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Abstract

Previous analysis of regularized functional linear regression in a reproducing kernel Hilbert
space (RKHS) typically requires the target function to be contained in this kernel space.
This paper studies the convergence performance of divide-and-conquer estimators in the
scenario that the target function does not necessarily reside in the underlying RKHS. As
a decomposition-based scalable approach, the divide-and-conquer estimators of functional
linear regression can substantially reduce the algorithmic complexities in time and memory.
We develop an integral operator approach to establish sharp finite sample upper bounds
for prediction with divide-and-conquer estimators under various regularity conditions of
explanatory variables and target function. We also prove the asymptotic optimality of the
derived rates by building the mini-max lower bounds. Finally, we consider the convergence
of noiseless estimators and show that the rates can be arbitrarily fast under mild conditions.

Keywords: functional linear regression, reproducing kernel Hilbert space, divide-and-
conquer estimator, model misspecification, mini-max optimal rates

1. Introduction

Functional data analysis (FDA) has been an intense recent study, achieving remarkable
success in a wide range of fields, including, among many others, chemometrics, linguistics,
medicine and economics (see, e.g., Ramsay and Silverman, 2005; Wang et al., 2016). Under
an FDA framework, the explanatory variable is usually a random function. We consider
the following functional linear regression model to characterize the functional nature of
explanatory variables. Let Y be a scalar response, and X be a random element taking
values in L2(T ). Throughout the paper, we use L2(T ) to denote the Hilbert space of
square integrable functions defined over a domain T ⊆ RD for some integer D ≥ 1. In the
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functional linear regression model, the dependence of Y and X is expressed as

Y =

∫
T
β0(t)X(t)dt+ ε, (1.1)

where β0 ∈ L2(T ) is the slope function and ε is a random noise independent of X with
zero mean and bounded variance. The goal of functional linear regression is to construct
an estimator β̂ to approximate β0 based on training samples of (X,Y ). The performance
of an estimator can be measured by the prediction risk, given by

R(β̂) := E

[(
Y −

∫
T
β̂(t)X(t)dt

)2
]
, (1.2)

or equivalently, the excess prediction risk R(β̂)−R(β0).
The research on model (1.1) can be traced back to the 1990s (see, e.g., Hastie and

Mallows, 1993; Marx, 1996; Cardot et al., 1999). Subsequently, a vast amount of literature
has emerged to study the prediction and estimation problems under this model. A flour-
ishing line of research is based on the functional principal component analysis (FPCA),
leveraging spectral expansions of the covariance kernel of X and its empirical counterpart
to estimate the slope function (see, e.g., Ramsay and Silverman, 2005; Yao et al., 2005;
Cai and Hall, 2006; Hall and Horowitz, 2007). A necessary condition for the success of the
FPCA-based approaches is that the slope function β0 can be efficiently represented by the
leading functional principal components, which, however, fails to hold in many applications.
To address this issue, another influential line of research employs kernel-based estimators to
approximate the target β0 in a suitable reproducing kernel Hilbert space (RKHS) (see, e.g.,
Yuan and Cai, 2010; Cai and Yuan, 2012). More concretely, given a training sample set
S := {(Xi, Yi)}Ni=1 consisting of N independent copies of (X,Y ), one can employ an RKHS
(HK , ‖ · ‖K) induced by a reproducing kernel K : T × T → R to estimate β0 through the
regularized least squares (RLS) estimators defined by

β̂S,λ := argmin
β∈HK

{
1

N

N∑
i=1

(
Yi −

∫
T
β(t)Xi(t)dt

)2

+ λ‖β‖2K

}
. (1.3)

Here we choose a tuning parameter λ > 0 to balance fidelity to the data and complex-
ity of the estimators (measured by its squared HK norm). According to the Representer
Theorem proved in Yuan and Cai (2010), β̂S,λ can be uniquely expressed as β̂S,λ(·) =∑N

i=1 ci
∫
T K(·, t)Xi(t)dt with (c1, · · · , cN )T = (λNIN + KX)−1 Y , where IN is the identity

matrix on RN , KX ∈ RN×N is the kernel matrix evaluated on X := {X1, · · · , XN} with
the (i, j)−entrance [KX ]i,j =

∫
T Xi(s)K(s, t)Xj(t)dsdt, and Y := (Y1, · · · , YN )T . Under

the assumption that the slope function β0 belongs to the RKHS HK , it is shown in Cai
and Yuan (2012) that the excess prediction risk of β̂S,λ can achieve the mini-max optimal
convergence rates.

In this paper, we aim to further advance the line of research on the kernel-based approach
designed for functional linear regression model (1.1). Specially, we will study the conver-
gence behavior of divided-and-conquer RLS estimators without requiring the unknown slope
function β0 to be contained in the RKHS HK . As a generalization of classical kernel ridge
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regression (see, for example, Murphy, 2012), algorithm (1.3) suffers from the same complex-
ity issue that seriously limits its performance when dealing with massive data. To make the
computational problem more tractable for large-scale sample sets, we implement algorithm
(1.3) via the divide-and-conquer approach. We randomly partition the entire sample set
S into m disjoint equal-sized subsets S1, · · · , Sm. On each Sj , a local estimator β̂Sj ,λ is
obtained according to algorithm (1.3), i.e.,

β̂Sj ,λ(·) =
∑

i:(Xi,Yi)∈Sj

ci

∫
T
K(·, t)Xi(t)dt where (ci){i:(Xi,Yi)∈Sj} = (λ|Sj |I|Sj | + KXj )

−1Yj .

Here |Sj | denotes the cardinality of Sj , Xj is the set of X’s sample in Sj , and Yj ∈ R|Sj | is a
vector composed of Y ’s sample in Sj . Divide-and-conquer RLS estimator is then computed

by simply averaging {β̂Sj ,λ}mj=1, which is given by

βS,λ :=
1

m

m∑
j=1

β̂Sj ,λ. (1.4)

This approach is appealing due to its easy exercisable partitions. By partitioning the sample
set into m subsets of equal size and executing algorithm (1.3) on each subset concurrently,
one can approximately diminish the computational complexities in terms of time and mem-
ory to 1

m2 of the initial requirements. In the context of regression analysis for massive data,
divide-and-conquer kernel ridge regression and its variants have been extensively studied in
statistics and machine learning communities (see, e.g., Zhang et al., 2015; Guo et al., 2017;
Lin et al., 2017; Dumpert and Christmann, 2018; Mücke and Blanchard, 2018; Hamm and
Steinwart, 2021; Sun and Wu, 2021; Hamm and Steinwart, 2022; Köhler and Christmann,
2022). In the present paper, we evaluate the prediction performance of averaged estimator
βS,λ in (1.4) via its excess prediction risk:

R(βS,λ)−R(β0) (1.5)

in a more general setting which allows β0 /∈ HK . In supervised learning problem, if the
target function resides outside the hypothesis space, for instance, the underlying RKHS in
kernel-based regression, this scenario is often referred to as model misspecification (see, e.g.,
Rao, 1971; Bach, 2008). More recently, convergence behaviors of kernel ridge regression in
model misspecification scenarios have been investigated in many works (see, e.g., Fischer
and Steinwart, 2020; Lin et al., 2020; Sun and Wu, 2021), which show asymptotically mini-
max optimal rates in a variety of situations. In practice, canonical choices of HK in (1.3)
are the Sobolev spaces of smoothness s (see, for example, Yuan and Cai, 2010). Though
such an RKHS is dense in L2(T ), the assumption that β0 lies precisely in it is too restrictive
in many real applications, as this assumption requires the derivatives of β0 up to order s−1
are absolute continuous and its s−th derivative belongs to L2(T ). This raises the question
of whether the global RLS estimator (1.3) and its averaged version (1.4) can still maintain
excellent prediction performances in the model misspecification scenario β0 /∈ HK . We
positively answer this question by establishing a tight convergence analysis with an integral
operator technique. Furthermore, we also consider the noiseless circumstance when the
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model (1.1) has no additive noise. The noiseless condition means no ambiguity of the
response Y given the explanatory variable X; in other words, the response Y is determined
uniquely by the input X. The noiseless linear model has been widely adopted in many
areas, including image classification and sound recognition (see, for example, Jun et al.,
2019). The convergence of estimators in a noiseless model is very important but has not
been considered till the very recent papers (see, e.g., Jun et al., 2019; Berthier et al., 2020;
Sun and Wu, 2021).

The main contribution of this paper is to present new finite sample bounds on the pre-
diction risk (1.5) concerning various regularity conditions. These conditions characterize
the complexity of the prediction problem in functional linear regression model (1.1), which
is measured through regularities of the explanatory variable X, optimum β0, and their im-
ages under the kernel operators. See Section 2 and Section 3 for precise definitions and
statements. Our analysis of convergence incorporates these regularity conditions into the
integral operator techniques, substantially generalizing previously published bounds, which
only consider the case β0 ∈ HK , to the model misspecification scenario β0 /∈ HK and the
divide-and-conquer estimators. For prediction using the noisy model, the established con-
vergence is tight as in most cases we prove upper and lower bounds on the performance
of estimators that almost match. For prediction using the noiseless model, we prove that
the estimators can converge with arbitrarily fast polynomial rates if the reproducing kernel
or the covariance kernel is sufficiently smooth. Thus the estimators show some adaptivity
to the complexity of the prediction problem. Besides, our analysis only requires the the
kernel function to be square integrable, eliminating the uniformly bounded or even conti-
nuity assumptions required in previous literature, which is more in line with the practical
application scenarios of functional data analysis.

The rest of this paper is organized as follows. We start in Section 2 with an introduction
to notations, general assumptions, and some preliminary results. In Section 3, we describe
the regularity conditions and present main theorems and their corollaries. In Section 4, we
give further comments on these regularity conditions and main results and compare them
with other related contributions. All proofs can be found in Section 5 and Appendix A.

2. Preliminaries

In this section we will provide basic notations and some preliminary results necessary for
the further statement. We first recall some basic notations in operator theory (see, for
example, Conway, 2000). Consider a linear operator A : H → H′, where both (H, 〈·, ·〉H)
and (H′, 〈·, ·〉H′) represent Hilbert spaces, equipped with their respective norms ‖ · ‖H and
‖·‖H′ . The collection of bounded linear operators from H to H′ forms a Banach space when
considered under operator norm ‖A‖H,H′ = sup‖f‖H=1 ‖Af‖H′ , symbolized as B(H,H′) or
B(H) in cases where H = H′. In scenarios where H and H′ are implicitly understood, the
subscript is omitted, simplifying the operator norm notation to ‖ · ‖. The adjoint of A,
denoted by A∗, satisfies the equality 〈Af, f ′〉H = 〈f,A∗f ′〉H′ for all f ∈ H and f ′ ∈ H′. If
A is an element of B(H,H′), then its adjoint A∗ belongs to B(H′,H), and the norms of A
and A∗ are equivalent. An operator A ∈ B(H) is identified as self-adjoint if A∗ = A and
as nonnegative if it is self-adjoint and satisfies 〈Af, f〉H ≥ 0 for every f ∈ H. The operator
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norm of a nonnegative operator A ∈ B(H) has an equivalent expression:

‖A‖ = sup
x∈H,‖x‖H=1

〈Ax, x〉H. (2.1)

For f ∈ H and f ′ ∈ H′, we introduce a rank-one operator f ⊗ f ′ : H → H′ defined by
f ⊗ f ′(h) = 〈f, h〉Hf ′, ∀h ∈ H. Consider A to be a compact and nonnegative operator
within B(H). According to the Spectral Theorem, it is guaranteed that an orthonormal
basis {ek}k≥1, composed of A’s eigenfunctions, exists within H. This basis allows A to be
expressed as A =

∑
k≥1 λkek ⊗ ek, where λk denotes the non-negative eigenvalues of A in a

descending sequence. These eigenvalues (with geometric multiplicities) may either form a
finite set or approach zero as k increases indefinitely. Moreover, for any r > 0, we define the
r−th power of A as Ar =

∑
k≥1 λ

r
kek ⊗ ek, which is itself a nonnegative compact operator

on H. An operator A belonging to B(H,H′) is identified as a Hilbert-Schmidt operator
if, for a given orthonormal basis {ek}k≥1 of H, the series

∑
k≥1 ‖Aek‖2H′ converges. The

collection of Hilbert-Schmidt operators constitutes a Hilbert space itself, equipped with
the inner product defined by 〈A,B〉HS =

∑
k≥1〈Aek, Bek〉H′ , with ‖ · ‖HS representing the

associated norm. In particular, a Hilbert-Schmidt operator A is compact and we have the
following inequality to relate its two different norms:

‖A‖ ≤ ‖A‖HS . (2.2)

An operator A ∈ B(H,H′) is of trace class if
∑

k≥1〈(A∗A)1/2 ek, ek〉H <∞ for some (any)
orthonormal basis {ek}k≥1 of H. All trace class operators constitute a Banach space en-

dowed with the norm trace(A) :=
∑

k≥1〈(A∗A)1/2 ek, ek〉H. It is obviously for any nonneg-
ative operator A ∈ B(H),

trace(A) =
∑
k≥1

〈Aek, ek〉H. (2.3)

In the following, we fix a reproducing kernel Hilbert space (RKHS), denoted as HK ,
consisting of functions f : T → R, where each evaluation functional on this space is
bounded. Consequently, there exists a distinct symmetric nonnegative definite kernel func-
tion K : T × T → R, known as the reproducing kernel, intrinsically linked to HK . Let
Kt : T → R defined by Kt(·) = K(·, t) for t ∈ T and denote by 〈·, ·〉K the inner product of
HK which induces the norm ‖ · ‖K . Then Kt ∈ HK and the reproducing property

f(t) = 〈f,Kt〉K

holds for all t ∈ T and f ∈ HK . Furthermore, it is well known in the literature (refer to
Aronszajn (1950)) that any symmetric positive definite kernel K distinctly characterizes
an RKHS, HK , for which K serves as the reproducing kernel. Throughout the paper, we
assume that K is measurable on T × T such that∫

T

∫
T
K2(t, t′)dtdt′ <∞.

Recall that L2(T ) is the Hilbert space of functions from T to R square-integrable with
respect to Lebesgue measure. Denote by ‖ · ‖L2 the corresponding norm of L2(T ) induced
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by the inner product 〈f, g〉L2 =
∫
T f(t)g(t)dt. The reproducing kernel K induces an integral

operator LK : L2(T )→ L2(T ), given by, for f ∈ L2(T ) and t ∈ T ,

LK(f)(t) =

∫
T
K(s, t)f(s)ds,

which is a nonnegative, compact operator on L2(T ). Then L
1/2
K is well-defined and compact,

and L
1/2
K is an isomorphism from HK , the closure of HK in L2(T ), to HK , i.e., for each

f ∈ HK , L
1/2
K f ∈ HK and

‖f‖L2 = ‖L1/2
K f‖K . (2.4)

Since we are mainly interested in the model misspecification scenario βo /∈ HK , we will
always assume HK is dense in L2(T ), i.e., L2(T ) = HK .

Besides the reproducing kernel K, another important kernel in our setting is the covari-
ance kernel. Without loss of generality, we let the explanatory variable X satisfy E[X] = 0
and further assume E

[
‖X‖2L2

]
< ∞. Then the covariance kernel C : T × T → R, given

by C(s, t) := E [X(s)X(t)] , ∀s, t ∈ T , can define a compact nonnegative integral operator
LC : L2(T )→ L2(T ) via

LC(f)(t) =

∫
T
C(s, t)f(s)ds, ∀f ∈ L2(T ) and ∀t ∈ T .

We next use LK and LC to give an expression of estimator β̂S,λ in (1.3). Recall that

L2(T ) = HK and norms relation (2.4). We can express β̂S,λ as β̂S,λ = L
1/2
K f̂S,λ with

f̂S,λ = argmin
f∈L2(T )

{
1

N

N∑
i=1

(
Yi −

〈
L

1/2
K f,Xi

〉
L2

)2
+ λ‖f‖2L2

}
.

Following the proof of Theorem 6.2.1 in Hsing and Eubank (2015), we can solve f̂S,λ explic-
itly and obtain the following proposition.

Proposition 1 The estimator β̂S,λ in (1.3) can be expressed as β̂S,λ = L
1/2
K f̂S,λ with

f̂S,λ = (λI + TX)−1 1

|S|
∑

(Xi,Yi)∈S

L
1/2
K XiYi, (2.5)

where I denotes the identity operator on L2(T ), |S| = N is the cardinality of S = {(Xi, Yi)}Ni=1,
and TX : L2(T )→ L2(T ) is an empirical operator with X = {X1, · · · , XN} defined by

TX =
1

|S|
∑
Xi∈X

L
1/2
K Xi ⊗ L1/2

K Xi. (2.6)

Recall that S = ∪mj=1Sj with Sj ∩ Sk = ∅ for j 6= k and |Sj | = N
m . One can define the

empirical operators TXj with Xj = {Xi : (Xi, Yi) ∈ Sj} according to (2.6) and compute the

local estimator f̂Sj ,λ as (2.5), i.e.,

TXj =
1

|Sj |
∑

Xi∈Xj

L
1/2
K Xi ⊗ L1/2

K Xi
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and

f̂Sj ,λ = (λI + TXj )
−1 1

|Sj |
∑

(Xi,Yi)∈Sj

L
1/2
K XiYi.

Then the averaged estimator βS,λ in (1.4) is given by βS,λ = L
1/2
K fS,λ with fS,λ :=

1
m

∑m
j=1 f̂Sj ,λ.

To derive the upper bounds of excess prediction error, for any estimator β̂ ∈ L2(T ), we
rewrite R(β̂)−R(β0) as

R(β̂)−R(β0) = E
[〈
X, β̂ − β0

〉2

L2

]
=
∥∥∥L1/2

C

(
β̂ − β0

)∥∥∥2

L2
. (2.7)

Notice TX and 1
|S|
∑

(Xi,Yi)∈S L
1/2
K XiYi are empirical versions of L

1/2
K LCL

1/2
K and L

1/2
K LCβ0,

respectively. We thus introduce intermediate function fλ :=
(
λI + L

1/2
K LCL

1/2
K

)−1
L

1/2
K LCβ0

which can be expected to approximate f̂S,λ and its averaged version fS,λ. According to (2.7),

we then split R(βS,λ)−R(β0) into two parts:

R(βS,λ)−R(β0) =
∥∥∥L1/2

C

(
L

1/2
K fS,λ − L

1/2
K fλ + L

1/2
K fλ − β0

)∥∥∥2

L2

≤ 2S (S, λ) + 2A (λ), (2.8)

where S (S, λ) :=
∥∥∥L1/2

C L
1/2
K fS,λ − L

1/2
C L

1/2
K fλ

∥∥∥2

L2
and A (λ) :=

∥∥∥L1/2
C L

1/2
K fλ − L

1/2
C β0

∥∥∥2

L2
.

