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Abstract

Transfer learning uses a data model, trained to make predictions or inferences on data
from one population, to make reliable predictions or inferences on data from another pop-
ulation. Most existing transfer learning approaches are based on fine-tuning pre-trained
neural network models, and fail to provide crucial uncertainty quantification. We develop
a statistical framework for model predictions based on transfer learning, called RECaST.
The primary mechanism is a Cauchy random effect that recalibrates a source model to
a target population; we mathematically and empirically demonstrate the validity of our
RECaST approach for transfer learning between linear models, in the sense that prediction
sets will achieve their nominal stated coverage, and we numerically illustrate the method’s
robustness to asymptotic approximations for nonlinear models. Whereas many existing
techniques are built on particular source models, RECaST is agnostic to the choice of
source model, and does not require access to source data. For example, our RECaST
transfer learning approach can be applied to a continuous or discrete data model with lin-
ear or logistic regression, deep neural network architectures, etc. Furthermore, RECaST
provides uncertainty quantification for predictions, which is mostly absent in the literature.
We examine our method’s performance in a simulation study and in an application to real
hospital data.

Keywords: Bayesian transfer learning, Electronic health records, Informative Bayesian
prior, Model calibration.

1. Introduction

The use of artificial intelligence and machine learning (ML) is frequently limited in practice
by a shortage of available training data and insufficient computational resources. To ad-
dress these difficulties, transfer learning has developed as a powerful idea for leveraging the
resources at leading institutions such as research hospitals (e.g., institutions having high
quality data, exceptional research clinicians, high performance computing environments,
etc.) to facilitate implementation of ML technologies in resource scarce settings such as
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small or rural hospitals. Developments in transfer learning methodologies are necessary
to overcome resource allocation inequities, and they will likely drive the next decade of
innovation in ML technologies.

Transfer learning consists broadly of two elements. The first is one or more target
population(s) of interest that are associated with data sets for which there are resource
limitations preventing the training of sophisticated models (e.g., a small hospital). The
second is a source population (or populations) that is separate but in some way related
to the target population. The source is associated with extensive data and/or resources
for training sophisticated ML models. The premise of transfer learning is to use trained
source models to aid in the training of target models. The source and targets are each
composed of two components: a domain, denoted D, and a task, denoted T . A domain
D := {X , P (x)} consists of a feature space X and a marginal probability distribution P (x)
over x ∈ X . A task T := {Y, P (y | x)} is composed of a label space Y and a conditional
distribution P (y | x) over y ∈ Y given x ∈ X . Traditional ML is described by the source and
target sharing the same domain, DS = DT , and sharing the same task, TS = TT . Transfer
learning problems arise when the source and target domains and/or the source and target
tasks are similar but different. We propose a new Bayesian transfer learning framework
termed Random Effect Calibration of Source to Target (RECaST) for source and target
data sets that share the same outcome space but possibly have different feature-to-outcome
mappings.

1.1 Our Contributions

Early efforts in transfer learning focused on using labeled data to learn about unlabeled
data from the same population (see Joachims (1999) and Vapnik (2009) for examples). In
contrast, modern transfer learning methods explore how knowledge from one source domain
can be applied to a different target domain. In this spirit, we consider transfer learning in
the supervised learning problem that dominates ML applications. Our proposed method
uses information from the source and target features and labels to build a predictive model
that can be applied to obtain predictions of labels for new target data features of interest.
The use of target labels is common across transfer learning and is sometimes referred to
as inductive transfer learning (Pan and Yang, 2010). For example, a method is proposed
in Donahue et al. (2014) to generalize a model built on ImageNet data for use on different
labeled target data sets. A neural network is fine-tuned in Shao et al. (2019) to identify
and classify machine faults. In Goussies et al. (2014), a decision forest is proposed that uses
mixed information gain and label propagation to improve image and gesture recognition in
the target domain.

RECaST is a Bayesian framework applied to the transfer learning setting where the
feature-to-outcome mappings P (y | x) may differ between the source and target. For ex-
ample, source and target hospitals might record largely the same patient data features, but
nuances in clinician practices/procedures, inconsistencies in data quality, population dis-
parities, etc. may affect the suitability of using the source mapping as the target mapping.
RECaST uses an estimated source model in tandem with the target data to estimate the
distributions of a random effect that links the two domains. It then uses the estimated
posterior distribution of the random effect parent parameters to construct a posterior pre-
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dictive distribution of the outcome variable associated with a new target feature. The
posterior predictive credible sets obtained through RECaST deliver critical quantification
of prediction uncertainty that is lacking in most existing frameworks.

Two primary advantages of RECaST are its scalability, requiring estimation of only 2-3
parameters with no tuning parameters, and that it is agnostic to the source model speci-
fication. Importantly, RECaST only requires the source model and parameter estimates,
not the source data itself; this is an immense benefit to applications with privacy concerns,
such as with medical data. Further, we show that RECaST is asymptotically valid in the
canonical case of distinct source and target Gaussian linear models, in that the coverage
of prediction sets are guaranteed to asymptotically achieve their stated nominal level of
significance.

To evaluate our proposed RECaST approach, we design synthetic simulation studies
with both continuous and binary response data reflecting a variety of difficulty levels of
transfer learning problems. Next, we investigate the performance of RECaST in real data
simulations that arise by permuting real patient data from the multi-center eICU Collabora-
tive Research Database (Pollard et al., 2018). A variety of both point-valued and set-valued
prediction metrics are considered, including the empirical coverage of prediction sets. The
performance of RECaST is compared to other state-of-the-art transfer learning approaches,
including other source-free methods that do not require the source data while learning the
target model. These include freeze-unfreeze approaches that are popular for neural net-
works, as well as a method based on adapting a random forest built on the source data to
the target data (Gu et al., 2022). In some cases, it may be possible to have access to both
the source and target data. As such we also compare RECaST to methods that require
both data sets during training. These include an adversarial learning method (Shen et al.,
2018), a method based on penalized GLMs (Tian and Feng, 2022), and a popular weighting
approach used on clinical data (Wiens et al., 2014).

The remainder of our paper is organized as follows. We discuss related works in transfer
learning in Section 2. In Section 3, we develop the theoretical basis for RECaST and its
uncertainty quantification. We then develop Bayesian parameter estimation and prediction
procedures in both the continuous and binary response cases in Sections 4 and 5, respec-
tively. We conduct extensive simulation studies in Section 6 by exploring transfer learning
problems of a range of difficulties. Section 7 considers a real data analysis for predicting
shock in ICU data. Section 8 concludes. Proofs and computational details are provided in
the Appendix. Throughout the paper we keep to the convention in the statistical literature
of using (·) for innermost grouping followed by {·} and finally [·]. Thus, an expression with
many nested parentheses respects the ordering [{(·)}].

2. Related Work

General survey papers on transfer learning topics include Pan and Yang (2010); Lu et al.
(2015); Weiss et al. (2016); Dube et al. (2020). For hospital disease risk and mortality
prediction problems, Wiens et al. (2014), Gong et al. (2015), and Desautels et al. (2017)
propose transfer learning approaches based on training algorithms using a learned weighted
combination of source and target patient observations. These methods learn many param-
eters and require access to the source data. RECaST may at first glance appear similar to
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density ratio estimation, a common approach to transfer learning. Density ratio transfer
learning methods, such as the one described in Stojanov et al. (2019), seek to learn the
relationship between the source and target data via a ratio of their densities; however, these
methods require joint access to the source and target data – a limitation avoided by RE-
CaST. In Paul et al. (2016), Raghu et al. (2019), and Ahishakiye et al. (2021), approaches
are considered to improve classification accuracy for medical imaging tasks using pre-trained
deep neural networks (DNNs) on the ImageNet database (Deng et al., 2009). In the context
of ICU patient monitoring, in Shickel et al. (2021) a data augmenting-based transfer learn-
ing approach is built for fitting a single-layer recurrent neural network trained on electronic
health records (EHR) and wearable device data. Their model is limited in scope to only
predicting the binary response of successful versus unsuccessful discharge from a hospital.
Implemented in Gao and Cui (2021) is a transfer learning strategy for precision medicine in
survival analysis with clinical omics data sets via freezing layers of a pre-trained Cox neural
network. Developed in Lee et al. (2012) is a method using support vector machines to pre-
dict surgical mortality. Another approach, from Gu et al. (2023), is to generate additional
synthetic target data from a source data set and adjust for heterogeneity in order to predict
extreme obesity from medical records and genomics data. An example of low-dimensional
representation transfer learning is given in Maurer et al. (2015), and online transfer learning
is considered in Zhao et al. (2014); Wu et al. (2017). These applied methods are useful in
modeling specific pieces of EHR data for prediction, but lack uncertainty quantification.
Additionally, some require the learning of many parameters and access to the entire source
data set.

Bayesian transfer learning adaptations include Baxter (1998), Raina et al. (2006), Wohlert
et al. (2018), Bueno et al. (2020), Chandra and Kapoor (2020), Yang et al. (2020), Zhou
et al. (2020), Abba et al. (2023); all except Baxter (1998) and Raina et al. (2006) are
based on priors specified from neural network models fitted to source data sets. A posterior
distribution fitted to a source DNN model is used as a prior on the parameters for the
target task in Wohlert et al. (2018), and the model is trained using mean field variational
Bayes (for a reference on variational Bayes, see Zhang et al., 2017). Boosting approaches
to transfer learning are considered by Freund and Schapire (1999), Dai et al. (2007), and
Desautels et al. (2017). In Abba et al. (2023), a penalized complexity prior between the
source and target tasks is considered. While uncertainty quantification for predictions in
transfer learning applications is mostly absent in the literature, approximate inference from
Bayesian neural networks is used in Roy et al. (2022) to quantify uncertainty in parameter
estimates and predictions to account for misaligned feature distributions. This approach,
referred to as U-SFAN, is related to our RECaST framework in that it is source-free, but
it requires that the source model is a neural network. Another difference is that U-SFAN
focuses on using uncertainty in the source domain to guide uncertainty quantification in the
target model, whereas RECaST provides uncertainty quantification directly based on the
target predictions themselves.

It is important to note the difference between source-free transfer learning methods and
“source-free domain adaption” (SFDA) methods: RECaST aims to use labels in the target
domain in tandem with a model built in the source domain to learn about the target domain.
SFDA methods, in contrast, have neither access to source data nor target labels, and often
proceed by learning pseudo-labels for the target data. A comprehensive survey of SFDA
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approaches is given in Li et al. (2024). These surveyed strategies are predominantly non-
model based, purely empirical, and lack a unified underlying framework. Moreover, those
that focus on fine-tuning pre-trained neural network models on a target data set require
the source model to be a neural network, and often fail to provide crucial uncertainty
quantification.

Recently, there have been efforts to investigate theoretical properties of transfer learn-
ing approaches. For instance, a learning method based on LASSO for high-dimensional
penalized linear regression is considered in Li et al. (2022), while diminishing the effect of
negative transfer. Negative transfer occurs when including source data negatively impacts
the performance on target data. In a similar setting, asymptotically valid confidence inter-
vals for generalized linear model (GLM) parameters in high-dimensional transfer learning
problems are established in Tian and Feng (2022). This technique is adapted to a more
complicated federated transfer learning setting in Li et al. (2023). A parameter is defined
in Cai and Wei (2021) to calculate an “effective sample size” to quantify total amount of
information that can be transferred when the source and target conditional distributions
differ. This approach is extended in Reeve et al. (2021), where assumptions are relaxed on
the relationship between the source and target conditional distributions. Hector and Mar-
tin (2024) propose and study the inferential properties of an information-driven shrinkage
estimator that is robust to heterogeneity between source and target feature-to-label map-
pings but assumes this mapping is of the same parametric form. These methods offer more
mathematically rigorous motivations, but are restrictive in their modeling options. Such
restrictions are eliminated in our proposed framework.

