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Abstract

We propose a new method for estimating the minimizer x∗ and the minimum value f∗ of
a smooth and strongly convex regression function f from the observations contaminated
by random noise. Our estimator zn of the minimizer x∗ is based on a version of the
projected gradient descent with the gradient estimated by a regularized local polynomial
algorithm. Next, we propose a two-stage procedure for estimation of the minimum value
f∗ of regression function f . At the first stage, we construct an accurate enough estimator
of x∗, which can be, for example, zn. At the second stage, we estimate the function value
at the point obtained in the first stage using a rate optimal nonparametric procedure. We
derive non-asymptotic upper bounds for the quadratic risk and optimization risk of zn,
and for the risk of estimating f∗. We establish minimax lower bounds showing that, under
certain choice of parameters, the proposed algorithms achieve the minimax optimal rates
of convergence on the class of smooth and strongly convex functions.

Keywords: Nonparametric regression, Stochastic optimization, Minimax optimality, Pas-
sive design, Local polynomial estimator

1. Introduction

Estimating the minimum value and the minimizer of an unknown function from observation
of its noisy values on a finite set of points is a key problem in many applications. Let
D = {x1, . . . ,xn} ⊂ Rd be a design set and let Θ be a compact and convex subset of Rd.
Assume that we observe noisy values of an unknown regression function f : Rd → R at
points of the design set:

yi = f(xi) + ξi, i = 1, . . . , n, (1)

where ξi’s are independent zero mean errors. Our goal is to estimate the minimum value
of the regression function f∗ = minx∈Θ f(x) and its location x∗ = argminx∈Θ f(x) when
x∗ is unique. As accuracy measures of an estimator x̂n of x∗ we consider the optimization
risk E[f(x̂n)− f∗] and the quadratic risk E[󰀂x̂n − x∗󰀂2], where 󰀂 · 󰀂 denotes the Euclidean
norm. The accuracy of an estimator Tn of f∗ will be measured by the risk E|Tn − f∗|. We
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will assume that f belongs to the class of β-Hölder smooth and strongly convex functions
with β ≥ 2 (see Section 2 for the definitions).

The existing literature considers two different assumptions on the choice of the design.
Under the passive design setting, the points xi are sampled independently from some proba-
bility distribution. Under the active (or sequential) design setting, for each i the statistician
can plan the experiment by selecting the point xi depending on the previous queries and the
corresponding responses x1, y1, . . . ,xi−1, yi−1. The accuracy of estimation under the active
design is at least as good as under the passive design but it can be strictly better, which is
the case for the problems considered here.

Active design, estimation of x∗. Active (or sequential) scheme has a long history
starting at least from the seminal work of Kiefer and Wolfowitz (1952) where an analog of
the Robbins-Monro algorithm was introduced to estimate the minimizer x∗ of a univariate
function f. The idea of the Kiefer-Wolfowitz (KW) method is to approximate the derivative
of f using first order differences of yi’s and plug this estimator in the gradient algorithm.
Kiefer and Wolfowitz (1952) proved convergence in probability of the KW algorithm under
some regularity conditions on the regression function. A multivariate extension of the KW
algorithm was proposed by Blum (1954). Convergence rates of the KW algorithm for d = 1
were investigated in Dupač (1957) proving an upper bound on the quadratic risk of the order
n−2/3 for β = 3. By using suitably chosen linear combinations of first order differences to
approximate the gradient, Fabian (1967) proved the existence of a method that attains,
for odd integers β ≥ 3, the quadratic risk of the order n−(β−1)/β for functions f with
bounded βth partial derivatives. The method of Fabian (1967) uses (β − 1)/2 evaluations
yi at every step of the algorithm in order to approximate the gradient. Chen (1988) and
Polyak and Tsybakov (1990) have established minimax lower bounds for the estimation
risk on the class of β-Hölder smooth and strongly convex functions f , for all β ≥ 2. For
the quadratic risk, these bounds are of the order n−(β−1)/β . Polyak and Tsybakov (1990)
proposed a new class of methods using smoothing kernels and randomization to approximate
the gradient. This constitutes an alternative to the earlier used deterministic schemes
derived from finite differences. Polyak and Tsybakov (1990) proved that such randomized
methods attain the minimax optimal rate n−(β−1)/β on the above classes for all β ≥ 2 and
not only for odd integers β ≥ 3. An additional advantage over Fabian’s algorithm is the
computational simplicity of these methods. In particular, they require at each step only one
or two evaluations of the function. For subsequent developments on similar methods, we
refer to Dippon (2003); Bach and Perchet (2016); Akhavan et al. (2020, 2021, 2023), where
one can find further references.

Active design, estimation of f∗. The problem of estimating f∗ under the active
scheme was first considered by Mokkadem and Pelletier (2007) who suggested a recursive
estimator and proved its asymptotic normality with

√
n scaling. Belitser et al. (2012) defined

an estimator of f∗ via a multi-stage procedure whose complexity increases exponentially
with the dimension d, and showed that this estimator achieves (asymptotically, for n greater
than an exponent of d) the Op(1/

√
n) rate when f is β-Hölder and strongly convex with β >

2. Akhavan et al. (2020) improved upon this result by constructing a simple computationally
feasible estimator f̂n such that E|f̂n−f∗| = O(1/

√
n) for β ≥ 2. It can be easily shown that

the rate 1/
√
n cannot be further improved when estimating f∗. Indeed, using the oracle
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that puts all the queries at the unknown true minimizer x∗ one cannot achieve better rate
under the Gaussian noise.

Passive design, estimation of x∗. The problem of estimating the minimizer x∗

under the i.i.d. passive design was probably first studied in Härdle and Nixdorf (1987),
where some consistency and asymptotic normality results were discussed. Tsybakov (1990b)
proposed to estimate x∗ by a recursive procedure using local polynomial approximations
of the gradient. Considering the class of strongly convex and β-Hölder (β ≥ 2) regression
functions f , Tsybakov (1990b) proves that the minimax optimal rate of estimating x∗ on the
above class of functions is n−(β−1)/(2β+d), and shows that the proposed estimator attains
this optimal rate. However, in order to define this estimator, one needs to know of the
marginal density of the design points that may be inaccessible in practice.

There was also some work on estimating x∗ in different passive design settings. Several
papers are analyzing estimation of x∗ in a passive scheme, where xi’s are given non-random
points in [0, 1] (Müller (1985, 1989)) or in [0, 1]d (Facer and Müller (2003)). Another line
of work (Härdle and Nixdorf (1987); Nazin et al. (1989); Tsybakov (1990b); Nazin et al.
(1992)) is to consider the problem of estimating the zero of a nonparametric regression
function under i.i.d. design, also called passive stochastic approximation when recursive
algorithms are used. Nazin et al. (1989); Tsybakov (1990b); Nazin et al. (1992) establish
minimax optimal rates for this problem and propose passive stochastic approximation al-
gorithms attaining these rates. Application to transfer learning is recently developed in
Krishnamurthy and Yin (2022), where one can find further references on passive stochastic
approximation.

Passive design, estimation of f∗. To the best of our knowledge, the problem of
estimating f∗ under i.i.d. passive design was not studied. However, there was some work
on a related and technically slightly easier problem of estimating the maximum of a func-
tion observed under the Gaussian white noise model in dimension d = 1 (Ibragimov and
Khas’ minskii (1982); Lepski (1993)). Extrapolating these results to the regression model
and general d suggests that the optimal rate of convergence for estimating f∗ on the class
of β-Hölder regression functions f is of the order (n/ log n)−β/(2β+d). It is stated as a con-
jecture in Belitser et al. (2021) for the passive model with equidistant deterministic design.
It remains unclear whether this conjecture is true since, for higher dimensions, the effect of
the equidistant grid induces an additional bias. However, we prove below that, under the
i.i.d. random design, the minimax optimal rate on the class of β-Hölder functions (without
strong convexity) is indeed (n/ log n)−β/(2β+d). We are not aware of any results on estima-
tion of f∗ on the class of β-Hölder and strongly convex regression functions f , which is the
main object of study in the current work.

Finally, we review some results on a related problem of estimating the mode of a proba-
bility density function. There exists an extensive literature on this problem. In the univari-
ate case, Parzen (1962) proposed the maximizer of kernel density estimator (KDE) as an
estimator for the mode. Direct estimate of the mode based on order statistics was proposed
by Grenander (1965), where the consistency of the proposed method was shown. Other
estimators of the mode in the univariate case were considered by (Chernoff, 1964; Dalenius,
1965; Venter, 1967). The minimax rate of mode estimation on the class of β-Hölder densities
that are strongly concave near the maximum was shown to be n−(β−1)/(2β+d) in Tsybakov
(1990a), where the optimal recursive algorithm was introduced. It generalizes an earlier
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result of Khas’minskii (1979) who considered the special case d = 1,β = 2 and derived
the minimax lower bound of the order n−1/5 matching the upper rate provided by Parzen
(1962). Klemelä (2005) proposed to use the maximizer of KDE with the smoothing param-
eter chosen by the Lepski method (Lepski, 1991), and showed that this estimator achieves
optimal adaptive rate of convergence. Dasgupta and Kpotufe (2014) proposed minimax op-
timal estimators of the mode based on k-nearest neighbor density estimators, emphasizing
the implementation ease of the method. Computational complexity of mode estimation was
investigated by Arias-Castro et al. (2022) showing the impossibility of a minimax optimal
algorithm with sublinear computational complexity. It was shown that the maximum of a
histogram, with a proper choice of bandwidth, achieves the minimax rate while running in
linear time. Bayesian approach to the mode estimation was developed by Yoo and Ghosal
(2019).

Contributions. In this paper, we consider the model described at the beginning of this
section under the i.i.d. passive observation scheme. The contributions of the present work
can be summarized as follows.

• Assuming that f belongs to the class of β-Hölder and strongly convex regression func-
tions we construct a recursive estimator of the minimizer x∗ adaptive to the unknown
marginal density of xi’s and achieving the minimax optimal rate n−(β−1)/(2β+d), for
β ≥ 2, up to a logarithmic factor.

• We show that the minimax optimal rate for the problem of estimating the minimum
value f∗ of function f on the above class of functions scales as n−β/(2β+d), and we
propose an algorithm achieving this optimal rate for β > 2.

• We prove that the minimax optimal rate of estimating f∗ on the class of β-Hölder func-
tions (without strong convexity) is of the order (n/ log n)−β/(2β+d). Thus, dropping
the assumption of strong convexity causes a deterioration of the minimax rate only
by a logarithmic factor. It suggests that strong convexity is not a crucial advantage
in estimation of the minimum value of a function under the passive design.

Given our results, we have the following table summarizing the minimax optimal rates for
estimation under the active and passive design.

rate of quadratic risk, estimation of x∗ rate of estimating f∗

passive scheme n
− 2(β−1)

2β+d n
− β

2β+d

active scheme n
−β−1

β n− 1
2

Table 1: Comparisons between the rates of convergence for passive and active schemes in
the class of β-Hlder and strongly convex functions

We note that the convergence rates for the passive scheme suffer from the curse of
dimensionality, while the rates for the active scheme are independent of the dimension.
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Notation. In all the theorems, where the rates contain log(n), we assume that n ≥ 2. We
denote by Ef the expectation with respect to the distribution of (xi, yi)

n
i=1 satisfying the

model (1); we also abbreviate this notation to E when there is no ambiguity. Vectors are
represented by bold symbols while uppercase English letters are used to denote matrices.
We denote by 󰀂 · 󰀂 the Euclidean norm, and by 󰀂·󰀂op the operator norm, i.e., for a matrix
A we have 󰀂A󰀂op = sup󰀂u󰀂≤1 󰀂Au󰀂 . We denote the smallest eigenvalue of a square matrix
U by λmin (U). For any m ∈ N, we denote by [m] the set that contains all positive integers
k, such that 1 ≤ k ≤ m. For β ∈ R+, let ⌊β⌋ be the biggest integer smaller than β.
Let S denote the number elements in the set {m : |m| ≤ ℓ}, where m is a d-dimensional

multi-index. For u ∈ Rd, let U(u) =

󰀕
um(1)

m(1) , . . . ,
um(S)

m(S)

󰀖⊤
, where the numbering is such

that m(1) = (0, . . . , 0),m(2) = (1, 0, . . . , 0), . . . ,m(d+1) = (0, . . . , 0, 1). For d-dimensional
multi-index m = (m1, . . . ,md), where mj ≥ 0 are integers, we define the absolute value
|m| = m1 + . . .+md, the factorial m! = m1! . . .md!, the power um = um1

1 . . . umd
d and the

differentiation operatorDm = ∂|m|

∂u
m1
1 ...∂u

md
d

. We denote by ProjΘ(x) the Euclidean projection

of x ∈ Rd onto Θ.

