

8σ2

2kλL

)
+

2σ2

2kλL

≤ 1

2N+2(k+1)
E‖z0 − z∗‖2 +

8σ2

2k+1λL
,

where the first inequality is by plugging ηk, Tk into (15) and the second one comes from the
induction hypothesis.

In addition, as a side effect, it is clear that in this procedure, for any k = 0, 1, · · · , N +
K − 1, we can always maintain the bound of

E‖zk − z∗‖2 ≤ E‖z0 − z∗‖2 +
8σ2

λL
. (16)

For each iteration of SEG, we need to quest the stochastic operator twice. Then summing
up all the iterations in every epoch yields the complexity as claimed.
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B.2 The Proof of Theorem 4.1

Proof By Lemma 3.1 and taking expectation, we know that to find zS such that E‖F (zS)‖ ≤
ε it is sufficient to guarantee

256λ2sS
2E‖zs+1 − z∗s‖2 ≤ ε2, (17)

for s = 0, 1, · · · , S − 1, where z∗s denotes the solution to

min
x∈Rdx

max
y∈Rdy

fs(x, y).

Then we prove (17) holds for s = 0, 1, · · · , S − 1 by induction. By the definition of λs,
we know that λs+1 = 2λs and each sub-problem fs(x, y) is at least λs-strongly-convex-λs-
strongly-concave. Now we specify the parameters in Epoch-SEG by

zs+1 ← Epoch-SEG(fs, zs, λs, 2L,Ns,Ks).

By results of (15), we know that

E‖zs+1 − z∗s‖2

≤ 1

2Ns+2Ks
E‖zs − z∗s‖2 +

4σ2

2KsλsL

≤ 1

2Ns+2Ks
E‖zs − z∗s−1‖2 +

4σ2

2KsλsL
,

where we use Lemma 3.2 to obtain ‖zs − z∗s‖ ≤ ‖zs − z∗s−1‖.
For the case of s = 0, we have

E‖z1 − z∗0‖2 ≤
1

2N0
E‖z0 − z∗‖2 +

4σ2

2K0λL
,

where we use w∗0 = z∗, λ0 = λ and K0 ≥ 1. Then we can let

N0 ≥ log2

(
512λ2S2D2

ε2

)
and 2K0 ≥ 2048λS2σ2

Lε2

to guarantee E‖z1 − z∗0‖2 meet our requirement.
Suppose we already have 256λ2s−1S

2E‖zs − z∗s−1‖2 ≤ ε2. By observing that

E[‖zs+1 − z∗s‖2] ≤
1

2Ns+2Ks
E[‖zs − z∗s‖2] +

4σ2

2KsλsL

≤ 1

2Ns+2Ks
E[‖zs − z∗s−1‖2] +

4σ2

2KsλsL

≤ 1

2Ks
× ε2

256λ2s−1S
2

+
4σ2

2NsλsL
,

then let

Ns ≥ 3 and 2Ks ≥ 2048λsS
2σ2

Lε2
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for all s ≥ 1 leads to

256λ2sS
2E‖zs+1 − z∗s‖2 ≤ ε2.

The total SFO complexity is

S−1∑
s=0

2L

λs
×
(
16Ns + 64× 2Ks

)
=

2LN0

λ
+
S−1∑
s=1

96L

λs
+
S−1∑
s=0

128L

λs
× 2Ks

≤2LN0

λ
+
S−1∑
s=1

96L

λs
+
S−1∑
s=0

512L

λs
× 2048λsS

2σ2

Lε2

≤2LN0

λ
+

96L

λ
+

1048576S3σ2

ε2
.

Plugging the value of N0 and S into above equation completes the proof.

B.3 The Proof of Theorem 4.2

Proof Let w be the output of applying RAIN on the function g(x, y) and we define the
operator G0(z) , F (z) + λ(z − z0). By the anchoring lemma with any 0 < λ ≤ ε/D and
taking expectation, we know that if we can make sure E‖G0(w)‖ ≤ ε, then we can obtain
E‖F (w)‖ ≤ 3ε . By Theorem 4.1, we can ensure E‖G(w)‖ ≤ ε within a SFO complexity of

O
(
L+ λ

λ
+
L+ λ

λ
log

(
λD

ε
log

(
L+ λ

λ

))
+
σ2

ε2
log3

(
L+ λ

λ

))
.

Then we complete the proof by plugging the value of λ into above equation.

Appendix C. The Proofs in Section 5

We provide the detailed proofs for results in Section 5.

C.1 The Proof of Proposition 5.1

Proof Since τ ≥ 2L, then we know

∇2
xxf(x, y) +∇2

xyf(x, y)(2LI −∇2
yyf(x, y))−1∇2

yxf(x, y) � αI

and

−∇2
yyf(x, y) +∇2

yxf(x, y)(2LI +∇2
xxf(x, y))−1∇2

xyf(x, y) � αI,

which implies the desired result by Proposition 2.6 of Grimmer et al. (2023).
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C.2 The Proof of Proposition 5.2

Proof According to the proof of Example 1 from Lee and Kim (2021), we know that

(F (z)− F (z′))>(z − z′) ≥ − 1

2L
‖F (z)− F (z′)‖2

for any z = (x, y) and z′ = (x′, y′), which implies the gradient operator of f2L(x, y) is
monotone. It further indicates the saddle envelope f2L(x, y) is convex-concave (Liu et al.,
2021, Lemma 3).

C.3 The Proof of Theorem 5.1

Proof We know that

P(J = j) = 2−j , j = 1, · · · ,K.

Since ẑm is i.i.d for all m, we have

E[ẑ] = E[ẑ0] = E[zN ] +
K∑
j=1

P(J = j)2jE[zN+j − zN+j−1] = E[zN+K ].