3. RECaST Framework

Our transfer learning problem is defined by the following four assumptions: (i) there is a
well-developed structural component of the prediction model for the source domain denoted
by f(θS , xS) which represents the relationship between the features and parameters; (ii)
there exist ample source data for estimating the parameter(s) θS ; (iii) XS = XT , and the
structural component of the target prediction model, denoted by g(θT , xT ), is believed to
be similar to f(θS , xT ); and (iv) there does not exist sufficient target data for reliably
estimating the parameter(s) θT . We hereafter refer to f(θS , xS) and g(θT , xT ) as structural
components of their respective models. The notion of similarity will be defined in the
construction of our RECaST framework for transfer learning, presented next.

Denote the forward data-generating representations of P (yS | xS) and P (yT | xT ),
respectively, by

YS = h
{
f(θS ,xS), US

}
and

YT = h
{
g(θT ,xT ), UT

}
,

(1)

where XS = XT = Rp, and UT and US are independent and identically distributed auxiliary
random variables. We give two examples of the h function (for continuous and binary
response examples), but the h function is much more general. It is to be understood as
any scalar-valued function that relates the covariates to the auxiliary random variable in
the fashion of a data generating equation. In fact, in the case of a continuous random
variable, the h function can be taken to be the inverse cumulative distribution function, by
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the probability integral transform. For example, if

f(θS ,xS) = x>S θS ,

h(x>S θS , US) = x>S θS + US , and

US ∼ N (0, 1),

then YS ∼ N (x>S θS , 1). Or in the case of binary outcome data, for example, if

f(θS ,xS) = expit(x>S θS),

h(x>S θS , US) = 1{US < expit(x>S θS)}, and

US ∼ Uniform(0, 1),

then YS ∼ Bernoulli{expit(x>S θS)}, where expit(z) := ez/(1 + ez). The similarity between
the source and target that makes this a formulation of a transfer learning problem is deter-
mined by how well the structural component f(θS ,xT ) of the source model approximates
the structural component g(θT ,xT ) of the target model.

Accordingly, transfer learning should be effective if β := g(θT ,xT )/f(θS ,xT ) ≈ 1, and
sufficient source data is available for reliable estimation of θS ; in fact, the source and target
models are identical if β = 1. Assuming f(θS ,xT ) 6= 0 almost surely (a.s.), it follows a.s.
that

YT,i = h
{
βi · f(θS ,xT,i), UT,i

}
, (2)

for i ∈ {1, . . . , nT }, where YT,1, . . . , YT,nT is an independent sample of nT target labels with
associated features xT,1, . . . ,xT,nT , and βi := g(θT ,xT,i)/f(θS ,xT,i). The identity given
by Equation (2) is further motivated by the fact that, for first-order approximations of

the source and target models, if we assume xT,1, . . . ,xT,nT
iid∼ Np(0, Ip), then by Lemma

1 (a well-known result for which we provide a proof in Appendix A, for convenience),
βi = (x>T,iθT )/(x>T,iθS) ∼ Cauchy(δ, γ), with

δ =
θ>T θS

‖θS‖2
, and

γ =
1

‖θS‖2
√
‖θS‖2 ‖θT ‖2 − (θ>T θS)2.

Lemma 1 For any a, b ∈ Rp, if x ∼ Np(0, Ip) then (x>a)/(x>b) ∼ Cauchy(δ, γ), with

δ = a>b/ ‖b‖2 and γ = ‖b‖−2
√
‖b‖2 ‖a‖2 − (a>b)2.

That being so, while Equation (2) is motivated by a first-order approximation, f(θS ,xS)
and g(θT ,xT ) need not share the same structure to implement the RECaST framework
described by Equation (2). In fact, Equation (2) does not make any account of g(θT ,xT );
it only assumes that the source model and parameters are available with the target data.

In practice, we assume without loss of generality that features have been centered and
scaled to have mean zero and unit variance. Central limit theory supports the Gaussian
approximation for more complex, nonlinear models (i.e., for the large p scenarios that
characterize modern ML approaches). Specifically, appealing to the Lyapunov or Lindeberg
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central limit theorem gives Gaussian approximations for the distributions of x>T,iθS/‖θS‖2

and x>T,iθT /‖θT ‖2. For more general assumptions on f and g, first-order approximations

motivate f(θS ,xT,i) ≈ x>T,iθS and g(θT ,xT,i) ≈ x>T,iθT . The edge case with γ → ∞
describes a situation in which there is no link between the source and target domains.
Assuming γ < ∞, the RECaST model specified by Equation (2) with random effect βi ∼
Cauchy(δ, γ) fully characterizes the similarity between the source and target domains. In
addition to being the exact distribution in the linear model case with Gaussian features, the
Cauchy distribution also provides benefit through its heavy tails. This attribute allows βi
to capture large disparities between source and target data sets, improving the frequentist
coverage of resulting prediction sets.

Estimating parameters of Cauchy distributions is a notoriously difficult problem since
the heavy tails allow outlying events to happen with relatively high probability (Schus-
ter, 2012). Some estimation procedures focus on estimating solely the location parameter
(Zhang, 2010) or the scale parameter (Kravchuk and Pollett, 2012), but rarely both. Fe-
gyverneki (2013) explores the trade-off between using simple robust estimators, for both
parameters, which are less asymptotically efficient than the maximum likelihood estima-
tors. Recently, limit theorems are established in Akaoka et al. (2022) for quasi-arithmetic
means for point estimation in cases where the strong law of large numbers fails, such as
with Cauchy random variables. The fact that the Cauchy distribution appears in our work
speaks to the difficulty of a transfer learning problem.

There are three primary advantages of our RECaST transfer learning model formulation
in Equation (2) with random effect βi ∼ Cauchy(δ, γ). First, regardless of the complexity
of the source model (e.g., f(θS , ·) could represent a DNN with millions of parameters in θS
trained on extensive source data), RECaST only ever requires estimation of the parameters
δ and γ, and perhaps a scale parameter associated with UT,i through h(·, UT,i). Existing
transfer learning methods require either estimation of θT (often via fine-tuning from an
estimate of θS) or learning of nT + nS weights for pooling the source and target data,
where nS is the number of source training labels. The scalability of our approach cannot
be overstated. Second, RECaST needs no source data, only requiring the estimated source
parameters θ̂S . Such a feature is vital in applications such as with medical data where
privacy constraints place legal and ethical barriers to accessing certain data sets. Third,
RECaST naturally facilitates uncertainty quantification of target label predictions via the
construction of prediction sets. The following two sections propose a Bayesian framework
for estimation of the posterior predictive distribution of target labels in the continuous and
binary response settings, respectively.

4. Continuous Response Data

4.1 Model and Estimation

Assume that YS,1, . . . , YS,nS and YT,1, . . . , YT,nT are mutually independent, continuous ran-
dom variables generated according to source and target models, respectively, as expressed
in Equation (1). Also assume that an estimator f(θ̂S ,x) is available for any feature vector
x ∈ XS = XT , where θ̂S is an estimator of θS based on YS,1, . . . , YS,nS . In the continuous
response setting, a natural choice for the h function in the RECaST model, defined by
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Equation (2), is the Gaussian innovation formulation,

YT,i = βi · f(θ̂S ,xT,i) + σ · UT,i,

independently for i ∈ {1, . . . , nT }, where UT,i ∼ N (0, 1), σ > 0 is a scaling parameter to be
learned from the target data, and βi ∼ Cauchy(δ, γ).

We specify a canonical prior on (δ, γ, σ) as

π(δ, γ, σ) = N (δ | 1, σ2δ ) · logN (γ | a, b) · logN (σ | c, d).

The prior distributions are standard for shape and scale parameters. The hyperparameters
for σ can be chosen based on prior information about the target domain. The hyperparam-
eters for δ and γ can be chosen based on prior information about similarity between the
source and target data. If the domains are known to be very similar, then the prior on δ
may be centered near 1 with a small variance and the prior on γ may be chosen to have
a mode near 0 with a small variance. This will result in a prior favoring δ and γ values
that encourage β = g(θT ,xT )/f(θS ,xT ) values of 1, which indicates a similar source and
target. In practice, to demonstrate the robustness of the RECaST framework and to cover
a broad range of transfer learning settings, we choose hyperparameter values that induce
diffuse priors. See Appendix C for more details.

A posterior distribution of the parameters (δ, γ, σ) can be expressed as

π
(
δ, γ, σ | yT,1, . . . , yT,nT , θ̂S

)
=

∫
R
· · ·
∫
R
π
(
δ, γ, σ, β1, . . . , βnT | yT,1, . . . , yT,nT , θ̂S

)
dβ1 . . . dβnT

∝ π(δ, γ, σ) ·
∫
R
· · ·
∫
R

nT∏
i=1

[
N
{
yT,i | βif(θ̂S ,xT,i), σ

2
}
· Cauchy(βi | δ, γ)

]
dβ1 . . . dβnT

= π(δ, γ, σ) ·
nT∏
i=1

∫
R
N
{
yT,i | βif(θ̂S ,xT,i), σ

2
}
· Cauchy(βi | δ, γ) dβi

= π(δ, γ, σ) ·
nT∏
i=1

∫
R
N
{
βif(θ̂S ,xT,i) | yT,i, σ2

}
· Cauchy(βi | δ, γ) dβi

= π(δ, γ, σ) ·
nT∏
i=1

∫
R
N
{
βi |

yT,i

f(θ̂S ,xT,i)
,

σ2

f2(θ̂S ,xT,i)

}
· Cauchy(βi | δ, γ)

| f(θ̂S ,xT,i) |
dβi, (3)

where the univariate integrals in the last expression can be evaluated numerically. Next,
the posterior predictive distribution of the label ỸT associated with some new target feature
vector x̃T can be derived as the marginal distribution of

π
(
ỹT , β̃, σ, δ, γ | yT,1, . . . , yT,nT , θ̂S

)
= N{ỹT | β̃f(θ̂S , x̃T ), σ2} · π

(
β̃, σ, δ, γ | yT,1, . . . , yT,nT , θ̂S

)
= N{ỹT | β̃f(θ̂S , x̃T ), σ2} · Cauchy(β̃ | δ, γ) · π

(
δ, γ, σ | yT,1, . . . , yT,nT , θ̂S

)
. (4)
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4.2 Remarks on Implementation

To estimate the posterior distribution given in Equation (3), we implement a random walk
Metropolis-Hastings algorithm, numerically solving the univariate integrals with the Julia

package QuadGK (Johnson, 2013). Furthermore, by expressing these integrals as expectations
with respect to a Gaussian distribution (i.e., the final expression in Equation (3)), we show
that they are numerically equivalent to definite integrals from −39 to 39. See Appendix B
for the mathematical details of this bound. This substantially reduces the computational
overhead for the numerical integration.

We detail our implementation of the Metropolis-Hastings algorithm in Appendix C.
The chosen number of iterations and length of the burn-in period can be adjusted based
on computational resources. Because Metropolis-Hastings evaluates the likelihood for all
target data points for each iteration, the computational complexity is O(nT · niterations),
with niterations the number of Metropolis-Hastings iterations. The fact that nT is assumed
to be small for transfer learning problems mitigates concerns about scalability. Posterior
predictive credible sets can be constructed as usual in Bayesian inference, from the highest
posterior density regions calculated via the empirical quantiles of the sampled posterior
predictive values.

In Algorithm 1, we propose a procedure for drawing samples from the posterior predictive
distribution described by Equation (4). Again take x̃T to be the feature vector for a new
target data point with label ỸT . With the learned posterior distribution of (δ, γ, σ), we
are able to sample from the posterior predictive distribution of ỸT . We first sample npost
(δ, γ, σ) triplets from the posterior distribution. For each of these triplets, we sample nβ β’s
from a Cauchy distribution with location and scale parameters corresponding to the δ and γ
sampled from the posterior. Finally, for each sampled β we sample nY ỹT ’s from the normal
distribution with mean and variance determined by x̃T , the sampled β, and the sampled σ.
This gives a total of npost ·nβ ·nY samples from the posterior predictive distribution for each
new target observation. These samples are used to construct the posterior predictive credible
sets as described in Algorithm 1 with a computational complexity of O(npost · nβ · nY ). We
discuss our choices for these parameters in Appendix C. We showcase the effectiveness of
these proposed computational strategies in a variety of simulation scenarios in Section 6.2.