2. Definitions and assumptions

We first introduce the class of β-Hölder functions that will be used throughout the paper.
For β, L > 0, we denote by Fβ(L) the class of ℓ = ⌊β⌋ times differentiable functions
f : Rd → R such that

󰀏󰀏󰀏󰀏󰀏󰀏
f(x)−

󰁛

|m|≤l

1

m!
Dmf(x)(x− x′)m

󰀏󰀏󰀏󰀏󰀏󰀏
≤ L󰀂x− x′󰀂β , ∀x,x′ ∈ Rd.

Our estimators will be based on kernels satisfying the following assumption.

Assumption 1 The kernel K : Rd → R has a compact support Supp(K) contained in the
unit Euclidean ball, and satisfies the conditions

K(u) ≥ 0,

󰁝
K(u) du = 1, sup

u∈Rd

K(u) < ∞ .

Furthermore, we assume that K is a LK-Lipschitz function, that is, for any x,y ∈ Rd we
have

|K(x)−K(y)| ≤ LK 󰀂x− y󰀂 .

Assumption 2 It holds for all i, i′ ∈ [n], that: (i) ξi and xi′ are independent; (ii) E[ξi] = 0;
(iii) there exists σ > 0 such that E [exp(ξi/σ)] < ∞ (sub-exponential assumption).

Assumption 3 We consider model (1) with f : Rd → R satisfying the following assump-
tions.

(i) The function f attains its minimum on Θ at point x∗.
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(ii) The function f belongs to Hölder functional class Fβ(L) with β ≥ 2.

(iii) There exists α > 0 such that the function f is α-strongly convex on Θ i.e. for any
x,y ∈ Θ, it satisfies

f(y) ≥ f(x) + 〈∇f(x),y − x〉+ α

2
󰀂x− y󰀂2 .

(iv) The function f is uniformly bounded on the set Θ′ = {x+y : x ∈ Θ and 󰀂y󰀂 ≤ 1},
that is, supx∈Θ′ |f(x)| ≤ M , where M is a constant.

We denote by Fβ,α(L) the class of regression functions f satisfying Assumption 3.

Next, we introduce an assumption on the distribution of xi’s.

Assumption 4 The random vectors x1, . . . ,xn are i.i.d. with distribution admitting a
density p(·) with respect to the Lebesgue measure such that

0 < pmin ≤ p(x) ≤ pmax < ∞, ∀x ∈ Θ′.

Throughout this paper, we use the notation A, Ai, i = 0, 1, . . . for positive constants that
can only depend on d, Θ, β, L, M , pmax, pmin, K, and σ, where the dependence on d is
at most of polynomial order with the degree of the polynomial only depending on β. The
values of A and Ai can vary from line to line. We note that the dependence on the strong
convexity parameter α is not included in the constants A and Ai since we explicitly specify
it in the upper and lower bounds.

3. Estimating the minimizer

We estimate the minimizer x∗ via an approximation of the gradient algorithm, where we
replace the gradient ∇f(z) by its local polynomial estimator. The objective function f ∈
Fβ(L) in model (1) can be well approximated by its Taylor polynomial of order ℓ in the
neighbourhood of the target point z,

f(x) ≈
󰁛

|m|≤ℓ

1

m!
Dmf(z)(z − x)m = θ⊤(z)U

󰀕
x− z

h

󰀖
,

where x is sufficiently close to z and, for h > 0,

U(u) =

󰀣
um(1)

m(1)!
, . . . ,

um(S)

m(S)!

󰀤⊤

, θ(z) =
󰀓
h|m

(1)|Dm(1)
f(z), . . . , h|m

(S)|Dm(S)
f(z)

󰀔⊤
. (2)

The local polynomial estimator of θ(z) (see, e.g., Stone (1980), (Tsybakov, 2009, Section
1.6)) is defined as follows:

θ̂k(z) ∈ argmin
θ∈RS

k󰁛

i=1

󰀗
yi − θ⊤U

󰀕
xi − z

h

󰀖󰀘2
K

󰀕
xi − z

h

󰀖
,
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where K : Rd → R is a kernel satisfying Assumption 1. Let the matrix Bk(z) and the vector
Dk(z) be defined as

Bk(z) =
1

khd

k󰁛

i=1

U

󰀕
xi − z

h

󰀖
U⊤

󰀕
xi − z

h

󰀖
K

󰀕
xi − z

h

󰀖
,

Dk(z) =
1

khd

k󰁛

i=1

yiU

󰀕
xi − z

h

󰀖
K

󰀕
xi − z

h

󰀖
.

If the matrix Bk(z) is invertible we have

θ̂k(z) = Bk(z)
−1Dk(z)

and an estimator for ∇f(z) can be defined in the form

gk(z) =
1

h
Aθ̂k(z), (3)

where A is the matrix with elements

Ai,j =

󰀫
1, if j = i+ 1

0, otherwise,

for i ∈ [d], and j ∈ [S].

Since Bk(z) is not necessarily invertible, instead of using the estimator (3) we consider
its regularized version. Namely, we add a regularization constant λ > 0 to the diagonal
entries of Bk(z) and define Bk,λ(z) = Bk(z)+λI, where I is the identity matrix. This leads
to the following regularized estimator of the gradient:

gk,λ(z) =
1

h
Aθ̂k,λ(z) :=

1

h
A(Bk(z) + λI)−1Dk(z). (4)

The corresponding approximate gradient descent procedure is presented as Algorithm 1. It
outputs zk that will be used as an estimator of x∗. At round k of Algorithm 1, the matrix
Bk,λ(zk) = Bk(zk) + λI and the vector Dk(zk) can be computed recursively based on the
first k observations. An advantage of this method is its recursive construction enabling
Algorithm 1 to handle incoming i.i.d. data points (xk, yk) that are received sequentially in
an online fashion.

The following theorem gives a bound on the estimation error of Algorithm 1.

Theorem 5 Let Assumptions 1 – 4 hold and ∇f(x∗) = 0. Then, for zn generated by
Algorithm 1 we have

E[󰀂zn − x∗󰀂2] ≤ Amin

󰀳

󰁃1,

󰀕
log(n)

n

󰀖 2(β−1)
2β+d

α−2

󰀴

󰁄 . (5)

7



Akhavan, Gogolashvili and Tsybakov

Algorithm 1: Passive Zero-Order Projected Gradient Descent

Requires Kernel K : Rd → R, step sizes ηk > 0, parameters hk =
󰀓
log(k+1)

k

󰀔 1
2β+d

and

λk =
󰀓
log(k+1)

k

󰀔 β
2β+d

, for k ∈ [n].

Initialization Choose z1 ∈ Θ, and set ηk = 2
αk , for k ∈ [n].

For k ∈ [n]

1. Compute gk,λk
(zk) = h−1

k

󰀓
ABk,λk

(zk)
−1Dk(zk)

󰀔
.

2. Update zk+1 = ProjΘ
󰀃
zk − ηkgk,λk

(zk)
󰀄
.

Return (zk)
n
k=1

The proof of Theorem 5 uses the strong convexity of f to obtain an upper bound for
the term E[󰀂zk+1 − x∗󰀂2|zk], which depends on the bias term

󰀐󰀐E[gk,λk
(zk)|zk]−∇f(zk)

󰀐󰀐

and on the “variance” term E
󰁫󰀐󰀐gk,λk

(zk)
󰀐󰀐2 |zk

󰁬
. These two terms need to be controlled

uniformly over zk ∈ Θ, which is achieved using Lemma 13. The uniformity is the rea-
son why the bound (5) includes an extra logarithmic factor compared to the optimal rate
n−(β−1)/(2β+d) derived in Tsybakov (1990b).

One may consider the logarithmic factor appearing in (5) as a price to pay for the
fact that our algorithm is adaptive to the marginal density of xi’s and is realized in online
mode. Indeed, Tsybakov (1990b) considered estimators that depend on the marginal density
of xi’s and achieve the rate n−(β−1)/(2β+d), while Algorithm 1 is free of such dependence.
On the other hand, we believe that the extra logarithmic factor in the rate can be avoided
for the estimator of x∗ defined as a minimizer over Θ of the local polynomial estimator of
function f . Such a method does not need the knowledge of the marginal density but it needs
the whole sample and cannot be realized in online mode. Moreover, it is computationally
intractable since it requires minimization of the estimator, which is a function of general
form. It remains an open question whether there exists an algorithm combining all the three
advantages, that is, online realization, adaptivity to the marginal density and convergence
with the rate n−(β−1)/(2β+d) with no extra logarithmic factor.

In the following theorem, we provide a bound on the optimization risk E [f(z̄n)− f∗],
where z̄n is the average of the outputs of Algorithm 1 over n iterations.

Theorem 6 Let Assumptions 1 – 4 hold. Then, for z̄n = 1
n

󰁓n
k=1 zk, where zk’s are

generated by Algorithm 1, we have

E [f(z̄n)− f∗] ≤ Amin

󰀕
1,

󰀕
log(n)

n

󰀖 2(β−1)
2β+d

α−1

󰀖
. (6)

Note that inequality (16) below gives a minimax lower bound for the optimization risk
with the rate α−1n−2(β−1)/(2β+d) for all α ≥ n−(β+2)/(2β+d). This fact and Theorem 6 imply
that, in the zone α ≥ n−(β+2)/(2β+d), the estimator z̄n achieves the minimax optimal rate
(up to a logarithmic factor) with respect to both n and α. This is the reason to use z̄n

instead of the last output zn since for zn we get a guarantee that scales optimally only in

8



Estimating the Minimizer and the Minimum Value of a Regression Function

n but not in α. Indeed, using Theorem 5 and the inequality f(zn) − f∗ ≤ C 󰀂zn − x∗󰀂2,

where C > 0 is a constant, we get the rate
󰀓
log(n)

n

󰀔 2(β−1)
2β+d

α−2, and not
󰀓
log(n)

n

󰀔 2(β−1)
2β+d

α−1

for the optimization risk.

For very small α such that α < n−(β+2)/(2β+d) the lower bound (16) scales differently
from (6) and thus we cannot claim minimax rate optimality for the estimator z̄n for all n
and α. Nevertheless, for any fixed α > 0 independent of n, Theorem 6 and the lower bound
(16) imply that the estimator z̄n attains the minimax optimal rate considered as a function
only of n.

It is interesting to compare the result of Theorem 6 with the optimal rates for the
optimization risk in the case of active design. As discussed in the Introduction, under the
active design for the same class of functions f as in Theorem 6, the dimension d disappears
from the optimal rate, which upgrades to n−(β−1)/β , cf. Polyak and Tsybakov (1990);
Akhavan et al. (2020). On the other hand, under active design and the class of β-Hölder
functions (with no strong convexity) the optimal rate for the optimization risk deteriorates
substantially and becomes (n/ log n)−β/(2β+d), cf. Wang et al. (2018). For all β > 2, this is
worse than the rate under passive design and strong convexity obtained in Theorem 6.

4. Estimating the minimum value of a regression function

In this section, we apply the above results to estimate the minimum value f∗ = minx∈Θ f(x)
of function f that belongs to the class Fβ,α(L). Note that f(z̄n), which is analyzed in
Theorem 6 is not an estimator for f∗, because it depends on the unknown f .

We propose a method of estimating f∗ that uses splitting of the data in two subsamples
of equal size. Throughout this section, we assume that n is an even positive integer and
we set m = n/2. We split the data into two subsamples D1 = {(x1, y1), . . . , (xm, ym)} and
D2 = {(xm+1, ym+1) . . . , (xn, yn)}. Then we apply Algorithm 1 with D1 as an input to
construct z̄m = 1

m

󰁓m
k=1 zk, where zk is the update of Algorithm 1 at round k ∈ [m]. Next,

based on the subsample D2, we construct a nonparametric estimator f̃n(·) of f(·). At this
step, we can use as f̃n(·) any estimator of f(·), which is pointwisely rate optimal. Finally,
we take f̃n(z̄n) as an estimator for f∗.

To be specific, we consider as f̃n(·) a regularized local polynomial estimator defined in
the same spirit as the estimator of the gradient (3). For λm:n, hm:n > 0, and z ∈ Rd, we
define θ̂m:n(z) = (Bm:n(z) + λm:nI)

−1Dm:n(z), where

Bm:n(z) =
2

nhdm:n

n󰁛

i=m+1

U

󰀕
xi − z

hm:n

󰀖
U⊤

󰀕
xi − z

hm:n

󰀖
K

󰀕
xi − z

hm:n

󰀖
, (7)

Dm:n(z) =
2

nhdm:n

n󰁛

i=m+1

yiU

󰀕
xi − z

hm:n

󰀖
K

󰀕
xi − z

hm:n

󰀖
. (8)

The regularized local polynomial estimator of function f at point z defined as

f̃n(z) = U⊤(0)θ̂m:n(z). (9)

The minimum value estimator that we propose is outlined in Algorithm 2.