Using Lemma 4.2 and Jensen’s inequality, we obtain the upper bound for bias:

‖Eẑ − z∗‖2 ≤ E‖zN+K − z∗‖2 ≤
1

2N+2K
× E‖z0 − z∗‖2 +

8σ2

2KλL
;

as well as the upper bound for variance:

E‖ẑ − Eẑ‖2

≤ 1

M
E‖ẑ0 − Eẑ0‖2

≤ 1

M
E‖ẑ0 − z∗‖2

≤ 2

M
E‖zN − z∗‖2 +

2

M
E‖2J(zN+J − zN+J−1)‖2

=
2

M
E‖zN − z∗‖2 +

2

M

K∑
j=1

P(J = j)2j‖zN+j − zN+j−1‖2

≤ 2

M
E‖zN − z∗‖2 +

4

M

K∑
j=1

2j
(
‖zN+j − z∗‖2 + ‖zN+j−1 − z∗‖2

)
≤ 2

M
E‖zN − z∗‖2 +

1

M

K∑
j=1

{
1

2N+j
× 20E‖z0 − z∗‖2 +

96σ2

λL

}

≤ 1

M

{
2

2N
E‖z0 − z∗‖2 +

16σ2

λL
+

20

2N
E‖z0 − z∗‖2 +

96Kσ2

λL

}
≤ 22

2NM
E[‖z0 − z∗‖2] +

112Kσ2

MλL
,
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where the second inequality follows from the fact that variance is always bounded by mean
square error, i.e. it holds that

E‖ẑ0 − Eẑ0‖2

=E‖ẑ0‖2 − ‖Eẑ0‖2

≤E‖ẑ0‖2 − 2〈Eẑ0, z∗〉+ ‖z∗‖2

=E‖ẑ0 − z∗‖2;

where the third inequality is from the definition of ẑm; the second last, third last and fourth
last ones are all by Lemma 4.2; others are dependent on the Young’s inequality or simple
algebra. The complexity in expectation can be derived by Lemma 4.2, which is

M × E
[
16κN + 64κ2J

]
=16κMN + 64κM

K∑
j=1

P(J = j)2j

=16κMN + 64κMK,

where κ = L/λ.

C.4 The Proof of Theorem 5.2

Proof We begin from the strong monotonicity and an identity:

2E[F (zt+1/2)
>(zt+1/2 − z∗)]

=2E[(F (zt+1/2)− F (zt+1/2; ξj))
>(zt+1/2 − z∗) + F (zt+1/2; ξj)

>(zt+1 − z∗)]
+ 2E[(F (zt+1/2; ξj)− F (zt; ξi))

>(zt+1/2 − zt+1) + F (zt; ξi)
>(zt+1/2 − zt+1)].

(18)

Note that we have

2E[(F (zt+1/2)− F (zt+1/2; ξj))
>(zt+1/2 − z∗)]

=2E[F (zt+1/2)− F (zt+1/2; ξj)]
>E[zt+1/2 − z∗]

≤λ
2
E[‖zt+1/2 − z∗‖2] +

2b2t+1/2

λ
,

(19)

where we use the independence and Young’s inequality. Also, we have

2E[F (zt+1/2; ξj)
>(zt+1 − z∗)]

=
2

η
E[(zt − zt+1)

>(zt+1 − z∗)]

=
1

η
E[‖zt − z∗‖2 − ‖zt − zt+1‖2 − ‖zt+1 − z∗‖2].

(20)
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and

2E[F (zt; ξi)
>(zt+1/2 − zt+1)]

=
2

η
E[(zt − zt+1/2)

>(zt+1/2 − zt+1)]

=
1

η
E[‖zt − zt+1‖2 − ‖zt − zt+1/2‖2 − ‖zt+1/2 − zt+1‖2]

(21)

Using η ≤ 1/(4L) and Young’s inequality we obtain

2E[(F (zt+1/2; ξj)− F (zt; ξi))
>(zt+1/2 − zt+1)]

≤ E
[
2η‖F (zt+1/2; ξj)− F (zt; ξi)‖2 +

1

2η
‖zt+1/2 − zt+1‖2

]
≤ E

[
6η‖F (zt+1/2)− F (zt+1/2; ξj)‖2 + 6η‖F (zt)− F (zt; ξi)‖2

]
+ E

[
6η‖F (zt+1/2)− F (zt)‖2 +

1

2η
‖zt+1/2 − zt+1‖2

]
≤ 6η(e2t + e2t+1/2) + 6ηL2E[‖zt − zt+1/2‖2] +

1

2η
E[‖zt+1/2 − zt+1‖2]

≤ 6η(e2t + e2t+1/2) +
1

2η
E[‖zt − zt+1/2‖2 + ‖zt+1/2 − zt+1‖2],

(22)

where the second last inequality follows from L-Lipschitz property.
The final step is to plug (19) (20) (21) (22) into (18) and then apply the strongly

monotonicity which implying the fact that

F (zt+1/2)
>(zt+1/2 − z∗) ≥ λ‖zt+1/2 − z∗‖2.

C.5 The Proof of Theorem 5.3 and Theorem 5.4

First of all, we present some useful lemmas.

Lemma C.1 (non-expansiveness of the resolvent) Denote

• z+ = (x+, y+) as the solution to minx′∈Rdx maxy′∈Rdy f(x′, y′)+L‖x′−x‖2−L‖y′−y‖2;

• w+ = (u+, v+) as the solution to minx′∈Rdx maxy′∈Rdy f(x′, y′)+L‖x′−u‖2−L‖y′−v‖2.

Then it holds that ‖z+ − w+‖ ≤ 2‖z − w‖, where z = (x, y) and w = (u, v).

Proof It follows from

‖z+ − w+‖ ≤ ‖z − w‖+
1

2L
‖F (z+)− F (w+)‖ ≤ ‖z − w‖+

1

2
‖z+ − w+‖,

where the relationship F (z+) = 2L(z − z+) and F (w+) = 2L(w − w+) and the triangle
inequality is used.
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Lemma C.2 If F is a L-Lipschitz continuous operator, then F2L is a 6L-Lipschitz contin-
uous operator.

