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Nestor Parolya n.parolya@tudelft.nl
Department of Applied Mathematics
Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Erik Thorsén erik.thorsen@math.su.se

Department of Mathematics

Stockholm University
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Abstract

In this paper, we construct a shrinkage estimator of the global minimum variance (GMV)
portfolio by combining two techniques: Tikhonov regularization and direct shrinkage of
portfolio weights. More specifically, we employ a double shrinkage approach, where the
covariance matrix and portfolio weights are shrunk simultaneously. The ridge parameter
controls the stability of the covariance matrix, while the portfolio shrinkage intensity shrinks
the regularized portfolio weights to a predefined target. Both parameters simultaneously
minimize, with probability one, the out-of-sample variance as the number of assets p and
the sample size n tend to infinity, while their ratio p/n tends to a constant c > 0. This
method can also be seen as the optimal combination of the well-established linear shrinkage
approach of Ledoit and Wolf (2004) and the shrinkage of the portfolio weights by Bodnar
et al. (2018). No specific distribution is assumed for the asset returns, except for the
assumption of finite moments of order 4 + ε for ε > 0. The performance of the double
shrinkage estimator is investigated via extensive simulation and empirical studies. The
suggested method significantly outperforms its predecessor (without regularization) and
the nonlinear shrinkage approach in terms of the out-of-sample variance, Sharpe ratio, and
other empirical measures in the majority of scenarios. Moreover, it maintains the most
stable portfolio weights with uniformly smallest turnover.

Keywords: shrinkage estimator, high dimensional covariance matrix, random matrix
theory, minimum variance portfolio, parameter uncertainty, ridge regularization

1. Introduction

The global minimum variance (GMV) portfolio is the portfolio with the smallest variance
among all optimal portfolios, which are the solutions to the mean-variance optimization
problem suggested in the seminal paper of Harry Markowitz (see, Markowitz (1952)). This
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Regularized Shrinkage of Large Portfolios

portfolio has become one of the most commonly used in the literature (see, e.g., Golosnoy
and Okhrin (2007), Ledoit and Wolf (2020b) and the references therein). The GMV portfolio
is the only optimal portfolio whose weights are solely determined by the covariance matrix of
the asset returns and do not depend on the mean vector. This property has been recognized
as very important due to the fact that the estimation error in the means is several times
larger than the estimation error in the variances and covariances of the asset returns (see,
Merton (1980), Best and Grauer (1991), Kan et al. (2022)).

In the original optimization problem, the GMV portfolio is obtained as the solution of

min
w

w>Σw subject to w>1 = 1, (1)

and its weights are given by

wGMV =
Σ−11

1>Σ−11
. (2)

Since the covariance matrix Σ is an unknown quantity, the GMV portfolio cannot be con-
structed using (2). Markowitz (1959) suggests the application of the sample estimator of
wGMV instead of (2) given by

ŵGMV =
S−1
n 1

1>S−1
n 1

, (3)

where Sn is the sample estimator of the covariance matrix Σ expressed as

Sn =
1

n

(
Yn − ȳn1

>
)(

Yn − ȳn1
>
)>

with ȳn =
1

n
Yn1, (4)

where Yn = [y1, ...,yn] is the p × n observation matrix and yi, i = 1, .., n, is the p-
dimensional vector of asset returns observed at time i. As such, the sample GMV portfolio
with weights (3) may be considered as the solution of the optimization problem (1) where
the unknown covariance matrix Σ is replaced by Sn, namely,

min
w

w>Snw subject to w>1 = 1. (5)

There are several other estimators of the GMV portfolio weights in the literature (see,
e.g., Ledoit and Wolf (2004), Frahm and Memmel (2010), Tu and Zhou (2011), DeMiguel
et al. (2013), Li et al. (2016), Ledoit and Wolf (2017), Lai et al. (2018), Bodnar et al. (2018),
Lai et al. (2020) to mention a few). All of these methods either shrink the covariance
matrix and use it for the estimation of the GMV portfolio, or they shrink the portfolio
weights directly to a certain target. To the best of our knowledge, none of the existing
approaches combine both procedures into one, in an applicable and theoretical framework
in the high-dimensional setting.

Using Sn instead of Σ may produce a very noisy estimator of the portfolio weights.
There are many ways to cope with this estimation uncertainty, while the new suggested
approach relies on two distinct features. First, the linear shrinkage estimator from Bodnar
et al. (2018) has proven to provide good results in terms of the out-of-sample variance
and to be robust for high-dimensional portfolios. It does not, however, reduce the size
of the positions or the variance (as measured by turnover) of the portfolio weights, (see,
e.g., Bodnar et al. (2023b)). This leads us to the second feature. The single source of
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uncertainty in the GMV portfolio is Sn. If one can stabilize or decrease the variance of the
sample covariance matrix, then the variance of the weights may decrease as well. The aim is
therefore to shrink the sample covariance matrix in addition to portfolio weights. This leads
to a new estimator for the weights of the GMV portfolio, derived from a double shrinkage
approach. In the empirical study, we show that the new portfolio outperforms the existing
approaches based on both the linear shrinkage estimator of the portfolio weights and the
nonlinear shrinkage estimator of the covariance matrix. The application of the Tikhonov
regularization (see, e.g., Tikhonov et al. (1995)) to the optimization problem (5) yields

min
w

w>Snw + ηw>w subject to w>1 = 1, (6)

where η is the regularization parameter. Similar approaches are employed in regression anal-
ysis, where the ridge regression uses Tikhonov regularization to stabilize the least squares
estimator of the coefficients of the regression line (cf., Golub et al. (1999)). The solution of
(6) is given by

ŵS;λ =
(Sn + ηI)−11

1>(Sn + ηI)−11
. (7)

Without loss of generality, we set η = 1
λ − 1 where λ ∈ (0, 1]. Using this representation and

Sλ = λSn + (1− λ)I

instead of Σ in (2) results in the same solution. However, the latter presentation possesses a
nice interpretation, noting that Sλ is a convex combination of the sample covariance matrix
and the identity matrix. If λ → 0 then we put all our beliefs in the identity matrix I,
whereas if λ→ 1 then all beliefs are placed in Sn.

Finally, combining the linear shrinkage estimator from Bodnar et al. (2018), the already
regularized GMV portfolio weights are shrunk towards the target portfolio b with b>1 = 1
as follows

ŵSh;λ,ψ = ψŵS;λ + (1− ψ)b, (8)

where ψ is the shrinkage intensity. As such, the approach first reduces the variability in the
sample covariance matrix and then further stabilizes the portfolio by shrinking the weights
themselves. It also gives a way for an investor to highlight stocks they like with the target
portfolio b. In many cases, a naive portfolio b = 1

p1 is a good choice. However, in general,
any deterministic target, which reflects the investment beliefs, is possible.

A common approach to determine shrinkage intensities is to use cross-validation (see,
e.g., Tong et al. (2018) and Boileau et al. (2021)). That is, one aims to find the parameters
λ and ψ such that some loss (or metric) L(λ, ψ) is minimized (or maximized). There are, of
course, different loss functions for the out-of-sample performance of optimal portfolios. See
Lassance (2021) or Lassance et al. (2024) for a treatment of the out-of-sample mean-variance
utility or the out-of-sample Sharpe ratio. Since our work concerns the GMV portfolio, the
most natural choice of loss is the out-of-sample variance given by

L(λ, ψ) = ŵ>Sh;λ,ψΣŵSh;λ,ψ. (9)

However, since Σ is not known we need to estimate the loss function.
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Figure 1: Estimated shrinkage intensities for λ based on the out-of-sample variance loss.
The loss function (9) is determined through the cross-validation method and the two double
shrinkage approaches. The bona fide loss is completely determined by data, while the oracle
loss depends on the unknown quantity Σ, and hence it has less variance. Each solution for
λ is centered by the solution to the true loss (9).