In Section 3, we will describe the assumptions that are used to estimate S (S, λ) and
A (λ), and then state the main results of this paper. Before that, we give a further
characterization of the operators which are crucial in our estimation. For simplicity, let

T := L
1/2
K LCL

1/2
K and T∗ := L

1/2
C LKL

1/2
C . Note that

T = L
1/2
K L

1/2
C

(
L

1/2
K L

1/2
C

)∗
and T∗ =

(
L

1/2
K L

1/2
C

)∗
L

1/2
K L

1/2
C .

Due to the compactness of L
1/2
K L

1/2
C , both T and T∗ are compact and nonnegative operators

on L2(T ). Singular value decomposition of L
1/2
K L

1/2
C (see Hsing and Eubank, 2015, Theorem

4.3.1) leads to the following expansions:

L
1/2
K L

1/2
C =

∑
k≥1

√
µkϕk ⊗ φk,

L
1/2
C L

1/2
K =

∑
k≥1

√
µkφk ⊗ ϕk,

T =
∑
k≥1

µkφk ⊗ φk,

T∗ =
∑
k≥1

µkϕk ⊗ ϕk,

(2.9)

where {µk}k≥1 is a non-negative, non-increasing and summable sequence, {φk}k≥1 and
{ϕk}k≥1 are two orthonormal bases of L2(T ). Actually, for any µk > 0,

√
µk is the singular
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values of L
1/2
K L

1/2
C and the corresponding left and right singular vectors are given by ϕk and

φk, which are the eigenvectors (with the same eigenvalue µk) of T and T∗. In particular, the
system {µk, φk, ϕk}k≥1 plays an important role in describing regularities of the explanatory
variable X and the slope function β0 which we will explain in details in Section 3.

3. Main Results

In this section, we will present our main theoretical results on the upper and lower bounds
of excess prediction risk of divide-and-conquer estimator (1.4) for the functional linear
regression model (1.1). These main results are based on several key assumptions, including
the regularity conditions of the slope function and the functional explanatory variable. We
begin by establishing a min-max lower bound for excess prediction risks.

3.1 Mini-max Convergence Lower Bound

In this subsection, we first introduce assumptions on the slope function β0 and the random
noise ε, then based on the two assumptions, we establish a min-max lower bound for excess
prediction risks. We begin with the regularity assumption on the slope function β0 which
is expressed in terms of covariance operator LC and operator T∗ given in (2.9).

Assumption 1 (regularity condition of slope function) The slope function β0 in func-
tional linear regression model (1.1) satisfies

L
1/2
C β0 = T θ∗ (γ0) with 0 < θ ≤ 1/2 and γ0 ∈ L2(T ). (3.1)

This assumption implies that L
1/2
C β0 belongs to the range space of T θ∗ expressed as

ranT θ∗ :=

f ∈ L2(T ) :
∑
k≥1

〈f, ϕk〉2L2
µ2θ
k

<∞

 ,

where {µk, ϕk}k≥1 is the eigensystem of T∗. Then ranT θ1∗ ⊆ ranT θ2∗ whenever θ1 ≥ θ2. The
regularity of functions within the range of T θ∗ is determined by the rate at which their ex-
pansion coefficients decrease, employing the set {ϕk}k≥1. The stipulation in condition (3.1)

signifies that the square of the inner product 〈L1/2
C β0, ϕk〉 in the L2 space diminishes more

swiftly than the eigenvalues of T∗ raised to the 2θ power. A larger value of θ thus correlates

with more rapid attenuation rates, signifying higher regularities of L
1/2
C β0. In particular,

for θ = 0 we have ranT 0
∗ = L2(T ) implying β0 ∈ L2(T ) and β0 ∈ HK ensures regularity

condition (3.1) is satisfied with θ = 1/2 as ranT
1/2
∗ = ranL

1/2
C L

1/2
K . From this point of view,

condition (3.1) allows β0 /∈ HK which extends the previous regularity assumption in Yuan
and Cai (2010) and Cai and Yuan (2012). This condition is also known as Hölder-type
source condition involving the operator T∗, which is a classical smoothness assumption in
the theory of inverse problems. Similar conditions defined by the operator LK are widely
used in the literature of learning theory (see, e.g., Bauer et al., 2007; Caponnetto and Vito,
2007; Smale and Zhou, 2007; Blanchard and Mücke, 2018). We will provide more discussions
on Assumption 1 in Section 4.

Throughout of the paper, we assume the following noise condition.
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Assumption 2 (noise condition) The random noise ε in functional linear regression
model (1.1) is independent of X satisfying E[ε] = 0 and E[ε2] ≤ σ2.

Now under Assumption 1 and 2, we propose the following theorem which establishes a
mini-max lower bound for excess prediction risks. To this end, we also need to assume that
{µk}k≥1, i.e., the eigenvalues of T∗ (and T ), satisfy a polynomially decaying condition. For
two positive sequences {ak}k≥1 and {bk}k≥1, we say ak . bk holds if there exits a constant
c > 0 independent of k such that ak ≤ cbk, ∀k ≥ 1. In addition, ak � bk if and only if

ak . bk and bk . ak. For the sake of simplicity, we write L
1/2
C β0 ∈ ranT θ∗ if β0 satisfies the

regularity condition (3.1).

Theorem 2 (mini-max convergence lower bound) Under Assumption 1 with 0 < θ ≤
1/2 and Assumption 2 with σ > 0, suppose that {µk}k≥1 satisfy µk � k−1/p for some
0 < p ≤ 1. Then excess prediction risks satisfy

lim
γ→0

inf lim
N→∞

inf
β̂S

sup
β0

P
{
R(β̂S)−R(β0) ≥ γN−

2θ
2θ+p

}
= 1, (3.2)

where the supremum is taken over all β0 ∈ L2(T ) satisfying L
1/2
C β0 ∈ ranT θ∗ and the infimum

is taken over all possible predictors β̂S ∈ L2(T ) based on the training sample set S =
{(Xi, Yi)}Ni=1.

In Theorem 2 and subsequent statements, the case p = 1 corresponds to the case in which
we only require {µk}k≥1 to be summable. The lower bound for p = 1 is also referred to
as the capacity-independent optimum in some studies (see, for example, Yao et al., 2007).
This means that the bound is optimal in the mini-max sense without the necessity for a
capacity hypothesis, i.e., without the decaying condition of the eigenvalues {µk}k≥1.

3.2 Convergence Upper Bounds in Noised Case

In this subsection, we will establish three different upper bounds on the excess prediction risk
of divide-and-conquer estimator (1.4) under Assumption 1 and 2. These upper bounds are
based on three different regularity assumptions on the explanatory variable X, respectively.
We first consider the upper bound on the convergence rate of the excess prediction risk
(2.7) and show that the convergence rate of the lower bound established in Theorem 2 can
be achieved by the divide-and-conquer estimator (1.4). The following assumption on the
moment condition of the explanatory variable X plays a crucial role in establishing the
upper bound of the convergence rate of (1.5).

Assumption 3 (regularity condition of explanatory variable I) There exists a con-
stant c1 > 0, such that for any f ∈ L2(T ),

E
[
〈X, f〉4L2

]
≤ c1

[
E 〈X, f〉2L2

]2
. (3.3)

Assumption 3 has been introduced in Cai and Yuan (2012); Yuan and Cai (2010). Condition
(3.3) articulates that the kurtosis of linear functionals applied to X remains constrained, a

9
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criterion particularly satisfied with c1 = 3 in scenarios where X is modeled by a Gaussian
process. For the convenience of further statements, define the effective dimension as

N (λ) :=
∑
k≥1

µk
λ+ µk

, (3.4)

where λ > 0 and {µk}k≥1 are non-negative eigenvalues of T (with geometric multiplicities)
arranged in decreasing order. The effective dimension is widely used in the convergence anal-
ysis of kernel ridge regression (see, e.g., Caponnetto and Vito, 2007; Fischer and Steinwart,
2020; Lin et al., 2017; Zhang et al., 2015). Now under a polynomially decaying condition
of eigenvalues {µk}k≥1, we can show in the following theorem that the convergence rate of
the lower bound in Theorem 2 can be obtained by the divide-and-conquer RLS estimator
βS,λ = 1

m

∑m
j=1 β̂Sj ,λ with S = ∪mj=1Sj = {(Xi, Yi)}Ni=1 and |Sj | = N

m . We employ o(αN ) to
denote a little-o sequence of {aN}N≥1 if limN→∞ o(aN )/aN = 0.

Theorem 3 (convergence upper bound I) Under Assumption 1 with 0 < θ ≤ 1/2,
Assumption 2 with σ > 0 and Assumption 3 with c1 > 0, suppose that {µk}k≥1 satisfy
µk . k−1/p for some 0 < p ≤ 1.

1. For p/2 < θ ≤ 1/2, there holds

lim
Γ→∞

sup lim
N→∞

sup
β0

P
{
R(βS,λ)−R(β0) ≥ ΓN

− 2θ
2θ+p

}
= 0 (3.5)

provided that m ≤ o
(
N

2θ−p
4θ+2p

)
and λ = N

− 1
2θ+p .

2. For 0 < θ ≤ p/2, there holds

lim
Γ→∞

sup lim
N→∞

sup
β0

P
{
R(βS,λ)−R(β0) ≥ ΓN

− θ
p (logN)

3θr
p

}
= 0 (3.6)

provided that m ≤ (logN)r for some r > 0 and λ = N
− 1

2p (logN)
3r
2p , and

lim
Γ→∞

sup lim
N→∞

sup
β0

P
{
R(βS,λ)−R(β0) ≥ ΓN

− (1−r)θ
p logN

}
= 0 (3.7)

provided that m ≤ N r for some 0 ≤ r < 1 and λ = N
− 1−r

2p (logN)
1
2θ .

Here the supremum is taken over all β0 ∈ L2(T ) satisfying L
1/2
C β0 ∈ ranT θ∗ with 0 < θ ≤ 1/2.

Actually, we will show that if the eigenvalue decay satisfies a polynomial upper bound
of order 1/p with 0 < p < 1 and if the regularity parameter θ satisfies 0 < θ ≤ p/2, there
holds

lim
Γ→∞

sup lim
N→∞

sup
β0

P
{
R(βS,λ)−R(β0) ≥ Γλ2θ

}
= 0

provided that m2λ−2p ≤ o(N). From Theorem 3, the bound (3.5) implies when θ ∈
(p/2, 1/2], the excess prediction risk of βS,λ attains the convergence rate of the lower bound

10
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given by Theorem 2 and is therefore rate-optimal. Additionally, if θ = p/2, from (3.6),

taking m ≤ (logN)r and λ = N
− 1

2p (logN)
3r
2p with some r > 0 yields

lim
Γ→∞

sup lim
N→∞

sup
β0

P
{
R(βS,λ)−R(β0) ≥ ΓN−

1
2 (logN)

3r
2

}
= 0.

This convergence rate is also optimal up to a logarithmic factor. The bound (3.5) generalizes
previous results of Cai and Yuan (2012), which only considered the case β0 ∈ HK , to the
model misspecification scenario β0 /∈ HK and the divide-and-conquer estimators. Actually,

when θ = 1/2, taking m = 1 and λ = N
− 1

2θ+p , we recovery Theorem 2 of Cai and Yuan
(2012) which establishes minimax upper bound for the estimator β̂S,λ in (1.3) when β0 ∈
HK .

We next introduce a higher-order moment condition on X such that one can establish
the strong convergence in expectation. To this end, given a reproducing kernel K, we
shall introduce various regularities of the explanatory variable X defined through its image

under L
1/2
K . Recall that X is a random element taking values in L2(T ) with E[X] = 0

and E
[
‖X‖2L2

]
<∞, and {µk, φk}k≥1 is the eigensystem of T given by (2.9). Consider the

principal component decomposition of L
1/2
K X with respect to T (see for details, Ash and

Gardner, 2014), which is expressed as

L
1/2
K X =

∑
k≥1

√
µkξkφk (3.8)

where the ξk’s are zero-mean, uncorrelated real-valued random variables with E[ξ2
k] = 1.

We assume the following moment condition to characterize the regularity of L
1/2
K X.

Assumption 4 (regularity condition of explanatory variable II) For some integer
` ≥ 2, there exists a constant ρ < ∞ such that {ξk}k≥1 in decomposition (3.8) satisfy
supk≥1 E[ξ4`

k ] ≤ ρ4`. Moreover, there exists a constant c2 > 0 such that

E
[
〈X, f〉8L2

]
≤ c2

2

[
E〈X, f〉2L2

]4
, ∀f ∈ L2(T ). (3.9)

Since E
[
ξ2
k

]
= 1, we always have ρ ≥ 1. When X is a Gaussian random element taking

value in L2(T ), Assumption 4 is satisfied for any integer ` ≥ 2. In fact, given an integer
` ≥ 2, the linear functionals of a Gaussian random element X satisfy

E
[
〈X, f〉4`L2

]
≤ (4`− 1)!!

[
E〈X, f〉2L2

]2`
, ∀f ∈ L2(T ).

Then taking f = L
1/2
K φk implies Assumption 4 with ρ = [(4` − 1)!!]

1
4` and c2

2 = 105 (by

letting ` = 2). We need condition (3.9) to bound E
[
〈X,β0 − L1/2

K fλ〉4L2
]

in the model

misspecification scenario β0 /∈ HK , which is crucial in the estimation of

S (S, λ) =
∥∥∥L1/2

C L
1/2
K fS,λ − L

1/2
C L

1/2
K fλ

∥∥∥2

L2
.

Now we can establish the following upper bounds of (2.7) in expectation under Assumption
1, 2 and 4.

11
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Theorem 4 (convergence upper bound II) Suppose that Assumption 1 is satisfied with
0 < θ ≤ 1/2 and γ0 ∈ L2(T ). Under Assumption 2 with σ > 0 and Assumption 4 with
some integer ` ≥ 2 and c2 > 0, take λ ≤ 1, then if 2 ≤ ` < 8, there holds

E
[(
R(βS,λ)−R(β0)

)]
≤ 2λ2θ‖γ0‖2L2 + 16

N (λ)

N
(c2λ

2θ‖γ0‖2L2 + σ2) + 8c2
m

N
N (λ)λ2θ‖γ0‖2L2

+ b1(`)λ
`−8
4

[
1 +

(
mN 2(λ)

N

) `
8

+ λ−
`
4

(
mN (λ)

N

) `
4

](
mN 2(λ)

N

) `
4 4 + 2m

N

(
1 + λ2θN (λ)

)
+ b2(`)λ

`−8
4

[
1 +

(
mN 2(λ)

N

) `
8

+ λ−
`
4

(
mN (λ)

N

) `
4

](
mN 2(λ)

N

) `
4 4σ2

N
N (λ). (3.10)

If ` ≥ 8, there holds

E
[(
R(βS,λ)−R(β0)

)]
≤ 2λ2θ‖γ0‖2L2 + 16

N (λ)

N
(c2λ

2θ‖γ0‖2L2 + σ2) + 8c2
m

N
N (λ)λ2θ‖γ0‖2L2

+ b1(`)

[
1 +

mN 2(λ)

N
+

1

λ2

(
mN (λ)

N

)2
](

mN 2(λ)

N

) `
4 4 + 2m

N

(
1 + λ2θN (λ)

)
+ b2(`)

[
1 +

mN 2(λ)

N
+

1

λ2

(
mN (λ)

N

)2
](

mN 2(λ)

N

) `
4 4σ2

N
N (λ). (3.11)

Here b1(`) and b2(`) are constants only depending on ` and will be specified in the proof.

Recall that aN . bN means that there exits a constant c > 0 independent of N such
that aN ≤ cbN ,∀N ≥ 1. We obtain the following claims by using Theorem 4.

Corollary 5 Under the assumptions of Theorem 4, suppose that {µk}k≥1 satisfy µk . k−1/p

for some 0 < p ≤ 1.

1. When 2 ≤ ` ≤ 4, there holds

E
[(
R(βS,λ)−R(β0)

)]
. max

{
N

2θ(4+`)(r−1)
8+8θ+2p`−` , N

2θ`(r−1)−8θ
8+4p+8θ+2p`−` , N

2θ(4+2`)(r−1)
8+8θ+3p` , N

4θ`(r−1)−8θ
8+4p+8θ+3p`

}
(3.12)

provided that
m ≤ N r for some 0 ≤ r ≤ 2θ

2θ+p

and

λ = max

{
N

(4+`)(r−1)
8+8θ+2p`−` , N

`(r−1)−4
8+4p+8θ+2p`−` , N

(4+2`)(r−1)
8+8θ+3p` , N

2`(r−1)−4
8+4p+8θ+3p`

}
.

2. When 5 ≤ ` ≤ 7, if p`+8
4` ≤ θ ≤

1
2 , then

E
[
R(βS,λ)−R(β0)

]
. N

− 2θ
2θ+p (3.13)

12



Optimality of Divide and Conquer Kernel-based Functional Linear Regression

provided that

m ≤ min

{
N

8+p`−4p−4θ`
(4+2`)(2θ+p) , N

8+p`−8θ−4θ`
(4+2`)(2θ+p)

}
and

λ = N
− 1

2θ+p ;

if 0 < θ < p`+8
4` , then

E
[(
R(βS,λ)−R(β0)

)]
. max

{
N

2θ(4+`)(r−1)
8+8θ+2p`−` , N

2θ`(r−1)−8θ
8+4p+8θ+2p`−` , N

2θ(4+2`)(r−1)
8+8θ+3p` , N

4θ`(r−1)−8θ
8+4p+8θ+3p`

}
(3.14)

provided that
m ≤ N r for some 0 ≤ r ≤ 2θ

2θ+p

and

λ = max

{
N

(4+`)(r−1)
8+8θ+2p`−` , N

`(r−1)−4
8+4p+8θ+2p`−` , N

(4+2`)(r−1)
8+8θ+3p` , N

2`(r−1)−4
8+4p+8θ+3p`

}
.

3. When ` ≥ 8, if p`+8
2`+16 ≤ θ ≤

1
2 , then

E
[
R(βS,λ)−R(β0)

]
. N

− 2θ
2θ+p (3.15)

provided that

m ≤ min

{
N

8+p`−4p−16θ−2θ`
(12+`)(2θ+p) , N

8+p`−24θ−2θ`
(12+`)(2θ+p)

}
and

λ = N
− 1

2θ+p ;

if 0 < θ < p`+8
2`+16 , then

E
[(
R(βS,λ)−R(β0)

)]
. max

{
N

θ(4+`)(r−1)
4θ+p` , N

θ`(r−1)−4θ
2p+4θ+p` , N

θ(12+`)(r−1)
4+4p+4θ+p` , N

θ(8+`)(r−1)−4θ
4+6p+4θ+p`

}
(3.16)

provided that
m ≤ N r for some 0 ≤ r ≤ 2θ

2θ+p

and

λ = max

{
N

(4+`)(r−1)
8θ+2p` , N

`(r−1)−4
4p+8θ+2p` , N

(12+`)(r−1)
8+8p+8θ+2p` , N

(8+`)(r−1)−4
8+12p+8θ+2p`

}
.