Proof Note that we have the following relationship of

F2L(z) = F (z+) = 2L(z − z+).

Hence we know that the F2L( · ) is 6L-Lipschitz continuous by noting

‖F (z+)− F (w+)‖ ≤ 2L‖z − w‖+ 2L‖z+ − w+‖ ≤ 6L‖z − w‖

where we use Lemma C.1 to obtain that ‖z+ − w+‖ ≤ 2‖z − w‖.

As we have mentioned, for given k, s, the key is to control the bias as well as the variance
term of the estimated gradient operator on envelope in SEG++ (Algorithm 6) within Õ(1)
SFO complexity. We present the details in the following theorem.

Theorem C.1 Under the setting of both Theorem 5.3 and Theorem 5.4, if the input of
SEG++(Algorithm 6) holds that

λη ≥ δmin, T ≤ Tmax, ‖z∗s − z0‖ ≤ Dmax, ‖w0 − z+0 ‖
2 ≤ σ2

4L2
+D2 (23)

for some Dmax ≥ D, δmin > 0, and, Tmax > 0 and we set

K =

⌈
log2

(
12

δmin

)⌉
, N =

⌈
log2

(
max

{
2Tmax

δmin
,
8D2

maxL
2

δminσ2

})⌉
, M = 1792K, (24)

then it guarantees

λE[‖zt+1/2 − z∗s‖2] ≤
1

η
E[‖zt − z∗s‖2 − ‖zt+1 − z∗s‖2]−

1

2η
E[‖zt+1 − zt+1/2‖2] + 16ησ2 (25)

for any s = 0, 1, · · · , S − 1, where z∗s = (x∗s, y
∗
s) is the solution to

min
x∈Rdx

max
y∈Rdy

f
(s)
2L (x, y)

and f
(s)
2L (x, y) is defined in (10) for ID case or (11) for NC case, respectively. Furthermore,

the output holds that

E‖ẑJ+1/2 − z+J+1/2‖
2 ≤ σ2

4L2
, (26)

where z+ = (x+, y+) is the solution to minx′∈Rdx maxy′∈Rdy f(x, y)+L‖x′−x‖2−L‖y′−y‖2;

and each call of Epoch-SEG+in SEG++(line 6 and line 10 of Algorithm 6) can be finished
within the SFO complexity of

O
(

max

{
log

(
Tmax

δmin

)
, log

(
D2

maxL
2

δminσ2

)}
log

(
1

δmin

))
. (27)
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Proof We introduce the following notations for our proof:

• We denote F
(s)
2L as the gradient operator of f

(s)
2L (x, y).

• We denote z+ = (x+, y+) as the solution to the minimax problem

min
x′∈Rdx

max
y′∈Rdy

f(x′, y′) + L‖x′ − x‖2 − L‖y′ − y‖2.

• In the procedure of Algorithm 5, we denote

F̂
(s)
2L (z) =

{
2L(z − ẑ+) +

∑s
i=1 λi(z − zi), ID case;

2L(z − ẑ+) +
∑s

i=0 λi(z − zi), NC case;

for given z = (x, y) and s. Note that F̂
(s)
2L is used to approximate F

(s)
2L in our algorithm

and analysis.

• We denote

b
(s)
t , ‖EF̂ (s)

2L (zt)− F (s)
2L (zt)‖,

(
σ
(s)
t

)2
, E[‖F̂ (s)

2L (zt)− EF̂ (s)
2L (zt)‖2],

b
(s)
t+1/2 , ‖EF̂ (s)

2L (zt+1/2)− F (s)
2L (zt+1/2)‖,

(
σ
(s)
t+1/2

)2
, E[‖F̂ (s)

2L (zt+1/2)− EF̂ (s)
2L (zt+1/2)‖2].

for the bias and variance of the approximate gradient operator F
(s)
2L .

If the the bias and variance of F
(s)
2L (·) satisfy

b
(s)
t ≤ 2λησ2, b

(s)
t+1/2 ≤ 2λησ2,

(
σ
(s)
t

)2 ≤ σ2

2
and

(
σ
(s)
t+1

)2 ≤ σ2

2
, (28)

then applying Theorem 5.2 on f
(s)
2L leads to the result of (25). The Lipschitz continuity of

F̂2L indicates the conditions (28) holds if we can prove the following claims:

Claim I : 4L2‖Eẑ+t − z
+
t ‖2 ≤ 2λησ2, 4L2E[‖ẑ+t − Eẑ+t ‖2] ≤ σ2/2;

Claim II : 4L2‖Eẑ+t+1/2 − z
+
t+1/2‖

2 ≤ 2λησ2, 4L2E[‖ẑ+t+1/2 − Eẑ+t+1/2‖
2] ≤ σ2/2;

(29)

Now start to prove (29) holds for all t by induction, which implies the result of (25) in the
theorem.

Induction Base: For Claim I with t = 0, applying Theorem 5.1 and using the fact
ẑ+−1/2 = w0, we have

‖Eẑ+0 − z
+
0 ‖

2 ≤ 1

2N+2K
× ‖w0 − z+0 ‖

2 +
8σ2

2K × 3L2

and

E‖ẑ+0 − Eẑ+0 ‖
2 ≤ 1

2NM
× 22‖w0 − z+0 ‖

2 +
112Kσ2

M × 3L2
.

Plugging the setting of N,M and K as (24) into above inequalities and using the bound
‖w0 − z+0 ‖ ≤ σ2/(4L2) + D2 followed from the assumption, we obtain Claim I for t = 0.
The next step should be showing Claim II holds for t = 0. We can prove this result by the
same way as proving Claim I ⇒ Claim II, which will be detailed presented in upcoming
paragraph.
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Induction Step: Suppose the results of (29) hold for all t′ ≤ t, then we target to show
Claim I and Claim II both hold for t+ 1.

