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Abstract

We consider the constrained sampling problem where the goal is to sample from a target
distribution π(x) ∝ e−f(x) when x is constrained to lie on a convex body C ⊂ Rd. Moti-
vated by penalty methods from continuous optimization, we propose and study penalized
Langevin Dynamics (PLD) and penalized underdamped Langevin Monte Carlo (PULMC)
methods for constrained sampling that convert the constrained sampling problem into an
unconstrained sampling problem by introducing a penalty function for constraint viola-
tions. When f is smooth and gradients of f are available, we show Õ(d/ε10) iteration
complexity for PLD to sample the target up to an ε-error where the error is measured in
terms of the total variation distance and Õ(·) hides some logarithmic factors. For PULMC,
we improve this result to Õ(

√
d/ε7) when the Hessian of f is Lipschitz and the bound-

ary of C is sufficiently smooth. To our knowledge, these are the first convergence rate
results for underdamped Langevin Monte Carlo methods in the constrained sampling set-
ting that can handle non-convex choices of f and can provide guarantees with the best
dimension dependency among existing methods for constrained sampling when the gra-
dients are deterministically available. We then consider the setting where only unbiased
stochastic estimates of the gradients of f are available, motivated by applications to large-
scale Bayesian learning problems. We propose PSGLD and PSGULMC methods that are
variants of PLD and PULMC that can handle stochastic gradients and that are scaleable
to large datasets without requiring Metropolis-Hasting correction steps. For PSGLD and
PSGULMC, when f is strongly convex and smooth, we obtain an iteration complexity of
Õ(d/ε18) and Õ(d

√
d/ε39) respectively in the 2-Wasserstein distance. For the more general

case, when f is smooth and f can be non-convex, we also provide finite-time performance
bounds and iteration complexity results. Finally, we illustrate the performance of our al-
gorithms on Bayesian LASSO regression and Bayesian constrained deep learning problems.
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1. Introduction

We consider the problem of sampling a distribution π on a convex constrained domain
C ( Rd with probability density function

π(x) ∝ exp(−f(x)), x ∈ C, (1)

for a function f : Rd → R. This is a fundamental problem arising in many applications,
including Bayesian statistical inference (Gelman et al., 1995), Bayesian formulations of
inverse problems (Stuart, 2010), as well as Bayesian classification and regression tasks in
machine learning (Andrieu et al., 2003; Teh et al., 2016; Gürbüzbalaban et al., 2021).

In the absence of constraints, i.e., when C = Rd in (1), many algorithms in the literature
are applicable (Geyer, 1992; Brooks et al., 2011) including the class of Langevin Monte Carlo
algorithms. One popular algorithm for this setting is the unadjusted Langevin algorithm:

xk+1 = xk − η∇f(xk) +
√

2ηξk+1, (2)

where ξk are independent and identically distributed (i.i.d.) N (0, Id) Gaussian vectors in
Rd. The classical Langevin algorithm (2) is the Euler discretization of the overdamped (or
first-order) Langevin diffusion:

dX(t) = −∇f(X(t))dt+
√

2dWt, (3)

where Wt is a standard d-dimensional Brownian motion that starts at zero at time zero.
Under some mild assumptions on f , the stochastic differential equation (SDE) (3) admits
a unique stationary distribution with the density π(x) ∝ e−f(x), known as the Gibbs dis-
tribution (Chiang et al., 1987; Holley et al., 1989). In computing practice, this diffusion
is simulated by considering its discretization as in (2) whose stationary distribution may
contain a bias that a Metropolis-Hasting step can correct. However, for many applications,
including those in data science and machine learning, employing this correction step can
be computationally expensive (Bardenet et al., 2017; Teh et al., 2016); therefore, our focus
will be on unadjusted algorithms that avoid it.

Unadjusted Langevin algorithms have a long history and admit various asymptotic con-
vergence guarantees (Talay and Tubaro, 1990; Mattingly et al., 2002; Gelfand and Mitter,
1991); however non-asymptotic performance bounds for them are relatively more recent
(Dalalyan, 2017a; Durmus and Moulines, 2017, 2019; Durmus et al., 2018; Cheng and
Bartlett, 2018). The unadjusted Langevin algorithm (2) assumes availability of the gra-
dient ∇f . On the other hand, in many settings in machine learning, computing the full
gradient ∇f is either infeasible or impractical. For example, in Bayesian regression or
classification problems, f can have a finite-sum form as the sum of many component func-
tions, i.e., f(x) =

∑n
i=1 fi(x) where fi(x) represents the loss of a predictive model with

parameters x for the i-th data point and the number of data points n can be large (see,
e.g., Gürbüzbalaban et al. (2021); Xu et al. (2018)). In such settings, algorithms that rely
on stochastic gradients, i.e., unbiased stochastic estimates of the gradient obtained by a
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randomized sampling of the data points, is often more efficient (Bottou, 2010). This fact
motivated the development of Langevin algorithms that can support stochastic gradients.
In particular, if one replaces the full gradient ∇f in (2) by a stochastic gradient, the re-
sulting algorithm is known as the stochastic gradient Langevin dynamics (SGLD) (see, e.g.,
Welling and Teh (2011); Chen et al. (2015)).

Unadjusted underdamped Langevin Monte Carlo (ULMC) algorithms based on an al-
ternative diffusion called underdamped (or second-order) Langevin diffusion have also been
proposed; see e.g. Dalalyan and Riou-Durand (2020); Ma et al. (2021). Their versions
that support stochastic gradients are also studied (see e.g. Chen et al. (2014); Zou and Gu
(2021); Gao et al. (2022)). Although ULMC algorithms can often be faster than unadjusted
(overdamped) Langevin algorithms on many practical problems (Chen et al., 2014), this is
rigorously proven for particular choices of f (Chen et al., 2015; Gao et al., 2022; Mangoubi
and Smith, 2021; Chen and Vempala, 2022) rather than general non-convex choices of f
and the convergence of ULMC algorithms remains relatively less studied.

In this paper, we focus on the constrained setting when C is a convex body, i.e., when
C is a compact convex set with a non-empty interior, and we consider both settings when f
can be strongly convex or non-convex. We also consider both deterministic and stochastic
gradients. Among the existing approaches that are the most closely related to our setting,
Bubeck et al. (2015, 2018) studied the projected Langevin Monte Carlo algorithm that
projects the iterates back to the constraint set after applying the Langevin step (2) where
it is assumed that f is β-smooth, i.e. ‖∇f(x)−∇f(y)‖ ≤ β‖x−y‖ for any x, y ∈ C and the
norm of the gradient of f is bounded, i.e. ‖∇f(x)‖ ≤ L. It is shown in Bubeck et al. (2018)
that Õ(d12/ε12) iterations are sufficient for having ε-error in the total variation (TV) metric
with respect to the target distribution when the gradients are exact where the notation
Õ(·) hides some logarithmic factors. Lamperski (2021) considers the projected stochastic
gradient Langevin dynamics (P-SGLD) in the setting of non-convex smooth Lipschitz f on a
convex body where the gradient noise is assumed to have finite variance with a uniform sub-
Gaussian structure. The author shows that Õ

(
d4/ε4

)
iterations suffice in the 1-Wasserstein

metric. More recently, Zheng and Lamperski (2022) study P-SGLD for constrained sampling
for a non-convex potential f that is strongly convex outside a radius of R where data
variables are assumed to be L-mixing. They obtain an improved complexity of Õ

(
d2/ε2

)
for P-SGLD in the 1-Wasserstein metric with polyhedral constraints that are not necessarily
bounded. Constrained sampling for convex f and strongly-convex f is also studied in Brosse
et al. (2017), where a proximal Langevin Monte Carlo is proposed and a complexity of
Õ
(
d5/ε6

)
is obtained. Salim and Richtárik (2020) further studies the proximal stochastic

gradient Langevin algorithm from a primal-dual perspective. For constrained sampling
when f is strongly convex, and the constraint set is convex, the proximal step corresponds to
a projection step, and they obtain Õ(d/ε2) complexity for the proximal stochastic gradient
Langevin algorithm in terms of the 2-Wasserstein distance.

Mirror descent-based Langevin algorithms (see e.g. Hsieh et al. (2018); Chewi et al.
(2020); Zhang et al. (2020); Li et al. (2022a); Ahn and Chewi (2021)) can also be used for
constrained sampling. Mirrored Langevin dynamics was proposed in Hsieh et al. (2018),
inspired by the classical mirror descent in optimization. For any target distribution with
strongly-log-concave density (which corresponds to f being strongly convex), Hsieh et al.
(2018) showed that their first-order algorithm requires Õ(ε−2d) iterations for ε error with
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exact gradients and Õ(ε−2d2) iterations for stochastic gradients. Zhang et al. (2020) estab-
lishes for the first time a non-asymptotic upper bound on the sampling error of the resulting
Hessian Riemannian Langevin Monte Carlo algorithm that is closely related to the mirror-
descent scheme. This bound is measured according to a Wasserstein distance induced by
a Riemannian metric capturing the Hessian structure. In contrast to Hsieh et al. (2018),
Zhang et al. (2020) studies a different scheme in which an appropriate diffusion term is used
that entails a Gaussian noise in the discrete scheme with iteration-dependent covariances
that account for the Hessian Riemannian structure instead of a standard Gaussian noise
adopted in Hsieh et al. (2018). Moreover Zhang et al. (2020) relaxes the strong-convexity
assumptions to relative versions. Motivated by Zhang et al. (2020), Chewi et al. (2020)
propose a class of diffusions called Newton-Langevin diffusions and prove that they con-
verge exponentially fast with a rate that has no dependence on the condition number of the
target density in continuous time. They give an application of this result to the problem
of sampling from the uniform distribution on a convex body using a strategy inspired by
interior-point methods. In Jiang (2021), the author relaxes the strongly-log-concave den-
sity assumption in mirror-descent Langevin dynamics and assumes that the density function
satisfies the mirror log-Sobolev inequality. Further improvements Zhang et al. (2020) have
been achieved in Ahn and Chewi (2021); Li et al. (2022a). The analysis of Zhang et al.
(2020) gives an error bound that contains a bias that does not vanish even if the stepsize
goes to zero. The solution to this problem was first attempted by Ahn and Chewi (2021)
who proposed an alternative discretization which achieves a vanishing bias, but requires
an exact simulation of the Brownian motion with changing covariance. Finally, Li et al.
(2022a) proved this bias is an artifact of analysis by building upon the mean-square analysis
in Li et al. (2019, 2022b).

1.1 Our Approach and Contributions

Recent years have witnessed techniques and concepts from continuous optimization being
used for analyzing and developing new Langevin algorithms (Dalalyan, 2017b; Balasubrama-
nian et al., 2022; Chen et al., 2022; Gürbüzbalaban et al., 2021). In this paper, we develop
Langevin algorithms for constrained sampling, leveraging penalty functions from contin-
uous optimization. More specifically, penalty methods are frequently used in continuous
optimization (Nocedal and Wright, 2006), where one converts the constrained optimization
problem of minimizing an objective f(x) subject to x ∈ C to an unconstrained optimization
problem of minimizing fδ(x) := f(x) + 1

δS(x) on Rd, where δ > 0 is called the penalty pa-
rameter, and the function S : Rd → [0,∞) is called the penalty function with the property
that S(x) = 0 for x ∈ C and S(x) increases as x gets away from the constraint set C. For
δ > 0 small enough, it can be seen that the global minimum of fδ will approximate the
global minimum of f on C. Motivated by this technique, our main approach is to sample
from a penalized target distribution in an unconstrained fashion with the modified target
density:

πδ(x) ∝ exp

(
−
(
f(x) +

1

δ
S(x)

))
, x ∈ Rd,

for suitably chosen small enough δ > 0. Here, a key challenge is to control the error between
πδ and π efficiently, leveraging the convex geometry of the constraint set and the proper-
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ties of the penalty function. We then use the unconstrained SGLD or stochastic gradient
underdamped Langevin Monte Carlo (SGULMC) algorithm to sample from the modified
target distribution and call the resulting algorithms penalized SGLD (PSGLD) and penal-
ized SGULMC (PSGULMC). If the gradients are deterministic, then we call the algorithms
penalized Langevin dynamics (PLD) and penalized underdamped Langevin Monte Carlo
(PULMC). Our detailed contributions are as follows:

• When f is smooth, meaning that its gradient is Lipschitz, we show Õ(d/ε10) itera-
tion complexity in the TV distance for PLD. For PULMC, we improve this result to
Õ(
√
d/ε7) when the Hessian of f is Lipschitz and the boundary of C is sufficiently

smooth. To our knowledge, these are the first convergence rate results for under-
damped MC methods in the constrained sampling setting that can handle non-convex
choices of f and provide guarantees with the best dimension dependency among ex-
isting methods for constrained sampling when subject to deterministic gradients. To
achieve these results, we develop a novel analysis and make a series of technical con-
tributions. We first bound the Kullback-Leibler (KL) divergence between πδ and π
with a careful technical analysis and then apply weighted Csiszár-Kullback-Pinsker
inequality to control the 2-Wasserstein distance between πδ and π. To obtain the con-
vergence rate to πδ, we first regularize the convex domain C so that the regularized
domain Cα is α-strongly convex (a notation which will be defined rigorously in (13)
and in the proof of Lemma D.1) and then show that f+Sα/δ is strongly convex outside
a compact domain, where Sα is the penalty function we construct for the regularized
domain that has quadratic growth properties. Moreover, we quantify the differences
between Cα and C, and between the regularized target παδ (defined on the regularized
domain Cα) and πδ and show their differences are small for the choice of small values
of α. Finally, we show that f + Sα/δ is uniformly close to a function that is strongly
convex everywhere and apply the convergence result for Langevin dynamics in the
unconstrained setting to obtain our main result for PLD. The analysis for PULMC is
similar but requires an additional technical result showing Hessian Lipschitzness.

• We then consider the setting of smooth f that can be non-convex subject to stochastic
gradients. For the unconstrained sampling of πδ, when the gradients of f are estimated
from a randomly selected subset of data; the variance of the noise is not uniformly
bounded over x but instead can grow linearly in ‖x‖2 (see e.g. Jain et al. (2018);
Assran and Rabbat (2020)). Therefore, unlike the existing works for constrained
sampling, we do not assume the variance of the stochastic gradient to be uniformly
bounded but allow the gradient noise variance to grow linearly. For PSGLD and
PSGULMC, we show an iteration complexity that scales as Õ(d17/λ9

∗) and Õ(d7/µ3
∗)

respectively in dimension d, where λ∗ and µ∗ are constants that relate to overdamped
and underdamped Langevin SDEs and will be defined later in (29) and (36). These
constants can scale exponentially in the dimension in the worst case (due to hardness of
the non-convex setting) but can also be independent of the dimension (see Section 4 in
Raginsky et al. (2017)). Our iteration complexity bounds for PSGLD and PSGULMC
also scale polynomially in ε (see Table 1 for the details).1 To our best knowledge, these

1. In Table 1, we used various metrics TV, W1, W2 and KL to measure the complexity and it is worth
noting that they may scale differently. In general, it is always true that W1 ≤ W2 and TV ≤ O(

√
KL)
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are the first results for ULMC algorithms in the constrained setting for general f that
can be non-convex. Compared to Lamperski (2021), our dimension dependency is
worse, but our noise assumption is more general, and we do not require sub-Gaussian
noise. To achieve these results, in addition to bounding the difference between πδ
and π, we show that f + S/δ satisfies a dissipativity condition, which is the key
technical result, that allows us to apply the convergence results in the literature for
unconstrained Langevin algorithms with stochastic gradients where the target is non-
convex and satisfies a dissipativity condition. Here, we also note that the standard
penalty function we choose involves computing the distance of a point to the boundary
of the constraint set. This is also the case for many algorithms in the literature, such as
projected SGLD methods. However, often the set C is defined with convex constraints,
i.e. C := {x : hi(x) ≤ 0, i = 1, 2, . . . ,m} where hi : Rd → R are convex and m is the
number of constraints. In this case, we discuss in Section 2.4 that the projections can
be avoided when hi(x) satisfies some growth conditions.

• When f is strongly convex and smooth, we obtain iteration complexity of Õ(d/ε18)
and Õ(d

√
d/ε39) for PSGLD and PSGULMC respectively. To achieve these results,

in addition to bounding the difference between πδ and π, we also extend the existing
result in the unconstrained setting for ULMC with a deterministic gradient to allow
stochastic gradient for strongly convex and smooth f , which is of independent interest.

The summary of our main results and their comparison with respect to most closely-related
approaches are given in Table 1, where in our results it is assumed that the constraint set
is compact and convex. We also note that when dealing with target densities where f is
smooth but non-convex, the literature typically assumes growth conditions towards infinity
such as dissipativity or isoperimetric inequalities (Raginsky et al., 2017; Gao et al., 2022;
Jiang, 2021), but in our results we do not require such a condition. This is due to the
fact that the constraint set is taken to be a convex body which is a compact set where the
growth of f can be controlled.

1.2 Related Work

Mirror-descent Langevin algorithms can be viewed as a special case of Riemannian Langevin
that can be used to sample from some subset D ⊆ Rd by endowing D with a Riemannian
structure (Girolami and Calderhead, 2011; Patterson and Teh, 2013). Geodesic Langevin
algorithm is proposed in Wang et al. (2020) that can sample a distribution supported on a
manifold M . They showed that geodesic Langevin algorithm can sample a target distribu-
tion on a d-dimensional compact manifold M without boundary that satisfies a log-Sobolev
inequality with parameter α with ε accuracy in KL divergence after O( d

α2ε
log(1/ε)) iter-

ates. More recently, Gatmiry and Vempala (2022) showed that the Riemannian Langevin
algorithm converges to the target that satisfies a log-Sobolev inequality with parameter α

with accuracy ε in KL divergence after O(d
5/2

α2ε
log(1/ε)) iterates where d is the dimension

for general Hessian manifolds that are second-order self-concordant where the log-density is
gradient and Hessian Lipschitz. Very recently, Kook et al. (2022) used a Riemannian version

(Pinsker’s inequality). On the other hand, W2 ≤ O(
√

KL) (Otto and Villani Theorem) if a log-Sobolev
inequality is satisfied and more generally W2 ≤ O(

√
KL + (KL)1/4) (Bolley and Villani (2005)).
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Algorithms
Assump.
on f

Assump.
on C

Stoc.
grad.

Bdd. grad.

noise var.[5]
Conv.
meas.