9
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Algorithm 2: Estimating the Minimum Value

Requires Algorithm 1, kernel K : Rd → R, parameters hm:n = n
− 1

2β+d ,

λm:n = n
− β

2β+d .

1. Split the data D in two equal parts D1 and D2.

2. Use Algorithm 1 to compute z̄m based on the subsample D1.

3. Based on the second subsample D2, compute the estimator
f̃n(z̄m) = U⊤(0)θ̂m:n(z̄m).
Return f̃n(z̄m)

It is known from (Stone, 1980) that the local polynomial estimator with no regulariza-
tion, i.e., with λm:n = 0, and with hm:n as in Algorithm 2 attains the minimax optimal rate
of estimating the value of f at a fixed point in asymptotics as n → ∞. But for finite n this
estimator is not necessarily well-defined. In the next theorem, we show that its properly
regularized version attains the minimax pointwise rate for all sample sizes.

Theorem 7 Let Assumptions 1 – 4 hold, and let f̃n be the estimator (9) with parameters
hm:n and λm:n as in Algorithm 2. Then

sup
x∈Θ

E

󰀗󰀓
f̃n(x)− f(x)

󰀔2
󰀘
≤ An

− 2β
2β+d .

Inspection of the proofs shows that the strong convexity assumption (Assumption 3 (iii))
is not needed in Theorem 7. We do not state it in the theorem since it has no incidence on
the other results of the paper.

Using Theorems 6 and 7 we obtain the following bounds on the convergence rate of the
estimator f̂n = f̃n(z̄m) of the minimum value f∗ = f(x∗).

Theorem 8 Let Assumptions 1 – 4 hold and let f̂n = f̃n(z̄m) be the output of Algorithm
2. Then

E
󰀏󰀏󰀏f̂n − f(x∗)

󰀏󰀏󰀏 ≤ Amax
󰀃
1,α−1

󰀄
·

󰀻
󰀿

󰀽
(log(n)/n)

2
4+d if β = 2 ,

n
− β

2β+d if β > 2 ,
(10)

Furthermore, for α ≥ n
− β−2

2β+d log(n)
2(β−1)
2β+d we have

E
󰀏󰀏󰀏f̂n − f(x∗)

󰀏󰀏󰀏 ≤ An
− β

2β+d . (11)

Proof Using conditioning on z̄m and the Cauchy-Schwarz inequality we get

E
󰀏󰀏󰀏f̂n − f(x∗)

󰀏󰀏󰀏 ≤ E|f̃n(z̄m)− f(z̄m)|+E|f(z̄m)− f(x∗)|

= E
󰁫
E
󰀅
|f̃n(z̄m)− f(z̄m)|

󰀏󰀏z̄m

󰀆󰁬
+E|f(z̄m)− f(x∗)|

≤ E

󰀥󰀕
E

󰀗󰀓
f̃n(z̄m)− f(z̄m)

󰀔2
|z̄m

󰀘󰀖 1
2

󰀦
+E|f(z̄m)− f(x∗)|.

10
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Recalling that f̃n(·) and z̄m are independent and applying Theorems 6 and 7 we deduce
that

E
󰀏󰀏󰀏f̂n − f(x∗)

󰀏󰀏󰀏 ≤ A

󰀕
n
− β

2β+d + α−1

󰀕
log(n)

n

󰀖 2(β−1)
2β+d

󰀖
, (12)

which implies the bound (11) for α ≥ n
− β−2

2β+d log(n)
2(β−1)
2β+d , and the bound (10).

Theorem 8 shows that estimation of f∗ = f(x∗) for smooth and strongly convex func-
tions under passive design is realized with the same rate as function estimation at a fixed

point. If the condition α ≥ n
− β−2

2β+d log(n)
2(β−1)
2β+d is satisfied Theorem 8 and the lower bound

(15) imply that the estimator f̂n attains the minimax optimal rate as function of both pa-
rameters n and α on the class Fβ,α(L). For β = 2 the above condition requires α to be big,

namely, α ≥ log(n)
2

2β+d . Nevertheless, for β = 2 and α ≥ 1 the bounds (10) and (15) imply
that f̂n is minimax optimal up to a logarithmic factor. Regarding the regime of small α,

where α < n
− β−2

2β+d log(n)
2(β−1)
2β+d , we cannot claim that the optimality is achieved by f̂n with

respect to both n and α. Indeed, in this regime, the lower bound (15) does not depend on
α while the upper bound (12) does. On the other hand, considering α > 0 as fixed, the
dependence of the convergence rate of f̂n on the sample size n cannot be improved in a
minimax sense in all regimes (up to a logarithmic factor if β = 2) and it corresponds to the
optimal rate of estimating a smooth function at a fixed point.

In the next section we show that the rate (n/ log n)−β/(2β+d) is minimax optimal for
estimating the minimum value f∗ on the class of β-smooth regression functions without
the strong convexity assumption. It coincides with the rate of function estimation in the
supremum norm. Thus, the strong convexity allows us to reduce the global function re-
construction problem to a simpler, fixed point estimation leading to the rates without an
extra logarithmic factor. Note also that f∗ cannot be estimated better than with the rate
n−β/(2β+d) even in the oracle setting where the unknown minimizer x∗ is revealed. Indeed,
in this case we still need to estimate the value of function f at point x∗.

Notice that, for β > 2, the convergence rate of Algorithm 1 used at the first stage to
estimate the minimizer x∗ is more than needed to obtain (10). To achieve the minimax
optimal rate for f∗ it suffices to estimate x∗ at a slower rate, namely, n−β/(2β+d) for the
optimization risk. Therefore, it is not necessary to take the estimator z̄m at the first stage.
It can be replaced by some suboptimal estimators. This could be beneficial since suboptimal
algorithms may be computationally less costly.

Finally, observe that much faster rate can be obtained in the active design setting, see
Table 1. Specifically, f∗ can be estimated with the parametric rate Cn−1/2 where C > 0
is a constant independent of the dimension d and smoothness β for any β > 2 and all n
large enough (Akhavan et al., 2020). Clearly, the rate n−1/2 cannot be improved even in
the oracle setting where the unknown minimizer x∗ is revealed and one makes all queries
at point x∗.

11
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5. Lower bounds

The following theorem provides lower bounds for the minimax risks of arbitrary estimators
on the class Fβ,α(L). Let w(·) be a monotone non-decreasing function on [0,∞) such that
w(0) = 0 and w ∕≡ 0.

Theorem 9 Let x1, . . . ,xn be i.i.d. random vectors with a bounded Lebesgue density on
Rd. Assume that the random variables ξi are i.i.d. having a density pξ(·) with respect to
the Lebesgue measure on R such that

∃I∗ > 0, v0 > 0 :

󰁝 󰀕󰁴
pξ(u)−

󰁴
pξ(u+ v)

󰀖2

du ≤ I∗v
2 , (13)

for |v| ≤ v0, and (ξ1, . . . , ξn) is independent of (x1, . . . ,xn). Then, for any α, L > 0, β ≥ 2,
we have

inf
x̂n

sup
f∈Fβ,α(L)

Efw
󰀓
max

󰀓
αn

β−1
2β+d , n

1
2β+d

󰀔
󰀂x̂n − x∗󰀂

󰀔
≥ c1, (14)

and

inf
Tn

sup
f∈Fβ,α(L)

Efw(n
β

2β+d |Tn − f∗|) ≥ c′1, (15)

where inf x̂n and infTn denote the infimum over all estimators of the minimizer and over all
estimators of the minimum value of f , respectively, and c1 > 0, c′1 > 0 are constants that
depend only on β, L, d,Θ, I∗, v0, and w(·). Furthemore,

inf
x̂n

sup
f∈Fβ,α(L)

Ef [f(x̂n)− f∗] ≥ c2min
󰀓
α−1n

− 2(β−1)
2β+d ,αn

− 2
2β+d

󰀔
, (16)

where c2 > 0 is a constant that depends only on β, L, d,Θ, I∗, v0.

Condition (13) is rather general. It is satisfied, for example, for the Gaussian distribution
and also for a large class of regular densities, cf. Ibragimov and Has’minskii (1981). The
instance of the lower bound (14) with α ≍ 1 was proved in Tsybakov (1990b) under a
more restrictive condition on the density pξ. In (14), we extend this result by deriving
the dependence of the lower bound on the parameter α, which reveals two non-asymptotic
regimes. This is also reflected in (16), which is a direct consequence of (14).

The proof of Theorem 9 is given in Section 7.3. It is based on a reduction to the problem
of testing two hypotheses for (14) and two fuzzy hypotheses for (15) (cf. Tsybakov (2009)).

Combining the bound (14) with w(u) = u2 and Theorem 5 we conclude that the esti-
mator zn achieves the minimax optimal rate up to a logarithmic factor for estimating x∗

under the squared risk on the class of functions Fβ,α(L) if α ≥ n−(β−2)/(2β+d). Similar
conclusion holds true for the optimization risk, see the comment after Theorem 6, and for
the estimation of the minimum value f∗, see the comment after Theorem 8.

It is interesting to compare our results about estimation of f∗ with the setting where f
is not strongly convex. To this end, we provide a minimax lower bound on estimation of f∗

over the class of β-Hölder functions Fβ(L).
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Theorem 10 Let x1, . . . ,xn be i.i.d. random vectors with a bounded Lebesgue density on
Rd. Let ξi’s be i.i.d. Gaussian random variables with zero mean and variance σ2 and let
(ξ1, . . . , ξn) be independent of (x1, . . . ,xn). Assume that Θ contains an open subset of Rd.
Then, for any β > 0, L > 0, we have

inf
Tn

sup
f∈Fβ(L)

Efw
󰀓󰀕

n

log n

󰀖 β
2β+d

|Tn − f∗|
󰀔
≥ c3, (17)

where infTn denotes the infimum over all estimators of the minimum value of f and c3 > 0
is a constant that depends only on β,α, d, L,Θ,σ2, and w(·).

Theorem 10 implies that
󰀓

n
logn

󰀔− β
2β+d

is the minimax rate of estimating the minimum

value f∗ on the class Fβ(L). Indeed, the matching upper bound with the rate
󰀓

n
logn

󰀔− β
2β+d

is

obtained in a trivial way if we estimate f∗ by the minimum of any rate optimal (in supremum
norm) nonparametric estimator of f , for example, by the local polynomial estimator as in
Stone (1982).

Thus, if we drop the assumption of strong convexity, the minimax rate deteriorates only
by a logarithmic factor. It suggests that strong convexity is not a crucial advantage in
estimation of the minimum value of a function under the passive design.

6. Conclusion

In this paper, we considered the problem of estimating the minimizer and the minimum value
of a regression function from i.i.d data with a focus on highly smooth and strongly convex
regression functions. We provide upper bounds for the proposed algorithms and minimax
lower bounds for all estimators. We show that the minimax optimal rates of estimating the
minimizer are the same as for estimating the gradient of the regression function while for the
minimum value they are the same as for estimation of a regression function at a fixed point.
To estimate the minimum value, we propose a two-stage procedure, where we first estimate
the location of the minimum, and then the function value at the estimated location. We
show that this two-stage procedure achieves minimax optimal rates of convergence.

An interesting open question is to make our algorithms adaptive to the unknown smooth-
ness β and to the strong convexity parameter α. Adaptation to β needs developing a data-
driven choice of the smoothing parameter h and of the regularization parameter λ. Optimal
rates for estimation of the minimum value f∗ under adaptation to β are presumably slower
by a logarithmic factor than the rates that we established in the setting with known β.

7. Proofs

In this section, we provide the proofs of Theorems 5 – 7, 9 and 10. Section 7.1 is devoted
to the proofs of Theorems 5 and 6 on the upper bounds for Algorithm 1. Section 7.2
provides the proof of Theorem 7 on the behavior of regularized local polynomial estimator.
In Sections 7.3 and 7.4, we prove the results on the lower bounds (Theorems 9 and 10,
respectively).
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7.1 Proof of Theorem 5

We will use the following notation. For any k ∈ [n], and i ∈ [k], let

Ri,k(x) = U

󰀕
xi − x

hk

󰀖
K

󰀕
xi − x

hk

󰀖
,

and

Ck(x) =
1

khdk

k󰁛

i=1

Ri,k(x)f(xi), Gk(x) =
1

khdk

k󰁛

i=1

Ri,k(x)ξi, Ek(x) = E[Bk(x)].

Note that Dk(x) = Ck(x) +Gk(x).

We first prove some preliminary lemmas. The following lemma provides an upper bound
on the bias of gk,λk

.