According to Theorem 2, the expectation bounds (3.13) and (3.15) are minimax optimal.
Due to the well-known Markov’s inequality, convergence in expectation given by Theorem
4 and Corollary 5 is stronger, leading to bounds in a similar form as that of Theorem 3.
However, the possible ranges of θ that achieve the optimal rates in (3.13) and (3.15), given
respectively by [p`+8

4` , 1/2] and [ p`+8
2`+16 , 1/2] both of which are covered by (p/2, 1/2], become

smaller compared to the previous range of θ in the minimax bound (3.5). Moreover, we
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also observe from Corollary 5 that as the integer ` in Assumption 4 diverges to infinity,
the possible ranges of θ that achieve the minimax expectation bounds will increase to
(p/2, 1/2] which is exactly the range of θ leading to the minimax bound (3.5). Motivated
by this observation, we introduce another regularity condition on X to establish optimal
expectation error bounds for any θ ∈ (0, 1/2].

Assumption 5 (regularity condition of explanatory variable III) There exists a con-
stant ρ < ∞ such that {ξk}k≥1 in decomposition (3.8) satisfy supk≥1 |ξk| ≤ ρ and the
fourth-order moment condition (3.3) is satisfied with c1 > 0.

One can verify that Assumption 5 holds true if the expansion of L
1/2
K X in (3.8) is a

summation of finite terms with each bounded ξk. Recall that the trace of operator T is
given by

trace(T ) :=
∑
k≥1

µk. (3.17)

Then we have the following theorem.

Theorem 6 (convergence upper bound III) Suppose that Assumption 1 is satisfied
with 0 < θ ≤ 1/2 and γ0 ∈ L2(T ). Under Assumption 2 with σ > 0 and Assumption
5 with ρ, c1 > 0, take λ ≤ 1, then there holds

E
[(
R(βS,λ)−R(β0)

)]
≤ 2λ2θ‖γ0‖2L2 + 16

N (λ)

N

(
c1λ

2θ‖γ0‖2L2 + σ2
)

+ 8c1
m

N
N (λ)λ2θ‖γ0‖2L2

+ c3c4µ1
4 + 2m

Nλ2−2θ

(
1 +

mN (λ)

N

)
N

1
2 (λ) exp

(
− c5N

2mN (λ)

)
+ c4µ1ρ

2trace(T )
4σ2

Nλ2

(
1 +

mN (λ)

N

)
N

1
2 (λ) exp

(
− c5N

2mN (λ)

)
,

(3.18)

where c3, c4 and c5 are universal constants which will be specified in the proof.

We further obtain a corollary of Theorem 6.

Corollary 7 Under the assumptions of Theorem 6, suppose that {µk}k≥1 satisfy µk . k−1/p

for some 0 < p ≤ 1. Then there holds

E
[
R(βS,λ)−R(β0)

]
. N

− 2θ
2θ+p (3.19)

provided that m ≤ o
(
N

2θ
2θ+p

logN

)
and λ = N

− 1
2θ+p .

As far as we know, the expectation bound (3.19) establishes the first mini-max optimal
rates for all possible 0 < θ ≤ 1/2. One can refer to Section 4 for more discussions.
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3.3 Convergence Upper Bounds in Noiseless Case

In this subsection, we establish fast convergence rates of the excess prediction risk (2.7) for
noiseless functional linear model (i.e., ε = 0 in (1.1)).

Theorem 8 (convergence upper bound IV) Under Assumption 1 with 0 < θ ≤ 1/2,
Assumption 2 with σ = 0 and Assumption 3 with c1 > 0, suppose that {µk}k≥1 satisfy
µk . k−1/p for some 0 < p ≤ 1. Then for any 0 < η ≤ 1/2, there holds

lim
Γ→∞

sup lim
N→∞

sup
β0

P
{
R(βS,λ)−R(β0) ≥ ΓN

− θ(1−2η)
p

}
= 0 (3.20)

provided that m ≤ o (Nη) and λ = N
− 1−2η

2p , where the supremum is taken over all β0 ∈
L2(T ) satisfying L

1/2
C β0 ∈ ranT θ∗ with 0 < θ ≤ 1/2.

Follow from (3.20), given any s > 0 such that 0 < p < 2/s and sp < θ ≤ 1/2, taking

0 < η ≤ 1
2 −

sp
2θ , m ≤ o(Nη) and λ = N

− 1−2η
2p yields

lim
Γ→∞

sup lim
N→∞

sup
β0

P
{
R(βS,λ)−R(β0) ≥ ΓN−s

}
≤ lim

Γ→∞
sup lim
N→∞

sup
β0

P
{
R(βS,λ)−R(β0) ≥ ΓN

− θ(1−2η)
p

}
= 0,

where the inequality follows from θ(1−2η)
p ≥ s. The difference between noisy and noiseless

models is significant: rates faster than N−1 for model (1.1) are impossible with non-zero
additive noise, while we prove that the divided-and-conquer RLS estimators for the noiseless
model can converge with arbitrarily fast polynomial rates when p is small enough. To
our best knowledge, Theorem 8 and the related convergence rates (3.20) are new to the
literature, constituting another contribution of this paper. We will prove all these results
in Section 5.

4. Discussions and Comparisons

In this section, we first comment on Assumption 1 and then compare our convergence
analysis with some related results. In the last, we review recent literature for noiseless
linear model and point out some possible directions for future study.

4.1 Discussions on Assumption 1

Regularity condition (3.1) in Assumption 1 was first introduced by Fan et al. (2019) and
then adopted in the subsequent works (see, for example, Chen et al., 2022). From the
discussion in Section 3, we see that β0 ∈ HK implies condition (3.1) is satisfied with

θ = 1/2, while the former is equivalent to β0 = L
1/2
K γ0 for some γ0 ∈ L2(T ). Actually,

due to Theorem 3 in Chen et al. (2022), if LK � δLνC for some δ > 0 and ν > 0, then for
any β0 ∈ L2(T ), there exists some γ0 ∈ L2(T ) such that condition (3.1) is satisfied with
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θ = 1/(2 + 2ν). Here for any bounded self-adjoint operators A1 and A2 on L2(T ), we write
A1 � A2 if A1−A2 is nonnegative. As a special case when LK and LC can be simultaneously
diagonalized, let {ρk}k≥1 and {λk}k≥1 be eigenvalues of LK and LC respectively (both are
sorted in decreasing order with geometric multiplicities). When ρk � k−1/ω with ω > 1
and λk � k−1/τ with τ > 1, then β0 ∈ ranLsK for some s ∈ [0, 1/2] implies condition (3.1)
is satisfied with θ = (ω + 2sτ)/(2ω + 2τ), where ranLsK denotes the range space of LsK .
When K is an analytic kernel on T , the eigenvalues of LK decay exponentially, and then
condition (3.1) can be satisfied for θ arbitrarily close to 1/2 (but still strictly less than 1/2).
From the discussions above, Assumption 1 is mild and provides an intrinsic measurement for
the complexity of the prediction problem through the regularity condition (3.1). Recently,
under Assumption 1, Assumption 2 and some boundedness condition on K and C, the
works Chen et al. (2022) and Guo et al. (2023) apply stochastic gradient descent to solve
functional linear regression model (1.1) and establish convergence rates for prediction and
estimation errors.

4.2 Comparisons with Relevant Results

Convergence performance of kernel ridge regression and its variants in model misspecifica-
tion scenario has been intensively studied by many recent works (see, e.g., Pillaud et al.,
2018; Shi, 2019; Fischer and Steinwart, 2020; Lin and Cevher, 2020; Lin et al., 2020; Sun and
Wu, 2021). Among all available literature, the work Fischer and Steinwart (2020) obtained
the best known convergence rates by applying the integral operator techniques combined
with an embedding property (see condition (EMB) in Fischer and Steinwart, 2020). As far
as we know, our paper is the first work to consider functional linear regression in a model
misspecification scenario. To make a further comparison, we first introduce an embedding
condition equivalent to the one in Fischer and Steinwart (2020) (i.e., condition (4.1) in this
paper) under the functional linear regression setting. Then we apply this condition to derive
convergence rates and compare them with related results in Section 3.

Assumption 6 (regularity condition of explanatory variable IV) There exist con-
stants κ > 0 and 0 < t ≤ 1 such that {ξk}k≥1 in decomposition (3.8) satisfy∑

k≥1

µtkξ
2
k ≤ κ2. (4.1)

Moreover, the fourth-order moment condition (3.3) is satisfied with some c1 > 0.

Condition (4.1) actually describes the L∞−embedding property of T (t−1)/2L
1/2
K X for

0 < t ≤ 1. Then we obtain the following result which also deserve attention in its own
right.

Theorem 9 (convergence upper bound V) Under Assumption 1 with 0 < θ ≤ 1/2,
Assumption 2 with σ > 0 and Assumption 6 with 0 < t ≤ 1, suppose that {µk}k≥1 satisfy
µk . k−1/p for some 0 < p ≤ 1.

1. When max{0, t/2− p/2} < θ ≤ 1/2, then

E
[
R(βS,λ)−R(β0)

]
. N

− 2θ
2θ+p (4.2)
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provided that

m ≤ o

(
N

2θ+p−t
2θ+p

logN

)
and λ = N

− 1
2θ+p .

2. When 0 < θ ≤ max{0, t/2− p/2}, then

E
[
R(βS,λ)−R(β0)

]
. N−

2θ
t (logN)−

4θ
t (4.3)

provided that

m ≤ o(logN) and λ = N−
1
t (logN)−

2
t .

The proof of Theorem 9 is also postponed to Section 5. Condition (4.1) characterizes

the regularity of L
1/2
K X through the parameter t ∈ (0, 1], of which the most general case is

taking t = 1, i.e.,
∑∞

k=1 µkξ
2
k ≤ κ2, or equivalently,∥∥∥L1/2

K X
∥∥∥
L2
≤ κ. (4.4)

When t = 1, we obtain the mini-max rates in expectation for θ ∈ (1/2 − p/2, 1/2] from
bound (4.2). However, as p ↓ 0, which implies the eigenvalues of T∗ decay even faster, the
rate-optimal interval of θ is getting smaller. It seems unreasonable that higher regularity of
T∗ could instead reduce the possible range of θ that leads to the optimal convergence. This
phenomenon is widely observed in the convergence analysis of regularized kernel regression
for the model misspecification scenario (see, e.g., Shi, 2019; Fischer and Steinwart, 2020; Lin
and Cevher, 2020; Lin et al., 2020). Note that verifying the embedding condition (4.1) for
t < 1 is highly non-trivial. This condition is automatically satisfied for all 0 < t ≤ 1 if the

expansion of L
1/2
K X in (3.8) is a summation of finite terms with each bounded ξk. However,

it is a wide-open question whether this condition holds for more general cases. It is also
pointed out by Fischer and Steinwart (2020) that how to obtain the optimal rates for t > p
and θ ∈ (0, t/2− p/2] is an outstanding problem that can not be addressed by introducing
the embedding condition. Comparing Assumption 6 to Assumption 4 in Theorem 4 and
Corollary 5, it is difficult to tell which one is more restrictive. But we think Assumption 4
is relatively more adaptive for functional linear regression model (1.1), since Assumption 6
excludes the most important case when X is the Gaussian random element in L2(T ). As
we discussed in Section 3, Gaussian random element satisfies Assumption 4 for any integer
` ≥ 2. Moreover, due to Corollary 5, higher regularities indicated by larger ` in Assumption
4 or smaller p in the eigenvalue decaying of T∗ will result in larger range of θ in which the
estimators are rate-optimal. We believe that convergence analysis based on Assumption 4
is more insightful from this perspective. We then illustrate that in most cases, the index
p can be close to zero arbitrarily if one of the kernels K and C is smooth enough. To this
end, we need the following lemma.

Lemma 10 Consider two nonnegative and compact operators LA and LB on a separable

Hilbert space H. Assume ran(L
1/2
A ) = H, then we have

ρk(L
1/2
A LBL

1/2
A ) ≤ ρk(LB)‖LA‖,
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where the ρk(L
1/2
A LBL

1/2
A ) and ρk(LB) denote the k-th eigenvalue (sorted in decreasing

order) of operators L
1/2
A LBL

1/2
A and LB, respectively.

We include its proof in Appendix A for the sake of completeness. Following from Lemma

10 with H = L2(T ) and the fact that HK = L2(T ), or equivalently ran(L
1/2
K ) = L2(T ), we

have µk = ρk(L
1/2
K LCL

1/2
K ) ≤ ρk(LC)‖LK‖ . ρk(LC). Moreover, if ran(L

1/2
C ) = L2(T ), one

can deduce µk = ρk(L
1/2
C LKL

1/2
C ) ≤ ρk(LK)‖LC‖ . ρk(LK) by the same argument. For

example, when T = R and K is the reproducing kernel of fractional Sobolev space W β,2(R)
with β > 1/2, we have µk . ρk(LK) � k−2β and then p ≤ 1

2β can arbitrarily approach zero
if K is smooth enough, i.e., β is sufficiently large. Another notable example is that when
T = [0, 1]D for some integer D ≥ 1 and X is a Gaussian random element in L2(T ) with
zero mean and covariance kernel Cγ : T × T → R (which is called a square-exponential

kernel) defined by Cγ(x, x′) := exp(−‖x−x
′‖2

γ2
), ∀x, x′ ∈ T , i.e., X ∼ N (0, LCγ ). Here γ > 0

is a constant and LCγ denotes the covariance operator induced by Cγ . According to the
existing literature about Gaussian process (see, for example, Kanagawa et al., 2018), we
know that {ρk(LCγ )}k≥1 enjoys an exponential decay. For this case, we can prove that
the divided-and-conquer RLS estimators are mini-max optimal for all possible θ ∈ (0, 1/2]
according to Corollary 5.

We now compare Theorem 9 with Corollary 7 of Theorem 6. Under the uniformly
boundedness condition on {ξk}k≥1 in Assumption 5, we simplify the embedding condition
(4.1) by only requiring the sequence {µtk}k≥1 to be summable, i.e.,

∑
k≥1 µ

t
k < ∞, which

is satisfied for t = p + ε if µk . k−1/p. Here ε > 0 can be arbitrarily small. Therefore,
under the same assumptions of Corollary 7, the first claims in Theorem 6 ensures that for
all sufficiently small ε > 0 and ε/2 < θ ≤ 1/2, there holds

E
[
R(βS,λ)−R(β0)

]
. N

− 2θ
2θ+p

with λ = N
− 1

2θ+p and m ≤ o
(
N

2θ−ε
2θ+p

logN

)
. Since one can choose an arbitrarily small ε > 0, the

above result actually indicates the rate-optimal convergence for all 0 < θ ≤ 1/2. We see from
Corollary 7 in Section 3 that, under Assumption 5, one can obtain the same convergence

result with a slightly better estimate on m which only requires m ≤ o
(
N

2θ
2θ+p

logN

)
.

When we finished this paper, we found that the work Tong (2021) also studies the
divide and conquer functional linear regression but under a regularity condition of slope
function different from (3.1) which actually requires β0 ∈ HK , and a boundedness assump-
tion equivalent to that (4.1) is satisfied with t = 1. And we also note that to achieve optimal
convergence rate under condition β0 ∈ HK , Theorem 2.1 in Tong (2021) requires the number
of partitions m = 1, while with an additional assumption that the fourth-moment condition

(3.3) is satisfied, Theorem 9 in this paper allows the number of partitions m ≤ o
(
N

p
1+p

logN

)
.

4.3 Relevant Works on Noiseless Linear Model

Recent works have intensively investigated the performance of various estimators within the
context of a noiseless linear model. In typical learning tasks such as image classification,
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where human error is nearly impossible (e.g., misidentifying images of dogs as cats), it is
reasonable to consider the output unambiguous for a given input. Consequently, many al-
gorithms have incorporated noiseless models into these learning tasks. Theoretical analysis
of noiseless models first appeared in studies on classification problems. For instance, Smale
and Zhou (2007) demonstrates that, compared to models with noise, the convergence anal-
ysis of binary classification problems in noiseless models may exhibit a phenomenon known
as “super convergence”, where the convergence rate can be faster than N−1. The stud-
ies by Jun et al. (2019); Sun and Wu (2021) explore the application of kernel-regularized
least squares, revealing an improved rate of convergence for noiseless data relative to noisy
scenarios. Furthermore, Berthier et al. (2020) delves into the utilization of stochastic gra-
dient descent for addressing the noiseless linear model in a general Hilbert space, albeit
concentrating solely on scenarios where the optimal predictor resides within this space. As
far as we know, the convergence of estimator in RKHS as well as its divide-and-conquer
counterpart has not been considered in the context of noiseless functional linear model. We
establish the first convergence result in this setting when the optimal predictor is outside of
the underlying RKHS. The framework and estimations developed in this paper can be ex-
tended to study more complex models of nonparametric supervised learning, such as models
in Szabó et al. (2016); Guo et al. (2023); Mao (2024); Meunier et al. (2022), which we leave
as future work.

5. Convergence Analysis

In this section, we first derive the upper bounds of convergence rates presented in Theorem
3 and Theorem 8. Then we establish the upper bounds in expectation presented in Theorem
4, Theorem 6, Theorem 9 and their corollaries. Last we prove the mini-max lower bound
in Theorem 2.

5.1 Upper Rates and Upper Bounds

Recalling the decomposition (2.8), one can bound R(βS,λ) − R(β0) through estimating

S (S, λ) =
∥∥∥L1/2

C L
1/2
K fS,λ − L

1/2
C L

1/2
K fλ

∥∥∥2

L2
and A (λ) =

∥∥∥L1/2
C L

1/2
K fλ − L

1/2
C β0

∥∥∥2

L2
, respec-

tively. We apply the following lemma to estimate A (λ).

Lemma 11 Suppose Assumption 1 is satisfied with 0 < θ ≤ 1/2 and γ0 ∈ L2(T ). Then for
any λ > 0, there holds

A (λ) ≤ λ2θ‖γ0‖2L2 . (5.1)

Proof Write γ0 =
∑

k≥1 akϕk, according to singular value decomposition of T∗ in (2.9),

we have L
1/2
C β0 = T θ∗ (γ0) =

∑
k≥1 µ

θ
kakϕk and

L
1/2
C L

1/2
K fλ = L

1/2
C L

1/2
K (λI + T )−1 L

1/2
K LCβ0 =

∞∑
k=1

µ1+θ
k

λ+ µk
akϕj .
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Therefore,

A (λ) =
∥∥∥L1/2

C (L
1/2
K fλ − β0)

∥∥∥2

L2

=
∞∑
k=1

(
µ1+θ
k

λ+ µk
− µθj

)2

a2
j

=
∞∑
k=1

λ2µ2θ
k

(λ+ µk)
2a

2
k.