Complexity

Projected LD
(Bubeck et al., 2018)

Convex,
Smooth,
Lipschitz

Convex
body

No N/A TV Õ
(
d12

ε12

)
Projected SGLD
(Lamperski, 2021)

Smooth,
Lipschitz

Convex
body

Yes Yes[6] W1 Õ
(
d4

ε4

)
Projected SGLD
(Zheng and Lamperski, 2022)

Str. cvx.
outside

a ball,[1]

Lipschitz

Polyhedral
with 0 in
interior

Yes Yes W1 Õ
(
d2

ε2

)
Proximal SGLD
(Salim and Richtárik, 2020)

Str. cvx. Convex[2] Yes Yes W2 Õ
(
d
ε2

)
Mirrored LD
(Hsieh et al., 2018)

Str. cvx.
Convex,
Bounded

No N/A W2 Õ
(
d
ε2

)
Mirrored SGLD
(Hsieh et al., 2018)

Str. cvx.
Convex,
Bounded

Yes Yes KL Õ
(
d2

ε2

)
MYULA
(Brosse et al., 2017)

Convex,
Smooth

Convex
body

No N/A TV Õ
(
d5

ε6

)
PLD
Prop. 2.11 in our paper

Smooth
Convex
body

No N/A TV Õ
(
d
ε10

)
PULMC
Prop. 2.15 in our paper

Smooth,
Hessian
Lipschitz

Convex
body ‡ No N/A TV Õ

(√
d
ε7

)
PSGLD
Prop. 2.21 in our paper

Str. cvx.,
Smooth

Convex
body

Yes No W2 Õ
(
d
ε18

)
PSGULMC
Prop. 2.22 in our paper

Str. cvx.,
Smooth

Convex
body

Yes No W2 Õ
(
d
√
d

ε39

)
PSGLD
Prop. 2.23 in our paper

Smooth
Convex
body

Yes No W2 Õ
(

d17

ε392λ9
∗

)
[3]

PSGULMC
Prop. 2.24 in our paper

Smooth
Convex
body

Yes No W2 Õ
(

d7

ε132µ3
∗

)
[4]

Table 1: Comparison of our methods and existing methods.
‡: C ⊆ Rd is a convex hypersurface of class C3 and supξ∈C ‖D2n(ξ)‖ is bounded, where n is the unit normal vector

of C. [1] “Str. cvx.” stands for “Strongly convex”. Also, in Zheng and Lamperski (2022), it is assumed that f is

µ-strongly convex outsize a Euclidean ball. [2] Salim and Richtárik (2020) consider the situation, where the target

distribution is π ∝ e−V (x) with V (x) := f(x) + G(x). Function G is assumed to be nonsmooth and convex, and

if G is the indicator function of C, then proximal SGLD can sample from the constrained distribution.[3] λ∗ is the

spectral gap of penalized overdamped Langevin SDE (10) which is defined in (29). [4] µ∗ is the convergence speed

of penalized underdamped Langevin SDE (17)-(18) defined in (36). [5] This column specifies whether the methods

assume that the gradient noise variance is uniformly bounded or not. [6] The gradient noise is assumed to have a

uniform sub-Gaussian property.
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of Hamiltonian Monte Carlo to sample ill-conditioned, non-smooth, constrained distribu-
tions that maintain sparsity where f is convex. Given a self-concordant barrier function
for the constraint set, they empirically demonstrated that they could achieve a mixing
rate independent of smoothness and condition numbers. Moreover, Chalkis et al. (2023)
proposed reflective Hamiltonian Monte Carlo based on reflected underdamped Langevin dif-
fusion to sample from a strongly-log-concave distribution restricted to a convex polytope.
They showed that from a warm start, it mixes in Õ(κd2`2 log(1/ε)) steps for a well-rounded
polytope, where κ is the condition number of f , and ` is an upper bound on the number of
reflections.

It is also worth mentioning that the idea of adding a penalty term to the Langevin
diffusion (3) has appeared in the recent literature but in a very different context (Karagulyan
and Dalalyan, 2020). By adding a penalty term to the Langevin diffusion with the log-
concave target, the resulting target becomes strongly log-concave, and as the penalty term
vanishes, Karagulyan and Dalalyan (2020) were able to obtain new convergence results for
sampling a log-concave target.

SGLD algorithms have been studied in the unconstrained setting in a number of papers
under various assumptions for f . Among these, we discuss closely related works. Dalalyan
and Karagulyan (2019) study the convergence of SGLD for strongly convex smooth f . In
a seminal work, Raginsky et al. (2017) show that when f is non-convex and smooth, un-
der a dissipativity condition, SGLD iterates track the overdamped Langevin SDE closely
and obtained finite-time performance bounds for SGLD. More recently, Xu et al. (2018)
improve the ε dependency of the upper bounds of Raginsky et al. (2017) in the mini-batch
setting and obtained several guarantees for the gradient Langevin dynamics and variance-
reduced SGLD algorithms. Zou et al. (2021) improve the existing convergence guarantees
of SGLD for unconstrained sampling, showing that O(d4ε−2) stochastic gradient evalua-
tions suffice for SGLD to achieve ε-sampling accuracy in terms of the TV distance for a
class of distributions that can be non-log-concave. They further show that provided an
additional Hessian Lipschitz condition on the log-density function, SGLD is guaranteed
to achieve ε-sampling error within O(d15/4ε−3/2) stochastic gradient evaluations. There
have also been more recent works on SGLD algorithms that allow dependent data streams
(Barkhagen et al., 2021; Chau et al., 2021) and require weaker assumptions on the target
density (Zhang et al., 2023). Rolland et al. (2020) study a new annealing stepsize sched-
ule for Unadjusted Langevin Algorithm (ULA) and they improve the convergence rate to

O(d3/T
2
3 ) for unconstrained log-concave distribution, where d is the dimension and T is the

number of iterates. They also apply the double-loop approach to the constrained sampling
algorithm Moreau-Yoshida ULA (MYULA) from Brosse et al. (2017). They improve the
convergence rate to O(d3.5/ε5) in the total variation distance for constrained log-concave
distributions. Lan and Shahbaba (2016) propose a spherical augmentation method to sam-
ple constrained probability distributions by mapping the constrained domain to a sphere in
the augmented space. Several other works have also studied SGULMC algorithms in the
unconstrained setting. Zou and Gu (2021) propose a general framework for proving the
convergence rate of Hamiltonian Monte Carlo with stochastic gradient estimators for sam-
pling from strongly log-concave and log-smooth target distributions in the unconstrained
setting. They show that the convergence to the target distribution in the 2-Wasserstein
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distance can be guaranteed as long as the stochastic gradient estimator is unbiased and its
variance is upper-bounded along the algorithm trajectory.

Lehec (2023) considers the projected Langevin algorithms and improves upon the work
of Bubeck et al. (2018). The author considers the constrained sampling case when the
potential f is a convex function that is Lipschitz on a convex constraint set C ⊆ Rd. In
this setting, Lehec (2023) obtains an upper bound on the discretization error between the
iterates xk of the projected Langevin algorithm and its corresponding points in the Langevin
diffusion based on the W2 distance (Lehec, 2023, Thm 1). Using this bound, under the
additional assumptions that the target π satisfies a log-Sobolev inequality with constant
CLS and the initial iterate x0 is a point in the support of π, a bound on the W2 distance
between the law of the iterates and the target is proven (Lehec, 2023, Thm 2). Assuming
further that the initial iterate x0 is such that σ0 := f(x0) − minx f(x) = O(1), the latter

result implies that W2(L(xk), π) ≤ ε after k = Θ∗
(
C3
LSd

2

ε4
max

(
d
r2
0
,
L2
f

d

))
iterations, where

L(xk) denotes the law of the k-th iterate xk, where Lf is the Lipschitz constant of f on
C, r0 is the distance of initial point x0 to the boundary of C, with the convention that Θ∗

hides universal constants and possible polylog(d) dependencies. Here, when f is strongly
convex and when the constraint set C is bounded, as discussed in Lehec (2023), we can take
CLS = 1

µ where µ is the strong convexity constant of f . Also, when the constraint set is a

ball of radius R and when the target measure π(x) ∝ e−f(x) is isotropic in the sense that its
covariance matrix is the identity matrix, then we can take CLS to be R up to a universal
constant where by the isotropy condition it holds that R ≥

√
d (Lehec, 2023). Some convex

choices of f may not necessarily satisfy the log-Sobolev inequality, but they do satisfy the
Poincaré inequality for some finite constant CP . For convex f (that does not necessarily
satisfy the log-Sobolev inequality), Lehec (2023) also obtains Wasserstein bounds between
the iterates and the target (that depends on the Poincaré constant CP ) when f is globally
Lipschitz on the domain C under a warm-start strategy where the initialization x0 is taken
as a random point taking values in C whose chi-square divergence to π is finite (Lehec, 2023,
Thm 2). This result is applicable to the case when the constraint set C is unbounded, and
when σ0 = O(1) and all the other parameters are at most polynomial in d, it implies in the

unconstrained case that W2(L(xk), π) ≤ ε after k = Θ∗
(
C3
PL

2
fd

4

ε4

)
iterations. Compared to

Lehec (2023), when f is strongly convex, we can get a better dimension dependency but
our dependency on ε is worse. We can also allow f to be non-convex as long as it is smooth
and our analysis can support stochastic gradients for both overdamped and underdamped
dynamics; however, we require the constraint set C to be bounded.

In a recent work, Sato et al. (2022) considers the problem of constrained sampling when
the potential f is C4 with a Lipschitz gradient on the constraint set and when the constraint
set C has a smooth (C4) boundary, allowing it to be non-convex. The authors also assume
that the projection to set C is unique and that the projections can be efficiently computed
where they study a reflection-based overdamped Langevin algorithm that can be viewed
as a discretization of a reflected Langevin diffusion, assuming access to (non-stochastic)
exact gradients of f . To compute the reflections, their algorithm necessitates to compute
projections at every step. The authors show that the optimization error converges to the
target distribution and it suffices to have Õ( d3

λrε3
) iterations for the suboptimality to be at

9
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most ε in expectation where λr is the spectral gap of the reflected Langevin diffusion. In our
paper, we require C to be convex but its boundary can be non-smooth. For the overdamped
Langevin version of our algorithm which we call PLD, we require Õ( d

ε10 ) iterations which is
better dependency to the dimension when C is convex; furthermore we can avoid projections
and therefore we do not necessarily require the projections to be efficiently computable, in
addition we do not necessarily require a smooth boundary. Moreover, our results can also
handle underdamped dynamics and stochastic gradients which are key to handle machine
learning applications, whereas the stochastic gradient setting is not considered in Sato et al.
(2022).

Finally, we note that “hit-and-run walk” achieves a mixing time of Õ(d4) iterations
(Lovász and Vempala, 2007). However, they assume a “zeroth order oracle”, i.e., assuming
access to function values without access to its gradients. Thus, our setting is different where
we work with gradients.

The notations to be used in the rest of the paper are summarized in Appendix A.

2. Main Results

Penalty methods in optimization convert a constrained optimization problem to an uncon-
strained one, where the idea is to add a term to the optimization objective that penalizes for
being outside of the constraint set (Nocedal and Wright, 2006). Motivated by such meth-
ods, as discussed in the introduction, we propose to add a penalty term 1

δS(x) to the target
distribution, and sample instead from the penalized target distribution in an unconstrained
fashion with the modified target density:

πδ(x) ∝ exp

(
−f(x)− 1

δ
S(x)

)
, x ∈ Rd,

where S(x) is the penalty function that satisfies the following assumption and δ > 0 is an
adjustable parameter.

Assumption 2.1 Assume that S(x) = 0 for any x ∈ C and S(x) > 0 for any x /∈ C.

There are many simple choices of S(x) for which Assumption 2.1 is satisfied. For in-
stance, if we choose S(x) = g(δC(x)), where δC(x) = minc∈C ‖x − c‖ is the distance of the
point x to a closed set C and g : R≥0 → R≥0 is a strictly increasing function with g(0) = 0,
then Assumption 2.1 is satisfied. Throughout our paper, we will also discuss other choices
of S(x). In many of our results, we will also make the following assumption on the set C.

Assumption 2.2 Assume that C is a convex body, i.e., C is a compact convex set, contains
an open ball centered at 0 with radius r > 0, and is contained in a Euclidean ball centered
at 0 with radius R > 0.

The fact that 0 is in the set C in Assumption 2.2 is made for simplifying the presentation
but all our results will hold even if that is not the case. Assumption 2.2 has been commonly
made in the literature (Bubeck et al., 2018, 2015; Lamperski, 2021; Brosse et al., 2017). In
addition, for many applications including those arise in machine learning, this assumption
naturally holds; for instance, when the constraints are polyhedral (Kook et al., 2022) or
when the constraints are `p-norm constraints with p ≥ 1 or for p =∞ (Schmidt, 2005; Luo
et al., 2016; Ma et al., 2019a; Gürbüzbalaban et al., 2022).

10
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2.1 Bounding the Distance Between πδ and π

In this section, we aim to bound the 2-Wasserstein distance between the modified target πδ
and the target π with an explicitly computable upper bound that goes to zero as δ tends
to zero. We will first bound the KL divergence between πδ and π and then apply weighted
Csiszár-Kullback-Pinsker inequality (W-CKP) (see Lemma B.1) to bound the 2-Wasserstein
distance between πδ and π. To start with, we first bound the KL divergence between πδ
and π, which relies on a series of technical lemmas. The two main ideas are: (i) when the
penalty value S is small, the Lebesgue measure of the set with small penalty values is also
small so that its contribution is negligible; (ii) for small values of δ, the penalty S

δ is large
and the integral with respect to that is also negligible. We start with the following lemma.
The proofs of this lemma and our other results can be found in the appendix.

Lemma 2.3 Suppose Assumption 2.1 holds and e−f is integrable over C. For any δ > 0,2

D(π‖πδ) ≤

∫
Rd\C e

− 1
δ
S(y)−f(y)dy∫

C e
−f(y)dy

. (4)

Next, we provide a technical lemma that provides an upper bound on the Lebesgue
measure of the set with small penalty values S. A special case of the following lemma can
be found in Lemma 10.15 without a proof in Kallenberg (2002).3

Lemma 2.4 Assume the constraint set C is a bounded closed set containing an open ball
with radius r > 0. Let S(x) = g (δC(x)), where δC(x) = minc∈C ‖x− c‖ is the distance of the
point x to the set C and g : R≥0 → R≥0 is a strictly increasing function with g(0) = 0 with
the property g(x)→∞ as x→∞. Then, for any ε > 0,

∣∣∣x ∈ Rd\C : S(x) ≤ ε
∣∣∣ ≤ ((1 +

g−1(ε)

r

)d
− 1

)
|C|,

where |·| denotes the Lebesgue measure and g−1 is the inverse function of g.

We are now ready to provide an upper bound for D(π‖πδ), the KL divergence between
the target distribution π and the penalized target distribution πδ.

2. If e−
1
δ
S(y)−f(y) is not integrable over Rd\C, we take the term

∫
Rd\C e

− 1
δ
S(y)−f(y)dy to be ∞ as the

convention and the upper bound in equation (4) becomes trivial.
3. Note that Lemma 10.15 in Kallenberg (2002) requires the set C to be convex since it estimates both the

outer ε-collar of C, defined as the set of all points that do not belong to C but lie within distance at most
ε from it, as well as the inner ε-collar of C, whereas we only need to consider the outer ε-collar of C so
that we can remove the convexity assumption on the set C.

11
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Lemma 2.5 In the setting of Lemma 2.4, assume e−f is integrable over C, then for any
δ, α̃ > 0, we have4

D(π‖πδ) ≤

((
1 +

g−1(α̃δ log(1/δ))

r

)d
− 1

) πd/2

Γ( d
2

+1)
Rde

− inf
y∈Rd\C:S(y)≤α̃δ log(1/δ)

f(y)∫
C e
−f(y)dy

+ δα̃

∫
Rd\C e

− 1
δ
S(y)−f(y)dy∫

C e
−f(y)dy

, (5)

where Γ denotes the gamma function.

In Lemma 2.5, we obtained an upper bound of the KL divergence between π and πδ.
In the literature of Langevin Monte Carlo, it is common to use the 2-Wasserstein distance
to measure the convergence to the target distribution (Cheng et al., 2018; Dalalyan and
Karagulyan, 2019). The celebrated W-CKP inequality (see Lemma B.1) bounds the 2-
Wasserstein distance by the KL divergence of any two probability distributions where some
exponential integrability condition is satisfied (see Lemma B.1), which in our case can be
applied to control the 2-Wasserstein distance between πδ and π. From Lemma 2.4, recall
the function δC(x) = distance(x, C) := minc∈C ‖x− c‖, for x ∈ Rd. The convexity of the set
C implies that the function S(x) = (δC(x))2 satisfies some differentiability and smoothness
properties, which is provided in the following lemma.

Lemma 2.6 If C is convex, then the function S(x) = (δC(x))2 is convex, `-smooth with
` = 4 and continuously differentiable on Rd with a gradient ∇S(x) = 2(x − PC(x)), where
PC(x) is the projection of x to the set C, i.e. PC(x) := arg minc∈C ‖x− c‖.

In the rest of the paper (except in Section 2.4), we always take penalty function S(x) =
(δC(x))2 unless otherwise specified. Building on Lemma 2.6, we have the following result,
which quantifies the 2-Wasserstein distance between the target π and the modified target
πδ corresponding to the penalized target distribution.

Theorem 2.7 Suppose Assumptions 2.1 and 2.2 hold. Moreover, we assume that f is
continuous and e−f is integrable over C and there exist some α̂ > 0 and x̂ ∈ Rd such that

and
∫
Rd e

α̂‖x−x̂‖2e−
S(x)
δ
−f(x)dx <∞. Then, as δ → 0,

W2(πδ, π) ≤ O
(
δ1/8 (log(1/δ))1/8

)
. (6)

Theorem 2.7 shows that by choosing δ small enough, we can approximate the compactly
supported target distribution π with the modified target πδ which has full support on
Rd. This amounts to converting the problem of constrained sampling to the problem of
unconstrained sampling with a modified target. In the next remark, we discuss that if we
take C to be the closed ball and g(x) = x2, and apply the W-CKP inequality, we obtain
the same bound in (6) except the logarithmic factor. This shows that it is not possible to
improve our bound with an approach that relies on W-CKP inequality except for logarithmic
factors.

4. If infy∈Rd\C:S(y)≤α̃δ log(1/δ) f(y) = −∞, we take the right hand side of equation (5) to be ∞ as the
convention and the upper bound in equation (5) becomes trivial.

12



Penalized Overdamped and Underdamped Langevin Monte Carlo Algorithms

Remark 2.8 In the setting of Theorem 2.7, consider the special case C = {x : ‖x‖ ≤ R}
to be the closed ball of radius R. In this case S(x) = s(r), with r = ‖x‖ and s(r) =
(r − R)21r≥R, where s(r) = 0 for any r ≤ R and s(r) > 0 for any r > R and moreover s
is differentiable and s(r) is strictly increasing in r > R. Moreover, we assume that f ≥ 0.
Then, by Lemma 2.3 and using the spherical symmetry, we can compute that

D(π‖πδ) ≤

∫
Rd\C e

− 1
δ
S(y)dy∫

C e
−f(y)dy

=

∫
‖y‖≥R e

− 1
δ
s(‖y‖)dy∫

‖y‖<R e
−f(y)dy

=

∫
r≥R e

− 1
δ
s(r)rd−1dr∫

‖y‖<R e
−f(y)dy

. (7)

Since s(r), for r ≥ R, achieves the unique minimum at r = R and s′(R) = 0, we can apply
Laplace’s method (see e.g. Bleistein and Handelsman (2010)), and obtain∫

r≥R
e−

1
δ
s(r)rd−1dr =

√
π

2s′′(R)
Rd−1

√
δ · (1 + o(1)), as δ → 0. (8)

Therefore, it follows from (7) and (8) that for any sufficiently small δ > 0,

D(π‖πδ) ≤


√

2π
s′′(R)R

d−1∫
‖y‖<R e

−f(y)dy

√δ. (9)

By applying W-CKP inequality (see Lemma B.1) and (9), we concludeW2(πδ, π) ≤ O
(
δ1/8

)
.

2.2 Penalized Langevin Algorithms with Deterministic Gradient

In this section, we are interested in penalized Langevin algorithms with deterministic gra-
dient when f is non-convex. Raginsky et al. (2017) and Gao et al. (2022) developed non-
asymptotic convergence bounds for SGLD and SGULMC, respectively, when f belongs to
the class of non-convex smooth functions that are dissipative. This is a relatively general
class of non-convex functions that admit critical points on a compact set. In our case, since
C is assumed to be a compact convex set, we will not need growth conditions such as the
dissipativity of f . The only assumption we are going to make about f is that f is smooth,
i.e. the gradient of f is Lipschitz. We will show that the penalty function S is dissipative
and smooth, so that f + 1

δS is dissipative and smooth for δ > 0 small enough.

Assumption 2.9 Assume that f is L-smooth, i.e. ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, for any
x, y ∈ Rd.

If Assumption 2.9 and Assumption 2.2 hold, then the conditions in Theorem 2.7 are
satisfied (see Lemma C.4 in the Appendix for details). Building on this result, next we
derive iteration complexity corresponding to the penalized Langevin dynamics.