Algorithm 1 RECaST posterior predictive sampling: continuous response data

Input: x̃T , samples from π
(
δ, γ, σ | yT,1, . . . , yT,nT

, θ̂S
)
, and sample sizes npost, nβ , and nY

Output: A sample of values from π
(
ỹT | yT,1, . . . , yT,nT

, θ̂S
)

for i← 1 to npost do

δ, γ, σ ← random
{
π
(
δ, γ, σ | yT,1, . . . , yT,nT

, θ̂S
)}

for j ← 1 to nβ do

β̃ ← random
{

Cauchy(δ, γ)
}

for k ← 1 to nY do
ỸT ← random

[
N
{
β̃f(θ̂S , x̃T ), σ2

}]
end for

end for
end for
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4.3 Theoretical Guarantees

In this section, we establish the asymptotic validity of our proposed posterior predictive
credible sets in the case of linear source and target models with independent Gaussian
innovations. Here, asymptotic validity means that the empirical coverage of a 1 − α level
prediction credible set attains 1 − α level coverage, asymptotically in nT , as described by
the result of Theorem 3. Our mathematical proof of this result and of all supporting results
are organized in Appendix A.

Suppose that YS,j follows a Gaussian distribution centered at x>S,jθS , independently for
j ∈ {1, . . . , nS}. In the class of transfer learning problems we consider, it is assumed that
consistent or meaningful estimators are available for all source model parameters, and that
ample data/resources are available for estimating them. Accordingly, assume that nS is

sufficiently large such that θS is regarded as known. Next, assume that YT,1, . . . , YT,nT
iid∼

N (x̃>θT , σ
2), for some feature vector x̃ ∈ XT = XS , and θT unknown. Leveraging the

RECaST transfer learning framework, the likelihood function of (δ, γ) can be expressed as

L(δ, γ | yT,1, . . . , yT,nT , β1, . . . , βnT ) =

nT∏
i=1

[
N
{
yT,i | βix̃>θS , σ2

}
· Cauchy(βi | δ, γ)

]
. (5)

We investigate the asymptotic coverage of prediction sets constructed from the RECaST
posterior predictive distribution with plugin maximum likelihood estimators (MLEs) δ̂ and
γ̂ for δ and γ, respectively:

π(ỹT , β̃ | y1, . . . , ynT ) = N (ỹT | β̃x̃>θS , σ2) · Cauchy(β̃ | δ̂, |γ̂|).

This is the same as considering maximum a posteriori (MAP) estimators for δ and γ with
a flat prior π(δ, γ) ∝ 1, and the choice of prior is not so meaningful in the nT →∞ setting.
Recall that in the RECaST framework the β1, . . . , βnT that appear in the likelihood function
in Equation (5) are iid Cauchy(δ, γ) random effects. Nonetheless, we demonstrate with
Lemma 2 that the MLEs δ̂ and γ̂ converge in probability to fixed points such that

π(ỸT , β̃ | y1, . . . , ynT ) ≈ N (ỸT | β̃x̃>θS , σ2) · 1
{
β̃ =

x̃>θT

x̃>θS

}
= N (ỸT | x̃>θT , σ2),

as desired. This fact leads to our main theoretical result, Theorem 3, which establishes the
asymptotic validity of 1− α level RECaST prediction sets of the form [aαnT , b

α
nT

], with

aαnT := Φ−1(α/2) · σ + β̃ · x̃>θS and

bαnT := Φ−1(1− α/2) · σ + β̃ · x̃>θS ,

for any α ∈ (0, 1) and β̃ ∼ Cauchy(δ̂, |γ̂|).

Lemma 2 Assuming YT,1, . . . , YT,nT
iid∼ N (x̃>θT , σ

2) and β1, . . . , βnT
iid∼ Cauchy(δ, γ), in-

dependently, the MLEs of δ and γ for Equation (5) satisfy

δ̂ −→ x̃>θT

x̃>θS
and γ̂ −→ 0

in probability as nT →∞.
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Theorem 3 Assume that ỸT ∼ N (x̃>θT , σ
2). Then, for any α ∈ (0, 1),

P
(
ỸT ∈ [aαnT , b

α
nT

]
)

=

∫ bαnT

aαnT

1

σ
√

2π
e−

1
2σ2

(ỹT−x̃>θT )2dỹT −→ 1− α

in probability as nT →∞.

In Section 6, we provide empirical evidence that RECaST achieves near nominal coverage
even in more practical, small nT settings, trained on target data that arise from both linear
and non-linear models. In the empirical investigations in Section 6, we relax the assumptions
of known σ and the availability of repeated samples from a fixed feature vector x̃.

5. Binary Response Data

5.1 Model and Estimation

Assume that YS,1, . . . , YS,nS and YT,1, . . . , YT,nT are mutually independent, Bernoulli random
variables generated according to source and target models, respectively, as expressed in
Equation (1). Also assume that an estimator f(θ̂S ,x) is available for any feature vector
x ∈ XS = XT , where θ̂S is an estimator of θS based on YS,1, . . . , YS,nS . In the binary
response setting, a natural choice for the h function in the RECaST model, defined by
Equation (2), is the logistic model formulation,

YT,i = 1
[
UT,i < expit

{
βi · f(θ̂S ,xT,i)

}]
,

with UT,i ∼ Uniform(0, 1) independently for i ∈ {1, . . . , nT } and βi ∼ Cauchy(δ, γ).
As in the continuous setting, the RECaST posterior distribution of the parameters can

be constructed as

π
(
δ, γ | yT,1, . . . , yT,nT , θ̂S

)
=

∫
R
· · ·
∫
R
π
(
δ, γ, β1, . . . , βnT | yT,1, . . . , yT,nT , θ̂S

)
dβ1 . . . dβnT

∝ π(δ, γ) ·
nT∏
i=1

∫
R

Bernoulli
[
yT,i | expit

{
βif(θ̂S ,xT,i)

}]
· Cauchy(βi | δ, γ) dβi,

and the posterior predictive distribution of the label ỸT associated with some new target
feature vector x̃T can be derived as the marginal distribution of

π
(
ỹT , β̃, δ, γ | yT,1, . . . , yT,nT , θ̂S

)
= Bernoulli

[
ỹT | expit

{
β̃f(θ̂S , x̃T )

}]
· Cauchy(β̃ | δ, γ) · π

(
δ, γ | yT,1, . . . , yT,nT , θ̂S

)
. (6)

We specify a canonical prior on (δ, γ) as

π(δ, γ) = N (δ | 1, σ2δ ) · logN (γ | a, b),

with diffuse choices of the hyperparameters σδ, a, b. A similar description to that in Section
3.1 of the choice of priors holds here.
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A 1− α level RECaST prediction credible set, denoted ΓαnT , for binary response values
is constructed as

ΓαnT =


{0}, if p̃ < 1− p̃ and 1− α ≤ 1− p̃
{1}, if 1− p̃ ≤ p̃ and 1− α ≤ p̃
{0, 1}, else,

(7)

where p̃ := π
(
ỹT = 1 | yT,1, . . . , yT,nT , θ̂S

)
.

5.2 Remarks on Implementation

The RECaST transfer learning computations in the binary response setting follow analo-
gously to those described in Section 4.2. For completeness, Algorithm 2 specifies the pro-
cedure we propose for drawing samples from the posterior predictive distribution described
by Equation (6).

Algorithm 2 RECaST posterior predictive sampling: binary response data

Input: x̃T , samples from π
(
δ, γ | yT,1, . . . , yT,nT

, θ̂S
)
, and sample sizes npost, nβ , and nY

Output: A sample of values from π
(
ỹ | yT,1, . . . , yT,nT

, θ̂S
)

for i← 1 to npost do

δ, γ ← random
{
π
(
δ, γ | yT,1, . . . , yT,nT

, θ̂S
)}

for j ← 1 to nβ do

β̃ ← random
{

Cauchy(δ, γ)
}

for k ← 1 to nY do

ỸT ← random
(

Bernoulli
[
expit

{
β̃f(θ̂S , x̃T )

}])
end for

end for
end for

6. Simulation Study

6.1 Objectives and Setup

In this section, we examine the finite sample performance of RECaST through simulations
on synthetic data. We consider continuous and binary responses with source models cor-
responding to linear (RECaST LM) and logistic (RECaST GLM) regression, respectively,
as well as a DNN (RECaST DNN) source model for both response types. We assess the
empirical coverage with respect to the nominal coverage level of the prediction sets. If the
method is calibrated, the empirical coverage will match the nominal significance level. We
use the terms empirical coverage and observed coverage interchangeably.

We generate the synthetic data from linear and logistic regressions with source param-
eter vector θS and target parameter vector θT , with p = 50 features (including an inter-
cept). The features are generated from the standard Gaussian distribution, xS,i,xT,j ∼
Np−1(0, Ip−1). We fix the source data generating parameters θS . The source data gen-
erating parameters are set to θS = (−a, b) where a, b ∈ R25 have components indepen-
dently sampled from Uniform(0.75, 5) and then fixed for all simulations. The similarity of
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source and target domains is controlled by choosing the value of σTL > 0 in constructing
θT = θS + ε with ε ∼ Np(0, σ2TLIp). We consider values of σ2TL ∈ {0, 0.25, 1, 4}. Set-
ting σ2TL = 0 corresponds to θT = θS , i.e., no difference between the source and target
distributions. Since the source parameters lie within [−5,−0.75] ∪ [0.75, 5], a variance of
σ2TL = 4 allows for significant differences between θT and θS . We fix the source sample size
at nS = 1000, and vary the target sample size nT to examine performance when p < nT
(nT = 100, 250), p is near nT (nT = 40, 60), and p > nT (nT = 20). We simulate 300 source
and target data sets for each of these 20 combinations of σ2TL and nT values, and implement
the estimation procedures described in Sections 4.2 and 5.2. See Appendix C for additional
details about the specifics of our implementations.

We compare to a linear model baseline (LM) which is built only on the target data.
Another baseline for comparison is constructed from training a DNN on the target data,
without any transfer learning, and we compare RECaST to other state-of-the-art transfer
learning approaches. We build a DNN on the source data and fine-tune the last layer on
the target data (Unfreeze DNN); this is often referred to as freezing the weights of the
source DNN and unfreezing the last layer. See Appendix D for details on this procedure.
Other state-of-the-art transfer learning approaches that we compare RECaST to include
TransRF (Gu et al., 2022), a source-free method that adapts a random forest model built
in the source domain to target data, and glmtrans (Tian and Feng, 2022), which is based on
penalized GLMs and designed to mitigate the impact of negative transfer. Unlike RECaST
and TransRF, glmtrans requires the source data to be available during the training of
the model. In the continuous setting, we compare to the source-free methods outlined by
Tripuraneni et al. (2021). We compare to both their first order method (MTL FO) and their
method of moments approach (MTL MoM). Note that while this method does not require
the source data when learning the target model, it does require that the source parameters
were learned following their formulation whereas RECaST is agnostic to the choice of source
model. In the binary setting, we compare RECaST to the regularized logistic regression
(Wiens) approach of Wiens et al. (2014). This approach uses the combined source and
target EHR data to build a regularized model for disease prediction – similar to the real
data application we consider in Section 7, but with the disadvantage that Wiens requires
access to the source data (while RECaST does not). In the binary setting, we also compare
RECaST to the adversarial transfer learning approach WDGRL (Shen et al., 2018), which
also requires access to the source data.

Throughout this section, all DNN training proceeds by setting aside a portion of the
training data to be used as a calibration data set. The final DNN parameters are chosen
from the epoch with the minimum calibration loss to improve generalizability to out-of-
sample test sets. Additional details/specifications for our DNN training procedures are
provided in Appendix D.

6.2 Continuous Response Results

Table 1 and Figure 1 summarize the performance of the prediction uncertainty quantifica-
tion provided by our RECaST framework implementations. Table 1 presents the empirical
coverage for 95% nominal level prediction sets for each simulation setting. Recall that
the empirical coverage should ideally match the nominal significance for a given level; an
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empirical coverage greater than the nominal coverage level corresponds to a conservative
interval estimate. RECaST methods consistently provide empirical coverage at or slightly
above nominal levels, supporting the use of RECaST for inference on out-of-sample tar-
get domain predictions. Additionally, Figure 1 plots empirical versus nominal coverage for
the σ2TL = 0.25, nT = 100 and σ2TL = 4, nT = 20 settings at a grid of nominal levels.
The empirical coverages consistently achieve the associated nominal levels or are slightly
conservative.