While we see that for 0 < θ ≤ 1/2,

tθ

λ+ t
≤ θθ(1− θ)1−θλθ−1 ≤ λθ−1, ∀t > 0,

which implies that

A (λ) =
∞∑
k=1

λ2µ2θ
k

(λ+ µk)
2a

2
k ≤ λ2θ

∞∑
k=1

a2
k = λ2θ ‖γ0‖2L2 .

The proof is then finished.

In the rest part of this subsection, we focus on estimating S (S, λ). Recall that S =
∪mj=1Sj with Sj ∩ Sk = ∅ for j 6= k, the empirical operator TXj is defined with Xj = {Xi :
(Xi, Yi) ∈ Sj} according to (2.6). For any j = 1, 2, . . . ,m, define the event

Uj =
{
Xj :

∥∥∥(λI + T )−1/2(TXj − T )(λI + T )−1/2
∥∥∥ ≥ 1/2

}
,

and denote its complement by Ucj . Let U = ∪mj=1Uj be the union of above events. Then the
complement of U is given by Uc = ∩mj=1Ucj . Hereafter, let IE denote the indicator function
of the event E and P(E) = E [IE ]. We first give the following estimation∥∥∥(λI + T )1/2(λI + TXj )

−1(λI + T )1/2
∥∥∥ IUcj

=
∥∥∥(I − (λI + T )−1/2(T − TXj )(λI + T )−1/2)−1

∥∥∥ IUcj
(∗)
≤ 1 +

∞∑
k=1

∥∥∥(λI + T )−1/2(T − TXj )(λI + T )−1/2
∥∥∥k IUcj

≤ 1 +
∞∑
k=1

1

2k
= 2,

(5.2)

where inequality (∗) follows by expanding the inverse in Neumann series.
The following lemma plays a crucial role in bounding the convergence rate of S (S, λ).

Lemma 12 For any m ≥ 1, there holds

E [S (S, λ)IUc ]

≤ 1

m
E
[∥∥∥L1/2

C L
1/2
K (f̂S1,λ − fλ)

∥∥∥2

L2
IUc1

]
+
∥∥∥L1/2

C L
1/2
K E

[
(f̂S1,λ − fλ)IUc1

]∥∥∥2

L2
.

(5.3)
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Proof When m ≥ 2, as

S (S, λ) =
∥∥∥L1/2

C L
1/2
K fS,λ − L

1/2
C L

1/2
K fλ

∥∥∥2

L2
=

∥∥∥∥∥ 1

m

m∑
i=1

L
1/2
C L

1/2
K f̂Si,λ − L

1/2
C L

1/2
K fλ

∥∥∥∥∥
2

L2
,

then we have

E[S (S, λ)IUc ] = E

∥∥∥∥∥L1/2
C L

1/2
K

(
1

m

m∑
i=1

f̂Si,λ − fλ

)∥∥∥∥∥
2

L2
IUc


(i)
=

1

m2

m∑
i=1

E
[∥∥∥L1/2

C L
1/2
K

(
f̂Si,λ − fλ

)∥∥∥2

L2
IUc
]

+
1

m2

∑
i 6=j

E
[〈
L

1/2
C L

1/2
K

(
f̂Si,λ − fλ

)
, L

1/2
C L

1/2
K

(
f̂Sj ,λ − fλ

)〉
L2

IUc
]

(ii)
=

1

m
E
[∥∥∥L1/2

C L
1/2
K

(
f̂S1,λ − fλ

)∥∥∥2

L2
IUc1

]
P
(
∩mj=2Ucj

)
+
m(m− 1)

m2
E
[〈
L

1/2
C L

1/2
K

(
f̂S1,λ − fλ

)
, L

1/2
C L

1/2
K

(
f̂S2,λ − fλ

)〉
L2

IUc1 IUc2
]
P
(
∩mj=3Ucj

)
(iii)

≤ 1

m
E
[∥∥∥L1/2

C L
1/2
K

(
f̂S1,λ − fλ

)∥∥∥2

L2
IUc1

]
+
∥∥∥L1/2

C L
1/2
K E

[(
f̂S1,λ − fλ

)
IUc1
]∥∥∥2

L2
.

Here equality (i) follows from the binomial expansion. Equality (ii) uses the fact that

IUc = IUc1 IUc2 · · · IUcm and for any 1 ≤ i 6= j ≤ m,
(
f̂Si,λ − fλ

)
IUci and

(
f̂Sj ,λ − fλ

)
IUcj are

independent and identically distributed random elements. Inequality (iii) is from

E
[
〈L1/2

C L
1/2
K (f̂S1,λ − fλ), L

1/2
C L

1/2
K

(
f̂S2,λ − fλ

)
〉L2IUc1 IUc2

]
=
∥∥∥L1/2

C L
1/2
K E

[(
f̂S1,λ − fλ

)
IUc1
]∥∥∥2

L2

This completes the proof.

For simplicity of notation, in the rest of this paper, we always denote

n := |S1| =
N

m
and {(X1,i, Y1,i)}ni=1 := S1. (5.4)

We establish the following bounds on the right hand side of (5.3) in Lemma 12.

Lemma 13 Suppose that Assumption 1 is satisfied with 0 < θ ≤ 1/2 and γ0 ∈ L2(T ),
Assumption 2 is satisfied with σ > 0 and Assumption 3 is satisfied with c1 > 0. Then there
hold

E
[∥∥∥L1/2

C L
1/2
K

(
f̂S1,λ − fλ

)∥∥∥2

L2
IUc1

]
≤ 8

m

N
N (λ)

(
c1λ

2θ ‖γ0‖2L2 + σ2
)

(5.5)

and ∥∥∥L1/2
C L

1/2
K E

[(
f̂S1,λ − fλ

)
IUc1
]∥∥∥2

L2
≤ 4c1

m

N
N (λ)λ2θ ‖γ0‖2L2 , (5.6)

where N (λ) is the effective dimension given by (3.4).
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Proof We first prove the second inequality (5.6). Recalling (5.4), we can write

f̂S1,λ = (λI + TX1)−1 1

n

n∑
i=1

L
1/2
K X1,iY1,i.

Then∥∥∥L1/2
C L

1/2
K E

[(
f̂S1,λ − fλ

)
IUc1
]∥∥∥2

L2

=

∥∥∥∥∥L1/2
C L

1/2
K E

[(
(λI + TX1)−1 1

n

n∑
i=1

L
1/2
K X1,iY1,i − fλ

)
IUc1

]∥∥∥∥∥
2

L2

(i)
=

∥∥∥∥∥L1/2
C L

1/2
K E

[
(λI + TX1)−1

(
1

n

n∑
i=1

L
1/2
K X1,i

〈
X1,i, β0 − L1/2

K fλ

〉
L2
− λfλ

)
IUc1

]∥∥∥∥∥
2

L2

(ii)

≤ E

∥∥∥∥∥L1/2
C L

1/2
K (λI + TX1)−1

(
1

n

n∑
i=1

L
1/2
K X1,i

〈
X1,i, β0 − L1/2

K fλ

〉
L2
− λfλ

)∥∥∥∥∥
2

L2
IUc1


≤
∥∥∥L1/2

C L
1/2
K (λI + T )−1/2

∥∥∥2 ∥∥∥(λI + T )1/2(λI + TX1)−1(λI + T )1/2
∥∥∥2

IUc1

× E

∥∥∥∥∥(λI + T )−1/2

(
1

n

n∑
i=1

L
1/2
K X1,i

〈
X1,i, β0 − L1/2

K fλ

〉
L2
− λfλ

)∥∥∥∥∥
2

L2


(iii)

≤ 4E

∥∥∥∥∥(λI + T )−1/2

(
1

n

n∑
i=1

L
1/2
K X1,i

〈
X1,i, β0 − L1/2

K fλ

〉
L2
− λfλ

)∥∥∥∥∥
2

L2

 .
Here equality (i) follows from the fact that ε is a centered random variable independent
of X, inequality (ii) uses Jensen’s inequality, and inequality (iii) is due to (5.2) and the
calculation that∥∥∥L1/2

C L
1/2
K (λI + T )−1/2

∥∥∥2
=
∥∥∥(λI + T )−1/2L

1/2
K LCL

1/2
K (λI + T )−1/2

∥∥∥
=
∥∥∥(λI + T )−1/2T (λI + T )−1/2

∥∥∥ ≤ 1.

Note that for any 1 ≤ i ≤ n, L
1/2
K X1,i

〈
X1,i, β0 − L1/2

K fλ

〉
L2
− λfλ is a zero-mean random

element. Then we have

E

∥∥∥∥∥(λI + T )−1/2

(
1

n

n∑
i=1

L
1/2
K X1,i

〈
X1,i, β0 − L1/2

K fλ

〉
L2
− λfλ

)∥∥∥∥∥
2

L2


=

1

n2

n∑
i=1

E
[∥∥∥(λI + T )−1/2

(
L

1/2
K X1,i

〈
X1,i, β0 − L1/2

K fλ

〉
L2
− λfλ

)∥∥∥2

L2

]

≤ 1

n2

n∑
i=1

E
[∥∥∥(λI + T )−1/2L

1/2
K X1,i

〈
X1,i, β0 − L1/2

K fλ

〉
L2

∥∥∥2

L2

]
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=
1

n2

n∑
i=1

∞∑
j=1

E
[〈

(λI + T )−1/2L
1/2
K X1,i, φj

〉2

L2

〈
X1,i, β0 − L1/2

K fλ

〉2

L2

]
(i)

≤ 1

n2

n∑
i=1

∞∑
j=1

[
E
〈

(λI + T )−1/2L
1/2
K X1,i, φj

〉4

L2

] 1
2
[
E
〈
X1,i, β0 − L1/2

K fλ

〉4

L2

] 1
2

(ii)

≤ c1

n2

n∑
i=1

∞∑
j=1

E
[〈

(λI + T )−1/2L
1/2
K X1,i, φj

〉2

L2

]
E
[〈
X1,i, β0 − L1/2

K fλ

〉2

L2

]

=
c1

n

∞∑
j=1

1

λ+ µj
〈Tφj , φj〉L2

∥∥∥L1/2
C

(
β0 − L1/2

K fλ

)∥∥∥2

L2

(iii)
=

c1

n
N (λ)A (λ)

(iv)

≤ c1
m

N
N (λ)λ2θ‖γ0‖2L2 .

Here {φj}∞j=1 is given by the singular value decomposition of T in (2.9). Inequality (i) uses
Cauchy-Schwartz inequality. Inequality (ii) is from Assumption 3. Equality (iii) follows

from A (λ) =
∥∥∥L1/2

C

(
β0 − L1/2

K fλ

)∥∥∥2

L2
and the calculation that

∑∞
j=1

1
λ+µj
〈Tφj , φj〉L2 =∑∞

j=1
µj

λ+µj
= N (λ). Inequality (iv) is due to Lemma 11 and n = N/m. Combining the

above two estimations, we have completed the proof of (5.6).
Next we prove the first inequality (5.5). According to the expression of f̂S1,λ and the

triangular inequality, we have

E
[∥∥∥L1/2

C L
1/2
K

(
f̂S1,λ − fλ

)∥∥∥2

L2
IUc1

]

≤ 2E

∥∥∥∥∥L1/2
C L

1/2
K (λI + TX1)−1

(
1

n

n∑
i=1

L
1/2
K X1,i

〈
X1,i, β0 − L1/2

K fλ

〉
L2
− λfλ

)∥∥∥∥∥
2

L2
IUc1


(5.5a)

+ 2E

∥∥∥∥∥L1/2
C L

1/2
K (λI + TX1)−1 1

n

n∑
i=1

L
1/2
K X1,iε1,i

∥∥∥∥∥
2

L2
IUc1

 , (5.5b)

where ε1,i := Y1,i − 〈β0, X1,i〉L2 . We have bounded the term (5.5a) in the proof of (5.6),
which is given by

E

∥∥∥∥∥L1/2
C L

1/2
K (λI + TX1)−1

(
1

n

n∑
i=1

L
1/2
K X1,i

〈
X1,i, β0 − L1/2

K fλ

〉
L2
− λfλ

)∥∥∥∥∥
2

L2
IUc1


≤ 4c

m

N
N (λ)λ2θ‖γ0‖2L2 .

(5.7)

Note that for any 1 ≤ i ≤ n, L1/2X1,iε1,i is also a zero-mean random element. Analogously,
one can bound (5.5b) as

E

∥∥∥∥∥L1/2
C L

1/2
K (λI + TX1)−1 1

n

n∑
i=1

L
1/2
K X1,iε1,i

∥∥∥∥∥
2

L2
IUc1
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≤
∥∥∥L1/2

C L
1/2
K (λI + T )−1/2

∥∥∥2 ∥∥∥(λI + T )1/2(λI + TX1)−1(λI + T )1/2
∥∥∥2

IUc1

× E

∥∥∥∥∥(λI + T )−1/2 1

n

n∑
i=1

L
1/2
K X1,iε1,i

∥∥∥∥∥
2

L2


≤ 4E

∥∥∥∥∥(λI + T )−1/2 1

n

n∑
i=1

L
1/2
K X1,iε1,i

∥∥∥∥∥
2

L2

 =
4

n2

n∑
i=1

E
[∥∥∥(λI + T )−1/2L

1/2
K X1,i

∥∥∥2

L2
ε21,i

]
(∗)
≤ 4σ2

n2

n∑
i=1

∞∑
j=1

E
[〈

(λI + T )−1/2L
1/2
K X1,i, φj

〉2

L2

]
=

4σ2

n

∞∑
j=1

1

λ+ µj
〈Tφj , φj〉L2 = 4

m

N
N (λ)σ2.

Here inequality (∗) is from Assumption 2.
Then we obtain inequality (5.5) and the proof of Lemma 13 is finished.

We also need the following lemma to estimate the probability of event U1. Recall that
U1 is defined as

U1 =
{
X1 :

∥∥∥(λI + T )−1/2(TX1 − T )(λI + T )−1/2
∥∥∥ ≥ 1/2

}
.

Lemma 14 Suppose that Assumption 3 is satisfied with c1 > 0, then

P(U1) ≤ 4c1
m

N
N 2(λ), (5.8)

where N (λ) is the effective dimension given by (3.4).

Proof Recall (5.4). We first bound E
[∥∥(λI + T )−1/2(TX1 − T )(λI + T )−1/2

∥∥2
]

as

E
[∥∥∥(λI + T )−1/2 (TX1 − T ) (λI + T )−1/2

∥∥∥2
]

(i)

≤ E
[∥∥∥(λI + T )−1/2 (TX1 − T ) (λI + T )−1/2

∥∥∥2

HS

]

=

∞∑
j=1

∞∑
k=1

E

〈(λI + T )−1/2

(
1

n

n∑
i=1

L
1/2
K X1,i ⊗ L1/2

K X1,i − T

)
(λI + T )−1/2φj , φk

〉2

L2


(ii)

≤ 1

n2

n∑
i=1

∞∑
j=1

∞∑
k=1

1

λ+ µj

1

λ+ µk
E
[〈
L

1/2
K X1,i, φj

〉2

L2

〈
L

1/2
K X1,i, φk

〉2

L2

]
(iii)

≤ 1

n2

n∑
i=1

∞∑
j=1

∞∑
k=1

1

λ+ µj

1

λ+ µk

[
E
〈
L

1/2
K X1,i, φj

〉4

L2

] 1
2
[
E
〈
L

1/2
K X1,i, φk

〉4

L2

] 1
2

(iv)

≤ c1

n2

n∑
i=1

∞∑
j=1

∞∑
k=1

1

λ+ µj

1

λ+ µk
E
[〈
L

1/2
K X1,i, φj

〉2

L2

]
E
[〈
L

1/2
K X1,i, φk

〉2

L2

]

=
c1

n

∞∑
j=1

∞∑
k=1

1

λ+ µj

1

λ+ µk
〈Tφj , φj〉L2 〈Tφk, φk〉L2
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=
c1

n

∞∑
j=1

∞∑
k=1

µj
λ+ µj

µk
λ+ µk

= c1
m

N
N 2(λ).

Here {φj}∞j=1 is given by the singular value decomposition of T in (2.9). Inequality (i) follows

from (2.2). Inequality (ii) is from the fact that for any 1 ≤ i ≤ n, L
1/2
K Xi ⊗ L1/2

K Xi − T is
a zero-mean random element. Inequality (iii) uses Cauchy-Schwartz inequality. Inequality
(iv) applies Assumption 3.

Combining the above estimation with Chebyshev inequality, we obtain

P(U1) = P
({

X1 :
∥∥∥(λI + T )−1/2 (TX1 − T ) (λI + T )−1/2

∥∥∥ ≥ 1/2
})

≤ 4E
[∥∥∥(λI + T )−1/2 (TX1 − T ) (λI + T )−1/2

∥∥∥2
]

≤ 4c1
m

N
N 2(λ).

Then we obtain the desired result and complete the proof.

The following lemma provides an estimation of N (λ) under the polynomial decaying
condition of the eigenvalues.

Lemma 15 Suppose that {µk}k≥1 satisfy µk . k−1/p for some 0 < p ≤ 1, then there holds

N (λ) . λ−p, ∀0 < λ ≤ 1. (5.9)

The estimation in Lemma 15 can be found in Guo et al. (2017); Lin et al. (2017); Guo and
Shi (2019).

We have established preliminary estimations for Theorem 3 and Theorem 8. We are
in the position to prove these two theorems. To this end, we also need to introduce the
notations oP(·) and OP(·). For a sequence of random variables {ξk}∞k=1, we write ξk ≤ oP(1)
if

lim
k→∞

P (|ξk| ≥ d) = 0,∀d > 0.

And we write ξk ≤ OP(1) if

lim
D→∞

sup
k≥1

P (|ξk| ≥ D) = 0.

In addition, suppose that there is a positive sequence {ak}∞k=1. Then we write ξk ≤ oP(ak)
if ξk/ak ≤ oP(1), and ξk ≤ OP(ak) if ξk/ak ≤ OP(1).
Proof of Theorem 3. Combining the decomposition (2.8) and (5.1) in Lemma 11 yields

R(βS,λ)−R(β0) ≤ 2S (S, λ) + 2A (λ)

≤ 2S (S, λ) + 2λ2θ‖γ0‖2L2 . (5.10)

We first decompose S (S, λ) as

S (S, λ) = S (S, λ)IU + S (S, λ)IUc . (5.11)
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For the term S (S, λ)IU , following from (5.8) in Lemma 14, we have

E [IU ] = P(U) ≤
m∑
j=1

P(Uj) = mP(U1) ≤ 4c1
m2

N
N 2(λ).

Then using Markov’s inequality, we can write

S (S, λ)IU ≤ OP

(
m2

N
N 2(λ)

)
S (S, λ). (5.12)

For the term S (S, λ)IUc , combining (5.3) in Lemma 12 with (5.5) and (5.6) in Lemma
13 yields

E [S (S, λ)IUc ] ≤ 8
N (λ)

N

(
c1λ

2θ‖γ0‖2L2 + σ2
)

+ 4c1
m

N
N (λ)λ2θ‖γ0‖2L2 .