2.2.1 Penalized Langevin Dynamics

First, we introduce the penalized overdamped Langevin SDE:

dX(t) = −∇f(X(t))dt− 1

δ
∇S(X(t))dt+

√
2dWt, (10)
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where Wt is a standard d-dimensional Brownian motion, and under mild conditions, it
admits a unique stationary distribution πδ(x) ∝ exp

(
−f(x)− 1

δS(x)
)
; see e.g. Hérau and

Nier (2004); Pavliotis (2014). Consider the penalized Langevin dynamics (PLD):

xk+1 = xk − η
(
∇f(xk) +

1

δ
∇S(xk)

)
+
√

2ηξk+1, (11)

where ξk are i.i.d. N (0, Id) Gaussian noises in Rd.
In many applications, the constrained set C is defined by functional constraints, i.e.

C := {x : hi(x) ≤ 0, i = 1, 2, . . . ,m}, where hi is a (merely) convex function defined on an
open set that contains C and m is the number of constraints. For example, when C is an `p
ball with radius R with p ≥ 1 or when C is an ellipsoid. In this case, we can write

C := {x : h(x) ≤ 0}, (12)

where h(x) := maxi hi(x) is convex and therefore locally Lipschitz continuous (see e.g.
Roberts and Varberg (1974)). The choice of the h(x) function here is clearly not unique.
In fact, such an h(x) can be constructed even if we do not possess an explicit formula for
the functions hi(x). More specifically, Minkowski functional ‖ · ‖K , also known as the gauge
function, is defined as ‖x‖K := inf{t ≥ 0, x ∈ tC} such that given that 0 is in the interior
of C, we can write C := {x : h(x) ≤ 0} where h(x) = ‖x‖K − 1 (Rockafellar, 1970;
Thompson, 1996). It is also well-known that the gauge function is merely convex. Thus, we
can conclude that any convex body C admits the representation (12) where h(x) is convex
and finite-valued and therefore Lipschitz continuous on C (Roberts and Varberg, 1974).
Equipped with this representation given by (12), we now consider a regularized constraint
set

Cα = {x : hα(x) ≤ 0}, where hα(x) := h(x) +
α

2
‖x‖2, (13)

is α-strongly convex for α > 0 as h(x) is merely convex, and it holds that Cα ⊆ C ⊆ Rd. We
define the regularized distribution πα supported on Cα with probability density function

πα(x) ∝ exp(−f(x)), x ∈ Cα.

We also consider adding a penalty term 1
δS

α(x) to the regularized target distribution πα,
and sample instead from the “penalized target distribution” with the regularized target
density:

παδ (x) ∝ exp

(
−f(x)− 1

δ
Sα(x)

)
, x ∈ Rd,

where Sα(x) = (δCα(x))2 is the penalty function that satisfies Sα(x) = 0 for any x ∈ Cα
and Sα(x) > 0 otherwise. Our motivation for considering the penalty function Sα(x) =
(δCα(x))2 is that as we show in the Appendix, under some conditions, Sα is strongly convex
outside a compact set (Lemma D.1); it can be seen that the function S(x) = (δC(x))2 does
not always have this property.5 Consequently, as a corollary, the function f + 1

δS
α becomes

5. For example, when C is the unit `∞ ball in dimension 2, the function S is not strongly convex at any
point (0, y) for y ∈ R.
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strongly convex outside a compact set for δ small enough (Corollary D.2). Our main result
in this section builds on exploiting this structure to develop stronger iteration complexity
results for sampling παδ compared to sampling π directly, and then controlling the error
between παδ and π by choosing δ and α small enough appropriately. For this purpose, first
we estimate the size of the set difference C\Cα.

Lemma 2.10 For the constrained set Cα defined in (13), we have

|C\Cα|
|Cα|

≤ O(α), as α→ 0. (14)

Second, we show that there exists a function U that is strongly convex everywhere and
the difference between U and f + Sα/δ can be uniformly bounded (Lemma D.3). Then by
combining all these technical results (Lemma D.1 and Corollary D.2, Lemma D.3, Lemma
2.10) discussed above, and estimating the distance of παδ to π, we obtain the following result.

Proposition 2.11 Suppose Assumptions 2.1, 2.2, and 2.9 hold. Given the constraint set C,
consider its representation as C = {x : h(x) ≤ 0} given in (12) where h(x) = max1≤i≤m hi(x)
for some m ≥ 1 with hi convex for i = 1, 2, . . . ,m. Let νK be the distribution of the K-th
iterate xK of penalized Langevin dynamics (11) with the constrained set Cα that is defined
in (13) and the initialization ν0 = N (0, 1

Lδ
Id), where we take α = 0 if h is strongly convex

and we take α = ε2 is h is merely convex. Then, we have TV(νK , π) ≤ Õ(ε) provided that
δ = ε4 and

K = Õ
(
d/ε10

)
, η = O

(
ε10/d

)
,

where Õ ignores the dependence on log d and log(1/ε).

Remark 2.12 In Proposition 2.11, when h is β-strongly convex (with β > 0 and α = 0)
the leading-order complexity K = Õ

(
d
ε10

)
does not depend on β. It can be seen from from

the proof of Proposition 2.11 that the complexity K has a second-order dependence on β,

such that K = Õ
(
d
ε10

)
+ Õ

(
d
βε6

)
, where we ignored the dependence on the other constants

when we consider the second-order dependence on β. When h is merely convex (with β = 0
and α = ε2), we have K = Õ

(
d
ε10

)
+ Õ

(
d
ε8

)
.

2.2.2 Penalized Underdamped Langevin Monte Carlo

We can also design sampling algorithms based on the underdamped (also known as second-
order, inertial, or kinetic) Langevin diffusion given by the following SDE:

dV (t) = −γV (t)dt−∇f(X(t))dt+
√

2γdWt, (15)

dX(t) = V (t)dt, (16)

(see e.g. Cheng et al. (2018); Cheng et al. (2018); Dalalyan and Riou-Durand (2020);
Gao et al. (2022, 2020); Ma et al. (2021); Cao et al. (2023)) where γ > 0 is the friction
coefficient, X(t), V (t) ∈ Rd model the position and the momentum of a particle moving in
a field of force (described by the gradient of f) plus a random (thermal) force described
by the Brownian noise Wt, which is a standard d-dimensional Brownian motion that starts
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at zero at time zero. It is known that under some mild assumptions on f , the Markov
process (X(t), V (t))t≥0 is ergodic and admits a unique stationary distribution π with density
π(x, v) ∝ exp

(
−
(

1
2‖v‖

2 + f(x)
))

(see e.g. Hérau and Nier (2004); Pavliotis (2014)). Hence,
the x-marginal distribution of the stationary distribution with the density π(x, v) is exactly
the invariant distribution of the overdamped Langevin diffusion. For approximate sampling,
various discretization schemes of (15)-(16) have been used in the literature (see e.g. Cheng
et al. (2018); Teh et al. (2016); Chen et al. (2016, 2015)).

To design a constrained sampling algorithm based on the underdamped Langevin diffu-
sion, we propose the “penalized underdamped Langevin SDE”:

dV (t) = −γV (t)dt−∇f(X(t))dt− 1

δ
∇S(X(t))dt+

√
2γdWt, (17)

dX(t) = V (t)dt, (18)

where Wt is a standard d-dimensional Brownian motion. Under mild conditions, it admits a
unique stationary distribution πδ(x, v) ∝ exp

(
−f(x)− 1

δS(x)− 1
2‖v‖

2
)
, whose x-marginal

distribution is πδ(x) ∝ exp
(
−f(x)− 1

δS(x)
)
, which coincides with the stationary distribu-

tion of the penalized overdamped Langevin SDE (10).

A natural way to sample the penalized target distribution πδ(x, v) is to consider the Euler
discretization of (17)-(18). We adopt a more refined discretization, introduced by Cheng
et al. (2018). We propose the penalized underdamped Langevin Monte Carlo (PULMC):

vk+1 = ψ0(η)vk − ψ1(η)

(
∇f(xk) +

1

δ
∇S(xk)

)
+
√

2γξk+1, (19)

xk+1 = xk + ψ1(η)vk − ψ2(η)

(
∇f(xk) +

1

δ
∇S(xk)

)
+
√

2γξ′k+1, (20)

(see e.g. Dalalyan and Riou-Durand (2020)) where (ξk, ξ
′
k) are i.i.d. 2d-dimensional Gaus-

sian noises and independent of the initial condition v0, x0, and for any fixed k, the random
vectors ((ξk)2, (ξ

′
k)2), ((ξk)2, (ξ

′
k)2), . . . ((ξk)d, (ξ

′
k)d) are i.i.d. with the covariance matrix

C(η) :=

∫ η

0
[ψ0(t), ψ1(t)]>[ψ0(t), ψ1(t)]dt, (21)

where

ψ0(t) := e−γt and ψk+1(t) :=

∫ t

0
ψk(s)ds for every k ≥ 0. (22)

Dalalyan and Riou-Durand (2020) studied the unconstrained kinetic (underdamped)
Langevin Monte Carlo algorithms (subject to deterministic gradients) for strongly log-
concave and smooth densities, and Ma et al. (2021) investigated the case when f is strongly
convex outside a compact domain. When f is non-convex, Gao et al. (2022) studied the
unconstrained underdamped Langevin Monte Carlo algorithms (which allows stochastic
gradients) under a dissipativity assumption. Since the x-marginal distribution of the Gibbs
distribution of the penalized underdamped Langevin SDE (17)-(18) coincides that with the
penalized overdamped Langevin SDE (10), we can boundW2(π, πδ) using Theorem 2.7 with
the same bounds as in the overdamped case.
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Under some additional assumptions, we showed in Lemma D.1 that f + S/δ is strongly
convex outside a compact domain, and thus one can leverage the non-asymptotic guar-
antees in Ma et al. (2021) for unconstrained underdamped Monte Carlo to obtain better
performance guarantees for the penalized underdamped Langevin Monte Carlo. Before we
proceed, we first provide a technical lemma that shows that under some additional assump-
tions on C, S is Hessian Lipschitz.

Lemma 2.13 Suppose C ⊆ Rd is a convex hypersurface of class C3 and supξ∈C ‖D2n(ξ)‖
is bounded, where n is unit normal vector of C. Then S is MS-Hessian Lipschitz for some
MS > 0.

As a corollary, if f is Hessian Lipschitz, then f + S/δ is Hessian Lipschitz and we
immediately have the following result.

Corollary 2.14 Under assumptions of Lemma 2.13 and assume that f is Mf -Hessian Lip-
schitz for some Mf > 0. Then f + S/δ is Mδ-Hessian Lipschitz, where Mδ := Mf + MS

δ .

Now, we are ready to state the following proposition that provides performance guar-
antees for the penalized underdamped Langevin Monte Carlo.

Proposition 2.15 Suppose Assumptions 2.1, 2.2, and 2.9 hold, and also assume the condi-
tions in Corollary 2.14 are satisfied. Given the constraint set C, consider its representation
as C = {x : h(x) ≤ 0} given in (12) where h(x) = max1≤i≤m hi(x) for some m ≥ 1 with hi
convex for i = 1, 2, . . . ,m. Let νK be the distribution of the K-th iterate xK of penalized
underdamped Langevin Monte Carlo (19)-(20) for the constrained set Cα defined in (13)
and the distribution of (v0, x0) follows N (0, 1

Lδ
Id)⊗N (0, 1

Lδ
Id), where we take α = 0 if h is

strongly convex and we take α = ε2 if h is merely convex. Then, we have TV(νK , π) ≤ Õ(ε)
provided that δ = ε4, α = ε2 and

K = Õ
(√

d/ε7
)
,

where Õ ignores the dependence on log d and log(1/ε).

Remark 2.16 When we compare the algorithmic complexity in Proposition 2.15 with Propo-
sition 2.11, we see that for the underdamped-Langevin-based penalized underdamped Langevin
Monte Carlo has complexity K = Õ(

√
d/ε7), which improves the dependence on both the

dimension d and the accuracy level ε compared to the overdamped-Langevin-based penal-
ized Langevin dynamics where the complexity is K = Õ(d/ε10). This is obtained under
additional assumptions on the smoothness of the boundary of C and Hessian Lipschitzness
of f . To the best of our knowledge, Õ(

√
d) is the best dependency on dimension for the

constrained sampling.

Remark 2.17 In Proposition 2.15, when h is β-strongly convex (with β > 0 and α = 0)

the leading-order complexity K = Õ
(√

d/ε7
)

does not depend on β. It can be seen from

the proof of Proposition 2.15 that the complexity K has a second-order dependence on β,

such that K = Õ
(√

d
ε7

)
+ Õ

(√
d

βε3

)
, where we ignored the dependence on the other constants

when we consider the second-order dependence on β. When h is merely convex (with β = 0

and α = ε2), we have K = Õ
(√

d
ε7

)
+ Õ

(√
d
ε5

)
.
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2.3 Penalized Langevin Algorithms with Stochastic Gradient

In the previous sections, we studied penalized Langevin algorithms with deterministic gra-
dient when the objective f is non-convex. In this section, we study the extension to allow
stochastic estimates of the gradients in our algorithms. Supporting stochastic gradients
becomes especially key in machine learning and data science applications where the exact
gradients can be computationally expensive but stochastic estimates can be obtained effi-
ciently from data. We start with the case when f is assumed to be strongly convex and
smooth.

2.3.1 Strongly Convex Case

In this section, we assume that the target f is strongly convex and its gradient is Lipschitz.
More precisely, we make the following assumption.

Assumption 2.18 Assume that f is µ-strongly convex and L-smooth.

Assumption 2.18 is equivalent to assuming that the target density π(x) ∝ e−f(x) is
strongly log-concave and smooth. This assumption has also been made frequently in the
literature (see, e.g., Bubeck et al. (2018, 2015); Lamperski (2021)). Such densities arise in
several applications including but not limited to Bayesian linear regression and Bayesian
logistic regression (see, e.g., Castillo et al. (2015); O’Brien and Dunson (2004)). Under
Assumption 2.18, we have the following property for the target function f .

Lemma 2.19 Under Assumptions 2.18 and Assumption 2.2, the minimizers of f + S
δ are

uniformly bounded in δ such that there exists some c ≥ 0 and the norm of any minimizer
of f + S

δ is bounded by (1 + c)R.

When δ is large, the minimizers of f + S
δ are close to the minimizers of f , which are

uniformly bounded, and when δ is small, by the definition of the penalty function S, the
minimizers of f + S

δ will concentrate on the set C. Moreover, if the minimizers of f are
inside the constrained set C, then, the minimizers of f + S

δ must also lie in the set because
S(x) = (δC(x))2 = 0 for x ∈ C. Hence, the above lemma naturally holds.

Moreover, under Assumptions 2.18 and 2.2, the conditions in Theorem 2.7 are satisfied
(see Lemma C.5 in the Appendix for details). Building on this result, in the following
subsections, we study penalized Langevin algorithms and the number of iterations needed
to sample from a distribution within ε distance to the target.

Penalized Stochastic Gradient Langevin Dynamics. We now consider the exten-
sion to allow stochastic gradients, known as the stochastic gradient Langevin dynamics in
the literature (see, e.g., Welling and Teh (2011); Chen et al. (2015); Raginsky et al. (2017)).
In particular, we propose the penalized stochastic gradient Langevin dynamics (PSGLD):

xk+1 = xk − η
(
∇f̃(xk) +

1

δ
∇S(xk)

)
+
√

2ηξk+1, (23)

where ξk are i.i.d. N (0, Id) Gaussian noises in Rd and we assume that we have access to
noisy estimates ∇̃f(xk) of the actual gradients satisfying the following assumption:
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Assumption 2.20 We assume at iteration k, we have access to ∇̃f(xk, wk) which is a
random estimate of ∇f(xk) where wk is a random variable independent from {wj}k−1

j=0 and

satisfies E
[
∇f̃(xk, wk)−∇f(xk)|xk

]
= ∇f(xk) and

E
∥∥∥∇f̃(xk, wk)−∇f(xk)

∣∣∣xk∥∥∥2
≤ 2σ2

(
L2‖xk‖2 + ‖∇f(0)‖2

)
. (24)

To simplify the notation, we suppress the wk dependence and denote ∇f̃(xk, wk) by ∇̃f(xk).

We note that the assumption (24) has been commonly made in data science and ma-
chine learning applications (see, e.g., Raginsky et al. (2017)) and arises when gradients are
estimated from randomly sampled subsets of data points in the context of stochastic gradi-

ent methods. It is more general than the assumption E
∥∥∥∇f̃(xk)−∇f(xk)

∣∣∣x∥∥∥2
≤ σ2d that

has also been used in the literature (Dalalyan and Karagulyan, 2019) and allows handling
gradient noise arising in many machine learning applications where the variance is not uni-
formly bounded (Raginsky et al., 2017; Aybat et al., 2019; Gürbüzbalaban et al., 2021).
In (24), if f(x) takes the form f(x) =

∑n
i=1 fi(x), and ∇f̃(x) = 1

b

∑
j∈Ω∇fj(x), where

Ω is a random subset of {1, 2, . . . , n} with batch-size b, due to the central limit theorem,
we can assume that σ2 = O(1/b), where b is the batch-size of the mini-batch. We have
the following proposition, which characterizes the number of iterations necessary to sample
from the target up to an ε error using the penalized stochastic gradient Langevin dynamics.

Proposition 2.21 Suppose Assumptions 2.2, 2.18 and 2.20 hold. Let νK denote the distri-
bution of the K-th iterate xK of penalized stochastic gradient Langevin dynamics (23). We
have W2(νK , π) ≤ Õ(ε), where Õ ignores the dependence on log(1/ε), provided that δ = ε8,
the batch-size b is of the constant order, and the stochastic gradient computations K̂ := Kb
and the stepsize η satisfy:

K̂ = Õ
(
d(Lε8 + 4)2

ε18µ3

)
, η =

ε18µ2

d(Lε8 + 4)2
.

In terms of the dependence on the condition number κ := L/µ, Proposition 2.21 implies
that the batch-size b is of constant order, the stochastic gradient computations K̂ = Õ(κ2/µ)
and the stepsize η = Θ(1/κ2).

Penalized Stochastic Gradient Underdamped Langevin Monte Carlo. Next,
we consider the extension to allow stochastic gradient, which we refer to as the stochas-
tic gradient underdamped Langevin Monte Carlo (SGULMC). Such algorithms have been
studied previously in the unconstrained setting in the literature (Chen et al., 2014, 2015;
Gao et al., 2022). We propose the penalized stochastic gradient underdamped Langevin
Monte Carlo (PSGULMC):

vk+1 = ψ0(η)vk − ψ1(η)

(
∇f̃(xk) +

1

δ
∇S(xk)

)
+
√

2γξk+1, (25)

xk+1 = xk + ψ1(η)vk − ψ2(η)

(
∇f̃(xk) +

1

δ
∇S(xk)

)
+
√

2γξ′k+1, (26)
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where (ξk, ξ
′
k) are i.i.d. 2d-dimensional Gaussian noises independent of the initial condition

v0, x0, centered with covariance matrix given in (21) and ψk(t) are defined in (22), where we
recall that the gradient noise satisfies Assumption 2.20. Then we can provide the following
proposition for the number of iterations we need to sample from the target distribution
within ε error using PSGULMC with a stochastic gradient that satisfies Assumption 2.20.