Figure 1: Reliability curves of the nominal coverage versus the empirical coverage, averaged
over 300 source and target data sets for each setting; the out-of-sample test sets
each contain 250 observations. The left panel shows an easy setting: nT = 100
and σ2TL = 0.25. The right panel shows a difficult setting: nT = 20 and σ2TL = 4.

Out-of-sample root mean squared errors (RMSEs) for all methods, averaged over 300
source and target data sets are presented in Table 2. The LM provides the best prediction
when the sample size is large since in this case it correctly specifies the data generating model
and has enough data to estimate the parameters. There is a large decrease in performance,
noted by the increase in RMSE, when nT < p and a generalized inverse has to be used
for parameter estimation. As expected, the performance of DNN deteriorates as the target
sample size decreases. Note that the baseline DNN is overparameterized, which leads to it
having higher RMSEs than the baseline LM.

Interestingly, the RECaST RMSE values remain consistent for each value of σ2TL, re-
gardless of sample size, suggesting that RECaST is appropriate even when the target sample
size is so small as to preclude a target-only analysis. Meanwhile, Unfreeze DNN exhibits an
increase in RMSE for each value of σ2TL as nT decreases. As source and target become more
dissimilar, both Unfreeze DNN and RECaST exhibit similar increases in RMSE. In fact,
with nT = 250 and σ2TL = 4, the target-only DNN outperforms both RECaST methods.
This setting is the most prone to negative transfer: the target sample size is large enough
to learn meaningful DNN parameters, and the source and target data distributions differ
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greatly, making transfer difficult. We see this phenomenon with the target only LM as
well; with a sample size of nT = 40, both RECaST methods outperform the LM except
for when the source and target are most dissimilar. When nT = 20, the RECaST methods
outperform the LM in all settings. This highlights a situation where transfer learning is
necessary because the target domain lacks sufficient data to efficiently estimate the target
parameters, even with a correctly specified model.

The MTL FO and MTL MoM both see increases in RMSE as the source and target be-
come more dissimilar and see a larger increase in RMSE as the target sample size decreases.
Interestingly, in this simulation these two methods have the same performance when there
are more target sample points than there are features. While in some settings with larger
target sample sizes the Unfreeze DNN slightly outperforms RECaST, it has larger standard
errors and fails to provide uncertainty quantification. We find that TransRF sometimes
performs well but with high RMSE variance. We were not able to evaluate TransRF when
the target sample size was 20 as the software gave NA values instead of predictions with-
out an accompanying error message. While glmtrans sometimes has smaller RMSE than
RECaST, recall that it requires access to the source data and that only RECaST provides
uncertainty quantification for predictions.

nT σ2TL RECaST LM RECaST DNN

250 0 96(1.8) 94(1.9)
0.25 95(1.9) 95(1.9)

1 95(1.9) 95(1.8)
4 95(2.0) 95(1.9)

100 0 96(1.8) 94(2.1)
0.25 96(1.8) 96(2.0)

1 96(1.8) 96(1.8)
4 96(1.8) 96(1.9)

60 0 97(2.2) 94(2.6)
0.25 96(1.9) 96(1.8)

1 96(1.8) 96(1.8)
4 96(1.8) 96(1.8)

40 0 97(2.1) 94(3.3)
0.25 96(2.4) 96(2.4)

1 96(2.6) 96(2.5)
4 96(2.8) 96(2.8)

20 0 98(1.8) 95(3.0)
0.25 97(2.6) 97(2.8)

1 97(2.6) 97(2.8)
4 97(2.7) 97(2.9)

Table 1: Empirical coverage (standard error) at the 95% nominal level, averaged over 300
source and target data sets for each setting; the out-of-sample test sets each contain
250 observations. All reported values are multiplied by 100.
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nT σ2
TL LM DNN RECaST LM RECaST DNN Unfreeze DNN TransRF glmtrans MTL FO MTL MoM

250 0 0.57(0.03) 2.8(0.38) 0.52(0.027) 1.2(0.090) 0.58(0.038) 14(1.5) 0.56(0.026) 1.9(0.07) 1.9(0.07)
0.25 0.57(0.03) 2.9(0.37) 3.6(0.43) 3.8(0.4) 2.8(0.42) 14(1.4) 0.56(0.027) 1.9(0.5) 1.9(0.5)
1 0.57(0.03) 3.1(0.43) 7.1(0.86) 7.2(0.84) 5.5(0.90) 14(1.5) 0.56(0.027) 2.0(1.0) 2.0(1.0)
4 0.57(0.03) 3.7(0.52) 14(1.7) 14(1.7) 11(1.8) 17(2.6) 0.56(0.027) 2.5(1.7) 2.5(1.7)

100 0 0.71(0.07) 8.9(1.6) 0.52(0.022) 1.2(0.095) 0.81(0.095) 22(12) 0.69(0.047) 2.4(0.2) 2.4(0.2)
0.25 0.71(0.06) 9.1(1.3) 3.6(0.42) 3.8(0.40) 3.2(0.57) 28(75) 0.73(0.068) 2.4(0.7) 2.4(0.7)
1 0.71(0.06) 9.4(1.3) 7.1(0.85) 7.2(0.83) 6.3(1.1) 23(16) 0.74(0.075) 2.5(1.2) 2.5(1.2)
4 0.71(0.06) 11(1.52) 14(1.7) 14(1.7) 13(2.1) 31(34) 0.74(0.073) 3.1(2.1) 3.1(2.1)

60 0 1.3(0.27) 14(2.5) 0.52(0.025) 1.2(0.11) 1.5(0.29) 46(73) 0.75(0.05) 4.0(0.87) 4.0(0.88)
0.25 1.3(0.23) 13(1.6) 3.6(0.43) 3.8(0.42) 3.7(0.78) 48(99) 1.2(0.21) 4.0(1.2) 4.0(1.2)
1 1.3(0.23) 14(1.8) 7.1(0.87) 7.2(0.86) 6.8(1.3) 54(85) 1.7(0.38) 4.2(2.1) 4.2(2.1)
4 1.3(0.23) 16(2.6) 14(1.8) 14(1.8) 13(2.0) 51(59) 3.0(0.85) 5.1(3.5) 5.1(3.5)

40 0 10(2.1) 17(2.6) 0.52(0.024) 1.2(0.089) 1.8(0.61) 74(64) 0.78(0.063) 11(2.1) 10(1.9)
0.25 11(1.8) 17(2.4) 3.6(0.41) 3.8(0.40) 4.1(1.1) 62(74) 2.5(0.51) 11(2.1) 10(1.9)
1 11(2.0) 18(2.5) 7.2(0.83) 7.3(0.83) 7.6(2.2) 69(110) 4.7(1.1) 11(2.4) 11(2.2)
4 12(2.0) 20(2.9) 14(1.7) 14(1.7) 14(3.0) 150(540) 8.9(2.3) 13(3.0) 13(2.9)

20 0 18(1.8) 21(1.8) 0.54(0.03) 1.2(0.11) 2.5(2.2) - 0.81(0.078) 18(2.0) 17(1.6)
0.25 18(1.8) 21(1.8) 3.7(0.44) 3.9(0.42) 4.7(2.5) - 3.4(0.39) 18(1.9) 18(1.7)
1 18(1.9) 22(2.0) 7.3(0.90) 7.4(0.90) 8.5(3.5) - 6.7(0.8) 19(2.1) 18(1.9)
4 21(2.4) 24(2.7) 15(1.8) 15(1.8) 16(4.0) - 6.7(0.8) 21(2.5) 20(2.4)

Table 2: Out-of-sample RMSE (standard error) averaged over 300 source and target data sets for each
setting; the out-of-sample test sets each contain 250 observations.

6.3 Binary Response Results

Table 3 shows that RECaST procedures, again, provide near nominal coverages with low
standard errors across sample sizes in the binary response setting.

nT σ2
TL DNN

RECaST
GLM

RECaST
DNN Wiens

Unfreeze
DNN TransRF glmtrans WDGRL

250 0 84(9.5) 95(0.78) 96(0.090) 100(0) 91(8.4) 89(12) 98(4.4) 95(4.4)
0.25 89(7.5) 95(0.82) 96(0.13) 100(0) 93(6.8) 88(11) 98(2.6) 94(4.8)
1 91(6.2) 95(0.65) 96(0.14) 100(0) 95(4.5) 87(9.5) 98(3.6) 86(6.0)
4 93(6.4) 95(0.40) 95(0.39) 99(1.5) 95(4.8) 86(11) 97(4.1) 75(7.6)

100 0 80(12) 96(1.1) 96(0.25) 100.0(0) 90(8.7) 68(22) 96(6.4) 96(3.4)
0.25 83(11) 95(1.3) 96(0.27) 100(0) 92(7.8) 78(3.0) 94(6.2) 93(4.2)
1 88(8.2) 95(1.2) 96(0.35) 100(4.6) 94(5.9) 69(18) 94(8.5) 89(5.7)
4 92(6.2) 95(0.81) 95(0.90) 95(13) 94(10.0) 49(20) 83(4.6) 89(2.3)

60 0 80(13) 95(1.2) 96(0.54) 100(0.0) 92(6.4) 65(19) 93(9.3) 95(3.7)
0.25 77(17) 95(1.3) 96(0.67) 100(0.0) 91(8.1) 64(22) 88(12) 95(3.1)
1 80(21) 95(1.1) 95(0.867) 100(0.49) 94(6.1) 63(19) 88(15) 90(4.7)
4 84(15) 95(0.59) 95(1.0) 96.8(4.7) 93(8.7) 58(19) 89(11) 80(6.9)

40 0 68(23) 95(1.6) 96(0.86) 100(0.0) 89(11) 60(20) 88(14) 95(5.5)
0.25 72(20) 95(1.6) 96(0.99) 100(0.0) 90(7.9) 55(25) 81(16) 95(4.1)
1 76(19) 94(1.5) 95(1.2) 100(0.53) 89(8.7) 59(19) 85(14) 89(5.9)
4 77(25) 94(1.4) 94(1.1) 97(3.2) 90(7.2) 63(20) 78(14) 78(7.4)

20 0 67(22) 95(1.1) 96(0.78) 100(0.0) 85(17) - 86(15) -
0.25 75(16) 95(1.1) 95(0.98) 100(0.0) 86(14) - 68(15) -
1 75(16) 95(0.84) 95(1.1) 100(0.55) 86(17) - 63(18) -
4 72(13) 95(0.47) 94(0.99) 98(1.5) 80(18) - 66(17) -

Table 3: Empirical coverage (standard error) at the 95% nominal level, averaged over 300 source and target
data sets for each setting; the out-of-sample test sets each contain 250 observations. All reported
values are multiplied by 100.
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Compared to the other approaches, RECaST provides substantial inferential advantages
that are robust to small target sample sizes and large dissimilarity between source and
target. Recall from Equation (7) that prediction sets in the binary response setting are
determined entirely by the Bernoulli probability of observing label 1. Thus, we can construct
prediction sets for the DNN, Unfreeze DNN, and Wiens methods, as well. When a method
fails to discriminate between the two labels at level 1−α (e.g., when the Bernoulli probability
of success and failure are both below 1−α), then the prediction set must include both labels
to attain the 1 − α level. In such cases, as observed for the Wiens method in various
settings in Table 3, the prediction set achieves 100% empirical coverage, but is unhelpful
for prediction.

Table 4 provides the area under the receiver operator characteristic curve (AUC) for all
methods and simulation settings. In all settings except one, RECaST DNN outperforms all
other methods. We see similar patterns here as in the continuous setting. The RECaST
models consistently report the highest AUC, with low standard errors across sample sizes.
In contrast, the AUC of DNN and Unfreeze DNN drastically declines as nT decreases. As
expected, the AUC of all transfer learning methods decreases as the difficulty of the prob-
lem increases with larger values of σ2TL. RECaST DNN and WDGRL frequently outperform
other methods; however, WDGRL requires access to the source data, an important limi-
tation that is unrealistic in many applications. WDGRL crashed with a sample size of
nT = 20, so we are unable to evaluate its performance in these settings.