Lemma 11 For k ∈ [n], let gk,λk
be defined by Algorithm 1. Let Assumptions 1 – 4 hold.

Then

sup
x∈Θ

󰀐󰀐E[gk,λk
(x)]−∇f(x)

󰀐󰀐 ≤ A

󰀕
log(k + 1)

k

󰀖 β−1
2β+d

. (18)

Proof By Lemma 17(ii), matrix Ek(x) is positive definite for all x ∈ Θ. Fix x ∈ Θ and
introduce the notation φk = gk,λk

(x)− h−1
k

󰀃
AEk(x)

−1Bk(x)chk
(f,x)

󰀄
, where

ch(f,x) =
󰀓
h|m

(1)|Dm(1)
f(x), . . . , h|m

(S)|Dm(S)
f(x)

󰀔⊤

for h > 0. Noticing that

E
󰀅
h−1
k AEk(x)

−1Bk(x)chk
(f,x)

󰀆
= h−1

k Achk
(f,x) = ∇f(x)

we get

E [φk] = E
󰀅
gk,λk

(x)
󰀆
−∇f(x).

Thus, to conclude the proof we need to bound 󰀂E [φk]󰀂 from above. Define

ψ1,k = h−1
k

󰀃
AEk(x)

−1Ck(x)
󰀄
,

ψ2,k = h−1
k

󰀃
A(Ek(x) + λkI)

−1Ck(x)
󰀄
.

We have

󰀂E[φk]󰀂 ≤
󰀐󰀐E[ψ1,k − h−1

k

󰀃
AEk(x)

−1Bk(x)ck(f,x)
󰀄
]
󰀐󰀐

󰁿 󰁾󰁽 󰂀
term I

+
󰀐󰀐E[ψ2,k −ψ1,k]

󰀐󰀐
󰁿 󰁾󰁽 󰂀

term II

+
󰀐󰀐E[gk,λk

(x)−ψ2,k]
󰀐󰀐

󰁿 󰁾󰁽 󰂀
term III

.
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We now establish upper bounds for each of the three terms in the above expression. We
have

term I = h−1
k

󰀐󰀐󰀐󰀐󰀐AEk(x)
−1E

󰀥
1

khdk

k󰁛

i=1

Ri,k(x)

󰀕
f(xi)−U⊤

󰀕
xi − x

hk

󰀖
chk

(f,x)

󰀖󰀦󰀐󰀐󰀐󰀐󰀐

≤ h−1
k

󰀐󰀐AEk(x)
−1

󰀐󰀐
op

󰀐󰀐󰀐󰀐󰀐E
󰀥

1

khdk

k󰁛

i=1

Ri,k(x)

󰀕
f(xi)−U⊤

󰀕
xi − x

hk

󰀖
chk

(f,x)

󰀖󰀦󰀐󰀐󰀐󰀐󰀐 .

By Lemma 17(ii) and the fact that 󰀂A󰀂op ≤ 1 we have
󰀐󰀐AEk(x)

−1
󰀐󰀐
op

≤ λ−1
min. Therefore,

term I ≤ h−1
k λ−1

min

󰀣
1

khdk

k󰁛

i=1

E

󰀗󰀐󰀐󰀐󰀐Ri,k(x)

󰀕
f(xi)−U⊤

󰀕
xi − x

hk

󰀖
chk

(f,x)

󰀖󰀐󰀐󰀐󰀐

󰀘󰀤
.

Since by Assumption 3(ii), f ∈ Fβ(L) for any i ∈ [k] we have

|f(xi)−U⊤
󰀕
xi − x

hk

󰀖
chk

(f,x)| ≤ L 󰀂x− xi󰀂β ,

so that

term I ≤ Lh−1
k λ−1

min

󰀣
1

khdk

k󰁛

i=1

E
󰁫
󰀂Ri,k(x)󰀂 󰀂x− xi󰀂β

󰁬󰀤

= Lh−d−1
k λ−1

min

󰁝

Rd

󰀂x− u󰀂β
󰀐󰀐󰀐󰀐U

󰀕
u− x

hk

󰀖
K

󰀕
u− x

hk

󰀖󰀐󰀐󰀐󰀐 p(u) du

= Lhβ−1
k λ−1

min

󰁝

Rd

󰀂w󰀂β 󰀂U(w)K(w)󰀂 p(x+ hkw) dw ≤ Ahβ−1
k .

(19)

Next,

term II = h−1
k

󰀐󰀐󰀐A
󰀓
(Ek(x) + λkI)

−1 − Ek(x)
−1

󰀔
E [Ck(x)]

󰀐󰀐󰀐

≤ h−1
k λk 󰀂A󰀂op

󰀐󰀐Ek(x)
−1

󰀐󰀐
op

󰀐󰀐󰀐(Ek(x) + λkI)
−1

󰀐󰀐󰀐
op

E [󰀂Ck(x)󰀂] .

By Assumption 3(iv), we have supx∈Θ′ |f(x)| ≤ M . Using this inequality and Lemma 17(i)
we get

sup
x∈Θ

E [󰀂Ck(x)󰀂] ≤ Mpmaxν1. (20)

Moreover, Lemma 17(ii) implies that
󰀐󰀐Ek(x)

−1
󰀐󰀐
op

󰀐󰀐󰀐(Ek(x) + λkI)
−1

󰀐󰀐󰀐
op

≤ λ−2
min. Therefore,

term II ≤ Ah−1
k λk. (21)

Finally, we bound term III. Using Assumption 2 it is easy to see that

E[gk,λk
(x)] = E

󰀅
h−1
k ABk,λk

(x)−1Ck(x)
󰀆
. (22)
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Taking into account (22) and the fact that Ek(x) + λkI = E[Bk,λk
(x)] we obtain

term III ≤ h−1
k

󰀐󰀐󰀐󰀐E
󰀗
A
󰀓
Bk,λk

(x)−1 − (E[Bk,λk
(x)])−1

󰀔
(Ck(x)−E [Ck(x)])

󰀘󰀐󰀐󰀐󰀐

+ h−1
k

󰀐󰀐󰀐󰀐E
󰀗
A
󰀓
Bk,λk

(x)−1 − (E[Bk,λk
(x)])−1

󰀔
E [Ck(x)]

󰀘󰀐󰀐󰀐󰀐

≤ h−1
k E

󰀗󰀐󰀐󰀐Bk,λk
(x)−1 − (E[Bk,λk

(x)])−1
󰀐󰀐󰀐
op

󰀂Ck(x)−E [Ck(x)]󰀂
󰀘

+ h−1
k E

󰀗󰀐󰀐󰀐Bk,λk
(x)−1 − (E[Bk,λk

(x)])−1
󰀐󰀐󰀐
op

󰀘
sup
x∈Θ

E [󰀂Ck(x)󰀂] .

Using Lemma 24 and (20) we find:

term III ≤ A

󰀕
k−1h−d−1

k + h−1
k E

󰀗󰀐󰀐󰀐Bk,λk
(x)−1 − (E[Bk,λk

(x)])−1
󰀐󰀐󰀐
op

󰀘󰀖
.

This and Lemma 18 yield

term III ≤ A

󰀕
k−1h−d−1

k + k−
1
2h

− d
2
−1

k

󰀖
≤ Ak−

1
2h

− d
2
−1

k . (23)

Combining (19), (21) and (23) we obtain

󰀐󰀐E[gk,λk
(x)]−∇f(x)

󰀐󰀐 ≤ A

󰀕
hβ−1
k + h−1

k λk + h
−1− d

2
k k−

1
2

󰀖
.

Since hk =
󰀓
log(k+1)

k

󰀔 1
2β+d

and λk =
󰀓
log(k+1)

k

󰀔 β
2β+d

this inequality implies the result of the

lemma.

The next lemma provides a bound on the stochastic component of the error uniformly
over Θ.

Lemma 12 Let gk,λk
be defined by Algorithm 1, and let Assumptions 1 – 4 hold. Then

E

󰀗
sup
x∈Θ

󰀐󰀐gk,λk
(x)−E

󰀅
gk,λk

(x)
󰀆󰀐󰀐2

󰀘
≤ A

󰀕
log(k + 1)

k

󰀖 2(β−1)
2β+d

.

Proof Recalling that Dk(x) = Ck(x) + Gk(x), where Ck(x) = 1
khd

k

󰁓k
i=1Ri,k(x)f(xi),

Gk(x) =
1

khd
k

󰁓k
i=1Ri,k(x)ξi, and taking into account (22) we obtain

E

󰀗
sup
x∈Θ

󰀐󰀐gk,λk
(x)−E

󰀅
gk,λk

(x)
󰀆󰀐󰀐2

󰀘
≤ 2h−2

k E

󰀗
sup
x∈Θ

󰀐󰀐󰀐ABk,λk
(x)−1Gk(x)

󰀐󰀐󰀐
2
󰀘

󰁿 󰁾󰁽 󰂀
term I

+ 2h−2
k E

󰀗
sup
x∈Θ

󰀐󰀐󰀐ABk,λk
(x)−1Ck(x)−E

󰁫
ABk,λk

(x)−1Ck(x)
󰁬󰀐󰀐󰀐

2
󰀘

󰁿 󰁾󰁽 󰂀
term II

. (24)
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Recalling that 󰀂A󰀂op ≤ 1 and using the Cauchy-Schwarz inequality and Lemmas 20 and 21
we get

term I ≤
󰀕
E

󰀗
sup
x∈Θ

󰀐󰀐󰀐Bk,λk
(x)−1

󰀐󰀐󰀐
4

op

󰀘
E

󰀗
sup
x∈Θ

󰀂Gk(x)󰀂4
󰀘󰀖 1

2

≤ Ak−1h−d
k log(k + 1).

(25)

Next, using again the Cauchy-Schwarz inequality we obtain

term II ≤ 3E

󰀗
sup
x∈Θ

󰀐󰀐󰀐Bk,λk
(x)−1 (Ck(x)−E [Ck(x)])

󰀐󰀐󰀐
2
󰀘

+ 3E

󰀗
sup
x∈Θ

󰀐󰀐󰀐
󰀓
Bk,λk

(x)−1 − (E [Bk,λk
(x)])−1

󰀔
E [Ck(x)]

󰀐󰀐󰀐
2
󰀘

+ 3 sup
x∈Θ

󰀐󰀐󰀐E
󰁫󰀓

(E [Bk,λk
(x)])−1 −Bk,λk

(x)−1
󰀔
Ck(x)

󰁬󰀐󰀐󰀐
2

≤ 3E

󰀗
sup
x∈Θ

󰀐󰀐󰀐Bk,λk
(x)−1 (Ck(x)−E [Ck(x)])

󰀐󰀐󰀐
2
󰀘

+ 3E

󰀗
sup
x∈Θ

󰀐󰀐󰀐Bk,λk
(x)−1 − (E [Bk,λk

(x)])−1
󰀐󰀐󰀐
2

op
sup
x∈Θ

󰀂E [Ck(x)]󰀂2
󰀘

+ 3 sup
x∈Θ

E

󰀗󰀐󰀐󰀐(E [Bk,λk
(x)])−1 −Bk,λk

(x)−1
󰀐󰀐󰀐
2

op

󰀘
E[󰀂Ck(x)󰀂2]

≤ 3E

󰀗
sup
x∈Θ

󰀐󰀐󰀐Bk,λk
(x)−1 (Ck(x)−E [Ck(x)])

󰀐󰀐󰀐
2
󰀘

󰁿 󰁾󰁽 󰂀
term III

+ 6E

󰀗
sup
x∈Θ

󰀐󰀐󰀐Bk,λk
(x)−1 − (E [Bk,λk

(x)])−1
󰀐󰀐󰀐
2

op

󰀘
sup
x∈Θ

E
󰁫
󰀂Ck(x)󰀂2

󰁬

󰁿 󰁾󰁽 󰂀
term IV

.

(26)

The Cauchy-Schwarz inequality and Lemmas 20 and 23 imply:

term III ≤
󰀕
E

󰀗
sup
x∈Θ

󰀐󰀐󰀐Bk,λk
(x)−1

󰀐󰀐󰀐
4

op

󰀘
E

󰀗
sup
x∈Θ

󰀂Ck(x)−E [Ck(x)]󰀂4
󰀘󰀖 1

2

≤ Ak−1h−d
k log (k + 1) .

Moreover, again by the Cauchy-Schwarz inequality, (66) and Lemma 20 we get

term IV ≤ Ak−1h−d
k log (k + 1) .