Proposition 2.22 Suppose Assumptions 2.2, 2.18 and 2.20 hold. Let νK denote the dis-
tribution of the K-th iterate xK of penalized stochastic gradient underdamped Langevin
Monte Carlo (25)-(26) and (v0, x0) follows the product distribution N (0, Id)⊗ ν0. We have
W2(νK , π) ≤ Õ(ε) provided that δ = ε8, and the batch-size b satisfies:

b = Ω
(
σ−2

)
= Ω

(
L2(Lε8 + 4)(ε16dµ+ (Lε8 + 4)2)

ε26µ4

)
,

and the stochastic gradient computations K̂ := Kb and the stepsize η satisfy:

K̂ = Õ

(
L2(Lε8 + 4)2(ε16dµ+ (Lε8 + 4)2)

√
(µ+ L)ε8 + 4

ε39µ6
max

(
√
d,

√
(L+ µ)ε8 + 4

ε3

))
,

and

η = min

(
1√
d

ε9µ

(Lε8 + 4)
,

1√
(µ+ L)ε8 + 4

ε12µ

(Lε8 + 4)

)
.

In terms of the dependence on the condition number κ = L/µ, Proposition 2.22 implies
that the batch-size b = Ω(L5/µ4) = Ω(Lκ4), the stochastic gradient computations K̂ =
Õ(κ6) and the stepsize η = Θ(1/(

√
Lκ)).

2.3.2 Non-Convex Case

This section discusses the case when f is non-convex and smooth.

Penalized Stochastic Gradient Langevin Dynamics. First, we consider the pe-
nalized stochastic gradient Langevin dynamics (PSGLD):

xk+1 = xk − η
(
∇f̃(xk) +

1

δ
∇S(xk)

)
+
√

2ηξk+1, (27)

whereby following Raginsky et al. (2017) we assume that the initial distribution x0 satisfies
the exponential integrability condition

κ0 := logE
[
e‖x0‖2

]
<∞, (28)

and we recall that the gradient noise satisfies Assumption 2.20. For instance, we could
take x0 to be a Dirac measure or any distribution that is compactly supported. Similar to
Proposition 2.21, we have the following proposition about the complexity analysis of the
PSGLD for the non-convex case.
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Proposition 2.23 Suppose Assumptions 2.1, 2.2, 2.20 and 2.9 hold. Let νK be the distri-
bution of the K-th iterate xK of penalized stochastic gradient Langevin dynamics (27). We
have W2(νK , π) ≤ Õ(ε) provided that δ = ε8, the batch-size b = Ω(η−1) and the stochastic
gradient computations K̂ := Kb and the stepsize η satisfy:

K̂ = Õ
(
d17λ−9

∗ (log(λ−1
∗ ))8

ε392

)
, η = Θ̃

(
ε196

d8λ−4
∗ (log(λ−1

∗ ))4

)
,

where Õ and Θ̃ ignore the dependence on log d and log(1/ε), and λ∗ is the spectral gap of
the penalized overdamped Langevin SDE (10)6:

λ∗ := inf

{∫
Rd ‖∇g‖

2dπδ∫
Rd g

2dπδ
: g ∈ C1(Rd) ∩ L2(πδ), g 6= 0,

∫
Rd
gdπδ = 0

}
. (29)

Moreover, if we further assume that the assumptions of Corollary D.2 hold, then 1
λ∗
≤ O (1),

and we have K̂ = Õ
(
d17

ε392

)
and η = Θ̃

(
ε196

d8

)
.

Penalized Stochastic Gradient Underdamped Langevin Monte Carlo. Next,
we consider the extension of underdamped Langevin Monte Carlo to allow stochastic gra-
dient, which we refer to as the stochastic gradient underdamped Langevin Monte Carlo
(SGULMC). Such algorithms have been studied in the unconstrained setting in the litera-
ture (Chen et al., 2014, 2015; Gao et al., 2022). We now consider the penalized stochastic
gradient underdamped Langevin Monte Carlo (PSGULMC):

vk+1 = ψ0(η)vk − ψ1(η)

(
∇f̃(xk) +

1

δ
∇S(xk)

)
+
√

2γξk+1, (30)

xk+1 = xk + ψ1(η)vk − ψ2(η)

(
∇f̃(xk) +

1

δ
∇S(xk)

)
+
√

2γξ′k+1, (31)

where (ξk, ξ
′
k) are i.i.d. 2d-dimensional Gaussian noises independent of the initial condition

v0, x0, centered with covariance matrix given in (21) and ψk(t) are defined in (22), and
finally, we recall that the gradient noise satisfies Assumption 2.20. We follow Gao et al.
(2022) by assuming that the probability law µ0 of the initial state (x0, v0) satisfies the
following exponential integrability condition:∫

R2d

eαV(x,v)µ0(dx, dv) <∞ , (32)

where V is a Lyapunov function:

V(x, v) := f(x) +
S(x)

δ
+

1

4
γ2
(∥∥x+ γ−1v

∥∥2
+
∥∥γ−1v

∥∥2 − λ‖x‖2
)
, (33)

and λ is a positive constant less than min(1/4,mδ/(Lδ + γ2/2)), and α = λ(1 − 2λ)/12,
where we recall from Lemma C.2 that f + S

δ is (mδ, bδ)-dissipative where mδ, bδ are defined
in (39). Notice that there exists a constant A ∈ (0,∞) so that〈

x,∇f(x) +
∇S(x)

δ

〉
≥ mδ‖x‖2 − bδ ≥ 2λ

(
f(x) + γ2‖x‖2/4

)
− 2A .

6. This definition of the spectral gap can be found in Raginsky et al. (2017).
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Indeed, Gao et al. (2020) showed that one can take

λ :=
1

2
min(1/4,mδ/(Lδ + γ2/2)), (34)

A :=
mδ

2Lδ + γ2

(
‖∇f(0)‖2

2Lδ + γ2
+

bδ
mδ

(
Lδ +

1

2
γ2

)
+ f(0)

)
, (35)

where we recall from Lemma C.2 that f + S
δ is Lδ-smooth with Lδ = L+ `

δ .

The Lyapunov function (33) is constructed in Eberle et al. (2019) as a key ingredient to
show the convergence speed of the penalized underdamped Langevin SDE (17)-(18) to the
Gibbs distribution πδ(x, v) ∝ exp(−f(x)− 1

δS(x)− 1
2‖v‖

2). Eberle et al. (2019) shows that
the convergence speed of (17)-(18) to the Gibbs distribution πδ is governed by

µ∗ :=
γ

768
min

{
λLδγ

−2,Λ1/2e−ΛLδγ
−2,Λ1/2e−Λ

}
, (36)

where

Λ :=
12

5

(
1 + 2α1 + 2α2

1

)
(d+A)Lδγ

−2λ−1(1− 2λ)−1, α1 :=
(
1 + Λ−1

)
Lδγ

−2.

The Lyapunov function (33) also plays a key role in Gao et al. (2022) that obtains the non-
asymptotic convergence guarantees for (unconstrained) stochastic gradient underdamped
Langevin Monte Carlo. We have the following proposition about the complexity of PS-
GULMC with stochastic gradient that satisfies Assumption 2.20 for the non-convex case.

Proposition 2.24 Suppose Assumptions 2.1, 2.2, 2.20 and 2.9 hold. Let νK be the distri-
bution of the K-th iterate xK of penalized stochastic gradient underdamped Langevin Monte
Carlo (30)-(31). We haveW2(νK , π) ≤ Õ(ε) provided that δ = ε8, the batch-size b = Ω(η−1)
and the stochastic gradient computations K̂ := Kb and the stepsize η satisfy:

K̂ = Õ

(
d7 (log(1/µ∗))

5

ε132µ3
∗

)
, η = Θ̃

(
ε50µ∗

d3 (log(1/µ∗))
2

)
,

where Θ̃ ignores the dependence on log d and log(1/ε).

In Proposition 2.24 (resp. Proposition 2.23), µ∗ (resp. λ∗) governs the speed of conver-
gence of the continuous-time penalized underdamped (resp. overdamped) Langevin SDEs
to the Gibbs distribution. It is shown in Proposition 1 in Gao et al. (2022) that when the
surface of the target is relatively flat, µ∗ can be better than λ∗ by a square root factor, i.e.

1/µ∗ = O
(√

1/λ∗

)
.

2.4 Avoiding Projections

We recall our discussion from Section 2.2.1 that the constraint set is often defined by
functional inequalities of the form

C := {x : hi(x) ≤ 0, for i = 1, 2, . . . ,m},
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where hi(x) : Rn → R is convex and differentiable for every i. This would, for instance, be
the case if C is the `p-ball in Rd for p ≥ 1. So far, our main complexity results involve the
choice of S(x) = (δC(x))2 as a penalty function where computing S(x) requires calculating
projection of x to the set C. Computing such projections can be carried out in polynomial
time, but it can be costly in some cases, for instance, when the number of constraints m is
large or if the constraints are not simple. A natural question to ask is whether our results
will hold if we use

S(x) =
∑m

i=1
max (0, hi(x))2 ,

as a penalty function and sample from the modified target

πδ(x) ∝ exp

(
−f(x)− 1

δ

∑m

i=1
max (0, hi(x))2

)
, x ∈ Rd, (37)

instead. After all, this (alternative) choice of S(x) would still satisfy our Assumption 2.1.
In this section, we will show that this is indeed possible, provided that the functions hi(x)
satisfy some growth conditions. The advantage of the formulation (37) is that the modified
target does not require computing the projection and the distance function δC(x) to the
constraint set as before, and it allows directly working with the functions that define the
constraint set. This is computationally more efficient when computing the projections to
the constraint set is not straightforward. For example, if hi(x)’s are affine (in which case
the constraint set C is a polyhedral set as an intersection of half-planes) and the number
of constraints m is large, computing the projection will be typically slower than evaluating
the derivative of the penalized objective in (37).

We first show that when hi(x)’s are differentiable and convex for every i, then the
function S and therefore the density (37) is differentiable despite the presence of the non-
smooth max(0, ·) part in (37). Under some further assumptions, we also show in the next
result that S is `-smooth with appropriate constants.

Lemma 2.25 If hi(x) is differentiable and convex on Rd for every i = 1, 2, . . . ,m, then∑m
i=1 max(0, hi(x))2 is differentiable and convex on Rd. Furthermore, assume that on the

set Bi := {x ∈ Rd : hi(x) ≥ 0}, hi(x) satisfies the following three properties for every
i = 1, 2, . . . ,m: (i) hi(x) is continuously twice differentiable, (ii) the gradient of hi(x) is
bounded ‖∇hi(x)‖ ≤ Ni, (iii) the Hessian of hi(x) satisfies |hi(x)|∇2hi(x) � PiI, i.e., the
large eigenvalue of the matrix |hi(x)|∇2hi(x) is smaller than or equal to a non-negative
scalar Pi. Then,

∑m
i=1 max(0, hi(x))2 is `-smooth, where ` := 2

∑m
i=1

(
N2
i + Pi

)
.

The `p ball constraint arises in several applications that we will also discuss in the
numerical experiments section (Section 3). Next, we show that the conditions in Lemma 2.25
can be satisfied for `p ball constraints.

Corollary 2.26 If we choose C = {x : h(x) ≤ 0} with h(x) = ‖x‖p − R for a given R > 0
with p ≥ 2, then max(0, h(x))2 is `-smooth on Rd, where ` :=

(
2
R + (d− 1)

)
(p− 1).

In the rest of this section, we will argue that our results can be extended to the penalty
function S(x) =

∑m
i=1 max(0, hi(x))2, when hi satisfies certain growth conditions so that
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Gürbüzbalaban, HU AND ZHU

projections required by the distance-based penalty functions can be avoided. First of all,
by applying the same arguments as in Lemma 2.3, we can show that for any δ > 0,

D(π‖πδ) ≤

∫
Rd\C1 e

− 1
δ

∑m
i=1 max(0,hi(x))2−f(x)dx∫
C1 e
−f(x)dx

,

where

C1 :=
{
x ∈ Rd :

∑m

i=1
max(0, hi(x))2 ≤ 0

}
=
{
x ∈ Rd : max1≤i≤m hi(x) ≤ 0

}
.

Next, we provide an analog of Lemma 2.4 that upper bounds of the Lebesgue measure
of the set of all points that are outside C1 yet in a small neighborhood of C1. Consider the
constraint map H : Rd → Rm defined as H(x) := [h1(x), h2(x), . . . , hm(x)]>. We assume
that H is metrically subregular everywhere on the boundary of the constrained set, i.e. we
assume there exists some constant K̄ > 0 such that for any sufficiently small ε > 0,∣∣∣x ∈ Rd\C1 :

∑m

i=1
max(0, hi(x))2 ≤ ε

∣∣∣ ≤ ∣∣∣x ∈ Rd\C1 : δC1(x) ≤
√
K̄ε
∣∣∣ ,

(see, e.g., Ioffe (2016a,b) for more about metric subregularity and its consequences). For
instance, the last inequality is satisfied when the constraint set is the `1 ball with radius
R which is a a polyhedral set that can be expressed in the form (62) with affine choices of
hi(x). Another example, would be the `p ball of radius R; i.e when C = {x : h(x) ≤ 0} with
h(x) = maxi hi(x) = ‖x‖p−R and p > 1. By applying the same arguments as in Lemma 2.4,
we conclude that there exists some constant K̄ > 0 such that for any sufficiently small ε > 0,∣∣∣x ∈ Rd\C1 :

∑m

i=1
max(0, hi(x))2 ≤ ε

∣∣∣ ≤ ((1 +
√
K̄ε/r1

)d
− 1

)
|C1|,

where we assumed that C1 contains an open ball of radius r1 centered at 0. Furthermore,
Lemma 2.5, Lemma 2.6 and Theorem 2.7 still apply with minor modifications and it follows

that as δ → 0, W2(πδ, π) ≤ O
(

(δ log(1/δ))1/8
)

, which is an analogue of Theorem 2.7. We

can then obtain analogous results for PSGLD, and PSGULMC in Section 2.3. We can
then utilize the conclusions of previous sections to get the convergence rate and complexity
by using penalized Langevin and underdamped Langevin Monte Carlo algorithms in this
setting.

3. Numerical Experiments

3.1 Synthetic Experiment for Dirichlet Posterior

As a toy experiment, we consider our proposed PLD and PULMC algorithms for sampling
from a 3-dimensional Dirichlet posterior distribution. The Dirichlet distribution is com-
monly used in machine learning, especially in Latent Dirichlet allocation (LDA) problems;
see, e.g., Blei et al. (2003). The Dirichlet distribution of dimension K ≥ 2 with parameters
α1, . . . , αK > 0 has a probability density function with respect to Lebesgue measure on
RK−1 given by:

f(x1, . . . , xK ;α1, . . . , αK) =
1

B(α)

K∏
i=1

xαi−1
i , (38)
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(a) Penalized LD (PLD) (b) Penalized Underdamped Langevin Monte
Carlo (PULMC)

Figure 1: Wasserstein distance between the target distribution and our proposed methods.

(a) True distribution (b) Penalized LD (PLD) (c) Penalized ULMC (PULMC)

Figure 2: Density plots of the target distribution and samples obtained by PLD and
PULMC.

where {xk}Kk=1 belongs to the standardK−1 simplex, i.e.
∑K

i=1 xi = 1 and xi ≥ 0 for all i ∈
{1, . . . ,K}, and the normalizing constant B(α) in equation (38) is the multivariate alpha

function, which can be expressed as B(α) =
∏K
i=1 Γ(αi)

Γ(
∑K
i=1 αi)

, for any α := (α1, . . . , αK) ∈ RK≥0,

where Γ(·) denotes the gamma function.

In our experiment, we set α = (1, 2, 2) and use uniform distribution on the simplex as
the prior distribution. For PLD, we set δ = 0.005 and learning rate η = 0.0001, and η is
decreased by 25% every 1000 iterations. For PULMC, we set δ = 0.01, γ = 0.6, and we
take the learning rate η = 0.0012, where η is decreased by 10% every 200 iterations. We
obtain 1000 samples from the posterior distribution using our methods and calculate the
2-Wasserstein distance for each of the three (coordinates) dimensions with respect to the
true distribution based on 1000 runs. The results in Figure 1 illustrates the convergence
of our methods where we observe that the 2-Wasserstein distance decays to zero in each
dimension for both PLD and PULMC methods. In Figure 2, on the left panel we illustrate
the target distribution whereas in the middle and right panels, we illustrate the density
of the samples obtained by PLD and PULMC methods, based on 1000 samples. These
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(a) PLD for Dirichlet sampling (b) PULMC for Dirichlet sampling

Figure 3: Average number of iterations required for achieving a target accuracy ε (measured
in terms of the Wasserstein distance) for the Dirichlet sampling problem as ε is
varied for PLD (left panel) and PULMC (right panel).

(a) PLD for Dirichlet sampling (b) PULMC for Dirichlet sampling

Figure 4: Dimension (d) dependency of PLD and PULMC on the Dirichlet distribution
sampling problem.

figures illustrate that PLD and PULMC can sample successfully from the true Dirichlet
distribution for this problem. In Figure 3, we also plot the (expected) average number of
iterations k required for achieving an accuracy ε, i.e. for achieving W2(L(xk), π) ≤ ε where
xk are the iterates and π is the target Dirichlet distribution. In Figure 3, the x-axis is
the accuracy ε whereas the y-axis is the number of iterations required. PULMC and PLD
performs similarly, especially when the accuracy required is not small. It may be that both
algorithms admit a better scaling in practice on this example with respect to ε than the
worst-case theoretical bounds we provide in Table 1. In Figure 4, we also vary the dimension
d while keeping the target accuracy ε fixed. More specifically, we report the (estimated)
expected number of iterations needed to achieve the Wasserstein distance at most ε = 0.25.
The parameter α = (α1, α2, . . . , αd) of the Dirichlet distribution in dimension d is generated
randomly, where αi is set to a uniformly random integer from 1 to 5 independently for every
i = 1, 2, . . . , d. We tuned the parameters for both algorithms. In the PLD case, we use
δ = 0.0004, η = 0.0003/d. In the PULMC case, we use δ = 0.001, η = 0.0012/d, γ = 0.7. We
observe that the number of iterations required for PLD grows (approximately) linearly in
the dimension d, whereas for PULMC we have roughly a sublinear growth in the dimension.

26



Penalized Overdamped and Underdamped Langevin Monte Carlo Algorithms

(a) Prior (b) Penalized SGLD (c) Penalized SGULMC

Figure 5: Prior and posterior distribution with 1-norm constraint in dimension 2.

The experimental results are more or less inline with our theoretical findings, where we prove
that for the TV distance, PULMC admits better (O(

√
d)) guarantees compared to O(d)

guarantees of PLD.

3.2 Bayesian Constrained Linear Regression

We consider Bayesian constrained linear regression models in our next set of experiments.
Such models have many applications in data science and machine learning (Brosse et al.,
2017; Bubeck et al., 2018). For example, if the constraint set is an `p-ball around the origin,
for p = 1, we obtain the Bayesian Lasso regression, and for p = 2, we get the Bayesian
Ridge regression. We will consider both synthetic data and real-world data settings.

3.2.1 Synthetic 2-Dimensional Problem

In our first set of experiments, we will consider the case when p = 1, which corresponds
to the Bayesian Lasso regression (Hans, 2009). For better visualization, we start with a
synthetic 2-dimensional problem. We generate 10,000 data points (aj , yj) according to the
model:

δj ∼ N (0, 0.25) , aj ∼ N (0, I), yj = x?
>aj + δj , x? = [1, 1]>.

We take the constraint set to be

C = {x : ‖x‖1 ≤ 1} .

The prior distribution is the uniform distribution, where the constraints are satisfied. This
is illustrated in Figure 5(a). The posterior distribution of this model is given by

π(x) ∝ e
∑n
j=1−

1
2

(yj−x>aj)2

· 1C ,

where 1C is the indicator function for the constraint set C and n = 10, 000 is the number
of data points. For this set of experiments, we take the batch size b = 50 and run PSGLD
with δ = 0.001, the learning rate η = 10−5 where we reduce η by 15% every 5000 iterations.
The total number of iterations is set to 50,000. For PSGULMC, we have a similar setting
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with δ = 0.001, γ = 0.1, and learning rate η = 0.0001, where we reduce η by 15% every
5000 iterations. The results are shown in Figure 5 where the point x? is marked with a red
asterisk. In Figure 5, we estimate the density of the samples obtained by both PSGLD and
PSGULMC methods based on 500 runs. We see that the densities obtained by PSGLD and
PSGULMC algorithms are compatible with the constraints, and they sample from a target
distribution that puts higher weights into regions closer to x? as expected (where without
any constraints x? would be the peak of the target).