The benefits to coverage properties and predictive performance of the RECaST method
are especially important in the binary response case. This demonstrates that RECaST can
be used even when the linearity assumption of Lemma 1 is violated.

nT σ2
TL DNN

RECaST
GLM

RECaST
DNN Wiens

Unfreeze
DNN TransRF glmtrans WDGRL

250 0 95(1.7) 98(2.1) 98(0.61) 80(3.5) 97(1.2) 66(13) 97(2.0) 97(0.95)
0.25 95(1.6) 97(2.3) 98(0.89) 80(3.9) 97(1.2) 69(10) 96(1.6) 97(1.3)
1 94(1.5) 93(3.8) 96(1.5) 79(3.9) 95(1.7) 66(11) 97(1.8) 95(1.5)
4 95(1.7) 84(5.5) 89(2.8) 76(4.0) 89(3.0) 67(12) 97(1.6) 88(3.2)

100 0 85(7.9) 96(2.2) 98(0.64) 81(4.2) 96(2.2) 47(19) 87(9.3) 98(0.66)
0.25 83(9.6) 95(2.7) 97(1.0) 80(4.1) 95(1.9) 18(14) 81(5.3) 97(1.0)
1 84(8.4) 92(3.8) 95(1.4) 79(4.4) 93(2.4) 48(20) 81(5.5) 95(1.4)
4 82(11) 83(4.7) 89(3.1) 74(4.3) 87(4.8) 49(20) 83(4.6) 89(2.3)

60 0 72(13) 96(1.9) 98(1.0) 80(4.3) 94(5.2) 49(20) 83(4.6) 89(2.3)
0.25 74(11) 94(2.5) 97(1.4) 80(4.3) 94(2.34) 36(21) 74(5.1) 97(0.78)
1 75(10) 90(3.5) 95(1.7) 78(4.1) 91(6.0) 33(20) 74(5.3) 95(1.9)
4 72(11) 83(4.0) 89(3.3) 73(4.7) 84(8.0) 29(18) 75(5.6) 89(2.4)

40 0 68(11) 96(1.6) 98(1.1) 80(3.8) 94(4.5) 27(16) 83(16) 97(1.1)
0.25 68(11) 94(2.2) 97(1.3) 80(4.0) 92(6.7) 19(15) 67(4.9) 97(1.2)
1 65(12) 90(3.0) 95(1.9) 78(3.9) 89(7.9) 32(18) 69(5.7) 95(1.7)
4 67(12) 82(4.1) 89(3.5) 74(4.2) 80(12) 31(18) 69(4.9) 89(3.2)

20 0 60(8.7) 96(1.7) 97(1.4) 80(3.9) 89(10) - 81(18) -
0.25 61(9.1) 94(2.1) 97(1.9) 79(4.2) 87(13) - 62(5.1) -
1 60(9.5) 90(2.7) 94(2.5) 77(4.5) 83(14) - 60(5.0) -
4 62(8.2) 82(3.5) 88(3.0) 72(5.0) 77(11) - 63(5.0) -

Table 4: Out-of-sample AUC (standard error) averaged over 300 source and target data sets for each set-
ting; the out-of-sample test sets each contain 250 observations. All reported values are multiplied
by 100.
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6.4 Robustness of RECaST

6.4.1 Over-Parameterized RECaST DNN

In all previous simulations, the true data generating mechanisms are linear or logistic mod-
els. To test the robustness of RECaST, we now consider a more complex case where data
are generated from neural networks. We generate data from a neural network with a densely
connected input layer of size `1 = (p, 10) and then pass through a ReLU activation function
to an output layer of size `2 = (10, 1), where there are p = 50 features generated as described
in Section 6.1. For the binary response data, we append a sigmoid activation function to
the end of the output layer. While the source and target data generating networks share
architectures, we consider two relationships between the source and target neural network
parameters.

In our first set of simulations, as in Section 6.1, we take the parameters of the source

neural network to be θS
iid∼ U(−1, 1) and define the parameters of the target neural network

as θT = θS + ε with ε ∼ Np×10+10×1(0, 0.025I). For a continuous outcome, Table 5 shows
that the RECaST DNN methods have the lowest RMSE for all sample sizes. Both RECaST
methods outperform the target-only DNN across all settings, even when the target sample
size is large (nT = 250). The glmtrans method performs similarly to RECaST LM but
worse than RECaST DNN. For all sample sizes, the RECaST framework produces wide
posterior predictive intervals with 100% observed coverage for the 95% nominal confidence
level – see Table 12 in Appendix E. This greater than nominal coverage demonstrates
RECaST will be conservative but reliable. Indeed, the observed over-coverage is safer than
narrower intervals centered around incorrect values with below nominal coverage. For a
binary outcome, Table 6 reveals that both RECaST methods outperform the target-only
DNN for all sample sizes. This shows robustness to negative transfer. The performance of
the RECaST methods is stable across target sample sizes in this setting, with stable AUCs
and standard errors, whereas other methods degrade in performance as the target sample
size decreases. Table 7 shows the empirical coverages of each method at the 75% nominal
level. Only the RECaST GLM, RECaST DNN, and Wiens methods provide conservative
coverage values for all sample sizes whereas the other methods tend to under-cover the true
labels as the target sample size decreases.

nT LM DNN
RECaST

LM
RECaST
DNN

Unfreeze
DNN TransRF glmtrans MTL FO MTL MoM

250 2.9(0.18) 3.1(0.22) 2.9(0.16) 2.1(0.15) 3(0.22) 3.9(0.53) 2.7(0.15) 3.1(0.21) 3.1(0.2)
100 3.8(0.36) 4.2(0.51) 2.9(0.16) 2.1(0.15) 3.3(0.37) 5.5(2.6) 2.7(0.18) 3.8(0.37) 3.9(0.38)
60 6.7(1.6) 5.1(0.56) 2.9(0.16) 2.1(0.15) 3.7(0.65) 12(10) 2.8(0.19) 6.3(1.3) 6.4(1.4)
40 6.1(1.1) 5.4(0.56) 2.9(0.16) 2.1(0.15) 4(0.67) 170(560) 2.8(0.18) 7.4(1.4) 6.8(1.5)
20 4.8(0.38) 5.8(0.44) 3(0.21) 2.2(0.17) 4.6(0.93) - 2.9(0.26) 7.2(0.83) 4.9(0.42)

Table 5: Out of sample RMSE (standard error) averaged over 300 source and target data
sets when the generating models are neural networks and the target model param-
eters are generated as θT = θS + ε with ε ∼ N (0, 0.025I). The out-of-sample test
sets each contain 250 observations. All reported values are multiplied by 100.
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nT DNN
RECaST

GLM
RECaST

DNN Wiens
Unfreeze

DNN TransRF glmtrans WDGRL

250 85(3.3) 92(1.6) 91(1.9) 75(4) 89(2.8) 64(13) 86(2.5) 89(1.7)
100 73(9.5) 92(1.6) 91(1.8) 75(3.5) 85(5.9) 46(18) 76(4.4) 89(1.7)
60 66(9.7) 92(1.7) 91(2) 75(4.4) 81(9) 29(22) 71(6.9) 89(2.2)
40 62(9) 92(1.8) 91(1.8) 76.0(3.5) 78(11) 24(16) 67(8) 89(1.9)
20 58(7.9) 92(1.8) 91(2) 76.0(3.6) 72(14) - 56(6.4) -

Table 6: Out-of-sample AUC (standard error) averaged over 300 source and target data sets when the
generating models are neural networks and the target model parameters are generated as θT =
θS + ε with ε ∼ N (0, 0.025I). The out-of-sample test sets each contain 250 observations. All
reported values are multiplied by 100.

6.4.2 Orthogonal Source and Target Data Generating Model Parameters

In our second set of simulations, we set the source and target weight matrices to be or-
thogonal, i.e., θ>S θT = 0. For a continuous outcome, Table 8 shows that RECaST again
provides consistent predictive performance across target sample sizes. For small sample
sizes, both RECaST methods outperform the target-only LM and DNN. The unfreeze DNN
and glmtrans also perform well, but we mention again that they do not provide uncertainty
quantification of predictions. Table 13 in Appendix E shows that RECaST provides con-
servative coverage intervals which, again, is a safe feature in this difficult transfer learning
setting. For a binary outcome, Table 9 shows that RECaST again outperforms the target-
only DNN in realistic settings where the target sample size is small. The RECaST methods
have consistent AUCs across target sample sizes whereas other methods deteriorate as the
sample size decreases. Table 10 shows that only RECaST GLM, RECaST DNN, and the
Wiens method provide conservative uncertainty quantification for all target sample sizes at
the 75% nominal level.

Overall, the results presented in this section show that RECaST is robust to nega-
tive transfer under more complex data generating mechanisms. In all cases, the RECaST
methods outperformed the target-only DNN while boasting conservative predictive coverage
intervals when the target sample size is small. In Appendix F we explore other relationships
between the source and target data when the data generating mechanism is a (generalized)
linear model. These include orthogonality of source and target parameters and the target
data having more features than the source.

7. eICU Data

The eICU Collaborative Research Database (Pollard et al., 2018) is a publicly available
database of ICU encounters across multiple hospitals in the United States, making it well-
suited for imitating transfer learning settings using real data. In the spirit of the transfer
learning application in Wiens et al. (2014), we focus on correctly diagnosing physiological
shock for newly admitted ICU patients. We define a binary response variable as the indica-
tor of the event that a patient experienced shock upon ICU admission, using a combination
of Internal Classification of Diseases 10 (ICD-10) codes: R57 Shock, not elsewhere classi-
fied; R58 Hemorrhage, not elsewhere classified; or R65.21 Severe sepsis with septic shock.
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nT DNN
RECaST

GLM
RECaST

DNN Wiens
Unfreeze

DNN TransRF glmtrans WDGRL

250 68(13) 98(2) 97(4.1) 88(6.6) 71(13) 72(12) 80(11) 70(7.9)
100 63(12) 95(6.1) 94(6.7) 86(7.5) 70(13) 58(15) 72(12) 64(16)
60 59(12) 90(14) 91(10) 88(7.6) 66(14) 53(26) 75(16) 69(12)
40 58(12) 87(15) 87(13) 88(5.2) 63(15) 61(13) 69(17) 67(15)
20 55(12) 81(17) 81(18) 89(6.6) 59(14) - 57(17) -

Table 7: Empirical coverage (standard error) at the 75% nominal level for a binary response, averaged over
300 source and target data sets when the generating models are neural networks and the target
model parameters are generated as θT = θS + ε with ε ∼ N (0, 0.025I). The out-of-sample test
sets each contain 250 observations. All reported values are multiplied by 100.

nT LM DNN
RECaST

LM
RECaST
DNN

Unfreeze
DNN TransRF glmtrans MTL FO MTL MoM

250 0.93(0.43) 1.1(0.19) 2.9(0.91) 3(0.98) 1.6(0.45) 3.5(1.1) 1(0.41) 1.3(0.69) 1.3(0.69)
100 1.2(0.56) 2.3(0.51) 2.8(0.89) 3(0.97) 1.8(0.52) 5.9(3.2) 1.3(0.52) 1.6(0.86) 1.6(0.86)
60 2.2(1.1) 3.2(0.88) 2.8(0.89) 3(0.96) 2.1(0.62) 7.7(6.3) 1.9(0.7) 2.6(1.4) 2.7(1.3)
40 2.8(0.94) 3.8(0.97) 2.8(0.89) 3(0.97) 2.4(0.8) 21(24) 2.3(0.61) 4.5(1.3) 3.4(1.4)
20 3.7(1.1) 4.5(1.1) 2.9(0.91) 3.1(1) 2.9(0.89) - 2.6(0.83) 6.6(1.1) 3.8(1.1)

Table 8: Out of sample RMSE (standard error) averaged over 300 source and target data sets when the
source and target neural network weight matrices are orthogonal. The out-of-sample test sets
each contain 250 observations. All reported values are multiplied by 100.