To approximate the loss function, which depends on the unknown Σ, K-fold cross-
validation is usually employed with the observation data partitioned into K subsets: one
of the subsets is used as the validation set while the other K − 1 subsets constitute the
training set. The data from the training set are utilized to construct a shrinkage estimator
of the portfolio weights for given values of λ and ψ, while the empirical out-of-sample
variance is computed by using the validation set. This procedure is then repeated K times
for each possible choice of the validation set, and the resulting values of the computed loss
functions are averaged. Finally, the best pair of shrinkage coefficients is determined by
maximizing the average loss using a grid search. However, this approach to compute the
tuning parameters introduces several obstacles. It has been established that the sample
covariance matrix is a noisy estimator of the true population covariance matrix, and the
validation set is usually smaller than the training set, leading to a more volatile estimator of
the covariance matrix. Furthermore, it is not clear how big or small a grid should be. The
approach we develop needs neither resampling methods nor grid search but instead relies
on methods from random matrix theory (see, Bai and Silverstein (2010)). A bona fide type
loss function is constructed that consistently estimates the true loss function in the high
dimensional setting. The problem reduces to a simple univariate nonlinear optimization
exercise, which is easy to solve numerically.
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In Figure 1, we illustrate the optimal values of λ − λtrue where each λ is obtained
by 10-fold cross-validation and the two double shrinkage approaches. The true shrinkage
coefficient λtrue is given by the solution of the true loss function (9). In this illustration,
there are fewer assets p = 150 than data points n = 300 and Σ has a bounded spectral
norm. The returns are simulated from a t-distribution with 5 degrees of freedom. Since
p/n < 1 and Σ does not exhibit large eigenvalues, this is a scenario where a practitioner
might assume that cross-validation, in particular, should work well. However, the cross-
validation appears to be considerably biased. In contrast, the optimal values of λ obtained
from the derived two loss functions, denoted as double (bona fide) and double (oracle), are
centered around zero. Furthermore, the values deduced from the double oracle estimator
depict smaller variability as expected since the unknown covariance matrix Σ is used in the
computation.

Our work contributes to the existing literature by deriving the high-dimensional prop-
erties of the true loss function (9) as well as its bona fide counterpart. These results allow
practitioners to determine the optimal value of the tuning parameter by solving numeri-
cally a simple non-linear optimization problem. Furthermore, since a bona fide estimator
for the loss function is derived, one can easily extend the optimization problem to cover
position restrictions, moment conditions, or potentially other restrictions on the optimiza-
tion problem. The other line of our contributions leads to a new approach to constructing
high-dimensional optimal portfolios that tackles the estimation uncertainty in two steps:
first, by using an improved estimator of the covariance matrix, and then, by improving the
resulting estimator of the portfolio weights.

The rest of the paper is organized as follows. In Section 2, the asymptotic properties of
the out-of-sample variance are investigated in the high-dimensional setting, while Section
3 presents a bona fide estimator of the asymptotic loss, which is then used to find the
optimal values of the two shrinkage intensities. The results of an extensive simulation study
and empirical applications are provided in Section 4. Section 5 summarizes the obtained
findings. The mathematical derivations are moved to the appendix.

2. Out-of-Sample Variance and Shrinkage Estimation

Let Xn be a matrix of size p×n where its elements {xij}ij are independent and identically
distributed (i.i.d.) real random variables with zero mean, unit variance and finite moments
of order 4 + ε for some ε > 0. Assume that we observe the matrix Yn according to the
stochastic model

Yn
d
= µ1> + Σ

1
2 Xn (10)

where Σ is a positive definite matrix of size p×p with a bounded spectral norm (its minimum
and maximum eigenvalues are uniformly bounded in p from zero and infinity, respectively.1)
The model belongs to the location-scale family but includes many skew or bi-modal families
as well.

1. The obtained results can be generalized to the case with a finite number of unbounded largest eigenvalues,
which would make the proofs more lengthy. The assumption of unbounded eigenvalues is needed only
in the case of the centered sample covariance matrix, i.e., unknown mean vector. If µ is known, the
boundedness of eigenvalues may be ignored due to normalization presented further in (11). More details
can be deduced from the proofs of the main theorems.
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The aim is to estimate the shrinkage intensities λ, ψ from the following normalized
optimization problem

min
λ,ψ

ŵ>Sh;λ,ψΣŵSh;λ,ψ

b>Σb
. (11)

The normalization is merely a technicality. The out-of-sample variance, or the loss function
L(λ, ψ) = ŵ>Sh;λ,ψΣŵSh;λ,ψ, can be further simplified to

L(λ, ψ) = (ψŵS;λ + (1− ψ)b)>Σ (ψŵS;λ + (1− ψ)b)

= (b− ŵS;λ)>Σ (b− ŵS;λ)

(
ψ −

b>Σ (b− ŵS;λ)

(b− ŵS;λ)>Σ (b− ŵS;λ)

)2

−
(
b>Σ (b− ŵS;λ)

)2
(b− ŵS;λ)>Σ (b− ŵS;λ)

+ b>Σb. (12)

For given λ, the first summand in the expression of the out-of-sample variance (12) attains
its minimum value zero for2

ψ∗n(λ) =
b>Σ (b− ŵS;λ)

(b− ŵS;λ)>Σ (b− ŵS;λ)
, (13)

while the optimal λ is found by maximizing the normalized second summand in (12), i.e.,

Ln;2(λ) =
1

b>Σb

(
b>Σ (b− ŵS;λ)

)2
(b− ŵS;λ)>Σ (b− ŵS;λ)

. (14)

Note that due to the Cauchy-Schwarz inequality the normalization (b>Σb)−1 keeps
Ln;2 bounded between zero and one. To determine the values of λ∗ together with ψ∗(λ)
which minimize the loss function, we proceed in three steps. First, we find the deterministic
equivalent to Ln;2(λ) in Theorem 1 and estimate it consistently in the second step. Finally,
the obtained consistent estimator is minimized in the last step.

Theorem 1 Let Yn possess the stochastic representation as in (10). Assume that the
relative loss of the target portfolio expressed as

Lb =
b>Σb− 1

1>Σ−11
1

1>Σ−11

= b>Σb1>Σ−11− 1 (15)

is uniformly bounded in p. Then it holds that

(i)
|Ln;2(λ)− L2(λ)| a.s.→ 0 (16)

for p/n→ c ∈ (0,∞) as n→∞ with3

L2(λ) =

(
1− 1

b>Σb

b>ΣΩ−1
λ 1

1>Ω−1
λ 1

)2

1− 2
b>Σb

b>ΣΩ−1
λ 1

1>Ω−1
λ 1

+ 1
b>Σb

(1−v′2(η,0))1>Ω−1
λ ΣΩ−1

λ 1

(1>Ω−1
λ 1)

2

(17)

2. The authors are thankful to the Reviewer for paying attention to a typing error in the formula, which
was present in the original submission.

3. This convergence is uniform if λ stays in a compact interval away from zero and one.
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(ii)
|ψ∗n(λ)− ψ∗(λ)| a.s.→ 0 (18)

for p/n→ c ∈ (0,∞) as n→∞ with

ψ∗(λ) =
1− 1

b>Σb

b>ΣΩ−1
λ 1

1>Ω−1
λ 1

1− 2
b>Σb

b>ΣΩ−1
λ 1

1>Ω−1
λ 1

+ 1
b>Σb

(1−v′2(η,0))1>Ω−1
λ ΣΩ−1

λ 1

(1>Ω−1
λ 1)

2

, (19)

where

η =
1

λ
− 1, Ωλ = v (η, 0)λΣ + (1− λ)I, (20)

v(η, 0) is the solution of the following equation

v(η, 0) = 1− c
(

1− η

p
tr
(

(v(η, 0)Σ + ηI)−1
))

, (21)

and v′2(η, 0) is computed by

v′2(η, 0) = 1− 1

v(η, 0)
+ η

v′1(η, 0)

v(η, 0)2
. (22)

with

v′1(η, 0) = v(η, 0)
c1
p tr
(
(v(η, 0)Σ + ηI)−1

)
− cη 1

p tr
(
(v(η, 0)Σ + ηI)−2

)
1− c+ 2cη 1

p tr ((v(η, 0)Σ + ηI)−1)− cη2 1
p tr ((v(η, 0)Σ + ηI)−2)

. (23)

The proof of Theorem 1 can be found in the appendix. Note that the condition (15)
is fulfilled when the population covariance matrix Σ has a bounded spectrum and the
elements of the target vector b are at most of the order O(1/p). This includes many
naive-like portfolios, for example, the equally weighted portfolio. It is important to observe
that both the GMV and equally weighted portfolios exhibit variances of the order O(1/p).
Consequently, if the target portfolio b has a variance of a higher order, e.g., in the case of
sparse portfolios, then the loss function Lb could potentially be unbounded. This implies
that a portfolio b with a higher-order variance may not be reasonable as a target portfolio
for minimizing the portfolio variance. Furthermore, if the elements of b are at most of the
order O(1/p), then the covariance matrix Σ can be arbitrary to some extent (sparse or
dense), i.e., as long as its spectrum remains bounded. Indeed, using Ruhe’s trace inequality
(cf., Lemma 1 in Ruhe (1970)), we have

Lb = b>Σb · 1>Σ−11− 1 ≤ b>b · λmax(Σ) · pλmax(Σ−1)− 1 = O

(
λmax(Σ)

λmin(Σ)

)
<∞ .

