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Abstract
We present consistent algorithms for multiclass learning with complex performance metrics and
constraints, where the objective and constraints are defined by arbitrary functions of the confu-
sion matrix. This setting includes many common performance metrics such as the multiclass G-
mean and micro F1-measure, and constraints such as those on the classifier’s precision and recall
and more recent measures of fairness discrepancy. We give a general framework for designing
consistent algorithms for such complex design goals by viewing the learning problem as an opti-
mization problem over the set of feasible confusion matrices. We provide multiple instantiations
of our framework under different assumptions on the performance metrics and constraints, and
in each case show rates of convergence to the optimal (feasible) classifier (and thus asymptotic
consistency). Experiments on a variety of multiclass classification tasks and fairness constrained
problems show that our algorithms compare favorably to the state-of-the-art baselines.
Keywords: Multiclass, non-decomposable metrics, constraints, fairness, Frank-Wolfe, ellipsoid

1. Introduction

In many real-world machine learning tasks, the performance metric used to evaluate the performance
of a classifier takes a complex form, and is not simply the expectation or sum of a loss on individual
examples. Indeed, this is the case with the G-mean, H-mean and Q-mean performance metric used
in class imbalance settings (Lawrence et al., 1998; Sun et al., 2006; Kennedy et al., 2009; Wang
and Yao, 2012; Kim et al., 2013), the micro and macro F1-measure used in information retrieval
(IR) applications (Lewis, 1991), the worst-case error used in robust classification tasks (Vincent,
1994; Chen et al., 2017), and many others. Unlike linear performance metrics, which are simply
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linear functions (defined by a loss matrix) of the confusion matrix of a classifier, these complex
performance metrics are defined by general functions of the confusion matrix. In this paper, we
seek to design consistent learning algorithms for such complex performance metrics, i.e. algorithms
that converge in the limit of infinite data to the optimal classifier for the metrics.

More generally, it is common for a classifier to be evaluated on more than one performance
metric, and in such cases, a desirable goal could be to optimize the classifier’s performance on one
metric while constraining the others to be within an acceptable range. These constrained classifi-
cation problems commonly arise in fairness applications, where one may constrain a classifier to
have equitable performance across multiple subgroups (Hardt et al., 2016; Zafar et al., 2017a), as
well as, in many practical tasks where one wishes to constrain a classifier’s precision, coverage, or
churn (Eban et al., 2017; Goh et al., 2016; Cotter et al., 2019b). Such metrics and constraints can
be expressed as general functions of the confusion matrix, and are categorised as complex owing
to their non-decomposable structure. Standard algorithmic learning frameworks are not readily de-
signed to handle such complexity in the objectives and constraints. Doing so requires rethinking the
underlying optimization schemes, as well as conducting bespoke analysis to establish algorithmic
and statistical soundness. Practical applications and the lack of general approaches to solve such
problems, motivate us to address the following question:

How can we design consistent algorithms for a general learning problem where the objective and
(optionally) constraints are defined by general functions of the confusion matrix?

While there has been much interest in designing consistent algorithms for various types of super-
vised learning problems, most of this work has focused on linear performance metrics. This includes
work on the binary or multiclass 0-1 loss (Bartlett et al., 2006; Zhang, 2004a,b; Lee et al., 2004;
Tewari and Bartlett, 2007), losses for specific problems such as multilabel classification (Gao and
Zhou, 2011), ranking (Duchi et al., 2010; Ravikumar et al., 2011; Calauzènes et al., 2012; Yang and
Koyejo, 2020), and classification with abstention (Yuan and Wegkamp, 2010; Ramaswamy et al.,
2018; Finocchiaro et al., 2020), and some work on general multiclass loss matrices (Steinwart,
2007; Ramaswamy and Agarwal, 2012; Pires et al., 2013; Ramaswamy et al., 2013; Nowak-Vila
et al., 2020). The design of consistent algorithms for constrained classification problems has also
received much attention recently, particularly in the context of fairness (Agarwal et al., 2018; Kearns
et al., 2018; Donini et al., 2018), with the focus largely being on linear metrics and constraints.

There has also been much interest in designing algorithms for more complex performance met-
rics. One of the seminal approaches in this area is the SVMperf algorithm (Joachims, 2005), which
was developed primarily for the binary setting. Other examples include convex relaxation based
approaches that seek to improve upon the performance of this method (Kar et al., 2014, 2016;
Narasimhan et al., 2019), as well as, algorithms for the binary F1-measure and its multiclass and
multilabel variants (Dembczynski et al., 2011, 2013; Natarajan et al., 2016; Zhang et al., 2020).
Parallelly, there has been increasing interest in designing consistent algorithms for complex perfor-
mance metrics. Most of these methods are focused on the binary case (Menon et al., 2013; Koyejo
et al., 2014; Narasimhan et al., 2014; Dembczyński et al., 2017), and typically require tuning a sin-
gle threshold or cost parameter to optimize the metric at hand. However, this simple approach of
performing a one-dimensional parameter search does not extend easily to general n-class problems,
where one may need to search over as many as n2 parameters, requiring time exponential in n2.

In this paper, we develop a general framework for designing statistically consistent and compu-
tationally efficient algorithms for complex multiclass performance metrics and constraints. Our key
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Figure 1: Simplified overview of the proposed framework.

idea is to pose the learning problem as an optimization problem over the set of feasible and achiev-
able confusion matrices, and to solve this optimization problem using an optimization method that
needs access to only a linear minimization routine (see Figure 1 for a simplified overview of the
approach). Each of these linear minimization steps can be formulated as a cost-sensitive learning
task, a classical problem for which numerous off-the-shelf solvers are available.

We provide instantiations of our framework under different assumptions on the performance
metrics and constraints, and in each case establish rates of convergence to the optimal (feasible)
classifier. Our algorithms can be used to learn plug-in type classifiers that post-shift a pre-trained
class probability model, and are shown to be effective in optimizing for the given metric and con-
straints on a variety of application tasks.

1.1 Further Related Work

The literature on complex performance metrics and constrained learning can be broadly divided
into two categories: algorithms that use surrogate relaxations (Joachims, 2005; Kar et al., 2014;
Narasimhan et al., 2015a; Kar et al., 2016; Sanyal et al., 2018; Narasimhan et al., 2019), and al-
gorithms that use a plug-in classifier (Ye et al., 2012; Menon et al., 2013; Koyejo et al., 2014;
Narasimhan et al., 2014; Parambath et al., 2014; Dembczyński et al., 2017; Yang et al., 2020).
The former methods are sometimes dubbed as in-training approaches, while the latter methods are
referred to as post-hoc approaches.

A prominent example in the first category is the SVMperf method of Joachims (2005), which
employs a structural SVM formulation to construct convex surrogates for complex binary evaluation
metrics. This approach does not however extend to multiclass problems as it uses a cutting-plane
finding routine whose running time grows exponentially with the number of classes. Moreover,
follow-up work has shown that structural SVM style surrogates are not necessarily consistent for
complex metrics (Dembczynski et al., 2013). More recent surrogate-based algorithms improve upon
this method, offering faster training procedures and better empirical performance (Narasimhan et al.,
2015a; Kar et al., 2016; Sanyal et al., 2018), but do not come with consistency guarantees.

The second category of algorithms, which construct a classifier by tuning thresholds on a class-
probability estimator, do enjoy consistency guarantees, but the bulk of the work here has focused on
unconstrained binary metrics (Ye et al., 2012; Menon et al., 2013; Koyejo et al., 2014; Narasimhan
et al., 2014; Dembczyński et al., 2017), and for the reasons mentioned in the introduction, do not
directly extend to multi-class problems.

The work that most closely relates to our paper is that of Narasimhan et al. (2019), where a fam-
ily of algorithms is provided for optimizing complex metrics with and without constraints, which
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includes as special cases some previous surrogate-based algorithms (Narasimhan et al., 2015a; Kar
et al., 2016), as well as, the Frank-Wolfe based algorithm that appeared in a conference version
of this paper (Narasimhan et al., 2015b). Their key idea is to introduce auxiliary variables to re-
formulate the learning task into a min-max problem, in which the minimization step entails solving
a linear objective. They then propose solving the minimization step either approximately using
surrogate losses, or exactly using a linear minimization oracle. They regard the use of surrogate
relaxations to be more practical, and conduct all their empirical comparisons with this approach, al-
though the guarantees they provide only show convergence to an optimal solution for the surrogate-
relaxed problem. We include their surrogate-based algorithms, available as a part of the TFCO
library (Cotter et al., 2019b), as baselines in our experiments.

In contrast to the methods of Narasimhan et al. (2019), our focus is on designing algorithms that
are statistically consistent, and do so using linear minimization oracles (such as plug-in classifiers)
that are efficient to implement. We propose various algorithms for different problem settings, and
in each case, provide consistency guarantees and rates of convergence to the optimal (feasible)
classifier. For one particular problem setting (discussed in Sections 4.2 and 5.2), both the metrics
involved are non-smooth convex functions of the confusion matrix. The algorithms we provide for
this setting are a direct adaptation of the framework presented in Narasimhan et al. (2019), but come
with complete consistency analyses.

Our paper is also closely related to the growing literature on machine learning fairness, where
the use of constrained optimization has become one of the dominant approaches for enforcing fair-
ness goals. The metrics handled here are typically linear functions of (group-specific) confusion
matrices (Hardt et al., 2016), with the approaches proposed using both surrogate relaxations (Zafar
et al., 2017a,b; Goh et al., 2016; Cotter et al., 2019a,b) and linear minimization oracles (Agarwal
et al., 2018; Kearns et al., 2018; Yang et al., 2020). Recently, Celis et al. (2019) extended the
work of Agarwal et al. (2018) to handle more complex fairness constraints that can be written as
a difference of linear-fractional metrics, but require solving a large number of linearly-constrained
sub-problems, with the number of sub-problems growing exponentially with the number of groups.

Other related work includes that of Eban et al. (2017) and Kumar et al. (2021), which use
surrogate approximations to solve specialized non-decomposable constrained problems, such as
maximizing precision subject to recall constraints. The work of Chen et al. (2017) provides provable
algorithms to minimize the maximum among multiple linear metrics using an oracle subroutine.

Its worth noting that our work is based on the empirical utility maximization paradigm, where
an evaluation metric is viewed as a function of expected confusion statistics (Ye et al., 2012). Prior
work has also considered an alternate decision theoretic paradigm which evaluates the metric on a
finite sample S and computes an expectation of the metric over draw of S (Waegeman et al., 2014).

1.2 Contributions

The main contributions of this paper are summarized below.

• We provide a characterization of the Bayes optimal classifier for unconstrained and con-
strained minimization of complex multiclass metrics (see Section 3).

• We propose a unified framework for designing consistent algorithms for complex multiclass
metrics and constraints given access to a linear minimization oracle, i.e., a cost-sensitive
learner (see Section 4).
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• For unconstrained metrics, we identify four optimization algorithms that only require access
to a linear minimization oracle. These include (i) the Frank-Wolfe method for smooth convex
metrics, (ii) the gradient-descent ascent algorithm and (iii) the ellipsoid method for general
convex metrics, and (iv) the bisection method for ratio-of-linear metrics (see Section 4).

• For constrained learning problems, where the classifier is required to satisfy some constraints
on the confusion matrix in addition to performing well on a complex metric, we provide four
algorithms as counterparts to the ones mentioned above (see Section 5).

• We show that the proposed algorithms are statistically consistent when used with a plug-in
based linear minimization routine (see Section 6), and also show how they can be extended to
handle fairness constraints over multiple subgroups (see Section 7).

• We conduct an extensive evaluation of the proposed algorithms on benchmark multiclass,
image classification, and fair classification datasets, and show that they perform comparable to
or better than the state-of-the-art approaches in each case. We also provide practical guidelines
on choosing an appropriate algorithm for a given setting (see Section 8).

The following is a summary of the main differences from the conference versions of this paper
(Narasimhan et al., 2015b; Narasimhan, 2018; Tavker et al., 2020).

• A definitive article on the broader topic of learning with complex metrics and constraints, with
improved exposition and intuitive illustrations.

• New ellipsoid-based algorithms for convex performance metrics with a linear convergence
rate (albiet with a dependence on dimension).

• Improved bisection-based algorithm for ratio-of-linear performance metrics with a better con-
vergence rate for handling constraints.

• An adaptation of the gradient descent-ascent algorithm from Narasimhan et al. (2019) with a
complete consistency analysis.

• Convergence results presented for a general linear minimization oracle, with the plug-in method
as a special case.

• New set of experiments including benchmark image classification tasks.

All proofs not provided in the main text can be found in Appendix A.

2. Preliminaries and Examples

Notations. For n ∈ Z+, we denote [n] = {0, . . . , n − 1}. For matrices A,B ∈ Rn×n, we denote
‖A‖1 =

∑
i,j |Aij | and 〈A,B〉 =

∑
i,j Ai,jBi,j . The notation argmin∗i∈[n] will denote ties being

broken in favor of the larger number. We use ∆n to denote the (n − 1)-dimensional probability
simplex. See Table 11 in the appendix for a summary of other common symbols in the paper.

We are interested in general multiclass learning problems with instance space X ⊆ Rq and label
space Y = [n]. Given a finite training sample S = ((x1, y1), . . . , (xN , yN )) ∈ (X × [n])N , the goal
is to learn a multiclass classifier h : X→[n], or more generally, a randomized multiclass classifier
h : X→∆n, which given an instance x predicts a class label in [n] according to the probability
distribution specified by h(x). We assume examples are drawn iid from some distribution D on
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X × [n], and denote the marginal distribution over X by µ, the class-conditional distribution by
ηi(x) = P(Y = i |X = x), and the class prior probabilities by πi = P(Y = i).

2.1 Performance Metrics Based on the Confusion Matrix

We will measure the performance of a classifier in terms of its confusion matrix.

Definition 1 (Confusion matrix). The confusion matrix, C[h] ∈ [0, 1]n×n, of a randomised classi-
fier h w.r.t. a distribution D has entries defined as

Cij [h] = P
(X,Y )∼D, Ŷ∼h(X)

(
Y = i, Ŷ = j

)
,

where Ŷ ∼ h(X) denotes a random draw of label from h(X). We can get the prior class proba-
bilities, and fractions of instances predicted as a particular class from C[h] by marginalisation as
follows :

∑
j Cij [h] = P(Y = i) := πi, and

∑
iCij [h] = P(h(X) = j).

We will be interested in general, complex performance metrics that can be expressed as an
arbitrary function of the entries of the confusion matrix C[h]. For any function ψ : [0, 1]n×n→R+,
we define the performance metric of h follows:

Ψ[h] = ψ(C[h]).

We adopt the convention that lower values of ψ correspond to better performance.
As the following examples show, this formulation captures both common cost-sensitive clas-

sification, which corresponds to linear functions of the entries of the confusion matrix, and more
complex performance metrics such as the G-mean, micro F1-measure, and several others.

Example 1 (Linear performance metrics). Consider a multiclass loss matrix L ∈ Rn×n, where Lij
represents the cost incurred on predicting class j when the true class is i. In such cost-sensitive
learning settings (Elkan, 2001), the performance of a classifier h is measured by the expected loss
on a new example from D, which is a linear function of the confusion matrix C[h]:

Ψ[h] = E
[
LY,h(X)

]
=
∑
i,j

Lij Cij [h] = ψL(C[h]) ,

where ψL(C) = 〈L,C〉 ∀C ∈ [0, 1]n×n. For example, for the 0-1 loss given by L0-1
ij = 1(i 6= j),

we have ψ0-1(C) = 1 −
∑

iCii; for the balanced 0-1 loss given by Lbal
ij = 1

nπi
1(i 6= j), we have

ψbal(C) = 1− 1
n

∑
i

1
πi
Cii; for the absolute loss used in ordinal regression, Lord

ij = |i− j|, we have
ψord(C) =

∑
i,j |i− j|Cij .

Example 2 (Binary performance metrics). In the binary setting, the confusion matrix of a classifier
contains the proportions of true negatives (C00 = TN), false positives (C01 = FP), false nega-
tives (C10 = FN), and true positives (C11 = TP). Our framework therefore includes any binary
performance metric that is expressed as a function of these quantities, including the balanced er-
ror rate metric (Menon et al., 2013) given by ψBER(C) = 1

2

(FP
π1

+ FN
π0

)
, the Fβ-measure given by

ψFβ (C) = 1− (1+β2) TP
(1+β2) TP+β2 FN+FP for any β > 0, all “ratio-of-linear” binary performance metrics

(Koyejo et al., 2014), and more generally, all “non-decomposable” binary performance metrics
(Narasimhan et al., 2014).
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Table 1: Left: examples of complex multiclass performance metrics. Right: examples of complex
constraint functions. We denote πy = P(Y = y), τi is the target value for class i, and ε > 0 is a
small slack. We treat the class priors πy as constants that are known beforehand. Rows 4–6 contain
fairness metrics with m protected groups, where A(x) ∈ [m] is the protected group for instance
x, µa = P(A(X) = a), and µa,i = P(A(X) = a, Y = i). Row 5 is defined for binary labels
Y = {0, 1}. Rows 3–6 can be equivalently written as separate constraints on individual classes (and
groups), but have been conveniently expressed in terms of the maximum constraint violation.

Metric ψ(C)

G-mean 1 −
(∏

i
Cii

πi

)1/n
H-mean 1 − n

(∑
i
πi

Cii

)−1
Q-mean

√
1
n

∑
i

(
1− Cii

πi

)2
Micro F1 1 − 2

∑
i>0 Cii

2−
∑

i C1i−
∑

i Ci1

Macro F1 1 − 1
n

∑
i

2Cii∑
j Cij +

∑
j Cji

Min-max maxi

{
1 − Cii

πi

}

Constraint Function φ(C)

Class i Precision 1 − Cii∑
j Cji

− τi

Quantification
∑n
i=1 πi log

(
πi∑n

j=1 Cji

)
− ε

Coverage max
i∈[n]
|
∑
j Cji − τi| − ε

Demographic Parity max
a∈[m], i∈[n]

∣∣∣ 1
µa

∑
j C

a
ji −

∑
j Cji

∣∣∣− ε
Equal Opportunity max

a∈[m]

∣∣∣ 1
µa1

Ca11 − 1
π1
C11

∣∣∣− ε
Equalized Odds max

a∈[m], i,j∈[n]

∣∣∣ 1
µai

Caij − 1
πi
Cij

∣∣∣− ε
Example 3 (G-mean metric). The G-mean metric is used to evaluate both binary and multiclass
classifiers in settings with class imbalance (Sun et al., 2006; Wang and Yao, 2012), and is given by

ψGM(C) = 1 −
(∏

i

Cii
πi

)1/n

.

Example 4 (Micro F1-measure). The micro F1-measure is widely used to evaluate multiclass classi-
fiers in information retrieval and information extraction applications (Manning et al., 2008). Many
variants have been studied; we consider here the form used in the BioNLP challenge (Kim et al.,
2013), which treats class 0 as a ‘default’ class and is effectively given by the function∗

ψmicroF1(C) = 1 −
2
∑

i 6=0Cii

2−
∑

iC0i −
∑

iCi0
.

In Table 1, we provide other examples of performance metrics that are given by (complex)
functions of the confusion matrix, which include the macro F1-measure (Lewis, 1991), the H-mean
(Kennedy et al., 2009), the Q-mean (Lawrence et al., 1998), and the min-max metric in detection
theory (Vincent, 1994) and for worst-case performance optimization (Chen et al., 2017).

We treat the class prior probabilities πi in the definition of a performance metric as constants
that are known beforehand. So when we state that ψ is a function of the entries of C, the class prior
probabilities in the definition have no dependence on the input C. In practice, we expect that the
class priors may be either estimated from data or provided by a practitioner.

∗Another popular variant of the micro F1 involves averaging the entries of the ‘one-versus-all’ binary confusion
matrices for all classes, and computing the F1 for the averaged matrix; as pointed out by Manning et al. (2008), this form
of micro F1 effectively reduces to the 0-1 classification accuracy.
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2.2 Constraints Based on the Confusion Matrix

We will also be interested in machine learning goals that can be expressed as constraints on a
classifier’s output. Specifically, we will consider constraints that can be expressed as a general
function of the classifier’s confusion matrix, i.e. constraints on h of the form Φk[h] ≤ 0, ∀k ∈ [K],
where

Φk[h] = φk(C[h])

for some φk : [0, 1]n×n→R. As shown in the following examples, this formulation includes con-
straints on precision, predictive coverage, fairness criteria and many others.

Example 5 (Precision). A common goal in real-world applications is to constrain the precision
of a classifier for a particular class i (i.e. the number of correct predictions for class i divided by
the total number of class i predictions) to be above a certain threshold τi. Denoting φprec-i(C) =
1 − Cii∑

j Cji
− τi, this constraint can be written as φprec-i(C) ≤ 0.

Example 6 (Coverage). A classifier’s coverage for class i is the proportion of examples that are
predicted as i. Prior work has looked at constraining the coverage for different classes to match
a target distribution τ ∈ ∆n (Goh et al., 2016; Cotter et al., 2019b). This can be formulated as a
non-positivity constraint on the maximum coverage violation, given by φcov(C) = maxi |

∑
j Cji−

τi|−ε, for a small slack ε > 0. A variant of this constraint in the quantification literature (Esuli and
Sebastiani, 2015; Gao and Sebastiani, 2015) aims to match a classifier’s coverage with the class
prior distribution π, with the KL-divergence between the two distributions used as the measure of
discrepancy: φKLD(C) =

∑n
i=1 πi log

(
πi∑n

j=1 Cji

)
− ε.

We next provide examples of fairness goals in machine learning that can be expressed as con-
straints on (group-specific) confusion matrices. In a typical fairness setup, each instance x is asso-
ciated with one of m protected groups. For convenience, we will denote the protected group for a
instance x by A(x) ∈ [m].

Definition 2 (Group-specific confusion matrix). The confusion matrix of a classifier h w.r.t. a dis-
tribution D specific to group a ∈ [m], Ca[h] ∈ [0, 1]n×n, has entries defined as

Caij [h] = P
(X,Y )∼D, Ŷ∼h(X)

(
Y = i, Ŷ = j, A(X) = a

)
,

where Ŷ ∼ h(X) denotes a random draw of label from h(X). We denote the fraction of instances
with protected attribute a as µa, i.e. P (A(X) = a) = µa =

∑
i,j C

a
ij , and the fraction of instances

with protected attribute a and label i by µa,i, i.e. P (A(X) = a, Y = i) = µa,i =
∑

j C
a
ij . Clearly,

the general confusion matrix can be expressed as Cij =
∑

a∈[m]C
a
ij .

The following fairness goals are given by general functions of the m group-specific confusion
matrices C1, . . . ,Cm, and are also summarized in Table 1.

Example 7 (Demographic parity fairness). A popular fairness criterion is demographic parity,
which for a problem with binary labels Y = {0, 1}, requires the proportion of class-1 predictions
to be the same for each protected group (Hardt et al., 2016). This can be generalized to multiclass
problems by requiring the proportion of prediction for each class i to be the same for each protected
group. We can enforce this criterion (approximately) by defining the demographic parity violation
as φDP(C0, . . . ,Cm−1) = maxa∈[m], i∈[n]

∣∣∣ 1
µa

∑
j C

a
ji −

∑
j Cji

∣∣∣ − ε, where ε > 0 is a small

slack that we allow, and requiring that φDP(C0, . . . ,Cm−1) ≤ 0.
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Example 8 (Equal opportunity fairness). Another popular fairness goal for problems with bi-
nary labels Y = {0, 1} is the equal opportunity criterion (Zafar et al., 2017a; Hardt et al.,
2016), which requires that the true positive rates be the same for examples belonging to each
group. One can approximately enforce this criterion by defining the equal opportunity violation
φEOpp(C0, . . . ,Cm−1) = maxa∈[m]

∣∣∣ 1
µa1

Ca11 − 1
π1
C11

∣∣∣ − ε with a small slack ε > 0, and impos-

ing the constraint φEOpp(C0, . . . ,Cm−1) ≤ 0.

Other examples of constraints that can be defined by a general function of the confusion matrix
or its generalizations include the equalized odds fairness constraint (Hardt et al., 2016), constraints
on classifier churn (Cormier et al., 2016; Goh et al., 2016; Cotter et al., 2019a), constraints on the
performance of a classifier on multiple data distributions with varying quality (Cotter et al., 2019a),
and constraints that encode performance in select portions of the ROC or precision-recall curves
(Eban et al., 2017).

For ease of exposition, we will focus on metrics and constraints that are defined by a function
of the overall confusion matrix C[h], and discuss in Section 7 how our approach can be extended to
handle metrics defined by group-specific confusion matrices for fairness problems.

2.3 Learning Problems and Consistent Algorithms

One of our goals in this paper is to design learning algorithms for optimizing a performance metric
of the form Ψ[h] = ψ(C[h]):

min
h:X→∆n

Ψ[h]. (OP1)

We will also be interested in designing consistent learning algorithms for optimizing a performance
measure Ψ[h] = ψ(C[h]) subject to constraints on Φk[h] = φk(C[h]), ∀k ∈ [K]:

min
h:X→∆n

Ψ[h] s.t. Φk[h] ≤ 0, ∀k ∈ [K]. (OP2)

More specifically, we wish to design algorithms that are provably consistent for OP1 and OP2,
in that they converge in probability to the optimal performance for these problems (and when there
are constraints, to zero constraint violations) as the training sample size increases.

Definition 3 (Consistent algorithm for the unconstrained problem). We define the optimal value
w.r.t. D for the unconstrained problem in OP1 as the minimum value of the performance measure
Ψ[h] over all randomized classifiers h:

Ψ∗U = inf
h:X→∆n

Ψ[h].

We say a multiclass algorithm that given a training sample S returns a classifier hS : X→∆n is
consistent w.r.t. D for OP1 if ∀ν > 0:

PS∼DN
(
Ψ[hS ] − Ψ∗U > ν

)
→ 0 as N→∞ .

For the constrained problem, we require the algorithms to additionally converge to zero con-
straint violations in the large sample limit.

9
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Definition 4 (Consistent algorithm for the constrained problem). We define the optimal value for
the constrained problem in OP2 as the minimum value of the performance measure Ψ[h] among all
randomized classifiers h that satisfy the K constraints:

Ψ∗C = inf
h:X→∆n,Φk[h]≤0∀k

Ψ[h].

Given a training sample S, we say a multiclass algorithm that, returns a classifier hS : X→∆n is
consistent w.r.t. D for OP2 if ∀ν > 0:

PS∼DN
(
Ψ[hS ] − Ψ∗C > ν

)
→ 0 and PS∼DN

(
∀k, Φk[hS ] > ν

)
→ 0 as N→∞ .

In developing our algorithms, we will find it useful to also define the empirical confusion matrix
of a classifier h w.r.t. sample S, denoted by Ĉ[h] ∈ [0, 1]n×n, as

Ĉij [h] =
1

N

N∑
`=1

1(y` = i, h(x`) = j) .

3. Bayes Optimal Classifiers

As a first step towards designing consistent algorithms, we start by examining the form of Bayes
optimal classifiers for OP1 and OP2. It is well known that for the simpler linear performance
measures (as is the case with cost-sensitive learning problems), any classifier that picks a class that
minimizes the expected loss conditioned on the instance is optimal (see e.g. Lee et al. (2004)):

Proposition 5. Let L ∈ Rn×n be a loss matrix. Then any (deterministic) classifier h∗ satisfying

h∗(x) ∈ argminj∈[n]

∑n
i=1 ηi(x)Lij

is optimal for ψL, i.e. 〈L,C[h∗]〉 = min
h:X→∆n

〈L,C[h]〉.

In order to understand optimal classifiers for the more complex learning problems in OP1 and
OP2 described in the previous section, we will find it useful to view these learning problems as
optimization problems over all achievable confusion matrices:

Definition 6 (Achievable confusion matrices). Define the set of achievable confusion matrices w.r.t.
D as the set of all confusion matrices achieved by some randomized classifier:

C =
{

vec(C[h]) | h : X→∆n

}
⊆ ∆d

where vec(C[h]) = [C11[h], . . . , C1n[h], . . . , Cn1[h], . . . , Cnn[h]] is of dimension d = n2.