Features are limited to baseline variables measured at admission. While the simulations of
Section 6 explicitly link the source and target data through the data generation process,
the similarity between source and targets defined in our eICU data application is unknown.

We consider 19 features including patient demographics, Acute Physiology Score III
variables, and Glasgow Coma Scale test. Descriptions of these features can be found in
Table 22 in Appendix H. The data consist of measurements on 45,945 patients across 156
unique hospitals. Only 700 of these patients were diagnosed with shock upon admission.
No individual hospital had enough positive cases to be reliably used as a source data set.
To curate a balanced data set, we take all 700 patients with shock and randomly sample
an additional 700 patients with no shock. Next, 80% of the hospitals associated with our
sampled 1,400 patients are randomly selected to define the ‘source hospital’. The source
data set consists of all ICU encounters at the ‘source hospital’. Of the remaining 20% of
hospitals, half are randomly assigned to the ‘target training hospital’, and the other half
define a ‘target testing hospital’. Notice that this procedure splits hospitals rather than
patients; the source data set may not consist of 80% of patients. The target training and
target testing data sets typically contain 80 to 130 patients each.

We repeat the described sampling procedure 300 times, to imitate 300 transfer learning
scenarios from real data. A logistic regression model and a DNN model are trained on each
of the 300 source data sets, and all previously considered binary response transfer learning
methods are implemented on the target data sets. To boost the performance of the source
DNN model, the architecture of the DNN is chosen from a set of candidate architectures by
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nT DNN
RECaST

GLM
RECaST

DNN Wiens
Unfreeze

DNN TransRF glmtrans WDGRL

250 94(1.8) 76(17) 87(11) 72(6.7) 90(6.3) 69(9.5) 95(2.1) 89(11)
100 84(7.2) 77(17) 87(11) 67(7.4) 87(7.9) 43(16) 79(5.6) 87(11)
60 74(10) 78(16.0) 87(11) 64(9) 83(11) 33(19) 66(11) 83(14)
40 68(10) 79(15) 87(11) 64(9.7) 81(13) 24(17) 61(8.4) 87(12)
20 60(9.6) 83(12) 87(12) 65(11) 77(14) - 55(5.7) -

Table 9: Out-of-sample AUC (standard error) averaged over 300 source and target data sets when the
source and target neural network weight matrices are orthogonal. The out-of-sample test sets
each contain 250 observations. All reported values are multiplied by 100.

nT DNN
RECaST

GLM
RECaST

DNN Wiens
Unfreeze

DNN TransRF glmtrans WDGRL

250 68(18) 100(0) 98.0(1.8) 77(29) 70(14) 73(9.5) 79(9.7) 65(19)
100 65(14) 100(0) 99.0(2.2) 80(25) 69(15) 58(13) 72(10) 64(17)
60 63(12) 88(3.5) 94.0(6.2) 80(23) 67(15) 57(16) 68(16) 53(17)
40 60(13) 89(9.9) 89(15) 75(20) 63(15) 61(20) 63(18) 67(15)
20 56(12) 81(15) 81(17) 78(22) 61(15) - 56(15) -

Table 10: Empirical coverage (standard error) at the 75% nominal level for a binary response, averaged
over 300 source and target data sets when the source and target neural network weight matrices
are orthogonal. The out-of-sample test sets each contain 250 observations. All reported values
are multiplied by 100.

maximizing AUC, averaged over 100 of the source data sets; additional details are provided
in Appendix D. In Figure 2, we report the empirical coverage and AUC.

Because the real data generating model is unknown we consider two additional target-
only models to test for negative transfer. We compare to a GLM and a Gaussian process
(GP) trained only on the target data. In this setting, they perform worse than all of the
transfer learning methods, with the GLM achieving an AUC of 0.606 and the GP achieving
an AUC of 0.512. Plots for the TransRF, glmtrans, and WDGRL methods can be found
in Appendix G. The AUCs of glmtrans and WDGRL were 0.68 and 0.708, respectively.
RECaST has similar predictive performance to Wiens and WDGRL but without requir-
ing access to the source data, and it outperforms the DNN and Unfreeze DNN approaches.
Pairing RECaST with either the logistic regression or DNN source models produced near op-
timal average AUC, with respect to the average AUC values of 0.704 and 0.708, respectively,
for the source logistic regression model and source DNN model. Figure 2 also demonstrates
that RECaST generally produces prediction sets that achieve their nominal level of coverage
for target test response values, even for non-linear models with non-Gaussian data, whereas
the other approaches do not.

In addition to splitting the data into source and target by hospital, we explore making
this division based on other features. First, we take the target data to be all patients aged
51 and under. This split resulted in approximately 20% of the patients in the target data
and 80% in the source data. Second, we take the target data to be all patients aged 55
and under. This age was chosen because 20% of the patients that experienced shock are
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Figure 2: The left panel displays the reliability curve of the nominal versus empirical out-of-sample cov-
erage of prediction sets averaged over 300 target-testing data sets; the right panel reports the
out-of-sample receiver operating characteristic (ROC) curve averaged pointwise over 300 target-
testing data sets. The legend also reports the AUC (standard error) averaged over the same
300 target-testing data sets. Note that we cut the reliability curve at a nominal coverage of
0.8 because there are very few observations with higher coverage, undermining the reliability of
coverage estimation at higher nominal levels.

aged 55 and under. Third, we take the target data to be all female patients, which account
for about 45% of the data. This more even split between source and target will be a good
test for negative transfer. Finally, we take the target data to be all patients who are not
Caucasian, corresponding to roughly 20% of the data.

Table 11 shows the average AUC, AUC standard error, and average empirical coverage
at the 80% nominal level summarized over 300 target training and testing data sets. While
the standard errors are large, we see that the average AUC of RECaST is larger than that
of the target-only methods in all but one setting. The only instance in which RECaST
has smaller AUC is when the target data consist of the female patients. This may be due
to the similar sample sizes between the source and target for this particular setting, as we
demonstrated in the synthetic data simulations that RECaST is most advantageous when
the target sample size is small. The RECaST AUCs are within a standard error of Wiens,
glmtrans, and WDGRL, but RECaST does not require access to the source data. We see
that the empirical coverages for the RECaST method are near the 80% nominal value; the
Wiens and glmtrans methods are more conservative when the data are split by age. The
TransRF method reports coverage lower than the 80% nominal level in all settings. This
analysis demonstrates a general use case for RECaST as a clinical tool across a broad range
of scenarios.

8. Concluding Remarks

The RECaST framework is adaptable to virtually any source model that makes predictions,
and can accommodate both continuous and binary responses. The source data themselves
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Age ≤ 51 Age ≤ 55 Female Non-Caucasian
Target only GLM 71(6.9) [0.74] 71(6.0) [0.73] 70(4.2) [0.74] 67(6.4) [0.72]
Target only GP 66(16) [0.78] 67(13) [0.73] 64(11) [0.67] 61(11) [0.74]

Target only DNN 69(8.1) [0.72] 69(7.0) [0.69] 68(5.2) [0.70] 67(8.4) [0.69]
RECaST GLM 73(6.8) [0.78] 72(6.2) [0.78] 69(4.5) [0.77] 71(6.0) [0.84]
RECaST DNN 73(6.8) [0.82] 72(6.1) [0.78] 69(4.5) [0.79] 71(6.1) [0.83]
Unfreeze DNN 69(9.0) [0.75] 69(7.8) [0.73] 68(5.2) [0.72] 66(8.4) [0.70]

Wiens 73(6.5) [0.85] 73(5.7) [0.87] 70(4.5) [0.79] 71(6.6) [0.87]
glmtrans 71(7.1) [0.85] 71(5.5) [0.84] 70(4.7) [0.76] 66(7.2) [0.82]
TransRF 54(14) [0.69] 59(13) [0.71] 66(7.6) [0.72] 56(12) [0.69]
WDGRL 72(7.2) [0.76] 71(6.7) [0.73] 70(3.8) [0.74] 73(6.4) [0.80]

Table 11: Out-of-sample AUC (standard error) [empirical coverage at the 80% nominal
level] averaged over 300 target training and testing data sets for each target data
setting of the eICU data. All reported values are multiplied by 100.

are not required, which is a significant advantage when legal or ethical barriers to access
of source data sets exist, e.g., due to privacy concerns. Unlike other transfer learning
methods, RECaST always provides uncertainty quantification through prediction sets. Our
conclusions are supported by both theoretical justifications and performance in simulation
studies on synthetic and real data using linear and two-layer neural network source models.

The RECaST framework may be extended in several directions to accommodate the
complexity of EHR data. Broadening RECaST to handle differing feature spaces between
source and target hospitals would allow for it to be applied in more general settings. As
EHR databases are updated, it would be useful to perform online transfer learning. Patient
clinical notes are also frequently available in EHR data and have been used by other transfer
learning approaches (e.g., Si and Roberts, 2020). However, transfer learning approaches
that combine quantitative and text features to create a unified patient representation are
currently lacking. Another promising direction is to study RECaST framework formulations
for multi-class classification. One such formulation would be to specify the h function in
Equation (2) as

h
{
f
(
θS ,xS), US

}
=

K∑
k=1

k · 1
[
US ∈ ∆k

{
f(θS ,xS)

}]
,

where K is the number of classes and US ∼ Uniform(∆) with ∆1, . . . ,∆K – all functions
of f(θS ,xS) – being triangular regions that form a partition of the simplex ∆ over the
multi-class outcome space (e.g., see, Jacob et al., 2021; Williams, 2021).
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Appendix A. Proofs

Proof [Proof of Lemma 1] It is well-established (see, e.g., Hinkley, 1969) that if V ∼
N (0, σ2V ) and W ∼ N (0, σ2W ) with correlation coefficient ρ, then

V

W
∼ Cauchy

(ρσV
σW

,
σV
σW

√
1− ρ2

)
. (8)

Accordingly, since [
a>

b>

]
x ∼ N

([
0
0

]
,

[
a>a a>b

b>a b>b

])
,

it follows that x>a ∼ N (0,a>a), x>b ∼ N (0, b>b), and ρ = (a>b)/(‖b‖ ‖a‖). The result
follows from Equation (8) by taking V = x>a and W = x>b.

Before proceeding directly to the proof of Lemma 2, the following necessary supporting
result is stated and proved.

Lemma 4 The MLEs of γ and δ for Equation (5), respectively, are

γ̂ =

∑nT
i=1(vi − v)(yi − yT )

x̃>θS
∑nT

i=1(vi − v)2
and

δ̂ =
yT

x̃>θS
− v · γ̂,

where vi = (βi − δ)/γ for i ∈ {1, . . . , nT }, v :=
∑nT

i=1 vi/nT and yT :=
∑nT

i=1 yT,i/nT .

Proof [Proof of Lemma 4] After the change of variables vi = (βi− δ)/γ for i ∈ {1, . . . , nT },
the likelihood function in Equation (5) takes the form

nT∏
i=1

[
N
{
yT,i | (γvi + δ)x̃>θS , σ

2
}
· Cauchy(vi | 0, 1)

]
.

Taking partial derivatives with respect to δ and γ gives the first-order conditions

nT∑
i=1

{ yT,i

x̃>θS
− γvi − δ

}
= 0

nT∑
i=1

{ yT,i

x̃>θS
− γvi − δ

}
vi = 0.

Solving this system yields the MLEs in Lemma 4.
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Proof [Proof of Lemma 2] With the assumptions that YT,1, . . . , YT,nT
iid∼ N (x̃>θT , σ

2)

independent of V1, . . . , VnT
iid∼ Cauchy(0, 1), first, define the following notations:

Y :=

 YT,1
...

YT,nT

 , Y := Y T · 1nT , Y T :=
1

nT

nT∑
i=1

YT,i,

and

V :=

 V1
...

VnT

 , V := V · 1nT , V :=
1

nT

nT∑
i=1

Vi,

where 1nT is an nT -dimensional column vector with every component having value 1.