Then using Markov’s inequality, we can write

S (S, λ)IUc ≤ OP

(
N (λ)

N
+
m

N
N (λ)λ2θ

)
. (5.13)

Therefore, combining (5.11), (5.12) and (5.13), we have[
1−OP

(
m2

N
N 2(λ)

)]
S (S, λ) ≤ OP

(
N (λ)

N
+
m

N
N (λ)λ2θ

)
.

Then applying the estimation of N (λ) (5.9) in Lemma 15, taking λ ≤ 1, we can write[
1−OP

(
m2

N
λ−2p

)]
S (S, λ) ≤ OP

(
λ−p

N
+
m

N
λ2θ−p

)
. (5.14)

Take m and λ satisfying m2λ−2p ≤ o(N) and λ ≤ 1, then (5.14) implies that

[1− oP(1)] S (S, λ) ≤ OP

(
λ−p

N
+
m

N
λ2θ−p

)
, as OP

(
m2

N
λ−2p

)
≤ oP(1).

Thus, we can write

S (S, λ) ≤ OP

(
λ−p

N
+
m

N
λ2θ−p

)
.

Combining the above estimation with (5.10) yields

R(βS,λ)−R(β0) ≤ OP

(
λ2θ +

λ−p

N
+
m

N
λ2θ−p

)
(5.15)

provided that

m2λ−2p ≤ o(N) and λ ≤ 1.

26



Optimality of Divide and Conquer Kernel-based Functional Linear Regression

When p/2 < θ ≤ 1/2, take m ≤ o
(
N

2θ−p
4θ+2p

)
and λ = N

− 1
2θ+p , then there hold m2λ−2p ≤

o(N) and λ ≤ 1. Therefore, following from (5.15), we can write

R(βS,λ)−R(β0) ≤ OP

(
N
− 2θ

2θ+p

)
,

or equivalently,

lim
Γ→∞

sup lim
N→∞

sup
β0

P
{
R(βS,λ)−R(β0) ≥ ΓN

− 2θ
2θ+p

}
= 0.

This completes the proof of (3.5).

When 0 < θ ≤ p/2, take m and λ satisfying m2λ−2p ≤ o(N) and λ ≤ 1, then following
from (5.15), one can calculate

R(βS,λ)−R(β0) ≤ OP

(
λ2θ
)
,

or equivalently,

lim
Γ→∞

sup lim
N→∞

sup
β0

P
{
R(βS,λ)−R(β0) ≥ Γλ2θ

}
= 0,

which further implies (3.6) and (3.7). The proof of Theorem 3 is then completed.

Now we turn to prove Theorem 8.

Proof of Theorem 8. Recalling (5.4), under the noiseless condition, we can write

f̂S1,λ = (λI + TX1)−1 1

n

n∑
i=1

L
1/2
K X1,i〈X1,i, β0〉L2 .

Then we can give an improved estimation of the left hand side of (5.5) as

E
[∥∥∥L1/2

C L
1/2
K

(
f̂S1,λ − fλ

)∥∥∥2

L2
IUc1

]

= E

∥∥∥∥∥L1/2
C L

1/2
K (λI + TX1)−1

(
1

n

n∑
i=1

L1/2X1,i〈X1,i, β0 − L1/2
K fλ〉L2 − λfλ

)∥∥∥∥∥
2

L2
IUc1


(∗)
≤ 4c1

m

N
N (λ)λ2θ‖γ0‖2L2 , (5.16)

where inequality (∗) follows from (5.7).

Employing (5.16) and following the same arguments in the proof of Theorem 3, we have

.R(βS,λ)−R(β0) ≤ OP

(
λ2θ +

m

N
λ2θ−p

)
, (5.17)

provided that

m2λ−2p ≤ o(N) and λ ≤ 1.
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For any 0 < η ≤ 1/2, take m ≤ o (Nη) and λ = N
− 1−2η

2p , then there hold m2λ−2p ≤
o(N) and λ ≤ 1. Therefore, following from (5.17), one can calculate

R(βS,λ)−R(β0) ≤ OP

(
λ2θ
)
≤ OP

(
N
− θ(1−2η)

p

)
,

or equivalently,

lim
Γ→∞

sup lim
N→∞

sup
β0

P
{
R(βS,λ)−R(β0) ≥ ΓN

− θ(1−2η)
p

}
= 0.

We have obtained (3.20). The proof of Theorem 8 is then finished.

We next aim to prove Theorem 4 and Corollary 5. We also need several lemmas before
proving them.

When Assumption 3 is enhanced to Assumption 4, we can estimate the probability of
event U1 better than Lemma 14.

Lemma 16 Suppose that Assumption 4 is satisfied with some integer ` ≥ 2. Then there
holds

P(U1) ≤ c(`)24`ρ4`

(
mN 2(λ)

N

)`
, (5.18)

where c(`) is a constant only depends on ` and N (λ) is given by (3.4).

Lemma 16 can be proved by employing Markov’s inequality combined with the following
lemma.

Lemma 17 Suppose that Assumption 4 is satisfied with some integer ` ≥ 2. Then

E
[∥∥∥(λI + T )−1/2 (TX1 − T ) (λI + T )−1/2

∥∥∥2`

HS

]
≤ c(`)22`ρ4`

(
mN 2(λ)

N

)`
(5.19)

and

E
[∥∥∥(λI + T )−1/2 (TX1 − T )

∥∥∥2`

HS

]
≤ c(`)22`ρ4`trace`(T )

(
mN (λ)

N

)`
, (5.20)

where trace(T ) =
∑∞

j=1 µj denotes the trace of operator T , N (λ) is the effective dimension
given by (3.4), and c(`) is a constant only depends on `.

Proof We first prove inequality (5.19). Recalling (5.4), for brevity of notations, we define

Qi := (λI + T )−1/2
(
L

1/2
K X1,i ⊗ L1/2

K X1,i − T
)

(λI + T )−1/2, i = 1, 2, · · · , n.

Then we can write

E
[∥∥∥(λI + T )−1/2 (TX1 − T ) (λI + T )−1/2

∥∥∥2`

HS

]

= E

〈 1

n

n∑
i=1

Qi,
1

n

n∑
j=1

Qj

〉`
HS


=

1

n2`

n∑
i1=1

...

n∑
i`=1

n∑
j1=1

...

n∑
j`=1

E [〈Qi1 , Qj1〉HS · · · 〈Qi` , Qj`〉HS ] .
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When the indices in group {i1, ..., i`, j1, ..., j`} are all distinct, then following from the in-
dependence, there holds E [〈Qi1 , Qj1〉HS · · · 〈Qi` , Qj`〉HS ] = 0. We denote the set of all
index-distinct groups by Ω(n, `). Let Θ(n, `) = {1, ..., n}2`\Ω(n, `). Using these notations,
we can write

E
[∥∥∥(λI + T )−1/2(TX1 − T )(λI + T )−1/2

∥∥∥2`

HS

]
=

1

n2`

∑
{i1,...,i`,j1,...,j`}∈Θ(n,`)

E [〈Qi1 , Qj1〉HS ...〈Qi` , Qj`〉HS ] .
(5.21)

We estimate the cardinality of Θ(n, k) as

|Θ(n, `)| = |Θ`(n, `)|+ ...+ |Θ1(n, `)|

≤ (2`)!

[(
n

`

)
+

(
n

`− 1

)
(`− 1)2 + · · ·+

(
n

1

)]
≤ (2`)!`2`+1n` := c(`)n`,

(5.22)

where c(`) := (2`)!`2`+1. Let Θi(n, `) denote a subset of Θ(n, `) consisting of all groups with
exactly i different indices. Then Θ(n, `) = ∪`i=1Θi(n, `) and |Θi(n, `)| ≤ (2`)!

(
n
i

)
i2(`−i) ≤

(2`)!`2`n`.
For any {i1, · · · , i`, j1, · · · , j`} ∈ Θ(n, `), we have

E
[
〈Qi1 , Qj1〉HS · · · 〈Qi` , Qj`〉HS

]
≤ E

[
‖Qi1‖HS ‖Qj1‖HS · · · ‖Qi`‖HS ‖Qj`‖HS

]
(†)
≤
[
E ‖Qi1‖

2`
HS

] 1
2`
[
E ‖Qj1‖

2`
HS

] 1
2` · · ·

[
E ‖Qi`‖

2`
HS

] 1
2`
[
E ‖Qj`‖

2`
HS

] 1
2`
,

(5.23)

where inequality (†) uses Hölder inequality. Then we further bound E
[
‖Qi‖2`HS

]
for any

1 ≤ i ≤ n, which is given

E
[
‖Qi‖2`HS

]
(5.24)

= E
[∥∥∥(λI + T )−1/2

(
L

1/2
K X1,i ⊗ L1/2

K X1,i − T
)

(λI + T )−1/2
∥∥∥2`

HS

]

= E


 ∞∑
j=1

∞∑
k=1

1

λ+ µj

1

λ+ µk
〈(X1,i ⊗X1,i − T )φj , φk〉2L2

`


=
∞∑
j1=1

· · ·
∞∑
j`=1

∞∑
k1=1

· · ·
∞∑
k`=1

E
[

1

λ+ µj1

1

λ+ µk1

〈(
L

1/2
K X1,i ⊗ L1/2

K X1,i − T
)
φj1 , φk1

〉2

L2

× · · · × 1

λ+ µj`

1

λ+ µk`

〈(
L

1/2
K X1,i ⊗ L1/2

K X1,i − T
)
φj` , φk`

〉2

L2

]
(5.25)

(∗)
≤

∞∑
j1=1

∞∑
k1=1

1

λ+ µj1

1

λ+ µk1

[
E
〈(
L

1/2
K X1,i ⊗ L1/2

K X1,i − T
)
φj1 , φk1

〉2`
] 1
`

× · · ·×

∞∑
j`=1

∞∑
k`=1

1

λ+ µj`

1

λ+ µk`

[
E
〈(
L

1/2
K X1,i ⊗ L1/2

K X1,i − T
)
φj` , φl`

〉2`

L2

] 1
`

,
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where inequality (∗) also uses Hölder inequality. It remains to estimate

E
[〈(

L
1/2
K X1,i ⊗ L1/2

K X1,i − T
)
φj , φk

〉2`

L2

]
, ∀1 ≤ i ≤ n and ∀1 ≤ j, k <∞.

When j 6= k, we have

E
[〈(

L
1/2
K X1,i ⊗ L1/2

K X1,i − T
)
φj , φk

〉2`

L2

]
= E

[〈
L

1/2
K X1,i, φj

〉2`

L2
〈L1/2

K X1,i, φk〉2`L2
]

(i)

≤
[
E
〈
L

1/2
K X1,i, φj

〉4`

L2

] 1
2
[
E
〈
L

1/2
K X1,i, φk

〉4`

L2

] 1
2 (ii)

≤ ρ4`µ`jµ
`
k,

where inequality (i) is from Cauchy-Schwarz inequality and inequality (ii) uses Assumption
4.

When j = k, we have

E
[〈(

L
1/2
K X1,i ⊗ L1/2

K X1,i − T
)
φj , φj

〉2`

L2

]
= E

[(〈
L

1/2
K X1,i ⊗ L1/2

K X1,iφj , φj

〉
L2
− µj

)2`
]

= 22`E

[(
1

2

〈
L

1/2
K X1,i ⊗ L1/2

K X1,iφj , φj

〉
L2
− 1

2
µj

)2`
]

(i)

≤ 22`−1

(
E
[〈
L

1/2
K X1,i ⊗ L1/2

K X1,iφj , φj

〉2`

L2

]
+ µ2`

j

)
= 22`−1

(
E
[〈
L

1/2
K X1,i, φj

〉4`

L2

]
+ µ2`

j

)
(ii)

≤ 22`ρ4`µ2`
j ,

where inequality (i) is due to Jensen’s inequality and inequality (ii) follows from Assumption
4 and the fact that ρ ≥ 1.

Combining the above estimations, for any 1 ≤ i ≤ n and 1 ≤ j, k <∞, there holds

E
[〈(

L
1/2
K X1,i ⊗ L1/2

K X1,i − T
)
φj , φk

〉2`
]
≤ 22`ρ4`µ`jµ

`
k. (5.26)

Recall that n = N/m. Combining (5.21), (5.22), (5.23), (5.24) and (5.26) yields

E
[∥∥∥(λI + T )−1/2 (TX1 − T ) (λI + T )−1/2

∥∥∥2`

HS

]
≤ c(`)22`ρ4`

(
mN 2(λ)

N

)`
.

This completes the proof of (5.19).
Analogously, we can demonstrate the second inequality (5.20) through

E
[∥∥∥(λI + T )−1/2

(
L

1/2
K X1,i ⊗ L1/2

K X1,i − T
)∥∥∥2`

HS

]
≤ 22`ρ4`trace`(T )N `(λ)
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and

E
[∥∥∥(λI + T )−1/2 (TX1 − T )

∥∥∥2`

HS

]
≤ c(`)22`ρ4`trace`(T )

(
mN (λ)

N

)`
.

The proof of Lemma 17 is then finished.

The following lemma plays a key role in estimating the upper bound of S (S, λ) under
Assumption 4.

Lemma 18 Suppose that Assumption 1 is satisfied with 0 < θ ≤ 1/2 and γ0 ∈ L2(T ).
Under Assumption 2 and Assumption 4, taking λ ≤ 1 yields

E

∥∥∥∥∥∥(λI + T )−1/2 1

|S1|

 ∑
X∈X1

L
1/2
K X〈X,β0 − L1/2

K fλ〉L2 − λfλ

∥∥∥∥∥∥
4

L2


≤ c2

6

m2

N2
(1 + λ4θN 2(λ)),

(5.27)

where c6 is a universal constant and N (λ) is given by (3.4).

Proof Recalling (5.4), for simplicity of notations, we define

αi := L
1/2
K X1,i

〈
X1,i, β0 − L1/2

K fλ

〉
L2
− λfλ, i = 1, 2, · · · , n.

We begin with the proof of the first inequality (5.27). Note that
{

(λI + T )−1/2αi
}n
i=1

are independent operator-valued zero-mean random elements. Then we can write

E

∥∥∥∥∥(λI + T )−1/2 1

n

n∑
i=1

αi

∥∥∥∥∥
4

L2


=

1

n4

∞∑
i1=1

∞∑
i2=1

∞∑
j1=1

∞∑
j2=1

E
[ 〈

(λI + T )−1/2αi1 , (λI + T )−1/2αi2

〉
L2

×
〈

(λI + T )−1/2αj1 , (λI + T )−1/2αj2

〉
L2

]
=

1

n4

∑
{i1,i2,j1,j2}∈Θ(n,2)

E
[ 〈

(λI + T )−1/2αi1 , (λI + T )−1/2αi2

〉
L2

×
〈

(λI + T )−1/2αj1 , (λI + T )−1/2αj2

〉
L2

]
,

(5.28)

where Θ(n, 2) = {1, ..., n}4\Ω(n, 2) and Ω(n, 2) denotes the set of all index-distinct group
{i1, i2, j1, j2}. Then

|Θ(n, 2)| ≤ 4!

[(
n

2

)
+

(
n

1

)]
≤ 24n2, ∀n ≥ 1. (5.29)
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And for any {i1, i2, j1, j2} ∈ Θ(n, 2), we have

E
[〈

(λI + T )−1/2αi1 , (λI + T )−1/2αi2〉L2〈(λI + T )−1/2αj1 , (λI + T )−1/2αj2

〉
L2

]
≤ E

[∥∥∥(λI + T )−1/2αi1

∥∥∥
L2

∥∥∥(λI + T )−1/2αi2

∥∥∥
L2

∥∥∥(λI + T )−1/2αj1

∥∥∥
L2

∥∥∥(λI + T )−1/2αj2

∥∥∥
L2

]
(∗)
≤
[
E
∥∥∥(λI + T )−1/2αi1

∥∥∥4

L2

] 1
4
[
E
∥∥∥(λI + T )−1/2αi2

∥∥∥4

L2

] 1
4

(5.30)

×
[
E
∥∥∥(λI + T )−1/2αj1

∥∥∥4

L2

] 1
4
[
E
∥∥∥(λI + T )−1/2αj2

∥∥∥4

L2

] 1
4

,

where inequality (∗) uses Hölder inequality.

It remains to estimate E
[∥∥(λI + T )−1/2αi

∥∥4

L2

]
,∀1 ≤ i ≤ n. For brevity of notations,

we define
α̃i := L

1/2
K X1,i

〈
X1,i, β0 − L1/2

K fλ

〉
L2
, i = 1, 2, · · · , n.

Then we see that αi = α̃i − λfλ and for any 1 ≤ i ≤ n,

E
[∥∥∥(λI + T0)−1/2α̃i

∥∥∥4

L2

]

= E

 ∞∑
j=1

〈
(λI + T )−1/2α̃i, φj

〉2

L2

2
= E

 ∞∑
j1=1

∞∑
j2=1

1

λ+ µj1

1

λ+ µj2
〈α̃i, φj1〉

2
L2 〈α̃i, φj2〉

2
L2

 (5.31)

(†)
≤

∞∑
j1=1

∞∑
j2=1

1

λ+ µj1

1

λ+ µj2

[
E 〈α̃i, φj1〉

4
L2
] 1

2
[
E 〈α̃i, φj2〉

4
L2
] 1

2
,

where inequality (†) uses Cauchy-Schwartz inequality. We further bound E
[
〈α̃i, φj〉4L2

]
as

E[〈α̃i, φj〉4L2 ]

= E
[〈
L

1/2
K X1,i, φj

〉4

L2

〈
X1,i, β0 − L1/2

K fλ

〉4

L2

]
(i)

≤
[
E
〈
L

1/2
K Xi, φj

〉8

L2

] 1
2
[
E
〈
Xi, β0 − L1/2

K fλ

〉8

L2

] 1
2

(ii)

≤ c2ρ
4µ2

j

[
E
〈
Xi, β0 − L1/2

K fλ

〉2

L2

]2

= c2ρ
4µ2

jA
4(λ)

(iii)

≤ c2ρ
4µ2

j‖γ0‖4L2λ
4θ,

(5.32)

where inequality (i) again uses Cauchy-Schwartz inequality, inequality (ii) is due to As-
sumption 4 and inequality (iii) is from Lemma 11.