See Figure 2 for an illustration of the set of achievable confusion matrices for three simple
synthetic distributions, which we will refer to as Unif, NormBal and NormImBal. For ease
of exposition, in the above definition, we represent the achievable confusion matrices by a set of
flattened vectors of dimension d = n2. We will also find it convenient from now on to overload no-
tation and denote the performance measures by a function ψ : [0, 1]d→R+ mapping a d-dimensional
vector representation of the confusion matrix to a non-negative real number, and the constraints by
functions φ1, . . . , φK : [0, 1]d→R+ defined on d-dimensional vectors. We will similarly represent
an n× n loss matrix by a flattened d-dimensional vector L ∈ Rd.

10
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Figure 2: The set of achievable confusion matrices C for three example binary-labeled distributions:
(a) Unif, (b) NormBal, and (c) NormImbal. The top row figures show the class-conditional
distributions, and the bottom row figures represent the corresponding C. While the confusion matrix
has four entries, there are only two degrees of freedom (the rows of the confusion matrix sum to the
prior probabilities). We therefore only illustrate the projection of C on to the diagonal entries C00

and C11. Note that the scales in the bottom row figures are different.

Proposition 7. C is a convex set.

PROOF. For any C1,C2 ∈ C and γ ∈ [0, 1], we will show γC1 + (1 − γ)C2 ∈ C. Clearly,
there exists randomized classifiers h1, h2 : X→∆n such that C1 = C[h1] and C2 = C[h2]. Since
h(x) = γh1(x)+(1−γ)h2(x) is a valid randomized classifier, C[h] = γC1 +(1−γ)C2 ∈ C.

The set C will play an important role in both our analysis of optimal classifiers and the sub-
sequent development of consistent algorithms. Clearly, we can write OP1 as an unconstrained
d-dimensional optimization problem over the convex set C:

min
h:X→∆n

Ψ[h] = min
C∈C

ψ(C), (OP1*)

and write OP2 as a constrained optimization problem over C:

min
h:X→∆n,Φk[h]≤0,∀k

Ψ[h] = min
C∈C,φ(C)≤0

ψ(C), (OP2*)

where we denote φ(C) = [φ1(C), . . . , φK(C)].

3.1 Bayes Optimal Classifier for the Unconstrained Problem

While it is not clear if a classifier achieving the Bayes optimal performance exists in general, we
show below that under mild assumptions, the optimal classifier for the unconstrained problem in
OP1 can always be expressed as the optimal classifier for a certain linear performance metric. We
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Figure 3: Illustration of the Bayes optimal classifier for the unconstrained problem in OP1 with a
monotonic ψ. The figures show the set of confusion matrices C for distributions Unif (left) and
NormBal (right) in Figure 2 (represented by the diagonal entries), the contours of the monotonic
performance metric ψ, and the corresponding solution C∗ to minC∈C ψ(C) (red dot). The black
dot denotes the minimizer over all confusion matrices (even those that are not achievable).

show this for “ratio-of-linear” performance measuresψ, and for “monotonic” performance measures
ψ under a mild continuity assumption on D.

Proposition 8 (Bayes optimal classifier for ratio-of-linear ψ). Let the performance measure ψ :

[0, 1]d→R+ in OP1 be of the form ψ(C) = 〈A,C〉
〈B,C〉 for some A,B ∈ Rd with 〈B,C〉 > 0 ∀C ∈ C.

Then there exists loss matrix L∗ (which depends on ψ andD) such that any (deterministic) classifier
that is optimal for the linear metric 〈L∗,C〉 is also optimal for OP1.

Proof. See Appendix A.1.

Proposition 9 (Bayes optimal classifier for monotonic ψ). Let ψ : [0, 1]d→R+ in OP1 be differ-
entiable and bounded, and be strictly decreasing in Cii for each i and non-decreasing in Cij for
all i 6= j. Assume η(X) is a continuous random vector. Then there exists a loss matrix L∗ (which
depends on ψ and D) such that any (deterministic) classifier that is optimal for the linear metric
〈L∗,C〉 over C is also optimal for OP1.

Proof. See Appendix A.2.

In Figure 3, we provide an illustration for Proposition 9 using the 2-class example distributions
Unif and NormBal from Figure 2. We consider a monotonic performance metric ψ whose con-
tours are shown overlayed in the figure with the set of feasible confusion matrices C. It can be
clearly seen that the minimal value of ψ over C is achieved by a point C∗ on the boundary. Because
C is a convex set, it follows that all points on the boundary of C are minimizers of some linear
function 〈L,C〉 over C ∈ C. Therefore, C∗ is also a minimizer of 〈L∗,C〉 for some loss matrix L∗.

However, for C∗ to be a unique minimizer of 〈L∗,C〉, we need the additional continuity as-
sumption on η(X) in Proposition 9 to hold. This does not hold for the Unif distribution in Figure
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(a) Bayes optimal classifier for 0-1 loss
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Figure 4: Comparison of Bayes optimal classifiers for the 0-1 loss (left) and the H-mean loss (right).
We use a toy 3-class (denoted as class 0, 1 and 2) distribution over an one-dimensional instance
space X = R, with equal priors, and with the class-conditional distribution for the three classes
being a Gaussian distribution with means −1, 0 and 1 respectively and variance 1. We plot the
conditional-class probability function ηi(X), and the outputs of the optimal classifier h∗i (X) for
each class i ∈ [3]. For the 0-1 loss, the optimal classifier predicts class 1 only on a small fraction of
examples, whereas for the optimal classifier H-mean loss has greater coverage for class 1.

2a, where the corresponding conditional-class probability vectors η(X) take only 3 possible values
in ∆2. In contrast, η(X) is continuous for the NormBal distribution in Figure 3b, and as result,
the minimizer C∗ of ψ(C), is also a unique minimizer for some linear function 〈L∗,C〉.

In Figure 4, we compare the forms of the Bayes optimal classifier for the standard 0-1 loss and
for the H-mean loss in Table 1. The latter seeks to explicitly balance the classifier’s performance
across all classes and is a monotonic function of (the diagonal elements of) C. We provide plots
of the optimal classifiers for a toy 3-class distribution, which contains equal class priors and has
a conditional-class probability distribution η(X) which is continuous. We know that the optimal
classifier for the 0-1 loss simply outputs the label with the maximum class probability h∗(x) =
argmax∗i ηi(x). As seen in Figure 4(a), despite the class priors being equal, this classifier predicts
class 1 on only a small fraction of instances. On the other hand, for the H-mean loss, Proposition
9 tells us that the optimal classifier can be obtained by minimizing some linear function of C, the
optimal classifier for which, in this particular case, is of the form h∗(x) = argmax∗i w

∗
i ηi(x), for

some distribution-dependent weights w∗i ∈ R+. Note that w∗i can be seen as the penalty associated
with a wrong prediction on class i, which in this case is the highest for class 1. The resulting
classifier, shown in Figure 4(b), therefore yields equitable performance across the three classes.

3.2 Bayes Optimal Classifier for the Constrained Problem

In both the characterizations in the previous section, we show that there exists a deterministic clas-
sifier that is Bayes optimal for the unconstrained problem in OP1. An analogous statement does
not hold in general for the constrained problem in OP2. However, we can prove a weaker charac-
terization for OP2 showing that the Bayes optimal classifier for the problem can be expressed as a
randomized combination of d+ 1 deterministic classifiers.

Proposition 10 (Bayes optimal classifier for continuous ψ, φ1, . . . , φK). Let the performance mea-
sure ψ : [0, 1]d→R+ and the constraint functions φ1, . . . , φK : [−1, 1]d→R+ in OP2 be continuous
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and bounded. Then there exists d+ 1 loss matrices L∗1,L
∗
2, . . . ,L

∗
d+1 (which can depend on ψ, φk’s

and D) such that an optimal classifier for OP2 can be expressed as a randomized combination of
the deterministic classifiers h1, h2, . . . , hd+1, where hi is optimal for the linear metric given by L∗i .

Proof. See Appendix A.3.

Thus for continuous and bounded ψ, φ1, . . . , φK , there exists a randomized classifier that min-
imizes OP2, and as a result a confusion matrix C∗ ∈ C that minimizes OP2*; this holds with no
assumption on the distribution. One may also apply Proposition 10 to OP1 with K = 0 constraints,
and show that when ψ is continuous and bounded, there exists a C∗ ∈ C that minimizes OP1*.

When the objective and constraints ψ, φ1, . . . , φK together depend on fewer than d = n2 entries
of the confusion matrix, we can extend the above proposition to show that the number of determin-
istic classifiers needed to construct an optimal classifier for OP2 is at most one plus the number of
confusion matrix entries the metrics depend on. For example, if we wish to optimize the G-mean
metric (Example 3) subject to a constraint on the class-1 precision (Example 5), the objective and
constraints together depend only on 2n − 1 “entries” of the confusion matrix, and so an optimal
classifier for this problem can be expressed as randomized combination of at most 2n deterministic
classifiers. In Section 7, we provide a more detailed discussion about succinct vector representations
for confusion matrices that require fewer than n2 entries.

Under continuity assumptions on η(X) (which essentially translate to the space of achievable
confusion matrices C being strictly convex), one can further show that the Bayes optimal classifier
can be expressed as a randomized combination of two deterministic classifiers h1 and h2, where hi is
optimal for some linear metric L∗i (Yang et al., 2020). The same characterization straight-forwardly
holds for unconstrained minimization of a general performance metric ψ (Wang et al., 2019).

3.3 Naı̈ve Plug-in Approach

The characterization results for the unconstrained problem in OP1 suggest a simple algorithmic
approach to finding the optimal classifier: search over a large range of loss matrices L, estimate
the optimal classifier for each such L, and select among these a classifier that yields maximal ψ-
performance (e.g. on a held-out validation data set). This is the analogue of “plug-in” type methods
for binary performance metrics (such as those considered by Koyejo et al. (2014) and Narasimhan
et al. (2014)), where one searches over possible thresholds on the (estimated) class probability func-
tion. However, while the binary case involves a search over values for a single threshold parameter,
in the multiclass case, one may need to perform a brute-force search over as many as d parame-
ters, requiring time exponential in d. For large d, such a naı̈ve plug-in approach is computationally
intractable. In fact, this procedure becomes even more difficult to implement for the constrained
problem in OP2, where the optimal classifier is a randomized combination of multiple L-optimal
classifiers, requiring a brute-force search of over multiple loss matrices L.

In what follows, we will design efficient learning algorithms that instead search over the space
of feasible confusion matrices C using suitable optimization methods.

4. Algorithms for Unconstrained Problems

We start with algorithms for solving the unconstrained learning problem in OP1. As a running
example to illustrate our algorithms, we will use the task of maximizing the H-mean loss on the
NormImbal distribution described in Figure 2(e).
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Figure 5: Illustration of the Frank-Wolfe (Algorithm 1), Gradient Descent-Ascent (Algorithm 2)
and Ellipsoid (Algorithm 3) algorithms in minimizing the H-mean loss ψHM on the NormImbal
distribution in Figure 2c. The figures contain the space of achievable confusion matrices C (with
purple colored boundary), along with the contours of ψHM. The trajectory of the confusion matrix
C[h̄t] of the averaged classifier up until iteration t is shown, where h̄t = ht for Frank-Wolfe,
h̄t = 1

t

∑τ
τ=1 h

t for GDA, and h̄t = 1
t

∑t
τ=1 α

∗
τh

τ for ellipsoid, with the optimal coefficients
α∗ ∈ argminα∈∆t

ψ
(∑t

τ=1 ατC
τ
)

computed for iterates 1, . . . t. The averaged classifier is seen
to converge to an optimal classifier for the H-mean loss and away from that for the 0-1 loss.

Table 2: Algorithms for the unconstrained problem in OP1, with the number calls to the LMO and
the optimality gap ψ(C[h̄])−minC∈C ψ(C) for the returned classifier h̄. Here ρeff = ρ+

√
dρ′.

Algorithm Assumption on ψ # LMO Calls Optimality Gap
Frank-Wolfe Convex, smooth, Lipschitz O (1/ε) O

(
ε+ ρeff

)
Gradient Descent-Ascent Convex, Lipschitz O

(
1/ε2

)
O
(
ε+ ρeff

)
Ellipsoid Convex, Lipschitz O

(
d2 log(d/ε)

)
O(ε+ ρeff)

Bisection Ratio-of-linear O (log(1/ε)) O
(
ε+ ρeff

)
As noted in our discussion of OP1*, one can view OP1 as an optimization problem over C:

minC∈C ψ(C). While C is a convex set, it is not available directly to the learner as the set of all
confusion matrices is hard to characterize. On the other hand, one operation that is easy to perform
is to find an optimal classifier for a linear loss 〈L,C〉 over C. Indeed this amounts to solving a cost-
sensitive learning problem (Elkan, 2001), a task for which there are numerous classical methods
available. So we assume access to an oracle for solving this linear minimization problem over C,
which takes as input a loss matrix L and a sample S, and outputs a classifier ĝ and an estimate of
the confusion matrix at ĝ with the following properties:

Definition 11 (Linear minimization oracle). Let ρ, ρ′, δ ∈ (0, 1). A linear minimization oracle,
denoted by Ω, takes a loss matrix L ∈ Rd and a sample S as input, and outputs a classifier ĝ
and a confusion matrix Γ̂ ∈ Rd. We say Ω is a (ρ, ρ′, δ)-approximate LMO for sample size N ,
if, with probability ≥ 1 − δ over draw of S ∼ DN , for any L ∈ Rd+ with ‖L‖∞ ≤ 1, it outputs
(ĝ, Γ̂) = Ω(L;S) such that:

〈L,C[ĝ]〉 ≤ min
h:X→∆n

〈L,C[h]〉+ ρ; ‖C[ĝ] − Γ̂‖∞ ≤ ρ′.
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Algorithm 1 Frank-Wolfe (FW) Algorithm for OP1 with Smooth Convex ψ

1: Input: ψ : [0, 1]d → [0, 1], an LMO Ω, S = {(x1, y1), . . . , (xN , yN )}, T
2: Initialize: (h0,C0) = Ω(L0;S) for an arbitrary loss matrix L0

3: For t = 1 to T do
4: Lt = ∇ψ(Ct−1)

‖∇ψ(Ct−1)‖∞
5: (h̃t, C̃t) = Ω(Lt;S)
6: ht =

(
1− 2

t+1

)
ht−1 + 2

t+1 h̃
t

7: Ct =
(
1− 2

t+1

)
Ct−1 + 2

t+1C̃t

8: End For
9: Output: h̄ = hT

The approximation constants ρ and ρ′ may in turn depend on the sample size N , the dimension d
and the confidence level δ.

In Section 6, we discuss a practical plug-in based algorithm for implementing an LMO with
these approximation properties. Equipped with access to such an LMO, we develop algorithms
based on iterative optimization methods for minimizing ψ over C. Our algorithms do not require
direct access to the set C, but only make use of calls to the LMO over C.

We present four algorithms under different assumptions on the metric ψ and show convergence
guarantees in each case (see Table 2 for a summary of our results). The proofs build on existing
techniques for showing convergence of the respective optimization solvers, and need to additionally
take into account the errors in the LMO calls.

4.1 Frank-Wolfe Algorithm for Smooth Convex Metrics

The first algorithm that we describe uses the classical Frank-Wolfe method (Frank and Wolfe, 1956)
to minimize ψ(C) over C for performance measures ψ that are convex and smooth over C. Exam-
ples of performance measures with these properties include the H-mean and Q-mean in Table 1.

The key idea behind this algorithm is to sequentially linearize the objective ψ using its lo-
cal gradients, and minimize the linear approximation over C using the LMO. The procedure, out-
lined in Algorithm 1, maintains iterates of confusion matrices Ct, computes the gradient Lt =
∇ψ(Ct−1) for the current iterate, invokes the LMO to solve the resulting linear minimization prob-
lem minC∈CD〈Lt,C〉, and updates Ct based on the result of the linear minimization. The minimizer
C∗ of ψ(C) can then be approximated by a combination of the iterates C1, . . . ,CT , with the fi-
nal classifier that achieves this confusion matrix given by a randomized combination of classifiers
learned across all the iterations.

For metrics ψ that are smooth, we show that the algorithm takes O(1/ε) calls to the LMO to
reach a classifier that is O(ε+ c)-optimal for a constant c > 0 that depends on the LMO error.

Theorem 12 (Convergence of FW algorithm). Fix ε ∈ (0, 1). Let ψ : [0, 1]d→[0, 1] be convex,
β-smooth and L-Lipschitz w.r.t. the `2-norm. Let Ω in Algorithm 1 be a (ρ, ρ′, δ)-approximate LMO
for sample size m. Let h̄ be a classifier returned by Algorithm 1 when run for T iterations. Then
with probability ≥ 1− δ over draw of S ∼ DN , after T = O(1/ε) iterations:

ψ(C[h̄]) ≤ min
C∈C

ψ(C) + 8βε+ 2Lρ+ 4β
√
dρ′ ≤ min

C∈C
ψ(C) +O(ε+ ρeff),
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where ρeff = ρ+
√
dρ′.

Proof. See Appendix A.4.

The proof derives a version of the convergence guarantee for the Frank-Wolfe method (Jaggi,
2013) which is robust to errors in the gradients and confusion matrix estimates.

In Figure 5a, we illustrate the trajectory taken by the Frank-Wolfe algorithm in minimizing the
H-mean loss ψHM in Table 1. Notice that the linear minimization outputs C̃t lie on the boundary
of C, while the averaged confusion matrix iterates Ct lie in the interior. Also note that because
NormImbal distribution we use for this illustration has significant class imbalance, the minimizer
for the 0-1 loss incurs a large H-mean loss. In contrast, Algorithm 1 converges to a confusion matrix
with substantially better H-mean loss.

4.2 Gradient Descent-Ascent Algorithm for Non-smooth Convex Metrics

The next algorithm we propose is designed for performance measures ψ that are convex, but not
necessarily smooth, such as the min-max metric in Table 1. We make use of the “three player”
framework proposed by Narasimhan et al. (2019) and provide a slight variant of the “oracle-based
algorithm” in their paper.

As a first step, we decouple the confusion matrix C from the function ψ in OP1* by introducing
auxiliary slack variables ξ ∈ ∆d, and arrive at the following equivalent problem:

min
C∈C

ψ(C) = min
C∈C, ξ∈∆d, ξ=C

ψ(ξ), (1)

where we constraint the slack variables ξ to be equal to the confusion matrix C. We define the
Lagrangian for the above problem introducing multipliers λ ∈ Rd for the d equality constraints:

L(C, ξ,λ) = ψ(ξ) + 〈λ,C− ξ〉, (2)

and re-formulate (1) as an equivalent min-max problem where we minimize the Lagrangian over ξ
and C, and maximize it over the Lagrange multipliers λ:

min
C∈C

ψ(C) = min
C∈C, ξ∈[0,1]d

max
λ∈Rd

L(C, ξ,λ). (3)

The minimizer of ψ(C) over C can be then obtained by finding a saddle point of the above
min-max problem. To this end, we first notice that the Lagrangian L is linear in C, convex in ξ
and linear in λ. Following Narasimhan et al. (2019), we maintain iterates Ct, ξt and λt and at
each iteration, perform a full minimization of L using a call to the LMO, perform gradient descent
updates on ξ, and perform gradient ascent updates on λ. We constrain ξ to be within the probability
simplex ∆d, and for technical reasons, also constrain λ to be within a bounded set Λ, both of which
are accomplished using projection operations.

The resulting gradient descent-ascent procedure, outlined in Algorithm 2 can be shown to con-
verge to an approximate saddle point of (3). In fact, one can further show that with O(log(d)/ε2)
calls to the LMO, the algorithm finds a classifier that is O(ε + c)-optimal for ψ, for some constant
c > 0 that depends on the LMO errors:†

†Narasimhan et al. (2019) point out that the min-max formulation in (3) can be used to re-derive the Frank-Wolfe
based procedure in Algorithm 1. Specifically, by defining ω(C, λ) = minξ∈[0,1]d L(C, ξ,λ), and reformulate (OP2*)
as the equivalent min-max problem minC∈C maxλ∈Rd ω(C, λ), the Frank-Wolfe based algorithm can be shown to min-
imize ω using a LMO over C ∈ C and maximize it over λ ∈ Rd by applying a Follow-The-Leader (FTL) update
(Abernethy and Wang, 2017).
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Algorithm 2 Gradient Descent-Ascent (GDA) Algorithm for OP1 with Non-smooth Convex ψ

1: Input: ψ : [0, 1]d → [0, 1], an LMO Ω , S = {(x1, y1), . . . , (xN , yN )}, T , space of Lagrange
multipliers Λ ⊂ Rd

2: Parameters: Step-sizes ω, ω′ > 0
3: Initialize: λ0 ∈ Λ
4: For t = 0 to T − 1 do
5: Lt = λt

‖λt‖∞
6: (ht,Ct) = Ω(Lt;S)
7: ξ̃ = ξt − ω∇ξL(Ct, ξt,λt); ξt+1 ∈ argminξ∈∆d

‖ξ − ξ̃‖2
8: λ̃ = λt + ω′∇λL(Ct, ξt,λt); λt+1 ∈ argminλ∈Λ ‖λ− λ̃‖2
9: End For

10: Output: h̄ = 1
T

∑T
t=1 h

t

Theorem 13 (Convergence of GDA algorithm). Fix ε ∈ (0, 1). Let ψ : [0, 1]d→[0, 1] be convex and
L-Lipschitz w.r.t. the `2-norm. Let Ω in Algorithm 2 be a (ρ, ρ′, δ)-approximate LMO for sample
size N . Let the space of Lagrange multipliers Λ = {λ ∈ Rd | ‖λ‖2 ≤ 2L}. Let h̄ be a classifier
returned by Algorithm 2 when run for T iterations, with step-sizes ω = 1

4L
√

2T
and ω′ = 4L√

2T
. Then

with probability ≥ 1− δ over draw of S ∼ DN , after T = O(1/ε2) iterations:

ψ(C[h̄]) ≤ min
C∈C

ψ(C) + O
(
ε+ ρeff) ,

where ρeff = ρ+
√
dρ′ and O hides constants independent of ε, ρ, ρ′ and d.

Proof. See Appendix A.5.

Figure 5b shows the trajectory of the iterates of the GDA algorithm on the same running example
used to illustrate the Frank-Wolfe based algorithm. Notice that the GDA algorithm converges to an
optimal confusion matrix (classifier) for the problem.

4.3 Ellipsoid Algorithm for Non-smooth Convex Metrics

Building on the Lagrangian dual formulation described above, we next design an approach based
on the classical ellipsoid algorithm (Boyd and Vandenberghe, 2004), which for convex (non-smooth)
performance measures ψ, requires only O(d2 log(d/ε)) calls to the LMO to reach an O(ε + c)-
optimal classifier. Note that unlike the two previous algorithms, the number of LMO calls in this
case has a logarithmic dependence on 1/ε, but at the cost of a stronger dependence on dimension d.
So for problems where d is small, we expect this approach to enjoy faster convergence.

We begin by defining the Lagrange dual function for given multipliers λ:

f(λ) = min
C∈C, ξ∈∆d

L(C, ξ,λ).

Because f is concave in λ, we can employ the ellipsoid algorithm to efficiently maximize f over
λ and thus solve OP1. Each step of the algorithm requires computing a super-gradient for f at
the current iterate λt, which serves as a hyper-plane separating λt from the maximizer of f . For
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Algorithm 3 Ellipsoid Algorithm for OP1 with Non-smooth Convex ψ

1: Input: ψ : [0, 1]d → [0, 1], an LMO Ω, S = {(x1, y1), . . . , (xm, ym)}, T
2: Parameters: Initial ellipsoid radius a
3: Initialize: λ̃

0
= 0d, Ã0 = a2Id

4: For t = 0 to T − 1 do
5: If ‖λ̃

t
‖2 > a :

6: At+1,λt+1 = JLE(At,λt,−λt)
7: ht,Ct = h0,C0

8: Else:
9: At,λt = Ãt, λ̃

t

10: (ht,Ct) = Ω(λt, S)
11: ξt = argminξ∈∆d

ψ(ξ)− 〈λt, ξ〉
12: At+1,λt+1 = JLE(At,λt,Ct − ξt)
13: End For
14: α∗ ∈ argminα∈∆T

ψ
(∑T−1

t=0 αtC
t
)

15: Ouput: h̄ =
∑T−1

t=0 α∗th
t

Algorithm 3(a) John-Lowner Ellipsoid (JLE) Construction

1: Input: Positive-definite matrix A ∈ Rd×d, λ, w
2: Output: A′,λ′ that parameterizes the smallest ellipsoid such that:

E(λ′,A′) ⊇ E(λ,A) ∩ {x : (x− λ)>w ≥ 0}

where E(λ,A) = {x : (x− λ)>(A)−1(x− λ) ≤ 1}
3: t = 1

d+1 , a = 1
(1−t)2 , b = 1−2t

(1−t)2

4: w̃ = A1/2w
‖A1/2w‖2

5: B−1 = aw̃w̃> + b(I − w̃w̃>)

6: λ′ = λ+ tA
1
2 w̃

7: (A′)−1 = A−1/2B−1A−1/2

8: Return A′,λ′

this, we find the minimizers Ct ∈ argminC∈C〈λt,C〉 and ξt ∈ argminξ∈∆d
ψ(ξ) − 〈λt, ξ〉; an

application of Danskin’s theorem (Danskin, 2012) then gives us that Ct − ξt = ∇λL(Ct, ξt,λ) is
a super-gradient for f at λt. Note that the minimization over C can be performed (approximately)
by calling the LMO Ω, and the minimization over ξ is a simple convex program.

The algorithm uses the (approximate) super-gradient obtained above to maintain an ellipsoid
containing a solution that approximately maximises f(·) (with the current iterate λt serving as the
center of the ellipsoid), and iteratively shrinks its volume until we reach a small-enough region
enclosing the maximizer. In Algorithm 3, we outline the details of the procedure. Lines 5-7 of the
algorithm are added to ensure that the iterates λt never leave the initial ball.
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The main loop of Algorithm 3 gives us a solution λ that is close to the optimal dual solution.
All that remains is to convert this to a solution for the primal problem in OP1*. For this, we adopt
an approach from Lee et al. (2015), which uses the fact that the algorithm maintains a subset of so-
lutions obtained from convex combinations of the confusion matrix iterates conv

(
C0, . . . ,CT−1

)
,

each of which is a primal-optimal solution. Furthermore because the ellipsoid algorithm returns a
solution from this set which is (approximately) dual-optimal, we have that:

max
λ∈Rd

min
C∈C, ξ∈∆d

L(C, ξ,λ) ∼ max
λ∈Rd

min
C∈conv(C0,...,CT−1)

ξ∈∆d

L(C, ξ,λ).

An application of min-max theorem then gives us that an approximate primal-optimal solution can
be found by solving:

min
C∈conv(C0,...,CT−1)

ξ∈∆d

max
λ∈Rd

L(C, ξ,λ) = min
C∈conv(C0,...,CT−1)

ψ(C),

which amounts to solving a convex program with no further calls to the LMO and does not require
further access to the training data. Line 14 of Algorithm 3 describes this post-processing step.

Theorem 14 (Convergence of Ellipsoid algorithm). Fix ε ∈ (0, 1). Let ψ : [0, 1]d→[0, 1] be convex
and L-Lipschitz w.r.t. the `2 norm. Let Ω in Algorithm 3 be a (ρ, ρ′, δ)-approximate LMO for
sample size N . Let h̄ be the classifier returned by Algorithm 3 when run for T iterations with initial
radius a = 2L. Then with probability ≥ 1 − δ over draw of S ∼ DN , after T = O

(
d2 log (d/ε)

)
iterations:

ψ(C[h̄]) ≤ min
C∈C

ψ(C) +O
(
ε+ ρeff) ,

where ρeff = ρ+
√
dρ′ and the O notation hides constant factors independent of ρ, ρ′, ε, d.

Proof. See Appendix A.6.