We also consider an ellipsoidal constraint set

C :=
{
x : (x− ā1)>Q1(x− ā1) ≤ b̄1

}
,

for the same posterior distribution

π(x) ∝ e
∑n
j=1−

1
2

(yj−x>aj)2

· 1C ,

where Q1 ∈ R2×2 is positive definite, ā1 ∈ R2 is a real vector and b̄1 > 0 is a real scalar.
We take x? = [2, 2]> and

ā1 = [1, 0]>, b̄1 = 1, Q1 =

(
1 0
0 2

)
.

If we use the squared distances S(x) = (miny∈C ‖x− y‖)2 as a penalty, then this will neces-
sitate calculating projections to the ellipsoid constraint. However, we can avoid projections
by following the methodology described in Section 2.4. Namely, we take

S(x) = max
(

0, (x− ā1)>Q1(x− ā1)− b̄1
)
.

The ellipsoid constraint set and a contour plot of the densities obtained by PSGLD and
PSGULMC algorithms are reported in Figure 6, where the lighter colors in the contour plots
(including the white and light blue colors) correspond to regions with a smaller estimated
density compared to darker blue regions. In these experiments, we tuned the parameters
for each algorithm: For PSGLD, we set δ = 0.0001, η = 0.00005, the number of iterations
k = 20, 000 and we reduce the stepsize η by 15% every 10, 000 iterations. For PSGULMC,
we set δ = 0.001, γ = 0.1, η = 0.00001, the number of iterations k = 17, 000 where the
stepsize η is reduced by 5% every 5, 000 iterations. We see that the densities lie within
the constraints, and PSGLD and PSGULMC sample from a target distribution that puts
higher weights into regions closer to x? as expected.

We also considered another example where the aim is to sample from a Gaussian mixture

π(x) ∝ 2

3
exp(−‖x− z1‖2/2) +

1

3
exp(−‖x− z2‖2/2),

where z1 = [2, 2]>, z2 = [−2,−2]>. We consider the non-convex constraint set C = C1 ∩ C2

obtained by intersecting the ellipsoids

Ci :=
{
x : (x− āi)>Qi(x− āi)− b̄1 ≤ 0

}
, for i = 1, 2.
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(a) PSGLD for ellipsoid constraints (b) PSGULMC for ellipsoid constraints

Figure 6: The density plot of the posterior distribution with ellipsoid constraints.

We take

ā1 = [1, 0]>, ā2 = [1, 0]>, b̄2 = 60, b̄1 = 40, Q1 =

(
1 0
0 2

)
, Q2 =

(
2 1
0 1

)
,

and consider the penalty

S(x) = max
(

0, (x− ā1)>Q1(x− ā1)− b̄1
)

+ max
(

0, (x− ā2)>Q2(x− ā2)− b̄2
)
.

For both PLD and PULMC, we take 10,000 iterations. The results are given in Figure 7
where we densities of the distributions that are outputs of PLD and PULMC algorithms are
given as a contour plot and where the constraint set C is the intersection of the two ellipsoids
displayed in the figure. We can see that the output distributions obtained PLD and PULMC
are within both of the constraints, and the peaks of the two Gaussian distributions that are
part of the mixture can be clearly observed in the figures.

3.2.2 Diabetes Dataset Experiment

Besides the synthetic dataset, we consider the Bayesian constrained linear regression on the
Diabetes dataset.7 Similar to Brosse et al. (2017), we take the constraint set to be

C = {x : ‖x‖1 ≤ s‖xOLS‖1} ,

where s is the shrinkage factor and xOLS is the solution to the ordinary least squares problem
without any constraints. The posterior distribution of this model is given by

π(x) ∝ e
∑n
j=1−

1
2

(yj−x>aj)2

· 1C ,

where 1C is the indicator function for the constraint set C, and (aj , yj), j = 1, 2, . . . n are the
data points in the Diabetes dataset. We experiment with different choices of s ranging from

7. This dataset is available online at https://archive.ics.uci.edu/ml/datasets/diabetes.
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(a) PLD for sampling a
Gaussian mixture subject to
ellipsoid constraints

(b) PULMC for sampling a
Gaussian mixture subject to
ellipsoid constraints

Figure 7: The contour plot of the density for a Gaussian mixture with ellipsoid constraints.

0 to 1. For penalized SGLD, we set η = s‖xOLS‖×10−5, b = 50, and δ = 0.05, for penalized
SGULMC, we set η = s‖xOLS‖ × 10−5, b = 50, δ = 0.05, and γ = 0.6. We take the prior
distribution to be the uniform distribution on C. We run our algorithms 100 times, and for

the `-th run, we let x
(`)
k denote the k-th iterate of the `-th run of our algorithms. First, we

compute the mean squared error MSE
(`)
k := 1

n

∑n
j=1(yj−(x

(`)
k )>aj)

2 corresponding to the k-
th iterate of the `-th run. In Figure 8(a) and 8(b), we report the average of the mean squared

error values of each iteration, averaged over 100 runs, i.e. we plot MSEk := 1
100

∑100
`=1 MSE

(`)
k

over the iterations k. The results of averaged MSE over 100 samples are shown in Figure 8(a)
and 8(b). We can observe from these figures that with s increasing from 0 to 1, the average
mean squared error will decrease to the mean squared error of xOLS for p = 1 as expected.
As the number of iterations increases, the error of iterates decreases to a steady state. To
illustrate that the final iterates of both algorithms are still lying in the constraint set C, we
plot the maximum values of ‖xlast‖1/‖xOLS‖1 calculated among 100 samples in Figure 8(c),
where xlast is the last iterates of each sample from both algorithms, against the shrinkage
factor s. The results from PSGLD and PSGULMC are shown as the blue and orange lines
in the figure, where we plot the equation ‖xlast‖1/‖xOLS‖1 = s as a dashed black line.
We can observe that ‖xlast‖1/‖xOLS‖1 is always smaller than s for various s values. We
illustrates that the final iterates for both PSGLD and PSGULMC stay in the constrained
set C as expected. In Figure 9, we also plotted the (expected) average number of iterations
required for achieving a target MSE value, as the target value is varied for both PSGLD and
PSGULMC algorithms. Here, the dimension d is fixed and is determined by the Diabetes
dataset. Although we do not provide theoretical guarantees for the MSE, comparing both
algorithms in practice, PSGLD admits slightly better accuracy (measured in terms of MSE)
on this example for the same number of iterations.

3.3 Bayesian Constrained Deep Learning

Non-Bayesian formulation of deep learning is based on minimizing the so-called empirical
risk f := 1

n

∑n
i=1 fi(x, zi) where fi is the loss function corresponding to the i-the data point

based on the dataset z = (z1, z2, . . . , zn) and has a particular structure as a composition
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(a) Penalized SGLD (b) Penalized SGULMC (c) Norm of parameters

Figure 8: Penalized SGLD and Penalized SGULMC results for Diabetes dataset with 1-
norm ball constraints in dimension 2.

(a) PSGLD for the Diabetes dataset (b) PSGULMC for the Diabetes dataset

Figure 9: Target MSE vs. average number of iterations needed to reach the target for the
Diabetes dataset.

of non-linear but smooth functions when smooth activation functions (such as the sigmoid
function or the ELU function) are used (Clevert et al., 2016). Furthermore, here x denotes
the weights of the neural network and is a concatenation of vectors x =

[
x(1), x(2), . . . , x(I)

]
(Hu et al., 2020) where x(i) are the (vectorized) weights of the i-th layer for i = 1, 2, . . . , I
and I is the number of layers. We refer the reader to Deisenroth et al. (2020) for the details.

Constraining the weights x to lie on a compact set has been proposed in the deep
learning practice for regularization purposes (Goodfellow et al., 2016). From the Bayesian
sampling perspective, instead of minimizing the empirical risk function, we are interested
in sampling from the posterior distribution π(x) ∝ e−f (see, e.g., Gürbüzbalaban et al.
(2021) for a similar approach) subject to constraints. We first consider the unconstrained
setting where we run SGLD for 400 epochs and draw 20 samples from the posterior. We

let xoptimal =
[
x

(1)
optimal, x

(2)
optimal, . . . , x

(I)
optimal

]
denote the average of the samples, which is an

approximation to the solution of the unconstrained minimization problem. We consider the

constraints ‖x(i)‖p ≤ s‖x(i)
optimal‖p for the i-th layer in the network with p = 1. Since `1-norm

promotes sparsity (Hastie et al., 2009), by adding these layer-wise constraints, we expect
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to get a sparser model compared to the original model. Sparser models can be preferable
as they would be more memory efficient, if they have similar prediction power (Srivastava
et al., 2014).

Note that f will be smooth on the constraint set if smooth activation functions are used
in which case our theory will apply. In our experiments, we use a four-layer fully connected
network with hidden layer width d = 400 on the MNIST dataset.8 The results are shown in
Table 2 and Table 3, where the results are based on the average of 20 independent samples.
We set the stepsize η = 10−7 for PSGLD and SGLD methods, and we decay η by 10%
every 100 epochs. We set penalty term δ = 0.1 and report results after 350 epochs. For
PSGULMC and SGULMC methods, we set γ = 0.1 and the stepsize η = 5 × 10−8, which
decreases 10% every 100 epochs. We set penalty term δ = 100 and report results after 400
epochs. For both PSGLD and PSGULMC, we use the batch size b = 128. In Table 2 we
report the accuracy of the prediction in the training and test datasets, where we compared
SGLD (without any constraints) to PSGLD algorithms with constraints defined by s = 0.9
and s = 0.8. We also report the maximum values of ŝ among 20 samples, where ŝ is defined

as ŝ :=
‖x‖1

‖xoptimal‖1

and x are the parameters from the last iteration, after running the

algorithms for 400 epochs. We can see from the results that for different s values, the value
of ŝ is always smaller than s, which indicates that the parameters of our algorithms satisfy
the constraints. Table 3 reports similar results for PSGULMC. Basically, by enforcing `1
constraints, we can make the models sparser with a smaller `1 constraint at the cost of a
relatively small decrease in training and test accuracy.

training
accuracy

testing
accuracy

ŝ :=
‖x‖1

‖xoptimal‖1

SGLD 90.60% 89.95% 1
PSGLD (s=0.9) 89.37% 88.89% 0.8954
PSGLD (s=0.8) 87.35% 87.80% 0.7999

Table 2: Training and testing accuracy of fully-connected network with different constraints
using PSGLD based on 20 samples.

training
accuracy

testing
accuracy

ŝ :=
‖x‖1

‖xoptimal‖1

SGULMC 89.88% 90.22% 1
PSGULMC (s=0.9) 89.72% 89.49% 0.8918
PSGULMC (s=0.8) 87.28% 87.80% 0.7931

Table 3: Training and testing accuracy of fully-connected network with different constraints
using PSGULMC based on 20 samples.

8. This dataset is available online at http://yann.lecun.com/exdb/mnist/.
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4. Conclusion

In this paper, we considered the problem of constrained sampling where the goal is to
sample from a target distribution π(x) ∝ e−f(x) when x is constrained to lie on a convex
body C. We proposed and studied penalty-based overdamped Langevin and underdamped
Langevin Monte Carlo (ULMC) methods. We considered targets where f is smooth and
strongly convex as well as the more general case where f can be non-convex. In both cases,
under some assumptions, we characterized the number of iterations and samples required to
sample the target up to an ε-error while the error is measured in terms of the 2-Wasserstein
or the total variation distance. Our methods improve upon the dimension dependency
of the existing approaches in a number of settings and to our knowledge provides the first
convergence results for ULMC-based methods for non-convex f in the context of constrained
sampling. Our methods can also handle unbiased stochastic noise on the gradients that arise
in machine learning applications. Finally, we illustrated the efficiency of our methods on
the Bayesian Lasso linear regression and Bayesian deep learning problems.
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Appendix A. Notations

A function f : Rd → R is said to be µ-strongly convex if there exists µ > 0 such that for
any x, y ∈ Rd,

f(x)− f(y)− g>(x− y) ≥ µ

2
‖x− y‖2, for all g ∈ ∂f(y),

where ∂f denotes the subdifferential. If f is differentiable at y, then ∂f(y) = {∇f(y)} is a
singleton set. If the latter inequality holds for µ = 0, we say f is merely convex (see e.g.
Nesterov (2013)).

The function f : Rd → R is L-smooth if for any x, y ∈ Rd, the gradients ∇f(x),∇f(y)
exist and satisfy ‖∇f(x)−∇f(y)‖ ≤ L‖x−y‖. If f is both µ-strongly convex and L-smooth,
it holds that (see e.g. Bubeck (2015)):

µ

2
‖x− y‖2 ≤ f(x)− f(y)−∇f(y)>(x− y) ≤ L

2
‖x− y‖2, for any x, y ∈ Rd.

We say that a function f : Rd → R is (m, b)-dissipative if for some m, b > 0, 〈∇f(x), x〉 ≥
m‖x‖2 − b, for any x ∈ Rd.

For any x, y ∈ R, x ∨ y denotes max(x, y) and x ∧ y denotes min(x, y). For any
x = (x1, . . . , xd) ∈ Rd, its `p-norm (also referred to as p-norm) is denoted by ‖x‖p :=(∑d

i=1 |xi|p
)1/p

. For any measurable set A ⊂ Rd, we use |A| to denote the Lebesgue mea-

sure of A. For a set A, the indicator function 1A(y) = 1 for y ∈ A and 1A(y) = 0 otherwise.
We denote R≥0 the set of non-negative real scalars.

A subset C of Rd is called a hypersurface of class Ck, if for every x0 ∈ C there is an
open set V ⊂ Rd containing x0 and a real-valued function φ ∈ Ck(V ) such that ∇φ is non-
vanishing on S ∩V = {x ∈ V : φ(x) = 0}, where Ck(V ) is the set of functions defined on V
with k continuous derivatives. We denote Dn(ξ) and D2n(ξ) as the first and second-order
derivatives of unit normal vector n in the sense of Leobacher and Steinicke (2021).

Next, we introduce three standard notions often used to quantify the distances between
two probability measures. For a survey on distances between two probability measures, we
refer to Gibbs and Su (2002).

Wasserstein metric. For any p ≥ 1, define Pp(Rd) as the space consisting of all the
Borel probability measures ν on Rd with the finite p-th moment (based on the Euclidean
norm). For any two Borel probability measures ν1, ν2 ∈ Pp(Rd), we define the standard

p-Wasserstein metric (Villani, 2009): Wp(ν1, ν2) := (inf E [‖Z1 − Z2‖p])1/p , where the in-
fimum is taken over all joint distributions of the random variables Z1, Z2 with marginal
distributions ν1, ν2.

Kullback-Leibler (KL) divergence. KL divergence, also known as relative entropy,
between two probability measures µ and ν on Rd, where µ is absolutely continuous with

respect to ν, is defined as: D(µ‖ν) :=
∫
Rd

dµ
dν log

(
dµ
dν

)
dν.

Total variation distance. The total variation (TV) distance between two probability
measures P and Q on a sigma-algebra F is defined as supA∈F |P (A)−Q(A)|.
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Appendix B. Weighted Csiszár-Kullback-Pinsker Inequality

The KL divergence can bound the Wasserstein distances on Rd under some technical con-
ditions, known as the weighted Csiszár-Kullback-Pinsker (W-CKP) inequality.

Lemma B.1 (page 337 in Bolley and Villani (2005)) For any two probability mea-
sures µ and ν on Rd, we have

W2(µ, ν) ≤ Ĉ

(
D(µ‖ν)

1
2 +

(
D(µ‖ν)

2

) 1
4

)
,

where Ĉ := 2 inf x̂∈Rd,α̂>0

(
1
α̂

(
3
2 + log

∫
Rd e

α̂‖x−x̂‖2dν(x)
)) 1

2
, provided that there exists some

α̂ > 0 and x̂ ∈ Rd such that
∫
Rd e

α̂‖x−x̂‖2dν(x) <∞.

Appendix C. Technical Lemmas

In this section, we provide some technical lemmas that are used in the proofs of the main
results. The proofs of these technical lemmas will be provided in Appendix D.

Lemma C.1 If Assumption 2.2 holds, then the penalty function S(x) = (δC(x))2 is contin-
uously differentiable, `-smooth with ` = 4 and (mS , bS)-dissipative with mS = 1, bS = R2/4,
i.e. 〈x,∇S(x)〉 ≥ mS‖x‖2 − bS , for any x ∈ Rd.

Lemma C.2 If Assumption 2.9 and Assumption 2.2 hold, then f + 1
δS is Lδ-smooth, with

Lδ := L+ `
δ and moreover f + 1

δS is (mδ, bδ)-dissipative with

mδ := −L− 1

2
+
mS

δ
> 0, bδ :=

1

2
‖∇f(0)‖2 +

bS
δ
, (39)

provided that δ < mS/(L+ 1
2), where mS , bS are defined in Lemma C.1.

Lemma C.3 Under Assumption 2.9 and Assumption 2.2, then f + S
δ is lower bounded for

S(x) = (δC(x))2, i.e. there exists a real non-negative scalar M such that f(x) + S(x)
δ ≥ −M

for any x ∈ Rd, where we can take

M := −f(0) +
1

2
‖∇f(0)‖2 +

bS
2δ

log 3, (40)

provided that δ ≤ 2mS
3(1+L) where mS , bS are defined in Lemma C.1.

Lemma C.4 If Assumption 2.9 and Assumption 2.2 hold, then the conditions in Theo-
rem 2.7 are satisfied with α̂ = mδ

6 and x̂ = 0, where mδ is defined in (39).

Lemma C.5 If Assumptions 2.18 and 2.2 hold, then the assumptions in Theorem 2.7 are
satisfied with α̂ = µ

4 and x̂ = x∗, where x∗ is the unique minimizer of f .

Appendix D. Technical Proofs

In this section, we provide technical proofs of the main results in our paper.
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Proof of Lemma 2.3

Note that π is supported on C whereas πδ is supported on Rd, and π is absolutely continuous
with respect to πδ. We can compute that the KL divergence between π and πδ is given by

D(π‖πδ)

=

∫
Rd

log

(
π(x)

πδ(x)

)
π(x)dx =

∫
C

log

(
e

1
δ
S(x)

∫
Rd e

−f(y)− 1
δ
S(y)dy∫

C e
−f(y)dy

)
e−f(x)∫
C e
−f(y)dy

dx (41)

=

∫
C

log

(∫
Rd e

−f(y)− 1
δ
S(y)dy∫

C e
−f(y)dy

)
e−f(x)∫
C e
−f(y)dy

dx, (42)

= log

(∫
Rd e

−f(y)− 1
δ
S(y)dy∫

C e
−f(y)dy

)
, (43)

where we used the definition of π and πδ to obtain (41) and the fact that S(x) = 0 for any
x ∈ C to obtain (42). We can further compute from (43) that

D(π‖πδ) = log

∫C e−f(y)− 1
δ
S(y)dy +

∫
Rd\C e

−f(y)− 1
δ
S(y)dy∫

C e
−f(y)dy


= log

1 +

∫
Rd\C e

−f(y)− 1
δ
S(y)dy∫

C e
−f(y)dy

 ≤ ∫Rd\C e− 1
δ
S(y)−f(y)dy∫

C e
−f(y)dy

, (44)

where we used the fact that S(y) = 0 for any y ∈ C to obtain the equality in (44) and
log(1 + x) ≤ x for any x ≥ 0 to obtain the inequality in (44). This completes the proof. �

Proof of Lemma 2.4

By the definitions of S(y) and g, we have

∣∣∣y ∈ Rd\C : S(y) ≤ ε
∣∣∣ =

∣∣∣y ∈ Rd\C : δC(y) ≤ δ
∣∣∣ ,

with δ := g−1(ε), where g−1 denotes the inverse function of g which exists due to the
assumptions on g. Translate C so that the largest ball it contains is centered at 0. The
set
(
1 + δ

r

)
C = C + δ

rC contains the δ-neighborhood of C since δ
rC contains a ball of radius

δ. The volume of
(
1 + δ

r

)
C is (1 + δ/r)d|C|, where we used the fact that for any Lebesgue

measurable set A in Rd the dilation of A by λ > 0 defined as λA is also Lebesgue measurable
with the Lebesgue measure λd|A|. Therefore, the volume of the set of all points that do not

belong to C but lie within distance at most δ from it has volume at most
((

1 + δ
r

)d − 1
)
|C|.