Combining (5.31) and (5.32) yields

E
[∥∥∥(λI + T )−1/2α̃i

∥∥∥4

L2

]
≤ c2ρ

4‖γ0‖4L2λ
4θN 2(λ), ∀1 ≤ i ≤ n.
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Then for any 1 ≤ i ≤ n, we have

E
[∥∥∥(λI + T )−1/2αi

∥∥∥4

L2

]
= E

[∥∥∥(λI + T )−1/2(α̃i − λfλ)
∥∥∥4

L2

]
(i)

≤ 8E
[∥∥∥(λI + T )−1/2α̃i

∥∥∥4

L2

]
+ 8

∥∥∥(λI + T )−1/2λfλ

∥∥∥4

L2

(ii)
= 8E

[∥∥∥(λI + T )−1/2α̃i

∥∥∥4

L2

]
+ 8

∥∥∥(λI + T )−1/2λ(λI + T )−1L
1/2
K L

1/2
C T θ∗ (γ0)

∥∥∥4

L2
(5.33)

(iii)

≤ 8c2ρ
4‖γ0‖4L2λ

4θN 2(λ) + 8
∥∥(λI + T )−1λ

∥∥4
∥∥∥(λI + T )−1/2L

1/2
K L

1/2
C

∥∥∥4 ∥∥∥T θ∗ ∥∥∥4
‖γ0‖4L2

≤ 8c2ρ
4‖γ0‖4L2λ

4θN 2(λ) + 8
∥∥∥T θ∗ ∥∥∥4

‖γ0‖4L2 = 8c2ρ
4‖γ0‖4L2λ

4θN 2(λ) + 8µ4θ
1 ‖γ0‖4L2 ,

where inequality (i) uses the triangular inequality, inequality (ii) follows from Assumption
1 and the expression of fλ and inequality (iii) applies the above estimation.

Recall that n = N/m and take λ ≤ 1. Combining with (5.28), (5.29), (5.30) and (5.33),
we obtain

E

∥∥∥∥∥(λI + T0)−1/2 1

n

n∑
i=1

αi

∥∥∥∥∥
4

L2


≤ 192m2

N2

(
c2ρ

4||γ0||4L2λ
4θN 2(λ) + µ4θ

1 ||γ0||4L2
)
≤ c2

6

m2

N2
(1 + λ4θN 2(λ)),

where c2
6 := 192

(
c2ρ

4||γ0||4L2 + max{µ2
1, 1}||γ0||4L2

)
. This completes the proof of Lemma 18.

We propose the following lemma to decompose E[S (S, λ)].

Lemma 19 For any m ≥ 1, there holds

E [S (S, λ)] ≤ 1

m
E
[∥∥∥L1/2

C L
1/2
K

(
f̂S1,λ − fλ

)∥∥∥2

L2

]
+
∥∥∥L1/2

C L
1/2
K E

[
(f̂S1,λ − fλ)

]∥∥∥2

L2
. (5.34)

Proof When m ≥ 2, as

S (S, λ) =
∥∥∥L1/2

C L
1/2
K fS,λ − L

1/2
C L

1/2
K fλ

∥∥∥2

L2
=

∥∥∥∥∥ 1

m

m∑
i=1

L
1/2
C L

1/2
K f̂Si,λ − L

1/2
C L

1/2
K fλ

∥∥∥∥∥
2

L2
,

we can write

E[S (S, λ)] = E

∥∥∥∥∥L1/2
C L

1/2
K

(
1

m

m∑
i=1

f̂Si,λ − fλ

)∥∥∥∥∥
2

L2


(i)
=

1

m2

m∑
i=1

E
[∥∥∥L1/2

C L
1/2
K

(
f̂Si,λ − fλ

)∥∥∥2

L2

]
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+
1

m2

∑
i 6=j

E
[〈
L

1/2
C L

1/2
K

(
f̂Si,λ − fλ

)
, L

1/2
C L

1/2
K

(
f̂Sj ,λ − fλ

)〉
L2

]
(ii)

≤ 1

m
E
[∥∥∥L1/2

C L
1/2
K

(
f̂S1,λ − fλ

)∥∥∥2

L2

]
+
∥∥∥L1/2

C L
1/2
K E

[(
f̂S1,λ − fλ

)]∥∥∥2

L2
.

where equality (i) follows from the binomial expansion and inequality (ii) is from

E
[
〈L1/2

C L
1/2
K

(
f̂S1,λ − fλ

)
, L

1/2
C L

1/2
K

(
f̂S2,λ − fλ

)
〉L2
]

=
∥∥∥L1/2

C L
1/2
K E

[(
f̂S1,λ − fλ

)]∥∥∥2

L2
.

When m = 1, (5.34) is obvious.
Thus, we have completed the proof of Lemma 19.

Now we are in the position to prove Theorem 4.
Proof of Theorem 4. Combining (2.8), (5.1) and (5.34) yields

E
[(
R(βS,λ)−R(β0)

)]
≤ 2E [S (S, λ)] + 2A (λ) (5.35)

≤ 2

m
E
[∥∥∥L1/2

C L
1/2
K (f̂S1,λ − fλ)

∥∥∥2

L2

]
+ 2

∥∥∥L1/2
C L

1/2
K E

[
(f̂S1,λ − fλ)

]∥∥∥2

L2
+ 2A (λ)

≤ 2

m
E
[∥∥∥L1/2

C L
1/2
K (f̂S1,λ − fλ)

∥∥∥2

L2

]
+ 2

∥∥∥L1/2
C L

1/2
K E

[
(f̂S1,λ − fλ)

]∥∥∥2

L2
+ 2λ2θ‖γ0‖2L2 .

In the following part of the proof, we aim to bound the terms E
[∥∥∥L1/2

C L
1/2
K (f̂S1,λ − fλ)

∥∥∥2

L2

]
and

∥∥∥L1/2
C L

1/2
K E

[
(f̂S1,λ − fλ)

]∥∥∥2

L2
, respectively. Recalling (5.4) and Y1,i = 〈X1,i, β0〉L2 +

ε1,i,∀1 ≤ i ≤ n, for simplicity of notations, let

αi := L
1/2
K X1,i

〈
X1,i, β0 − L1/2

K fλ

〉
L2
− λfλ, i = 1, 2, · · · , n.

Then

f̂S1,λ − fλ = (λI + TX1)−1 1

n

n∑
i=1

(
αi + L

1/2
K X1,iε1,i

)
.

Using this expression, we can bound E
[∥∥∥L1/2

C L
1/2
K

(
f̂S1,λ − fλ

)∥∥∥2

L2

]
as

E
[∥∥∥L1/2

C L
1/2
K

(
f̂S1,λ − fλ

)∥∥∥2

L2

]
= E

[∥∥∥L1/2
C L

1/2
K

(
f̂S1,λ − fλ

)∥∥∥2

L2
IUc1

]
+ E

[∥∥∥L1/2
C L

1/2
K

(
f̂S1,λ − fλ

)∥∥∥2

L2
IU1
]

(i)

≤ 8
m

N
N (λ)

(
c2λ

2θ‖γ0‖2L2 + σ2
)

+ 2E

∥∥∥∥∥L1/2
C L

1/2
K (λI + TX1)−1 1

n

n∑
i=1

αi

∥∥∥∥∥
2

L2
IU1


+ 2E

∥∥∥∥∥L1/2
C L

1/2
K (λI + TX1)−1 1

n

n∑
i=1

L
1/2
K X1,iε1,i

∥∥∥∥∥
2

L2
IU1

 (5.36)
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(ii)

≤ 8
m

N
N (λ)

(
c2λ

2θ‖γ0‖2L2 + σ2
)

+ 2E

∥∥∥∥∥L1/2
C L

1/2
K (λI + TX1)−1 1

n

n∑
i=1

αi

∥∥∥∥∥
2

L2
IU1


+

2σ2

n2

n∑
i=1

E
[∥∥∥L1/2

C L
1/2
K (λI + TX1)−1L

1/2
K X1,i

∥∥∥2

L2
IU1
]
.

Here inequality (i) follows from (5.5) in Lemma 13 and the triangular inequality. In-
equality (ii) is due to Assumption 2.

We next bound
∥∥∥L1/2

C L
1/2
K E

[
f̂S1,λ − fλ

]∥∥∥2

L2
as

∥∥∥L1/2
C L

1/2
K E

[
f̂S1,λ − fλ

]∥∥∥2

L2

(i)
=

∥∥∥∥∥L1/2
C L

1/2
K E

[
(λI + TX1)−1 1

n

n∑
i=1

αi

]∥∥∥∥∥
2

L2

≤ E

∥∥∥∥∥L1/2
C L

1/2
K (λI + TX1)−1 1

n

n∑
i=1

αi

∥∥∥∥∥
2

L2
IUc1


+ E

∥∥∥∥∥L1/2
C L

1/2
K (λI + TX1)−1 1

n

n∑
i=1

αi

∥∥∥∥∥
2

L2
IU1


(ii)

≤ 4c2
m

N
N (λ)λ2θ‖γ0‖2L2 + E

∥∥∥∥∥L1/2
C L

1/2
K (λI + TX1)−1 1

n

n∑
i=1

αi

∥∥∥∥∥
2

L2
IU1

 .

(5.37)

Here equality (i) is from Assumption 2. Inequality (ii) follows from Jensen’s inequality and
(5.6) in Lemma 13.

The key point in the rest of the proof is to estimate E
[∥∥∥L1/2

C L
1/2
K (λI + TX1)−1 1

n

∑n
i=1 αi

∥∥∥2

L2
IU1
]

and E
[∥∥∥L1/2

C L
1/2
K (λI + TX1)−1L

1/2
K X1,i

∥∥∥2

L2
IU1
]
, ∀1 ≤ i ≤ n. For the first term, we have

E

∥∥∥∥∥L1/2
C L

1/2
K (λI + TX1)−1 1

n

n∑
i=1

αi

∥∥∥∥∥
2

L2
IU1


≤ E

∥∥∥L1/2
C L

1/2
K (λI + T )−1/2

∥∥∥2
∥∥∥∥∥(λI + T )1/2 (λI + TX1)−1 1

n

n∑
i=1

αi

∥∥∥∥∥
2

L2
IU1


(i)

≤ E

∥∥∥∥∥(λI + T )1/2 (λI + TX1)−1 1

n

n∑
i=1

αi

∥∥∥∥∥
2

L2
IU1

 (5.38)

(ii)

≤
[
E
∥∥∥(λI + T )1/2 (λI + TX1)−1 (λI + T )1/2

∥∥∥4
IU1
] 1

2

E∥∥∥∥∥(λI + T )−1/2 1

n

n∑
i=1

αi

∥∥∥∥∥
4

L2

 1
2
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(iii)

≤
[
E
∥∥∥(λI + T )1/2 (λI + TX1)−1 (λI + T )1/2

∥∥∥8
] 1

4

P
1
4 (U1)

E∥∥∥∥∥(λI + T )−1/2 1

n

n∑
i=1

αi

∥∥∥∥∥
4

L2

 1
2

.

Here inequality (i) follows from the fact that∥∥∥L1/2
C L

1/2
K (λI + T )−1/2

∥∥∥2
=
∥∥∥(λI + T )−1/2L

1/2
K LCL

1/2
K (λI + T )−1/2

∥∥∥
=
∥∥∥(λI + T )−1/2T (λI + T )−1/2

∥∥∥ ≤ 1.

Inequalities (ii) and (iii) are from Cauchy-Schwartz inequality.

Analogously, for the second term, we have

E
[∥∥∥L1/2

C L
1/2
K (λI + TX1)−1L

1/2
K X1,i

∥∥∥2

L2
IU1
]

(5.39)

≤
[
E
∥∥∥(λI + T )1/2 (λI + TX1)−1 (λI + T )1/2

∥∥∥8
] 1

4

P
1
4 (U1)

[
E
∥∥∥(λI + T )−1/2L

1/2
K X1,i

∥∥∥4

L2

] 1
2

.

While we can write

E
[∥∥∥(λI + T )−1/2L

1/2
K X1,i

∥∥∥4

L2

]

= E

 ∞∑
j=1

1

λ+ µj

〈
L

1/2
K X1,i, φj

〉2

L2

2
=
∞∑
j=1

∞∑
k=1

1

λ+ µj

1

λ+ µk
E
[〈
L

1/2
K X1,i, φj

〉2

L2

〈
L

1/2
K X1,i, φk

〉2

L2

]
(5.40)

(i)

≤
∞∑
j=1

∞∑
k=1

1

λ+ µj

1

λ+ µk

[
E
〈
L

1/2
K X1,i, φj

〉4

L2

] 1
2
[
E
〈
L

1/2
K X1,i, φk

〉4

L2

] 1
2

(ii)

≤ ρ4
∞∑
j=1

∞∑
k=1

µj
λ+ µj

µk
λ+ µk

= ρ4N 2(λ).

Here {φk}∞k=1 is given by the singular value decomposition of T in (2.9). Inequality (i) is

from Cauchy-Schwartz inequality. Inequality (ii) is due to the decomposition of L
1/2
K X (3.8)

and Assumption 4.

For the term E
[∥∥∥(λI + T )1/2 (λI + TX1)−1 (λI + T )1/2

∥∥∥8
]
, first applying the second-

order decomposition, which was introduced in Guo et al. (2017); Lin et al. (2017); Guo and
Shi (2019), to (λI + TX1)−1 yields that

(λI + TX1)−1 = (λI + T )−1 + (λI + TX1)−1(T − TX1)(λI + T )−1

= (λI + T )−1 + (λI + T )−1(T − TX1)(λI + T )−1

+ (λI + T )−1(T − TX1)(λI + TX1)−1(T − TX1)(λI + T )−1.

(5.41)
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If 2 ≤ ` < 8, applying the above second-order decomposition of (λI + TX1)−1 and taking
λ ≤ 1, we have

E
[∥∥∥(λI + T )1/2 (λI + TX1)−1 (λI + T )1/2

∥∥∥8
]

≤ (1 + µ1)8−` 1

λ8−`E
[∥∥∥(λI + T )1/2 (λI + TX1)−1 (λI + T )1/2

∥∥∥`]
(i)
= (1 + µ1)8−` 3`

λ8−`E

[∥∥∥1

3
I +

1

3
(λI + T )−1/2(T − TX1)(λI + T )−1/2

+
1

3
(λI + T )−1/2(T − TX1)(λI + TX1)−1(T − TX1)(λI + T )−1/2

∥∥∥`]
(ii)

≤ (1 + µ1)8−` 3`−1

λ8−`

{
‖I‖` + E

[∥∥∥(λI + T )−1/2(T − TX1)(λI + T )−1/2
∥∥∥`]

+ E
[∥∥∥(λI + T )−1/2(T − TX1)

∥∥∥2`
]

1

λ`

}
(5.42)

(iii)

≤ (1 + µ1)8−` 3`−1

λ8−`

{
‖I‖` + E

[∥∥∥(λI + T )−1/2(T − TX1)(λI + T )−1/2
∥∥∥2`

HS

] 1
2

+ E
[∥∥∥(λI + T )−1/2(T − TX1)

∥∥∥2`

HS

]
1

λ`

}
(iv)

≤ (1 + µ1)8−` 3`−1

λ8−`

[
1 + c

1
2 (`)2`ρ2`

(
mN 2(λ)

N

) `
2

+ c(`)22`ρ4`trace`(T )
1

λ`

(
mN (λ)

N

)`]

≤ (1 + µ1)837c(8)216ρ32 max
{

1, trace8(T )
} 1

λ8−`

[
1 +

(
mN 2(λ)

N

) `
2

+
1

λ`

(
mN (λ)

N

)`]

= c4
7λ

`−8

[
1 +

(
mN 2(λ)

N

) `
2

+ λ−`
(
mN (λ)

N

)`]
,

where c4
7 := (1 + µ1)837c(8)216ρ32 max

{
1, trace8(T )

}
. Here equality (i) is from the second-

order decomposition of (λI + TX1)−1 (5.41). Inequality (ii) uses Jensen’s inequality. In-
equality (iii) is due to Cauchy-Schwartz inequality and (2.2). Inequality (iv) follows from
estimations (5.19) and (5.20) in Lemma 17.

Analogously, if ` ≥ 8, applying the second-order decomposition of (λI + TX1)−1 (5.41)
and taking λ ≤ 1, we have

E
[∥∥∥(λI + T )1/2 (λI + TX1)−1 (λI + T )1/2

∥∥∥8
]

≤ 37

[
1 + c

1
2 (8)28ρ16

(
mN 2(λ)

N

)4

+ c(8)216ρ32trace8(T )
1

λ8

(
mN (λ)

N

)8
]

≤ c4
7

[
1 +

(
mN 2(λ)

N

)4

+
1

λ8

(
mN (λ)

N

)8
]
, (5.43)
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where c4
7 = (1 + µ1)837c(8)216ρ32 max

{
1, trace8(T )

}
.

We can now prove (3.10).

If 2 ≤ ` < 8, taking λ ≤ 1, for the term E
[∥∥∥L1/2

C L
1/2
K (λI + TX1)−1 1

n

∑n
i=1 αi

∥∥∥2

L2
IU1
]
,

combining (5.38) and (5.42) with (5.18) in Lemma 16 and (5.27) in Lemma 18, we have

E

∥∥∥∥∥L1/2
C L

1/2
K (λI + TX1)−1 1

n

n∑
i=1

αi

∥∥∥∥∥
2

L2
IU1


≤ c6c7c

1
4 (`)2`ρ`λ

`−8
4

[
1 +

(
mN 2(λ)

N

) `
2

+ λ−`
(
mN (λ)

N

)`] 1
4 (

mN 2(λ)

N

) `
4 m

N

(
1 + λ4θN 2(λ)

) 1
2

≤ c6c7c
1
4 (`)2`ρ`λ

`−8
4

[
1 +

(
mN 2(λ)

N

) `
8

+ λ−
`
4

(
mN (λ)

N

) `
4

](
mN 2(λ)

N

) `
4 m

N

(
1 + λ2θN (λ)

)
= b1(`)λ

`−8
4

[
1 +

(
mN 2(λ)

N

) `
8

+ λ−
`
4

(
mN (λ)

N

) `
4

](
mN 2(λ)

N

) `
4 m

N

(
1 + λ2θN (λ)

)
,

where b1(`) := c6c7c
1
4 (`)2`ρ`.

For the term E
[∥∥∥L1/2

C L
1/2
K (λI + TX1)−1L

1/2
K X1,i

∥∥∥2

L2
IU1
]
, ∀1 ≤ i ≤ n, combining (5.39),

(5.40) and (5.42) with (5.18) in Lemma 16, we have

E
[∥∥∥L1/2

C L
1/2
K (λI + TX1)−1L

1/2
K X1,i

∥∥∥2

L2
IU1
]

≤ c7c
1
4 (`)2`ρ`+2λ

`−8
4

[
1 +

(
mN 2(λ)

N

) `
8

+ λ−
`
4

(
mN (λ)

N

) `
4

](
mN 2(λ)

N

) `
4

N (λ)

= b2(`)λ
`−8
4

[
1 +

(
mN 2(λ)

N

) `
8

+ λ−
`
4

(
mN (λ)

N

) `
4

](
mN 2(λ)

N

) `
4

N (λ),

where b2(`) := c7c
1
4 (`)2`ρ`+2.