Figure 5c illustrates the trajectory taken by the LMO iterates and the final confusion matrix for
the running example, and demonstrates the convergence of the algorithm to an optimal classifier.

4.4 Bisection Algorithm for Ratio-of-linear Metrics

The final algorithm we describe in this section uses the bisection method (Boyd and Vanden-
berghe, 2004) and is designed for ratio-of-linear performance metrics that can be written in the
form ψ(C) = 〈A,C〉

〈B,C〉 for some A,B ∈ Rd, such as the micro F1-measure in Example 4.
For these performance measures, it is easy to see that:

min
C∈C

ψ(C) ≥ γ ⇐⇒ min
C∈C
〈A− γB,C〉 ≥ 0.

Thus, to test whether the optimal value of ψ is greater than γ, one can simply solve the linear
minimization problem minC∈C〈A − γB,C〉 and test the value of ψ at the resulting minimizer.
Based on this observation, one can employ the bisection method to conduct a binary search for the
minimal value (and the minimizer) of ψ(C) using only a linear minimization subroutine.
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Algorithm 4 Bisection Algorithm for OP1 with Ratio-of-linear ψ

1: Input: ψ : [0, 1]d→[0, 1] s.t. ψ(C) = 〈A,C〉
〈B,C〉 with A,B ∈ Rd

2: an LMO Ω, S = {(x1, y1), . . . , (xN , yN )}, T
3: Initialize: α0 = 0, β0 = 1, arbitrary classifier h0

4: For t = 1 to T do
5: γt = (αt−1 + βt−1)/2

6: Lt = A− γtB
‖A− γtB‖2

7: (gt,Ct) = Ω(Lt;S)
8: If ψ(Ct) ≤ γt then αt = αt−1, βt = γt, ht = gt

9: else αt = γt, βt = βt−1, ht = ht−1

10: End For
11: Output: h̄ = hT

As outlined in Algorithm 4, our proposed approach maintains a confusion matrix Ct implicitly
via classifier ht, together with lower and upper bounds αt and βt on the minimal value of ψ. At
each iteration, it determines whether this minimal value is greater than the midpoint γt of these
bounds using a call to the LMO, and then update Ct and αt, βt accordingly. Since for ratio-of-linear
performance measures there is always a deterministic classifier achieving the optimal performance
(see Proposition 8), here it suffices to maintain deterministic classifiers ht.

Like the previous ellipsoid-based algorithm, the bisection algorithm also enjoys a logarithmic
convergence rate:‡

Theorem 15 (Convergence of Bisection algorithm). Fix ε ∈ (0, 1). Let ψ : [0, 1]d→[0, 1] be such
that ψ(C) = 〈A,C〉

〈B,C〉 , where A,B ∈ Rn×n, and minC∈C 〈B,C〉 = b for some b > 0. Let Ω in
Algorithm 4 be a (ρ, ρ′, δ)-approximate LMO for sample size N . Let h̄ be a classifier returned by
Algorithm 4 when run for T iterations. Then with probability ≥ 1− δ over draw of S ∼ DN , after
T = log(1/ε) iterations:

ψ(C[h̄]) ≤ min
C∈C

ψ(C) + O
(
ε+ ρeff) ,

where ρeff = ρ+
√
dρ′ and the O notation hides constant factors independent of ρ, ρ′, ε and d.

Proof. See Appendix A.7.

5. Algorithms for Constrained Problems

We next present iterative algorithms for solving the constrained learning problem in OP2, which as
noted earlier, can be viewed as a minimization problem over C:

min
C∈C,φ(C)≤0

ψ(C). (OP2*)

‡In fact, the bisection algorithm can be viewed as a special case of the ellipsoid algorithm in one dimension (Boyd
and Vandenberghe, 2004).
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Figure 6: Illustration of the Split Frank-Wolfe (Algorithm 1), Constrained GDA (Algorithm 6) and
Constrained Ellipsoid (Algorithm 7) algorithms in minimizing the H-mean loss ψHM subject to the
constraintC00−C11 ≥ 0.2 on the NormBal distribution in Figure 2b. The figures contain the space
of achievable confusion matrices C (with purple colored boundary), along with the contours of ψHM.
The trajectory of the averaged confusion matrix C[h̄t] for the averaged classifier is shown in green,
where h̄t = ht for Frank-Wolfe, h̄t = 1

t

∑t
τ=1 h

t for GDA, and h̄t = 1
t

∑t
τ=1 α

∗
τh

τ for ellipsoid,
with the optimal coefficients α∗ ∈ argminα∈∆t:φ(

∑t
τ=1 ατC

τ )≤0 ψ
(∑t

τ=1 ατC
τ
)

computed for
iterates 1, . . . t. For SplitFW, we additionally plot the set of feasible confusion matrices F that
satisfy the constraint (shaded red region), along with the trajectory of the the averaged auxiliary
variables Ft (gold). The algorithms can be seen to converge to an optimal feasible solution.

As in the previous section, we will assume access to an LMO with the properties in Definition 11.
A simple approach to solving OP2 for convex ψ’s and φ’s is to formulate an equivalent convex-

concave saddle point problem in terms of its Lagrangian:

min
C∈C

max
λ∈RK+

ψ(C) +
K∑
k=1

λkφk(C) = max
λ∈RK+

min
C∈C

ψ(C) +
K∑
k=1

λkφk(C)︸ ︷︷ ︸
ν(λ)

,

where λk is the Lagrange multiplier for constraint φk, and we use strong duality to exchange the
‘min’ and ‘max’. For a fixed λ, the minimization over C is an unconstrained convex problem in C.
This resembles OP1 and can be solved with any of Algorithm 1–3 proposed in the previous section.
One can therefore apply a standard gradient ascent procedure to maximize the dual function ν(λ),
where the gradients w.r.t. λ can be computed by solving the minimization of C. However, this
vanilla dual-ascent approach does not enjoy strong convergence guarantees because of the multiple
levels of nesting. For example, with the Frank-Wolfe based algorithm (Algorithm 1) for the inner
minimization, this procedure would takeO(1/ε3) calls to the LMO to reach anO(ε)-optimal,O(ε)-
feasible solution (Narasimhan, 2018).

In what follows, we describe four algorithms for solving OP2 which require fewer calls to the
LMO than the vanilla approach described above (see Table 3 for a summary of our results). The
proofs build on standard techniques for showing convergence of the respective optimization solvers,
but need to additionally take into account the errors in the LMO calls and need to translate the
dual-optimal solution guarantees to optimality and feasibility guarantees for the primal solution.
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Table 3: Algorithms for the constrained problem in OP2, with the number calls to the LMO, and
the optimality gap ψ(C[h̄]) − minC∈C ψ(C) and feasibility gap maxk φk(C[h̄]) for the returned
classifier h̄. In rows 1–3, we assume ψ is Lipschitz w.r.t. the `2-norm, and in all rows, we assume
that φ1, . . . , φK are convex and Lipschitz, and satisfy the strict feasibilty condition in Assumption
1. In row 4, ψ(C) = 〈A,C〉

〈B,C〉 with minC∈C〈B,C〉 > 0. We denote d̄ = d+K, and ρeff = ρ+
√
dρ′.

Algorithm Assumption on ψ # LMO Calls Opt. Gap Feasibility Gap
Split Frank-Wolfe Convex, Smooth O

(
1/ε2

)
O
(
ε+

√
ρeff
)
O
(
ε+

√
ρeff
)

Con. GDA Convex O
(
K/ε2

)
O
(
ε+ ρeff

)
O
(
ε+ ρeff

)
Con. Ellipsoid Convex O

(
d̄2 log(d̄/ε)

)
O
(
ε+ ρeff

)
O
(
ρeff)

)
Con. Bisection Ratio-of-linear O

(
K log(1/ε)/ε2

)
O
(
ε+ ρeff

)
O
(
ε+ ρeff

)
The proposed algorithms can be seen as “constrained” counterparts to the four unconstrained

algorithms described in the previous section. All our algorithms will assume that the constraints
φk(C) are convex in C. As a running example to illustrate our algorithms, we will use the task of
maximizing the H-mean loss on the NormBal distribution described in Figure 2b, subject to the
constraint that coverage on class 1 be no more than 0.3. This constraint is linear in C and can be
written as C01 + C11 ≤ 0.3, or equivalently re-written as C00 − C11 ≥ 0.2 (since π1 = 0.5).

5.1 (Split) Frank-Wolfe Algorithm for Smooth Convex Metrics

In this section, we adapt the Frank-Wolfe approach in Algorithm 1 to constrained learning problems
OP2 for smooth convex metrics ψ. The key idea is to pose OP2* as an optimization problem over
the intersection of two sets:

min
C∈C:φ(C)≤0

ψ(C) = min
C∈C∩F

ψ(C), (4)

where F = {F ∈ ∆d |φ(F) ≤ 0} is the set of all points in ∆d that satisfy the K inequality
constraints. While the set F is convex (and so is the intersection C ∩ F), we will not be able
to apply the classical Frank-Wolfe method to this problem as we cannot directly solve a linear
minimization over the intersection C ∩ F . However, we already have access to an LMO for the set
C alone, and performing a linear minimization over the set F amounts to solving a straight-forward
convex program. We therefore adopt the Frank-Wolfe based variant proposed by Gidel et al. (2018)
for optimizing a (smooth) convex function over the intersection of two convex sets with access to
linear minimization oracles for the individual sets.

To this end, we introduce auxiliary variables F ∈ ∆d in (4) and decouple the two constraint
sets, giving us the following equivalent optimization problem:

min
C∈C,F∈F

ψ(C) + ψ(F) s.t. C− F = 0. (5)

We then define the augmented Lagrangian of the above problem as:

Laug(C,F,λ) = ψ(C) + ψ(F) + 〈λ,C− F〉+
ζ

2
||C− F||22, (6)

where λ is a vector of Lagrange multipliers for the equality constraints and ζ > 0 is a constant
weight on the quadratic penalty term. We apply the approach of Gidel et al. (2018) to solve (5) by
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Algorithm 5 Split Frank-Wolfe (SplitFW) Algorithm for OP2 with Smooth Convex ψ

1: Input: ψ, φ1, . . . , φk : [0, 1]d → [0, 1], an LMO Ω, S = {(x1, y1), . . . , (xN , yN )}, T ∈ N,
ζ, ω > 0.

2: Initialize: (h0,C0) = Ω(L0;S) for an arbitrary loss matrix L0

3: For t = 1 to T do
4: Lt = at

‖a‖2 , where at = ∇CLaug(Ct−1,Ft−1,λt−1)

5: (h̃t, C̃t) = Ω(Lt;S)
6: F̃t = argminF∈F

〈
bt,F

〉
, where bt = ∇FLaug(Ct−1,Ft−1,λt−1)

7: γt = argminγ∈[0,1] Laug
(
(1− γ)Ct−1 + γC̃t, (1− γ)Ft−1 + γF̃t, λt−1

)
8: ht =

(
1− γt

)
ht−1 + γth̃t

9: Ct = (1− γt)Ct−1 + γtC̃t

10: Ft = (1− γt)Ft−1 + γtF̃t

11: λt = λt−1 + ω
t (Ct − Ft)

12: End For
13: Output: h̄ = ht∗ and C̄ = Ct∗ , where t∗ = argmint>T/2 ||Ct − Ft||22

using a gradient ascent step to maximize Laug over λ, a linear minimization step for C over C, and
a linear minimization step for F over F .

This procedure, outlined in Algorithm 5, is guaranteed to converge to an optimal feasible clas-
sifier under the assumption that there exists a confusion matrix which is strictly feasible.

Assumption 1 (Strict feasibility). For some r > 0, there exists a confusion matrix C′ ∈ C such that
maxk∈[K] φk(C

′) ≤ −r.

Theorem 16 (Convergence of SplitFW algorithm). Fix ε > 0. Let ψ : [0, 1]d→[0, 1] be convex,
β-smooth and L-Lipschitz w.r.t. the `2-norm, and let φ1, . . . , φK : [0, 1]d→[−1, 1] be convex and
L-Lipschitz w.r.t. the `2-norm. Let Ω in Algorithm 5 be a (ρ, ρ′, δ)-approximate LMO for sample
size N . Let h̄ be a classifier returned by Algorithm 5 when run for T iterations with some ζ > 0.
Let the strict feasibility condition in Assumption 1 hold for radius r > 0. Then, with probability
≥ 1− δ over draw of S ∼ DN , after T = O(1/ε2) iterations:

Optimality: ψ(C[h̄]) ≤ min
C∈C,φk(C)≤0,∀k

ψ(C) + O
(
ε+

√
ρeff
)

;

Feasibility: φk(C[h̄]) ≤ O
(
ε+

√
ρeff
)
, ∀k ∈ [K].

where ρeff = ρ +
√
dρ′ and the O notation hides constant factors independent of ρ, ρ′, T, d and K

for small enough ρ, ρ′ and large T .

Proof. See Appendix A.8

Unlike the Frank-Wolfe based algorithm for the unconstrained problem (see Theorem 12) which
needed onlyO(1/ε) calls to the LMO to reach anO(ε+c)-optimal solution, the proposed algorithm
for handling constraints requires O(1/ε2) calls to reach an O(ε+ c)-optimal, feasible solution.
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Figure 6a illustrates the trajectories of the algorithm applied to the previously described running
example. As seen, both the iterates Ct and Ft, representing the achievable and feasible confusion
matrices respectively, are seen to converge to a solution that is optimal and feasible for the problem.

5.2 Gradient Descent-Ascent Algorithm for Non-smooth Convex Metrics

Next, we modify the gradient descent-ascent approach in Algorithm 2 to handle constraints. Our
proposal is a slight variant of the oracle-based algorithm in Narasimhan et al. (2019) for optimiz-
ing with constraints. As before, we introduce slack variables ξ ∈ ∆d to decouple the functions
ψ, φ1, . . . , φK from the confusion matrix C, and re-write OP2* as:

min
C∈C:φ(C)≤0

ψ(C) = min
C∈C, ξ∈∆d

ξ=C, φk(ξ)≤0,∀k

ψ(ξ) (7)

We then define the Lagrangian for the above problem with multipliers λ ∈ Rd for the d equality
constraints and µ ∈ RK+ for the K inequality constraints:

Lcon(C, ξ,λ,µ) = ψ(ξ) + 〈λ,C− ξ〉+ 〈µ,φ(ξ)〉, (8)

and re-formulate (7) as the following min-max problem:

min
C∈C,φk(C)≤0,∀k

= min
C∈C, ξ∈∆d

max
λ∈Rd,µ∈RK+

Lcon(C, ξ,λ,µ). (9)

The gradient descent-ascent procedure for solving an approximate saddle point of (9) is shown in
Algorithm 2 and enjoys the following convergence guarantee for a convex, non-smooth metric ψ:

Theorem 17 (Convergence of ConGDA algorithm). Fix ε ∈ (0, 1). Let ψ : [0, 1]d→[−1, 1] and
φ1, . . . , φK : [0, 1]d→[−1, 1] be convex and L-Lipschitz w.r.t. the `2-norm. Let Ω in Algorithm
6 be a (ρ, ρ′, δ)-approximate LMO for sample size N . Suppose the strict feasibility condition in
Assumption 1 holds for radius r > 0. Let the space of Lagrange multipliers Λ = {λ ∈ Rd | ‖λ‖2 ≤
2L(1 + 1/r)}, and Ξ = {µ ∈ RK+ | ‖µ‖1 ≤ 2/r}. Let h̄ be a classifier returned by Algorithm 6
when run for T iterations, with step-sizes ω = 1

L̄
√

2T
and ω′ = L̄

(1+2
√
K)
√

2T
, where L̄ = 4(1 +

1/r)L+ 2/r. Then with probability≥ 1− δ over draw of S ∼ DN , after T = O(K/ε2) iterations:

Optimality: ψ(C[h̄]) ≤ min
C∈C:φ(C)≤0

ψ(C) + O
(
ε+ ρeff) ;

Feasibility: φk(C[h̄]) ≤ O
(
ε+ ρeff) ,∀k ∈ [K].

where ρeff = ρ+
√
dρ′ and the O notation hides constant factors independent of ρ, ρ′, T, d and K.

Proof. See Appendix A.9.

Figure 6b shows the trajectory of the iterates of the algorithm on the same running example used
for the SplitFW algorithm. The algorithm is seen to converge to an optimal-feasible classifier.
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Algorithm 6 Constrained GDA (ConGDA) Algorithm for OP2 with Non-smooth Convex ψ

1: Input: ψ, φ1, . . . , φK : [0, 1]d → [0, 1], an LMO Ω, S = {(x1, y1), . . . , (xN , yN )}, T , space
of Lagrange multipliers Λ ⊂ Rd,Ξ ⊂ RK+

2: Parameters: Step-sizes ωξ, ωλ, ωµ > 0
3: Initialize: (h0,C0) = Ω(L0;S) for an arbitrary loss matrix L0

4: For t = 1 to T do
5: Lt = λt−1

‖λt−1‖2
6: (ht,Ct) = Ω(Lt;S)
7: ξ̃ = ξt−1 − ωξ∇ξLcon(Ct, ξt−1,λt−1,µt−1); ξt+1 ∈ argminξ∈[0,1]d ‖ξ − ξ̃‖2
8: λ̃ = λt−1 + ωλ∇λLcon(Ct, ξt−1,λt−1,µt−1); λt+1 ∈ argminλ∈Λ ‖λ− λ̃‖2
9: µ̃t = µt−1 + ωµ∇µLcon(Ct, ξt−1,λt−1,µt−1); µt+1 ∈ argminµ∈Ξ ‖µ− µ̃‖2

10: End For
11: Output: h̄ = 1

T

∑T
t=1 h

t

5.3 Ellipsoid Algorithm for Non-smooth Convex Metrics

Our next algorithm extends the ellipsoid method in Algorithm 3 to handle constraints φ(C) ≤ 0.
We use the Lagrangian Lcon(C, ξ,λ,µ) for the constrained problem defined in the previous section
in (8), and work with its dual function f :

f con(λ,µ) =

{
minC∈C, ξ∈∆d

Lcon(C, ξ,λ,µ) if µ ≥ 0

−∞ otherwise
,

where we note that the Lagrange multipliers µ for the K inequality constraints are not allowed to
be negative.

Following the unconstrained case, we seek to maximize the dual function over λ ∈ Rd and
over µ ∈ RK+ . Because f con is concave in λ and µ, we can employ the ellipsoid method with the
JLE subroutine in Algorithm 3(a) to maximize f con(λ,µ), and use a post-processing step to convert
the dual solution to a near-optimal and near-feasible solution for the primal problem. As shown
in Algorithm 7, at each iteration, the procedure maintains an ellipsoid containing the maximizer of
f con, with the current iterate [λt,µt] serving as the center of the ellipsoid

Lines 5 to 10 of the algorithm simply ensure the iterate [λt,µt] stays within the initial ellipsoid,
and µt remains non-negative. As before, to compute a super-gradient for f at a given [λt,µt], we
compute Ct ∈ argminC∈C〈λt,C〉 and ξt ∈ argminξ∈∆d

ψ(ξ)−〈λt, ξ〉+ 〈µt,φ(ξ)〉, and evaluate
[Ct − ξt,φ(ξt)]. Note that Ct can be obtained via a linear minimization oracle over C and ξt is
the solution of a convex program that has no dependence on the data distribution. The approximate
nature of the LMO (and in turn the supergradient of f con) require a modified proof from the standard
ellipsoid to argue that the errors at each iteration do not add up catastrophically. The dual solution is
converted to a primal-feasible solution in line 16 of the algorithm by solving a convex optimization
problem that requires no access to the training data.

In Algorithm 7, the initial classifier h0 can be any classifier, as it is the result of the LMO where
the loss is the zero matrix. For the purposes of proving a convergence guarantee, we will assume
that the initial classifier h0 is strictly feasible.
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Algorithm 7 Constrained Ellipsoid (ConEllipsoid) Algorithm for OP2 with Non-smooth Convex ψ

1: Input: ψ : [0, 1]d → [0, 1], an LMO Ω, S = {(x1, y1), . . . , (xN , yN )}, T
2: Parameters: Initial ellipsoid radius a, a strictly feasible classifier h0

3: Initialize: λ0 = 0d,µ
0 = 0, A0 = a2Id+K , C0 = C[h0]

4: For t = 0 to T − 1:
5: If ‖[λt,µt]‖2 > a:
6: At+1, [λt+1,µt+1] = JLE(At, [λt,µt], [−λt,−µt])
7: ht,Ct = h0,C0 ; continue
8: Else If µt � 0 :
9: At+1, [λt+1,µt+1] = JLE(At, [λt,µt], [0d, pos(−µt)]), where pos(u) = max(u, 0).

10: ht,Ct = h0,C0 ; continue
11: Else:
12: (ht,Ct) = Ω(λt, S)
13: ξt = argminξ∈∆d

ψ(ξ)− 〈λt, ξ〉+ 〈µt,φ(ξ)〉
14: At+1, [λt+1,µt+1] = JLE(At, [λt,µt], [Ct − ξt,φ(ξt)])
15: End For
16: α∗ ∈ argmin

α∈∆T :φ(
∑
t αtC

t)≤0
ψ
(∑T−1

t=0 αtC
t
)

17: Ouput: h̄ =
∑T−1

t=0 α∗th
t

Theorem 18 (Convergence of ConEllipsoid). Fix ε ∈ (0, 1). Let ψ : [0, 1]d→[0, 1], φ1, . . . , φK :
[0, 1]d→[−1, 1] be convex and L-Lipschitz w.r.t. the `2 norm. Let Ω in Algorithm 6 be a (ρ, ρ′, δ)-
approximate LMO for sample size N . Suppose the strict feasibility condition in Assumption 1
holds for some r > 0. Let the initial classifier h0 satisfy this condition, i.e. φ(C[h0]) ≤ −r
and C[h0] = C0. Let d̄ = d + K. Let h̄ be the classifier returned by Algorithm 7 when run for
T > 2d̄2 log( d̄ε ) iterations with initial radius a > 2(L+ L+1

r ). Then with probability ≥ 1− δ over
draw of S ∼ DN , we have

Optimality: ψ(C[h̄]) ≤ min
C∈C:φk(C)≤0,∀k

ψ(C) +O(ε+ ρeff);

Feasibility: φk(C[h̄]) ≤ O(ρeff), ∀k ∈ [K],

where ρeff = ρ+
√
dρ′ and the O notation hides constant factors independent of ρ, ρ′, T, d and K.

Proof. See Appendix A.10.

The theorem above gives guarantees on the convergence of the constrained ellipsoid algorithm
to the optimal feasible solution. Notice the exponential convergence rate in 1/ε at the cost of a
quadratic dependence on dimension d and number of constraints K. Figure 6c shows the trajectory
of the iterates of the algorithm on the same running example used previously. The algorithm is
clearly seen to converge to an optimal-feasible classifier.

5.4 Bisection Algorithm for Fractional-linear Metrics

The final constrained algorithm we describe is a straightforward extension of the bisection method in
Algorithm 4 for ratio-of-linear performance measures that can be written in the form ψ(C) = 〈A,C〉

〈B,C〉
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Algorithm 8 Constrained Bisection (ConBisection) Algorithm for OP2 with Ratio-of-linear ψ

1: Input: ψ : [0, 1]d→[0, 1] s.t. ψ(C) = 〈A,C〉
〈B,C〉 with A,B ∈ Rd and φ1, . . . , φK : [0, 1]d→[0, 1]

2: an LMO Ω, S = {(x1, y1), . . . , (xN , yN )}, T , T ′, ConGDA parameters: Λ, Ξ, ω and ω′

3: Initialize: α0 = 0, β0 = 1, a classifier h0 that satisfies the constraints, i.e. φ(C[h0]) ≤ 0
4: For t = 1 to T do
5: γt = (αt−1 + βt−1)/2
6: (gt,Ct) = ConGDA(ψ′,φ, S,Ω, T ′,Λ,Ξ, ω, ω′), where ψ′(C) = 〈A − γtB,C〉
7: If ψ(Ct) ≥ γt then αt = γt, βt = βt−1, ht = ht−1

8: else αt = αt−1, βt = γt, ht = gt

9: End For
10: Output: h̄ = hT

for some A,B ∈ Rd. The key observation here is that testing whether the optimal solution to the
constrained problem OP2* with a ratio-of-linear ψ is greater than a threshold γ is equivalent to
minimizing a linear metric with constraints:

min
C∈C:φ(C)≤0

ψ(C) ≥ γ ⇐⇒ min
C∈C:φ(C)≤0

〈A− γB,C〉 ≥ 0.

The latter can be solved using any of constrained learning methods outlined Algorithms 5–7. There-
fore one can employ the bisection method as before to conduct a binary search for the minimal value
(and minimizer) of ψ(C) by calling one of these algorithms at each step. We outline this procedure
in Algorithm 8, with the ConGDA method (Algorithm 6) used for the inner minimization.
We then have the following convergence guarantee:§

Theorem 19 (Convergence of ConBisection algorithm). Fix ε ∈ (0, 1). Let ψ : [0, 1]d→[0, 1] be
such that ψ(C) = 〈A,C〉

〈B,C〉 , where A,B ∈ [0, 1]d, and minC∈C 〈B,C〉 = b for some b > 0. Let

φ1, . . . , φK : [0, 1]d→[−1, 1] be convex and L-Lipschitz w.r.t. the `2-norm. Let Ω in Algorithm
8 be a (ρ, ρ′, δ)-approximate LMO for sample size N . Suppose the strict feasibility condition in
Assumption 1 holds for some r > 0. Let Λ, Ξ, ω and ω′ in the call to Algorithm 6 be set as in
Theorem 17 with Lipschitz constant L′ = max{L, ‖A‖2 + ‖B‖2}. Let h̄ be a classifier returned by
Algorithm 8 when run for T outer iterations and T ′ inner iterations. Then with probability ≥ 1− δ
over draw of S ∼ DN , after T = log(1/ε) outer iterations and T ′ = O(K/ε2) inner iterations:

Optimality : ψ(C[h̄]) ≤ min
C∈C:φ(C)≤0

ψ(C) + O
(
ε+ ρeff) ;

Feasibility : φk(C[h̄]) ≤ O
(
ε+ ρeff) , ∀k ∈ [K],

where ρeff = ρ+
√
dρ′ and the O notation hides constant factors independent of ρ, ρ′, T, d and K.

Proof. See Appendix A.11.

§Because the inner subroutine uses the ConGDA algorithm, the rate of convergence has a dependence of Õ
(
1/ε2

)
on ε, which is an improvement over the Õ

(
1/ε3

)
dependence in the previous conference paper (Narasimhan, 2018).
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Algorithm 9 Plug-in Based LMO

1: Input: Loss matrix L ∈ Rd+, S = {(x1, y1), . . . , (xN , yN )},
2: Class probability model η̂ : X→∆n independent of S
3: Construct classifier ĝ(x) = argmin∗j∈[n]

∑n
i=1 η̂i(x)Ln(i−1)+j

4: Γ̂ = vec
(
ĈS [ĝ]

)
5: Output: ĝ, Γ̂

6. Plug-in Based Linear Minimization Oracle

All the learning algorithms we have presented have assumed access to an approximate linear min-
imization oracle (LMO) (see Definition 11). In this section, we describe a practical plug-in based
LMO with the desired approximation properties. This method seeks to approximate the Bayes op-
timal classifier for the given linear metric using an estimate η̂ : X→∆n of the conditional-class
probability distribution ηi(X) = P(Y = i|X).

Specifically, for a flattened loss matrix L ∈ Rd+, where Ln(i−1)+j is the cost of predicting class
j when the true class is i, we have from Proposition 5 that the Bayes optimal classifier is given
by h∗(x) = argmin∗j∈[n]

∑n
i=1 ηi(x)Ln(i−1)+j . The plug-in based LMO outlined in Algorithm 9

approximates this classifier with the class probability model η̂. The classifier and confusion matrix
returned by the algorithm satisfy the LMO approximation properties laid out in Definition 11:

Theorem 20 (Regret bound for plug-in LMO). Fix δ ∈ (0, 1). Then with probability ≥ 1− δ over
draw of sample S ∼ DN , for any loss matrix L ∈ Rd, the classifier and confusion matrix (ĝ, Γ̂)
returned by Algorithm 9 satisfies:

〈L,C[ĝ]〉 ≤ min
h:X→∆n

〈L,C[h]〉+ ‖L‖∞EX

[∥∥η̂(X) − η(X)
∥∥

1

]
;

‖C[ĝ] − Γ̂‖∞ ≤ O
(√

d log(n) log(N) + log(d/δ)

N

)
.