The proof is complete. �
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Proof of Lemma 2.5

First, we recall from Lemma 2.3 that the KL divergence between π and πδ is bounded by:

D(π‖πδ) ≤
∫
Rd\C e

− 1
δ
S(y)−f(y)dy∫

C e
−f(y)dy

. It is easy to compute that for any θ > 0,∫
Rd\C

e−
1
δ
S(y)−f(y)dy

=

∫
y∈Rd\C:S(y)≤θ

e−
1
δ
S(y)−f(y)dy +

∫
y∈Rd\C:S(y)>θ

e−
1
δ
S(y)−f(y)dy

≤
∣∣∣y ∈ Rd\C : S(y) ≤ θ

∣∣∣ e− inf
y∈Rd\C:S(y)≤θ f(y)

+ e−
θ
δ

∫
Rd\C

e−
1
δ
S(y)−f(y)dy, (45)

where we used S(y) ≥ 0 for any y ∈ Rd to obtain the inequality (45).
By taking θ = α̃δ log(1/δ) with α̃ > 0 in (45), and by applying Lemma 2.4, we have∫
Rd\C

e−
1
δ
S(y)−f(y)dy

≤
∣∣∣y ∈ Rd\C : S(y) ≤ α̃δ log(1/δ)

∣∣∣ e− inf
y∈Rd\C:S(y)≤α̃δ log(1/δ)

f(y)
+ δα̃

∫
Rd\C

e−
1
δ
S(y)−f(y)dy

≤

((
1 +

g−1(α̃δ log(1/δ))

r

)d
− 1

)
|C|e− inf

y∈Rd\C:S(y)≤α̃δ log(1/δ)
f(y)

+ δα̃
∫
Rd\C

e−
1
δ
S(y)−f(y)dy

≤

((
1 +

g−1(α̃δ log(1/δ))

r

)d
− 1

)
πd/2

Γ(d2 + 1)
Rde

− inf
y∈Rd\C:S(y)≤α̃δ log(1/δ)

f(y)

+ δα̃
∫
Rd\C

e−
1
δ
S(y)−f(y)dy,

where we used the fact that C is contained in an Euclidean ball with radius R (Assump-
tion 2.2) so that |C| is less than or equal to the volume of a Euclidean ball with radius R

which is πd/2

Γ( d
2

+1)
Rd, where Γ denotes the gamma function. The proof is complete. �

Proof of Lemma 2.6

Since C is convex, for every x ∈ Rd there exists a unique point of C nearest to x. Then
the fact that S(x) = (δC(x))2 is convex, `-smooth and continuously differentiable with a
gradient ∇S(x) = 2(x−PC(x)) is a direct consequence of Federer (1959, Theorem 4.8). To
show that S(x) is convex, consider two points x1 and x2 ∈ Rd, and their projections c1 and

c2 to the set C. By the convexity of the set C, we have c̄ := (c1+c2)
2 ∈ C and by the definition

of S, we obtain

S

(
x1 + x2

2

)
≤
∥∥∥∥x1 + x2

2
− c̄
∥∥∥∥2

=
‖(x1 − c1) + (x2 − c2)‖2

4

≤ 2‖x1 − c1‖2 + 2‖x2 − c2‖2

4
=
S(x1) + S(x2)

2
,
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where we used the inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 for any two vectors a, b in the last
inequality. Finally, note that by the triangle inequality,

‖∇S(y)−∇S(x)‖ ≤ 2‖y − x‖+ 2 ‖PC(y)− PC(x)‖ ≤ 4‖y − x‖,

where we used the non-expansiveness of the projection step. Therefore, we can take the
smoothness constant of S(x) to be ` = 4. This completes the proof. �

Proof of Theorem 2.7

By weighted Csiszár-Kullback-Pinsker (W-CKP) inequality (see Lemma B.1), we have

W2(π, πδ) ≤ Ĉ

(
D(π‖πδ)

1
2 +

(
D(π‖πδ)

2

) 1
4

)
, (46)

where Ĉ := 2 inf x̂∈Rd,α̂>0

(
1
α̂

(
3
2 + log

∫
Rd e

α̂‖x−x̂‖2dπδ(x)
)) 1

2
< ∞, provided that there ex-

ists some α̂ > 0 and x̂ ∈ Rd so that
∫
Rd e

α̂‖x−x̂‖2dπδ(x) <∞. Furthermore, we can compute
the following:∫

Rd
eα̂‖x−x̂‖

2
dπδ(x) =

∫
Rd e

α̂‖x−x̂‖2e−f(x)−S(x)
δ dx∫

Rd e
−f(x)−S(x)

δ dx
≤
∫
Rd e

α̂‖x−x̂‖2e−f(x)−S(x)
δ dx∫

C e
−f(x)dx

<∞,

provided that
∫
Rd e

α̂‖x−x̂‖2e−f(x)−S(x)
δ dx <∞ which is increasing in δ and hence uniformly

bounded as δ → 0.
We now take g(x) = x2 in Lemma 2.5 with S(x) = (δC(x))2 so that by Lemma 2.6, we

have that S is convex, `-smooth and continuously differentiable. Moreover, since S(x) =
(δC(x))2 and f is continuous and the set {y ∈ Rd : S(y) ≤ α̃δ log(1/δ)} is compact and we
have that in equation (5) in Lemma 2.5,

inf
y∈Rd\C:S(y)≤α̃δ log(1/δ)

f(y) ≥ inf
y∈Rd:S(y)≤α̃δ log(1/δ)

f(y) = min
y∈Rd:S(y)≤α̃δ log(1/δ)

f(y) > −∞,

and it is uniform in δ as δ → 0 and hence by applying Lemma 2.5 we obtain

D(π‖πδ) ≤ O
(

(δ log(1/δ))1/2
)
. (47)

Finally, we get the desired result by plugging (47) into W-CKP inequality (46). The proof
is complete. �

Proof of Lemma 2.10

Recall that we have the representation C = {x : h(x) ≤ 0} given in (12) where h(x) =
max1≤i≤m hi(x) for some m ≥ 1 with hi : Rd → R being convex for i = 1, 2, . . . ,m.
Furthermore, h(0) ≤ 0 as we assumed in Assumption 2.2 that 0 ∈ C. We first define the
function pm : Rd → R≥0,

pm(x) := inf{t ≥ 0 : hi(x/t) ≤ 0 for every i = 1, 2, . . . ,m}.
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By the convexity of hi, it is easy to check that pm is subadditive satisfying pm(x + y) ≤
pm(x) + pm(y) for every x and y, and it is homogeneous with pm(sx) = spm(x) for any x
and scalar s ≥ 0. Therefore, pm is convex and consequently locally Lipschitz continuous
(Roberts and Varberg, 1974) and Lipschitz continuous on compact sets. The function h(x)
is also convex; hence, there exists a positive constant B such that ‖y‖ ≤ B for any y ∈ ∂h(x)
and x ∈ C. We note that there exist some constants cK , CK > 0 such that

cKpm(x) ≤ ‖x‖ ≤ CKpm(x), for any x ∈ Rd,

where ‖x‖ is the Euclidean norm of x ∈ Rd. To show this, let bd(C) denote the boundary
of C and let

cK := min{‖x‖ : x ∈ bd(C)} and CK := max{‖x‖ : x ∈ bd(C)}.

Note that pm(x) = 1 for x ∈ bd(C) and furthermore pm is homogeneous. For any x, there
exists t > 0 such that tx ∈ bd(C). Moreover, cK ≤ ‖tx‖ ≤ CK and pm(tx) = 1. Therefore,
pm(x) = 1/t and cK/t ≤ ‖x‖ ≤ CK/t. Hence, we showed that

cKpm(x) ≤ pm(tx) ≤ CKpm(x).

Next, we can compute that∣∣∣x : −α
2
‖x‖2 ≤ h(x) ≤ 0

∣∣∣ =
∣∣∣x : 1− α

2
‖x‖2 ≤ pm(x) ≤ 1

∣∣∣ .
For any x such that pm(x) ≤ 1, we have ‖x‖ ≤ CK . Thus, for any x such that pm(x) ≥
1− α

2 ‖x‖
2 and pm(x) ≤ 1, we have pm(x) ≥ 1− α

2C
2
K , which implies that∣∣∣x : 1− α

2
‖x‖2 ≤ pm(x) ≤ 1

∣∣∣ ≤ ∣∣∣x : 1− α

2
C2
K ≤ pm(x) ≤ 1

∣∣∣ ,
provided that α < 2/C2

K . Furthermore, by the definition of the functional pm(x), we have
pm(x) ≤ 1 if and only if x ∈ C. Therefore,∣∣∣x : 1− α

2
C2
K ≤ pm(x) ≤ 1

∣∣∣ = |x : pm(x) ≤ 1| −
∣∣∣x : pm(x) ≤ 1− α

2
C2
K

∣∣∣
= |C| −

(
1− α

2
C2
K

)d
|C|.

On the other hand,∣∣∣x : h(x) +
α

2
‖x‖2 ≤ 0

∣∣∣ =
∣∣∣x : pm(x) +

α

2
‖x‖2 ≤ 1

∣∣∣
≥
∣∣∣x : pm(x) +

α

2
C2
K‖x‖2K ≤ 1

∣∣∣
≥
∣∣∣x : pm(x) ≤ 1− α

2
C2
K

∣∣∣ =
(

1− α

2
C2
K

)d
|C|,

provided that α < 2/C2
K . Hence, we conclude that

|C\Cα|
|Cα|

≤
1−

(
1− α

2C
2
K

)d(
1− α

2C
2
K

)d ≤ O(α),

as α→ 0. Therefore, the inequality (14) is satisfied, and the proof is complete. �
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Gürbüzbalaban, HU AND ZHU

Proof of Proposition 2.11

Before we proceed to the proof of Proposition 2.11, we first state a few technical lemmas
whose proofs will be provided at the end of the Appendix. The next technical lemma states
that the penalty function Sα(x) is strongly-convex outside a compact domain for α ≥ 0
if the boundary function h(x) is strongly convex, or for α > 0 when h is merely convex.
Before we proceed, let us recall that since the function h(x) is also convex, there exists a
positive constant B such that ‖y‖ ≤ B for any y ∈ ∂h(x) and x ∈ C.

Lemma D.1 Consider the constrained set Cα that is defined in (13) for α ≥ 0. Let β be
the strong convexity constant of h with the convention that β = 0 if h is merely convex. If
α + β > 0, then the penalty function Sα(x) is strongly convex with constant 2(α+β)ρ

B+(α+β)ρ on

the set Rd\U(Cα, ρ), where U(Cα, ρ) is the open ρ-neighborhood of Cα i.e. U(Cα, ρ) := {x :
dist(x, Cα) < ρ}.

We have the following corollary as an immediate consequence of Lemma D.1.

Corollary D.2 Under Assumption 2.9 and the assumptions of Lemma D.1, f + Sα

δ is µδ-

strongly convex outside an Euclidean ball with radius R + ρ, where µδ := 2(α+β)ρ
δ(B+(α+β)ρ) − L

provided that δ < 2(α+β)ρ
L(B+(α+β)ρ) .

When f +Sα/δ is strongly convex outside a compact domain, one can leverage the non-
asymptotic guarantees in Ma et al. (2019b) for Langevin dynamics to obtain the following
performance guarantees for the penalized Langevin dynamics. Before we proceed, we intro-
duce the following technical lemma, which states that f + Sα

δ is close to a strongly-convex
function.

Lemma D.3 Under the assumptions in Corollary D.2, for any given m > 0, there exists a
C1 function U such that U is s0-strongly convex on Rd with

sup
x∈Rd

(
U(x)−

(
f(x) +

Sα(x)

δ

))
− inf
x∈Rd

(
U(x)−

(
f(x) +

Sα(x)

δ

))
≤ R0 := 2(R+ ρ)2

(
m+ L

2
+

(m+ L)2

µδ

)
,

where s0 := min(m,µδ/2).

Finally, we can proceed to the proof of Proposition 2.11. We first consider the case that
C = {x : h(x) ≤ 0}, where h is β-strongly convex.

First of all, by running the penalized Langevin dynamics (11), we have

TV(νK , π) ≤ TV(νk, πδ) + TV(πδ, π),

where TV standards for the total variation distance. We recall from (47) that in KL

divergence: D(π‖πδ) ≤ O
(

(δ log(1/δ))1/2
)

. By Pinsker’s inequality, we have

TV(πδ, π) ≤
√

1

2
D(π‖πδ) ≤ O

(
(δ log(1/δ))1/4

)
.
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Therefore, TV(πδ, π) ≤ Õ(ε) provided that δ = ε4.
By Lemma C.2, f + S/δ is Lδ-smooth with Lδ := L+ `

δ . Note that in Lemma D.3, we
showed that there exists a C1 function U that is s0-strongly convex and satisfies

sup
x∈Rd

(
U(x)− f(x)− S(x)

δ

)
− inf
x∈Rd

(
U(x)− f(x)− S(x)

δ

)
≤ R0.

By Proposition 2 in Ma et al. (2019b), πδ satisfies a log-Sobolev inequality with constant
ρ∗ ≥ s0e

−R0 . Moreover, with δ = ε4, we recall from Lemma C.2 that s0 = min(m,µδ/2) and

R0 := 2(R + ρ)2
(
m+L

2 + (m+L)2

µδ

)
so that µδ = 2βρ

δ(B+βρ) − L = Θ
(

1
ε4

)
and thus s0 = Θ(1),

R0 = Θ(1). By the proof of Theorem 1 in Ma et al. (2019b), TV(νK , πδ) ≤ Õ(ε) provided
that

η = O
(
ρ∗
L2
δ

ε2

d

)
= O

(
ε10

d

)
, and K = Õ

(
1

ρ∗η

)
= Õ

(
L2
δd

ρ2
∗ε

2

)
= Õ

(
d

ε10

)
.

This completes the proof when h is β-strongly convex.
Indeed, we can see that the leading-order term for K we derived above does not depend

on β. However, we can also spell out the dependence on β through the second-order term

as follows. Notice that, by taking into account β, we have µδ = Θ
(
β
ε4

)
and thus s0 = Θ(1)

and R0 = Θ(1) + Θ
(
ε4

β

)
. Then, we have TV(νK , πδ) ≤ Õ(ε) provided that

η = O
(
ρ∗
L2
δ

ε2

d

)
, and K = Õ

(
1

ρ∗η

)
= Õ

(
L2
δd

ρ2
∗ε

2

)
= Õ

(
d

ε10

)
+ Õ

(
d

βε6

)
,

where we ignored the dependence on the other constants B,m,L, ρ when we consider the
second-order dependence on β.

Next, we consider the case when h is merely convex so that

hα(x) := h(x) +
α

2
‖x‖2

is α-strongly convex. By the previous discussions, TV(νK , π
α
δ ) ≤ Õ(ε) provided that

η = O
(
ρ∗
L2
δ

ε2

d

)
, and K = Õ

(
1

ρ∗η

)
= Õ

(
L2
δd

ρ2
∗ε

2

)
,

where we can take ρ∗ = s0e
−R0 . Next, we can compute that

D(πα‖π) =

∫
Rd

log

(
πα(x)

π(x)

)
πα(x)dx =

∫
Cα

log

( ∫
C e
−f(x)dx∫

Cα e
−f(x)dx

)
e−f(x)∫

Cα e
−f(y)dy

dx

= log

( ∫
C e
−f(x)dx∫

Cα e
−f(x)dx

)
= log

(
1 +

∫
C\Cα e

−f(x)dx∫
Cα e

−f(x)dx

)

≤

∫
C\Cα e

−f(x)dx∫
Cα e

−f(x)dx
≤ esupx∈C f(x)−infx∈C f(x) |C\Cα|

|Cα|
,
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where supx∈C f(x) − infx∈C f(x) is finite since C is compact. We recall from Lemma 2.10

that |C\C
α|

|Cα| ≤ O(α), as α→ 0. Finally, by Pinsker’s inequality,

TV(πα, π) ≤
√

1

2
D(πα‖π) ≤ O(

√
α),

as α → 0. Therefore TV(πα, π) ≤ O(ε) provided that α = ε2. We recall from Lemma C.2

that s0 = min(m,µδ/2), and R0 = 2(R+ ρ)2
(
m+L

2 + (m+L)2

µδ

)
, so that µδ = 2αρ

δ(B+αρ) −L =

Θ
(

1
ε2

)
with the choice of α = ε2 and δ = ε4. Hence, we conclude that TV(νK , π) ≤ Õ(ε)

provided that δ = ε4, α = ε2 and

η = O
(
ρ∗
L2
δ

ε2

d

)
= O

(
ε10

d

)
, and K = Õ

(
1

ρ∗η

)
= Õ

(
L2
δd

ρ2
∗ε

2

)
= Õ

(
d

ε10

)
.

This completes the proof. �

Proof of Lemma 2.13

Since C is a convex set, every point in Rd has an unique projection on C, which leads to
reach(C) =∞, where

reach(C) := sup
{
ζ ∈ [0,∞] : every point in Cζ has unique projection on C

}
,

with Cζ := {x ∈ Rd : inf{‖x − ξ‖ : ξ ∈ C} < ζ}. According to Corollary 4 in Leobacher
and Steinicke (2021), we can get that D2PC is bounded on Rd, where PC is the projection
operator on C. Then there exists some constant MP > 0 such that ‖D2PC‖F ≤ MP ,
where ‖ · ‖F is the Frobenius norm. Moreover, we can compute that S(x) = (x− PC(x))2,
∇S(x) = 2(x− PC(x)) and ∇2S(x) = 2(I −DPC(x)). Note that for x, y ∈ Rd,∥∥∇2S(x)−∇2S(y)

∥∥
F

= 2 ‖DPC(x)−DPC(y)‖F ≤ 2MP‖x− y‖.

The proof is complete. �

Proof of Corollary 2.14

The result follows from Lemma 2.13 immediately. �

Proof of Proposition 2.15

We first consider the case that C = {x : h(x) ≤ 0}, where h(x) is β-strongly convex. First
of all, by running the penalized underdamped Langevin Monte Carlo (19)-(20), in total
variation distance (TV), we have

TV(νK , π) ≤ TV(νk, πδ) + TV(πδ, π).