Thus,

term II ≤ Ak−1h−d
k log(k + 1). (27)

We conclude the proof by combining (24) – (27) and using the fact that hk =
󰀓
log(k+1)

k

󰀔 1
2β+d

.
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Lemma 13 Let gk,λk
be defined by Algorithm 1, and let Assumptions 1 – 4 hold. Then

E

󰀗
sup
x∈Θ

󰀐󰀐gk,λk
(x)−∇f(x)]

󰀐󰀐2
󰀘
≤ A

󰀕
log(k + 1)

k

󰀖 2(β−1)
2β+d

, (28)

and

E

󰀗
sup
x∈Θ

󰀐󰀐gk,λk
(x)

󰀐󰀐2
󰀘
≤ A. (29)

Proof The bound (28) is immediate in view of Lemmas 11 and 12. Next, note that, since
f is uniformly bounded by M on Θ and f ∈ Fβ(L), the value supx∈Θ 󰀂∇f(x)󰀂 is bounded
by a constant depending only on M , L, d and β. This fact and (28) imply (29).

Proof of Theorem 5. By the definition of Algorithm 1 and the contracting property
of the Euclidean projection, for any k ∈ [n] we have

E[󰀂zk+1 − x∗󰀂2 |zk] ≤ 󰀂zk − x∗󰀂2 − 4

αk
(zk − x∗)⊤E

󰀅
gk,λk

(zk)|zk

󰀆
+

4

α2k2
E
󰁫󰀐󰀐gk,λk

(zk)
󰀐󰀐2 |zk

󰁬
.

We further obtain

E[ak+1|zk] ≤ ak −
4

αk
(zk − x∗)⊤∇f(zk) +

4

αk
󰀂zk − x∗󰀂

󰀐󰀐E[gk,λk
(zk)|zk]−∇f(zk)

󰀐󰀐

+
4

α2k2
E
󰁫󰀐󰀐gk,λk

(zk)
󰀐󰀐2 |zk

󰁬
, (30)

where ak = 󰀂zk − x∗󰀂2. Since f is an α-strongly convex function we have

αak ≤ (zk − x∗)⊤∇f(zk) . (31)

Combining (30) and (31) yields

E[ak+1|zk] ≤
󰀕
1− 4

k

󰀖
ak +

4

αk
󰀂zk − x∗󰀂

󰀐󰀐E[gk,λk
(zk)|zk]−∇f(zk)

󰀐󰀐

+
4

α2k2
E
󰁫󰀐󰀐gk,λk

(zk)
󰀐󰀐2 |zk

󰁬
. (32)

Since 2ab ≤ γa2 + b2

γ for any a, b ∈ R and γ > 0 we deduce, with γ = 3α/2, that

󰀂zk − x∗󰀂
󰀐󰀐E[gk,λk

(zk)|zk]−∇f(zk)
󰀐󰀐 ≤ 3α

4
ak +

1

3α

󰀐󰀐E[gk,λk
(zk)|zk]−∇f(zk)

󰀐󰀐2

≤ 3α

4
ak +

1

3α
E[

󰀐󰀐gk,λk
(zk)−∇f(zk)

󰀐󰀐2 |zk].

(33)

Using this inequality in (32) and taking the expectations yields

rk+1 ≤
󰀕
1− 1

k

󰀖
rk +

4

3α2k
E
󰁫󰀐󰀐gk,λk

(zk)−∇f(zk)
󰀐󰀐2
󰁬
+

4

α2k2
E
󰁫󰀐󰀐gk,λk

(zk)
󰀐󰀐2
󰁬

≤
󰀕
1− 1

k

󰀖
rk +

4

3α2k
E

󰀗
sup
x∈Θ

󰀐󰀐gk,λk
(x)−∇f(x)

󰀐󰀐2
󰀘
+

4

α2k2
E

󰀗
sup
x∈Θ

󰀐󰀐gk,λk
(x)

󰀐󰀐2
󰀘
,
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where rk = E[ak]. By invoking Lemma 13 we deduce that

rk+1 ≤
󰀕
1− 1

k

󰀖
rk + Ak

−1− 2(β−1)
2β+d log(k + 1)

2(β−1)
2β+d α−2 .

Finally, applying Lemma 25 with bk = rk log(k)
− 2(β−1)

2β+d we obtain the following bound that
concludes the proof:

E[󰀂zn − x∗󰀂2] ≤ A
󰀓(diam(Θ))2

n
+ n

− 2(β−1)
2β+d α−2

󰀔
log(n)

2(β−1)
2β+d ,

where diam(Θ) = supx,y∈Θ 󰀂x− y󰀂 and we used the fact that log(n + 1) ≤ 2 log(n) for
n ≥ 2.

Proof of Theorem 6. The definition of Algorithm 1 implies the inequality 󰀂zk+1 − x∗󰀂2 ≤󰀐󰀐zk − ηkgk,λk
(zk)− x∗󰀐󰀐2. Therefore,

〈gk,λk
(zk), zk − x∗〉 ≤ 󰀂zk − x∗󰀂2 − 󰀂zk+1 − x∗󰀂2

2ηk
+

ηk
2

󰀐󰀐gk,λk
(zk)

󰀐󰀐2 . (34)

On the other hand, by Assumption 3(iii) we have

f(zk)− f∗ ≤ (zk − x∗)⊤∇f(zk)−
α

2
󰀂zk − x∗󰀂2 . (35)

Combining (34) and (35) gives

E [f(zk)− f∗|zk] ≤
󰀐󰀐E

󰀅
gk,λk

(zk)|zk

󰀆
−∇f(zk)

󰀐󰀐 󰀂zk − x∗󰀂+ 1

2ηk
E [ak − ak+1|zk]

+
ηk
2
E
󰁫󰀐󰀐gk,λk

(zk)
󰀐󰀐2 |zk

󰁬
− α

2
ak ,

where ak = 󰀂zk − x∗󰀂2. Acting as in (33) but now with γ = α/2 we find

E [f(zk)− f∗|zk] ≤
1

α
E
󰁫󰀐󰀐gk,λk

(zk)−∇f(zk)
󰀐󰀐2 |zk

󰁬
+

1

2ηk
E [ak − ak+1|zk]

+
ηk
2
E
󰁫󰀐󰀐gk,λk

(zk)
󰀐󰀐2 |zk

󰁬
− α

4
ak.

Taking the expectations of both sides of this inequality and recalling the notation rk = E [ak]
we obtain

E [f(zk)− f∗] ≤ 1

α
E

󰀗
sup
x∈Θ

󰀐󰀐gk,λk
(x)−∇f(x)

󰀐󰀐2
󰀘
+

1

2ηk
(rk − rk+1)

+
ηk
2
E

󰀗
sup
x∈Θ

󰀐󰀐gk,λk
(x)

󰀐󰀐2
󰀘
− α

4
rk .

Lemma 13 and the fact that ηk = 2
αk further imply

E [f(zk)− f∗] ≤ αk

4
(rk − rk+1)−

α

4
rk + A

󰀕
log(k + 1)

k

󰀖 2(β−1)
2β+d

α−1 .
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Summing both sides of this inequality from 1 to n yields

n󰁛

k=1

E [f(zk)− f∗] ≤ An
2+d
2β+d log(n)

2(β−1)
2β+d α−1 ,

where we used the inequalities
󰁓n

k=1 k
− 2(β−1)

2β+d ≤ 2β+d
2+d n

2+d
2β+d , and log(n + 1) ≤ 2 log(n) for

n ≥ 2. We conclude the proof by using the convexity of f and Jensen’s inequality.

7.2 Proof of Theorem 7

Theorem 7 is an immediate consequence of the bounds on the bias and variance of the
regularized local polynomial estimator fn in Lemmas 14 and 15 below. In the proofs of
these lemmas, we will write for brevity h = hm:n and λ = λm:n. We will use the following
notation:

Rk(x) = U

󰀕
xk − x

h

󰀖
K

󰀕
xk − x

h

󰀖
, Bm:n,λ(x) = Bm:n(x) + λI,

Cm:n(x) =
2

nhd

n󰁛

k=m+1

Rk(x)f(xk), Gm:n(x) =
2

nhd

n󰁛

k=m+1

Rk(x)ξk.

The proofs will use the fact that Lemmas 18 and 23 apply not only to the vector Ck(x)
and matrix Bk,λ(x) but also quite analogously to Cm:n(x) and Bm:n,λ(x), so that under
the assumptions of Theorem 7 we have

sup
x∈Θ

E

󰀗󰀐󰀐󰀐Bm:n,λ(x)
−1

󰀐󰀐󰀐
4

op

󰀘
≤ Aλ−4

min, (36)

sup
x∈Θ

E
󰁫󰀐󰀐Bm:n,λ(x)

−1 − (E[Bm:n,λ(x)])
−1

󰀐󰀐2
op

󰁬
≤ Ah−dn−1. (37)

sup
x∈Θ

E
󰁫
󰀂Cm:n(x)−E [Cm:n(x)]󰀂4

󰁬
≤ Ah−2dn−2 (38)

and

sup
x∈Θ

E
󰁫
󰀂Cm:n(x))󰀂4

󰁬
≤ A. (39)

The following lemma establishes a bound on the bias of fn.

Lemma 14 Under Assumptions 1 – 4 we have

sup
x∈Θ

|E [fn(x)]− f(x)| ≤ An
− β

2β+d .

Proof Set Em:n(x) = E[Bm:n(x)]. It follows from Lemma 17(ii) that matrix Em:n(x) is
positive definite for all x ∈ Θ and

sup
x∈Θ

󰀐󰀐Em:n(x)
−1

󰀐󰀐
op

≤ λ−1
min, sup

x∈Θ

󰀐󰀐(E [Bm:n,λ(x)])
−1

󰀐󰀐
op

≤ λ−1
min. (40)
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Fix x ∈ Θ and introduce the notation φ̄n = fn(x) − U⊤(0)Em:n(x)
−1Bm:n(x)ch(f,x),

where ch(f,x) is defined in the proof of Lemma 11. Using the fact that

E[U⊤(0)Em:n(x)
−1Bm:n(x)ch(f,x)] = U⊤(0)ch(f,x) = f(x) (41)

we have
E
󰀅
φ̄n

󰀆
= E [fn(x)]− f(x).

Thus, we need to control |E
󰀅
φ̄n

󰀆
|. Introduce the notation

ψ̄1,n = U⊤(0)Em:n(x)
−1Cm:n(x),

ψ̄2,n = U⊤(0) (Em:n(x) + λI)−1Cm:n(x).

We have

|E[φ̄n]| ≤ |E[ψ̄1,n −U⊤(0)Em:n(x)
−1Bm:n(x)ch(f,x)]|󰁿 󰁾󰁽 󰂀

term I

+ |E[ψ̄2,n − ψ̄1,n]|󰁿 󰁾󰁽 󰂀
term II

+ |E[fn(x)− ψ̄2,n]|󰁿 󰁾󰁽 󰂀
term III

.

Using the fact that 󰀂U(0)󰀂 = 1 the analysis of the three terms in this expression follows the
same lines as the analysis of analogous terms in the proof of Lemma 11. The only essential
difference is that factor h−1 is now dropped. Thus, we get

term I ≤ Ahβ .

The terms II and III are also evaluated in the same way as in Lemma 11 (but with no h−1

factor) by applying (36) –(39) instead of the analogous bounds from Lemmas 18 and 22.
This yields

term II ≤ Aλ and term III ≤ Ah−
d
2n− 1

2 .

Therefore,

|E[φ̄n]| ≤ A
󰀓
hβ + λ+ h−

d
2n− 1

2

󰀔
.

Since h = n
− 1

2β+d and λ = n
− β

2β+d the lemma follows.

The next lemma establishes a bound on the variance of the regularized local polynomial
estimator fn.

Lemma 15 Under Assumptions 1 – 4 we have

sup
x∈Θ

E
󰁫
(fn(x)−E [fn(x)])

2
󰁬
≤ An

− 2β
2β+d .

Proof Since Dm:n(x) = Gm:n(x) + Cm:n(x) then, taking into account the facts that
󰀂U(0)󰀂 = 1 and

E [fn(x)] = E
󰁫
U⊤(0)Bm:n,λ(x)

−1Cm:n(x)
󰁬

(42)
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we obtain

E[(fn(x)−E [fn(x)])
2] ≤ 2E

󰁫󰀐󰀐Bm:n,λ(x)
−1Gm:n(x)

󰀐󰀐2
󰁬

󰁿 󰁾󰁽 󰂀
term I

+ 2E
󰁫󰀐󰀐Bm:n,λ(x)

−1Cm:n(x)−E
󰀅
Bm:n,λ(x)

−1Cm:n(x)
󰀆󰀐󰀐2

󰁬

󰁿 󰁾󰁽 󰂀
term II

.

Using Assumption 2 we get

term I ≤ AE

󰀥
󰀐󰀐Bm:n,λ(x)

−1
󰀐󰀐2
op

󰀣
n−2h−2d

n󰁛

k=m+1

󰀂Rk(x)󰀂2
󰀤󰀦

.