Theorem 1 provides the deterministic equivalents for the loss function Ln;2(λ) and op-
timal shrinkage intensity ψ∗n(λ). The solution v(η, 0) to the equation (21) is a Stieltjes
transform (see Rubio and Mestre (2011)) and inherits all the properties of this type of func-
tionals. The properties are extremely important for the consistency of the loss function.
However, these deterministic equivalents are not applicable in practice since they depend
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on the unknown parameter Σ and v(η, 0). Fortunately, we can create consistent bona fide
4 estimators for both deterministic equivalents L2(λ) and ψ∗(λ) in the high dimensional
setting.

3. Bona Fide Estimation

In this section, we construct bona fide consistent estimators for L2(λ) and ψ∗(λ) in the
high dimensional asymptotic setting. First, consistent estimators for v(η, 0), v′1(η, 0), and
v′2(η, 0) are derived in Theorem 2, whose proof is given in the appendix.

Theorem 2 Let Yn possess the stochastic representation as in (10). Then it holds that

|v̂(η, 0)− v(η, 0)| a.s→ 0, (24)∣∣v̂′1(η, 0)− v′1(η, 0)
∣∣ a.s→ 0, (25)∣∣v̂′2(η, 0)− v′2(η, 0)
∣∣ a.s→ 0, (26)

for p/n→ c ∈ (0,∞) as n→∞ with

v̂(η, 0) = 1− c
(

1− η1

p
tr
(

(Sn + ηI)−1
))

,

v̂′1(η, 0) = v̂(η, 0)c

(
1

p
tr
(

(Sn + ηI)−1
)
− η1

p
tr
(

(Sn + ηI)−2
))

,

v̂′2(η, 0) = 1− 1

v̂(η, 0)
+ η

v̂′1(η, 0)

v̂(η, 0)2
.

Theorem 3 provides consistent estimators for the building blocks used in the construction
of consistent estimators for L2(λ) and ψ∗(λ). The proof of Theorem 3 is presented in the
appendix.

Theorem 3 Let Yn possess the stochastic representation as in (10). Assume that the
relative loss of the target portfolio given in (15) is uniformly bounded in p. Then it holds
that∣∣∣∣ b>Sb

b>Σb
− 1

∣∣∣∣ a.s→ 0, (27)∣∣∣∣∣ 1>S−1
λ 1

1>Σ−11
−

1>Ω−1
λ 1

1>Σ−11

∣∣∣∣∣ a.s→ 0, (28)∣∣∣∣∣ λ−1

v̂(η, 0)

1− (1− λ)b>S−1
λ 1√

b>Σb1>Σ−11
−

b>ΣΩ−1
λ 1√

b>Σb1>Σ−11

∣∣∣∣∣ a.s→ 0, (29)

∣∣∣∣∣ 1

λv̂(η, 0)

1>S−1
λ 1

1>Σ−11
− 1− λ
λv̂(η, 0)

1>S−2
λ 1− λ−1 v̂

′
1(η,0)
v̂(η,0) 1>S−1

λ 1

1>Σ−11
(

1− v̂′1(η,0)
v̂(η,0) ( 1

λ − 1)
) − 1>Ω−1

λ ΣΩ−1
λ 1

1>Σ−11

∣∣∣∣∣ a.s→ 0 (30)

for p/n→ c ∈ (0,∞) as n→∞ with η = 1/λ− 1.

4. With the term “bona fide” we understand a concept of purely data-driven estimators, which do not
depend on unknown quantities. Thus, they are ready to be used in practice without any modifications.
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Let

d1(η) =
λ−1

v̂(η, 0)

(
1− (1− λ)b>S−1

λ 1
)

(31)

and

d2(η) =
1

λv̂(η, 0)
1>S−1

λ 1− 1− λ
λv̂(η, 0)

1>S−2
λ 1− λ−1 v̂

′
1(η,0)
v̂(η,0) 1>S−1

λ 1

1− v̂′1(η,0)
v̂(η,0) ( 1

λ − 1)
. (32)

The application of the results derived in Theorems 2 and 3 leads to consistent bona fide
estimators for L2(λ) and ψ∗(λ) presented in Theorem 4.

Theorem 4 Let Yn possess the stochastic representation as in (10). Assume that the
relative loss of the target portfolio given in (15) is uniformly bounded in p. Then it holds
that

(i) ∣∣∣L̂n;2(λ)− L2(λ)
∣∣∣ a.s.→ 0 (33)

for p/n→ c ∈ (0,∞) as n→∞ with

L̂n;2(λ) =

(
1− 1

b>Sb
d1(η)

1>S−1
λ 1

)2

1− 2
b>Sb

d1(η)

1>S−1
λ 1

+ 1
b>Sb

(1−v̂′2(η,0))d2(η)

(1>S−1
λ 1)

2

, (34)

(ii) ∣∣∣ψ̂∗n(λ)− ψ∗(λ)
∣∣∣ a.s.→ 0 (35)

for p/n→ c ∈ (0,∞) as n→∞ with

ψ̂∗n(λ) =
1− 1

b>Sb
d1(η)

1>S−1
λ 1

1− 2
b>Sb

d1(η)

1>S−1
λ 1

+ 1
b>Sb

(1−v̂′2(η,0))d2(η)

(1>S−1
λ 1)

2

, (36)

where η = 1/λ−1, v̂′2(η, 0) is provided in Theorem 2, d1(η) and d2(η) are given in (31) and
(32), respectively.

The three loss functions (bona fide, oracle, and true) are illustrated in Figure 2 for two
different values of p. Under the oracle loss function, we understand the asymptotic equiva-
lent of Ln;2, namely L2. When p is equal to 150 the differences between the functions look,
at least graphically, very small. The relative difference is at most 20% and the optimal
λ’s are extremely close to each other. We still need to face the fact that the out-of-sample
variance is slightly over-estimated, even though the bona-fide estimator will be asymptoti-
cally valid. When p is equal to 450 and c is greater than one we observe a slightly different
picture. For p > n the bona fide loss function is not necessarily concave. This is due to
the fact that as λ approaches 1, and c is greater than one, λSn + (1 − λ)I becomes closer
and closer to a singular matrix. Thus, the eigenvalues of the inverse of the shrunk sample
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(a) p=150, n=300 (b) p=450, n=300

Figure 2: The loss functions from Theorems 1 to 4 illustrated over different values of
λ ∈ (0, 1). The data were simulated from a t-distribution with 5 degrees of freedom and
the equally weighted portfolio was used as a target.

covariance matrix explode. This can be explained by the fact that when λ is close to one,
the uniform convergence of the estimated loss function to its oracle no longer holds. This
issue could be repaired using a different type of ridge regularization mentioned in (Bodnar
et al., 2023a, formula (2.33)), where Moore-Penrose inverse for c > 1 can be employed for
λ→ 1. This interesting observation is left for future investigations.

4. Numerical Study

In this section, we will conduct a simulation study to assess the finite sample properties of the
suggested double shrinkage estimator and compare its behavior with existing approaches.
Due to the asymptotic nature of our procedure, we first devote some attention to the finite
sample properties of the suggested estimator under different data-generating processes. We
conclude this section with an empirical application of the methods on assets from the S&P
500.

10
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4.1 Setup of the Simulation Study

In the simulation study we will use the following four different stochastic models for the
data-generating process:

Scenario 1: t-distribution The elements of xt are drawn independently from t-distribution
with 5 degrees of freedom, i.e., xtj ∼ t(5) for j = 1, ..., p, while yt is constructed ac-
cording to (10).

Scenario 2: CAPM The vector of asset returns yt is generated according to the CAPM
(Capital Asset Pricing Model), i.e.,

yt = µ + βzt + Σ1/2xt,

with independently distributed zt ∼ N(0, 1) and xt ∼ Np(0, I). The elements of vector
β are drawn from the uniform distribution, that is βi ∼ U(−1, 1) for i = 1, ..., p.

Scenario 3: CCC-GARCH model of Bollerslev (1990) The asset returns are simu-
lated according to

yt|Σt ∼ Np(µ,Σt)

where the conditional covariance matrix is specified by

Σt = D
1/2
t CD

1/2
t with Dt = diag(h1,t, h2,t, ..., hp,t),

where

hj,t = αj,0+αj,1(yj,t−1−µj)2+βj,1hj,t−1, for j = 1, 2, ..., p, and t = 1, 2, ..., ni, i = 1, ..., T.

The coefficients of the CCC model are sampled according to αj,1 ∼ U(0, 0.1) and
βj,1 ∼ U(0.6, 0.7) which implies that the stationarity conditions, αj,1 + βj,1 < 1, are
always fulfilled. The constant correlation matrix C is induced by Σ. The intercept
αj,0 is chosen such that the unconditional covariance matrix is equal to Σ.