We first consider Claim I. Since we already have (29) for all t′ ≤ t, then it implies
that (25) also holds for all t′ ≤ t by using Theorem 5.2. Telescoping the result of (25) for
t′ = 0, · · · , t, we obtain

E‖zt+1/2 − zt+1‖2 ≤ 2E‖z0 − z∗s‖2 + 32η2σ2Tmax (30)

and

E‖zt+1 − z∗s‖2 ≤ E‖z0 − z∗s‖2 + 16η2σ2Tmax. (31)

Using the bias-variance decomposition, i.e.

E‖ẑ+t+1/2 − z
+
t+1/2‖

2 = ‖z+t+1/2 − Eẑ+t+1/2‖
2 + E‖ẑ+t+1/2 − Eẑ+t+1/2‖

2

and the induction hypothesis, we know that

4L2E‖ẑ+t+1/2 − z
+
t+1/2‖

2 ≤ σ2.

Then we have

E‖ẑ+t+1/2 − z
+
t+1‖

2

≤ 2E‖ẑ+t+1/2 − z
+
t+1/2‖

2 + 2E‖z+t+1/2 − z
+
t+1‖

2

≤ 2E‖ẑ+t+1/2 − z
+
t+1/2‖

2 + 8E‖zt+1/2 − zt+1‖2

≤ σ2

2L2
+ 16E‖z0 − z∗s‖2 + 256η2σ2Tmax

≤ σ2Tmax

L2
+ 16E‖z0 − z∗s‖2,

(32)

where we use the bound for E‖ẑ+t+1/2 − z
+
t+1/2‖ by induction hypothesis and the bound of

E‖zt+1/2 − zt+1‖2 shown in (30).

Note that the algorithm apply the update rule

ẑ+t+1 ← Epoch-SEG+(gt+1, ẑ
+
t+1/2, L, 3L,N,K,M).

Applying Theorem 5.1, we have

‖z+t+1 − Eẑ+t+1‖
2

≤ 1

2N+2K
× E‖ẑ+t+1/2 − z

+
t+1‖

2 +
8σ2

2K × 3L2

≤ 1

2N+2K
×
(
σ2Tmax

L2
+ 16E‖z0 − z∗s‖2

)
︸ ︷︷ ︸

A1

+
8σ2

2K × 3L2︸ ︷︷ ︸
A2

.
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and

E‖ẑ+t+1 − Eẑ+t+1‖
2

≤ 1

2NM
× 22E‖ẑ+t+1/2 − z

+
t+1‖

2 +
112Kσ2

M × 3L2

≤ 1

2NM
×
(

22σ2Tmax

L2
+ 352E‖z0 − z∗s‖2

)
︸ ︷︷ ︸

B1

+
112Kσ2

M × 3L2︸ ︷︷ ︸
B2

.

The parameters setting as (24) guarantees A1, A2, B1 and B2 are sufficient small, which
leads to

4L2‖Eẑ+t+1 − z
+
t+1‖

2 ≤ 2λησ2 and 4L2E[‖ẑ+t+1 − Eẑ+t+1‖
2] ≤ σ2

2
. (33)

Then we finish the proof of Claim I for t+ 1.
Now we show that Claim I ⇒ Claim II to finish our induction. We begin from

E‖zt+3/2 − zt+1‖2

= η2E‖F̂ (s)
2L (zt+1)‖2

≤ 2η2E‖F (s)
2L (zt+1)‖2 + 2η2E‖F (s)

2L (zt+1)− F̂ (s)
2L (zt+1)‖2

≤ 1152η2L2E‖zt+1 − z∗s‖2 + 2η2σ2

≤ 1152η2L2
(
E‖z0 − z∗s‖2 + 16η2σ2Tmax

)
+ 2η2σ2,

(34)

where the equality is based on the update zt+3/2 ← zt+1 − ηF̂ (s)
2L (zt+1); the inequalities use

the fact that F
(s)
2L is 24L-Lipschitz continuous and the upper bound of E‖zt+1− z∗s‖2 which

we have shown in (31).3

Furthermore, the results of (33) imply

4L2E‖z+t+1 − ẑ
+
t+1‖

2 ≤ σ2.

Combining Lemma C.1 with the bound of E‖zt+3/2 − zt+1‖2 as shown in (34), we obtain

E‖z+t+3/2 − ẑ
+
t+1‖

2

≤2E‖z+t+1 − ẑ
+
t+1‖

2 + 2E‖z+t+3/2 − z
+
t+1‖

2

≤2E‖z+t+1 − ẑ
+
t+1‖

2 + 8E‖zt+3/2 − zt+1‖2

≤σ
2Tmax

L2
+ 16E‖z0 − z∗s‖2,

which is derived by the similar way to the proof of (32). Note that the algorithm use the
update

ẑ+t+3/2 ← Epoch-SEG+(gt+1, ẑ
+
t+1, L, 3L,N,K,M).

3. Note that in the case of t = −1, bound of E[‖zt+1 − z∗s‖2] is independent on the induction hypothesis.
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Applying Theorem 5.1, we have

‖Eẑ+t+3/2 − z
+
t+3/2‖

2

≤ 1

2N+2K
× E‖ẑ+t+1 − z

+
t+3/2‖

2 +
8σ2

2K × 3L2

≤ 1

2N+2K
×
(
σ2Tmax

L2
+ 16E‖z0 − z∗s‖2

)
︸ ︷︷ ︸

A1

+
8σ2

2K × 3L2︸ ︷︷ ︸
A2

.

and

E‖ẑ+t+3/2 − Eẑ+t+3/2‖
2

≤ 1

2NM
× 22E‖ẑ+t+1 − ẑ

+
t+3/2‖

2 +
112Kσ2

M × 3L2

≤ 1

2NM
×
(

22σ2Tmax

L2
+ 352E‖z0 − z∗s‖2

)
︸ ︷︷ ︸

B1

+
112Kσ2

M × 3L2︸ ︷︷ ︸
B2

.