We recall from (47) that the KL divergence between π and πδ can be bounded as: D(π‖πδ) ≤
O
(

(δ log(1/δ))1/2
)

. By Pinsker’s inequality, we have

TV(πδ, π) ≤
√

1

2
D(π‖πδ) ≤ O

(
(δ log(1/δ))1/4

)
.
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Therefore, TV(πδ, π) ≤ Õ(ε) provided that δ = ε4. Moreover, by Corollary D.2, f + S/δ is
µδ strongly convex outside an Euclidean ball with radius R+ ρ with µδ := 2βρ

δ(B+βρ) −L and

by Lemma C.2, f + S/δ is Lδ-smooth with Lδ := L+ `
δ . By Theorem 1 in Ma et al. (2021)

and Pinsker’s inequality, we have

TV(νK , πδ) ≤
√

1

2
D(νK‖πδ) ≤ Õ(ε),

provided that

K = Õ

(
max

{
L

3/2
δ

µ̂2
∗
,
Mδ

µ̂2
∗

} √
d

ε

)
,

where µ̂∗ = min {ρ∗, 1}, where ρ∗ is the log-Sobolev constant for πδ. Note that in Lemma D.3,
we showed that there exists a C1 function U that is s0-strongly convex and satisfies:

sup
x∈Rd

(
U(x)− f(x)− S(x)

δ

)
− inf
x∈Rd

(
U(x)− f(x)− S(x)

δ

)
≤ R0.

Therefore, by Holley-Stroock perturbation principle (see Holley et al. (1987)), the log-
Sobolev constant for πδ can be lower bounded as ρ∗ ≥ s0e

−R0 where we recall from

Lemma C.2 that s0 = min(m,µδ/2) and R0 := 2(R + ρ)2
(
m+L

2 + (m+L)2

µδ

)
, so that we

can take µ̂∗ = min
{
s0e
−R0 , 1

}
. Finally, we notice that Lδ = L + `

δ = O
(

1
ε4

)
and

Mδ = Mf + MS
δ = O

(
1
ε4

)
with the choice δ = ε4. Moreover, µδ = 2βρ

δ(B+βρ) − L = O
(

1
ε4

)
so that s0 = Θ(1) and R0 = Θ(1) and thus µ̂∗ = Θ(1). Hence, we conclude that

TV(νK , π) ≤ Õ(ε) provided that K = Õ
(√

d
ε7

)
.

Indeed, we can see that the leading-order term for K we derived above does not depend
on β. However, we can also spell out the dependence on β through the second-order term

as follows. Notice that, by taking into account β, we have µδ = Θ
(
β
ε4

)
and thus s0 = Θ(1)

and R0 = Θ(1) + Θ
(
ε4

β

)
. Then, we have TV(νK , πδ) ≤ Õ(ε) provided that K = Õ

(√
d
ε7

)
+

Õ
(√

d
βε3

)
, where we ignored the dependence on the other constants B,m,L, ρ when we

consider the second-order dependence on β.
Next, we consider the case when h is merely convex so that

hα(x) := h(x) +
α

2
‖x‖2

is α-strongly convex and consider the constraint set

Cα :=
{
x : h(x) +

α

2
‖x‖2 ≤ 0

}
.

In the previous discussions, we showed that TV(νK , π
α
δ ) ≤ Õ(ε) provided that K =

Õ
(

max

{
L

3/2
δ
µ̂2
∗
, Mδ
µ̂2
∗

} √
d
ε

)
, where we can take µ̂∗ = min

{
s0e
−R0 , 1

}
. By following the

proof of Proposition 2.11, we have TV(πα, π) ≤ O(ε) provided that α = ε2. We recall

from Lemma C.2 that s0 = min(m,µδ/2) and R0 = 2(R + ρ)2
(
m+L

2 + (m+L)2

µδ

)
, so that
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µδ = 2αρ
δ(B+αρ) − L = Θ

(
1
ε2

)
with the choice of α = ε2 and δ = ε4 so that s0 = Θ(1)

and R0 = Θ(1) and µ̂∗ = Θ(1). Finally, we notice that Lδ = L + `
δ = O

(
1
ε4

)
and

Mδ = Mf+MS
δ = O

(
1
ε4

)
with the choice δ = ε4. Hence, we conclude that TV(νK , π) ≤ Õ(ε)

provided that δ = ε4 and α = ε2 and K = Õ
(√

d
ε7

)
. This completes the proof. �

Proof of Lemma 2.19

Since f is strongly convex, it admits a unique minimizer, say x∗,f . If x∗,f ∈ C, then for any
x /∈ C, S(x) > 0 and

f(x) +
S(x)

δ
> f(x∗,f ) +

S(x∗,f )

δ
= f(x∗,f ),

which implies the minimizer of f + S
δ must lie within C and hence the conclusion follows.

If x∗,f /∈ C, then S(x∗,f ) = (δC(x∗,f ))2 > 0. Then, for any x such that S(x) > S(x∗,f ), we
have

f(x) +
S(x)

δ
> f(x∗,f ) +

S(x∗,f )

δ
> f(x∗,f ),

which implies that any minimizer x∗ of f + S
δ must satisfy S(x∗) ≤ S(x∗,f ) so that δC(x∗) ≤

δC(x∗,f ). Since C is contained in a Euclidean ball centered at 0 with radius R > 0, we
conclude that ‖x∗‖ ≤ R+ δC(x∗,f ), which is independent of δ. This completes the proof. �

Proof of Proposition 2.21

First of all, we notice that with S(x) = (δC(x))2, by Lemma 2.6, S is convex, `-smooth
(with ` = 4) and continuously differentiable.

We will first show that we can uniformly bound the variance of the gradient noise. Let
x∗ be the unique minimizer of f(x) + 1

δS(x) (the minimizer is unique since f(x) + 1
δS(x)

is strongly convex by Assumption 2.18 and Lemma 2.6). By Lemma 2.19, ‖x∗‖ ≤ (1 + c)R
for some c,R ≥ 0. This implies that for any ηLδ

2 < 1,

E‖xk+1 − x∗‖2

= E
∥∥∥∥xk − x∗ − η(∇f(xk) +

1

δ
∇S(xk)

)∥∥∥∥2

+ η2E
∥∥∥∇f̃(xk)−∇f(xk)

∥∥∥2
+ E

∥∥∥√2ηξk+1

∥∥∥2

≤ E ‖xk − x∗‖2 − 2ηE
〈
xk − x∗,∇f(xk) +

1

δ
∇S(xk)

〉
+ η2E

∥∥∥∥∇f(xk) +
1

δ
∇S(xk)

∥∥∥∥2

+ 2η2σ2
(
L2E‖xk‖2 + ‖∇f(0)‖2

)
+ 2ηd

≤ E ‖xk − x∗‖2 − 2η

(
1− ηLδ

2

)
E
〈
xk − x∗,∇f(xk) +

1

δ
∇S(xk)

〉
+ 2η2σ2

(
L2E‖xk‖2 + ‖∇f(0)‖2

)
+ 2ηd

≤ (1− 2ηµ+ η2µLδ)E ‖xk − x∗‖2 + 2η2σ2
(
L2E‖xk‖2 + ‖∇f(0)‖2

)
+ 2ηd

≤ (1− 2ηµ+ η2µLδ)E ‖xk − x∗‖2

+ 2η2σ2
(
2L2E‖xk − x∗‖2 + 2L2(1 + c)2R2 + ‖∇f(0)‖2

)
+ 2ηd,
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where we used ηLδ
2 < 1, and the fact that f + 1

δS is µ-strongly convex and Lδ-smooth.

Hence, for any η ≤ µ
µLδ+4σ2L2 and ηLδ

2 < 1, we get

E‖xk+1 − x∗‖2 ≤ (1− ηµ)E ‖xk − x∗‖2 + 2η2σ2
(
2L2(1 + c)2R2 + ‖∇f(0)‖2

)
+ 2ηd,

which implies that

E‖xk‖2 ≤ 2E‖xk − x∗‖2 + 2(1 + c)2R2

≤ 4ησ2

µ

(
2L2(1 + c)2R2 + ‖∇f(0)‖2

)
+

4d

µ
+ 2(1 + c)2R2.

Hence, we conclude that

E
∥∥∥∇f̃(xk)−∇f(xk)

∥∥∥2
≤ 2σ2

(
L2E‖xk‖2 + ‖∇f(0)‖2

)
≤ σ2

V d, (48)

where

σ2
V := σ2

(
8ησ2L2

µd

(
2L2(1 + c)2R2 + ‖∇f(0)‖2

)
+

8L2

µ
+

4L2(1 + c)2R2

d
+

2‖∇f(0)‖2

d

)
.

(49)
Let νK be the distribution of the K-th iterate of the penalized stochastic gradient

Langevin dynamics given by (23). By applying Theorem 4 in Dalalyan and Karagulyan
(2019), under the assumption that f(x) + 1

δS(x) is µ-strongly convex and Lδ-smooth and
the variance of the gradient noise is uniformly bounded (i.e., (48)) and the stepsize satisfies

η ≤ µ
µLδ+4σ2L2 and η < min

(
µ

µLδ+4σ2L2 ,
2
Lδ

)
(so that (48) holds), we have

W2(νK , πδ) ≤ (1− µη)KW2(ν0, πδ) +
1.65Lδ
µ

√
ηd+

σ2
V

√
ηd

1.65Lδ + σV
√
µ
,

where σV is defined in (49), so that together with Theorem 2.7 we have

W2(νK , π) ≤ (1−µη)KW2(ν0, πδ)+
1.65Lδ
µ

√
ηd+

σ2
V

√
ηd

1.65Lδ + σV
√
µ

+O
(

(δ log(1/δ))1/8
)
.

Moreover, we can compute that

W2(ν0, πδ) ≤
(
EX∼ν0‖X‖2

)1/2
+
(
EX∼πδ‖X‖

2
)1/2

,

and by the definition of πδ,

EX∼πδ‖X‖
2 =

∫
Rd ‖x‖

2e−f(x)−S(x)
δ dx∫

Rd e
−f(x)−S(x)

δ dx
≤
∫
Rd ‖x‖

2e−f(x)dx∫
C e
−f(x)dx

, (50)

where the upper bound in (50) is finite and independent of δ since f is µ-strongly convex.

By taking δ = ε8, η = ε18µ2

d(Lε8+`)2 , and K = Õ
(
d(Lε8+`)2

ε18µ3

)
, we get

W2(νK , π) ≤ Õ(ε) +
σ2
V

√
ηd

1.65Lδ + σV
√
µ

≤ Õ(ε) + Õ
(
σ2
V

√
ηdε8

Lε8 + `

)
≤ Õ(ε) + Õ

(
σ2
V ε

17µ

(Lε8 + `)2

)
.
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Therefore W2(νK , π) ≤ Õ(ε) provided that σ2
V = Õ

(
(Lε8+`)2

ε16µ

)
. This implies that σ2

V and

hence σ2 and the batch-size b can simply be taken as the constant order, and therefore the

stochastic gradient computations satisfy: K̂ := Kb = Õ
(
d(Lε8+`)2

ε18µ3

)
. Finally, by Lemma 2.6,

we can take ` = 4. The proof is complete. �

Proof of Proposition 2.22

Before we proceed to the technical proof of Proposition 2.22, we make the following remark
regarding Lemma C.3.

Remark D.4 Note that in Lemma C.3 without loss of generality, we can always assume
M = 0 so that f + S

δ ≥ 0. This is because, if M > 0, we can always consider the “shifted”

function f̂ := f + M which will satisfy f̂ ≥ 0 and then apply the proof arguments to

e−f̂(x)−S(x)
δ /

∫
x∈C e

−f̂(x)−S(x)
δ dx which will be proportional to e−f(x)−S(x)

δ . Therefore, in the
rest of the paper and the proofs, we will assume M = 0 in Lemma C.3.

Now, we are ready to present the technical proof of Proposition 2.22.

First of all, we notice that with S(x) = (δC(x))2, by Lemma 2.6, S is convex, `-smooth
and continuously differentiable. One technical challenge is that we cannot apply the results
directly from Dalalyan and Riou-Durand (2020) because the results in Dalalyan and Riou-
Durand (2020) are for the underdamped Langevin Monte Carlo without the gradient noise.
Therefore, we need to adapt their approach to allow the additional gradient noise. First,
we will obtain uniform L2 bounds on penalized SGULMC vk and xk in (25)–(26).

Under Assumption 2.18 and by Lemma 2.6, f + S
δ is µ-strongly convex so that we have〈

∇f(x) +
1

δ
∇S(x), x− x∗

〉
≥ µ‖x− x∗‖2, (51)

where x∗ is the unique minimizer of f + 1
δS. By Lemma 2.19, ‖x∗‖ ≤ (1 + c)R for some

c,R ≥ 0. On the other hand,∣∣∣∣〈∇f(x) +
1

δ
∇S(x), x∗

〉∣∣∣∣ ≤ Lδ‖x∗‖ · ‖x− x∗‖ ≤ Lδ(1 + c)R‖x− x∗‖,

which together with (51) implies that〈
∇f(x) +

1

δ
∇S(x), x

〉
≥ µ‖x− x∗‖2 − Lδ(1 + c)R‖x− x∗‖

≥ µ

2
‖x− x∗‖2 −

L2
δ(1 + c)2R2

2µ

≥ µ

4
‖x‖2 − µ

2
‖x∗‖2 −

L2
δ(1 + c)2R2

2µ

≥ µ

4
‖x‖2 − µ

2
(1 + c)2R2 −

L2
δ(1 + c)2R2

2µ
,
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and therefore f + 1
δS is (m0, b0)-dissipative with

m0 :=
µ

4
, b0 :=

µ

2
(1 + c)2R2 +

L2
δ(1 + c)2R2

2µ
, (52)

and moreover by Lemma C.3 and Remark D.4, f+ 1
δS ≥ 0, and it follows from Lemma EC.5

in Gao et al. (2022) that uniformly in k, we have

E‖xk‖2 ≤ Cdx :=

∫
R2d V(x, v)µ0(dx, dv) + 4(d+A)

λ
1
8(1− 2λ)γ2

,

E‖vk‖2 ≤ Cdv :=

∫
R2d V(x, v)µ0(dx, dv) + 4(d+A)

λ
1
4(1− 2λ)

, (53)

where

λ :=
1

2
min(1/4,m0/(Lδ + γ2/2)), (54)

A :=
m0

2Lδ + γ2

(
‖∇f(0)‖2

2Lδ + γ2
+

b0
m0

(
Lδ +

1

2
γ2

)
+ f(0)

)
, (55)

and µ0 is the distribution of (x0, v0) and

V(x, v) := f(x) +
S(x)

δ
+

1

4
γ2
(∥∥x+ γ−1v

∥∥2
+
∥∥γ−1v

∥∥2 − λ‖x‖2
)
.

Next, we will bound the difference between vk+1, xk+1 of the penalized SGULMC and
ṽk+1, x̃k+1, which are the penalized ULMC without gradient noise that also start from vk, xk
of the penalized SGULMC at k-th iterate. We recall from (25)-(26) that

vk+1 = ψ0(η)vk − ψ1(η)

(
∇f̃(xk) +

1

δ
∇S(xk)

)
+
√

2γξk+1,

xk+1 = xk + ψ1(η)vk − ψ2(η)

(
∇f̃(xk) +

1

δ
∇S(xk)

)
+
√

2γξ′k+1,

and next, we define

ṽk+1 := ψ0(η)vk − ψ1(η)

(
∇f(xk) +

1

δ
∇S(xk)

)
+
√

2γξk+1,

x̃k+1 := xk + ψ1(η)vk − ψ2(η)

(
∇f(xk) +

1

δ
∇S(xk)

)
+
√

2γξ′k+1,

so that one can easily check that

E‖vk+1 − ṽk+1‖2 ≤ (ψ1(η))22σ2
(
L2E‖xk‖2 + ‖∇f(0)‖2

)
≤ 2η2σ2

(
L2Cdx + ‖∇f(0)‖2

)
,

(56)
and moreover,

E‖xk+1 − x̃k+1‖2 ≤ (ψ2(η))22σ2
(
L2E‖xk‖2 + ‖∇f(0)‖2

)
≤ 2η4σ2

(
L2Cdx + ‖∇f(0)‖2

)
.

(57)

55
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Since ṽk+1, x̃k+1 are the updates without the gradient noise, by using the synchronous
coupling and following the same argument as in the proof of Theorem 2 in Dalalyan and
Riou-Durand (2020), one can show that

(
E

[∥∥∥∥P−1

[
ṽk+1 − V ((k + 1)η)
x̃k+1 −X((k + 1)η)

]∥∥∥∥2
])1/2

≤
(

1− 0.75µη

γ

)(
E

[∥∥∥∥P−1

[
vk − V (kη)
xk −X(kη)

]∥∥∥∥2
])1/2

+ 0.75Lδη
2
√
d,

where (X(t), V (t)) is the continuous-time penalized underdamped Langevin diffusion (17)-
(18) starting from the Gibbs distribution πδ and

P :=
1

γ

[
0d×d −γId
Id Id

]
.

This implies that

(
E

[∥∥∥∥P−1

[
vk+1 − V ((k + 1)η)
xk+1 −X((k + 1)η)

]∥∥∥∥2
])1/2

≤
(

1− 0.75µη

γ

)(
E

[∥∥∥∥P−1

[
vk − V (kη)
xk −X(kη)

]∥∥∥∥2
])1/2

+ 0.75Lδη
2
√
d

+

(
E

[∥∥∥∥P−1

[
ṽk+1 − vk+1

x̃k+1 − xk+1

]∥∥∥∥2
])1/2

,

where we can compute from (56) and (57) that

(
E

[∥∥∥∥P−1

[
ṽk+1 − vk+1

x̃k+1 − xk+1

]∥∥∥∥2
])1/2

≤
∥∥P−1

∥∥ (E‖ṽk+1 − vk+1‖2 + E‖x̃k+1 − xk+1‖2
)1/2

≤ 2ησ
∥∥P−1

∥∥(L2Cdx + ‖∇f(0)‖2
)1/2

,

provided that η ≤ 1, which implies that

Ak+1 ≤
(

1− 0.75µη

γ

)
Ak + 0.75Lδη

2
√
d+ 2ησ

∥∥P−1
∥∥(L2Cdx + ‖∇f(0)‖2

)1/2
,

where

Ak :=

(
E

[∥∥∥∥P−1

[
vk − V (kη)
xk −X(kη)

]∥∥∥∥2
])1/2

.
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This implies that

W2(νk, π) ≤ γ−1
√

2Ak

≤ Lδη
√

2d

µ
+

8
√

2

3µ
σ
∥∥P−1

∥∥(L2Cdx + ‖∇f(0)‖2
)1/2

+
√

2

(
1− 0.75µη

γ

)k A0

γ

=
Lδη
√

2d

µ
+

8
√

2

3µ
σ
∥∥P−1

∥∥(L2Cdx + ‖∇f(0)‖2
)1/2

+
√

2

(
1− 0.75µη

γ

)k
W2(ν0, π),

where νK denotes the distribution of the K-th iterate xK of penalized stochastic gradient
underdamped Langevin Monte Carlo (25)-(26). By the same argument as in the proof of
Proposition 2.21, we can show that W2(ν0, πδ) can be bounded uniformly in δ.

Hence, by taking δ = ε8, we get

W2(νK , π) ≤ Õ(ε) +
8
√

2

3µ
σ
∥∥P−1

∥∥(L2Cdx + ‖∇f(0)‖2
)1/2

,

where Õ ignores the dependence on log(1/ε), provided that

η = min

(
1√
d

ε9µ

(Lε8 + `)
,

1√
(µ+ L)ε8 + `

ε12µ

(Lε8 + `)

)
,

and

K = Õ

(√
(µ+ L)ε8 + `(Lε8 + `)

ε13µ2
max

(
√
d,

√
(L+ µ)ε8 + `

ε3

))
,

where Õ ignores the dependence on log(1/ε). Next, we recall from (53) that

Cdx =

∫
R2d V(x, v)µ0(dx, dv) + 4(d+A)

λ
1
8(1− 2λ)γ2

(58)

where we recall from (54)-(55) that

λ =
1

2
min(1/4,m0/(Lδ + γ2/2)), (59)

A =
m0

2Lδ + γ2

(
‖∇f(0)‖2

2Lδ + γ2
+

b0
m0

(
Lδ +

1

2
γ2

)
+ f(0)

)
, (60)

where we recall from (52) that m0 = µ
4 and b0 = µ

2 (1+c)2R2+
L2
δ(1+c)2R2

2µ . Since Lδ = L+ `
δ =

L+ `
ε8

, we conclude from (59) and (60) that λ = Ω
(

µε8

ε8L+`

)
and A = O

((
L+ `

ε8

)2 1
µ

)
, and it

follows from (58) that Cdx = O
(
ε16dµ(Lε8+`)+(Lε8+`)3

µ2ε24

)
, which implies thatW2(νK , π) ≤ Õ(ε)

provided that σ = O
(

ε13µ2

L
√
Lε8+`

√
ε16dµ+(Lε8+`)2

)
, so that we can take

b = Ω
(
σ−2

)
= Ω

(
L2(Lε8 + `)(ε16dµ+ (Lε8 + `)2)

ε26µ4

)
.
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Hence, W2(νK , π) ≤ Õ(ε) with stochastic gradient computations K̂ := Kb:

K̂ = Õ

(
L2(Lε8 + `)2(ε16dµ+ (Lε8 + `)2)

√
(µ+ L)ε8 + `

ε39µ6
max

(
√
d,

√
(L+ µ)ε8 + `

ε3

))
.