By the Cauchy-Schwarz inequality,

|γ̂| =

∣∣∣∑nT
i=1(Vi − V )(Yi − Y T )

∣∣∣∣∣x̃>θS∣∣∑nT
i=1(Vi − V )2

≤
∥∥Y − Y ∥∥

2

∥∥V − V ∥∥
2∣∣x̃>θS∣∣ ∥∥V − V ∥∥22 =

∥∥Y − Y ∥∥
2∣∣x̃>θS∣∣ ∥∥V − V ∥∥2 ,

where ‖·‖2 is the Euclidean norm. We first need to establish the fact that square-root sums
of independent, centered, and squared Cauchy random variables grow in value at the rate

of at least n
α+ 1

2
T for any α ∈ (0, 1/2). Accordingly, for any ε > 0 and any α ∈ (0, 1/2),

P

(∥∥V − V ∥∥
2
< n

α+ 1
2

T ε−1
)

= P

(∥∥V − V ∥∥2
2
< n2α+1

T ε−2
)

= P

( nT∑
i=1

V 2
i − nTV

2
< n2α+1

T ε−2
)

≤ P
( nT∑
i=1

V 2
i − n1+αT < n2α+1

T ε−2
)

+ P
(
− nTV

2
< −n1+αT

)
= P

( nT∑
i=1

V 2
i < n2α+1

T ε−2 + n1+αT

)
+ P

(
|V | > n

α
2
T

)
≤ P

( nT∑
i=1

V 2
i < n2α+1

T {ε−2 + 1}
)

+ 2FV

(
− nα/2T

)
, (9)

where FV (·) is the Cauchy(0, 1) distribution function. The first term vanishes for any
α ∈ (0, 1/2) as nT → ∞ by Lemma 2.1 in Eicker (1985), and the second term vanishes as
nT →∞ by the definition of a distribution function.
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Next, in order to show the convergence of both MLEs, we need that n
α/2
T γ̂ → 0 in

probability as nT →∞. Our argument goes as follows. For any ε > 0 and any α ∈ (0, 1/2),

P
(
|γ̂| > n

−α/2
T ε

)
≤ P

( ∥∥Y − Y ∥∥
2∣∣x̃>θS∣∣ ∥∥V − V ∥∥2 >

n
(1+α)/2
T

n
(1+α)/2
T

ε

n
α/2
T

)

≤ P

(∥∥Y − Y ∥∥
2∣∣x̃>θS∣∣ > n

(1+α)/2
T

)
+ P

(
1∥∥V − V ∥∥

2

>
ε

n
α+1/2
T

)

= P

(∥∥Y − Y ∥∥2
2

σ2
>

∣∣x̃>θS∣∣2
σ2

n1+αT

)
+ P

(∥∥V − V ∥∥
2
< n

α+ 1
2

T ε−1
)
.

Denoting S :=
∥∥Y − Y ∥∥2

2
/σ2 ∼ χ2

nT−1, and applying the Chernoff bound to the first
quantity in the last expression gives, for any t < 1/2,

P

(
S >

∣∣x̃>θS∣∣2
σ2

n1+αT

)
≤ (1− 2t)−(nT−1)/2 exp

{
−
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}
.

Choosing t = 1/4 yields the bound

P
(
|γ̂| > n

−α/2
T ε

)
≤ e−n

1+α
T · 1

2

(
1

2σ2
|x̃>θS |2−n−αT +n−1−α

T

)
+ P

(∥∥V − V ∥∥
2
< n

α+ 1
2

T ε−1
)
.

Thus, by Equation (9), it follows that n
α/2
T γ̂ → 0 in probability as nT → ∞. This fact

implies that γ̂ → 0 in probability as nT → ∞, and is needed to prove the asymptotic
convergence of δ̂, next.

Since YT,1, . . . , YT,nT
iid∼ N (x̃>θT , σ

2), it follows that Y T = x̃>θT + σn
− 1

2
T U , where

U ∼ N (0, 1). That being so, for any ε > 0 and any α ∈ (0, 1/2),

P
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)
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n
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− n
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>θS |/(2σ)
}

+ P
(
|V | > n

α/2
T /2

)
+ P

(
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−α/2
T ε

)
= 2Φ

{
− n

1
2
T · ε|x̃

>θS |/(2σ)
}

+ 2FV

(
− nα/2T /2

)
+ P

(
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T ε

)
,

where Φ(·) is the standard Gaussian distribution function. The first two terms in the last
expression vanish by the definition of a distribution function, and the third term vanishes

by the same because we previously established that n
α/2
T γ̂ → 0 in probability as nT → ∞.

Hence, δ̂ → x̃>θT /(x̃
>θS) in probability as nT →∞.
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Proof [Proof of Theorem 3] Our argument begins with direct evaluation of the probability
that ỸT ∼ N (x̃>θT , σ

2) is contained in the interval [aαnT , b
α
nT

], and it finishes by applying
the result of Lemma 2.

P
(
ỸT ∈ [aαnT , b

α
nT

]
)

=

∫ bαnT

aαnT

1

σ
√

2π
e−

1
2σ2

(ỹT−x̃>θT )2dỹT

= Φ
(bαnT − x̃>θT

σ

)
− Φ

(aαnT − x̃>θT
σ

)
,

where Φ(·) is the standard Gaussian distribution function. We will first demonstrate that
Φ(W )→ 1− α/2, with

W :=
bαnT − x̃

>θT

σ

= Φ−1
(

1− α

2

)
+

1

σ

(
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∼ Cauchy

{
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2

)
+

1

σ

(
δ̂ · x̃>θS − x̃>θT

)
,
∣∣∣ γ̂
σ
x̃>θS

∣∣∣}
since β̃ ∼ Cauchy(δ̂, |γ̂|).

For any ε > 0,

P
(
|Φ(W )− (1− α/2)| < ε

)
= P

(
1− α/2− ε < Φ(W ) < 1− α/2 + ε

)
= P

{
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}
= FW

{
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}
− FW

{
Φ−1(1− α/2− ε)

}
,

where FW (·) is the Cauchy distribution function associated with W . Then,
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{
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}
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1

2
+

1

π
arctan

{
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}
,

with c1 := Φ−1(1− α/2 + ε)− Φ−1(1− α/2) > 0, and similarly,
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{
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}
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1
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1

π
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{
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,

with c2 := Φ−1(1− α/2− ε)− Φ−1(1− α/2) < 0. Accordingly, it follows by Lemma 2 that

FW

{
Φ−1(1− α/2 + ε)

}
−→ 1 and FW

{
Φ−1(1− α/2− ε)

}
−→ 0

in probability as nT →∞, and so

Φ
(bαnT − x̃>θT

σ

)
= Φ(W ) −→ 1− α/2
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in probability as nT →∞. A similar argument shows that

Φ
(aαnT − x̃>θT

σ

)
−→ α/2,

in probability as nT →∞, concluding the proof.

Appendix B. Bounding Continuous Integral

Recall the posterior distribution of the calibration parameters for the continuous response
setting,

π
(
δ, γ, σ | yT,1, . . . , yT,nT , θ̂S

)
= π(δ, γ, σ) ·

nT∏
i=1

∫
R
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| f(θ̂S ,xT,i) |
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βi |
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f(θ̂S ,xT,i)
,

σ2

f(θ̂S ,xT,i)2

}
dβi.

Calculating this posterior requires the evaluation of nT integrals over R. For computational
efficiency, we estimate the posterior by integrating over closed intervals. The incurred
numerical error can be tuned to be lower than computer precision.

Performing the substitution ui =
{
βi − yT,i/f(θ̂S ,xT,i)

}
/
{
σ/|f(θ̂S ,xT,i)|

}
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the ith integral as∫
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]
dui
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σ
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[
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}
,
|f(θ̂S ,xT,i)|γ
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]
dui

+ φ(s1) + φ(s2)

)
,

for any s1 and s2 satisfying s1 < 0 < s2, where φ(·) is the standard Gaussian density
function. Then choose s1 and s2 so that φ(s1) + φ(s2) is as small as desired. For example,
we set s1 = −39 and s2 = 39, giving φ(s1) and φ(s2) numerically equal to zero in the base
Julia software (for comparison, φ(38) = 1.097× 10−314).

Appendix C. MCMC Implementation Details

Sections 4.2 and 5.2 detail the procedure for sampling from the posterior predictive dis-
tribution of a new observation. RECaST first estimates the joint posterior density of the
re-calibration parameters (δ, γ, σ) in the linear model and (δ, γ) in the logistic model. We
specify disperse priors δ ∼ N (1, 400), log(γ) ∼ N (0, 9), and in the continuous setting
log(σ2) ∼ N (0, 9). We run the Metropolis-Hastings estimation algorithm of the posterior
distribution for 100,000 iterations with the initial 20,000 iterations used as a burn-in period
to tune the proposal variance. The parameters from the final 50,000 iterations are used as
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the posterior distribution. Finally, npost = 300 equally spaced triplets/pairs of this distribu-
tion are taken as a posterior sample to be used in the posterior predictive estimation, which
we denote by {δi, γi, σi}300i=1 and {δi, γi}300i=1 in the linear and logistic models respectively. For
each triplet/pair, a sample of nβ = 300 β’s are taken from the Cauchy distribution, each
used to generate nY = 300 samples from the posterior predictive distribution. This gives
300× 300× 300 = 27, 000, 000 posterior predictive observations for each out-of-sample test
point, (YT,test, x̃T ).

Appendix D. Neural Network Training Procedure

The following procedure is used to train all neural networks considered: the source DNN,
the DNN trained only on target data, and the Unfreeze DNN.

We initialize the weights using Xavier initialization (Glorot and Bengio, 2010). The
network is trained for 2500 epochs using the ADAM optimizer and an MSE loss. A portion
of the training data is set aside as an out-of-sample calibration set during training. At
each epoch, the training and calibration loss are tracked. The final parameterization used
is taken from the epoch with the lowest calibration loss to avoid overfitting.

The candidate architectures ranged from networks with 316 parameters to 11,641 pa-
rameters with varied number of layers, layer sizes, activation functions, and dropout pro-
portions. The architecture described below was chosen as it had the best test set AUC on
the eICU data of all considered architectures. We use a two layer neural network with layer
sizes `1 = (p, 25) and `2 = (25, 1). These layers are connected with a Rectified Linear Unit
(ReLU) activation function. In the binary response setting, the output of `2 is converted
to a probability through a softmax activation function. For consistency, this architecture is
also used for the simulated data analysis in Section 6.

The source neural network for RECaST learns parameters in both layers using only
source data. The DNN network learns parameters in both layers using only the target data.
The Unfreeze DNN network learns parameters in both layers first using only the source
data. Then, the target data are processed through the same neural network, re-training
parameters in the second layer and leaving the first layer unchanged from the values learned
on the source data set.

Appendix E. Additional Tables for Section 6.4

Tables 12 and 13 present the coverage results for the simulations in Section 6.4.

Appendix F. Additional Robustness Results

Here, we consider the case where θS and θT are orthogonal. We take θS to be the same
p = 50 feature vector as in Section 6.1 and take θT to be a vector in the null space
of θS . The data are otherwise generated following Section 6.1 from a linear or logistic
regression with a fixed source sample size of nS = 1000 and a varying target sample size of
nT ∈ {20, 40, 60, 100, 250}.