The parameters setting of (24) guarantees

4L2‖Eẑ+t+3/2 − z
+
t+3/2‖

2 ≤ 2λησ2 and 4L2E‖ẑ+t+3/3 − Eẑ+t+3/2‖
2 ≤ σ2

2
, (35)

which is means Claim II holds. Hence, we have complete the induction.
We can verify the the condition number of sub-problem is no more than 3: since it is

L-strongly-convex-L-strongly-concave and 3L-smooth. Then based on the setting of (24)
and Theorem 5.1, it guarantees that the SFO complexity of each call of Epoch-SEG+(line
6 and line 10 of Algorithm 6) is no more than

48MN + 192MK = O
(

max

{
log

(
Tmax

δmin

)
, log

(
D2

maxL
2

δminσ2

)}
log

(
1

δmin

))
.

C.5.1 The Proof of Theorem 5.3 and Theorem 5.4

Note that the parameters Ns and Ks in Theorem 5.3 follow (6) by replacing L with 6L. Our
proof of Theorem 5.3 and Theorem 5.4 will be described by the notation of Algorithm 5.
Proof The main steps of RAIN++ (Algorithm 5) are based on calling SEG++ with
s = 0, 1, . . . , S − 1 and k = 0, 1, . . . , Ns + Ks − 1. By Theorem C.1, once the initial
conditions of (23) hold for the call of SEG++ in RAIN++ (Algorithm 5), we achieve the

bound (25) on f
(s)
2L (x, y) (which is defined in (10) for ID case and (11) for NC case) for any s

(just like running SEG on fs). Then the SFO complexity of each SEG++ call in RAIN++is

l = O
(

max

{
log

(
Tmax

δmin

)
, log

(
D2

maxL
2

δminσ2

)}
log

(
1

δmin

))
. (36)
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Note that RAIN++ can be regarded as the modification of RAIN by replacing the sub-
routines SEG with SEG++. Compared with SEG, SEG++ requires additional stochastic
oracle calls to estimate F (·). Therefore, the total SFO complexity of RAIN++ is the total
SFO complexity of RAIN (shown in Theorem 4.1) multiplying l, which implies the SFO
complexity of Õ(σ2ε−2 + L/λ) we desired. Hence, the remains in the proof only need to
verify there exist some Tmax, δmin and Dmax to guarantee the conditions of (23) hold for
each call of SEG++ in RAIN++ (line 5 and line 7 in Algorithm 5).

The upper bound of ‖ws,k − z+s,k‖
2: Consider the first time when SEG++ (Algorithm

6) is called in Algorithm 5 (i.e. s = 0 and k = 0). Note that we have ws,k = zs,k = z0, then

Lemma C.1 means ‖z+0 − z∗‖ ≤ 2‖z0 − z∗‖ and we achieve

‖ws,k − z+s,k‖ = ‖z0 − z+0 ‖ =
1

2L
‖F (z+0 )‖ =

1

2L
‖F (z+0 )− F (z∗)‖ ≤ 1

2
‖z+0 − z∗‖ ≤ ‖z0 − z∗‖ ≤ D.

Now we consider the other cases (i.e. s > 0 or k > 0). In these rounds, SEG++ use
(zs,k, ws,k) as the initial point, which is the output of the previous call of SEG++. Then it
holds that

E‖z+s,k − ws,k‖
2 ≤ σ2

4L2

by the result of (26) in Theorem C.1. Therefore, combining above the two cases, it holds
that

E‖z+s,k − ws,k‖
2 ≤ σ2

4L2
+D2

for all s and k.

The settings of Tmax and 1/δmin: We present a simple bound for Tmax and 1/δmin from
(6) and (17). For each stage of s in Algorithm 5, we run SEG++ for two phases, that is
k = 0, . . . , Ns−1 and k = Ns . . . , Ns +Ks + 1.

• For k = 0, . . . , Ns−1, we run SEG++ by the stepsize of 1/(48L) and the iteration
number of 96L/λs. Since λs ≥ λ, setting δmin and Tmax with

1

δmin
≤ 48L

λ
and Tmax ≤

96L

λ
(37)

satisfies the conditions in (23).

• For k = Ns . . . , Ns + Ks + 1, the stepsize of SEG++ is decreasing and the iteration
numbers of SEG++ is decreasing. So we only needs to consider the last time we call
SEG++, whose stepsize and iteration numbers are 1/(96L×2Ks−Ns) and 384×2Ks−Ns

respectively. Since we have λs ≤ 6L, setting

Tmax ≤ 384× 2KS−1−NS−1 ≤ 786432S2σ2ε−2, (38)

and

1

δmin
≤ 1

λS−1/(96L× 2KS−1−NS−1)
≤ 8192S2σ2ε−2. (39)

satisfies the conditions in (23).
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Combining the bounds of (37), (38) and (39), we obtain

1

δmin
≤ max

{
48L/λ, 8192S2σ2ε−2

}
and

Tmax ≤ max
{

96L/λ, 786432S2σ2ε−2
}
.

(40)

The setting of Dmax: This paragraph shows for all s and k, the term E[‖zs,k− z∗s‖2] can
be bounded by some positive constant D2

max. Since Line 4-8 in Algorithm 5 can be regarded

as running Epoch-SEG on f
(s)
2L , the result (16) in the proof of Lemma 4.2 means

E‖zs,k − z∗s‖2 ≤ E‖zs,0 − z∗s‖2 +
8σ2

λL
(41)

for any k = 0, 1, · · · , Ns +Ks − 1. Now we bound E‖zs,0 − z∗s‖2.

• For s = 0, we have zs,0 = z0 and z∗s = z∗, which directly implies E‖zs,0 − z∗s‖2 = D2.