Scenario 4: VARMA model The vector of asset returns yt is simulated according to

yt = µ + Γ(yt−1 − µ) + Σ1/2xt with xt ∼ Np(0, I)

for t = 1, ..., n+m, where Γ = diag(γ1, γ2, ..., γp) with γi ∼ U(−0.9, 0.9) for i = 1, ..., p.
Note that in the case of the VAR model, the covariance matrix of yt is computed as
vec(Var(y)) = (I−Γ⊗Γ)−1vec(Σ) where vec denotes the vec operator. This matrix
is thereafter used in the computation of the limiting objects.

We will repeat each scenario 1000 times for a number of configurations where the con-
centration ratio c will range from 0.25 to 2.7 and n = 100, 200, 300, 400. The portfolios
contain at most 1080 assets which implies that we are estimating close to 600000 parame-
ters as well as the two shrinkage coefficients. The parameters of the model are simulated
in the following manner. The elements of the mean vector µ are simulated from a uniform
distribution with µi ∼ U(−0.1, 0.1). To simulate the covariance matrix we make use of the
function RandCovMat from the HDShOP package (see, Bodnar et al. (2021)).
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4.2 Comparison to Benchmark Strategies

In this section, we will investigate the performance of five estimators of the GMV portfolio
defined by

1. The estimator of the GMV portfolio weights from Theorem 4, abbreviated as ”Dou-
ble”.

2. The linear shrinkage estimator of the GMV portfolio weights from Bodnar et al.
(2018), denoted as ”BPS”.

3. The linear shrinkage estimator of the GMV portfolio weights from Frahm and Mem-
mel (2010), abbreviated as ”FM”. This portfolio can be constructed only for c < 1
following the approach suggested in Frahm and Memmel (2010).

4. The nonlinear shrinkage estimator of the covariance matrix from Ledoit and Wolf
(2020a) which replaces Σ in the definition of the GMV portfolio weights. We will
abbreviate this portfolio strategy as ”LW2020”.

5. The sample GMV portfolio, abbreviated as ”Traditional”. For c > 1, the Moore-
Penrose inverse of Sn is used in the computation of the weights.

Different targets can be used in the first three estimators of the GMV portfolio weights.
We consider two target portfolios in the comparison study, which are the equally weighted
(ew) and the equally correlated (ec) portfolios. The first one is deterministic and does not
depend on data. This is in line with the assumptions posed in Theorem 4. The second target
portfolio depends on data. It assumes that all asset returns share the same correlation but
have different variances. For each scenario, we will display the relative loss Vw/VGMV − 1,
where Vw = w>Σw is the variance of the portfolio with weights w. A value close to zero
indicates good performance of the corresponding estimator.

Figure 3 depicts the results of the simulations under Scenario 1. Each color represents
a ”type” of the estimator, while the line type highlights the target portfolio used in BPS,
Double, and FM. For small c, the loss is not significantly different among the considered
estimators. However, as c becomes larger, the results diverge. Regardless of n, the largest
loss is provided by the Traditional estimator, which is famously bad in high dimensions
(see, e.g., Bodnar et al. (2018)). The FM portfolio is only defined for c < 1, so the loss for
this method is not presented thereafter. The third-best method is BPS with the equally
correlated and equally weighted targets. The uncertainty from the target portfolio does
not seem to impact the loss significantly. The best-performing portfolios are the Double
and LW2020 approaches. Finally, the loss computed for the LW2020 estimator significantly
increases around one when n = 100.

In Figure 4, we present the results of the simulation study conducted under Scenario
2. The ordering of the estimators remains the same as in Scenario 1. The differences are
not substantial, as the inverse covariance matrix in the case of the CAPM is essentially a
one-rank update of the covariance matrix considered in Scenario 1. It is important to note
that the largest eigenvalue of Σ is no longer bounded in Scenario 2. There is slightly more
noise, but no additional temporal or structural dependence that is unaccounted for in (10).

12



Bodnar, Parolya and Thorsén

Figure 3: Relative loss Vw/VGMV −1 computed for several estimators of the GMV portfolio
weights under Scenario 1. Equally correlated (ec) and equally weighted (ew) targets are
used in the BPS, Double, and FM estimators.
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Figure 4: Relative loss Vw/VGMV −1 computed for several estimators of the GMV portfolio
weights under Scenario 2. Equally correlated (ec) and equally weighted (ew) targets are
used in the BPS, Double, and FM estimators.
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Figure 5: Relative loss Vw/VGMV −1 computed for several estimators of the GMV portfolio
weights under Scenario 3. Equally correlated (ec) and equally weighted (ew) targets are
used in the BPS, Double, and FM estimators.

Figure 5 depicts the relative losses computed for the considered estimators of the GMV
portfolio under Scenario 3. It displays plots almost identical to those shown in Figures 3
and 4. The introduction of temporal dependence does not significantly impact the relative
loss. We continue to observe the same type of ordering, where the Double and LW2020
approaches are almost equally effective.

In Figure 6, we present the results obtained under Scenario 4. While the same order-
ing of methods is maintained, the scale of results differs. Some methods, specifically the
Traditional, FM, and BPS, exhibit considerably larger losses compared to previous sce-
narios. There are smaller differences among the other methods for large c, in contrast to
earlier scenarios. The discrepancy between the two best methods, the Double and LW2020
estimators, is very slight.

Overall, the results of the simulation experiment support the conclusion that the pro-
posed method is at least as effective as the nonlinear shrinkage technique, which is already
recognized as a state-of-the-art method for estimating large dimensional covariance matri-
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Figure 6: Relative loss Vw/VGMV −1 computed for several estimators of the GMV portfolio
weights under Scenario 4. Equally correlated (ec) and equally weighted (ew) targets are
used in the BPS, Double, and FM estimators.
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ces. Therefore, it is crucial to test these methods on a real dataset using additional empirical
measures of performance, such as out-of-sample variance, return, Sharpe ratio, turnover,
etc.

4.3 Empirical Application

In this section, we will apply the considered estimators of the GMV portfolio to empirical
data, which constitute daily log returns on 431 assets included in the S&P 500 index. The
out-of-sample data range from 2013-01-01 to 2021-11-04, while the in-sample data go back
to early 2011. We will follow the approach of the previous section in that we use the equally
correlated (ec) and equally weighted (ew) portfolios as targets. In this empirical application,
we fix the window size to n = 250 or n = 500. The three different portfolio sizes of 260,
400, and 431 are considered. Thus, the window size n = 250 reflects c ∈ 1.04, 1.6, 1.724 and
n = 500 corresponds to c ∈ 0.52, 0.8, 0.862.

All portfolios aim to minimize the portfolio variance. Since the true portfolio variance
is not available, the most natural evaluation method selects the strategy that provides the
smallest out-of-sample variance, denoted by σ(k). On the other hand, a portfolio is char-
acterized not only by its volatility. A portfolio with small volatility does not necessarily
provide a feasible return. Therefore, we will use the out-of-sample expected portfolio re-

turn (ȳ
(k)
w ) and the out-of-sample Sharpe ratio (SR(k)) to investigate the properties of the

constructed estimators. Moreover, the stability of the portfolio weights also reflects the risk-
iness of the portfolio. To study the characteristics of the portfolio weights, we will consider
the following performance measures:

|w(k)| = 1

Tp

T∑
i=1

p∑
j=1

|w(k)
i,j |, (37)

max w(k) =
1

T

T∑
i=1

(
max
j
w

(k)
i,j

)
, (38)

min w(k) =
1

T

T∑
i=1

(
min
j
w

(k)
i,j

)
, (39)

w
(k)
i 1(w

(k)
i < 0) =

1

T

T∑
i=1

p∑
j=1

w
(k)
i,j 1(w

(k)
i,j < 0), (40)

1(w
(k)
i < 0) =

1

Tp

T∑
i=1

p∑
j=1

1(w
(k)
i,j < 0). (41)

The first measure (37) represents the average size of the portfolio positions. A large
value of this measure would indicate that the portfolio takes large positions, both short
(negative weights) and long (positive weights). It is a common critique of classical mean-
variance portfolios because large positions are risky in themselves. The second measure
(38) describes the average of the largest long positions. Similar to the previous measure,
it only considers long positions of the portfolio. As with the above, small positions are
preferred over large ones. Equation (39) presents the average of the largest short positions.
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This measure is particularly important since large short positions have potentially infinite
risk, i.e., there is no limit to how much the investor can lose. Owing to the significant
importance of the size of short positions, we also include two additional measures (40) and
(41). The former can be interpreted as the average size of the negative positions, while the
latter represents the average proportion of short positions.