Applying the Cauchy-Schwarz inequality and (36) we find that

term I ≤ A

󰀳

󰁃E
󰁫
󰀂Bm:n,λ(x)]󰀂−4

op

󰁬
E

󰀵

󰀷
󰀣
n−2h−2d

n󰁛

k=m+1

󰀂Rk(x)󰀂2
󰀤2

󰀶

󰀸

󰀴

󰁄

1
2

≤ Aλ−2
min

󰀳

󰁃E

󰀵

󰀷
󰀣
n−2h−2d

n󰁛

k=m+1

󰀂Rk(x)󰀂2
󰀤2

󰀶

󰀸

󰀴

󰁄

1
2

≤ An−2h−2d

󰀕 n󰁛

k=m+1

E[󰀂Rk(x)󰀂4] +
n󰁛

j,k=m+1,j ∕=k

E[󰀂Rj(x)󰀂2]E[󰀂Rk(x)󰀂2]
󰀖 1

2

≤ An−2h−2d(nhd + n2h2d)1/2 ≤ An
− 2β

2β+d ,

where in the last line we have used Lemma 17(i) and the fact that h = n
− 1

2β+d .
Next, arguing analogously to (26) we get

term II ≤ 3E

󰀗󰀐󰀐󰀐Bm:n,λ(x)
−1 (Cm:n(x)−E [Cm:n(x)])

󰀐󰀐󰀐
2
󰀘

+ 6E

󰀗󰀐󰀐󰀐Bm:n,λ(x)
−1 − (E [Bm:n,λ(x)])

−1
󰀐󰀐󰀐
2

op

󰀘
E
󰁫
󰀂Cm:n(x)󰀂2

󰁬

≤ 3

󰀕
E

󰀗󰀐󰀐󰀐Bm:n,λ(x)
−1

󰀐󰀐󰀐
4

op

󰀘
E
󰁫
󰀂Cm:n(x)−E [Cm:n(x)]󰀂4

󰁬󰀖 1
2

+ 6E

󰀗󰀐󰀐󰀐Bm:n,λ(x)
−1 − (E [Bm:n,λ(x)])

−1
󰀐󰀐󰀐
2

op

󰀘󰀓
E
󰁫
󰀂Cm:n(x)󰀂4

󰁬󰀔 1
2
.

Applying here the bounds (36) –(39) and using the fact that h = n
− 1

2β+d we obtain

term II ≤ An
− 2β

2β+d .

The proof is completed by putting together the bounds on terms I and II.
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7.3 Proof of Theorem 9

We first prove (15). We apply the scheme of proving lower bounds for estimation of func-
tionals described in Section 2.7.4 in Tsybakov (2009). Moreover, we use its basic form when
the problem is reduced to testing two simple hypotheses (that is, the mixture measure µ
from Section 2.7.4 in Tsybakov (2009) is the Dirac measure). Without loss of generality,
assume that Θ is a sufficiently large Euclidean ball centered at 0. The functional we are
estimating is F (f) = f∗ = minx∈Θ f(x). We choose the two hypotheses as the probability
measures P⊗n

1 and P⊗n
2 , where Pj stands for the distribution of a pair (xi, yi) satisfying (1)

with f = fj , j = 1, 2. For r > 0, δ > 0, we set

f1(x) = α(1 + δ)󰀂x󰀂2/2, f2(x) = f1(x) + rhβnΦ

󰀣
x− x(n)

hn

󰀤
,

where hn = n−1/(2β+d), x(n) = (hn/8, 0, . . . , 0) ∈ Rd and Φ(x) =
󰁔d

i=1Ψ(xi) with

Ψ(t) =

󰁝 t

−∞
(η(y + 1/2)− η(y)) dy,

where η(·) is an infinitely many times differentiable function on R1 such that

η(x) ≥ 0, η(x) =

󰀫
0, x /∈ [0, 1/2]

1, x ∈ [1/8, 3/8]
.

First, assume that α ≥ n−(β−2)/(2β+d). It is shown in Tsybakov (1990b) that if r is small
enough the functions f1 and f2 are α-strongly convex and belong to Fβ(L). Thus, fj ∈
Fβ,α(L), j = 1, 2. It is also not hard to check that for the function η1(y) = η(y+1/2)−η(y)
we have

η1

󰀣
−rΨd−1(0)hβ−2

n

α(1 + δ)
− 1

8

󰀤
= 1,

due to the fact that rα−1(1+ δ)−1hβ−2
n < 1/4, for α ≥ n−(β−2)/(2β+d) and sufficiently small

values of r and δ. Using this remark we get that the minimizers x∗
j = argminx∈Θ fj(x)

have the form

x∗
1 = (0, 0, . . . , 0) and x∗

2 =

󰀣
−rΨd−1(0)hβ−1

n

α(1 + δ)
, 0, . . . , 0

󰀤
.

The values of the functional F on f1 and f2 are F (f1) = 0 and

F (f2) = f2(x
∗
2)

=
r2Ψ2(d−1)(0)

2α(1 + δ)
h2(β−1)
n + rΨd−1(0)Ψ

󰀣
−rΨd−1(0)hβ−2

n

α(1 + δ)
− 1

8

󰀤
hβn

≥ r2Ψ2(d−1)(0)

2α(1 + δ)
h2(β−1)
n + rΨd−1(0)Ψ(−1/4)hβn (for r small enough)

≥ rΨd−1(0)Ψ(−1/4)hβn.
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Here, Ψ(0) =
󰁕∞
−∞ η(y) dy > 0 and Ψ(−1/4) =

󰁕 1/4
−∞ η(y) dy > 0.

Note that assumption (i) of Theorem 2.14 in Tsybakov (2009) is satisfied with β0 =

β1 = 0, c = 0 and s = rΨd−1(0)Ψ(−1/4)hβn/2. Therefore, by Theorem 2.15 (ii) in Tsybakov
(2009), (15) will be proved if we show that

H2
󰀃
P⊗n
1 , P⊗n

2

󰀄
≤ a < 2, (43)

where H2 (P,Q) denotes the Hellinger distance between the probability measures P and Q.
Using assumption (13) we obtain

H2
󰀃
P⊗n
1 , P⊗n

2

󰀄
= 2

󰀕
1−

󰀕
1− H2(P1, P2)

2

󰀖n󰀖

≤ nH2(P1, P2) (as (1− x)n ≥ 1− xn, x ∈ [0, 1])

= n

󰁝 󰀕󰁴
pξ(y)−

󰁴
pξ (y + (f1(x)− f2(x)))

󰀖2

p(x) dx dy

≤ nI∗

󰁝
(f1(x)− f2(x))

2 p(x) dx

= nI∗r
2h2β+d

n

󰁝
Φ2(u)p

󰀓
x(n) + uhn

󰀔
du

≤ pmaxI∗r
2

󰁝
Φ2(u) du, for r ≤ v0,

where pmax is the maximal value of the density p(·) of xi. Choosing r ≤
󰁴

a/
󰀃
pmaxI∗

󰁕
Φ2(u) du

󰀄
,

with a < 2 we obtain (43). This completes the proof of the lower bound (15) for α ≥
n−(β−2)/(2β+d). If 0 < α < α0 := n−(β−2)/(2β+d) the same lower bound holds due to the
nesting property of the classes Fα,β(L). Indeed, Fα0,β(L) ⊂ Fα,β(L) for 0 < α < α0. The
proof of (15) is now complete.

In order to prove (14), it suffices to use the same construction of two hypotheses as
above, apply the Hellinger version of Theorem 2.2 from Tsybakov (2009) and notice that,
for α ≥ n−(β−2)/(2β+d),

󰀂x∗
1 − x∗

2󰀂 ≥ Aα−1hβ−1
n . (44)

This proves the lower bound (14) for α ≥ α0, with the normalizing factor αn(β−1)/(2β+d).
Notably, if α = α0 this factor is equal to n1/(2β+d). Using the inclusion Fα0,β(L) ⊂ Fα,β(L)
valid for 0 < α < α0 we conclude that the bound (14) with the normalizing factor n1/(2β+d)

holds true for all such values of α. This completes the proof of (14).

Finally, the lower bound (16) follows immediately from (14) with w(u) = u2 and the
inequality f(x̂n)− f∗ ≥ (α/2) 󰀂x̂n − x∗󰀂2 granted by the α-strong convexity of f .

7.4 Proof of Theorem 10

We apply again the scheme of proving lower bounds for estimation of functionals from Sec-
tion 2.7.4 in Tsybakov (2009). However, we use a different construction of the hypotheses.
Without loss of generality, assume that n ≥ 2 and that Θ contains the cube [0, 1]d. Define
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hn = (n/ log(n))−1/(2β+d), N = (1/hn)
d, and assume without loss of generality that N is

an integer. For r > 0, we set

fj(x) = −rhβnΦ

󰀣
x− t(j)

hn

󰀤
, j = 1, . . . , N,

where Φ(x) =
󰁔d

i=1Ψ(xi), where Ψ(·) is an infinitely many times differentiable function
on R taking positive values on its support [−1/2, 1/2], and we denote by t(1), . . . , t(N) the
N points of the equispaced grid on [0, 1]d with step hn over each coordinate, such that the
supports of all fj ’s are included in [0, 1]d and are disjoint. It is not hard to check that for
r small enough all the functions fj , j = 1, . . . , N , belong to Fβ(L).

We consider the product probability measures P⊗n
0 and P⊗n

1 , . . . P⊗n
N , where P0 stands

for the distribution of a pair (xi, yi) satisfying (1) with f ≡ 0, and Pj stands for the
distribution of (xi, yi) satisfying (1) with f = fj . Consider the mixture probability measure

Pµ = 1
N

󰁓N
j=1 P

⊗n
j , where µ denotes the uniform distribution on {1, . . . , N}.

Note that, for each j = 1, . . . , N , we have F (fj) = −rhβnΦmax, where F (f) = f∗ =
minx∈Θ f(x), and Φmax > 0 denotes the maximal value of function Φ(·). Let

χ2(P ′, P ) =

󰁝
( dP ′/ dP )2 dP − 1

denote the chi-square divergence between two mutually absolutely continuous probability
measures P ′ and P . We will use the following lemma, which is a special case of Theorem 2.15
in Tsybakov (2009).

Lemma 16 Assume that there exist v > 0, b > 0 such that F (fj) = −2v for j = 1, . . . , N
and χ2(Pµ, P

⊗n
0 ) ≤ b, Then

inf
f̂n

sup
j=0,1,...,N

P⊗n
j

󰀃
|f̂n − F (fj)| ≥ v

󰀄
≥ 1

4
exp(−b),

where inf f̂n denotes the infimum over all estimators.

In our case, the first condition of this lemma is satisfied with v = rhβnΦmax/2. We now check
that the second condition χ2(Pµ, P

⊗n
0 ) ≤ b holds with some constant b > 0 independent of

n. Using a standard representation of the chi-square divergence of a Gaussian mixture from
the pure Gaussian noise measure (see, for example, Lemma 8 in Carpentier et al. (2019))
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we obtain

χ2(Pµ, P
⊗n
0 ) =

1

N2

N󰁛

j,j′=1

E exp

󰀕󰁓n
i=1 fj(xi)fj′(xi)

σ2

󰀖
− 1

=
1

N2

N󰁛

j,j′=1

E exp

󰀕󰁓n
i=1 fj(xi)fj′(xi)

σ2

󰀖
− 1

=
1

N2

N󰁛

j=1

E exp

󰀣󰁓n
i=1 f

2
j (xi)

σ2

󰀤
+

N(N − 1)

N2
− 1

≤ 1

N2

N󰁛

j=1

E exp

󰀣󰁓n
i=1 f

2
j (xi)

σ2

󰀤

=
1

N2

N󰁛

j=1

󰀥
E exp

󰀣
f2
j (x1)

σ2

󰀤󰀦n

,

where the equality in the third line is due to the fact that if j ∕= j′ then fj and fj′ have
disjoint supports and thus fj(xi)fj′(xi) = 0. Note that maxx∈Rd f2

j (x) ≤ r2Φ2
max, for all

j = 1, . . . , N . Choose r such that r ≤ σ/Φmax. Then
f2
j (x1)

σ2 ≤ 1, and using the elementary

inequality exp(u) ≤ 1 + 2u, u ∈ [0, 1], we obtain that exp

󰀕
f2
j (x1)

σ2

󰀖
≤ 1 +

2f2
j (x1)

σ2 for all

j = 1, . . . , N . Substituting this bound in the last display and noticing that E(f2
j (x1)) =

󰁕
f2
j (x)p(x) dx ≤ pmaxr

2h2β+d
n

󰁕
Φ2(x) dx = c∗

logn
n , where c∗ = pmaxr

2
󰁕
Φ2(x) dx, we

obtain:

χ2(Pµ, P
⊗n
0 ) ≤ 1

N

󰀥
1 +

2E(f2
j (x1))

σ2

󰀦n

≤ 1

N

󰀗
1 +

2c∗ log n

σ2n

󰀘n
≤ 1

N
exp

󰀕
2c∗ log n

σ2

󰀖
=

nc0

N
,

where c0 = 2c∗/σ
2 = 2pmaxr

2
󰁕
Φ2(x) dx/σ2. Since N = (n/ log n)

d
2β+d we finally get

χ2(Pµ, P
⊗n
0 ) ≤ n

c0− d
2β+d (log n)

d
2β+d .