Proof. See Appendix A.12

6.1 Consistency of Proposed Algorithms with Plug-in LMO

Theorem 20 tells us that the quality of the classifier ĝ returned by the plug-in based LMO depends on
the estimation error EX

[∥∥η̂(X) − η(X)
∥∥

1

]
, which measures the gap between the class probability

model η̂ and the true conditional class probabilities η. By combining this result with Theorem
12–18, we can show that the algorithms described in Sections 4 and 5, when used with the plug-in
based LMO, are statistically consistent. For the sake of brevity, we present the consistency analysis
for the GDA algorithm and its constrained counter-part alone. The analysis for the other algorithms
follow identical steps.

Below, we present a regret bound for Algorithms 2 and 6 with Algorithm 9 as the LMO Ω. For
technical reasons, we require that the class probability model η̂ is independent of the sample S, (e.g.
η̂ can be learned using a sample different from S).
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Corollary 21 (Regret bound for GDA algorithm). Let ψ : [0, 1]d→[0, 1] be convex and L-Lipschitz
w.r.t. the `2-norm. Let the LMO Ω in Algorithm 2 be a plug-in based LMO (as in Algorithm 9) with
a CPE argument η̂. Let h̄ be a classifier returned by Algorithm 2 when run for T iterations with
the parameter settings in Theorem 13. Then with probability ≥ 1 − δ over draw of S ∼ DN , after
T = O(N) iterations:

ψ(C[h̄]) ≤ min
C∈C

ψ(C) + O

(
EX [‖η̂(X)− η(X)‖1] +

√
d

√
d log(n) log(N) + log(d/δ)

N

)
.

Corollary 22 (Regret bound for ConGDA algorithm). Let ψ : [0, 1]d→[0, 1] and φ1, . . . , φK :
[0, 1]d→[−1, 1] be convex and L-Lipschitz. Let the LMO Ω in Algorithm 2 be a plug-in based LMO
(as in Algorithm 9) with a CPE argument η̂. Let h̄ be a classifier returned by Algorithm 6 when
run for T iterations with the parameter settings in Theorem 17. Then with probability ≥ 1− δ over
draw of S ∼ DN , after T = O(KN) iterations:

ψ(C[h̄]) ≤ min
C∈C

ψ(C) + O

(
EX [‖η̂(X)− η(X)‖1] +

√
d

√
d log(n) log(N) + log(d/δ)

N

)
;

φk(C[h̄]) ≤ O

(
EX [‖η̂(X)− η(X)‖1] +

√
d

√
d log(n) log(N) + log(d/δ)

N

)
, ∀k ∈ [K].

When the class probability model η̂ used by the LMO is learned by an algorithm that guarantees
EX [‖η̂(X) − η(X)‖1]→0 as N→∞, then Algorithm 2 is statistically consistent for the uncon-
strained problem in (OP1), and Algorithm 6 is statistically consistent for the constrained problem
in (OP2). The property that the learned class probability estimation error goes to zero in the large
sample limit is true for any algorithm that minimizes a strictly proper composite multiclass loss (e.g.
the standard cross-entropy loss) over a suitably large function class (Vernet et al., 2011).

While our consistency results require that the samples used by the optimization method and the
LMO to be drawn independently, this may be inconvenient in real-world applications where data is
scarce and limited. In practice, we find that using the same sample for both the optimization method
and the LMO does not hurt performance, and this is the approach we adopt in our experiments.

A practical advantage of the plug-in based LMO is that one can pre-train the class probability
model η̂ and re-use the same model each time the LMO is invoked. In practice, there are other
off-the-shelf algorithms that one can use to implement the LMO, such as cost-weighted decision
trees (Ting, 2002) and those based on optimizing a cost-weighted surrogate loss (e.g. Lee et al.
(2004)), which require training a new classifier for each given loss vector L. While a majority of
our experiments will use a plug-in based LMO, we also explore the use of cost-weighted surrogate
losses for implementing the LMO.

7. Extension to Fairness Metrics and Other Refinements

To keep the exposition concise, we have so far focused on metrics defined by a function of the
overall confusion matrix C[h]. We now discuss how the algorithms in Sections 4 and 5 can be
extended to handle the group-based fairness metrics described in Section 2.2, which are defined in
terms of group-specific confusion matrices (see Definition 2).
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Algorithm 10 Plug-in Based LMO for Fairness Problems

1: Input: Loss matrix L ∈ Rd+, Class prob. model η̂ : X→∆n, S = {(x1, y1), . . . , (xN , yN )}
2: Group assignment A : X→[m]
3: Define σ(x, i, j) = mn(A(x)− 1) + n(i− 1) + j
4: Construct ĝ(x) = argminj∈[n]

∑n
i=1 η̂i(x)Lσ(x,i,j)

5: Γ̂ =
[
vec
(
Ĉ0[ĝ]

)
, . . . , vec

(
Ĉm−1[ĝ]

)
)
]

6: Output: ĝ, Γ̂

7.1 Group-based Fairness Metrics

In the fairness setup we consider, each instance x ∈ X is associated with a group A(x) ∈ [m],
and the objective and constraints are defined by functions of m group-specific confusion matrices
C1[h], . . . ,Cm[h]. Note that even for binary problems where n = 2, the presence of multiple
groups poses challenges in solving the resulting learning problems in (OP1) and (OP2). For ex-
ample, a naı̈ve approach one could take for binary labels is to construct a simple plug-in classifier
for these problems that assigns a separate threshold for each group, but tuning m thresholds via a
brute-force search can quickly become infeasible when m is large.

Our approach to solving the learning problems in (OP1) and (OP2) with group fairness metrics
is to once again reformulate as an optimization problem over the set of achievable group-specific
confusion matrices, in this case, represented by vectors of dimension d = mn2.

Definition 23 (Achievable group-specific confusion matrices). Define the set of achievable group-
specific confusion matrices w.r.t. D as:

C[m] =
{[

vec(C0[h]), . . . , vec(Cm−1[h])
]∣∣ h : X→∆n

}
.

Algorithms 1–8 can now be directly applied to solve the resulting optimization over C[m], at each
iteration, assuming access to an oracle for approximately solving a linear minimization problem over
C[m]. This linear minimization sub-problem can again be solved using a plug-in based LMO similar
Algorithm 9. The details of the plug-in variant for the fairness setup are provided in Algorithm
10, where we denote the empirical group-specific confusion matrix for group a from sample S =
{(x1, y1), . . . , (xN , yN )} by:

Ĉaij [h] =
1

N

N∑
`=1

1(y` = i, h(x`) = j, A(x`) = a) .

7.2 Succinct Confusion Matrix Representations

Before closing, we note that for simplicity, we have allowed the d-dimensional vector representation
of the confusion matrix to contain all n2 entries (or all mn2 for fairness metrics). In practice, we
only need to take into account those entries of the confusion matrix performance measures and
constraints we seek to optimize depend upon. For example, the G-mean metric in Example 3 is
defined on only the diagonal entries of the confusion matrix, and so the vector representation in this
case needs to only contain the n diagonal entries. In fact, for some metrics, it suffices to represent
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the confusion matrix using a small number of linear transformations. For example, the coverage
metric described in Example 6 is defined on only the column sums of the confusion matrix, and
hence the d-dimensional vector representation in this case only needs to contain the n column sums.

More generally, we can work with succinct vector representations given by linear transforma-
tions of the confusion matrices:

Definition 24 (Generalized confusion vectors). Define the set of (achievable) generalized confusion
vectors w.r.t. D as:

Cgen =
{[
ϕ1(C0[h], . . . ,Cm−1[h]), . . . , ϕd(C

0[h], . . . ,Cm−1[h])
]∣∣ h : X→∆n

}
,

where each ϕk : [0, 1]mn
2→R+ is a linear map.

The set Cgen is convex. In the simplest case, we can have a linear map ϕk of dimension d =
mn2, where each coordinate picks one entry from the m confusion matrices. However, for most
of the performance metrics described in Section 2.1 and 2.2, it suffices to use a a small number
of d << mn2 linear transformations and we can translate the corresponding learning problems in
OP1 and OP2 into equivalent optimization problems over Cgen. The iterative algorithms discussed in
Sections 4 and 5 can then be applied to solve the resulting lower-dimensional optimization problem
over C, with the plug-in procedure in Algorithm 9 straightforwardly adapted to solve the linear
minimization over Cgen at each step.

8. Experiments

We present an experimental evaluation of the algorithms presented in Sections 4 and 5 on a variety
of multi-class datasets and multi-group fair classification tasks. Broadly, we cover the following:

1. We showcase on a synthetic dataset that our algorithms converge in the large sample limit to
optimal (feasible) classifier (Section 8.3).

2. We demonstrate that the proposed algorithms are competitive or better than the state-of-the-art
algorithms for the real-world tasks we consider (Sections 8.4–8.5).

3. We provide practical guidance on which algorithm is better suited for a given application, and
investigate two different choices for the LMO (Sections 8.6–8.7).

4. We illustrate with image classification case-studies how our algorithms can be applied to tackle
class-imbalance and label noise (Section 8.8).

A summary of the datasets we use is provided in Tables 4 and 5, along with the model architec-
ture we use in each case. The details of the data pre-processing are provided in Appendix B. With
the exception of the CIFAR datasets, which comes with standard train-test splits, we split all other
datasets into 2/3-rd for training and 1/3-rd for testing, and repeat our experiments over multiple such
random splits. All our methods were implemented in Python using PyTorch and Scikit-learn.¶

8.1 Baselines

In a majority of the experiments, our algorithms will use the plug-in method in Algorithm 9 for
the inner linear minimization oracle, and employ logistic regression to fit a model η̂ : X→∆n to
¶Code available at: https://github.com/shivtavker/constrained-classification
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Table 4: Multi-class datasets used in our experiments

Dataset #Classes #Train #Test #Features miny πy

maxy πy
Model

Abalone 12 2923 1254 8 0.149 Linear
PageBlock 5 3831 1642 10 0.0057 Linear
MACHO 8 4241 1818 64 0.0148 Linear
Sat-Image 6 4504 1931 36 0.408 Linear
CovType 7 406708 174304 14 0.0097 Linear

CIFAR-10-Flip 10 27500 5500 32 × 32 0.1 ResNet-50
CIFAR-55 55 50000 10000 32 × 32 0.1 ResNet-50

Table 5: Multi-group fairness datasets with binary labels used in our experiments.

Dataset #Train #Test #Features Protected Attr. Prot. Group Frac. Model
Communities & Crime 1395 599 132 Race (binary) 0.49 Linear

COMPAS 4320 1852 32 Gender 0.19 Linear
Law School 14558 6240 16 Race (binary) 0.06 Linear

Default 21000 9000 23 Gender 0.40 Linear
Adult 34189 14653 123 Gender 0.10 Linear

estimate the conditional-class probabilities. As baselines, we compare with methods for minimizing
the standard 0-1 loss and the balanced 0-1 loss, both of which are simpler alternatives to the metrics
we consider, and the state-of-the-art approach for directly optimizing with complex metrics and
constraints.

(i) A plug-in classifier that predicts the class with the maximum class probability, i.e. argmaxi η̂i(x);
this method is consistent for the 0-1 loss.

(ii) A plug-in classifier that weighs the class probabilities by the inverse class priors, and predicts
the class with the highest weighted probability argmaxi

1
π̂i
η̂i(x), where π̂i is an estimate of the

prior for class i; this method is consistent for the balanced 0-1 loss.

(iii) The approach of Narasimhan et al. (2019) for optimizing with complex performance metrics and
constraints, available as a part of the TensorFlow Constrained Optimization (TFCO) library.‖

TFCO uses an optimization procedure similar to the GDA method in Algorithm 2, but instead
of fitting a plug-in classifier to a pre-trained class probability model, performs online updates on
surrogate approximations. Therefore one key difference between our use of plug-in classifiers and
the approach taken by TFCO is that the latter is an in-training method which trains a classifier from
scratch. Unlike our proposal, it does not come with consistency guarantees. It is worth noting
that TFCO can be seen as a strict generalization to previous surrogate-based methods for complex
evaluation metrics (Narasimhan et al., 2015a; Kar et al., 2016).

All the plug-in based methods use the same class probability estimator η̂. We employ the same
architecture as η̂ for the model trained by TFCO.

We do not include the previous SVMperf method (Joachims, 2005) as a baseline because it has a
running time that is exponential in the number of classes, and as shown in the previous conference
version of this paper, can be prohibitively expensive to run even for a moderate number of classes
(Narasimhan et al., 2015b). Moreover, this method was proposed for unconstrained problems, and
does not explicitly allow for imposing constraints on metrics.

‖https://github.com/google-research/tensorflow_constrained_optimization
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Figure 7: Convergence of the proposed algorithms on synthetic data to (a) the Bayes optimal classi-
fier for of the Q-mean loss, and (b) the optimal-feasible classifier for the task of minimizing Q-mean
loss subject to a coverage constraint, with the Q-mean loss shown on the left and the coverage con-
straint violation maxi∈[3]

∣∣∑
j Cji − πi

∣∣− 0.01 shown on the right. The results are reported on the
test set, and averaged over training with 5 random draws of the dataset.

8.2 Post-processing

Recall that the Frank-Wolfe, GDA and ellipsoid algorithms that we propose for convex metrics
return classifiers that randomize over T plug-in classifiers. When implementing their constrained
counterparts, we additional apply “pruning” step to the returned randomized classifier, which re-
computes the convex combination of the T iterates C1, . . . ,CT so that the constraints are exactly
satisfied (if such a solution exists). Specifically, the final classifier is given by 1

T

∑T
t=1 α

t
∗ g

t, where
α∗ ∈ argmin

α∈∆T :
∑
t α

tφ(C[gt])≤0

∑T
t=1 α

tψ
(
C[gt]

)
. Note that the objective here is an approximation to

the true objective ψ
(∑T

t=1 α
tC[gt]

)
, with the former upper bounding the latter when ψ is convex.

This approximation to the objective allows us to compute the optimal coefficients α∗ by solving
a simple linear program. The use of a post-processing pruning step is prescribed by the TFCO
library (Cotter et al., 2019b; Narasimhan et al., 2019), and is also applied to the classifier returned
by the TFCO baseline. In Appendix B.1, we provide other details such as how we choose the
hyper-parameters for our algorithms and the baselines.

We additionally note that the H-mean, Q-mean and G-mean metrics we consider in our ex-
periments can be written as functions of normalized diagonal entries of the confusion matrix:
Cii
πi
,∀i ∈ [n] (see Table 1). For these metrics, we formulate OP1 and OP2 as optimization prob-

lems over normalized confusion diagonal entries
[
C11
π1
, . . . , Cnnπn

]>
∈ [0, 1]n, which is of lower-

dimensional than the space of full confusion matrices. This requires a small modification to the
GDA and ellipsoid algorithms, where the slack variables ξ will have to be constrained to be in
[0, 1]n instead of in the simplex ∆n2 . Similarly, when the fairness constraints in Table 1 are enforced
on binary-labeled problems, we can write the objective and constraints as functions of normalized
diagonal confusion entries of group-specific confusion matrices, resulting in an optimization over
vectors in [0, 1]2m.

8.3 Convergence to the Optimal Classifier

In our first set of experiments, we test the consistency behavior of the algorithms on a synthetic
data set for which the Bayes optimal performance could be calculated. We use a 3-class synthetic
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data set with instances in X = R2 generated as follows: examples are chosen from class 1 with
probability 0.85, from class 2 with probability 0.1 and from class 3 with probability 0.05; instances
in the three classes are then drawn from multivariate Gaussian distributions with means (1, 1)>,
(0, 0)>, and (−1,−1)> respectively, and with the same covariance matrix

[
5 1
1 5

]
. The conditional-

class probability function η : R2→∆3 for this distribution is a softmax of linear functions, and can
be computed in closed-form.

We first consider the unconstrained task of optimizing the Q-mean loss in Table 1, given by

ψQM(C) =
(

1
n

∑
i

(
1− Cii∑

j Cij

)2 )1/2
. Note that this performance metric is a smooth convex

function of C, and can be optimized with any one of the proposed Frank-Wolfe, GDA or ellipsoid
methods (Algorithms 1–3). Because the metric and the distribution satisfy the conditions of Propo-
sition 9, and the Bayes optimal classifier is of the form h∗(x) = argmax∗i∈[3]w

∗
i ηi(x), for some

distribution-dependent coefficients w∗i ∈ R,. To compute the Bayes optimal classifier, we run a
brute-force grid search for w∗i .

Our algorithms use the plug-in method in Algorithm 9 for the LMO subroutine. Specifically,
they fit a linear logistic regression model η̂ : R2→∆3 to the training set, and iteratively learn a
randomized combination of classifiers of the form h(x) = argmax∗i∈[3]wi η̂i(x). In Figure 7a, we
plot the Q-mean loss for the classifier learned by the proposed algorithms, evaluated on a test set of
106 examples, for different sizes of the training sample. In each case, we average the results over
5 random draws of the training sample. As seen, all three methods converge to the performance of
the Bayes optimal classifier.

We next consider the task of optimizing the Q-mean loss subject to a coverage constraint, re-
quiring the proportion of predictions made for class i to be (approximately) equal to the class prior
πi. Specifically, we constraint the max coverage deviation, maxi∈[3]

∣∣∑
j Cji − πi

∣∣ to be at most
0.01. This is a constrained problem with a convex smooth objective and a convex constraint in
C, and can be solved using the constrained counter-parts to the Frank-Wolfe, GDA and ellipsoid
methods (Algorithm 5–7). Following Yang et al. (2020), we have that the optimal-feasible classi-
fier for this problem is a randomized classifier of two classifiers h1,∗(x) = argmax∗i∈[3]w

1,∗
i ηi(x)

and h2,∗(x) = argmax∗i∈[3]w
2,∗
i ηi(x), for distribution-dependent coefficients w1,∗

i and w2,∗
i .∗∗ We

compute these coefficients and the optimal randomized combination via a brute-force grid search.
Figure 7b plots the Q-mean loss and the constraint violation for the three algorithms. All of them can
be seen to converge to the Q-mean of the optimal-feasible classifier and to zero constraint violation.

8.4 Performance on Unconstrained Problems

We next compare the proposed algorithms for unconstrained problems on five benchmark multiclass
datasets: (i) Abalone, (ii) PageBlock, (iii) CovType, (iv) SatImage and (v) MACHO. The first four
were obtained from the UCI Machine Learning repository (Frank and Asuncion, 2010). The fifth
dataset pertains to the task of classifying celestial objects from the Massive Compact Halo Object
(MACHO) catalog using photometric time series data (Alcock et al., 2000; Kim et al., 2011). Each
celestial object is described by measurements from 6059 light curves, and is categorized either as
one of seven celestial objects or as a miscellaneous category.

∗∗Proposition 10 tells us that the support of the Bayes optimal classifier randomizes over as many as d+1 deterministic
classifiers. For the 3-class distribution we consider, η(X) satisfies additional continuity conditions, under which the
optimal classifier can be shown to be a randomized combination of at most two deterministic classifier (Wang et al., 2019;
Yang et al., 2020).
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Table 6: Unconstrained optimization of the (convex) H-mean loss. Lower values are better. The
results are averaged over 10 random train-test splits.

Dataset Plugin [0-1] Plugin (bal) TFCO FW GDA Ellipsoid
Abalone 1.0± 0.0 0.890± 0.038 0.824± 0.018 0.816± 0.020 0.818± 0.017 0.817± 0.019

Pgblk 0.416± 0.128 0.130± 0.034 0.200± 0.023 0.120± 0.028 0.130± 0.04 0.110± 0.025
MACHO 0.210± 0.043 0.130± 0.015 0.143± 0.019 0.124± 0.017 0.124± 0.015 0.125± 0.017
SatImage 0.279± 0.01 0.173± 0.008 0.170± 0.006 0.171± 0.007 0.173± 0.008 0.170± 0.006
CovType 1.0± 0.0 0.507± 0.001 0.469± 0.001 0.463± 0.001 0.463± 0.001 0.461± 0.001

Table 7: Unconstrained optimization of the (ratio-of-linear) micro F1 loss. Lower values are better.
The results are averaged over 10 random train-test splits.

Datasets Plugin [0-1] Plugin (bal) TFCO Bisection
Abalone 0.713± 0.006 0.760± 0.004 0.728± 0.012 0.693± 0.006

Pgblk 0.218± 0.012 0.441± 0.033 0.216± 0.018 0.211± 0.016
MACHO 0.089± 0.005 0.106± 0.007 0.110± 0.005 0.089± 0.005
SatImage 0.180± 0.005 0.185± 0.007 0.234± 0.003 0.180± 0.005
CovType 0.548± 0.001 0.625± 0.003 0.486± 0.001 0.403± 0.001

We consider two performance metrics from Table 1: (i) the H-mean metric ψHM(C) = 1 −

n
(∑

i

∑
j Cij
Cii

)−1
and (ii) the micro F-measure ψmicroF1(C) = 1− 2

∑
i 6=k Cii

2−
∑
i Cki−

∑
i Cik

, where k ∈ [n]

is a designated default class. The first metric is convex in C, for which we compare the performances
of the Frank-Wolfe, GDA, and ellipsoid algorithms (Algorithms 1–3); the second metric is ratio-
of-linear in C, and for this, we apply the bisection algorithm (Algorithm 4). Our algorithms use
a plug-in based LMO with a linear logistic regression model used to estimate the conditional-class
probabilities. We compare our methods with the 0-1 plug-in, balanced plug-in and TFCO baselines.

The results of optimizing the two metrics are shown in Tables 6 and 7 respectively. As expected
both the 0-1 and balanced plug-in classifiers are often seen to perform poorly on the H-mean and
micro F1 metrics. For example, on the Abalone and CovType dataset, the plug-in (0-1) yields
a H-mean loss of 1 as it achieves high accuracies on the higher-frequency classes at the cost of
yielding zero accuracy on one or more minority classes. In contrast, the proposed algorithms provide
equitable performance across all classes, and are able to yield a much lower H-mean score. This
demonstrates the advantage of using algorithms that directly optimize for the metric of interest. In
most experiments, TFCO is seen to be a competitive baseline: with the H-mean metric, the proposed
algorithms yields significantly better performance over this method on two of the five datasets, and
with the micro F1 metric it yields significantly better performance than TFCO on four of the five
datasets . We stress that our algorithms are able to provide these gains despite TFCO using a more
flexible class of randomized classifiers. In fact, with the MACHO dataset, TFCO can be seen to
perform worse than our method as a result of over-fitting to the training set.

We also note that all the algorithms compared beat a trivial classifier that predicts all classes
with equal probability (see Appendix B.2 for the performance of the trivial classifier on the different
datasets with different metrics).

8.5 Performance on Constrained Problems

Having showed the efficacy of our algorithms on unconstrained problems, we move to constrained
problems. The first task we consider is to minimize the H-mean loss subject to coverage constraint
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(b) SatImage

Figure 8: Optimizing the H-mean loss subject to the coverage constraint maxi |
∑

j Cji − πi| ≤
0.01. The plots on the left show the H-mean loss on the test set and those on the right show the
coverage violation maxi |

∑
j Cji − πi| − 0.01 on the test set. Lower H-mean value are better, and

the constraint values need to be ≤ 0. The results are averaged over 10 random train-test splits. The
error bars indicate 95% confidence intervals.
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(b) Law School

Figure 9: Optimizing the G-mean loss subject to the equal-opportunity fairness constraint
maxa∈[m]

∣∣ 1
µa1

Ca11 − 1
π1
C11

∣∣ ≤ 0.05. The plots on the left show the G-mean loss on the test
set and those on the right show the equal opportunity violation maxa∈[m]

∣∣ 1
µa1

Ca11 − 1
π1
C11

∣∣ on the
test set. Lower G-mean value are better, and the constraint violations need to be ≤ 0. The results
are averaged over 10 random train-test splits. The error bars indicate 95% confidence intervals.

requiring the proportion of predictions for each class i to match the class prior π. Specifically, we
require the maximum coverage violation over the n classes maxi∈[n] |

∑
j Cji − πi| to be at most

0.01. In Figure 8, we report both the H-mean and the maximum coverage violation for the three
proposed constrained learning algorithms (Algorithms 5–7) for this problem (see Appendix B.3 for
additional results). For comparison, we also report the performance of the 0-1 plug-in, balanced
plug-in, and TFCO baselines, as well as the unconstrained Frank-Wolfe (FW) method, which seeks
to optimize only the H-mean ignoring the constraint. We find that all three algorithms satisfy the
constraint on the training set, but occasionally incur some violations on the test set. In contrast, all
baselines expect TFCO fail to satisfy the constraint. On SatImage, TFCO satisfies the constraint on
the training set, but fails to satisfy it on the test set, while the proposed methods incur much lower
test violations. This is also the case with MACHO, where TFCO incurs lower constraint violation
and loss value on the training set, but compared to our methods is worse of on both metrics on the
test set. The reason our methods are less prone to over-fitting is because they use a plug-in based
LMO that post-shifts a pre-trained class-probability estimator, and therefore have fewer parameters
to optimize when compared to TFCO.

Our second task seeks to impose fairness constraints on benchmark fair classification datasets
containing protected group information. These include: (1) COMPAS, where the goal is to pre-
dict recidivism with gender as the protected attribute (Angwin et al., 2016); (2) Communities &
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Figure 10: Optimizing the Min-max loss: Comparison of performance of the Frank-Wolfe, GDA
and ellipsoid methods as a function of the number of LMO calls. Lower values are better. Because
the min-max loss is non-smooth, Frank-Wolfe is seen to converge to a sub-optimal classifier.
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Figure 11: Optimizing the H-mean loss: Comparison of performance of the Frank-Wolfe, GDA and
ellipsoid methods as a function of the number of LMO calls. Lower values are better.

Crime, where the goal is to predict if a community in the US has a crime rate above the 70th per-
centile (Frank and Asuncion, 2010), and we consider communities having a black population above
the 50th percentile as protected (Kearns et al., 2018); (3) Law School, where the task is to predict
whether a law school student will pass the bar exam, with race (black or other) as the protected
attribute (Wightman, 1998); (4) Adult, where the task is to predict if a person’s income exceeds
50K/year, with gender as the protected attribute (Frank and Asuncion, 2010); (5) Default, where
the task is to predict if a credit card user defaulted on a payment, with gender as the protected at-
tribute (Frank and Asuncion, 2010). While these are all binary-labelled datasets, because we wish
to evaluate performance separately on the individual protected groups, the number of threshold pa-
rameters needed to learn a naı̈ve plug-in classifier like the one described in Section 3.3 would grow
exponentially with the number of groups, making the algorithms proposed in this paper desirable
even in these multi-group settings.

The specific optimization goal is to minimize the G-mean loss ψGM(C) = 1 −
(∏

i
Cii∑
j Cij

)1/n
subject to an equal opportunity constraint maxa∈[m]

∣∣ 1
µa1

Ca11 − 1
π1
C11

∣∣ ≤ 0.05, requiring the true
positive rates for different protected groups to be similar. The plots in Figure 9 presents the results
for the three proposed algorithms relevant to this problem, and show both the G-mean loss and the
equal opportunity violation (more results in Appendix B.3). In addition to the 0-1 plug-in, bal-
anced plug-in and TFCO baselines, we include an unconstrained Frank-Wolfe (FW) method which
seeks to minimize only the G-mean ignoring the constraint. All these methods incur large con-
strained violations. The objectives are largely comparable for the three proposed methods, except
on LawSchool, where SplitFW yields a higher loss. The constraint violations for our methods are
comparable to or lower than TFCO, with TFCO failing to satisfy the constraint on Crimes as a result
of over-fitting to the training set.
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Figure 12: Optimizing H-mean subject to coverage constraint: Comparison of performance of
SplitFW, ConGDA and ConEllipsoid algorithms as a function of the number of LMO calls. Lower
H-mean values are better. Green shaded region denotes coverage values that satisfy the constraints.