BPS Double

name BPSec BPSew Doubleec Doubleew LW2020 Traditional

p=260

σk 0.0345 0.03535 0.0116 0 .01165* 0.01225 0.04103

ȳkw 0.000362 0.000307 0 .000566* 0.000581 0.00056 0.000263

SRk 0.01 0.009 0 .049* 0.05 0.046 0.006

|w(k)| 0.0905 0.0938 0.0061 0 .0062 ∗ 0.01 0.114

max w(k) 0.4249 0.4368 0.0381 0.0177 0 .0377 ∗ 0.5309

min w(k) −0.3981 −0.417 −0.0052 −0 .0181 ∗ −0.0292 −0.5083

w
(k)
i 1(w

(k)
i < 0) −0.0883 −0.0923 −0.0029 −0 .0049* −0.0101 −0.1123

250 1(w
(k)
i < 0) 0.491 0.487 0.382 0.246 0 .303 ∗ 0.491

Turnover 39754.41 41248.72 88.18 100 .27 ∗ 2824.26 50073

p=400

σk 0.01438 0.01448 0 .01189 ∗ 0.01186 0.01261 0.0157

ȳkw 0.000634 0.000649 0.000513 0.000536 0.000534 0 .000646*

SRk 0 .044 ∗ 0.045 0.043 0.045 0.042 0.041

|w(k)| 0.0182 0.0187 0.004 0.004 0 .0105 ∗ 0.0239

max w(k) 0.0746 0.0748 0 .0296 ∗ 0.0121 0.047 0.095

min w(k) −0.0663 −0.0692 −0.0031 −0 .0133 ∗ −0.0398 −0.0892

w
(k)
i 1(w

(k)
i < 0) −0.017 −0.0177 −0.0019 −0 .0031* −0.0095 −0.0228

1(w
(k)
i < 0) 0.462 0.457 0 .397 ∗ 0.241 0.419 0.468

Turnover 4257.59 4473.48 88.34 97 .33 ∗ 793.77 5719.24

p=431

σk 0.01471 0.01484 0.0115 0 .01186 ∗ 0.01286 0.01596

ȳkw 0.000476 0.000472 0 .000514 ∗ 0.000517 0.000427 0.000444

SRk 0.032 0.032 0.045 0 .044 ∗ 0.033 0.028

|w(k)| 0.0158 0.0162 0.0037 0.0037 0 .0098 ∗ 0.0209

max w(k) 0.0652 0.0654 0 .0276 ∗ 0.0111 0.0446 0.0841

min w(k) −0.0569 −0.0597 −0.0029 −0 .0121 ∗ −0.0373 −0.078

w
(k)
i 1(w

(k)
i < 0) −0.0147 −0.0153 −0.0018 −0 .0029* −0.0089 −0.02

1(w
(k)
i < 0) 0.459 0.455 0 .399 ∗ 0.24 0.421 0.466

Turnover 3651.43 3854.04 87.92 96 .66 ∗ 788.84 4998.56

* Second to best

Table 1: Performance of the considered estimators based on the moving-window approach.
The out-of-sample period is 2684 days with window size equal to 250.

Table 1 displays the results from the first experiment with a window size equal to 250
days. The best values in each row are denoted in boldface, while the second-best values
are highlighted with the symbol ∗. The FM strategy is not considered in the study since
it demonstrates very similar performance to the Traditional strategy for c < 1 and is not
defined for c > 1.
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For a moderately small portfolio size of p = 260, the double shrinkage estimator with
the equally correlated target yields the smallest out-of-sample variance5, while the double
shrinkage estimator with the equally weighted target ranks second. The same ordering
between the two double strategies is observed in terms of turnover, while the opposite
situation occurs when comparing based on the out-of-sample expected return and the out-
of-sample Sharpe ratio. In general, there is a small difference between the Double strategies
with the considered two targets, and they both are ranked in the first two places. The
portfolio based on the LW2020 approach comes third in terms of the out-of-sample variance;
however, it considerably outperforms the other remaining strategies. The portfolio weights
of the nonlinear shrinkage are not as stable as the weights of the two double shrinkage
approaches. In particular, the turnover of the LW2020 strategy is approximately 30 times
larger than the turnover of the two double shrinkage methods. Finally, the BPS strategy
with both targets is ranked in the fourth and fifth places, followed by the Traditional
approach.

BPS Double

name BPSec BPSew Doubleec Doubleew LW2020 Traditional

p=260

σk 0.01843 0.01831 0 .01154 ∗ 0.0115 0.0146 0.02051

ȳkw 0 .000603* 0.000558 0.000595 0.000562 0.000604 0.00058

SRk 0.033 0.03 0.052 0 .049 ∗ 0.041 0.028

|w(k)| 0.0248 0.0256 0 .0063 ∗ 0.0061 0.017 0.0328

max w(k) 0.1535 0.1532 0 .0393 ∗ 0.0179 0.0769 0.1927

min w(k) −0.1021 −0.1123 −0.0054 −0 .0172 ∗ −0.0635 −0.1462

w
(k)
i 1(w

(k)
i < 0) −0.022 −0.0238 −0.0031 −0 .0047* −0.015 −0.0308

1(w
(k)
i < 0) 0.478 0.457 0 .4 ∗ 0.243 0.437 0.471

Turnover 1103.98 1166.8 56.42 60 .66 487.87 1503.39

p=400

σk 0.01645 0.01621 0 .01088 ∗ 0.01087 0.0121 0.02233

ȳkw 0.000706 0 .000728* 0.000562 0.000546 0.000468 0.000819

SRk 0.043 0.045 0 .052 ∗ 0.05 0.039 0.037

|w(k)| 0.0229 0.0234 0.004 0.004 0 .0124 ∗ 0.0421

max w(k) 0.1451 0.142 0.0277 0.0117 0.0583 0 .2516 ∗

min w(k) −0.1105 −0.1206 −0.0033 −0 .0128 ∗ −0.0508 −0.2207

w
(k)
i 1(w

(k)
i < 0) −0.0209 −0.0225 −0.0019 −0 .0031* −0.0113 −0.0407

1(w
(k)
i < 0) 0.489 0.465 0 .392 ∗ 0.244 0.438 0.485

Turnover 2683.1 2824.09 53.65 61 .04 ∗ 706.3 5027.35

p=431

σk 0.01677 0.01707 0.0108 0 .01121 ∗ 0.01221 0.02613

ȳkw 0.000447 0.000434 0.000578 0 .00056 ∗ 0.000543 0.000311

SRk 0.027 0.025 0.054 0 .05 ∗ 0.044 0.012

|w(k)| 0.0222 0.0231 0.0037 0 .0038 ∗ 0.0112 0.0487

max w(k) 0.1392 0.1359 0 .0258 ∗ 0.0112 0.0521 0.2853

min w(k) −0.1065 −0.1192 −0.0031 −0 .012 ∗ −0.0449 −0.2563

w
(k)
i 1(w

(k)
i < 0) −0.0202 −0.0223 −0.0018 −0 .0029* −0.0101 −0.0475

1(w
(k)
i < 0) 0.493 0.465 0 .395 ∗ 0.247 0.438 0.489

5. The results regarding the variance are highly significant, which is justified (all p-values are virtually
equal to zero) by the HAC test provided by Ledoit and Wolf (2011).
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Turnover 3374.12 3630.07 53.71 61 .65 ∗ 847.26 7585.94

* Second to best

Table 2: Performance of the considered estimators based on the moving-window approach.
The out-of-sample period is 2434 days with window size equal to 500.

The same ranking between the strategies is also observed for p = 400 and p = 431.
Both double shrinkage approaches are the best two strategies in terms of almost all the
considered performance measures. The only exception is in the case of p = 400, where the
BPS approach with the equally weighted target is the best in terms of the out-of-sample
expected return and the out-of-sample Sharpe ratio. Similar to the case of p = 260, the
LW2020 strategy comes third, followed by the BPS approach. Finally, the Traditional GMV
portfolio performs considerably worse than its competitors. It is noted that the turnover
of the LW2020 method is significantly reduced when p = 400 and p = 431, but it is still
approximately nine times larger than the turnover of the double shrinkage approaches.

Next, we perform the same experiment with n = 500, with the results presented in Table
2. Again, both double shrinkage approaches considerably outperform the other competi-
tors in terms of almost all the considered performance measures. In particular, these two
strategies possess the smallest values of the out-of-sample variance, which is statistically
justified by the HAC test of Ledoit and Wolf (2011). When p = 260 and p = 400, the double
shrinkage estimator with equally weighted target is the best one, while the double approach
is superior when p = 431. The LW2020 strategy ranks third, while the BPS method with
both targets is in fourth and fifth places. Finally, the Traditional estimator performs very
poorly, especially when p = 400 and 431. Interestingly, the application of the double shrink-
age strategies leads to very stable portfolio weights. The turnovers of these two strategies
are considerably smaller than those of the other competitors. Even though the increase in
window size leads to considerably smaller turnovers for all the considered methods, they are
still significantly larger than those obtained by the double shrinkage approach, regardless
of the used target portfolios.