• For s ≥ 1, the result of (17) guarantees

256λ2s−1S
2E‖zs,0 − z∗s−1‖2 ≤ ε2.

Using the non-expansiveness after anchoring (Lemma A.1), we obtain

E‖zs,0 − z∗s‖2 ≤ E‖zs,0 − z∗s−1‖2 ≤
ε2

256λ2S2
.

for any s ≥ 1.

Finally, combining above two cases and (41) means the setting

D2
max ≤ max

{
D2,

ε2

256λ2S2

}
+

8σ2

λL
. (42)

satisfies the condition in (23).

In summary, we can set δmin, Tmax and Dmax by following (40) and (42) to guarantee
the conditions in (23) hold, then the SFO complexity of each SEG++ call in RAIN++ is
l = polylog(L/λ, 1/ε,D, σ) = Õ(1) and total SFO complexity of RAIN++ is Õ(σ2ε−2+L/λ).
Since Proposition 5.1 says λ = Θ(α), the SFO complexity is Õ(σ2ε−2 + L/α) for ID case.
For the NC case, we takes λ = Θ(ε), which leads to the SFO complexity of Õ(σ2ε−2+L/ε).

C.6 The Proof of Proposition 5.3

Proof We denote F2L as the gradient operator of f2L(x, y) and F as the gradient operator
of f(x, y). Let z+ = (x+, y+) be the solution to

min
x′∈Rd

x

max
y′∈Rdy

g(x, y) , f(x, y) + L‖x′ − x‖2 − L‖y − y′‖2.

34



Making the Gradient Small in Stochastic Minimax Optimization

For any w = (u, v), we have

‖F (w)‖ ≤ ‖F (z+)‖+ ‖F (z+)− F (w)‖.

Since it holds that F (z+) = F2L(z) and we already have ‖F (z+)‖ ≤ ε, the smoothness of F
means

E‖w − z+‖ ≤ ε

L
, (43)

which can make sure that w = (u, v) is a 2ε-stationary point of f(x, y) in expectation.
We can verify the condition number of g(x, y) is Θ(1), which means finding w = (u, b)
that satisfies (43) can be finished within O(log(ε−1) + σ2ε−2) SFO complexity by running
Epoch-SEG (Algorithm 2) and following the result of Lemma 4.2.

Appendix D. The Proofs in Section 6

Foster et al. (2019) showed that the lower bound complexity for finding a point with small
gradient can be decomposed as the statistical complexity given by stochastic oracle and the
optimization complexity with deterministic oracle. We following their ideas to construct
our lower bounds for stochastic minimax optimization.

D.1 The Proof of Theorem 6.1

Proof We first consider the statistical complexity. There exists an L-smooth and convex
function fsample such that any A needs at least an SFO complexity of Ω(σ2ε−2 log(Lε−1)) to
find its ε-stationary point (Foster et al., 2019, Theorem 2). The worst-case convex function
for the sample complexity Foster et al. (2019) is given by its first-order derivative

f ′sample (x;Zt) =


−2ε, x < 0,

2ε, x ≥ D,
x− aj
D/N

σZt,j+1 +

(
1− x− aj

D/N

)
σZt,j x ∈ [aj , aj+1) for some j < N,

where Zt,j ∈ {−1, 1} is drawn form the following distribution

P (Zt,j = 1) =

{
1
2 − p, j ≤ j∗,
1
2 + p, j > j∗.

In above equations, the values of (a1, · · · , aN ) and j∗ is given by the lower bound for noisy
binary search problem Foster et al. (2019). Setting N = LD/(4ε) with D = ‖x∗ − x0‖, we
obtain the function

F (x) = EZt [fsample(x;Zt)],

which is L-smooth and convex; and leads to a lower bound

Ω(σ2ε−2 log(LDε−1)) (44)
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for finding an ε-stationary point of F (x). For minimax optimization, we construct the
function

H(x, y) = F (x)− F (y),

that is L-smooth and convex-concave. Naturally, it provide the lower bound (44) for finding
an ε-stationary point for H(x, y).

Then we consider the optimization complexity. We consider the strongly-convex-strongly-
concave function Luo et al. (2021) as follows

fSCSC(x, y) =
λ′r

2
‖x‖2 + λ′x>(By − c)− λ′r

2
‖y‖2,

where

B =


1
−1 1

. . .
. . .

−1 1
−1

√
rω

 ∈ Rd×d, c =


ω
0
...
0

 and ω =

√
r2 + 4− r

2
.

By setting

r =

√
8

L2/λ′2 − 2
, λ′ =

λ

r
and d =

⌊
1

r
log

(
1

2ε

)⌋
− 4,

we obtain the special case of the lower bound in Theorem 1 of Luo et al. (2021) with n = 1.
It is shown that Luo et al. (2021) the function fSCSC(x, y) is L-smooth, λ-strongly-convex-
λ-strongly-concave and any first-order algorithm requires at least Ω(κ log(1/ε)) number of
gradient calls to obtain a point z such that ‖z − z∗‖ ≤ ε. Since it holds that ‖∇f(z)‖ ≥
λ‖z − z∗‖, any A needs at least an SFO complexity of

Ω(κ log(λε−1)) (45)

to find an ε-stationary point of fSCSC(x, y).
Combining the statistical complexity of (44) and the optimization complexity of (45)

completes the proof.