8.6 Practical Guidance on Algorithm Choice

Of the three types of algorithms we have proposed for convex metrics ψ, the choice of the algorithm
to use in an application would depend on three factors: the smoothness of the metric, the presence
of constraints, and the dimension of the problem. In Figure 10, we consider the task of optimizing
the min-max metric ψMM(C) = maxi

(
1− Cii∑

j Cij

)
, a non-smooth function of C, and plot the

performance of the three algorithms (with a plug-in based LMO) on the training and test sets as
a function of the number of calls to the LMO. Since the objective for this unconstrained problem
does not satisfy the smoothness property required by the Frank-Wolfe algorithm, as expected, it
fairs poorly even with a large number of LMO calls. The ellipsoid algorithm is often seen to exhibit
faster convergence than GDA on the training set, but there isn’t a clear winner on the test set. In
Figure 10, we repeat the experiment with the smooth H-mean metric, and find that Frank-Wolfe
algorithm does converge to a similar performance as the other methods, and is in fact the fastest to
do so on the 12-class Abalone dataset. Moreover unlike the GDA, the Frank-Wolfe algorithm has no
additional hyper-parameters to tune and is therefore an attractive option for smooth convex metrics.

On the other hand, when it comes to constrained problems, we find the (constrained) GDA
algorithm to exhibit the fastest convergence. In this case, the (constrained) ellipsoid algorithm may
take longer to converge to the optimal-feasible solution, particularly when the number of classes is
high (as seen from the strong dependence on dimension its convergence rate has in Theorem 18).
For example, this evident with the 12-class Abalone dataset in Figure 12(a)–(b), where we seek to
maximize the H-mean loss subject to the coverage constraint described in Section 8.5, and find the
GDA algorithm to converge the fastest to a feasible classifier. In contrast, the (constrained) ellipsoid
algorithm exhibits the fastest convergence on the smaller 5-class PageBlock dataset (although it
yields slightly worse H-mean values than the other methods on the test set). See Appendix B.3 for
additional experimental results.

Overall, we prescribe using the ellipsoid algorithm (or its constrained counterpart) for problems
with a small number of classes, the FrankWolfe algorithm if the metric is smooth and there are no
constraints, and the GDA algorithm (or its constrained counterpart) for all other scenarios.
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Table 8: Comparison of the plug-in and weighted logistic regression (WLR) based LMOs on the
task of optimizing the (convex) H-mean loss. The number of iterations, i.e. calls to the LMO, is
fixed at 20. Lower values are better. The results are averaged over 10 random train-test splits.

Data FW GDA Ellipsoid
Plugin WLR Plugin WLR Plugin WLR

Aba 0.797± 0.008 0.791± 0.004 0.892± 0.038 0.838± 0.017 0.833± 0.038 0.833± 0.038
PgB 0.13± 0.038 0.084± 0.015 0.129± 0.034 0.083± 0.018 0.105± 0.019 0.080± 0.017

MAC 0.125± 0.017 0.245± 0.027 0.124± 0.015 0.206± 0.028 0.122± 0.015 0.247± 0.027
Sat 0.174± 0.007 0.171± 0.007 0.173± 0.008 0.176± 0.006 0.168± 0.006 0.167± 0.006
Cov 0.468± 0.001 0.453± 0.001 0.488± 0.001 0.453± 0.001 0.463± 0.001 0.447± 0.001

8.7 Choice of LMO: Plug-in vs. Weighted Logistic Regression

In previous experiments, we have seen that the proposed algorithms were less prone to over-fitting
because of the use of a plug-in based LMO that post-fit a small number of parameters to a pre-
trained model. We now compare the performance of these algorithms with an LMO that re-trains
a classifier from scratch each time it is called. Specifically, we repeat the H-mean optimization
task from Section 8.4, with weighted logistic regression on a linear model as the LMO. For a given
(diagonal) loss matrix L, this LMO learns a classifier by optimizing a weighted logistic loss, where
the per-class weights are set to be the diagonal entries of L. Note that such a weighted surrogate
loss is calibrated for L (Tewari and Bartlett, 2007). Unlike the simple plug-in LMO, each call to
weighted logistic regression can be expensive; hence it is important that we are able to limit the
number of calls to it.

In Table 8, we present results comparing performance of the Frank-Wolfe, GDA and ellipsoid
algorithms with the plug-in and weighted logistic regression LMOs when run for 20 iterations.
Appendix B.3 contains results of these experiments when the algorithms are allowed 100 iterations.
The performance with the two LMOs are comparable on Abalone and SatImage. On PageBlocks
and CovType, weighted logistic regression has a moderate to significant advantage. Interestingly, on
MACHO, the plug-in based LMO, despite learning from a less flexible hypothesis class (post-hoc
adjustments to a fixed model), is substantially better. This is because weighted logistic regression
over-fits to the training set in this case.

Overall, we find that an LMO such as weighted logistic regression, while being computation-
ally expensive, does sometimes provide metric gains over a less-flexible plug-in type approach.
However, this method can be prone to over-fitting because of its added flexibility.

8.8 Case Study: Image Classification with Imbalance and Label Noise

As case studies, we demonstrate two natural workflows our algorithms in (i) tackling label imbal-
ance in CIFAR-55 and (ii) mitigating label noise in a noisy version of CIFAR-10.

8.8.1 CLASS IMBALANCE WITH LARGE NUMBER OF CLASSES

One of the undesirable effects of learning with a class-imbalanced dataset is that the learned clas-
sifier tends to over-predict classes that are more prevalent and under-predict classes that are rare.
We consider two approaches to avoid this problem: minimizing a loss such as the H-mean that em-
phasizes equal performance across all classes, and constraining the proportions of predictions the
classifier makes for each class to match the true prevalence of the class.
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Table 9: Results on CIFAR-55 imbalanced dataset. The train and test sets are imbalanced, with
5 classes being 10 times larger in size than the remaining 50 classes. We report the 0-1 loss, the
H-mean loss, and the coverage violation maxi∈[n] |

∑
j Cji − πi| − 0.01. Lower values are better.

Method Train (Imbalanced) Test (Imbalanced)
0-1 H-mean Violation 0-1 H-mean Violation

Plugin [0-1] 0.278 0.457 0.030 0.437 0.709 0.045
FW [H-mean] 0.307 0.323 0.026 0.481 0.564 0.029
SplitFW [0-1] 0.279 0.391 0.000 0.436 0.636 0.007
SplitFW [H-mean] 0.279 0.342 0.000 0.448 0.595 0.000

For this experiment, we use the CIFAR-100 dataset (Krizhevsky, 2009), which contains images
labelled with one of 100 classes. We create an imbalanced 55-class dataset by merging 50 classes
in CIFAR-100 into 5 “super-classes” (see Appendix B.2 for details), and leaving the rest of the
classes untouched. In the resulting class distribution, 5 of the classes are 10 times more prevalent
than the remaining 50. All our methods use a plug-in based LMO which uses a pre-trained class
probability estimator. We train a ResNet-50 model for the class probability estimator η̂, using SGD
to minimize the standard cross-entropy loss. We use a batch size of 64, a base learning rate of 0.01
(with a warm-up cosine schedule), and a momentum of 0.9. We apply a weight decay of 0.01 and
train for 39 epochs.

In Table 9, we analyze the performance of a ResNet-50 model trained with the standard cross-
entropy loss (Plugin [0-1]), where the class that receives the highest estimated probability is pre-
dicted as the output label, and report its 0-1 loss, its H-mean loss, and the deviation of its class pre-
diction rates from the prior probabilities, i.e. its maximum coverage violation: maxi∈[n] |

∑
j Cji −

πi|. We find that naı̈vely optimizing for the 0-1 loss yields a high coverage violation. Moreover,
it yields high accuracies on the 5 super-classes, at the cost of a much lower accuracy on the 50
minority classes, resulting in a high H-mean loss. To emphasize better performance on the minority
classes, we train classifiers to minimize the H-mean loss (FW [H-mean]), and minimize the 0-1
loss subject to the maximum coverage violation being within a tolerance of 0.01 (SplitFW [0-1]).
We also consider a combination of both, i.e. minimizing the H-mean loss subject to the maximum
coverage violation being within 0.01 (SplitFW [H-mean]). It can be seen that all three algorithms
do only slightly worse than the Plugin [0-1] baseline in terms of 0-1 loss, but do significantly better
in terms of both the H-mean loss and the coverage violation.

8.8.2 CLASS IMBALANCE WITH LABEL NOISE

Our next experiment demonstrates how label noise can be mitigating by imposing coverage con-
straints on the classifier. We use a class-imbalanced version of the CIFAR-10 dataset (Krizhevsky,
2009), where we sub-sample images from classes 1 to 5 by a factor of 10, with the resulting class
priors are given by πy = 2

110 when y ∈ {1, 2, 3, 4, 5} and πy = 2
11 otherwise. Our algorithms

assume the knowledge of π. In addition to class imbalance, very often one has to work with noisy
training labels to building a classifier that performs well on uncorrupted test data. We simulate this
scenario by adding a label noise corruption to the training data, which is chosen such that classes
1 to 9 are left undisturbed, and the labels of images from class 10 are randomly chosen from 1 to
10. This effectively mimics a crowd-sourced label collection with 9 easy labels, and one difficult or
incomprehensible label. Our algorithms do not have knowledge of this corruption.
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Table 10: Results on imbalanced CIFAR-10 dataset with label noise. The train set is imbalanced
and has label noise, while the test set is imbalanced but clean. We report the 0-1 loss, the H-mean
loss, and the coverage violation maxi∈[n] |

∑
j Cji − πi| − 0.01. Lower values are better.

Method Train (Flipped) Test (Imbalanced)
0-1 H-mean Violation 0-1 H-mean Violation

Plugin [0-1] 0.266 0.896 0.170 0.332 0.899 0.169
Noise Correction [Estimate] 0.174 0.370 0.054 0.179 0.430 0.055
FW [H-mean] 0.348 0.481 0.072 0.329 0.396 0.076
SplitFW [0-1] 0.272 0.609 0.001 0.196 0.610 0.004
SplitFW [H-mean] 0.292 0.523 0.003 0.221 0.471 0.003
Noise Correction [Exact] 0.196 0.394 0.022 0.151 0.358 0.018

Equipped with the knowledge of the class priors π, we propose constraining the proportion of
predictions made for each class to match the priors π. While this is not necessarily equivalent to
training the classifier with uncorrupted labels, we expect that these additional coverage constraints
will dampen the effect of the noisy labels. As with the previous experiment, we evaluate the classi-
fier on two criteria: (i) how well it performs on the (balanced) H-mean metric on the test data, and
(ii) how well the class prediction rates match the priors π on the test data. Our framework can be
applied to this problem by minimizing the H-mean error on the corrupted training dataset, subject
to a coverage constraint on the classifier forcing it to predict classes at a rate that matches π.

In addition to a ResNet model baseline that optimizes the cross-entropy loss (Plugin [0-1]), we
include the state-of-the-art method of Patrini et al. (2017), which uses the predictions from Plugin
[0-1] on the training data to compute an estimate of the label noise transition matrix, and re-trains the
classifier with a (forward) correction computation applied to the loss (Noise Correction [Estimate]).
For completeness, we also include an idealized version of this method, where the “exact” noise
transition matrix is used for the forward correction (Noise Correction [Exact]). While this baseline
is unrealistic, it provides us with an estimate best possible 0-1 loss achievable for this problem.

We provide the result of this experiment in Table 10, where FW [H-mean] corresponds to a
classifier that minimizes the H-mean loss on the corrupted training dataset, and SplitFW [0-1] (resp.
SplitFW [H-mean]), correspond to a classifier that minimizes the 0-1 loss (resp. H-mean loss) on
the corrupted training dataset, while enforcing the coverage constraint to a tolerance of 0.01. All
three methods use the same underlying class probability model as Plugin [0-1]. It is seen that
only SplitFW [0-1] and SplitFW [H-mean] achieve low coverage violations on the test set, and are
still only moderately worse than the idealized Noise Correction [Exact] method in terms of their
respective objective metrics. The FW [H-mean] algorithm achieves the best H-mean on clean test
data despite being trained on the corrupted training labels.

9. Conclusions

We have developed a framework for designing consistent and efficient algorithms for multiclass
performance metrics and constraints that are general functions of the confusion matrix. As instan-
tiations of this framework, we provided four algorithms for optimizing unconstrained metrics, and
four analogous counterparts for solving constrained learning problems. In each case, we have shown
convergence guarantees for the algorithms under different assumptions on the performance metrics
and constraints.
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Our key idea was to reduce the complex learning problem into a sequence of linear minimization
problems, for which we recommended an efficient plug-in based approach that applies a post-hoc
transformations to a pre-trained class probability model. The results of these linear minimization
problems are then combined to return a final classifier. One of the main challenges in instantiating
this idea was to identify optimization algorithms for different problem settings that only required
access to a linear minimization oracle (LMO).

We also presented extensive experiments on a variety of multiclass and fairness datasets and
demonstrated that the proposed algorithms (despite being limited to performing adjustments to a
fixed model) are competitive or better than the state-of-the-art TFCO approach (Cotter et al., 2019b)
which works with a more flexible hypothesis class. We additionally provided precise guidance for
which of the proposed algorithms are best suited for a given multiclass problem, and highlighted
scenarios where one might want to use a more expensive LMO that trains a new classifier from
scratch at each iteration.

Over the years, the conference versions of this paper have attracted several follow-up works,
which have adapted our ideas to optimizing multiclass extensions of the F-measure (Pan et al.,
2016), to balancing accuracy with fairness objectives (Alabi et al., 2018), to eliciting multi-class
performance metrics (Hiranandani et al., 2019), to training classifiers to optimize more general
multi-output classification metrics (Wang et al., 2019), to imposing fairness constraints with over-
lapping protected groups (Yang et al., 2020), and to optimizing black-box evaluation metrics Hi-
ranandani et al. (2021).

A number of follow-up directions arise from the proposed framework. First, it would interesting
to derive lower bounds on the number of calls to the LMO needed under different assumptions on
the performance metrics and constraints.

Second, while the optimality (and feasibility) gap for most of our proposed algorithms depend
linearly on the LMO approximation errors ρ and ρ′, the split Frank-Wolfe method (Algorithm 5
alone has a square-root dependence on these parameters. Are these dependencies on the LMO
errors optimal or simply artifacts of the analysis?

Third, for algorithms where the convergence rates have a linear (or quadratic) dependence on
the dimension of the problem d (which is typically the same order as the number of classes), how
does one extend our framework to handle problems with an extremely large number classes (per-
haps under additional structural assumptions on the classes, akin to Ramaswamy et al. (2015)) and
problems with an extremely large number of constraints (Narasimhan et al., 2020)?

Fourth, our experiments in Section 8.7 show that in some applications, using a flexible LMO
that trains a classifier from scratch can yield significant gains over a plug-in based LMO, but this
however comes at the cost of added computational time. Can one devise an intermediate approach,
where each call to the LMO only needs to run a constant number of optimization steps on a surrogate
loss (akin to the TFCO baseline of Cotter et al. (2019b)), while still guaranteeing that the outer
algorithm provably convergences to the optimal (feasible) classifier?

Finally, except for the bisection method, all the algorithms we propose rely on the use of a
randomized classifier. In some applications, deploying a randomized classifier can be undesirable
for ethical reasons or because of the engineering difficulties it poses. In these scenarios, one could
approximate the learned randomized classifier with a deterministic classifier using, for example, the
approach of Cotter et al. (2019). Understanding the loss in performance and constraint satisfaction
as a result of such de-randomization procedures is an interesting direction for future work.

43



NARASIMHAN, RAMASWAMY, TAVKER, KHURANA, NETRAPALLI AND AGARWAL

Acknowledgements

The authors thank Aadirupa Saha for providing helpful inputs and for running experiments for a
conference version of this paper (Narasimhan et al., 2015b). HG thanks the Robert Bosch Centre
for Data Science and Artificial Intelligence for their support. HN thanks Pavlos Protopapas, IACS,
Harvard University, for providing us access to the MACHO celestial object detection dataset.

References

J. D. Abernethy and J.-K. Wang. On Frank-Wolfe and equilibrium computation. In NIPS, 2017.

A. Agarwal, A. Beygelzimer, M. Dudik, J. Langford, and H. Wallach. A reductions approach to fair
classification. In ICML, 2018.

D. Alabi, N. Immorlica, and A. Kalai. Unleashing linear optimizers for group-fair learning and
optimization. In COLT, 2018.

C. Alcock, R. A. Allsman, D. R. Alves, T. S. Axelrod, A. C. Becker, D. P. Bennett, K. H. Cook,
N. Dalal, A. J. Drake, K. C. Freeman, et al. The MACHO project: Microlensing results from 5.7
years of large magellanic cloud observations. The Astrophysical Journal, 542(1):281, 2000.

J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias. ProPublica, May, 23, 2016.

P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. Journal
of the American Statistical Association, 101(473):138–156, 2006.

Alexander Barvinok. A course in convexity, volume 54. American Mathematical Soc., 2002.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the Vapnik-
Chervonenkis dimension. Journal of the ACM, 36:929–965, 1989.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

S. Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends in Machine
Learning, 8:231–358, 2015.
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Appendix A. Proofs

A.1 Proof of Proposition 8 (Bayes optimal Classifier for Ratio-of-linear ψ)

Proposition ((Restated) Bayes optimal classifier for ratio-of-linear ψ). Let the performance mea-
sure ψ : [0, 1]d→R+ in OP1 be of the form ψ(C) = 〈A,C〉

〈B,C〉 for some A,B ∈ Rd with 〈B,C〉 >
0, ∀C ∈ C. Let t∗ = infC∈C ψ(C) and L∗ = A − t∗B. Then any (deterministic) classifier that is
optimal for the linear metric 〈L∗,C〉 is also optimal for OP1.

We will find the following lemma useful in the proof of the proposition.
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Lemma 25. Let ψ : [0, 1]d→R+ be such that ψ(C) = 〈A,C〉
〈B,C〉 , for some matrices A,B ∈ Rd with

〈B,C〉 > 0 for all C ∈ C. Let t∗ = infC∈C ψ(C). Then infC∈C〈A− t∗B,C〉 = 0.

Proof. Define ϕ : R→R as ϕ(t) = infC∈C〈A − tB,C〉. It is easy to see that ϕ (being a point-
wise infimum of linear functions) is concave, and hence a continuous function over R. Let t∗ =
infC∈C ψ(C). We then have for all C ∈ C,

〈A,C〉
〈B,C〉

≥ t∗ or equivalently 〈A− t∗B,C〉 ≥ 0.

Thus

ϕ(t∗) = infC∈C〈A− t∗B,C〉 ≥ 0 . (10)

Also, by continuity of 〈A,C〉〈B,C〉 in C, for any t > t∗, there exists C ∈ C such that

〈A,C〉
〈B,C〉

< t or equivalently 〈A− tB,C〉 < 0.

Thus for all t>t∗,

ϕ(t) = inf
C∈C
〈A− tB,C〉 < 0 .

Next, by continuity of ϕ, for any monotonically decreasing sequence of real numbers {ti}∞i=1

converging to t∗, we have that ϕ(ti) converges to ϕ(t∗). Since for each ti in this sequence ϕ(ti) < 0,
and (10) states that ϕ(t∗) ≥ 0, we have from the continuity of ϕ(t) that:

inf
C∈C
〈A− t∗B,C〉 = ϕ(t∗) = 0,

as desired.

We are now ready to prove Proposition 8.

Proof of Proposition 8. Let h∗ : X→∆n be a classifier that is optimal for L∗ = A− t∗B, i.e.,

〈A− t∗B,C[h∗]〉 = inf
C∈C
〈A− t∗B,C〉.

Note from Lemma 25 that 〈A− t∗B,C[h∗]〉 = 0. Hence,

〈A,C[h∗]〉
〈B,C[h∗]〉

= t∗, or equivalently, ψ(C[h∗]) = inf
C∈C

ψ(C),

which shows that h∗ is also ψ-optimal. Furthermore, from Proposition 5, h∗ is also deterministic.
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A.2 Proof of Proposition 9 (Bayes optimal Classifier for Monotonic ψ)

Proposition ((Restated) Bayes optimal classifier for monotonic ψ). Let the performance measure
ψ : [0, 1]d→R+ in OP1 be differentiable and bounded, and be strictly decreasing in Cii for each i
and non-decreasing in Cij for all i 6= j. Let η(X) be a continuous random vector. Then there exists
a loss matrix L∗ (which depends on ψ and D) such that any (deterministic) classifier that is optimal
for the linear metric given by L∗ is also optimal for OP1.

Let C denote the closure of C. We will find the following lemma crucial to our proof.

Lemma 26. Let η(X) be a continuous random vector. Let L ∈ Rd be such that no two columns are
identical. Then,

argminC∈C 〈L,C〉 = argminC∈C〈L,C〉.
Moreover, the above set is a singleton.

The proof for the lemma is highly technical and can be found in the conference version of the
paper, specifically Lemma 12 in Narasimhan et al. (2015b). The following is a proof sketch. For
any L with distinct columns, the optimal classifier given in Proposition 5 is uniquely defined except
for a set of inputs x ∈ X where η(x) takes values in a n−2 dimensional manifold that is a subset of
∆n. As η(X) is assumed to be a continuous random vector, this set of inputs for which the optimal
classifier is not uniquely defined has probability 0. Since classifiers that have the same output for all
but a zero probability fraction of the inputs have the same confusion matrix, the minimizer of 〈L,C〉
over C ∈ C exists and is unique. Also, expanding the set C to C does not give a better solution.

Proof of Proposition 9. Let C∗ = argminC∈C ψ(C). Such a C∗ always exists by compactness of
C and continuity of ψ. By first order optimality, and convexity of C, we have that for all C ∈ C

〈∇ψ(C∗),C∗〉 ≤ 〈∇ψ(C∗),C〉 .

For L∗ = ∇ψ(C∗), we have that C∗ ∈ argminC∈C〈L∗,C〉.
Due to the strict decreasing condition on the diagonal elements of ψ, its gradient ∇ψ(C∗) are

negative, and the off-diagonal elements are non-negative, and hence no two columns of L∗ are
identical. Thus by a direct application of Lemma 26, we have that C∗ ∈ C, and moreover C∗ is the
unique minimizer of 〈L∗,C〉 over all C ∈ C. From Proposition 5, we have that this minimizer is
achieved by a deterministic classifier.

A.3 Proof of Proposition 10 (Bayes optimal Classifier for Continuous ψ, φ1, . . . , φK)

Proposition (Bayes optimal classifier for continuous ψ, φ1, . . . , φK). Let the performance measure
ψ : [0, 1]d→R+ and the constraint functions φ1, . . . , φK : [0, 1]d→R in OP2 be continuous and
bounded. Then there exists d+ 1 loss matrices L∗1,L

∗
2, . . . ,L

∗
d+1 (which can depend on ψ, φk’s and

D) such that an optimal classifier for OP2 can be expressed as a randomized combination of the
deterministic classifiers h1, h2, . . . , hd+1, where hi is any optimal classifier for the linear metric
given by L∗i .

Proof. We first define the set feasible confusion matrices, and the set of achievable confusion ma-
trices that are also feasible:

A = ∩Kj=1{C ∈ [0, 1]d : φj(C) ≤ 0}
B = A ∩ C,
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Let B and C be the closure of B and C respectively. As the functions φj are continuous, the set A
is closed. Hence, B = A ∩ C. Let C∗ ∈ argminC∈B ψ(C). Clearly such a C∗ exists because ψ is
continuous and B is closed.

To complete the proof, it is sufficient to show that C∗ ∈ B and is equal to the confusion matrix
of a classifier obtained by a randomized combination of d+ 1 deterministic classifiers. We already
have that C∗ ∈ C and C∗ ∈ A. So we just need to show C∗ ∈ C and is equal to the confusion
matrix of a classifier obtained by a randomized combination of d+ 1 deterministic classifiers.

By the Krein-Millman theorem, we have that C is the convex hull of the set of its extreme
points, and because it is closed, all its extreme points are also exposed points (Barvinok, 2002).
Furthermore, by Caratheodory’s theorem, we have that every point in C can be expressed as convex
combination of d + 1 exposed points of C. As a result, we have that C∗ ∈ C can be expressed as a
convex combination of d+ 1 exposed points C1,C2, . . . ,Cd+1 ∈ C:

C∗ =

d+1∑
i=1

λiC
i,

where λ1, λ2, . . . λd+1 ∈ R+ are coefficients that sum to 1.
Recall that all exposed points of a convex set are associated with (at least) one hyperplane such

that its intersection with the convex set is a singleton set containing only the exposed point. Let
L∗1,L

∗
2, . . . ,L

∗
d+1 denote the corresponding hyperplane normals associated with the d + 1 exposed

points C1,C2, . . . ,Cd+1 used to express C∗. Consequently, each function 〈L∗i ,C〉 achieves its
unique minimum over C ∈ C at C = Ci.

We also have from Proposition 5 that for each hyperplane L∗i , there exists a deterministic classi-
fier hi : X→[n] that minimizes the linear performance metric 〈L∗i ,C[h]〉. All that remains to show
is that C[hi] = Ci. We can then conclude that the randomized classifier h∗ =

∑d+1
i=1 λihi is an

optimal classifier for OP2 as C[h∗] =
∑d+1

i=1 λiC[hi] =
∑d+1

i=1 λiC
i = C∗ and C∗ ∈ C.

To prove C[hi] = Ci, let us assume the contrary that C[hi] 6= Ci. Since Ci is the unique
minimizer of 〈L∗i ,C〉, this would mean that 〈L∗i ,C[hi]〉 > 〈L∗i ,Ci〉. Suppose we construct a line
joining C[hi] and Ci; all points on this line lie in C except for potentially the end point Ci. All
the points C′ in the interior of this line must then satisfy: 〈L∗i ,C[hi]〉 > 〈L∗i ,C′〉 > 〈L∗i ,Ci〉.
However, this would say that the classifier corresponding to an interior point C′ has a lower loss
than C[hi], contradicting the fact that hi minimizes 〈L∗i ,C[h]〉. By contradiction, we have that
C[hi] = Ci.

A.4 Proof of Theorem 12 (Frank-Wolfe for Unconstrained Problems)

Theorem ((Restated) Convergence of FW algorithm). Fix ε ∈ (0, 1). Let ψ : [0, 1]d→[0, 1] be
convex, and β-smooth and L-Lipschitz w.r.t. the `2-norm. Let Ω in Algorithm 1 be a (ρ, ρ′, δ)-
approximate LMO for sample size m. Let h̄ be a classifier returned by Algorithm 1 when run for T
iterations. Then with probability ≥ 1− δ over draw of S ∼ DN , after T = O(1/ε) iterations:

ψ(C[h̄]) ≤ min
C∈C

ψ(C) + O
(
βε + Lρ+ β

√
dρ′
)
.

We first prove an important lemma where we bound the approximation error of the linear min-
imization oracle used in the algorithm. This result coupled with the standard convergence analysis
for the Frank-Wolfe method (Jaggi, 2013) will then allow us to prove the above theorem.
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Lemma 27. Let ψ : [0, 1]d→R+ be convex over C, and L-Lipschitz and β-smooth w.r.t. the `2 norm.
Let classifiers h̃1, . . . , h̃T , and h0, h1, . . . , hT be as defined in Algorithm 1. Then for any δ ∈ (0, 1],
with probability at least 1− δ (over draw of S from DN ), we have for all 1 ≤ t ≤ T

〈∇ψ(C[ht−1]),C[h̃t]〉 ≤ min
g:X :→∆n

〈∇ψ(C[ht−1]),C[g]〉+ Lρ+ 2β
√
dρ′.