5. Summary

In this paper, we introduce a novel method for investing in the GMV portfolio and a target
portfolio. This method utilizes a double shrinkage approach, where the sample covariance
matrix is shrunk with Tikhonov regularization, coupled with linear shrinkage of the GMV
portfolio weights towards a target portfolio. We construct a bona fide loss function that con-
sistently estimates the true loss function. From this, we derive the two shrinkage coefficients
within the framework. The method is demonstrated to be a significant improvement over
both the nonlinear shrinkage approach and the linear shrinkage approach applied directly
to the portfolio weights. Furthermore, the method is shown to be a dominant investment
strategy in the majority of cases, as justified by various performance measures in the empiri-
cal application. Finally, the proposed approach is opinionated, requiring the investor’s view
on what constitutes a target portfolio. This implies that it works best when the target port-
folio is informative, aligning with the investor’s objectives. However, the investor can also
employ non-informative target portfolios and still achieve excellent results, as documented
in the empirical illustration.
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Appendix A.

For any integer n > 2, we define

Vn =
1

n
Xn

(
In −

1

n
1n1

>
n

)
X>n and Ṽn =

1

n
XnX

>
n , (42)

where Xn is given in (10). Hence,

Sn = Σ1/2VnΣ
1/2 = Σ1/2ṼnΣ

1/2 −Σ1/2x̄nx̄
>
nΣ1/2 (43)

with x̄n = 1
nXn1n.

First, we present the Weierstrass theorem (see, e.g., Theorem 1 on page 176 in Ahlfors
(1953)) and an important lemma which is a special case of Theorem 1 in Rubio and Mestre
(2011). These results will be used in the proofs throughout the appendix.

Theorem 5 (Weierstrass theorem) Suppose that fn(z) is analytic in the region Ωn, and
that the sequence {fn(z)} converges to a limit function f(z) in a region Ω, uniformly on
every compact subset of Ω. Then f(z) is analytic in Ω. Moreover, f ′(z) converges uniformly
to f ′(z) on every compact subset of Ω.

We will need two interchange the limits and derivatives many times that is why Theorem
5 plays a vital role here. More on the application of Weierstrass theorem can be found in
the appendix of Bodnar et al. (2023a).

Lemma 6 Let a nonrandom p × p-dimensional matrix Θp possess a uniformly bounded
trace norm. Then it holds that

(i) ∣∣∣∣∣tr
(

Θp

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−1
)
− tr

(
Θp(ηΣ

−1 + (v(η, z)− z)I)−1
)∣∣∣∣∣ a.s.−→ 0

(44)
for p/n −→ c ∈ (0,+∞) as n→∞ where v(z) solves the following equality

v(η, z) =
1

1 + c1
p tr ((ηΣ−1 + (v(η, z)− z)I)−1)

. (45)
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(ii) ∣∣∣∣∣tr
(

Θp

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−1

Σ−1

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−1
)

− tr
(
Θp(ηΣ

−1 + (v(η, z)− z)I)−1Σ−1(ηΣ−1 + (v(η, z)− z)I)−1
)

− v′1(η, z)tr
(
Θp(ηΣ

−1 + (v(η, z)− z)I)−2
) ∣∣∣∣∣ a.s.−→ 0 (46)

for p/n −→ c ∈ (0,+∞) as n→∞ with

v′1(η, z) =
−1
p tr
(
(ηΣ−1 + (v(η, z)− z)I)−1Σ−1(ηΣ−1 + (v(η, z)− z)I)−1

)
1
p tr ((ηΣ−1 + (v(η, z)− z)I)−2)− c−1v(η, z)−2

. (47)

(iii) ∣∣∣∣∣tr
(

Θp

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−2
)

− (1− v′2(η, z))tr
(
Θp(ηΣ

−1 + (v(η, z)− z)I)−2
) ∣∣∣∣∣ a.s.−→ 0 (48)

for p/n −→ c ∈ (0,+∞) as n→∞ with

v′2(η, z) =

1
p tr
(
(ηΣ−1 + (v(η, z)− z)I)−2

)
1
p tr ((ηΣ−1 + (v(η, z)− z)I)−2)− c−1v(η, z)−2

. (49)

Proof of Lemma 6.

(i) The application of Theorem 1 in Rubio and Mestre (2011) leads to (44) where v(η, z)
is a unique solution in C+ of the following equation

1

v(η, z)
− 1 =

c

p
tr
(
(ηΣ−1 + (v(η, z)− z)I)−1

)
. (50)

(ii) For the second result of the lemma we get that

tr

(
Θp

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−1

Σ−1

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−1
)

= − ∂

∂η
tr

(
Θp

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−1
)
,

which almost surely converges to

− ∂

∂η
tr
(
Θp(ηΣ

−1 + (v(η, z)− z)I)−1
)

= tr
(
Θp(ηΣ

−1 + (v(η, z)− z)I)−1(Σ−1 + v′1(η, z)I)(ηΣ−1 + (v(η, z)− z)I)−1
)
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following Theorem 5. The first-order partial derivative v′1(η, z) is obtained from (50)
as

−v
′
1(η, z)

v(η, z)2
= − c

p
tr
(
(ηΣ−1 + (v(η, z)− z)I)−1Σ−1(ηΣ−1 + (v(η, z)− z)I)−1

)
− v′1(η, z)

c

p
tr
(
(ηΣ−1 + (v(η, z)− z)I)−2

)
,

from which (47) is deduced.

(iii) For the third assertion of the lemma we note that

tr

(
Θp

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−2
)

=
∂

∂z
tr

(
Θp

(
1

n
XnX

′
n + ηΣ−1 − zIp

)−1
)
,

which almost surely tends to

∂

∂z
tr
(
Θp(ηΣ

−1 + (v(η, z)− z)I)−1
)

= (1− v′2(η, z))tr
(
Θp(ηΣ

−1 + (v(η, z)− z)I)−2
)

following Theorem 5. Moreover, v′2(η, z) is computed from (50) and it is obtained from
the following equation

−v
′
2(η, z)

v(η, z)2
= (1− v′2(η, z))

c

p
tr
(
(ηΣ−1 + (v(η, z)− z)I)−2

)
.

This completes the proof of the lemma.

Lemma 7 Let θ and ξ be universal nonrandom vectors with bounded Euclidean norms.
Then it holds that∣∣∣∣∣ξ′

(
1

n
XnX

′
n + ηΣ−1

)−1

θ − ξ′(ηΣ−1 + v(η, 0)I)−1θ

∣∣∣∣∣ a.s.−→ 0 , (51)∣∣∣∣∣ξ′
(

1

n
XnX

′
n + ηΣ−1

)−1

Σ−1

(
1

n
XnX

′
n + ηΣ−1

)−1

θ (52)

−ξ′(ηΣ−1 + v(η, 0)I)−1Σ−1(ηΣ−1 + v(η, 0)I)−1θ − v′1(η, 0)ξ′(ηΣ−1 + v(η, 0)I)−2θ

∣∣∣∣∣ a.s.−→ 0∣∣∣∣∣ξ′
(

1

n
XnX

′
n + ηΣ−1

)−2

θ − (1− v′2(η, 0))ξ′(ηΣ−1 + v(η, 0)I)−2θ

∣∣∣∣∣ a.s.−→ 0 (53)

for p/n −→ c ∈ (0,∞) as n→∞ where v(η, 0) is the solution of

v(η, 0) = 1− c
(

1− η

p
tr
(

(v(η, 0)Σ + ηI)−1
))

, (54)
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and v′1(η, 0) and v′2(η, 0) are computed by

v′1(η, 0) = v(η, 0)
c1
p tr
(
(v(η, 0)Σ + ηI)−1

)
− cη 1

p tr
(
(v(η, 0)Σ + ηI)−2

)
1− c+ 2cη 1

p tr ((v(η, 0)Σ + ηI)−1)− cη2 1
p tr ((v(η, 0)Σ + ηI)−2)

(55)

and

v′2(η, 0) = 1− 1

v(η, 0)
+ η

v′1(η, 0)

v(η, 0)2
. (56)

Proof of Lemma 7. Since the trace norm of θξ′ is uniformly bounded, i.e.,

||θξ′||tr ≤
√
θ′θ
√
ξ′ξ <∞,

the application of Lemma 6 leads to (51), (52), and (53) where v(η, 0) satisfies the following
equality

1

v(η, 0)
− 1 =

c

p
tr
((
ηΣ−1 + v (η, 0) I

)−1
)

=
c

v(η, 0)

(
1− η

p
tr
(

(v(η, 0)Σ + ηI)−1
))

,

which results in (54).