D.2 The Proof of Theorem 6.2

Proof The statistical complexity can be obtained by following the proof of Theorem 6.1.
For the optimization complexity, Theorem 3 of Yoon and Ryu (2021) provide the convex-
concave function of the form

fCC(x, y) = (x− x∗)>A(y − x∗),

where A ∈ Rd×d is symmetric and x∗ is the component of a stationary point z∗ = (x∗, y∗).
Yoon and Ryu (2021) showed that there exist some A and x∗ such that 0 � A � L and find-
ing an ε-stationary point of the corresponding fCC(x, y) requires at least Ω(LDε−1) gradient
calls. We complete the proof by combining the optimization complexity in Theorem 6.1.
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Algorithm 7 SEAG (f, z0, η, T )

1: for t = 0, 1, · · · , T − 1 do

2: ξi ← a random index

3: zt+1/2 ← zt −
(

1− 1
t+1

)
ηF (zt; ξi) + 1

t+1(z0 − zt)
4: ξj ← a random index

5: zt+1 ← zt − ηF (zt+1/2; ξj) + 1
t+1(z0 − zt)

6: end for

7: return zT

Algorithm 8 PDHG (f, x0, y0, , η, T )
1: x̄0 = x0, ȳ0 = y0

2: ξ0y ← a random index

3: s0 = ∇yf(x0, y0; ξ
0
y)

4: for t = 0, 1, · · · , T − 1 do

5: yt+1 → yt − ηst
6: ξtx ← a random index

7: xt+1 ← xt − η∇xf(xt, yt+1; ξ
t
x)

8: ξty ← a random index

9: st+1 ← t+2
t+1∇yf(xt, yt; ξ

t
y)− t

t+1∇yf(xt, yt; ξ
t−1
y )

10: x̄t+1 ← t−1
t+1 x̄t + 2

t+1xt+1

11: ȳt+1 ← t−1
t+1 ȳt + 2

t+1yt+1

12: end for

13: return (x̄T , ȳT )

D.3 The Proof of Corollary 6.1

Proof Since the gradient operator of convex-concave function is monotone, it is also neg-
ative comonotone. Hence, the lower bound in Theorem 6.2 is also applicable for negative
comonotone setting and the result of this corollary is obtained.

D.4 The Proof of Corollary 6.2

Proof For τ ≥ 2L, the assumptions of L-smooth and α-strongly-convex-α-strongly-concave
on f(x, y) directly means the function is (τ, α)-intersection-dominant. Hence, the lower
bound in Theorem 6.1 is also applicable for (τ, α)-intersection-dominant setting and the
result of this corollary is obtained.
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Algorithm 9 A Single-Loop Variant of RAIN (f, z0, η, T, λ, γ)

1: for s = 0, 1, · · · , T − 1 do

2: ξi ← a random index

3: zt+1/2 ← zt − η(F (zt; ξi) + λγ
∑t−1

j=0(1 + γ)j(zt − zj))
4: ξj ← a random index

5: zt+1 ← zt − η(F (zt+1/2; ξj) + λγ
∑t−1

j=0(1 + γ)j(zt+1/2 − zj))
6: end for

7: return zT

Appendix E. Details for Numerical Experiments

We give the details for the implementation of the algorithms in our experiments.

E.1 The Concave-Concave Case

The implementations of algorithms in convex-concave case:

• For ordinary stochastic extragradient method (Algorithm 3, SEG), we replace the
output from uniform sampling in all the history with the point in the last iteration
for better performance.

• For regularized SEG (R-SEG), we use the regularization trick of Nesterov (2012) for
minimax optimization, that is using SEG to solve the regularized minimax problem

min
x∈Rdx

max
y∈Rdy

g(x, y) , f(x, y) +
λ

2
‖x− x0‖2 −

λ

2
‖y − y0‖2

for some small λ.

• For stochastic extra anchor gradient (SEAG), we follow the algorithm by Lee and Kim
(2021), which is described in Algorithm 7.

• For primal-dual hybrid gradient (PDHG), we follow the Algorithm 1 by Zhao (2022)
with αt = τt = η, which is described in Algorithm 8.

• For RAIN (Algorithm 1), we directly set Ns = 1 and Ks = 0. This simplified variant
yields a single-loop implementation described in Algorithm 9, and we observe it has
good performce in practice.

E.2 The Nonconcave-Nonconcave Case

The implementations of algorithms in nonconvex-nonconcave case:

• For SEG+, we follow Equation (EG+
p ) by Diakonikolas et al. (2021) with β = 1/2 and

αk = η, by but output the point in the last iteration for better performance.

• For SFEG, we follow Algorithm 1 by (Lee and Kim, 2021) by replacing the exact
gradient with the stochastic gradient.
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Algorithm 10 RAIN (z0, λ, L, {Ns}S−1s=0 , {Ks}S−1s=0 , γ)

1: λ0 = γλ, S = blog(1+γ)(L/λ)c
2: for s = 0, 1, · · · , S − 1

3: zs,0 ← zs

4: for k = 0, 1, · · · , Ns − 1

5: zs,k,0 ← zs,k, η ← 1
8L , T ← 16L

λs

6: for t = 0, 1, · · · , T − 1

7: zs,k,t+1/2 = zs,k,t − η(F (zs,k,t; ξs,k,t) +
∑s−1

j=0 λj(zs,k,t − zj))

8: zs,k,t+1 = zs,k,t − η(F (zs,k,t+1/2; ξs,k,t+1/2) +
∑s−1

j=0 λj(zs,k,t+1/2 − zj))
9: end for

10: zs,k+1 ← uniformly samples from {zs,k,t+1/2}T−1t=0

11: end for

12: for k = Ns, Ns + 1, · · · , Ns +Ks − 1

13: zs,k,0 ← zs,k, η ← 1
2k−Ns+4·L , T ← 2k−Ns+6·

λs

14: for t = 0, 1, · · · , T − 1

15: zs,k,t+1/2 = zs,k,t − η(F (zs,k,t; ξs,k,t) +
∑s−1

j=0 λj(zs,k,t − zj))

16: zs,k,t+1 = zs,k,t − η(F (zs,k,t+1/2; ξs,k,t+1/2) +
∑s−1

j=0 λj(zs,k,t+1/2 − zj))
17: end for

18: zs,k+1 ← uniformly samples from {zs,k,t+1/2}T−1t=0

19: end for

20: zs+1 ← zs,Ns+Ks

21: λs+1 ← (1 + γ)λs

22: end for

23: return zS

• For RAIN++, we follow the setting of Algorithm 9 (Ns = 1 and Ks = 0) for the
subroutine RAIN. For the steps of MLMC, we set N = 1, M = 1 and K = 1. This
simplified variant is easy to implement and performs well in practice.