In the continuous outcome case, we compare RECaST to the DNN, Unfreeze DNN,
TransRF and glmtrans approaches. In the binary outcome case, we compare RECaST to
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nT RECaST LM RECaST DNN

250 100(0.4) 100(0.28)
100 100(0.33) 100(0.33)
60 100(0.35) 100(0.32)
40 100(0.29) 100(0.32)
20 100(0.37) 100(0.37)

Table 12: Empirical coverage (standard error) at the 95% nominal level for a continuous response, averaged
over 300 source and target data sets when the when the target model parameters are generated
as θT = θS + ε with ε ∼ Np×10+10×1(0, 0.025I). The out-of-sample test sets each contain 250
observations. All reported values are multiplied by 100.

nT RECaST LM RECaST DNN

250 100(0.53) 100(0.24)
100 100(0.42) 100(0.68)
60 100(0.36) 100(0.3)
40 100(0.3) 100(0.93)
20 100(0.26) 100(0.25)

Table 13: Empirical coverage (standard error) at the 95% nominal level for a continuous response, averaged
over 300 source and target data sets when the source and target neural network weight matrices
are orthogonal. The out-of-sample test sets each contain 250 observations. All reported values
are multiplied by 100.

the target-only DNN, Unfreeze DNN, TransRF, glmtrans, WDGRL and Wiens methods.
Table 14 shows the predictive performance of RECaST for the orthogonally misaligned
source and target setting with a continuous response.

nT LM DNN
RECaST

LM
RECaST
DNN

Unfreeze
DNN TransRF glmtrans MTL FO MTL MoM

250 0.56(0.03) 0.85(0.061) 1.1(0.051) 1.1(0.051) 0.92(0.082) 0.63(0.066) 0.54(0.025) 0.6(0.03) 0.6(0.03)
100 0.71(0.06) 1.1(0.12) 1.1(0.050) 1.1(0.051) 1.1(0.19) 0.97(1.1) 0.55(0.031) 0.76(0.06) 0.76(0.06)
60 1.3(0.28) 1.3(0.13) 1.1(0.05) 1.1(0.051) 1.2(0.28) 1.8(2.0) 0.57(0.043) 1.3(0.26) 1.3(0.26)
40 1.2(0.22) 1.3(0.13) 1.1(0.056) 1.1(0.056) 1.5(0.40) 3.0(6.2) 0.6(0.066) 3.2(0.71) 1.4(0.29)
20 1.0(0.07) 1.4(0.14) 1.2(0.078) 1.2(0.073) 1.9(0.59) - 0.66(0.08) 5.5(0.81) 1.0(0.07)

Table 14: Out of sample RMSE (standard error) averaged over 300 source and target data sets when the
source data generating parameters are orthogonal to the target data generating parameters.
The out-of-sample test sets each contain 250 observations. All reported values are multiplied
by 100.

When the target data are plentiful (nT = 100, 250) the RMSE for the LM built solely
on the target data outperforms the RECaST methods. This aligns with previous results
where there is a large amount of data and a large discrepancy between the source and
target (i.e., when transfer learning is not appropriate). As the number of target data points
decreases, RECaST outperforms target-only DNN. These results further demonstrate the
robustness of RECaST to negative transfer. Notice that glmtrans is also robust; in each
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of these scenarios glmtrans opted to not use the source data. The MTL MoM method
also provides good predictive performance for all sample sizes without requiring access to
the source data. Similar to the previous robustness tests, Table 15 shows that RECaST
provides conservative predictive intervals resulting in over-coverage at the 95% level.

nT RECaST LM RECaST DNN

250 100(0) 100(0)
100 100(0) 100(0)
60 100(0) 100(0)
40 100(0) 100(0)
20 100(0.024) 100(0.024)

Table 15: Empirical coverage (standard error) at the 95% nominal level, averaged over 300 source and
target data sets when the source data generating parameters are orthogonal to the target data
generating parameters. The out-of-sample test sets each contain 250 observations. All reported
values are multiplied by 100.

For a binary response, Table 16 shows the difficulty of this problems. All methods have
very low AUCs, including the target-only DNN. For large sample sizes, glmtrans performs
relatively well, again due to its ability to ignore the source data entirely and because the
model matches the data generating mechanism. Table 17 shows that all methods have
predictive coverages with very high standard errors, again displaying the difficulty of this
problem.

Next we consider a setting in which the source feature space is a subset of the target
feature space: XS ( XT . We assign 12 features to the true target data XT but only
9 features to the true source data XS . The parameters are generated as θT = (−a, b)
where a, b ∈ R6 have components independently sampled from Uniform(0.75, 5), and θS =
[θT,1, . . . , θT,9], the first nine components of θT . The responses, Y S and Y T , are generated
via linear or logistic regression with their respective feature vectors.

Table 18 shows that for a continuous response, every method has similar predictive
performance when the target sample size is large. As the target sample size decreases,
RECaST and glmtrans have the best performance, maintaining a stable RMSE value and
outperforming the target-only DNN. This shows that RECaST is robust to negative transfer
in this setting.

nT DNN
RECaST

GLM
RECaST

DNN Wiens
Unfreeze

DNN TransRF glmtrans WDGRL

250 59(5.6) 51(3.1) 50(3.7) 49(3.6) 55(4.7) 57(9.1) 72(3.5) 49(3.7)
100 54(5.3) 50(3.5) 49(3.4) 45(3.7) 53(4.7) 37(14) 69(7.1) 50(3.5)
60 52(5.3) 50(3.8) 50(4.2) 43(3.4) 51(4.7) 25(16) 61(10) 48(3.6)
40 52(4.9) 50(3.5) 50(3.8) 42(2.9) 52(4) 23(16) 59(9.1) 49(4)
20 52(4.8) 50(3.5) 50(3.4) 41(4.1) 51(4.5) - 56(9.5) -

Table 16: Out-of-sample AUC (standard error) averaged over 300 source and target data sets when the
source and target model parameter vectors are orthogonal. The out-of-sample test sets each
contain 250 observations. All reported values are multiplied by 100.
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nT DNN
RECaST

GLM
RECaST

DNN Wiens
Unfreeze

DNN TransRF glmtrans WDGRL

250 59(11) 100(0) 100(0) 53(10) 55(10) 61(13) 81(11) 52(17)
100 55(11) 83(29) 100(0) 52(11) 52(11) 54(13) 77(15) 47(18)
60 50(11) 89(19) 51(10) 48(11) 49(12) 52(15) 74(19) 47(17)
40 52(11) 45(16) 77(27) 47(11) 52(11) 52(27) 67(19) 48(10)
20 51(11) 60(27) 57(25) 51(12) 51(14) - 59(13) -

Table 17: Empirical coverage (standard error) at the 75% nominal level, averaged over 300 source and
target data sets when the source and target model parameter vectors are orthogonal. The
out-of-sample test sets each contain 250 observations. All reported values are multiplied by 100.

Table 19 shows RECaST again provides conservative predictive intervals at the 95%
level. We see similar results for a binary response outcome in Table 20. Both RECaST
methods have stable AUCs as the target sample size decreases, outperforming the target-
only DNN and the other transfer learning methods. WDGRL and glmtrans also perform
well for larger sample sizes, but both require access to the source data while training.
Table 21 shows that the RECaST and Wiens methods again provide conservative predictive
coverage for all target sample sizes. WDGRL and glmtrans under-cover in some scenarios.

nT LM DNN
RECaST

LM
RECaST
DNN

Unfreeze
DNN TransRF glmtrans MTL FO MTL MoM

250 5.5(1.3) 5.8(1.4) 5.4(1.3) 5.4(1.3) 5.52(1.36) 6.5(1.5) 5.3(1.2) 6.3(1.2) 6.3(1.2)
100 5.7(1.3) 6.3(1.5) 5.4(1.3) 5.4(1.3) 5.68(1.35) 11.0(14.0) 5.4(1.2) 6.5(1.2) 6.5(1.2)
60 5.8(1.4) 6.8(1.7) 5.4(1.3) 5.4(1.3) 5.94(1.53) 14.0(14.0) 5.3(1.2) 6.7(1.3) 6.7(1.3)
40 6.2(1.5) 7.2(1.8) 5.4(1.4) 5.4(1.4) 6.06(1.76) 30.0(43.0) 5.4(1.3) 6.9(1.4) 6.9(1.4)
20 7.3(2.1) 8.2(1.9) 5.5(1.3) 5.5(1.4) 6.63(1.93) - 5.6(1.5) 8.1(1.9) 8.1(1.9)

Table 18: The reported values are: average out-of-sample RMSE (standard deviation). These summaries
are over all 300 different source and target data sets for each target sample size when the target
data had more features than the source.

nT RECaST LM RECaST DNN

250 100(0) 100(0)
100 100(0) 100(0)
60 100(0) 100(0)
40 100(0) 100(0)
20 100(0.022) 100(0.2)

Table 19: Empirical coverage (standard error) at the 95% nominal level, averaged over 300 source and
target data sets when the target data had more features than the source. The out-of-sample
test sets each contain 250 observations. All reported values are multiplied by 100.
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nT DNN
RECaST

GLM
RECaST

DNN Wiens
Unfreeze

DNN TransRF glmtrans WDGRL

250 86(5.3) 89(4.5) 89(4.5) 74(7.9) 89(3.9) 60(16) 90(5.9) 89(6.5)
100 83(10) 89(4.4) 89(4.3) 75 (8.0) 84(10) 46(18) 88(4.1) 89(4.2)
60 75(13) 89(4.2) 89(4) 74(7.2) 79(12) 38(21) 86(3.8) 90(3.4)
40 73(11) 89(4.3) 89(4.3) 73(7.3) 78(14) 32(12) 82(9.2) 89(4.0)
20 75(7.9) 88(4.5) 88(4.3) 74(6.6) 81(9.6) - 69(13) -

Table 20: Out-of-sample AUC (standard error) averaged over 300 source and target data sets when the
target data had more features than the source. The out-of-sample test sets each contain 250
observations. All reported values are multiplied by 100.

nT DNN
RECaST

GLM
RECaST

DNN Wiens
Unfreeze

DNN TransRF glmtrans WDGRL

250 70(14) 100(0) 98(1.6) 87(11) 75(13) 73(14) 71(12) 63(15)
100 65(7.6) 96(0) 95(7.3) 85(8.9) 73(12) 64(15) 72(11) 64(13)
60 67(16) 89(6.5) 90(12) 86(8.2) 70(14) 58(22) 79(13) 69(9.9)
40 60(11) 86(16) 88(11) 86(8.2) 72(13) 53(17) 74(15) 63(17)
20 59(12) 82(17) 80(19) 86(9.8) 67(19) - 70(16) -

Table 21: Empirical coverage (standard error) at the 75% nominal level, averaged over 300 source and
target data sets when the target data had more features than the source. The out-of-sample
test sets each contain 250 observations. All reported values are multiplied by 100.

Appendix G. Comparative eICU Results

Figure 3: Results for TransRF, glmtrans, and WDGRL on the eICU data set. The left panel displays
the reliability curve of the nominal versus empirical out-of-sample coverage of prediction sets
averaged over 300 target-testing data sets; the right panel reports the out-of-sample receiver
operating characteristic (ROC) curve averaged pointwise over 300 target-testing data sets. The
legend also reports the AUC (standard error) averaged over the same 300 target-testing data
sets. Note that we cut the reliability curve at a nominal coverage of 0.8 because there are very
few observations with higher coverage, undermining the reliability of coverage estimation at
higher nominal levels.
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Appendix H. eICU Feature Descriptions

Variable Description
Age Age in years

Gender Gender as either Male, Female, Unknown or Other
Ethnicity Ethnicity as either Asian, Caucasian, African American, Na-

tive American, Hispanic or Other/Unknown
Weight Weight upon admission

Temperature Worst temperature measured from a midpoint of 38◦C
White blood cell count Worst white blood cell count from a midpoint of 11,500 white

blood cells per microliter
Respiratory rate Worst respiratory rate from a midpoint of 19 breaths per

minute
Heart rate Worst heart rate from a midpoint of 75 beats per minute

Hematocrit level Worst hematocrit from a midpoint of 45.5%
Creatinine level Worst serum creatinine from a midpoint of 1.0 milligrams

per deciliter
Glucose level Worst glucose from a midpoint of 130 milligrams per deciliter

Oxygen saturation Oxygen saturation in the blood measured by a pulse oxime-
ter

Dialysis An indicator reporting if the patient is on dialysis
Intubated An indicator reporting if the patient was intubated during

the worst measurement of their arterial blood gas
Ventilated Binary an indicator reporting if the patient was ventilated

during the measurement worst respiratory rate
Eye Eye score ranging from 1 to 4 on the Glasgow Coma Scale

Motor Motor score ranging from 1 to 6 on the Glasgow Coma Scale
Verbal Verbal score ranging from 1 to 3 on the Glasgow Coma Scale

Table 22: Descriptions of the features from the eICU Collaborative Research Database used in the shock
data analysis.
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