The application of (47) leads to

v′1(η, 0) =
−1
ptr
(
(ηΣ−1 + v(η, 0)I)−1Σ−1(ηΣ−1 + v(η, 0)I)−1

)
1
ptr ((ηΣ−1 + v(η, 0)I)−2)− c−1v(η, 0)−2

= v(η, 0)
c1
ptr
(
v(η, 0)(ηΣ−1 + v(η, 0)I)−1Σ−1(ηΣ−1 + v(η, 0)I)−1

)
1− c1

ptr (v(η, 0)2(ηΣ−1 + v(η, 0)I)−2)

= v(η, 0)
c1
ptr
(
(v(η, 0)Σ + ηI)−1

)
− cη 1

ptr
(
(v(η, 0)Σ + ηI)−2

)
1− c+ 2cη 1

ptr ((v(η, 0)Σ + ηI)−1)− cη2 1
ptr ((v(η, 0)Σ + ηI)−2)

.

Finally, using (49), we get

v′2(η, 0) =

1
ptr
(
(ηΣ−1 + v(η, 0)I)−2

)
1
ptr ((ηΣ−1 + v(η, 0)I)−2)− c−1v(η, 0)−2

= 1− 1

1− c1
ptr (v(η, 0)2(ηΣ−1 + v(η, 0)I)−2)

= 1− 1

1− c+ 2cη 1
ptr ((v(η, 0)Σ + ηI)−1)− cη2 1

ptr ((v(η, 0)Σ + ηI)−2)

= 1− 1

v(η, 0) + η
(
c1
ptr ((v(η, 0)Σ + ηI)−1)− cη 1

ptr ((v(η, 0)Σ + ηI)−2)
)

= 1− 1

v(η, 0) + η
v(η,0)v′1(η,0)

v(η,0)−ηv′1(η,0)

= 1− 1

v(η, 0)
+ η

v′1(η, 0)

v(η, 0)2
.
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Lemma 8 Let θ and ξ be universal nonrandom vectors such that Σ−1/2θ and Σ−1/2ξ have
bounded Euclidean norms. Then it holds that

∣∣∣ξ>S−1
λ θ − ξ>Ω−1

λ θ
∣∣∣ a.s.−→ 0, (57)∣∣∣ξ>S−2

λ θ − ξ>Ω−2
λ θ − v′1(η, 0)ξ>Ω−1

λ ΣΩ−1
λ θ

∣∣∣ a.s.−→ 0, (58)∣∣∣ξ>S−1
λ ΣS−1

λ θ − (1− v′2(η, 0))ξ>Ω−1
λ ΣΩ−1

λ θ
∣∣∣ a.s.−→ 0 (59)

for p/n −→ c ∈ (0,∞) as n→∞ with η = 1/λ− 1,

Ωλ = v (η, 0)λΣ + (1− λ)I,

and v(η, 0), v′1(η, 0) and v′2(η, 0) given in Lemma 7.

Proof of Lemma 8. Let S̃n = Σ1/2ṼnΣ
1/2. Using (42) and (43) and the formula for the

1-rank update of inverse matrix (see, e.g., Horn and Johnsohn (1985)), we get

λξ>S−1
λ θ = ξ>

(
S̃n +

(
1

λ
− 1

)
I−Σ1/2x̄nx̄

>
nΣ1/2

)−1

θ

= ξ>Σ−1/2

(
Ṽn +

(
1

λ
− 1

)
Σ−1

)−1

Σ−1/2θ

+
ξ>
(
S̃n +

(
1
λ − 1

)
I
)−1

Σ1/2x̄nx̄
>
nΣ1/2

(
S̃n +

(
1
λ − 1

)
I
)−1

θ

1− x̄>nΣ1/2
(
S̃n +

(
1
λ − 1

)
I
)−1

Σ1/2x̄n

,

where ∣∣∣∣∣ξ>
(

S̃n +

(
1

λ
− 1

)
I

)−1

Σ1/2x̄n

∣∣∣∣∣ a.s.−→ 0 (60)

for λ ∈ (0, 1] by Pan (2014, p. 673). Furthermore, the quantity

1

1− x̄>nΣ1/2
(
S̃n +

(
1
λ − 1

)
I
)−1

Σ1/2x̄n

(61)

is bounded following Pan (2014, Eq. (2.28)). Hence, the application of Lemma 7 leads to
the first statement of Lemma 8.
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We compute

λ2ξ>S−2
λ θ = ξ>

(
S̃n +

(
1

λ
− 1

)
I− Σ̄1/2xnx̄>nΣ1/2

)−2

θ

= ξ>Σ−1/2

(
Ṽn +

(
1

λ
− 1

)
Σ−1

)−1

Σ−1

(
Ṽn +

(
1

λ
− 1

)
Σ−1

)−1

Σ−1/2θ

+
ξ>
(
S̃n +

(
1
λ
− 1
)
I
)−2

Σ1/2x̄nx̄>nΣ1/2
(
S̃n +

(
1
λ
− 1
)
I
)−1

θ

1− x̄>nΣ1/2
(
S̃n +

(
1
λ
− 1
)
I
)−1

Σ1/2x̄n

+
ξ>
(
S̃n +

(
1
λ
− 1
)
I
)−1

Σ1/2x̄nx̄>nΣ1/2
(
S̃n +

(
1
λ
− 1
)
I
)−2

θ

1− x̄>nΣ1/2
(
S̃n +

(
1
λ
− 1
)
I
)−1

Σ1/2x̄n

+ x̄>nΣ1/2

(
S̃n +

(
1

λ
− 1

)
I

)−2

Σ1/2x̄n

×
ξ>
(
S̃n +

(
1
λ
− 1
)
I
)−1

Σ1/2x̄nx̄>nΣ1/2
(
S̃n +

(
1
λ
− 1
)
I
)−1

θ(
1− x̄>nΣ1/2

(
S̃n +

(
1
λ
− 1
)
I
)−1

Σ1/2x̄n

)2 ,

where

x̄>nΣ1/2

(
S̃n +

(
1

λ
− 1

)
I

)−2

Σ1/2x̄n

≤
(

1

λ
− 1

)−1

x̄>nΣ1/2

(
S̃n +

(
1

λ
− 1

)
I

)−1

Σ1/2x̄n <∞

and

ξ>
(

S̃n +

(
1

λ
− 1

)
I

)−2

Σ1/2x̄n

≤

√
ξ>
(

S̃n +

(
1

λ
− 1

)
I

)−2

ξ

√
x̄>nΣ1/2

(
S̃n +

(
1

λ
− 1

)
I

)−2

Σ1/2x̄n <∞

For the third statement of the lemma we consider

λ2ξ>S−1
λ ΣS−1

λ θ = ξ>Σ−1/2

(
Ṽn +

(
1

λ
− 1

)
Σ−1 − x̄nx̄>n

)−2

Σ−1/2θ

= ξ>Σ−1/2

(
Ṽn +

(
1

λ
− 1

)
Σ−1

)−2

Σ−1/2θ

+
ξ>Σ−1/2

(
Ṽn +

(
1
λ
− 1
)
Σ−1

)−2

x̄nx̄>n

(
Ṽn +

(
1
λ
− 1
)
Σ−1

)−1

Σ−1/2θ

1− x̄>nΣ1/2
(
S̃n +

(
1
λ
− 1
)
I
)−1

Σ1/2x̄n

+
ξ>Σ−1/2

(
Ṽn +

(
1
λ
− 1
)
Σ−1

)−1

x̄nx̄>n

(
Ṽn +

(
1
λ
− 1
)
Σ−1

)−2

Σ−1/2θ

1− x̄>nΣ1/2
(
S̃n +

(
1
λ
− 1
)
I
)−1

Σ1/2x̄n

+ x̄>n

(
Ṽn +

(
1

λ
− 1

)
Σ−1

)−2

x̄n

×
ξ>Σ−1/2

(
Ṽn +

(
1
λ
− 1
)
Σ−1

)−1

x̄nx̄>n

(
Ṽn +

(
1
λ
− 1
)
Σ−1

)−1

Σ−1/2θ(
1− x̄>nΣ1/2

(
S̃n +

(
1
λ
− 1
)
I
)−1

Σ1/2x̄n

)2 .
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Next, we prove that x̄>n

(
Ṽn +

(
1
λ − 1

)
Σ−1

)−2
x̄n is bounded for p/n −→ c ∈ (0,∞) as

n→∞.

x̄>n

(
Ṽn +

(
1

λ
− 1

)
Σ−1

)−2

x̄n

= x̄>nΣ1/2

(
S̃n +

(
1

λ
− 1

)
I

)−1

Σ

(
S̃n +

(
1

λ
− 1

)
I

)−1

Σ1/2x̄n

≤ λmax(Σ) · x̄>nΣ1/2

(
S̃n +

(
1

λ
− 1

)
I

)−2

Σ1/2x̄n

≤ λmax(Σ)

(
1

λ
− 1

)−1

x̄>nΣ1/2

(
S̃n +

(
1

λ
− 1

)
I

)−1

Σ1/2x̄n <∞ (62)

Using (62) we get that∣∣∣∣∣ξ>Σ−1/2

(
Ṽn +

(
1

λ
− 1

)
Σ−1

)−2

x̄n

∣∣∣∣∣
≤

√
ξ>Σ−1/2

(
Ṽn +

(
1

λ
− 1

)
Σ−1

)−2

Σ−1/2ξ

√
x̄>n

(
Ṽn +

(
1

λ
− 1

)
Σ−1

)−2

x̄n <∞ .