E.3 Hyperparameter Selection

For each algorithm, we tune the parameters η from {0.005, 0.01, 0.05, 0.1, 1, 5, 10}, λ from
{0.001, 0.01, 0.1, 1} and γ from {0.001, 0.01, 0.1, 1} and reports the best run.

Appendix F. The Merged Algorithms for Easy Reference

In the main text, we present our algorithm by nested functions to facilitate the the-
oretical analysis. In this section, we write all steps of RAIN in Algorithm 1 without the
presentation of any subroutine call, which is easy to follow for readers who are interested in
the implementation. We also provided a merged presentation for RAIN++ in Algorithm 11.
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Algorithm 11 RAIN++ (z0, λ, L, {Ns}S−1s=0 , {Ks}S−1s=0 , γ,N,K,M)

1: λ0 = γλ, S = blog(1+γ)(3L/λ)c
2: for s = 0, 1, · · · , S − 1

3: zs,0 ← zs, ws,0 ← ws

4: for k = 0, 1, · · · , Ns − 1

5: zs,k,0 ← zs,k, ws,k,−1/2 ← ws,k, η ← 1
24L , T ← 48L

λs

6: for t = 0, 1, · · · , T − 1

7: (F̂s,k,t, ws,k,t) = EnvGradEst(zs,k,t, ws,k,t−1/2, L,N,K,M)

8: zs,k,t+1/2 = zs,k,t − η(F̂s,k,t +
∑s−1

j=0 λj(zs,k,t − zj))

9: (F̂s,k,t+1/2, ws,k,t+1/2) = EnvGradEst(zs,k,t, ws,k,t, L,N,K,M)

10: zs,k,t+1 = zs,k,t − η(F̂s,k,t+1/2 +
∑s−1

j=0 λj(zs,k,t+1/2 − zj))
11: end for

12: Draw J ∼ Unif([T ])

13: zs,k+1 ← zs,k,J+1/2, ws,k+1 ← ws,k,J+1/2

14: end for

15: for k = Ns, Ns + 1, · · · , Ns +Ks − 1

16: zs,k,0 ← zs,k, ws,k,−1/2 ← ws,k, η ← 1
2k−Ns+4·3L , T ← 2k−Ns+6·3L

λs

17: for t = 0, 1, · · · , T − 1

18: (F̂s,k,t, ws,k,t) = EnvGradEst(zs,k,t, ws,k,t−1/2, L,N,K,M)

19: zs,k,t+1/2 = zs,k,t − η(F̂s,k,t +
∑s−1

j=0 λj(zs,k,t − zj))

20: (F̂s,k,t+1/2, ws,k,t+1/2) = EnvGradEst(zs,k,t, ws,k,t, L,N,K,M)

21: zs,k,t+1 = zs,k,t − η(F̂s,k,t+1/2 +
∑s−1

j=0 λj(zs,k,t+1/2 − zj))
22: end for

23: Draw J ∼ Unif([T ])

24: zs,k+1 ← zs,k,J+1/2, ws,k+1 ← ws,k,J+1/2

25: end for

26: zs+1 ← zs,Ns+Ks , ws+1 ← ws,Ns+Ks

27: λs+1 ← (1 + γ)λs

28: end for

29: return zS

Since the steps of RAIN++ is indeed complicated, it still includes one subroutine (Algorithm
12) to present the evaluation for the gradient of the saddle envelope. Note that EnvGradEst
(Algorithm 12) achieves a nearly unbiased gradient estimator of the saddle envelope and
the initial point in the next subroutine call. In the main text, EnvGradEst is presented by
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Algorithm 12 EnvGradEst(z̄, z0, L,N,K,M)

1: for m = 0, 1, · · · ,M − 1 do

2: draw J ∼ Geom (1/2)

3: for k = 0, 1, · · · , N − 1

4: zm,k,0 ← z0, η ← 1
12L , T ← 24

5: for t = 0, 1, · · · , T − 1

6: zm,k,t+1/2 ← zm,k,t − η(F (zm,k,t; ξm,k,t) + 2L(zm,k,t − z̄))
zm,k,t+1 ← zm,k,t − η(F (zm,k,t+1/2; ξm,k,t+1/2) + 2L(zm,k,t+1/2 − z̄))

end for

7: zm,k+1 ← uniformly samples from {zm,k,t+1/2}T−1t=0

8: end for

9: for k = N,N + 1, · · · , N + J − 1

10: zm,k,0 ← zm,k, η ← 1
2k−N+3·3L , T ← 2k−N+5 · 3L

11: for t = 0, 1, · · · , T − 1

12: zm,k,t+1/2 ← zm,k,t − η(F (zm,k,t; ξm,k,t) + 2L(zm,k,t − z̄))
zm,k,t+1 ← zm,k,t − η(F (zm,k,t+1/2; ξm,k,t+1/2) + 2L(zm,k,t+1/2 − z̄))

end for

13: zm,k+1 ← uniformly samples from {zm,k,t+1/2}T−1t=0

14: end for

15: ẑm = zm,N + 2J(zm,N+J − zm,N+J−1)I [J ≤ K]

16: end for

17: ẑ+ ← 1
M

∑M−1
m=0 ẑm, F̂ = 2L(z̄ − ẑ+)

18: return (F̂ , ẑ+)

applying Epoch-SEG+ on the sub-problem

min
x∈Rdx

max
y∈Rdy

gt,s,k(x, y) := f(xt,s,k, yt,s,k) + L‖x− xt,s,k‖2 − L‖y − yt,s,k‖2

to output F̂s,k,t = 2L(zs,k,t − ws,k,t) and ws,k,t. We can verify they are equivalent.
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