By choosing r small enough to have c0 ≤ d
2(2β+d) we obtain that χ2(Pµ, P

⊗n
0 ) ≤

󰀓
logn√

n

󰀔 d
2β+d ≤

󰀓
log 2√

2

󰀔 d
2β+d

:= b. Thus, the second condition of Lemma 16 holds if r is chosen as a

small enough constant. Notice that, in Lemma 16, the rate v is of the desired order

(n/ log n)
− β

2β+d . The result of the theorem now follows from Lemma 16 and the standard
argument to obtain the lower bounds, see Section 2.7.4 in Tsybakov (2009).
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Appendix A. Auxiliary lemmas

Recall that Θ′ = {x+ y : x ∈ Θ and 󰀂y󰀂 ≤ 1} ⊇ {x+ y : x ∈ Θ and y ∈ Supp(K)}.

Lemma 17 For any q ≥ 1 let

νq =

󰁝

Rd

󰀂U(u)K(u)󰀂q du

and pmax = maxy∈Θ′ p(y). Under Assumptions 1 and 4 for any x ∈ Θ, k ∈ [n] and i ∈ [k]
we have

(i) supx∈ΘE [󰀂Ri,k(x)󰀂q] ≤ pmaxνqh
d
k , and supx∈ΘE [󰀂Rk(x)󰀂q] ≤ pmaxνqh

d
m:n.

(ii) There exists a constant λmin > 0 such that

inf
x∈Θ

λmin (Ek(x)) ≥ λmin and inf
x∈Θ

λmin (Em:n(x)) ≥ λmin.

Proof We have

h−d
k sup

x∈Θ
E [󰀂Ri,k(x)󰀂q] = h−d

k sup
x∈Θ

󰁝

Rd

󰀐󰀐󰀐󰀐U
󰀕
y − x

hk

󰀖
K

󰀕
y − x

hk

󰀖󰀐󰀐󰀐󰀐
q

p(y) dy

≤
󰁝

Rd

󰀂U(u)K(u)󰀂q sup
x∈Θ

p(x+ hku) du ≤ pmaxνq.

The bound for supx∈ΘE [󰀂Rk(x)󰀂q] is proved exactly in the same way. To prove (ii) note
that

Ek(x) = E [Bk(x)] = h−d
k E

󰀗
U

󰀕
x1 − x

hk

󰀖
U⊤

󰀕
x1 − x

hk

󰀖
K

󰀕
x1 − x

hk

󰀖󰀘

=

󰁝

Rd

U (u)U⊤ (u)K (u) p(x+ hku) du

and thus infx∈Θ λmin (Ek(x)) ≥ pminλmin (H), where H =
󰁕
Rd U (u)U⊤ (u)K (u) du. Ar-

guing as in (Tsybakov, 1986, Lemma 1) we obtain that λmin (H) > 0. This gives the desired
bound for infx∈Θ λmin (Ek(x)) with λmin = pminλmin (H). The bound inf

x∈Θ
λmin (Em:n(x)) ≥

λmin is proved exactly in the same way.

Lemma 18 Let Assumptions 1 and 4 hold. Then there exists a constant A > 0 such that
for khdk ≥ 1 we have

sup
x∈Θ

E
󰁫
󰀂Bk,λ(x)−E [Bk,λ(x)]󰀂4op

󰁬
≤ Ah−2d

k k−2. (45)

Furthermore, for khdk ≥ λ−2 we have

sup
x∈Θ

E

󰀗󰀐󰀐󰀐Bk,λ(x)
−1

󰀐󰀐󰀐
4

op

󰀘
≤ Aλ−4

min (46)

and

sup
x∈Θ

E
󰁫󰀐󰀐Bk,λ(x)

−1 − (E[Bk,λ(x)])
−1

󰀐󰀐2
op

󰁬
≤ Ah−d

k k−1. (47)
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Proof For s, s′ ∈ [S], consider the function G(ss′) : Rd → R such that

G(ss′)(u) =
󰀓
U (u)U⊤ (u)

󰀔

ss′
, u ∈ Rd,

where, for a matrix A, we denote by (A)ss′ its (s, s
′)-entry. Set

F
(s,s′)
i (x) = G(ss′)

󰀕
xi − x

hk

󰀖
K

󰀕
xi − x

hk

󰀖
−E

󰀗
G(ss′)

󰀕
xi − x

hk

󰀖
K

󰀕
xi − x

hk

󰀖󰀘
.

The inequality between the operator norm and the ℓ1-norm of a matrix yields that

󰀂Bk,λ(x)−E [Bk,λ(x)]󰀂op ≤
S󰁛

s,s′=1

󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s,s′)
i (x)

󰀏󰀏󰀏󰀏󰀏 , (48)

so that

E
󰁫
󰀂Bk,λ(x)−E [Bk,λ(x)]󰀂4op

󰁬
≤ S6

S󰁛

s,s′=1

E

󰀵

󰀷
󰀏󰀏󰀏󰀏󰀏k

−1h−d
k

k󰁛

i=1

F
(s,s′)
i (x)

󰀏󰀏󰀏󰀏󰀏

4
󰀶

󰀸

= 4S6
S󰁛

s,s′=1

󰁝 ∞

0
t3P

󰀥󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s,s′)
i (x)

󰀏󰀏󰀏󰀏󰀏 > t

󰀦
dt.

To control the probabilities on the right hand side, we use Bernstein’s inequality that we
recall here for convenience.

Lemma 19 Let {ζi}ki=1 be a collection of real valued independent random variables with
zero means such that, for any i = 1, . . . , k and any q ∈ {2, 3, . . . }, the Bernstein condition
E[|ζi|q] ≤ (q!/2)νHq−2 is satisfied with some ν > 0, H > 0. Then, for any t > 0,

P

󰀣󰀏󰀏󰀏󰀏󰀏
1

k

k󰁛

i=1

ζi

󰀏󰀏󰀏󰀏󰀏 > t

󰀤
≤ 2 exp

󰀕
− t2k

2(ν +Ht)

󰀖
.

We apply Lemma 19 with ζi = h−d
k F

(s,s′)
i (x). Let q ≥ 2. We have F

(s,s′)
i (x) = X−E[X]

with X = G(ss′)(xi−x
hk

)K(xi−x
hk

). Using the inequalities E[|X − E[X]|q] ≤ 2q−1(E[|X|q] +
|E[X]|q) ≤ 2qE[|X|q] we obtain that, for any x ∈ Θ,

E[|F (s,s′)
i (x)|q] ≤ 2qE

󰀗󰀏󰀏󰀏󰀏G
(ss′)

󰀕
xi − x

hk

󰀖
K

󰀕
xi − x

hk

󰀖󰀏󰀏󰀏󰀏
q󰀘

= 2q
󰁝 󰀏󰀏󰀏󰀏G

(ss′)

󰀕
w − x

hk

󰀖
K

󰀕
w − x

hk

󰀖󰀏󰀏󰀏󰀏
q

p(w) dw

≤ pmax2
qhdk

󰁝 󰀏󰀏󰀏G(ss′)(u)K(u)
󰀏󰀏󰀏
q
du ≤ A0A

q
1h

d
k,

where we have used the fact that the functions G(ss′) and K are uniformly bounded on the
support of K. Here, the constants A0, A1 do not depend on x, s, s′. Thus, for any i = 1, . . . , k
and any q ∈ {2, 3, . . . },

E[|ζi|q] ≤ νHq−2 with ν = A0A
2
1h

−d
k , H = A1h

−d
k .
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Applying Lemma 19 with these values of ν and H we get that there exists a constant A2 > 0
such that, for any t > 0 and any x ∈ Θ,

P

󰀥󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s,s′)
i (x)

󰀏󰀏󰀏󰀏󰀏 ≥ t

󰀦
≤ 2 exp

󰀕
−

t2khdk
A2(1 + t)

󰀖
. (49)

Consequently,

E
󰁫
󰀂Bk,λ(x)−E [Bk,λ(x)]󰀂4op

󰁬
≤ 8S8

󰁝 ∞

0
t3 exp

󰀕
−

t2khdk
A2(1 + t)

󰀖
dt

≤ A

󰀕󰁝 1

0
t3 exp

󰀕
−
t2khdk
2A2

󰀖
dt+

󰁝 ∞

1
t3 exp

󰀕
−
tkhdk
2A2

󰀖
dt

󰀖

≤ A3h
−2d
k k−2,

where we have used the assumption khdk ≥ 1 and A3 is a constant that does not depend on
x. This proves (45).

To prove (46), note that Lemma 17(ii) implies the inequality supx∈Θ

󰀐󰀐󰀐(E [Bk(x)])
−1

󰀐󰀐󰀐
op

≤

λ−1
min. Thus, also

sup
x∈Θ

󰀐󰀐󰀐(E [Bk,λ(x)])
−1

󰀐󰀐󰀐
op

≤ λ−1
min, (50)

while supx∈Θ
󰀐󰀐Bk,λ(x)

−1
󰀐󰀐
op

≤ λ−1. Therefore,

E
󰁫󰀐󰀐Bk,λ(x)

−1
󰀐󰀐4
op

󰁬
≤ 8E

󰁫󰀐󰀐Bk,λ(x)
−1 − (E[Bk,λ(x)])

−1
󰀐󰀐4
op

󰁬
+

8

λ4
min

≤ 8λ−4
minλ

−4E
󰁫
󰀂Bk,λ(x)−E [Bk,λ(x)]󰀂4op

󰁬
+ 8λ−4

min (51)

≤ 8A3
λ4λ4

min

h−2d
k k−2 +

8

λ4
min

,

so that for khdk ≥ λ−2 we obtain (46).

Finally, we prove (47). Using (50) and then the Cauchy-Schwarz inequality we obtain

E

󰀗󰀐󰀐󰀐Bk,λ(x)
−1 − (E[Bk,λ(x)])

−1
󰀐󰀐󰀐
2

op

󰀘

≤ E

󰀗 󰀐󰀐Bk,λ(x)
−1

󰀐󰀐2
op

󰀐󰀐(E[Bk,λ(x)])
−1

󰀐󰀐2
op

󰀂Bk,λ(x)−E[Bk,λ(x)]󰀂2op

󰀘

≤ λ−2
min

󰀓
E
󰁫󰀐󰀐Bk,λ(x)

−1
󰀐󰀐4
op

󰁬
E
󰁫
󰀂Bk,λ(x)−E[Bk,λ(x)]󰀂4op

󰁬󰀔 1
2
,

(52)

so that (47) follows by applying (45) and (46).
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Lemma 20 Let k ∈ [n], and hk =
󰀓
log(k+1)

k

󰀔 1
2β+d

. Let Assumptions 1 and 4 hold. Then

there exists a constant A > 0 such that

E

󰀗
sup
x∈Θ

󰀂Bk,λ(x)−E [Bk,λ(x)]󰀂4op

󰀘
≤ Ah−2d

k k−2 log(k + 1)2. (53)

Furthermore, for khdk ≥ λ−2 log(k + 1) we have

E

󰀗
sup
x∈Θ

󰀐󰀐󰀐Bk,λ(x)
−1

󰀐󰀐󰀐
4

op

󰀘
≤ Aλ−4

min. (54)

and

E

󰀗
sup
x∈Θ

󰀐󰀐Bk,λ(x)
−1 − (E [Bk,λ(x)])

−1
󰀐󰀐2
op

󰀘
≤ Ah−d

k k−1 log(k + 1). (55)

Proof Notice that, due to Assumption 1 and the choice of hk, the functions x 󰀁→ G(ss′)(xi−x
hk

)K(xi−x
hk

)

are supported on the compact Θ′ and are Lipschitz continuous with Lipschitz constant
A1h

−1
k , where the A1 > 0 is independent of xi’s and also on s, s′ (by taking the maximum

over s, s′ ∈ [S]). It follows that there exists a constant A such that for all x,y ∈ Θ and all
s, s′ ∈ [S] we have

󰀏󰀏󰀏󰀏󰀏

k󰁛

i=1

(F
(s,s′)
i (x)− F

(s,s′)
i (y))

󰀏󰀏󰀏󰀏󰀏 ≤ Akh−1
k 󰀂x− y󰀂 . (56)

Set for brevity B̃(x) = Bk,λ(x)−E [Bk,λ(x)]. Using (48) we obtain

E

󰀗
sup
x∈Θ

󰀐󰀐󰀐B̃(x)
󰀐󰀐󰀐
4

op

󰀘
≤ S6

S󰁛

s,s′=1

E

󰀵

󰀷sup
x∈Θ

󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s,s′)
i (x)

󰀏󰀏󰀏󰀏󰀏

4
󰀶

󰀸 .