Hence, the application of (60), (61), and Lemma 7 completes the proof of the lemma.

Proof of Theorem 1. Let VGMV = 1/(1>Σ−11). The application of the results of
Lemma 8 with ξ = Σb/

√
b>Σb and θ = 1/

√
1>Σ−11 leads to∣∣∣(Lb + 1)−1/2b>ΣS−1

λ 1− (Lb + 1)−1/2b>ΣΩ−1
λ 1

∣∣∣ a.s.−→ 0, (63)∣∣∣VGMV 1>S−1
λ 1− λ−1VGMV 1>Ω−1

λ 1
∣∣∣ a.s.−→ 0, (64)∣∣∣VGMV 1>S−1

λ ΣS−1
λ 1− VGMV (1− v′2(η, 0))1′Ω−1

λ ΣΩ−1
λ 1

∣∣∣ a.s.−→ 0 (65)

Using (63)-(65) and the equality

Ln;2(λ) =

(
1− 1√

Lb+1

(Lb+1)−1/2b>ΣS−1
λ 1

VGMV 1>S−1
λ 1

)2

1− 2√
Lb+1

(Lb+1)−1/2b>ΣS−1
λ 1

VGMV 1>S−1
λ 1

+ 1
Lb+1

VGMV 1>S−1
λ ΣS−1

λ 1

(VGMV 1>S−1
λ 1)

2

we get the statement of part (i) of the theorem, while the application of the equality

ψ∗n(λ) =
1− 1√

Lb+1

(Lb+1)−1/2b>ΣS−1
λ 1

VGMV 1>S−1
λ 1

1− 2√
Lb+1

(Lb+1)−1/2b>ΣS−1
λ 1

VGMV 1>S−1
λ 1

+ 1
Lb+1

VGMV 1>S−1
λ ΣS−1

λ 1

(VGMV 1>S−1
λ 1)

2

yields the second statement of the theorem.
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Lemma 9 Let 1
pΣ
−1 possess a bounded trace norm. Then it holds that∣∣∣∣1p tr

(
(Sn + ηI)−1

)
− 1

p
tr
(

(v(η, 0)Σ + ηI)−1
)∣∣∣∣ a.s→ 0 (66)

∣∣∣∣∣
1
p tr
(
(Sn + ηI)−2

) (
1− c+ 2cη 1

p tr
(
(Sn + ηI)−1

))
− c

[
1
p tr
(
(Sn + ηI)−1

)]2

1− c+ cη2 1
p tr ((Sn + ηI)−2)

− 1

p
tr
(

(v(η, 0)Σ + ηI)−2
) ∣∣∣∣∣ a.s→ 0 (67)

for p/n→ c ∈ (0,∞) as n→∞.

Proof of Lemma 9. From part (i) of Lemma 6 with Θp = 1
pΣ
−1 and the proof of

Lemma 8 we obtain that 1
ptr((Sn + ηI)−1) is consistent for 1

ptr
(

(ηI + v(η, 0)Σ)−1
)

in the

high dimensional setting.
Furthermore, applying part (ii) of Lemma 6 with Θp = 1

pΣ
−1 and following the proof

of Lemma 8 we get that

1

p
tr
(
(Sn + ηI)−2

) a.s.→ 1

p
tr
(
Σ−1

(
ηΣ−1 + v(η, 0)I

)−1
Σ−1

(
ηΣ−1 + v(η, 0)I

)−1
)

+ v′1(η, 0)
1

p
tr
(
Σ−1

(
ηΣ−1 + v(η, 0)I

)−2
)

=
1

p
tr
(

(v(η, 0)Σ + ηI)−2
)

+ v′1(η, 0)
1

p
tr
(

(v(η, 0)Σ + ηI)−1 Σ (v(η, 0)Σ + ηI)−1
)

=
v′1(η, 0)

v(η, 0)

1

p
tr
(

(v(η, 0)Σ + ηI)−1
)

+

(
1− v′1(η, 0)

v(η, 0)
η

)
1

p
tr
(

(v(η, 0)Σ + ηI)−2
)
, (68)

where the application of (55) leads to

v′1(η, 0)

v(η, 0)
=

c1
ptr
(
(v(η, 0)Σ + ηI)−1

)
− cη 1

ptr
(
(v(η, 0)Σ + ηI)−2

)
1− c+ 2cη 1

ptr ((v(η, 0)Σ + ηI)−1)− cη2 1
ptr ((v(η, 0)Σ + ηI)−2)

.

Thus, 1
ptr
(
(Sn + ηI)−2

)
converges almost surely to

c1
ptr
(
(v(η, 0)Σ + ηI)−1

)
− cη 1

ptr
(
(v(η, 0)Σ + ηI)−2

)
1− c+ 2cη 1

ptr ((v(η, 0)Σ + ηI)−1)− cη2 1
ptr ((v(η, 0)Σ + ηI)−2)

× 1

p
tr
(

(v(η, 0)Σ + ηI)−1
)

+
1− c+ cη 1

ptr
(
(v(η, 0)Σ + ηI)−1

)
1− c+ 2cη 1

ptr ((v(η, 0)Σ + ηI)−1)− cη2 1
ptr ((v(η, 0)Σ + ηI)−2)

× 1

p
tr
(

(v(η, 0)Σ + ηI)−2
)

=
c
[

1
ptr
(
(v(η, 0)Σ + ηI)−1

)]2
+ (1− c)1

ptr
(

(v(η, 0)Σ + ηI)−2
)

1− c+ 2cη 1
ptr ((v(η, 0)Σ + ηI)−1)− cη2 1

ptr ((v(η, 0)Σ + ηI)−2)
,
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which together with (66) leads to the second statement of the lemma.
Proof of Theorem 2. The result (24) is a direct consequence of (54) in Lemma 7 and

(66) in Lemma 9.

Let t1 = 1
ptr
(

(Sn + ηI)−1
)

and t2 = 1
ptr
(

(Sn + ηI)−2
)

. Then, the application of (55)

in Lemma 7 and the results of Lemma 9 leads to a consistent estimator of v′1(η, 0) expressed
as

v̂′1(η, 0) = v̂(η, 0)
ct1 − cη

t2(1−c+2cηt1)−ct21
1−c+cη2t2

1− c+ 2cηt1 − cη2 t2(1−c+2cηt1)−ct21
1−c+cη2t2

= v̂(η, 0)
(1− c)c(t1 − ηt2) + c2ηt1(t1 − ηt2)

(1− c)2 + 2(1− c)cηt1 + c2η2t21
= v̂(η, 0)c

(1− c+ cηt1)(t1 − ηt2)

(1− c+ cηt1)2

= v̂(η, 0)c
t1 − ηt2

(1− c+ cηt1)
= v̂(η, 0)c

t1 − ηt2
v̂(η, 0)

.

Finally, the result (26) follows from (24) and (25) together with (56) in Lemma 7.
Proof of Theorem 3. The result (27) is a special case of Theorem 3.2 in Bodnar et al.

(2014). Equation (28) follows from Lemma 8 with ξ = θ = 1/
√

1>Σ−11. For the derivation
of (29) we note that

b>ΣΩ−1
λ 1 =

1

λv(η, 0)

(
1− (1− λ)b>Ω−1

λ 1
)

(69)

and apply Lemma 8 with ξ = b/
√

b>Σ−1b and θ = 1/
√

1>Σ−11.
Finally, (30) is obtained by noting that

1>Ω−1
λ ΣΩ−1

λ 1 =
1

λv(η, 0)
1>Ω−1

λ 1− 1− λ
λv(η, 0)

1>Ω−2
λ 1,

where (28) is used for the first summand and (58) of Lemma 8 with ξ = θ = 1/
√

1>Σ−11
for the second one.
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