Proof. For any 1 ≤ t ≤ T , let gt,∗ ∈ argming:X→∆n
〈∇ψ(C[ht−1]),C[g]〉. We then have

〈∇ψ(C[ht−1]),C[h̃t]〉 − min
g:X :→∆n

〈∇ψ(C[ht−1]),C[g]〉

= 〈∇ψ(C[ht−1]),C[h̃t]〉 − 〈∇ψ(C[ht−1]),C[gt,∗]〉
= 〈∇ψ(C[ht−1]),C[h̃t] − 〈∇ψ(Ct−1),C[h̃t]〉〉︸ ︷︷ ︸

term1

+ 〈∇ψ(Ct−1),C[h̃t]〉 − 〈∇ψ(Ct−1),C[gt,∗]〉︸ ︷︷ ︸
term2

+ 〈∇ψ(Ct−1),C[gt,∗]〉 − 〈∇ψ(C[ht−1]),C[gt,∗]〉︸ ︷︷ ︸
term3

.

We next bound each of these terms. We start with term2. For any 1 ≤ t ≤ T , let Lt be as
defined in Algorithm 1. For all 1 ≤ t ≤ T ,

〈∇ψ(Ct−1),C[h̃t]〉 − 〈∇ψ(Ct−1),C[gt,∗]〉 = ‖∇ψ(Ct−1)‖∞(〈Lt,C[gt,∗]〉 − 〈Lt,C[h̃t]〉)
≤ ‖∇ψ(Ct−1)‖2(〈Lt,C[gt,∗]〉 − 〈Lt,C[h̃t]〉)
≤ Lρ,

which follows from the property of the LMO (in Definition 11) and from L-Lipchitzness of ψ, and
holds with probability at least 1− δ (over draw of S).

Next, for term3, we have by an application of Holder’s inequality

〈∇ψ(Ct−1),C[gt,∗]〉 − 〈∇ψ(C[ht−1]),C[gt,∗]〉
≤

∥∥∇ψ(Ct−1)−∇ψ(C[ht−1])
∥∥
∞‖C[gt,∗]‖1

=
∥∥∇ψ(Ct−1)−∇ψ(C[ht−1])

∥∥
∞(1)

≤
∥∥∇ψ(Ct−1)−∇ψ(C[ht−1])

∥∥
2

≤ β
∥∥Ct−1 −C[ht−1]

∥∥
2

≤ β
√
d
∥∥Ct−1 −C[ht−1]

∥∥
∞

≤ β
√
d

∥∥∥∥(1− 2

t

)
C̃t−2 +

2

t
C̃t−1 −

(
1− 2

t

)
C[ht−2] +

2

t
C[ht−1]

∥∥∥∥
∞

≤ β
√
d

((
1− 2

t

)
‖C̃t−2 −C[ht−2]‖∞ +

2

t
‖C̃t−1 −C[ht−1]‖∞

)
≤ β

√
dmax

{
‖C̃t−2 −C[ht−2]‖∞, ‖C̃t−1 −C[ht−1]‖∞

}
...

≤ β
√
dmax
i∈[t]

{
‖C̃i−1 −C[hi−1]‖∞

}
≤ β

√
dρ′,
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where the fourth step follows from β-smoothness of ψ; the last step uses the property of the LMO
and holds with probability at least 1− δ (over draw of S). One can similarly bound term1.

We thus have for all 1 ≤ t ≤ T , with probability at least 1− δ (over draw of S),

〈∇ψ(C[ht−1]),C[h̃t]〉 − min
g:X→∆n

〈∇ψ(C[ht−1]),C[g]〉 ≤ Lρ+ 2β
√
dρ′,

as desired.

We are now ready to prove Theorem 12.

Proof of Theorem 12. Our proof shall make use of the standard convergence result for the Frank-
Wolfe algorithm for minimizing a convex function over a convex set (Jaggi, 2013). We will find it
useful to first define the following quantity, referred to as the curvature constant in Jaggi (2013).

Cψ = sup
C1,C2∈C,γ∈[0,1]

2

γ2

(
ψ
(
C1 + γ(C2 −C1)

)
− ψ

(
C1

)
− γ
〈
C2 −C1,∇ψ(C1)

〉)
.

Also, define two positive scalars εS and δapx required in the analysis of Jaggi (2013):

εS = Lρ+ 2β
√
dρ′

δapx =
(T + 1)εS

Cψ
,

where δ ∈ (0, 1] is as in the theorem statement. Further, let the classifiers h̃1, . . . , h̃T , and h0, . . . , hT

be as defined in Algorithm 1. We then have from Lemma 27 that the following holds with probabil-
ity at least 1− δ, for all 1 ≤ t ≤ T ,〈

∇ψ
(
C[ht−1]

)
,C[h̃t]

〉
≤ min

g:X :→∆n

〈
∇ψ

(
C
[
ht−1

])
,C [g]

〉
+ εS

= min
C∈C

〈
∇ψ

(
C
[
ht−1

])
,C
〉

+ εS

= min
C∈C

〈
∇ψ

(
C
[
ht−1

])
,C
〉

+
1

2
δapx

2

T + 1
Cψ

≤ min
C∈C
〈∇ψ

(
C
[
ht−1

])
,C〉+

1

2
δapx

2

t+ 1
Cψ . (11)

Also observe that for the two sequences of iterates given by the confusion matrices of the above
classifiers,

C[ht] =

(
1− 2

t+ 1

)
C[ht−1] +

2

t+ 1
C[h̃t], (12)

for all 1 ≤ t ≤ T . Based on (11) and (12), one can now apply the result of Jaggi (2013).
In particular, the sequence of iterates C[h0],C[h1], . . . ,C[hT ] can be considered as the se-

quence of iterates arising from running the Frank-Wolfe optimization method to minimize ψ over
C with a linear optimization oracle that is 1

2δapx
2
t+1Cψ accurate at iteration t. Since ψ is a convex
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function over the convex constraint set C, one has from Theorem 1 in Jaggi (2013) that the following
convergence guarantee holds with probability at least 1− δ:

ψ(C[h̄]) = ψ(C[hT ]) ≤ min
C∈C

ψ(C) +
2Cψ
T + 2

(1 + δapx)

= min
C∈C

ψ(C) +
2Cψ
T + 2

+
2εS(T + 1)

T + 2

≤ min
C∈C

ψ(C) +
2Cψ
T + 2

+ 2εS (13)

We can further upper bound Cψ in terms of the the smoothness parameter of ψ:

Cψ = sup
C1,C2∈C,γ∈[0,1]

2

γ2

(
ψ
(
C1 + γ(C2 −C1)

)
− ψ

(
C1

)
− γ
〈
C2 −C1,∇ψ(C1)

〉)
≤ sup

C1,C2∈C,γ∈[0,1]

2

γ2

(β
2
γ2||C1 −C2||22

)
= 4β ,

where the second step follows from the β-smoothness of ψ. Substituting back in (13), we finally
have with probability at least 1− δ,

ψ(C[h̄]) ≤ min
C∈C

ψ(C) +
8β

T + 2
+ 2εS = min

C∈C
ψ(C) +

8β

T + 2
+ 2Lρ+ 4β

√
dρ′.

Setting T = 1/ε completes the proof.

A.5 Proof of Theorem 13 (GDA for Unconstrained Problems)

Theorem 13 follows from Theorem 17 under the special case of K = 0. The algorithms for the
constrained and unconstrained case become identical and the same bounds apply with r = ∞.
Please see Appendix A.9 for proof of Theorem 17.

A.6 Proof of Theorem 14 (Ellipsoid For Unconstrained Problems)

Theorem 14 follows from Theorem 18 under the special case of K = 0. The algorithms for the
constrained and unconstrained case become identical and the same bounds apply with r = ∞.
Please see Appendix A.10 for proof of Theorem 18.

A.7 Proof of Theorem 15 (Bisection For Unconstrained Problems)

Theorem 15 follows from Theorem 19 under the special case of K = 0 and T ′ = 1. Please see
Appendix A.11 for proof of Theorem 19.

A.8 Proof of Theorem 16 (SplitFW for Constrained Problems)

Theorem ((Restated) Convergence of SplitFW algorithm). Fix ε > 0. Let ψ : [0, 1]d→[0, 1] be
convex, β-smooth andL-Lipschitz w.r.t. the `2-norm, and let φ1, . . . , φK : [0, 1]d→[−1, 1] be convex
andL-Lipschitz w.r.t. the `2-norm. Let Ω in Algorithm 5 be a (ρ, ρ′, δ)-approximate LMO for sample
size N . Let h̄ be a classifier returned by Algorithm 5 when run for T iterations with some ζ > 0.
Let the strict feasibility condition in Assumption 1 hold for radius r > 0. Then, with probability
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≥ 1 − δ over draw of S ∼ DN , after T = O(1/ε2) iterations, the classifier h̄ is near-optimal and
near-feasible:

Optimality: ψ(C[h̄]) ≤ min
C∈C,φk(C)≤0,∀k

ψ(C) + O
(
ε+

√
ρeff
)

;

Feasibility: φk(C[h̄]) ≤ O
(
ε+

√
ρeff
)
, ∀k ∈ [K].

where ρeff = ρ+
√
dρ′ and theO notation hides constant factors independent of ρ, ρ′, T, ε, d,K for

small enough ρ, ρ′ and large enough T (or small enough ε).

There are two key steps to the proof of this theorem. First, we show that the use of an approx-
imate LMO in steps 9, 11 of Algorithm 5 does not affect the convergence results by Gidel et al.
(2018). Specifically, they measure the sub-optimality of an iterate using a duality gap measure. In
Lemma 32 we show that a similar bound on the duality gap can be derived with an approximate
LMO over C. Second, we use the strict feasibilty assumption to convert a bound on the duality gap
into a bound on the sub-optimality of the in problem (4) in Lemma 31.

We will find it useful to first define the following quantities: fat achievable set, dual functions,
and the primal and dual gaps.

Definition 28 (Fat achievable set). The set Cρ′ is defined as follows:

Cρ′ =
(
C +B(0,

√
dρ′)

)
∩∆d = {C + r : C ∈ C, ‖r‖2 ≤

√
dρ′,C + r ∈ ∆d}.

The set Cρ′ is defined so that the iterates C̃t and Ct lie within C′ρ with high probability.

Definition 29 (Dual function). The dual function f aug : Rd→R is defined as

f aug(λ) = min
C∈Cρ′ ,F∈F

Laug(C,F,λ).

We also use Ĉ(λ), F̂(λ) to denote any arbitrary minimizer of Laug(., .,λ) over Cρ′ × F . Thus
f aug(λ) = Laug(Ĉ(λ), F̂(λ),λ). Further, let the maximum value of the dual function be f aug∗. By
the min-max theorem, we have that

f aug∗ = max
λ∈Rd

min
C∈Cρ′ ,F∈F

Laug(C,F,λ) = min
C∈Cρ′ ,F∈F

max
λ∈Rd

Laug(C,F,λ) = min
C∈Cρ′∩F

2ψ(C).

The last equality follows from the observation that if C 6= F then maxλ∈Rd Laug(C,F,λ) = ∞.
Next, let C∗ ∈ Cρ′ ∩ F such that

ψ(C∗) = min
C∈Cρ′∩F

ψ(C).

and letW∗ = argmaxλ∈Rd f
aug(λ) ⊆ Rd.

Definition 30 (Primal and dual gaps). For any C ∈ Cρ′ ,F ∈ F and λ ∈ Rd, we define the primal
and dual gaps as follows:

∆(p)(C,F,λ) = Laug(C,F,λ)− min
C∈Cρ′ ,F∈F

Laug(C,F,λ) = Laug(C,F,λ)− f aug(λ);

∆(d)(λ) = f aug∗ − f aug(λ) = 2ψ(C∗)− f aug(λ),

and define the total gap as ∆(C,F,λ) = ∆(p)(C,F,λ) + ∆(d)(λ).
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In the theorems and lemmas below, we will refer to the iterates Ct,Ft, C̃t, F̃t in the Algo-
rithm 5. We use the the short-hands ∆t,∆

(p)
t ,∆

(d)
t for representing the same primal and dual gaps

evaluated at, (Ct+1,Ft+1,λt).
We will require the use of Theorem 1 and Corollary 1 from Gidel et al. (2018), which we restate

below in our notation. We use the following facts to transform their Theorem. The norms of vectors
correspond to the `2-norm unless specified otherwise. We also overload notation and refer to the
concatenation of two vectors C,F as [C,F].

|ψ(C) + ψ(F)− ψ(C′)− ψ(F′)| ≤ 2L‖[C−C′,F− F′]‖2

max
(

eigen-val
(

[I,−I]>[−I, I]
))

= 2

(diam(F))2 ≤ diam(∆d)
2 ≤ 2

(diam(Cρ′))2 ≤ diam(∆d)
2 ≤ 2

(diam(Cρ′ ×F))2 ≤ 4,

where ‖M‖ of a matrix M refers to its spectral norm, and diam(A) refers to the diameter of a set
A, i.e. the maximum `2 distance between any two elements from the set A.

Theorem (Restated from Gidel et al. (2018)). There exists a constant α > 0 such that

f aug∗ − f aug(λ) ≥ 1

8Lζ
min

{
α2dist(λ,W∗)2, αLζZ

2dist(λ,W∗)
}

;

||∇f aug(λ)||2 ≥
1

8Lζ
min

{
α2dist(λ,W∗), αLζZ2

}
;

||∇f aug(λ)||2 ≥
α√
8Lζ

min

{√
f aug∗ − f aug(λ),

√
LζZ2

2

}
,

where Lζ = 2L+ 2ζ and dist represents the standard distance function between a point and a set,
i.e. dist(x,A) = minx′∈A ‖x− x′‖.

We will fix a probability of failure δ throughout the rest of the proof, and assume that the training
sample S is “good”, in which case the empirical confusion matrix output by the Ω is ρ′ close to the
true confusion matrix of the classifier whenever it is called by Algorithm 5.

We then show below that, if the total gap is low then the resulting classifier is close to optimal
and feasible.

Lemma 31. Let the assumptions in Theorem 16 hold. Let g : X→∆n be a randomized classifier,
and C ∈ ∆d be such that ‖C −C[g]‖∞ ≤ ρ′. Let F ∈ F ,λ ∈ Rd be such that ∆(C,F,λ) ≤ τ
and ||C− F||22 ≤ κ. We then have:

ψ(C[g]) ≤ min
C′∈C∩F

ψ(C′) +
τ

2
+ (γ + L)

√
κ+ L

√
dρ′

‖φ(C[g])‖∞ ≤ L(
√
dρ′ +

√
κ),

where γ = 2L
r + ζr

2L + τL
r .
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Proof. The second inequality in the lemma trivially follows from the triangle inequality and the `2
Lipschitzness of the constraint functions φk, i.e. for any k ∈ [K]

φk(C[g]) ≤ φk(C) + L‖C−C[g]‖2
≤ φk(C) + L

√
dρ′

≤ φk(F) + L‖F−C‖2 + L
√
dρ′

≤ L
√
κ+ L

√
dρ′

We will prove the first inequality below. By construction, C ∈ Cρ′ . As ∆(C,F,λ) ≤ τ , we have

∆(p)(C,F,λ) = Laug(C,F,λ)− min
C′∈Cρ′ ,F′∈F

Laug(C′,F′,λ) ≤ τ (14)

∆(d)(λ) = 2ψ(C∗)− min
C′∈Cρ′ ,F′∈F

Laug(C′,F′,λ) ≤ τ (15)

where C∗ ∈ argminC′∈Cρ′∩F ψ(C′). Setting C′ = F′ = C∗ in the second term of Eqn. (14):

ψ(C) + ψ(F) + λT (C− F) +
ζ

2
‖C− F‖22 ≤ 2ψ(C∗) + τ . (16)

The variables C′,F′ in the second term of (15) are set as follows. Let C′ = C[h] be a strictly
feasible point, i.e. φ(C′) ≤ −r. Such a h exists by Assumption 1. As the constraint functions φk
are all L-Lipschitz w.r.t. `2 norm, a ball of radius r

L centered at C′ is a subset of F . Further, let
F′ = C′ + r

L||λ||λ. We then have:

2ψ(C∗) ≤ ψ(C′) + ψ(F′)− r‖λ‖2
L

+
ζr2

2L2
+ τ. (17)

This can be reduced to a bound on ||λ||2,

‖λ‖2 ≤
2L

r
+
ζr

2L
+
τL

r
= γ. (18)

From Cauchy-Schwarz inequality, (16) becomes:

ψ(C) + ψ(F) ≤ 2ψ(C∗) + τ − λ>(C− F)− ζ

2
‖C− F‖22

≤ 2ψ(C∗) + τ + γ
√
κ. (19)

As ψ is L-Lipschitz, we have

ψ(C)− ψ(F) ≤ L‖C− F‖2 ≤ L
√
κ. (20)

Adding (19) and (20) and dividing by 2, we get

ψ(C) ≤ min
C′∈Cρ′∩F

ψ(C′) +
τ

2
+ (γ + L)

√
κ.
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As Cρ′ ⊇ C, and ψ is L-Lipschitz, we have

ψ(C[g]) ≤ ψ(C) + L‖C− C[g]‖2
≤ min

C′∈Cρ′∩F
ψ(C′) +

τ

2
+ (γ + L)

√
κ+ L

√
dρ′

≤ min
C′∈C∩F

ψ(C′) +
τ

2
+ (γ + L)

√
κ+ L

√
dρ′,

which completes the proof.

The lemma below bounds the duality gap ∆t and ‖Ct − Ft‖2 based on the proof of Theorem
2 in Gidel et al. (2018). The only difference is the approximate nature of the LMO, that simply
contributes an additive factor of O(ρ +

√
dρ′) to the convergence rate of O(1/t). The proof is

highly technical, and we skip it for brevity. The details can be inferred from Tavker et al. (2020),
which contains the full proof using a different notation.

Lemma 32. Let the assumptions in Theorem 16 hold. Let t∗ ∈ [T ] be such that h̄ = ht∗ in Algorithm
5. Let Ω be a (ρ, ρ′, δ)-approximate LMO. For large enough T and ζ, with probability 1 − δ over
draw of S ∼ DN we have that

∆(Ct∗ ,Ft∗ ,λt∗−1) ≤ c1(ρ+
√
dρ′) +

c2

T
;

||Ct∗ − Ft∗ ||22 ≤ c3(ρ+
√
dρ′) +

c4

T
,

where ht∗ ,Ft∗ ,λt∗−1 are as defined in Algorithm 5. The constants c1, c2, c3 and c4 are indepen-
dent of the dimension d and number of constraints K, approximation constants ρ, ρ′ and itera-
tions T . More explicitly, c1 = 4+12ζ

aζ , c2 = 16(β + 2ζ)(t0 + 2), c3 = 8+24ζ
ζ

[
1 + 2

a

]
, c4 =

8
[
32(β + 2ζ) (t0+2)

a + 64a(β+2ζ)
ζ2

]
, a = min

[
2
ζ ,

α2

8(β+2ζ)

]
, and t0 is a constant > 0.

We are now ready to prove Theorem 16.

Proof of Theorem 16. We first note that Lemma 32 can be applied to Lemma 31 setting τ =

c1

(
ρ+
√
dρ′
)

+ c2
T and κ = c3

(
ρ+
√
dρ′
)

+ c4
T , with the classifier g in Lemma 31 set to

the classifer h returned by Algorithm 5. For the sake of simplicity, the bound below focuses
on the small ρ, ρ′ and large T regime. For small enough ρ, ρ′ and large enough T , we have
(γ +L)

√
κ > τ +L

√
dρ′, based on the simple argument that for a small enough positive scalar u ,

we have c
√
u > u. Thus, from the first inequality of Lemma 31,

ψ(C[h̄]) ≤ min
C′∈C∩F

ψ(C′) +
τ

2
+ L
√
dρ′ + (γ + L)

√
κ

≤ min
C′∈C∩F

ψ(C′) + 2(γ + L)
√
κ

≤ min
C∈C,φk(C)≤0,∀k

ψ(C) + 2(γ + L)

(√
c3

(
ρ+
√
dρ′
)

+
c4

T

)
≤ min

C∈C,φk(C)≤0,∀k
ψ(C) + 2(γ + L)

(√
c3

(
ρ+
√
dρ′
)

+

√
c4

T

)
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≤ min
C∈C,φk(C)≤0,∀k

ψ(C) +O
(
ε+

√
ρ+
√
dρ′
)

By a similar analysis as above, from the second inequality of Lemma 31, we have for small
enough ρ, ρ′ and large enough T ,

φk(C[h̄]) ≤ L
√
dρ′ + L

√
κ

≤ 2L
√
κ

≤ 2L

(√
c3

(
ρ+
√
dρ′
)

+
c4

T

)
≤ O

(
ε+

√
ρ+
√
dρ′
)
,

as desired.

A.9 Proof of Theorem 17 (GDA for Constrained Problems)

Theorem ((Restated) Convergence of ConGDA algorithm). Fix ε ∈ (0, 1). Let ψ : [0, 1]d→[0, 1]
and φ1, . . . , φK : [0, 1]d→[−1, 1] be convex and L-Lipschitz w.r.t. the `2-norm. Let Ω in Algorithm
6 be a (ρ, ρ′, δ)-approximate LMO for sample size N . Suppose the strict feasibility condition in
Assumption 1 holds for radius r > 0. Let the space of Lagrange multipliers Λ = {λ ∈ Rd | ‖λ‖2 ≤
2L(1 + 1/r)}, and Ξ = {µ ∈ RK+ | ‖µ‖1 ≤ 2/r}. Let Bφ ≥ maxξ∈∆d

‖φ(ξ)‖2. Let h̄ be
a classifier returned by Algorithm 6 when run for T iterations, with step-sizes η = 1

L̄
√

2T
and

η′ = L̄
(1+2

√
K)
√

2T
, where L̄ = 4(1 + 1/r)L + 2/r. Then with probability ≥ 1 − δ over draw of

S ∼ DN , after T = O(K/ε2) iterations:

ψ(C[h̄]) ≤ min
C∈C:φ(C)≤0

ψ(C) + O
(
L(ε+ ρeff)

)
φk(C[h̄]) ≤ O

(
L(ε+ ρeff)

)
,∀k ∈ [K],

where ρeff = ρ+
√
dρ′ and the O notation hides constant factors independent of ρ, ρ′, T, d and K.

The proof is an adaptation of the proof of convergence in Narasimhan et al. (2019) for their
oracle-based optimizer (Theorem 3 in their paper), but takes into account three differences: (i) they
consider a generic objective function that is independent of C, (ii) they assume that φks are mono-
tonic, (iii) they perform a full optimization on ξ instead of gradient-based updates. Moreover, unlike
them, we employ exponentiated gradient updates, and derive a better dependence on dimension.

We will first find it useful to first state the following lemma, which adapts the proof steps from
Lemmas 2, 4 and 6 in Narasimhan et al. (2019).

Lemma 33. Let ψ : [0, 1]d→[0, 1] and φ1, . . . , φK : [0, 1]d→[−1, 1] be convex and L-Lipschitz
w.r.t. the `2-norm. Suppose the strict feasibility condition in Assumption 1 holds for radius r > 0.
Let C∗ ∈ argmin

C∈C:φ(C)≤0
ψ(C), and let

(λ∗,µ∗) ∈ argmax
λ∈Rd,µ∈RK+

{
min

C∈C, ξ∈∆d
Lcon(C, ξ,λ,µ)

}
.

Then:
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1. ψ(C∗) = min
C∈C, ξ∈∆d

max
λ∈Rd,µ∈RK+

Lcon(C, ξ,λ,µ) = max
λ∈Rd,µ∈RK+

min
C∈C, ξ∈∆d

Lcon(C, ξ,λ,µ);

2. ψ(C′) = max
λ∈Λ

min
ξ∈∆d

L(C′, ξ,λ) = min
ξ∈∆d

max
λ∈Λ
L(C′, ξ,λ), for any C′ ∈ C;

3. ‖µ∗‖1 ≤ 1/r;

4. ‖λ∗‖2 ≤ L(1 + 1/r).

Proof. For part 1, we begin by writing out the Lagrangian from (2):

Lcon(C, ξ,λ,µ) = ψ(ξ) + 〈λ,C− ξ〉+ 〈µ,φ(ξ)〉.

Since Lcon is convex in ξ and linear in λ and µ, strong duality holds, and we have:

max
λ∈Rd,µ∈RK+

min
C∈C, ξ∈∆d

Lcon(C, ξ,λ,µ) = min
C∈C, ξ∈∆d

max
λ∈Rd,µ∈RK+

Lcon(C, ξ,λ,µ)

= min
C∈C, ξ∈∆d: ξ=C,φ(ξ)≤0

ψ(C)

= min
C∈C,:φ(C)≤0

ψ(C) = ψ(C∗).

For part 2, we follow similar steps as part 1 except that it applies to the Lagrangian in (2) for the
unconstrained problem.

For part 3, recall from our strict feasibility assumption that there exists C′ ∈ C such that
maxk∈[K] φk(C

′) ≤ −r for some r > 0. It then follows from part 1 that:

ψ(C∗) = min
C∈C, ξ∈∆d

Lcon(C, ξ,λ∗,µ∗)

≤ Lcon(C′,C′,λ∗,µ∗)

≤ ψ(C′) + 〈µ∗,φ(C′)〉 = ψ(C′)− r‖µ∗‖1.

We thus have:
‖µ∗‖1 ≤ (ψ(C′)− ψ(C∗))/r = 1/r.

For part 4, letting ω(ξ) = ψ(ξ) + 〈µ∗,φ(ξ)〉, we note that:

max
λ∈Rd

min
ξ∈∆d

Lcon(C∗, ξ,λ,µ∗) = min
ξ∈∆d

Lcon(C∗, ξ,λ∗,µ∗)

= min
ξ∈∆d

{ψ(ξ) + 〈µ∗,φ(ξ)〉 − 〈λ∗, ξ〉}+ 〈λ∗,C∗〉

= min
ξ∈∆d

{ω(ξ)− 〈λ∗, ξ〉}+ 〈λ∗,C∗〉

= −ω∗(λ∗) + 〈λ∗,C∗〉, (21)

where ω∗ denotes the Fenchel conjugate of ω. We similarly note that:

max
λ∈Rd

min
ξ∈∆d

Lcon(C∗, ξ,λ,µ∗) = max
λ∈Rd

{
min
ξ∈∆d

{ω(ξ)− 〈λ, ξ〉}+ 〈λ,C∗〉
}

= max
λ∈Rd

{−ω∗(λ) + 〈λ,C∗〉}

= ω∗∗(C∗) = ω(C∗), (22)
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where ω∗∗ denotes the second Fenchel conjugate of ω. From (21) and (22), its clear that:

ω(C∗) = −ω∗(λ∗) + 〈λ∗,C∗〉.

An application of the Fenchel-Young inequality then gives us that:

λ∗ = ∇ω(C∗) = ∇ψ(C∗) +
K∑
k=1

µ∗k∇φk(C∗).

We can thus bound the norm of λ∗ as:

‖λ∗‖2 ≤ ‖∇ψ(C∗)‖2 +
K∑
k=1

|µ∗k|‖∇φk(C∗)‖2

≤ ‖∇ψ(C∗)‖2 + ‖µ∗‖1 max
k∈K
‖∇φk(C∗)‖2 = L(1 + 1/r),

which follows from part 2 and the fact that ψ and φks are Lipschitz w.r.t. the `1-norm.

Proof of Theorem 17. We begin by writing out the Lagrangian from (2):

Lcon(C, ξ,λ,µ) = ψ(ξ) + 〈λ,C− ξ〉+ 〈µ,φ(ξ)〉 = ψ(ξ)− 〈λ, ξ〉+ 〈µ,φ(C)〉︸ ︷︷ ︸
L1(ξ,λ,µ)

+ 〈λ,C〉︸ ︷︷ ︸
L2(C,λ)

.

Optimality. To show optimality, note that L1 is convex in ξ and linear in λ and µ, and L2 is
linear both in C and λ. The use of a (ρ, ρ′, δ)-approximate LMO to compute Ct and ht at each
iteration gives us with probability at least 1− δ (over draw of S):

1

T

T∑
t=1

L2(Ct,λt) ≤ 1

T

T∑
t=1

L2(C[ht],λt) + ‖λt‖1‖Ct −C[ht]‖∞

≤ ‖λt‖∞
1

T

T∑
t=1

min
C∈C

〈
λt

‖λt‖∞
,C

〉
+ ‖λt‖∞ρ + ‖λt‖1ρ′

≤ min
C∈C

1

T

T∑
t=1

L2(C,λt) + 2L(1 + 1/r)ρ+ 2L
√
d(1 + 1/r)ρ′.