For 󰂃 > 0, let N be the minimal 󰂃-net of Θ with respect to the Euclidean norm. Using (56)
we get

E

󰀗
sup
x∈Θ

󰀐󰀐󰀐B̃(x)
󰀐󰀐󰀐
4

op

󰀘
≤ 8S6

S󰁛

s,s′=1

E

󰀵

󰀷 sup
x∈N

󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s,s′)
i (x)

󰀏󰀏󰀏󰀏󰀏

4
󰀶

󰀸

+
8S6

k4h4dk

S󰁛

s,s′=1

E

󰀵

󰀷 sup
x,y:󰀂x−y󰀂≤󰂃

󰀏󰀏󰀏󰀏󰀏

k󰁛

i=1

󰀓
F

(s,s′)
i (x)− F

(s,s′)
i (y)

󰀔󰀏󰀏󰀏󰀏󰀏

4
󰀶

󰀸

≤ 8S6
S󰁛

s,s′=1

E

󰀵

󰀷 sup
x∈N

󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s,s′)
i (x)

󰀏󰀏󰀏󰀏󰀏

4
󰀶

󰀸+ Ah−4d−4
k 󰂃4.

(57)
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We now provide an upper bound for the last sum in (57). Denote by N (Θ, 󰂃) the cardinality

of N . Using a standard bound N (Θ, 󰂃) ≤
󰀓
diam(Θ)

󰂃 + 1
󰀔d

we find that, for any t > 0,

P

󰀥
sup
x∈N

󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s,s′)
i (x)

󰀏󰀏󰀏󰀏󰀏 ≥ t

󰀦
≤ N (Θ, 󰂃) sup

x∈N
P

󰀥󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s,s′)
i (x)

󰀏󰀏󰀏󰀏󰀏 ≥ t

󰀦

≤
󰀕
diam(Θ)

󰂃
+ 1

󰀖d

sup
x∈N

P

󰀥󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s,s′)
i (x)

󰀏󰀏󰀏󰀏󰀏 ≥ t

󰀦
.

Combining the last inequality with (49) we get that, for any t > 0,

P

󰀥
sup
x∈N

󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s,s′)
i (x)

󰀏󰀏󰀏󰀏󰀏 ≥ t

󰀦
≤ 2 exp

󰀕
−

t2khdk
A(1 + t)

+ d log

󰀕
diam(Θ)

󰂃
+ 1

󰀖󰀖
.

Set 󰂃 = diam(Θ)h
d
2
+1

k k−
1
2 . Then, for some constant A3 > 0,

P

󰀥
sup
x∈N

󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s,s′)
i (x)

󰀏󰀏󰀏󰀏󰀏 ≥ t

󰀦
≤ 2 exp

󰀕
−

t2khdk
A3(1 + t)

+ A3 log (k + 1)

󰀖
. (58)

Let a = A3(2k
−1h−d

k log(k + 1))
1
2 , where A3 is the constant from (58). Noticing that khdk ≥

log(k + 1) and using (58) we obtain

S󰁛

s,s′=1

E

󰀵

󰀷 sup
x∈N

󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s,s′)
i (x)

󰀏󰀏󰀏󰀏󰀏

4
󰀶

󰀸 ≤ S2a4 + 4S2

󰁝 A3
√
2

a
t3 exp

󰀕
−
t2khdk
A

󰀖
dt

+ 4S2

󰁝 ∞

A3
√
2
t3 exp

󰀕
−
tkhdk
A

󰀖
dt

≤ Ak−2h−2d
k log(k + 1)2.

(59)

Using (57), (59) and the fact that 󰂃 = diam(Θ)h
d
2
+1

k k−
1
2 we get (53).

To prove inequality (54) we argue analogously to (51) to obtain

E

󰀗
sup
x∈Θ

󰀐󰀐Bk,λ(x)
−1

󰀐󰀐4
op

󰀘
≤ 8λ−4

minλ
−4E

󰀗
sup
x∈Θ

󰀂Bk,λ(x)−E [Bk,λ(x)]󰀂4op

󰀘
+ 8λ−4

min

≤ Aλ−4
minλ

−4k−2h−2d
k log(k + 1)2 + 8λ−4

min,

where the last inequality follows from (59). Since, by assumption, khdk ≥ λ−2 log(k+1) the
bound (54) follows.

Finally, the bound (55) is derived from (53) and (54) by using the same argument as in
(52) with the only difference that 󰀂·󰀂op should be replaced by supx∈Θ 󰀂·󰀂op.
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Lemma 21 Let Assumptions 1, 2 and 4 hold. Then, for k ∈ [n] and hk =
󰀓
log(k+1)

k

󰀔 1
2β+d

we have

E

󰀗
sup
x∈Θ

󰀂Gk(x)󰀂4
󰀘
≤ Ak−2h−2d

k log(k + 1)2 .

Proof Recall thatGk(x) = k−1h−d
k

󰁓k
i=1Ri,k(x)ξi and set F

(s)
i (x) =

󰀓
U

󰀓
xi−x
hk

󰀔
K

󰀓
xi−x
hk

󰀔󰀔

s
ξi,

for i ∈ [k], where
󰀓
U

󰀓
xi−x
hk

󰀔
K

󰀓
xi−x
hk

󰀔󰀔

s
is the s-th coordinate of the vector Ri,k(x) =

U
󰀓
xi−x
hk

󰀔
K

󰀓
xi−x
hk

󰀔
, for s ∈ [S]. Note that

󰀂Gk(x)󰀂 ≤
S󰁛

s=1

󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s)
i (x)

󰀏󰀏󰀏󰀏󰀏 ,

and therefore

E

󰀗
sup
x∈Θ

󰀂Gk(x)󰀂4
󰀘
≤ S3

S󰁛

s=1

E

󰀵

󰀷sup
x∈Θ

󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s)
i (x)

󰀏󰀏󰀏󰀏󰀏

4
󰀶

󰀸 . (60)

Next, arguing as in the proof of Lemma 20 we deduce that, for any x,y ∈ Θ,

󰀏󰀏󰀏󰀏󰀏

k󰁛

i=1

󰀓
F

(s)
i (x)− F

(s)
i (y)

󰀔󰀏󰀏󰀏󰀏󰀏 ≤ Akh−1
k 󰀂x− y󰀂 . (61)

Given (60) and (61), the rest of the proof is quite analogous to the proof of Lemma 20.
Thus, as in (56) we get

E

󰀗
sup
x∈Θ

󰀂Gk(x)󰀂4
󰀘
≤ 8S3

S󰁛

s=1

E

󰀵

󰀷 sup
x∈N

󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s)
i (x)

󰀏󰀏󰀏󰀏󰀏

4
󰀶

󰀸+ Ah−4d−4
k 󰂃4, (62)

and, for any t > 0,

P

󰀥
sup
x∈N

󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s)
i (x)

󰀏󰀏󰀏󰀏󰀏 ≥ t

󰀦
≤

󰀕
diam(Θ)

󰂃
+ 1

󰀖d

sup
x∈N

P

󰀥󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s)
i (x)

󰀏󰀏󰀏󰀏󰀏 ≥ t

󰀦
.

To control the probability on the right hand side we apply Lemma 19 with ζi = h−d
k F

(s)
i (x).

For any q ≥ 2, and x ∈ N we have

E

󰀗󰀏󰀏󰀏󰀏

󰀕
U

󰀕
xi − x

hk

󰀖
K

󰀕
xi − x

hk

󰀖󰀖

s

󰀏󰀏󰀏󰀏
q󰀘

= hdk

󰁝
|(U(u)K(u))s|

q p(x+ hku) du

≤ pmaxh
d
k

󰁝
|(U(u)K(u))s|

q du ≤ A0A
q
1h

d
k,

(63)

where we have used the fact that the functions (U(u)K(u))s are uniformly bounded on
the support of K for all s ∈ [S]. Here, the constants A0, A1 do not depend on x, s. Since
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ξi is a sub-exponential random variable we have E[|ξi|q] ≤ (A2q)
q for any q ≥ 1, where the

constant A2 > 0 does not depend on q. Using this fact and (63) we obtain

E
󰁫󰀏󰀏󰀏F (s)

i (x)
󰀏󰀏󰀏
q󰁬

≤ A0(A3q)
qhdk. (64)

It follows from (64) that, for any q ∈ {2, 3, . . . },

E[|ζi|q] ≤ A0(A3q)
qh

−(q−1)d
k ≤ (q!/2)νHq−2,

where ν = A4h
−d
k , H = A5h

−d
k with some constants A4, A5 that do not depend on q. Applying

Lemma 19 we get that, for any t > 0 and any fixed x,

P

󰀥󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s)
i (x)

󰀏󰀏󰀏󰀏󰀏 ≥ t

󰀦
≤ 2 exp

󰀕
−

t2khdk
A(1 + t)

󰀖
,

so that

P

󰀥
sup
x∈N

󰀏󰀏󰀏󰀏󰀏k
−1h−d

k

k󰁛

i=1

F
(s)
i (x)

󰀏󰀏󰀏󰀏󰀏 ≥ t

󰀦
≤ 2 exp

󰀕
−

t2khdk
A(1 + t)

+ d log

󰀕
diam(Θ)

󰂃
+ 1

󰀖󰀖
.

Note that this inequality is of the same form as (58). The rest of the proof repeats the
argument after (58) in the proof of Lemma 20 and therefore we omit it.

Lemma 22 Let k ∈ [n], khdk ≥ 1, and let Assumptions 1, 3(iv) and 4 hold. Then

sup
x∈Θ

E
󰁫
󰀂Ck(x)−E [Ck(x)]󰀂4

󰁬
≤ Ah−2d

k k−2 (65)

and

sup
x∈Θ

E
󰁫
󰀂Ck(x))󰀂4

󰁬
≤ A. (66)

Proof Recall that Ck(x) = k−1h−d
k

󰁓k
i=1U

󰀓
xi−x
hk

󰀔
K

󰀓
xi−x
hk

󰀔
f(xi). Assumption 3(iv)

implies that f(xi)’s are uniformly bounded. Given this fact, the proof of (65) is derived
following the same lines as in Lemma 18 and it is therefore omitted. The bound (66) is
obtained by plugging (20) and (65) in the inequality

E
󰁫
󰀂Ck(x)󰀂4

󰁬
≤ 8

󰀓
E
󰁫
󰀂Ck(x)−E [Ck(x)]󰀂4

󰁬
+ 󰀂E[Ck(x)]󰀂4

󰀔
.

Lemma 23 Let k ∈ [n], and hk =
󰀓
log(k+1)

k

󰀔 1
2β+d

. Let Assumptions 1, 3(iv) and 4 hold.

Then

E

󰀗
sup
x∈Θ

󰀂Ck(x)−E [Ck(x)]󰀂4
󰀘
≤ Ah−2d

k k−2 log(k + 1)2.
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The proof of this lemma is omitted since, for the same reason as in Lemma 22, it is analogous
to the proof of Lemma 20.

Lemma 24 Let k ∈ [n], and hk =
󰀓
log(k+1)

k

󰀔 1
2β+d

. Let Assumptions 1, 3(iv) and 4 hold. If

khdk ≥ λ−2 log(k + 1), then

sup
x∈Θ

E

󰀗󰀐󰀐󰀐Bk,λ(x)
−1 − (E[Bk,λ(x)])

−1
󰀐󰀐󰀐
op

󰀂Ck(x)−E [Ck(x)]󰀂
󰀘
≤ Ah−d

k k−1 .

This lemma follows immediately from the Cauchy-Schwarz inequality, (47) and (65).
Finally, we recall a lemma from Akhavan et al. (2020) used in the proof of Theorem 5.

Lemma 25 (Akhavan et al. (2020) Lemma D.1) Let {bk} be a sequence of real num-
bers such that for all integers k ≥ 2,

bk+1 ≤
󰀕
1− 1

k

󰀖
bk +

N󰁛

i=1

ai
kpi+1

,

where 0 < pi < 1 and ai ≥ 0 for 1 ≤ i ≤ N . Then for k ≥ 2 we have

bk ≤ 2b2
k

+

N󰁛

i=1

ai
(1− pi)kpi

.
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