Then recall that n = N/m, combining the above two estimations with (5.35), (5.36) and
(5.37) yields

E
[(
R(βS,λ)−R(β0)

)]
≤ 2λ2θ‖γ0‖2L2 + 16

N (λ)

N

(
c2λ

2θ‖γ0‖2L2 + σ2
)

+ 8c2
m

N
N (λ)λ2θ‖γ0‖2L2

+ b1(`)λ
`−8
4

[
1 +

(
mN 2(λ)

N

) `
8

+ λ−
`
4

(
mN (λ)

N

) `
4

](
mN 2(λ)

N

) `
4 4 + 2m

N

(
1 + λ2θN (λ)

)
+ b2(`)λ

`−8
4

[
1 +

(
mN 2(λ)

N

) `
8

+ λ−
`
4

(
mN (λ)

N

) `
4

](
mN 2(λ)

N

) `
4 4σ2

N
N (λ).

This completes the proof of (3.10).
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We next give the proof of (3.11).

If ` ≥ 8, taking λ ≤ 1, employing (5.43) and following the same arguments in the proof
of (3.10), we obtain

E

∥∥∥∥∥L1/2
C L

1/2
K (λI + TX1)−1 1

n

n∑
i=1

αi

∥∥∥∥∥
2

L2
IU1


≤ c6c7c

1
4 (`)2`ρ`

[
1 +

mN 2(λ)

N
+

1

λ2

(
mN (λ)

N

)2
](

mN 2(λ)

N

) `
4 m

N

(
1 + λ2θN (λ)

)
= b1(`)

[
1 +

mN 2(λ)

N
+

1

λ2

(
mN (λ)

N

)2
](

mN 2(λ)

N

) `
4 m

N

(
1 + λ2θN (λ)

)
,

where b1(`) = c6c7c
1
4 (`)2`ρ`.

And

E
[∥∥∥L1/2

C L
1/2
K (λI + TX1)−1L

1/2
K X1,i

∥∥∥2

L2
IU1
]

≤ c3c
1
4 (`)2`ρ`+2

[
1 +

mN 2(λ)

N
+

1

λ2

(
mN (λ)

N

)2
](

mN 2(λ)

N

) `
4

N (λ)

= b2(`)

[
1 +

mN 2(λ)

N
+

1

λ2

(
mN (λ)

N

)2
](

mN 2(λ)

N

) `
4

N (λ),

where b2(`) = c7c
1
4 (`)2`ρ`+2.

And then

E
[(
R(βS,λ)−R(β0)

)]
≤ 2λ2θ‖γ0‖2L2 + 16

N (λ)

N
(c2λ

2θ‖γ0‖2L2 + σ2) + 8c2
m

N
N (λ)λ2θ‖γ0‖2L2

+ b1(`)

[
1 +

mN 2(λ)

N
+

1

λ2

(
mN (λ)

N

)2
](

mN 2(λ)

N

) `
4 4 + 2m

N

(
1 + λ2θN (λ)

)
+ b2(`)

[
1 +

mN 2(λ)

N
+

1

λ2

(
mN (λ)

N

)2
](

mN 2(λ)

N

) `
4 4σ2

N
N (λ).

We have completed the proof of inequality (3.11). The proof of Theorem 4 is then finished.

We next prove Corollary 5.

Proof of Corollary 5. We prove the desired bounds in three cases, respectively.
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When 2 ≤ ` ≤ 4, taking λ ≤ 1, (3.10) and (5.9) imply

E
[(
R(βS,λ)−R(β0)

)]
. λ2θ +

λ−p

N
+m

λ2θ−p

N
(5.44)

+ λ
`−8
4

[
1 +

(
mλ−2p

N

) `
8

+ λ−
`
4

(
mλ−p

N

) `
4

](
mλ−2p

N

) `
4
(
m

N
+
mλ2θ−p

N
+
λ−p

N

)
.

Noting that θ ≤ 1
2 ≤

p`+8
4` , taking m ≤ N r for some 0 ≤ r ≤ 2θ

2θ+p , we have

E
[(
R(βS,λ)−R(β0)

)]
. max

{
N

2θ(4+`)(r−1)
8+8θ+2p`−` , N

2θ`(r−1)−8θ
8+4p+8θ+2p`−` , N

2θ(4+2`)(r−1)
8+8θ+3p` , N

4θ`(r−1)−8θ
8+4p+8θ+3p`

}
provided that

λ = max

{
N

(4+`)(r−1)
8+8θ+2p`−` , N

`(r−1)−4
8+4p+8θ+2p`−` , N

(4+2`)(r−1)
8+8θ+3p` , N

2`(r−1)−4
8+4p+8θ+3p`

}
.

This completes the proof of case 2 ≤ ` ≤ 4.

When 5 ≤ ` ≤ 7, taking λ ≤ 1, inequality (5.44) still holds. Then taking λ = N
− 1

2θ+p

yields

E
[(
R(βS,λ)−R(β0)

)]
. N

2θ
2θ+p

provided that p`+8
4` ≤ θ ≤

1
2 and m ≤ min

{
N

8+p`−4p−4θ`
(4+2`)(2θ+p) , N

8+p`−8θ−4θ`
(4+2`)(2θ+p)

}
.

If θ p`+8
4` , take m ≤ N r for some 0 ≤ r ≤ 2θ

2θ+p . Then we have

E
[(
R(βS,λ)−R(β0)

)]
. max

{
N

2θ(4+`)(r−1)
8+8θ+2p`−` , N

2θ`(r−1)−8θ
8+4p+8θ+2p`−` , N

2θ(4+2`)(r−1)
8+8θ+3p` , N

4θ`(r−1)−8θ
8+4p+8θ+3p`

}
provided that

λ = max

{
N

(4+`)(r−1)
8+8θ+2p`−` , N

`(r−1)−4
8+4p+8θ+2p`−` , N

(4+2`)(r−1)
8+8θ+3p` , N

2`(r−1)−4
8+4p+8θ+3p`

}
.

This completes the proof of case 5 ≤ ` ≤ 7.
When ` ≥ 8, taking λ ≤ 1, (3.11) and (5.9) imply

E
[(
R(βS,λ)−R(β0)

)]
. λ2θ +

λ−p

N
+m

λ2θ−p

N

+

(
1 +

mλ−2p

N
+
m2λ−2p−2

N2

)(
mλ−2p

N

) `
4
(
m

N
+
mλ2θ−p

N
+
λ−p

N

)
.

Taking λ = N
− 1

2θ+p yields

E
[(
R(βS,λ)−R(β0)

)]
. N

2θ
2θ+p
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provided that p`+8
2`+16 ≤ θ ≤ 1/2 and m ≤ min

{
N

8+p`−4p−16θ−2θ`
(12+`)(2θ+p) , N

8+p`−24θ−2θ`
(12+`)(2θ+p)

}
.

If θ < p`+8
2`+16 , take m ≤ N r for some 0 ≤ r ≤ 2θ

2θ+p . Then we have

E
[(
R(βS,λ)−R(β0)

)]
. max

{
N

θ(4+`)(r−1)
4θ+p` , N

θ`(r−1)−4θ
2p+4θ+p` , N

θ(12+`)(r−1)
4+4p+4θ+p` , N

θ(8+`)(r−1)−4θ
4+6p+4θ+p`

}
provided that

λ = max

{
N

(4+`)(r−1)
8θ+2p` , N

`(r−1)−4
4p+8θ+2p` , N

(12+`)(r−1)
8+8p+8θ+2p` , N

(8+`)(r−1)−4
8+12p+8θ+2p`

}
.

We have completed the proof of case ` ≥ 8. Then proof of Corollary 5 is then finished.

We next turn to prove Theorem 6 and Corollary 7. If Assumption 5 is satisfied, we can
estimate the probability of event U1 better than Lemma 14 and Lemma 16.

Lemma 20 Suppose that Assumption 5 is satisfied, then there holds

P(U1) ≤ c4
4

(
1 +

m2N 2(λ)

N2

)
N (λ) exp

(
−c5

N

mN (λ)

)
. (5.45)

Where c4 and c5 are universal constants and N (λ) is the effective dimension given by (3.4).

Proof Our proof relies on the Bernstein’s inequality for the sum of self-adjoint random
operators (see, Lemma 25). Recalling (5.4), define

ζi := (λI +T )−1/2L
1/2
K X1,i⊗L1/2

K X1,i(λI +T )−1/2 and ηi :=
1

n
(ζi − E[ζi]) , 1 ≤ i ≤ n.

Then we can write

(λI + T )−1/2(TX1 − T )(λI + T )−1/2 =
n∑
i=1

ηi.

Using expression (3.8), we have∥∥∥(λI + T )−1/2L
1/2
K X ⊗ L1/2

K X(λI + T )−1/2
∥∥∥

= sup
‖f‖L2=1,‖g‖L2=1

〈
(λI + T )−1/2L

1/2
K X ⊗ L1/2

K X(λI + T )−1/2f, g
〉
L2

≤
∥∥∥(λI + T )−1/2L

1/2
K X

∥∥∥2

L2
=
∞∑
k=1

µk
λ+ µk

ξ2
k

(∗)
≤ ρ2

∞∑
k=1

µk
λ+ µk

= ρ2N (λ).

(5.46)

Here inequality (∗) is from Assumption 5.
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Then for any 1 ≤ i ≤ n, one can calculate

‖ηi‖ =

∥∥∥∥ 1

n
(ζi − E[ζi])

∥∥∥∥ (i)

≤ 1

n
‖ζi‖+

1

n
E [‖ζi‖]

(ii)

≤ 2ρ2N (λ)

n
. (5.47)

Here inequality (i) uses the triangle inequality and Jensen’s inequality. Inequality (ii) follows
from (5.46). And then we have

∥∥∥E [(η)2
]∥∥∥ =

∥∥∥∥∥∥E
( n∑

i=1

ηi

)2
∥∥∥∥∥∥

(i)
= sup

f∈L2(T ),‖f‖L2=1

n∑
i=1

〈
f,E[η2

i ]f
〉
L2

=
1

n2
sup

f∈L2(T ),‖f‖L2=1

n∑
i=1

(〈
f,E[ζ2

i ]f
〉
L2 −

〈
f, [Eζi]2f

〉
L2
)

≤ 1

n2
sup

f∈L2(T ),‖f‖L2=1

n∑
i=1

〈
f,E[ζ2

i ]f
〉
L2 (5.48)

=
1

n2
sup

f∈L2(T ),‖f‖L2=1

n∑
i=1

E
[〈

(λI + T )−1/2L
1/2
K X1,i, f

〉2

L2

∥∥∥(λI + T )−1/2L
1/2
K X1,i

∥∥∥2

L2

]
(ii)

≤ ρ2N (λ)

n2
sup

f∈L2(T ),‖f‖L2=1

n∑
i=1

E

( ∞∑
k=1

√
1

λ+ µk
〈f, φk〉L2

〈
L

1/2
K X1,i, φk

〉
L2

)2


(iii)
= ρ2N (λ)

n2
sup

f∈L2(T ),‖f‖L2=1

n∑
i=1

∞∑
k=1

µk
λ+ µk

〈f, φk〉2L2 ≤ ρ
2N (λ)

n
.

Here equality (i) is due to the equivalent expression of the operator norm of a nonnegative
operator (2.1) and the fact that E[ηi] = 0. Inequality (ii) follows from the fact that∥∥∥(λI + T )−1/2L

1/2
K X1,i

∥∥∥2

L2
≤ ρ2N (λ)

which is given by (5.46). Equality (iii) is from the fact that

E
[〈
L

1/2
K X,φj

〉
L2

〈
L

1/2
K X,φk

〉
L2

]
= 〈Tφj , φk〉L2 = µkδ

k
j ,

We also need the following estimate given by

trace
(
E
[
(η)2

])
(i)
=
∞∑
k=1

〈
E

( n∑
i=1

ηi

)2
φk, φk

〉
L2

=
n∑
i=1

∞∑
k=1

〈
E
[
η2
i

]
φk, φk

〉
L2 ≤

1

n2

n∑
i=1

∞∑
k=1

〈
E
[
ζ2
i

]
φk, φk

〉
L2

=
1

n2

n∑
i=1

∞∑
k=1

1

λ+ µk
E
[∥∥∥(λI + T )−1/2L

1/2
K X1,i

∥∥∥2

L2

〈
L

1/2
K X1,i, φk

〉2

L2

]
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(ii)

≤ ρ2N (λ)

n2

n∑
i=1

∞∑
k=1

1

λ+ µk
E
[〈
L

1/2
K X1,i, φk

〉2

L2

]
(iii)

≤ ρ2N 2(λ)

n
. (5.49)

Here equality (i) is from the formulation of the trace norm of an operator (2.3). Inequality

(ii) is due to the fact that
∥∥∥(λI + T )−1/2L

1/2
K X1,i

∥∥∥2

L2
≤ ρ2N (λ). Inequality (iii) follows from

the calculation that
∑∞

k=1
1

λ+µk
E
[〈
L

1/2
K X1,i, φk

〉2

L2

]
= µk

λ+µk
= N (λ).

Recall that n = N/m. Based on (5.47), (5.48) and (5.49), one can apply Lemma 25

with L = 2ρ2mN (λ)
N , v = ρ2mN (λ)

N , d = N (λ) and s = 1/2 to obtain

P(U1) = P

(∥∥∥∥∥
n∑
i=1

ηi

∥∥∥∥∥ ≥ 1/2

)

≤

[
1 + 6

(
ρ2 4mN (λ)

N
+ ρ2 4mN (λ)

3N

)2
]
N (λ) exp

(
− 3N

32ρ2mN (λ)

)
≤ c4

4

(
1 +

m2N 2(λ)

N2

)
N (λ) exp

(
−c5

N

mN (λ)

)
,

where c4
4 :=

[
1 + 6

(
4ρ2 + 4ρ2

3

)2
]

and c5 := 3
32ρ2

. The proof is then completed.

Now we can prove Theorem 6.
Proof of Theorem 6. Under Assumption 5, there holds

∥∥∥L1/2
K X

∥∥∥
L2

=

( ∞∑
k=1

µkξ
2
k

) 1
2

≤ ρ

( ∞∑
k=1

µk

) 1
2

= ρ · trace
1
2 (T ). (5.50)

Therefore, recalling (5.4), for any 1 ≤ i ≤ n, we can write

E
[∥∥∥L1/2

C L
1/2
K (λI + TX1)−1L

1/2
K X1,i

∥∥∥2

L2
IU1
]

≤ µ1

λ2
E
[∥∥∥L1/2

K X1,i

∥∥∥2

L2
IU1
]

(i)

≤ µ1

λ2

[
E
∥∥∥L1/2

K X1,i

∥∥∥4

L2

] 1
2

P
1
2 (U1) (5.51)

(ii)

≤ c4µ1ρ
2trace(T )

1

λ2

(
1 +

mN (λ)

N

)
N

1
2 (λ) exp

(
− c5N

2mN (λ)

)
.

Here inequality (i) is from Cauchy-Schwartz inequality. Inequality (ii) follows from (5.45)
in Lemma 20 and (5.51).

Then under Assumption 1 and 5, one can calculate

E
[∥∥∥L1/2

K X
〈
X,β0 − L1/2

K fλ

〉
L2

∥∥∥4

L2

]
(i)

≤ ρ4trace2(T )E
[〈
X,β0 − L1/2

K fλ

〉4

L2

]
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(ii)

≤ c1ρ
4trace2(T )

[
E
〈
X,β0 − L1/2

K fλ

〉2

L2

]2

= c1ρ
4trace2(T )

∥∥∥L1/2
C

(
β0 − L1/2

K fλ

)∥∥∥4

L2
(iii)

≤ c1ρ
4trace2(T )‖γ0‖4L2λ

4θ,

where inequality (i) follows from (5.51), inequality (ii) uses the fourth-moment condition
(3.3) and inequality (iii) is due to Lemma 11. Then employing the above bound and
following the same estimates in the proof of (5.27), taking λ ≤ 1, we obtain

E

∥∥∥∥∥ 1

n

n∑
i=1

(
L

1/2
K X1,i

〈
X1,i, β0 − L1/2

K fλ

〉
L2
− λfλ

)∥∥∥∥∥
4

L2


≤ 192m2

N2

(
c1ρ

4trace2(T )‖γ0‖4L2λ
4θ + µ4θ

1 ‖γ0‖4L2λ
2
)
≤ c2

3

m2

N2
λ4θ,

(5.52)

where c3 := 192
(
c1ρ

4trace2(T )||γ0||4L2 + max{µ2
1, 1}||γ0||4L2

)
.

For simplicity of notations, define

αi := L
1/2
K X1,i

〈
X1,i, β0 − L1/2

K fλ

〉
L2
− λfλ, i = 1, 2, · · · , n.

Then we can write

E

∥∥∥∥∥L1/2
C L

1/2
K (λI + TX1)−1 1

n

n∑
i=1

αi

∥∥∥∥∥
2

L2
IU1


≤ µ1

λ2
E

∥∥∥∥∥ 1

n

n∑
i=1

αi

∥∥∥∥∥
2

L2
IU1

 (i)

≤ µ1

λ2

E∥∥∥∥∥ 1

n

n∑
i=1

αi

∥∥∥∥∥
4

L2

 1
2

P
1
2 (U1) (5.53)

(ii)

≤ c3c4µ1
m

Nλ2−2θ

(
1 +

mN (λ)

N

)
N

1
2 (λ) exp

(
− c5N

2mN (λ)

)
.

Here inequality (i) is due to Cauchy-Schwartz inequality. Inequality (ii) is from (5.45) in
Lemma 20 and (5.52).

Finally, employing estimates (5.51) and (5.53), we follow the same arguments in the
proof of (3.10) and then obtain

E
[(
R(βS,λ)−R(β0)

)]
≤ 2λ2θ‖γ0‖2L2 + 16

N (λ)

N

(
c1λ

2θ‖γ0‖2L2 + σ2
)

+ 8c1
m

N
N (λ)λ2θ‖γ0‖2L2

+ c3c4µ1
4 + 2m

Nλ2−2θ

(
1 +

mN (λ)

N

)
N

1
2 (λ) exp

(
− c5N

2mN (λ)

)
+ c4µ1ρ

2trace(T )
4σ2

Nλ2

(
1 +

mN (λ)

N

)
N

1
2 (λ) exp

(
− c5N

2mN (λ)

)
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The proof of Theorem 6 is then finished.

We next turn to prove Corollary 7.

Proof of Corollary 7. Taking m ≤ o
(
N

2θ
2θ+p

logN

)
and λ = N

− 1
2θ+p , (5.9) implies

m
N (λ)

N
. m

λ−p

N
≤ o

(
1

logN

)
.

Therefore, for any r > 0, there holds

lim inf
N→∞

N r exp

(
− c5N

2mN (λ)

)
= 0.