= min
C∈C

1

T

T∑
t=1

L2(C,λt) + ρ̄, (23)

where we denote ρ̄ = 2L(1 + 1/r)ρ+ 2L
√
d(1 + 1/r)ρ′.

Next, we apply the classical regret bound guarantee for online gradient descent (Zinkevich,
2003; Shalev-Shwartz, 2011), we have from the sequence of objectives L1(·,λt,µt)’s (where the
optimization is over ξ). Note that

‖∇ξL1(ξ,λt,µt)‖2 ≤ ‖∇ξψ(ξ)‖2 + ‖λt‖2 + ‖µt‖1 max
k
‖∇ξφk(ξ)‖2

≤ L+ 2L(1 + 1/r) + 2L/r = (3 + 4/r)L ≤ L̄.
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Also note that maxξ∈∆d
‖ξ‖2 ≤ 1. So with η = 1

L̄
√

2T
, we have:

1

T

T∑
t=1

L1(ξt,λt,µt) ≤ min
ξ∈[0,1]d

T∑
t=1

L1(ξ,λt,µt) +

√
2L̄√
T
. (24)

Combining (23) and (24), we have with probability at least 1− δ (over draw of S):

1

T

T∑
t=1

Lcon(Ct, ξt,λt,µt) ≤ min
C∈C, ξ∈[0,1]d

T∑
t=1

Lcon(C, ξ,λt,µt) +

√
2L̄√
T

+ ρ̄

= min
C∈C, ξ∈[0,1]d

Lcon(C, ξ, λ̄, µ̄) +

√
2L̄√
T

+ ρ̄

≤ max
λ∈Rd,µ∈RK+

min
C∈C, ξ∈[0,1]d

Lcon(C, ξ,λ,µ) +

√
2L̄√
T

+ ρ̄

= min
C∈C

{
max

λ∈Rd,µ∈RK+
min

ξ∈[0,1]d
Lcon(C, ξ,λ,µ)

}
+

√
2L̄√
T

+ ρ̄

= min
C∈C:φ(C)≤0

ψ(C) +

√
2L̄√
T

+ ρ̄, (25)

where in the second step λ̄ = 1
T

∑T
t=1 λ

t and µ̄ = 1
T

∑T
t=1µ

t and we use the linearity of L in λ
and µ; in the fourth step we use strong duality to interchange the max and min; and the last step
follows from Lemma 33 (part 1).

Similarly, we apply the standard online gradient ascent analysis on the sequence of losses
Lcon(Ct, ξt, ·, ·)’s, where the optimization is overλ andµ. Note that ‖∇λ,µ Lcon(Ct, ξt,λt,µt)‖2 =

‖Ct− ξt‖2 + ‖φ(ξt)‖2 ≤ 1 +Bφ and
∥∥∥∥[λµ

]∥∥∥∥
2

≤ 2L(1 + 1/r) + 2/r ≤ L̄ (from Lemma 33, parts

3–4). So with η′ = L̄
(1+Bφ)

√
2T

, we have:

1

T

T∑
t=1

Lcon(Ct, ξt,λt,µt)

≥ max
λ∈Λ,µ∈Ξ

T∑
t=1

Lcon(Ct, ξt,λ,µ) −
√

2L̄(1 +Bφ)√
T

≥ max
λ∈Λ,µ∈Ξ

{
T∑
t=1

Lcon(C[ht], ξt,λ,µ) − ‖λ‖1‖Ct −C[ht]‖∞

}
−
√

2L̄(1 +Bφ)√
T

≥ max
λ∈Λ,µ∈Ξ

T∑
t=1

Lcon(C[ht], ξt,λ,µ) − 2L(1 + 1/r)
√
dρ′ −

√
2L̄(1 +Bφ)√

T

≥ max
λ∈Λ,µ∈Ξ

Lcon(C[h̄], ξ̄,λ,µ) − 2L(1 + 1/r)
√
dρ′ −

√
2L̄(1 +Bφ)√

T

= max
λ∈Λ

{
ψ(ξ̄) + 〈λ,C[h̄]− ξ̄〉

}
+ max

µ∈Ξ
〈µ,φ(ξ̄)〉 − 2L(1 + 1/r)

√
dρ′ −

√
2L̄(1 +Bφ)√

T
(26)
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≥ min
ξ∈[0,1]d

{
max
λ∈Λ

{
ψ(ξ) + 〈λ,C[h̄]− ξ〉

}
+ max

µ∈Ξ
〈µ,φ(ξ)〉

}
− 2L(1 + 1/r)

√
dρ′ −

√
2L̄(1 +Bφ)√

T

≥ min
ξ∈[0,1]d

{
max
λ∈Λ

{
ψ(ξ) + 〈λ,C[h̄]− ξ〉

}
+ 〈0,φ(ξ)〉

}
− 2L(1 + 1/r)

√
dρ′ −

√
2L̄(1 +Bφ)√

T

= ψ(C[h̄]) − 2L(1 + 1/r)
√
dρ′ −

√
2L̄(1 +Bφ)√

T
, (27)

where in the third step, we use the fact that for any λ ∈ Λ, ‖λ‖∞ ≤ ‖λ‖2 ≤ L, and the property
of the LMO. In the fourth step, we use C[h̄] = 1

T

∑T
t=1 C[ht] and ξ̄ = 1

T

∑T
t=1 ξ

t, and use the
linearity of L in C, and convexity of L in ξ and Jensen’s inequality. In the last step, we apply
Lemma 33 (part 2). The last six steps hold with probability at least 1− δ.

Combining (25) and (27), we get with probability at least 1−δ (over draw of S), for any µ′ ∈ Ξ

ψ(C[h̄]) ≤ min
C∈C:φ(C)≤0

ψ(C) +

√
2L̄(2 +Bφ)√

T
+ 2L(1 + 1/r)(ρ+ 2

√
dρ′).

Setting Bφ =
√
K and T = (K + 1)/ε2 completes the proof of optimality.

Feasibility. Let C∗,λ∗,µ∗ be as defined in Lemma 33. To show feasibility, combining (25)
and (26), and interchanging the min and max, we get:

max
λ∈Λ,µ∈Ξ

{
ψ(ξ̄) + 〈λ,C[h̄]− ξ̄〉 + 〈µ,φ(ξ̄)〉

}
≤ ψ(C∗) + ρ̃ +

√
2L̄(2 +Bφ)√

T
, (28)

where we denote ρ̃ = 2L(1 + 1/r)(ρ+ 2
√
dρ′) Let k′ ∈ argmaxk∈[K] φk(C[h̄]) denote the index

of the most-violated among the K constraints φ1(C[h̄]), . . . , φK(C[h̄]). Also let λ′ = λ∗ and
µ′k′ = µ∗k′ + 1

r and µ′k = µ∗k,∀k 6= k′. Note that λ′ ∈ Λ and µ′ ∈ Ξ. Substituting (µ′, λ′) into the
LHS of (28), we have:

ψ(ξ̄) + 〈λ∗,C[h̄]− ξ̄〉 + 〈µ∗,φ(ξ)〉 +
1

r
max
k

φk(ξ̄) ≤ ψ(C∗) + ρ̃ +

√
2L̄(1 +Bφ)√

T
,

and we further get:

min
C∈C, ξ∈[0,1]d

{ψ(ξ) + 〈λ∗,C− ξ〉 + 〈µ∗,φ(ξ)〉} +
1

r
max
k

φk(ξ̄)

≤ ψ(C∗) + ρ̃ +

√
2L̄(1 +Bφ)√

T
.

Applying Lemma 33 (part 1),

ψ(C∗) +
1

r
max
k

φk(ξ̄) ≤ ψ(C∗) + ρ̃ +

√
2L̄(1 +Bφ)√

T
,

giving us for all k:

φk(ξ̄) ≤ r

(
ρ̃ +

√
2L̄(1 +Bφ)√

T

)
. (29)
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Next set µ′ = µ∗ and

λ′j′ = λ∗j′ +
L(1 + 1/r)∥∥C[h̄]− ξ̄

∥∥
2

(Cj′ [h̄]− ξ̄j′).

Substituting (µ′, λ′) into the LHS of (28), we have:

ψ(ξ̄) + 〈λ∗,C[h̄]− ξ̄〉 + 〈µ∗,φ(ξ̄)〉 + L(1 + 1/r)
∥∥C[h̄]− ξ̄

∥∥
2

≤ ψ(C∗) + ρ̃ +

√
2L̄(1 +Bφ)√

T
,

and again taking a min over C and ξ and applying Lemma 33, we get

∥∥C[h̄]− ξ̄
∥∥

2
≤ 1

L(1 + 1/r)

(
ρ̃ +

√
2L̄(1 +Bφ)√

T

)
. (30)

Combining (29) and (30), and using the Lipschitz property of φk, we get for all k:

φk(C[h̄]) ≤ L
∥∥C[h̄]− ξ̄

∥∥
2

+ r

(
ρ̃ +

√
2L̄(1 +Bφ)√

T

)

≤ r(2 + r)

1 + r

(
ρ̃ +

√
2L̄(1 +Bφ)√

T

)
≤ r

(
ρ̃ +

√
2L̄(1 +Bφ)√

T

)
.

Setting Bφ = 2
√
K and T = (K + 1)/ε2 completes the proof of feasibility.

A.10 Proof of Theorem 18 (Ellipsoid for Constrained Problems)

Theorem ((Restated) Convergence of ConEllipsoid). Fix ε ∈ (0, 1). Let ψ : [0, 1]d→[0, 1] and
φ1, . . . , φK : [0, 1]d→[−1, 1] be convex and L-Lipschitz w.r.t. the `2 norm. Let Ω in Algorithm 6 be
a (ρ, ρ′, δ)-approximate LMO for sample sizeN . Suppose the strict feasibility condition in Assump-
tion 1 holds for radius r > 0. Let the initial classifier h0 satisfy this condition, i.e. φ(C[h0]) ≤ −r
and C[h0] = C0. Let d̄ = d + K. Let h̄ be the classifier returned by Algorithm 7 when run for
T > 2d̄2 log( d̄ε ) iterations with initial radius a > 2(L+ L+1

r ). Then with probability ≥ 1− δ over
draw of S ∼ DN , we have

Optimality: ψ(C[h̄]) ≤ min
C∈C:φk(C)≤0,∀k

ψ(C) +
(
4a
)
ε+ 4a(ρ+ 2

√
dρ′);

Feasibility: φk(C[h̄]) ≤ a(ρ+ 2
√
dρ′), ∀k ∈ [K]

In both the constrained and unconstrained versions of the Ellipsoid Algorithm, successive ellipsoids
are constructed by obtaining the Löwner-John ellipsoid (JLE), i.e., the minimum volume ellipsoid
containing the intersection of the current ellipsoid and a half space obtained by drawing a cutting hy-
perplane through the current center. This process yields a sequence of ellipsoids with geometrically
decreasing volumes. We restate the lemma from Bubeck (2015) that establishes this fact.
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Lemma 34. Let the ellipsoid E0 = {x ∈ Rd : (x − c0)>H−1
0 (x − c0) ≤ 1)}, where H0 ∈ Rd×d

is a positive definite matrix and c0,∈ Rd. Let (H, c) = JLE(H0, c0,g) , where JLE refers to the
subroutine 3(a). Let the ellipsoid E = {x ∈ Rd : (x− c)>H−1(x− c) ≤ 1)}. Then,

E ⊃ E0 ∩ {x ∈ Rd : g>(x− c0) ≥ 0}

vol(E) ≤ exp

(
−1

2d

)
vol(E0)

where vol refers to the standard d-dimensional volume.

We will define some functions and variables below that will be useful in our proofs:

Lcon(C, ξ,λ,µ) = ψ(ξ) + λ>(C− ξ) + µ>φ(ξ)

f con(λ,µ) = min
C∈C,ξ∈∆d

Lcon(C, ξ,λ,µ)

R0 := {x ∈ Rd+K : ||x||2 ≤ a,xd+i ≥ 0, ∀i ∈ {1, 2, ...,K}}

f̂ con(λ,µ) = f con(λ,µ)−∞1([λ,µ] /∈ R0)

ξ(λ,µ) ∈ argminξ∈∆d
ψ(ξ)− λ>ξ + µ>φ(ξ)

The helper function f̂ con(λ,µ) is equal to f con(λ,µ) when [λ,µ] ∈ R0. Let ht and Ct be the
iterates in Algorithm 7. Let E t denote the ellipsoid centered at [λt,µt] with axes given by the eigen
vectors of At, with axes lengths squared given by the corresponding eigenvalues of At, i.e.

E t = {[λ,µ] ∈ Rd+K : [λ− λt,µ− µt]>(At)
−1

[λ− λt,µ− µt] ≤ 1}

We abuse notation sometimes in the proof below by interchangeably using the ellipsoid E t and
its corresponding center, axis matrix [λt,µt],At whenever the context is clear. For example, line
14 of Algorithm 7 can be written compactly as E t+1 = JLE(E t, [Ct − ξt,φ(ξt)]).

A.10.1 BOUNDING THE DUAL SUBOPTIMALITY OF [λt,µt]

We first prove, that for any iteration t ∈ {0, 1, ..., T − 1}, if [λ,µ] /∈ R0, then E t+1 ⊇ {E t ∩ R0}.
We establish this in the following three lemmas.

Lemma 35. If at any iteration t ∈ {0, 1, ..., T − 1}, ||[λt,µt]||2 > a, then E t+1 ⊇ {E t ∩R0}

Proof. Let t ∈ {0, 1, ..., T − 1}, such that, ||[λt,µt]||2 > a. In such a case, the if condition (line 5)
of algorithm 7 gets invoked and we obtain the new ellipsoid E t+1. Due to the JLE construction, we
get that

E t+1 ⊇ E t ∩ {x ∈ Rd+K : (x− [λt,µt])>(−[λt,µt])) ≥ 0}
= E t ∩ {x ∈ Rd+K : x>[λt,µt] ≤ ||[λt,µt]||22]}

⊇ E t ∩B(0d+K , ||[λ̂
t
, µ̂t]||2) ⊇ {E t ∩R0}

Thus, E t+1 ⊇ {E t ∩R0}.

Lemma 36. If at any iteration t ∈ {0, 1, ..., T − 1}, ||[λt,µt]||2 ≤ a, and µt � 0, then E t+1 ⊇
{E t ∩R0}
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Proof. Let t ∈ {0, 1, ..., T − 1}, such that, ||[λt,µt]||2 ≤ a, while µt � 0. In such a case, the
else-if condition (line 8) of algorithm 7 gets invoked and we obtain the new ellipsoid E t+1. Due to
the JLE construction, we get that

E t+1 ⊇ E t ∩ {x ∈ Rd+K : (x− [λt,µt])>([0d, pos(−µt)])) ≥ 0}
= E t ∩ {x ∈ Rd+K : x>[0d, pos(−µt)] ≥ [λt,µt]>[0d, pos(−µt)]
⊇ E t ∩ {x ∈ Rd+K : xd+i ≥ 0, ∀i ∈ 1, 2, ...,K} ⊇ {E t ∩R0}

Thus, E t+1 ⊇ {E t ∩R0}.

Lemma 37. For any iteration t ∈ {0, 1, ..., T − 1} of Algorithm 7, if [λ,µ] /∈ R0, then E t+1 ⊇
{E t ∩R0}

Proof. The result follows directly from Lemmas 35 and 36.

We would also like to prove that the optimal solution, i.e., the maximizer of f con over Rd×RK+
indeed lies inside our search space. In our setting, we show in 38 that the maximizer lies insideR0

Lemma 38. Let (λ∗,µ∗) be a maximizer of f con over Rd × RK+ . Then [λ∗,µ∗] ∈ R0

Proof. From Lemma 33 (parts 3– 4) we have that ‖[λ∗,µ∗]‖2 ≤ L+ L+1
r ≤ a/2. Thus:

max
λ∈Rd,µ∈RK+

f con(λ,µ) = max
λ∈Rd,µ∈RK+

f̂ con(λ,µ) = ψ(C∗) = min
C∈C,φ(C)≤0

ψ(C)

This ensures that [λ∗,µ∗] ∈ R0

Lemmas 37 and 38 allow us to establish Lemma 39, which will be required in proving Theorem 44.

Lemma 39. Let ε ∈ [0, 1] and [λ∗,µ∗] be any maximiser of f̂ con. Define the convex setR0
ε ⊆ R0 ⊆

Rd × RK+ as
R0
ε := {[λ,µ] ∈ R0 : (1− ε)[λ∗,µ∗] + ε[λ,µ]}.

Let the number of iterations T in Algorithm 7, be such that T > 2(d + K)2 log
(

2
ε

)
. Then there

exists an iteration t∗ ∈ {0, 1, .., T − 1} such thatR0
ε ⊆ E t

∗
andR0

ε 6⊆ E t
∗+1 and [λt

∗
,µt

∗
] ∈ R0.

Proof. From Lemma 38, [λ∗,µ∗] ∈ R0 and thus R0
ε ⊆ R0 ⊆ E0. We also have the following by

simple geometry and the classic ellipsoid volume reduction result of Lemma 34.

vol(R0
ε ) = εd+Kvol(R0) = εd+K2−Kvol(E0)

vol(ET ) ≤ exp

(
−T

2(d+K)

)
vol(E0)

≤ exp
(

(d+K) log
( ε

2

))
vol(E0) < vol(R0

ε )

And hence R0
ε * ET . Clearly, there exists an iteration t∗ ∈ {0, 1, . . . , T − 1} such that R0

ε ⊆ E t
∗

but R0
ε * E t

∗+1. If [λt
∗
,µt

∗
] /∈ R0, then by Lemma 37 we have that E t∗+1 ⊇ E t∗ ∩ R0 ⊇ R0

ε ,
giving a contradiction. Thus [λt

∗
,µt

∗
] ∈ R0.
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We now prove that f con is a Lipschitz function w.r.t. `2 norm over the domain R0. We will exploit
this fact later in the proof for Theorem 44.

Lemma 40. f con is a
√
d+K-Lipschitz function w.r.t. `2 norm over the domainR0.

Proof. The difference f con at [λ,µ] ∈ R0 and [λ′,µ′] ∈ R0 can be bounded by:

f con(λ,µ)− f con(λ′,µ′) = min
C∈C,ξ∈∆d

Lcon(C, ξ,λ,µ)− min
C∈C,ξ∈∆d

Lcon(C, ξ,λ′,µ′)

≤ max
C∈C,ξ∈∆d

(
Lcon(C, ξ,λ,µ)− Lcon(C, ξ,λ′,µ′)

)
≤ max

C∈C,ξ∈∆d

(
(λ− λ′)>(C− ξ) + (µ− µ′)>φ(ξ)

)
≤ max

C∈C,ξ∈∆d

(
‖λ− λ′‖1‖C− ξ‖∞ + ‖µ− µ′‖1‖φ(ξ)‖∞

)
≤ ‖λ− λ′‖1 + ‖µ− µ′‖1 = ‖[λ,µ]− [λ′,µ′]‖1
≤
√
d+K ‖[λ,µ]− [λ′,µ′]‖2

Identically, f con(λ′,µ′)−f con(λ,µ) ≤
√
d+K ‖[λ,µ]−[λ′,µ′]‖2. Thus |f con(λ′,µ′)−f con(λ,µ)| ≤√

d+K ‖[λ,µ]− [λ′,µ′]‖2 which concludes the proof.

Recall that we only have access to (ρ, ρ
′
, δ)-approximate LMO. The sample and approximation

errors induced by calls to this approximate LMO must be accounted for. It turns out, that despite
having access to only an approximate LMO, we are able to achieve a desirable sub-optimality with
probability 1 − δ over the draw of random sample S ∼ DN . The rest of the analysis will only
apply for this high probability event. We now present two lemmas that will be helpful in allowing
us to show provided an approximate LMO, the iterates [λt,µt] approximately maximize f con and
subsequently, we will use these results to convert our dual guarantees into primal guarantees.

Lemma 41. Let t ∈ {0, 1, ..., T−1}. Then with probability 1−δ (over draw of S ∼ DN ) uniformly
for all t, such that [λt,µt] ∈ R0, we have that:

• λt>C[ht] ≤ minC∈C λ
t>C + aρ

• ‖C[ht]−Ct‖2 ≤
√
dρ′

• λt>Ct ≤ minC∈C λ
t>C + a(ρ+

√
dρ′)

Proof. The first two inequalities are simply restatements of the definition of (ρ, ρ′, δ)-approximate
LMO. And the third follows by putting the first two together.

Lemma 42. Let t ∈ {0, 1, ..., T − 1} and let [λt,µt] ∈ R0. Then, [Ct − ξt,φ(ξt)] is a τ -
supergradient to f̂ con at [λt,µt] ∈ R0, with τ = a(ρ+ 2

√
dρ′), i.e. for all λ ∈ Rd,µ ∈ RK ,

f̂ con(λ,µ) ≤ f̂ con(λt,µt) + (λ− λt)>(Ct − ξt) + (µ− µt)>(φ(ξt)) + τ
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Proof. Fix [λ,µ] ∈ R0. We have that,

f̂ con(λ,µ) = min
C∈C,ξ∈∆d

L(C, ξ,λ,µ)

≤ L(C[ht], ξt,λ,µ)

= L(Ct, ξt,λ,µ) + (C[ht]−Ct)>λ

≤ L(Ct, ξt,λ,µ) + ‖C[ht]−Ct‖2‖λ‖2
≤ L(Ct, ξt,λ,µ) + a

√
dρ′.

Further,

f̂ con(λt,µt) = min
C∈C

λt
>

C + min
ξ∈∆d

ψ(ξ)− λt>ξ + µt
>
φ(ξ)

≥ λt>Ct − a(ρ+
√
dρ′) + ψ(ξt)− λt>ξt + µt

>
φ(ξt)

= L(Ct, ξt,λt,µt)− a(ρ+
√
dρ′)

= L(Ct, ξt,λ,µ) + (λt − λ)>(Ct − ξt) + (µt − µ)>φ(ξt)− a(ρ+
√
dρ′)

≥ f̂ con(λ,µ)− a
√
dρ′ + (λt − λ)>(Ct − ξt) + (µt − µ)>φ(ξt)− a(ρ+

√
dρ′),

as desired. If [λ,µ] /∈ R0, the result follows trivially.

Equipped with lemmas 39, 42 and 40, we are now ready to prove that Algorithm 7 approximately
maximizes f con. The monograph by Bubeck (2015) presents a proof to derive the sub-optimality
of the regular ellipsoid algorithm, where perfect (sub/ super) gradient access is assumed. In our
setting, we only have access to approximate super-gradients. We show how to adapt the proof of
Bubeck (2015) to our setting, in the proof for Theorem 44.

Lemma 43. Let τ = a(ρ+ 2
√
dρ′). For any t ∈ {0, 1, . . . , T − 1}, such that, [λt,µt] ∈ R0

E t \ E t+1 ⊂ {[λ,µ] ∈ Rd+K : f̂ con(λ,µ) ≤ f̂ con(λt,µt) + τ}

Proof. Pick t ∈ {0, 1, . . . , T − 1}, such that [λt,µt] ∈ R0. We know by lemma 42 that gt :=
[Ct − ξt,φ(ξt)] is a τ super-gradient to f̂ con at [λt,µt]. Thus, ∀λ ∈ Rd, ∀µ ∈ RK , we have that

f̂ con(λ,µ) ≤ f̂ con(λt,µt) + (gt)>([λ,µ]− [λt,µt]) + τ (31)

Since [λt,µt] ∈ R0, the else condition (line 11) of Algorithm 7 gets invoked and we get that
E t+1 = JLE(E t, gt) and thus by Lemma 34 and Equation (31) we have the following:

E t+1 ⊇ E t ∩ {[λ,µ] ∈ Rd+K : (gt)>([λ,µ]− [λt,µt]) ≥ 0}
E t \ E t+1 ⊆ {[λ,µ] ∈ Rd+K : (gt)>([λ,µ]− [λt,µt]) < 0}

⊆ {[λ,µ] ∈ Rd+K : f̂ con(λ,µ) ≤ f̂ con(λt,µt) + τ}

where the second line follows from the argument that for any sets A,B,C, if A ⊃ B ∩ C then
B \A ⊆ Cc, and the last line follows from Equation (31).
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Theorem 44. Let the assumptions stated in Theorem 18 hold. Then,

max
0≤t≤T−1

f̂ con(λt,µt) ≥ max
λ,µ

f̂ con(λ,µ)−
(
4a
√
d+K

)
· exp

(
−T

2(d+K)2

)
− τ

where τ = a(ρ+ 2
√
dρ′)

Proof. Due to lemma 38, we know that ∃ [λ∗,µ∗] ∈ R0, where [λ∗,µ∗] is a maximizer of f con over
Rd×RK+ . Set ε = 2 exp

(
−T

2(d+K)2

)
which implies T > 2(d+K)2log(2

ε ). LetR0
ε ⊆ R0 ⊆ Rd×RK+

be
R0
ε := {[λ,µ] ∈ R0 : (1− ε)[λ∗,µ∗] + ε[λ,µ]}.

By Lemma 39, there exists an iteration t∗ ∈ {0, 1, . . . , T − 1}, such that, R0
ε ⊆ E t

∗
, R0

ε 6⊆
E t∗+1 and [λt

∗
,µt

∗
] ∈ R0. Pick any element [λε,µε] ∈ R0

ε \ E t
∗+1 ⊆ E t∗ \ E t∗+1. Because of the

definition ofR0
ε , ∃ [λ

′
,µ′] ∈ R0, such that, [λε,µε] = (1− ε)[λ∗,µ∗] + ε[λ

′
,µ′]. Due to Lemma

43, we have that,

f̂ con(λt
∗
,µt

∗
) ≥ f̂ con(λε,µε)− τ

= f con(λε,µε)− τ

= f con((1− ε)λ∗ + ελ
′
, (1− ε)µ∗ + εµ

′
)− τ

≥ (1− ε)f con(λ∗,µ∗) + εf con(λ
′
,µ
′
)− τ

≥ (1− ε)f con(λ∗,µ∗) + ε(f con(λ∗,µ∗)− 2a
√
d+K)− τ

= f con(λ∗,µ∗)− ε(2a
√
d+K)− τ

= f con(λ∗,µ∗)− 4a
√
d+K exp

(
−T

2(d+K)2

)
− τ

the second inequality in the above argument is due to the concavity of f con and the third inequality
is due to the

√
d+K Lipschitzness of f con in R0 (Lemma 40) and the `2-norm diameter of the set

R0 being bounded above by 2a. The theorem follows from the equality of f con and f̂ con within
R0.

A.10.2 CONVERTING GUARANTEE ON f̂ con TO PRIMAL OPTIMALITY-FEASIBILITY

GUARANTEES

Now, we can bound the primal sub-optimality using a standard technique from optimization theory
Lee et al. (2015). Throughout, we will appeal to the high-probability inequalities established in 41.

Lemma 45. Denote C̃ = conv({C[h0],C[h1], . . . ,C[hT−1]}). We then have:

min
C∈C̃,φ(C)≤0

ψ(C) ≤ min
C∈C,φ(C)≤0

ψ(C) +
(
4a
√
d+K

)
· exp

(
−T

2(d+K)2

)
+ 2τ

where τ = a(ρ+ 2
√
dρ′).

Proof. Consider an alternative version of f con defined as

f̃ con(λ,µ) = min
C∈C̃,ξ∈[0,1]d

Lcon(C, ξ,λ,µ).
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And let ̂̃f con
be equal to f̃ con if its argument λ,µ is inside the `2-norm ball of radius a and µ ≥ 0,

and negative infinity otherwise.