Then using Theorem 6, we obtain

E
[
R(βS,λ)−R(β0)

]
. λ2θ +

N (λ)

N
+m
N (λ)

N
λ2θ . N

− 2θ
2θ+p .

The proof of Corollary 7 is then finished.

Finally, we will provide the proof of Theorem 9. Before that, we establish the following
lemma to estimate P(U1) based on Assumption 6.

Lemma 21 Suppose that Assumption 6 is satisfied, then there holds

P(U1) ≤

[
1 + 6

(
4mκ2

Nλt
+

4mκ2

3Nλt

)2
]
N (λ) exp

(
− 3Nλt

32mκ2

)
. (5.54)

Proof Our proof relies on Lemma 25. Recalling (5.4) and the definition of U1 given by

U1 =
{
X1 :

∥∥∥(λI + T )−1/2(TX1 − T )(λI + T )−1/2
∥∥∥ ≥ 1/2

}
,

let

ζi := (λI +T )−1/2L
1/2
K X1,i⊗L1/2

K X1,i(λI +T )−1/2 and ηi :=
1

n
(ζi − E[ζi]) , 1 ≤ i ≤ n.

Then

(λI + T )−1/2(TX1 − T )(λI + T )−1/2 =

n∑
i=1

ηi.

Due to the decomposition of L
1/2
K X in (3.8), there holds∥∥∥(λI + T )−1/2L

1/2
K X ⊗ L1/2

K X(λI + T )−1/2
∥∥∥

=
∑

‖f‖L2=1,‖g‖L2=1

〈
(λI + T )−1/2L

1/2
K X ⊗ L1/2

K X(λI + T )−1/2f, g
〉
L2

≤
∥∥∥(λI + T )−1/2L

1/2
K X

∥∥∥2

L2
=

∞∑
k=1

µ1−t
k µtkξ

2
k

λ+ µk
≤ 1

λt

∞∑
k=1

µtkξ
2
k

(∗)
≤ κ2

λt
. (5.55)
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Here inequality (∗) follows from Assumption 6. Then for any 1 ≤ i ≤ n,

‖ηi‖ =

∥∥∥∥ 1

n
(ζi − E[ζi])

∥∥∥∥ ≤ 1

n
‖ζi‖+

1

n
E [‖ζi‖]

(†)
≤ 2κ2

n
. (5.56)

Here inequality (†) follows from (5.55) and the definition that ζi = (λI + T )−1/2L
1/2
K X1,i ⊗

L
1/2
K X1,i(λI + T )−1/2.

Following the same arguments of (5.48), we have∥∥E [(η)2
]∥∥

≤ 1

n2
sup

f∈L2(T ),‖f‖L2=1

n∑
i=1

E
[〈

(λI + T )−1/2L
1/2
K X1,i, f

〉2

L2

∥∥∥(λI + T )−1/2L
1/2
K X1,i

∥∥∥2

L2

]
=

1

n
sup

f∈L2(T ),‖f‖L2=1

E
[〈

(λI + T )−1/2L
1/2
K X, f

〉2

L2

∥∥∥(λI + T )−1/2L
1/2
K X

∥∥∥2

L2

]
(5.57)

(i)

≤ κ2

nλt
sup

f∈L2(T ),‖f‖L2=1

E

( ∞∑
k=1

√
µk

λ+ µk
〈f, φk〉L2ξk

)2


(ii)

≤ κ2

nλt
sup

f∈L2(T ),‖f‖L2=1

∞∑
k=1

µk
λ+ µk

〈f, φk〉2L2 ≤
κ2

nλt
.

Here inequality (i) is from (5.55) and inequality (ii) is due to the decomposition of L
1/2
K X

in (3.8) and the fact that E[ξjξk] = δkj . And following the same arguments of (5.49), we
have

trace(E[(η)2])

≤ 1

n2

n∑
i=1

∞∑
k=1

1

λ+ µk
E
[∥∥∥(λI + T )−1/2L

1/2
K X1,i

∥∥∥2

L2
〈L1/2

K X1,i, φk〉2L2
]

=
1

n

∞∑
k=1

1

λ+ µk
E
[∥∥∥(λI + T )−1/2L

1/2
K X

∥∥∥2

L2
〈L1/2

K X,φk〉2L2
]

(†)
≤ κ2

nλt

∞∑
k=1

µk
λ+ µk

E
[
ξ2
k

]
≤ κ2N (λ)

nλt
. (5.58)

Here inequality (†) is from (5.55) and decomposition of L
1/2
K X (3.8).

Recall that n = N/m. (5.56), (5.57) and (5.58) imply that we can employ Lemma 25

with L = 2mκ2

Nλt , v = mκ2

Nλt , d = N (λ) and s = 1/2 to obtain

P(U1) = P

(∥∥∥∥∥
n∑
i=1

ηi

∥∥∥∥∥ ≥ 1/2

)

≤

[
1 + 6

(
4mκ2

Nλt
+

4mκ2

3Nλt

)2
]
N (λ) exp

(
− 3Nλt

32mκ2

)
.
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This completes the proof.

Now we are ready to prove Theorem 9.
Proof of Theorem 9. Recalling (5.4) and Y1,i = 〈X1,i, β0〉L2 + ε1,i,∀1 ≤ i ≤ n, we define

αi = L
1/2
K X1,i

〈
X1,i, β0 − L1/2

K fλ

〉
L2
− λfλ, i = 1, 2, · · · , n.

Under Assumption 6, we have

∥∥∥L1/2
K X

∥∥∥
L2

=

( ∞∑
k=1

µkξ
2
k

) 1
2

≤ µ
1−t
2

1

( ∞∑
k=1

µtkξ
2
k

) 1
2

≤ µ
1−t
2

1 κ.

Employing the above estimation and (5.54), following the same arguments in the proof of
Theorem 6, we have

E
[∥∥∥L1/2

C L
1/2
K (λI + TX1)−1L

1/2
K X1,i

∥∥∥2

L2
IU1
]

.
1

λ2

(
1 +

m

Nλt

)
N

1
2 (λ) exp

(
− 3Nλt

64mκ2

)
and

E

∥∥∥∥∥L1/2
C L

1/2
K (λI + TX1)−1 1

n

n∑
i=1

αi

∥∥∥∥∥
2

L2
IU1


.

m

Nλ2−2θ

(
1 +

m

Nλt

)
N

1
2 (λ) exp

(
− 3Nλt

64mκ2

)
and then

E
[(
R(βS,λ)−R(β0)

)]
. λ2θ +

N (λ)

N
+
m

N
N (λ)λ2θ

+
m

Nλ2−2θ

(
1 +

m

Nλt

)
N

1
2 (λ) exp

(
− 3Nλt

64mκ2

)
(5.59)

+
1

Nλ2

(
1 +

m

Nλt

)
N

1
2 (λ) exp

(
− 3Nλt

64mκ2

)
.

Recall that {µk}k≥1 satisfy µk . k−1/p for some 0 < p ≤ 1.

When max{0, t/2 − p/2} ≤ θ ≤ 1/2, taking m ≤ o

(
N

2θ+p−t
2θ+p

logN

)
and λ = N

− 1
2θ+p yields

that for any r > 0, there holds

lim sup
N→∞

N r exp

(
− 3Nλt

64mκ2

)
= 0, as

m

Nλt
≤ o

(
1

logN

)
.

Then combining with (5.9) and (5.59), we have

E
[(
R(βS,λ)−R(β0)

)]
. λ2θ +

λ−p

N
+
mλ2θ−p

N
. N

− 2θ
2θ+p
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When θ < max{0, t/2 − p/2} which implies t > p > 0, taking m ≤ o (logN) and

λ = N−
1
t (logN)−

2
t yields that for any r > 0, there holds

lim sup
N→∞

N r exp

(
− 3Nλt

64mκ2

)
= 0, as

m

Nλt
≤ o

(
1

logN

)
.

Then combining with (5.9) and (5.59), we have

E
[(
R(βS,λ)−R(β0)

)]
. λ2θ +

λ−p

N
+
mλ2θ−p

N
. N−

2θ
t (logN)−

4θ
t .

We have completed the proof of Theorem 9.

5.2 Mini-max Lower Rates

In this subsection, we establish the lower bound in Theorem 2. Before that, we present some
crucial results used in our proof. Our analysis of lower bound bases on Fano’s method,
which provides lower bound in nonparametric estimation problem and was proposed by
Khas (1979). Fano’s method has been a crucial method in minimax lower bound estimation
problem since it was proposed, and has inspired many following studies (see, e.g., Yang
and Barron, 1999; Guntuboyina, 2011; Candes and Davenport, 2013). The following lemma
is a direct application of Fano’s method (see, for example, Yang and Barron, 1999). To
this end, recall that the Kullback-Leibler divergence (KL-divergence) of two probability
measures P,Q on a general space (Ω,F ) is defined as

Dkl(P‖Q) :=

∫
Ω

log

(
dP

dQ

)
dP,

if P is absolutely continuous with respect to Q, and otherwise Dkl(P‖Q) :=∞. Recall that

for β ∈ L2(T ), L
1/2
C β ∈ ranT θ∗ if β satisfied the regularity condition (3.1), i.e.,

L
1/2
C β = T θ∗ (γ) with 0 < θ ≤ 1/2 and some γ ∈ L2(T ).

Lemma 22 Suppose that there exist constants r,R > 0 and β1, β2, · · · , βL ∈ L2(T ) for
some integer L ≥ 2, such that

L
1/2
C βi ∈ ranT θ∗ ,

∥∥∥L1/2
C (βi − βj)

∥∥∥
L2
≥ 2r and Dkl(Pi‖Pj) ≤ R, ∀1 ≤ i 6= j ≤ L, (5.60)

where Pi denotes the joint probability distribution of (X,Y ) with

Y =

∫
T
βi(t)X(t)dt+ ε.

Here ε is independent of X satisfying E[ε] = 0 and E[ε2] ≤ σ2. Then we have

inf
β̂S

sup
β0

P
{
R(β̂S)−R(β0) ≥ r2

}
≥ 1− NR+ log 2

logL
, (5.61)
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where the supremum is taken over all β0 ∈ L2(T ) satisfying L
1/2
C β0 ∈ ranT θ∗ and the infimum

is taken over all possible predictors β̂S ∈ L2(T ) based on the training sample set S =
{(Xi, Yi)}Ni=1 consisting of independent copies of (X,Y ) with

Y =

∫
T
β0(t)X(t)dt+ ε.

In the followings, we first construct a family of {βi}Li=1 satisfying (5.60) with suitable
r,R and L, and then apply Lemma 22 to establish the lower bound. Note that establishing
a lower bound for a particular instance directly provides a lower bound for the general sce-
nario. Consequently, it is adequate to examine the situation where ε represents a Gaussian
random variable with zero mean, characterized by E[ε2] = σ2. The following lemma is from
the formulation of KL-divergence of two Gaussian distribution (see Duchi, 2016, Example
2.7), which can further facilitate the calculation.

Lemma 23 Suppose that ε is a zero-mean Gaussian random variable independent of X sat-
isfying E[ε2] = σ2¿0. For βi ∈ L2(T ), i = 1, 2, let Pi denote the joint probability distribution
of (X,Y ) with

Y =

∫
T
βi(t)X(t)dt+ ε.

Then

Dkl(P1‖P2) =
1

2σ2

∥∥∥L1/2
C (β1 − β2)

∥∥∥2

L2
. (5.62)

Our construction of {βi}Li=1 relies on the following lemma which is known as Gilbert-
Varshamov bound (see Duchi, 2016, Lemma 7.5).

Lemma 24 Let M ≥ 8. There exists a subset Λ ⊂ HM = {−1, 1}M of size |Λ| ≥ exp(M/8)
such that ∥∥ι− ι′∥∥

1
= 2

M∑
i=1

I{ιj 6=ι′j} ≥M/2

for any ι 6= ι′ with ι, ι′ ∈ Λ.

Now we are in the position to prove Theorem 2.

Proof of Theorem 2. Recall that the eigenvalues of T∗ denoted by {µk}k≥1 are sorted in
decreasing order with geometric multiplicities and satisfy µk � k−1/p for some 0 < p ≤ 1,
which implies there exists c > 0 independent of j such that

µk+1 ≤ µk and ck−1/p ≤ µk ≤
1

c
k−1/p, ∀k ≥ 1. (5.63)

We only consider the case that ε is from the Gaussian distribution N(0, σ2) and independent
of X, then the Assumption 2 is satisfied with σ > 0.

For L ≥ 2, we construct {βi}Li=1 according to Lemma 24. Take M = daN
p

p+2θ e, which

denotes the smallest integer larger than aN
p

p+2θ for some constant a > 8 to be specified
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later. Let ι(1), · · · , ι(L) ∈ {−1,+1}M be given by Lemma 24 with L ≥ exp(M/8). Given
0 < θ ≤ 1/2, define

L
1/2
C βi =

2M∑
k=M+1

1√
M
µθkι

(i)
k−Mϕk = T θ∗ (γi), i = 1, · · · , L, (5.64)

where {ϕk}k≥1 are the eigenvectors (corresponding to eigenvalue µk) of T∗ which constitutes

the orthonormal bases of L2(T ), and γi =
∑2M

k=M+1
1√
M
ι
(i)
k−Mϕk satisfies ‖γi‖2L2 = 1. Then

L
1/2
C βi ∈ ranT θ∗ with 0 < θ ≤ 1/2 for i = 1, · · · , L.

We next determine the positive constants r and R in (5.60) for {βi}Li=1 defined above.
For 1 ≤ i, j ≤ L, we apply Lemma 5.60 and (5.63) to obtain

∥∥∥L1/2
C (βi − βj)

∥∥∥2

L2
=

2M∑
k=M+1

1

M
µ2θ
k

(
ι
(i)
k−M − ι

(j)
k−M

)2

≥ µ2θ
2M

4

M

2M∑
k=M+1

I{ι(i)k−M 6=ι(j)k−M}

≥ µ2θ
2M

4

M

M

4
≥ c2θ2

− 2θ
p M

− 2θ
p ,

where the last two inequalities are from (5.63). Therefore, we can take r = 1
2

√
c2θ2

− 2θ
p M

− 2θ
p .

To determine R, we turn to bound Dkl(Pi‖Pj) where {Pi}Li=1 are the joint probability dis-
tributions of (X,Y ) with Y = 〈X,βi〉L2 + ε and ε ∼ N(0, σ2). Then, using lemma 23 and
(5.64) yields

Dkl(Pi‖Pj) =
1

2σ2

∥∥∥L1/2
C (βi − βj)

∥∥∥2

L2

=
1

2σ2

2M∑
k=M+1

1

M
µ2θ
k (ι

(i)
k−M − ι

(j)
k−M )2

≤ 2

σ2
µ2θ
M ≤

2

σ2c2θ
M
− 2θ
p ,

where the last two inequalities are also due to (5.63). Thus, we can take R = 2
σ2c2θ

M
− 2θ
p .
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Finally, let r = 1
2

√
c2θ2

− 2θ
p M

− 2θ
p , R = 2

σ2c2θ
M
− 2θ
p in Lemma 22 with L ≥ exp (M/8)

and M = daN
p

p+2θ e. Then there holds

inf
β̂S

sup
β0

P
{
R(β̂S)−R(β0) ≥ c2θ

4
2
− 2θ
p a
− 2θ
p N

− 2θ
p+2θ

}

≥ 1−
2N
σ2c2θ

M
− 2θ
p + log 2

M/8
≥ 1−

2N
σ2c2θ

M
− 2θ
p + log 2

M/8

= 1− 16

σ2c2θ
NM

− 2θ+p
p − 8 log 2

M

≥ 1− a−
2θ+p
p

16

σ2c2θ
N

1− p
2θ+p

· 2θ+p
p − 8 log 2

aN
p

p+2θ

= 1− a−
2θ+p
p

16

σ2c2θ
− 8 log 2

a
N
− p
p+2θ .

Therefore, we have

inf lim
N→∞

inf
β̂S

sup
β0

P
{
R(β̂S)−R(β0) ≥ c2θ

4
2
− 2θ
p a
− 2θ
p N

− 2θ
p+2θ

}
= 1− a−

2θ+p
p

16

σ2c2θ

and then

lim
a→∞

inf lim
N→∞

inf
β̂S

sup
β0

P
{
R(β̂S)−R(β0) ≥ c2θ

4
2
− 2θ
p a
− 2θ
p N

− 2θ
p+2θ

}
= 1.

Taking γ = c2θ

4 2
− 2θ
p a
− 2θ
p , we have

lim
γ→0

inf lim
N→∞

inf
β̂S

sup
β0

P
{
R(β̂S)−R(β0) ≥ γN−

2θ
2θ+p

}
= 1.

This completes the proof of Theorem 2.
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Appendix A.

The lemma below provides Bernstein’s inequality for the sum of self-adjoint random oper-
ators on a Hilbert space. The proof of this lemma can be found in Minsker (2017).

Lemma 25 Consider a finite sequence {ηi}i≥1 of independent random self-adjoint operators
on a separable Hilbert space H. Assume that

E[ηi] = 0 and ||ηi|| ≤ L for each i

Define the random operator η :=
∑

i≥1 ηi. Suppose there are constant v, d > 0 such that∥∥E[η2]
∥∥ ≤ v and trace

(
E[η2]

)
≤ vd. Then for all s ≥ 0,

P(||η|| ≥ s) ≤

[
1 + 6

(
v

s2
+
L

3s

)2
]
d exp

(
− s2

2(v + Ls/3)

)
We next give the proof of Lemma 10.

Proof of Lemma 10. Using the Courant-Fischer mini-max principle Theorem (see Hsing
and Eubank, 2015, Theorem 4.2.7), there holds

ρk(L
1/2
A LBL

1/2
A ) = max

v1,··· ,vk∈H
min

v∈span{v1,··· ,vk}

〈L1/2
A LBL

1/2
A v, v〉H

‖v‖2H

= max
v1,··· ,vk∈H

min
v∈span{v1,··· ,vk}

〈LBL1/2
A v, L

1/2
A v〉H

‖L1/2
A v‖2H

‖L1/2
A v‖2H
‖v‖2H

≤ max
L
1/2
A v1,··· ,L1/2

A vk∈H
min

L
1/2
A v∈span{L1/2

A v1,··· ,L1/2
A vk}

〈LBL1/2
A v, L

1/2
A v〉H

‖L1/2
A v‖2H

‖LA‖

(†)
≤ max

e1,··· ,ek∈H
min

e∈span{e1,··· ,ek}

〈LBe, e〉H
‖e‖2H

‖LA‖ = ρk(LB)‖LA‖,

where {v1, · · · , vk} and {e1, · · · , ek} are two groups of k linearly independent elements in

H. Inequality (†) uses the fact that L
1/2
A v1, · · · , L1/2

A vk are linearly independent which is

deduced from the assumption ran(L
1/2
A ) = H. The proof of Lemma 10 is then finished.
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