Clearly we have that ̂̃f con
(λ,µ) ≥ f̂ con(λ,µ). We can also show ̂̃f con

and f̂ con are close at the
iterates [λt,µt]. If [λt,µt] /∈ R0, then both sides are trivially equal to negative infinity. Suppose
[λt,µt] ∈ R0, we then have:̂̃

f
con

(λt,µt) = f̃ con(λt,µt) ≤ L(C[ht], ξt,λt,µt)

= ψ(ξt)− λt>ξt + λt
>

C[ht] + µt
>
φ(ξt)

= min
ξ∈∆d

(
ψ(ξ)− λt>ξ + µt

>
φ(ξt)

)
+ λt

>
C[ht]

≤ min
ξ∈∆d

(
ψ(ξ)− λt>ξ + µt

>
φ(ξt)

)
+ min

C∈C
λt
>

C + aρ

= min
ξ∈∆d,C∈C

(
ψ(ξ) + λt

>
(C− ξ) + µt

>
φ(ξ)

)
+ aρ

= f con(λt,µt) + aρ = f̂ con(λt,µt) + aρ. (32)

From Lemma 38 and the min-max theorem, we have the following:

max
λ∈Rd,µ∈RK+

̂̃
f

con
(λ,µ) = max

λ∈Rd,µ∈RK+
f̃ con(λ,µ)

= max
λ∈Rd,µ∈RK+

min
C∈C̃,ξ∈∆d

Lcon(C, ξ,λ,µ)

= min
C∈C̃,ξ∈∆d

max
λ∈Rd,µ∈RK+

Lcon(C, ξ,λ,µ)

= min
C∈C̃,φ(C)≤0

ψ(C). (33)

Recall that Algorithm 7 is designed to find the minimum of ψ over C (subject to constraints φ).
However, the exact same sequence of iterates would also apply for minimizing ove C̃, and hence the
sequence of iterates λt,µt also approximately maximise f̃ con. Then by Theorem 44 and Equation
(32) we have,

max
λ∈Rd,µ∈RK+

̂̃
f

con
(λ,µ) ≤ max

0≤t≤T
̂̃
f

con
(λt,µt) +

(
4a
√
d+K

)
· exp

(
−T

2(d+K)2

)
+ τ

≤ max
0≤t≤T

f̂ con(λt,µt) + aρ+
(
4a
√
d+K

)
· exp

(
−T

2(d+K)2

)
+ τ

≤ max
λ∈Rd,µ∈RK+

f̂ con(λ,µ) +
(
4a
√
d+K

)
· exp

(
−T

2(d+K)2

)
+ 2τ

Putting the above together with Equation (33) we get,

min
C∈C̃,φ(C)≤0

ψ(C) ≤ min
C∈C,φ(C)≤0

ψ(C) +
(
4a
√
d+K

)
· exp

(
−T

2(d+K)2

)
+ 2τ

where τ = a(ρ+ 2
√
dρ′). which completes the proof.

71



NARASIMHAN, RAMASWAMY, TAVKER, KHURANA, NETRAPALLI AND AGARWAL

Lemma 46. Let α∗ ∈ argmin
α∈∆T ,φ(

∑
t αtC

t)≤0
ψ
(∑T−1

i=0 αiC
i
)

. Then:

ψ

(
T−1∑
i=0

α∗iC[hi]

)
≤ min

C∈C̃,φ(C)≤0
ψ(C) + 2τ ;

φk

(
T−1∑
i=0

α∗iC[hi]

)
≤ τ,

where C̃ = conv({C[h0], . . . ,C[hT−1]}).

Proof. Let β∗ ∈ argmin
β∈∆T ,φ(

∑
t βtC[ht])≤0

ψ
(∑T−1

i=0 βiC[hi]
)

denote the coefficients obtained by solv-

ing a similar minimization problem with the estimates Ct replaced with the true confusion matrices
C[ht]. First, we note that α∗ and β∗ exist because h0 (and in turn, C[h0] = C0) is strictly feasible.

ψ

(
T−1∑
i=0

α∗iC[hi]

)
= ψ

(
T−1∑
i=0

α∗iC
i +

T−1∑
i=0

α∗i (C[hi]−Ci)

)

≤ ψ

(
T−1∑
i=0

α∗iC
i

)
+ Lρ′

√
d

= min
α∈∆T

ψ

(
T−1∑
i=0

αiC
i

)
+ Lρ′

√
d

≤ ψ

(
T−1∑
i=0

β∗i C
i

)
+ Lρ′

√
d

= ψ

(
T−1∑
i=0

β∗i C[hi] +
T−1∑
i=0

β∗i (Ci −C[hi])

)
+ Lρ′

√
d

≤ ψ

(
T−1∑
i=0

β∗i C[hi]

)
+ 2Lρ′

√
d

= min
β∈∆T ,φ(

∑
t βtC[ht])≤0

ψ

(
T−1∑
i=0

βiC[hi]

)
+ 2Lρ′

√
d

= min
C∈C̃,φ(C)≤0

ψ(C) + 2Lρ′
√
d

≤ min
C∈C̃,φ(C)≤0

ψ(C) + 2τ,

where the first and third inequality above are due to the Lipschitzness of ψ.
Using a similar argument as above, we get for all k ∈ [K],

φk

(
T−1∑
i=0

α∗iC[hi]

)
= φk

(
T−1∑
i=0

α∗iC
i +

T−1∑
i=0

α∗i (C[hi]−Ci)

)
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≤ φk

(
T−1∑
i=0

α∗iC
i

)
+ Lρ′

√
d

≤ 0 + Lρ′
√
d ≤ τ,

where the first inequality above is due to the Lipschitzness of φ, and the second inequality is due to
the property of α∗ being chosen from a set such that the weighted combination of Ci is feasible.

We are now ready to prove Theorem 18.

Proof of Theorem 18. Let α∗ ∈ argmin
α∈∆T ,φ(

∑
t αtC

t)≤0
ψ
(∑T−1

i=0 αiC
i
)
. Let d̄ = d + K. Putting

Lemmas 45 and 46 together we get,

ψ(C[h]) = ψ

(
T−1∑
i=0

α∗iC[hi]

)

≤ min
C∈C,φ(C)≤0

ψ(C) +
(
4a
√
d̄
)
· exp

(
−T

2(d̄)2

)
+ 4τ

= min
C∈C,φ(C)≤0

ψ(C) +
(
4a
√
d̄
)
· exp

(
−T

2(d̄)2

)
+ 4τ

We now set T = 2d̄2 log
(
d̄
ε

)
to obtain

ψ(C[h]) ≤ min
C∈C,φ(C)≤0

ψ(C) +
(
4a
)
ε+ 4τ

The feasibility inequality then follows easily from Lemma 46

φk(C[h]) = φk

(
T−1∑
i=0

α∗iC[hi]

)
≤ τ.

for all k ∈ [K].

A.11 Proof of Theorem 19 (Bisection for Constrained Problems)

Theorem ((Restated) Convergence of ConBisection algorithm). Fix ε ∈ (0, 1). Letψ : [0, 1]d→[0, 1]

be such that ψ(C) = 〈A,C〉
〈B,C〉 , where A,B ∈ [0, 1]d, and minC∈C 〈B,C〉 = b for some b > 0. Let

φ1, . . . , φK : [0, 1]d→[−1, 1] be convex and L-Lipschitz w.r.t. the `2-norm. Let Ω in Algorithm 8 be
a (ρ, ρ′, δ)-approximate LMO for sample sizeN . Suppose the strict feasibility condition in Assump-
tion 1 holds for radius r > 0. Let Λ, Ξ, ω and ω′ in the call to Algorithm 6 be set as in Theorem 17
with Lipschitz constant L′ = max{L, ‖A‖2 + ‖B‖2}. Let h̄ be a classifier returned by Algorithm
8 when run for T outer iterations and T ′ inner iterations. Then with probability ≥ 1− δ over draw
of S ∼ DN , after T = log(1/ε) outer iterations and T ′ = O(K/ε2) inner iterations:

Optimality : ψ(C[h̄]) ≤ min
C∈C:φ(C)≤0

ψ(C) + O
(
κ(ε+ ρeff)

)
;

Feasibility : φk(C[h̄]) ≤ O
(
L′(ε+ ρeff)

)
, ∀k ∈ [K],

where κ = L′/b and ρeff = ρ+
√
dρ′.
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The proof follows similar steps as that for Theorem 15. We will first state a couple of lemmas:

Lemma 47 (Invariant in Algorithm 8). Under the assumptions made in Theorem 19, the following
invariant is true at the end of each iteration 0 ≤ t ≤ T of Algorithm 8:

min
C∈C:φk(C)≤0,∀k

ψ(C) ≥ αt − O
(
κ(ε+ ρeff)

)
;

ψ(C[ht]) < βt + O
(
κ(ε+ ρeff)

)
;

φk(C[ht]) ≤ O
(
L′(ε+ ρeff)

)
, ∀k ∈ [K].

where L′, κ, and ρeff are defined as in Theorem 19.

Proof. We shall prove this lemma by mathematical induction on the iteration number t. For t = 0,
the invariant holds trivially as 0 ≤ ψ(C[h0]) ≤ 1 and h0 satisfies the constraints. Assume the
invariant holds at the end of iteration t− 1 ∈ {0, . . . , T − 1}; we shall prove that the invariant holds
at the end of iteration t.

First note that the linear function ψ′(C) = 〈A−γtB, C〉 in step 6 of the algorithm is Lipschitz
w.r.t. the `2-norm with Lipschitz parameter of at most ‖A−γtB‖2 ≤ ‖A‖2 +‖B‖2 ≤ L′. We then
have from Theorem 17 that the classifier gt returned by the ConGDA algorithm (Algorithm 6) after
T ′ = O(K/ε2) runs enjoys the following guarantee:

〈A− γtB, C[gt])〉 ≤ min
C∈C:φk(C)≤0,∀k

〈A− γtB, C〉 + O
(
L′(ε+ ρeff)

)
; (34)

φk(C[gt]) ≤ O
(
L′(ε+ ρeff)

)
, ∀k ∈ [K], (35)

where we have used the fact that both ψ′(C) = 〈A − γtB, C〉 and φk(C)s are L′-Lipschitz w.r.t.
the `2-norm. We further have that from the property of the LMO (Definition 11) used in turn by
Algorithm 5 that:

‖Ct −C[gt]‖∞ ≤ ρ′ (36)

We now consider two cases at iteration t. In the first case, ψ(Ct) < γt, leading to the assign-
ments αt = αt−1, βt = γt, and ht = gt. We then have:

〈A− γtB, C[gt])〉 = 〈A− γtB, Ct〉 + 〈A− γtB,C[gt]−Ct〉
≤ 〈A− γtB, Ct〉 + ‖A− γtB‖1ρ′

= 〈B, Ct〉
(
ψ(Ct) − γt

)
+ ‖A− γtB‖1ρ′

≤ 0 + ‖A− γtB‖1ρ′

≤ (‖A‖1 + ‖B‖1)ρ′

≤ (‖A‖2 + ‖B‖2)
√
dρ′ ≤ L′

√
dρ′ < L′(ε+ ρeff),

where the second step follows from Hölder’s inequality and (36), the fourth step follows from our
case assumption that ψ(Ct) ≤ γt and from 〈B, Ct〉 > 0, the fifth step follows from the triangle
inequality and 0 ≤ γt ≤ 1, and the sixth step uses the fact that ‖z‖1 ≤

√
d‖z‖2. The above

inequality, along with the fact that 〈B,C〉 ≥ b, further gives us:

〈A, C[gt]〉
〈B, C[gt]〉

< γt +
L′

b
(ε+ ρeff) = βt + κ(ε+ ρeff).
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In other words,

ψ
(
C[ht]

)
= ψ(C[gt]) =

〈A, CD[gt]〉
〈B, CD[gt]〉

< βt + O(κ(ε+ ρeff)).

Moreover, by our assumption that the invariant holds at the end of iteration t− 1, we have

min
C∈C:φk(C)≤0,∀k

ψ(C) ≥ αt−1 − O
(
κ(ε+ ρeff)

)
= αt − O

(
κ(ε+ ρeff)

)
.

Further, from (35), φk(C[ht]) = φk(C[gt]) ≤ O(L′ρ̄),∀k. Thus under the first case, the invariant
holds at the end of iteration t.

In the second case, ψ(Ct) ≥ γt at iteration t, which would lead to the assignments αt = γt,
βt = βt−1, and ht = ht−1. Since the invariant is assumed to hold at the end of iteration t − 1, we
have

ψ(C[ht]) = ψ(C[ht−1]) ≤ βt−1 + O(κ(ε+ ρeff)) = βt + O(κ(ε+ ρeff)). (37)

Next for C∗ ∈ argmin
C∈C:φ(C)≤0

〈A− γtB, C〉, we have from (34),

〈A− γtB, C∗〉 ≥ 〈A− γtB, C[ht]〉 − O(L′(ε+ ρeff))

≥ 〈A− γtB, Ct〉 − ‖A− γtB‖1‖Ct −C[ht]‖∞ − O(L′(ε+ ρeff))

≥ 〈A− γtB, Ct〉 − ‖A− γtB‖1ρ′ − O(L′(ε+ ρeff))

= 〈B, Ct〉(ψ(Ct)− γt) − ‖A− γtB‖1ρ′ − O(L′(ε+ ρeff))

≥ 〈B, Ct〉(0) − ‖A− γtB‖1ρ′ − O(L′(ε+ ρeff))

≥ −(‖A‖2 + ‖B‖2)
√
dρ′ − O(L′(ε+ ρeff)) = −O(L′(ε+ ρeff)),

where the first step follows from the property of the LMO, the second step follows from Hölder’s
inequality, the third step uses (36), the fifth step follows from our case assumption that ψ(Ct) ≥ γt
and 〈B, Ct〉 > 0, the last step follows from the triangle inequality, 0 ≤ γt ≤ 1, and the fact that
‖z‖1 ≥ ‖z‖2. In particular, we have for all C ∈ C such that φk(C) ≤ 0, ∀k,

〈A− γtB, C〉 ≥ −O(L′(ε+ ρeff)),

or

〈A, C〉
〈B, C〉

≥ γt −O
(

L′

〈B, C〉
(ε+ ρeff)

)
≥ γt −O

(
L′

b
(ε+ ρeff)

)
= γt −O

(
κ(ε+ ρeff)

)
.

In other words,

min
C∈C:φk(C)≤0,∀k

ψ(C) ≥ γt − O
(
κ(ε+ ρeff)

)
= αt −O

(
κ(ε+ ρeff)

)
.

By combining the above with (37) and noting that φk(C[ht]) = φk(C[ht−1]) ≤ O
(
L′(ε+ ρeff)

)
,

∀k, we can see that the invariant holds in iteration t under this case as well. This completes the
proof of the lemma.
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Lemma 48 (Multiplicative progress in each iteration of Algorithm 8). Let ψ be as defined in Theo-
rem 19. Then the following is true in each iteration 1 ≤ t ≤ T of Algorithm 8:

βt − αt =
1

2

(
βt−1 − αt−1

)
.

Proof. We consider two cases in each iteration of Algorithm 8. If in an iteration t ∈ {1, . . . , T},
ψ(Ct)<γt, leading to the assignment βt = γt, then

βt − αt = γt − αt−1 =
αt−1 + βt−1

2
− αt−1 =

1

2
(βt−1 − αt−1).

On the other hand, if ψ(Ct)≥γt, leading to the assignment αt = γt, then

βt − αt = βt−1 − γt = βt−1 − αt−1 + βt−1

2
=

1

2

(
βt−1 − αt−1

)
.

Thus in both cases, the statement of the lemma is seen to hold.

We are now ready to prove Theorem 19.

Proof of Theorem 19. For the classifier h̄ = hT output by Algorithm 8 after T iterations, we have
from Lemma 47,

ψ
(
C[hT ]

)
− min

C∈C:φk(C)≤0,∀k
ψ(C) < βT − αT + O(κ(ε+ ρeff))

≤ 2−T
(
β0 − α0

)
+ O(κ(ε+ ρeff))

= 2−T
(
1− 0

)
+ O(κ(ε+ ρeff))

= 2−T + O(κ(ε+ ρeff)),

where the second step follows from repeated application of Lemma 48. Additionally, we have
from Lemma 47, φk(C[h̄]) ≤ O

(
L′(ε+ ρeff)

)
, ∀k ∈ [K]. Setting T = log(1/ε) completes the

proof.

A.12 Proof of Theorem 20

Theorem ((Restated) Regret bound for plug-in LMO). Fix δ ∈ (0, 1). Then with probability≥ 1−δ
over draw of sample S ∼ DN , for any loss matrix L ∈ Rd+ with ‖L‖∞ = 1, the classifier and
confusion matrix (ĝ, Γ̂) returned by Algorithm 9 satisfies:

〈L,C[ĝ]〉 ≤ min
h:X→∆n

〈L,C[h]〉+ EX

[∥∥η̂(X) − η(X)
∥∥

1

]
;

‖C[ĝ] − Γ̂‖∞ ≤ O
(√

d log(n) log(N) + log(d/δ)

N

)
.

Proof. For simplicity, we will represent both L and C as n × n matrices instead of flattened n2-
dimensional vectors. Let us denote the columns of L by `1, . . . , `n, where `j = [L1,j , L2,j , . . . , Ln,j ]

>.
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We can then re-write:

〈L,C[h]〉 =
∑
i,j

Lij Cij [h] =
∑
i,j

EX [ηi(X)Lij 1(h(X) = j)]

=
n∑
j=1

EX

[
1(h(X) = j)η(X)>`j

]
= EX

[
η(X)>`h(X)

]
.

Let h∗ be the Bayes optimal classifier for the linear metric 〈L,C[ĥ]〉. For the first part, we
bound the L-regret as follows:

〈L,C[ĝ]〉 − 〈L,C[h∗]〉
= EX

[
η(X)>`ĝ(X)

]
−EX

[
η(X)>`h∗(X)

]
= EX

[
η̂(X)>`ĝ(X)

]
+ EX

[
(η(X)− η̂(X)>`ĝ(X)

]
−EX

[
η(X)>`h∗(X)

]
≤ EX

[
η̂(X)>`h∗(X)

]
+ EX

[
(η(X)− η̂(X)>`ĝ(X)

]
−EX

[
η(X)>`h∗(X)

]
= EX

[
(η(X)− η̂(X))>(`ĝ(X) − `h∗(X))

]
≤ EX

[∥∥η(X)− η̂(X)
∥∥

1
·
∥∥`ĝ(X) − `h∗(X)

∥∥
∞
]

≤ EX

[∥∥η(X)− η̂(X)
∥∥

1

]
,

where in the third step, we use the fact that ĝ(x) = argmin∗j∈[n] η̂(x)>`j ; in the last step, we have
use the fact that ‖L‖∞ = 1.

For the second part, we denote the class of all plug-in classifiers constructed from a fixed class-
probability estimator η̂ by:

H =
{
h : X→[n], h(x) = argmin∗y∈[n] `

>
y η̂(x) |L ∈ [0, 1]n×n

}
,

and provide a uniform convergence bound over all classifiers inH, and in turn applies to the classi-
fier ĝ output by Algorithm 9.

For any a, b ∈ [n], we have

sup
h∈Hq

∣∣∣ĈSa,b[h]− Ca,b[h]
∣∣∣ = sup

h∈H

∣∣∣∣∣ 1

m

m∑
i=1

(1(yi = a, h(xi) = b)−E[1(Y = a, h(X) = b)])

∣∣∣∣∣
= sup

h∈Hb

∣∣∣∣∣ 1

m

m∑
i=1

(1(yi = a, h(xi) = 1)−E[1(Y = a, h(X) = 1)])

∣∣∣∣∣ ,
where for a fixed b ∈ [n],

Hb =
{
h : X→{0, 1} : ∃L ∈ [0, 1]n×n, ∀x ∈ X , h(x) = 1

(
b = argmin∗y∈[n] `

>
y η̂(x)

)}
.

The set Hb can be seen as hypothesis class whose concepts are the intersection of n halfspaces in
Rn (corresponding to η̂(x)) through the origin. Hence we have from Lemma 3.2.3 of Blumer et al.
(1989) that the VC-dimension ofHb is at most 2n2 log(3n).
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From standard uniform convergence arguments we have that for each a, b ∈ [n], the following
holds with at least probability 1− δ (over draw of S ∼ DN ),

sup
h∈H

∣∣∣ĈSa,b[h]− Ca,b[h]
∣∣∣ ≤ O

√n2 log(n) log(N) + log(1
δ )

N

 .

Applying union bound over all a, b ∈ [n], we have that the following holds with probability≥ 1−δ:

∣∣∣∣∣∣ĈS [ĝ]−C[ĝ]
∣∣∣∣∣∣
∞
≤ sup

h∈H

∣∣∣∣∣∣ĈS [h]−C[h]
∣∣∣∣∣∣
∞
≤ O

√n2 log(n) log(N) + log(n
2

δ )

N

 .

Plugging d = n2 completes the proof.

Appendix B. Additional Experimental Details

B.1 Hyper-parameter Selection

We run the Frank-Wolfe and GDA algorithms for 5000 LMO calls, and the ellipsoid algorithm
for 1000 LMO calls. We run the constrained algorithms for 10000, 10000 and 1000 LMO calls
respectively. The unconstrained Frank-Wolfe algorithm has no other hyper-parameters to tune. The
GDA algorithm has two step-size parameters ω and ω′, which we tune using a two-dimensional
grid-search over {0.001, 0.01, 0.1}2, picking the parameters that yield the lowest objective on the
training set. For the ellipsoid algorithm, we fix the initial ellipsoid radius a to 1000.

The constrained counterpart to the Frank-Wolfe algorithm (SplitFW) in Algorithm 5 has two
additional hyper-parameters: the weight on the quadratic penalty ζ, which we set to 10, and the step-
size ω, for which, we adopt the same schedule used by Gidel et al. (2018), and set it to 0.5 for first
T/3 iterations, 0.1 for the next T/3 iterations, and 0.001 for the final T/3 iterations. Additionally,
we find it sufficient to avoid the explicit line search for γt in line 7 and instead set to 2

t+2 , akin to
the standard Frank-Wolfe setup. For the constrained version of GDA algorithm, we set the step-
sizes ωλ = ωµ = ω′, and tune ωξ and ω′ using the same the two-dimensional grid search used for
unconstrained GDA, picking among those that satisfy the constraints on the training set, the ones
with the least training objective (When none of the parameters satisfy the constraints, we pick the
one with the minimum constraint violation). The hyper-parameters for the constrained ellipsoid
algorithm were chosen in the same way as the unconstrained version. For TFCO, we tuned the
learning rates for the model and constraint from {0.001, 0.01, 0.1} and ran it for 5000 iterations.

B.2 Additional Details for CIFAR Case Studies

Below, we list the five super-classes in the CIFAR-55 dataset described in Section 8.8, and the
10 classes that each of them comprise of: (i) Flowers and Fruits: Orchid, Poppy, Rose, Sun-
flower, Tulip, Mushroom, Orange, Pear, Apples, and Sweet Pepper. (ii) Aquatic Animals: Beaver,
Dolphin, Otter, Aquarium Fish, Ray, Flat Fish, Shark, Trout, Whale, and Seal. (iii) Household
Items: Clock, Bed, Chair, Couch, Keyboard, Telephone, Television, Wardrobe, Table, and Lamp.
(iv) Large Outdoor Scenes: Bridge, Castle, House, Road, Mountain, Skyscraper, Cloud, Forest,
Plain, and Sea. (v) Mammals: Camel, Cattle, Chimpanzee, Elephant, Kangaroo, Porcupine, Pos-
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(c) CovType

Figure 13: Optimizing the H-mean loss subject to the coverage constraint maxi |
∑

j Cji − πi| ≤
0.01. The plots on the left show the H-mean loss on the test set and those on the right show the
coverage violation maxi |

∑
j Cji − πi| − 0.01 on the test set. Lower H-mean value are better, and

the constraint values need to be ≤ 0.
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(c) Default

Figure 14: Optimizing the G-mean loss subject to the Equal Opportunity constraint ≤ 0.01. The
plots on the left show the G-mean loss on the test set and those on the right show the equal oppor-
tunity violation (needs to be ≤ 0) on the test set. Lower G-mean values are better.

sum, Raccoon, Fox, and Skunk. We employ standard data augmentation techniques on the CIFAR
datasets by applying random crops and horizontal flips.††

††The learning rate schedules were adopted from: https://github.com/huyvnphan/PyTorch_CIFAR10.

79

https://github.com/huyvnphan/PyTorch_CIFAR10


NARASIMHAN, RAMASWAMY, TAVKER, KHURANA, NETRAPALLI AND AGARWAL

0 500 1000 1500
No. LMO Calls

0.2

0.4

0.6

0.8

1.0
M

in
-M

ax
 L

os
s

FW
GDA
Ellipsoid

0 500 1000 1500
No. LMO Calls

0.4

0.6

0.8

1.0

M
in

-M
ax

 L
os

s

FW
GDA
Ellipsoid

(a) SatImage

0 200 400 600 800 1000
No. LMO Calls

0.25

0.50

0.75

1.00

M
in

-M
ax

 L
os

s

FW
GDA
Ellipsoid

0 200 400 600 800 1000
No. LMO Calls

0.4

0.6

0.8

1.0

M
in

-M
ax

 L
os

s

FW
GDA
Ellipsoid

(b) MACHO

Figure 15: Optimizing the Min-max loss: Comparison of performance of the Frank-Wolfe, GDA and
ellipsoid methods as a function of the number of LMO calls. The plot on the left is for train data
and on the right is for test data. Lower values are better. Because the min-max loss is non-smooth,
Frank-Wolfe is seen to converge to a sub-optimal classifier.
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Figure 16: Optimizing the Hmean loss: Comparison of performance of the Frank-Wolfe, GDA and
ellipsoid methods as a function of the number of LMO calls. The plot on the left is for Train data
and on the right is for Test data. Lower values are better.

B.3 Additional Experimental Results

We report the H-mean Loss and micro-F measures of a random classifier on our datasets in Table 13.
We also present additional results for the experiments described in Section 8: (i) Performance on
Constrained Problems (Section 8.5): See Figures 13– 14. (ii) Practical Guidance on Algorithm
Choice (Section 8.6): See Figures 15–17. (iii) Choice of LMO: Plug-in vs. Weighted Logistic
Regression (Section 8.7): See Table 12.
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Figure 17: Optimizing the H-mean loss subject to the coverage constraint maxi |
∑

j Cji − πi| ≤
0.01. The plots on the left show the H-mean loss on the train set and those on the right show the
coverage violation maxi |

∑
j Cji − πi| − 0.01 on the train set. Lower H-mean value are better,

and the constraint values need to be ≤ 0.

Table 12: Comparison of the plug-in and weighted logistic regression (WLR) based LMOs on the
task of optimizing the (convex) H-mean loss. The number of iterations, i.e. calls to the LMO, is
fixed at 100. Lower values are better. The results are averaged over 10 random train-test splits

Dataset FW Ellipsoid GDA
Plugin WLR Plugin WLR Plugin WLR

Aba 0.812± 0.017 0.798± 0.013 0.815± 0.017 0.817± 0.012 0.841± 0.032 0.837± 0.035
PgB 0.127± 0.039 0.079± 0.015 0.111± 0.026 0.079± 0.018 0.122± 0.032 0.084± 0.018

MAC 0.124± 0.017 0.245± 0.027 0.125± 0.017 0.247± 0.027 0.124± 0.016 0.206± 0.029
Sat 0.171± 0.007 0.170± 0.007 0.170± 0.006 0.167± 0.006 0.171± 0.007 0.170± 0.006
Cov 0.466± 0.001 0.450± 0.001 0.466± 0.001 0.451± 0.001 0.463± 0.001 0.447± 0.001

Table 13: Performance metrics of a Random Classifiers on the Dataset. Lower Values are better.

Dataset H-mean Loss micro-F1
Communities & Crime 0.506 0.503

COMPAS 0.501 0.504
Law School 0.501 0.499

Default 0.499 0.498
Adult 0.499 0.499

Abalone 0.940 0.918
Pgblk 0.839 0.794

MACHO 0.914 0.874
SatImage 0.835 0.832
CovType 0.858 0.857
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