Finally, by Lemma 2.6, we can take ` = 4. The proof is complete. �

Proof of Proposition 2.23

Let νK be the distribution of the K-th iterate xK of penalized stochastic gradient Langevin
dynamics (27). We recall from Lemma C.2 that f + 1

δS is (mδ, bδ)-dissipative with mδ :=

−L− 1
2 + mS

δ and bδ := 1
2‖∇f(0)‖2 + bS

δ from (67) and f+ 1
δS is Lδ-smooth with Lδ := L+ `

δ
and we also recall from Lemma C.3 and Remark D.4 that f+ 1

δS ≥ 0. Under Assumption 2.9
and the assumption that η ∈ (0, 1 ∧ mδ

4L2
δ
) and kη ≥ 1, by Proposition 10 in Raginsky et al.

(2017), we have

W2(νK , π) ≤
(
C̃0σ

1/2 + C̃1η
1/4
)

(Kη) + C̃2e
−Kη/cLS +O

(
(δ log(1/δ))1/8

)
, (61)

where C̃1, C̃2 are defined as,

C̃0 := (12 + 8(κ0 + 2bδ + 2d))
(
C0 +

√
C0

)
,

C̃1 := (12 + 8(κ0 + 2bδ + 2d))

(
6L2

δ(C0 + d) +
√

6L2
δ(C0 + d)

)
,

C̃2 :=
√

2cLS

(
log ‖p0‖∞ +

d

2
log

3π

mδ
+
Lδκ0

3
+ ‖∇f(0)‖

√
κ0 + f(0) +

bδ
2

log 3

)1/2

,

where κ0 is given in (28) and

C0 := L2
δ

(
κ0 + 2

(
1 ∨ 1

mδ

)(
bδ + 2‖∇f(0)‖2 + d

))
+ ‖∇f(0)‖2,

where p0 is the density of x0, κ0 is defined in (28) and cLS is the constant for the logarithmic
Sobolev inequality that πδ satisfies which can be bounded as

cLS ≤
2m2

δ + 8L2
δ

m2
δLδ

+
1

λ∗

(
6Lδ(d+ 1)

mδ
+ 2

)
,

where λ∗ is the spectral gap of the penalized overdamped Langevin SDE (10) that is defined
in (29). Moreover, we observe that C̃0 = O(C̃1). By (61), we have W2(νK , π) ≤ Õ(ε) with

η = Θ

(
ε4

C̃4
1c

4
LS(log C̃2)4

)
= Θ̃

(
ε196

d8λ−4
∗ (log(λ−1

∗ ))4

)
,

K = Õ
(
d9λ−5
∗ (log(λ−1

∗ ))4

ε196

)
,
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and

σ2 = O(η) = Θ̃

(
ε196

d8λ−4
∗ (log(λ−1

∗ ))4

)
,

where λ∗ is defined in (29) so that

b = Ω
(
σ−2

)
= Ω̃

(
d8λ−4
∗ (log(λ−1

∗ ))4

ε196

)
.

Hence, the stochastic gradient computations require

K̂ = Kb = Õ
(
d17λ−9

∗ (log(λ−1
∗ ))8

ε392

)
.

Finally, under the further assumptions of Corollary D.2, f + S
δ is µδ-strongly convex

(with µδ := 2αρ
δ(B+αρ) −L) outside of an Euclidean ball with radius R+ρ and by Lemma C.2,

f+S/δ is Lδ-smooth with Lδ := L+ `
δ . By applying Lemma D.3, there exists a C1 function

U such that U is s0-strongly convex on Rd with

sup
x∈Rd

(
U(x)−

(
f(x) +

S(x)

δ

))
− inf
x∈Rd

(
U(x)−

(
f(x) +

S(x)

δ

))
≤ R0,

where s0, R0 are defined in Lemma D.3. We define πU as the Gibbs measure such that
πU ∝ e−U(x) and we also define:

λU := inf

{∫
Rd ‖∇g‖

2dπU∫
Rd g

2dπU
: g ∈ C1(Rd) ∩ L2(πU ), g 6= 0,

∫
Rd
gdπU = 0

}
.

Since U is s0-strongly convex, by Bakry-Émery criterion (see Corollary 4.8.2 in Bakry et al.
(2014)), we have 1

λU
≤ 1

s0
. Finally, by the Holley-Stroock perturbation principle (see Holley

et al. (1987) and Proposition 5.1.6 and the discussion thereafter in Bakry et al. (2014)), we
have 1

λ∗
≤ 1

s0
eR0 ≤ O (1), which is a dimension-free bound, where we chose δ = ε8. Hence,

we have K̂ = Õ
(
d17

ε392

)
and η = Θ̃

(
ε196

d8

)
. The proof is complete. �

Proof of Proposition 2.24

Let νk be the distribution of the k-th iterate xk of penalized stochastic gradient under-
damped Langevin Monte Carlo (30)-(31). We recall from Lemma C.2 that f + 1

δS is

(mδ, bδ)-dissipative with mδ := −L− 1
2 +mS

δ and bδ := 1
2‖∇f(0)‖2 + bS

δ from (67) and f+ 1
δS

is Lδ-smooth with Lδ := L + `
δ and we also recall from Lemma C.3 and Remark D.4 that

f + 1
δS ≥ 0. Then, under Assumption 2.9, it follows from Theorem EC.1 and Lemma EC.6

in Gao et al. (2022) that when the stepsize η ≤ min{1, γ

K̂2
(d + A), γλ

2K̂1
, 2
γλ} where λ,A

are defined in (34)-(35) where K̂1 := K1 + Q1
4

1−2λ + Q2
8

(1−2λ)γ2 and K̂2 := K2 + Q3,

where Q1 = Θ(Lδ), Q2 = Θ
(
(Lδ)

3
)
, Q3 = Θ (Lδd) , K1 = Θ

(
(Lδ)

2
)
, K2 = Θ (1), (see

Lemma EC.6 in Gao et al. (2022) for the precise definitions of K1,K2 and Q1, Q2, Q3) and
kη ≥ e, we have

W2(νk, πδ) ≤
(
C0σ

1/2 + C1η
1/2
)
· (kη)1/2 ·

√
log(kη) + C

√
Hρ(µ0)e−µ∗kη,
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where C1 is given by

C1 := γ̂ ·

(
3L2

δ

2γ

(
Cdv +

(
2L2

δC
d
x + 2‖∇f(0)‖2

)
+

2dγ

3

)

+

√
3L2

δ

2γ

(
Cdv +

(
2L2

δC
d
x + 2‖∇f(0)‖2

)
+

2dγ

3

))1/2

, (62)

where γ̂ is given by:

γ̂ :=
2
√

2√
α

(
5

2
+ log

(∫
R2d

e
1
4
αV(x,v)µ0(dx, dv) +

1

4
e
α(d+A)

3λ αγ(d+A)

))1/2

, (63)

where µ0 is the initial distribution for (x0, v0) and λ,A are defined in (34)-(35) and α :=
λ(1− 2λ)/12 and V(x, v) is the Lyapunov function defined in (33) and moreover

Cdx :=

∫
R2d V(x, v)µ0(dx, dv) + 4(d+A)

λ
1
8(1− 2λ)γ2

, Cdv :=

∫
R2d V(x, v)µ0(dx, dv) + 4(d+A)

λ
1
4(1− 2λ)

, (64)

where γ̂, Cdx, C
d
v are finite due to (32) and furthermore,

µ∗ :=
γ

768
min

{
λLδγ

−2,Λ1/2e−ΛLδγ
−2,Λ1/2e−Λ

}
, (65)

C :=
√

2e1+ Λ
2

1 + γ

min{1, α1}

√
max{1, 4(1 + 2α1 + 2α2

1)(d+A)γ−1µ−1
∗ /min{1, R1}},

Λ :=
12

5
(1 + 2α1 + 2α2

1)(d+A)Lδγ
−2λ−1(1− 2λ)−1, α1 := (1 + Λ−1)Lδγ

−2,

ε1 := 4γ−1µ∗/(d+A), R1 := 4 · (6/5)1/2(1 + 2α1 + 2α2
1)1/2(d+A)1/2γ−1(λ− 2λ2)−1/2,

and moreover,

Hρ(µ0) := R1 +R1ε1 max

{
Lδ +

1

2
γ2,

3

4

}
‖(x, v)‖2L2(µ0)

+R1ε1

(
Lδ +

1

2
γ2

)
bδ + d

mδ
+R1ε1

3

4
d+ 2R1ε1

(
f(0) +

‖∇f(0)‖2

2Lδ

)
,

where ‖(x, v)‖2L2(µ0) :=
∫
R2d ‖(x, v)‖2µ0(dx, dv), and finally, C0 is defined as:

C0 := γ̂ ·
((

L2
δC

d
x + ‖∇f(0)‖2

) 1

γ
+

√(
L2
δC

d
x + ‖∇f(0)‖2

) 1

γ

)1/2

,

where γ̂ is defined in (63) and Cdx is defined in (64). Thus, it is easy to see that C0 = O(C1),
where C1 is given in (62) and we can choose σ2 = O(η) with

η = Θ̃

(
ε50µ∗

d3 (log(1/µ∗))
2

)
,
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and the batch-size b = Ω(σ−2) such that

b = Θ̃

(
d3 (log(1/µ∗))

2

ε50µ∗

)
,

where µ∗ is defined in (65). Hence, the stochastic gradient computations require

K̂ = Kb = Õ

(
d7 (log(1/µ∗))

5

ε132µ3
∗

)
.

The proof is complete. �

Proof of Lemma 2.25

We first show that Hi(x) := max(0, hi(x))2 is continuously differentiable and convex. Note
that the functions hi(x) and max(0, x) are both convex in x. Since the composition of
convex functions is convex, Hi(x) is convex. By the chain rule for convex functions in
Section 3.3 of Borwein and Lewis (2005), the subdifferential of Hi(x) is given by

∂Hi(x) =

{
0 if hi(x) ≤ 0,

2hi(x)∇hi(x) if hi(x) > 0,

where in the case hi(x) = 0, we used the fact that the subdifferential of the convex function
max(0, x) at x = 0 is given by the interval [0, 1]; so that by the chain rule, the subdifferential
of ∂Hi(x) = 2 max(0, hi(x))[0, 1] = 0 is single-valued for hi(x) = 0. Since the subdifferen-
tial of Hi(x) is single-valued for any x and is also continuous, we conclude that Hi(x) is
continuously differentiable.

Let Ci be the convex set on which hi(x) ≤ 0, i.e. Ci := {x ∈ Rd : hi(x) ≤ 0}. Since
hi(x) is continuous, x ∈ bd(Ci) if and only if hi(x) = 0 where bd(·) denotes the boundary of
a set. Note that the Hessian of Hi, denoted by Hessi, is continuous except at the boundary
of Ci and can be computed as

Hessi(x) = 2
[
∇hi(x) · (∇hi(x))> + hi(x)∇2hi(x)

]
,

if x 6∈ Ci. This is the case when hi(x) > 0. On the other hand, for x ∈ int(Ci), we have
Hi(x) = 0 and Hessi(x) = 0 where int(·) denotes the interior of a set. Therefore, for any
x ∈ Rd \ bd(Ci),

‖Hessi(x)‖ ≤ 2
(
‖∇hi(x)‖2 + maxx∈Rd |hi(x)|

∥∥∇2hi(x)
∥∥) ≤ `i := 2

(
N2
i + Pi

)
, (66)

where ‖ · ‖ denotes the matrix 2-norm (largest singular value), and we used the triangular
inequality and sub-multiplicativity of the matrix 2-norm in (66). So far, we have shown that
Hi(x) is `i-smooth on the open set that excludes the boundary points of Ci. For establishing
smoothness at the boundary points x ∈ bd(Ci), our proof relies on a more technical argument
as the Hessian of Hi may not even exist for x ∈ bd(Ci).9 Our argument will roughly use the

9. For example, in dimension one; the unit ball around origin is defined by m = 2 constraints with h1(x) =
x− 1 ≤ 0 and h2(x) = −x − 1 ≤ 0 where bd(C1) = {1} and bd(C2) = {−1}. In this case, Hess1(x) = 0
for −1 < x < 1 and Hess1(x) = 2 for x > 1 and the Hessian does not exist at x = 1.
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fact that boundary points constitute a measure zero set and the gradient of Hi is continuous
at the boundary. For this purpose, next, we consider the line `(t) := x+ t(y−x) that passes
through the points x and y, parameterized by the scalar t ∈ R. Let

T := {t ∈ [0, 1] : `(t) ∈ bd(Ci)}

correspond to the set of times t when the line segment between x and y crosses the boundary
of the set Ci. If we introduce z(t) := ∇Hi(`(t)), then z(t) is continuous, and it is continuously
differentiable except when t ∈ T . Since Ci is closed, T is closed. Recalling that Ci is convex,
roughly speaking, the line segment cannot go strictly out of the set Ci and then re-enter.
We have three different cases:

I. T is the empty set: This case can arise when the line segment of x and y (including
the endpoints) never intersects the set Ci. In this case, Hi is twice continuously
differentiable along the line segment. Thus, by Taylor’s theorem with a remainder,
we have

‖∇Hi(x)−∇Hi(y)‖ = ‖z(1)− z(0)‖ =

∥∥∥∥∫ 1

t=0
z′(t)dt

∥∥∥∥
=

∥∥∥∥∥
∫
t∈[0,1]

Hessi(`(t))dt

∥∥∥∥∥ ≤ Li‖x− y‖,
where we used (66).

II. T = [t1, t2] for some t1 ≤ t2 with the convention that T is a singleton when t1 = t2.
In this case, z(t) may not be differentiable for some points in [0, 1]; however, we can
approximate the interval [0,1] with unions of intervals where z(t) is differentiable.
More specifically, for any given ε > 0, we consider the closed intervals I1 = [ε, t1 −
ε], I2 = [t1 + ε, t2 − ε], I3 = [t2 + ε, 1 − ε] with the convention that [a, b] denotes the
empty set when a > b. The union

⋃
i=1,2,3 Ii approximates the interval [0, 1] when ε is

sufficiently small. The function z(t) is continuously differentiable for every t ∈ Ii for
i = 1, 2, 3 if ε > 0 is small enough except when t ∈ T . Furthermore, by the continuity
of z(t) and the fact that z(t) = 0 for t ∈ T , we have

∇Hi(x)−∇Hi(y) = z(0)− z(1)

=

∫
t∈I1∩T c

z′(t)dt+

∫
t∈I2∩T c

z′(t)dt+

∫
t∈I3∩T c

z′(t)dt+ o(ε)

=

∫
t∈(I1∪I2∪Ic)∩T c

Hessi(x+ t(y − x))dt+ o(ε),

where T c denotes the complement of the set T and we used the fact that z(t) is
continuously differentiable on the set t ∈ Ii ∩T c for any i ∈ {1, 2, 3}. Taking the limit
as ε→ 0, by a similar argument to Case I, we obtain ‖∇Hi(x)−∇Hi(y)‖ ≤ `i‖x−y‖,
where `i := 2(N2

i +MiPi).

III. T = {t1, t2} for some t1 6= t2. This case can be treated similarly to Case II by
considering the intervals I1, I2, and I3.
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Combining these cases, we can conclude that Hi(x) is `i-smooth on Rd, where `i :=
2(N2

i +MiPi). Hence
∑m

i=1 max(0, hi(x))2 =
∑m

i=1Hi(x) is `-smooth, where ` :=
∑m

i=1 `i =
2
∑m

i=1

(
N2
i +MiPi

)
. This completes the proof. �

Proof of Corollary 2.26

To use Lemma 2.25, we need to prove that h(x) satisfies its assumptions. Note that the
function ti(x) := |xi|p is twice continuously differentiable in x = (x1, . . . , xd) ∈ Rd for p ≥ 2,
i = 1, 2, . . . , d and the function t0 : R≥0 → R≥0 defined as t0(z) := z1/p is twice contin-
uously differentiable unless z = 0. Since the sum and composition of twice continuously
differentiable functions remain twice continuously differentiable, we conclude that the p-

norm ‖x‖p := t0

(∑d
i=1 |xi|p

)
=
(∑d

i=1 |xi|p
)1/p

is twice continuously differentiable unless

x = 0. Therefore, we conclude that h(x) is twice continuously differentiable on the set

B :=
{
x ∈ Rd : h(x) ≥ 0

}
,

which does not include x = 0. Since the p-norm is convex, h(x) is also convex. For the rest,
it suffices to prove that on the set B, h(x) has bounded gradients, and the product of |h(x)|
and the Hessian is bounded. For any x 6= 0, the gradient of h(x) is given by:

∇h(x) =
(

(|xi|/‖x‖p)p−1 sgn(xi), 1 ≤ i ≤ d
)
,

with sgn(x) := −1 if x < 0, 1 if x > 0, and 0 if x = 0. According to the definition of

p-norm ‖x‖p =
(∑d

i=1 |xi|p
)1/p

, we have |xi| ≤ ‖x‖p for any i, such that |(∇h(x))i| ≤ 1,

which implies that ‖∇h(x)‖ ≤
√
d. Next, we consider the Hessian matrix of h(x). After

some computations, the entries (i, j) of the Hessian matrix of h are given by

[
∇2h(x)

]
i,j

=

(p− 1) 1
‖x‖pp

(
|xi|p−2‖x‖p − |xi|

2p−2

‖x‖p−1
p

)
if i = j,

−sgn(xixj)(p− 1)
|xi|p−1|xj |p−1

‖x‖2p−1
p

if i 6= j,

provided that x 6= 0. Note that the Hessian matrix ∇2h(x) is continuous unless x = 0.
Since |xi| ≤ ‖x‖p for any i, we obtain the following bounds for the elements of Hessian

matrix on the set B = {x ∈ Rd : h(x) ≥ 0} = {x ∈ Rd : ‖x‖p ≥ R}:

0 ≤ |h(x)|
[
∇2h(x)

]
i,i
≤ (p− 1)

‖x‖p −R
‖x‖pp

(
2‖x‖p−1

)
≤ 2(p− 1)

‖x‖p −R
‖x‖p

≤ 2(p− 1)

R
,

and for i 6= j, we have

|h(x)| ·
∣∣∣[∇2h(x)

]
i,j

∣∣∣ ≤ (p− 1)
‖x‖p −R
‖x‖p

≤ p− 1.

Therefore, by applying the Gershgorin circle theorem (see, e.g., Fan (1958)), we obtain

|h(x)|∇2h(x) �
(

2

R
+ (d− 1)

)
(p− 1)I.

Hence, max(0, h(x))2 is `-smooth with ` =
(

2
R + (d− 1)

)
(p− 1) and the proof is complete.
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Proof of Lemma C.1

The proof is similar to the proof of Lemma 2.6 with some minor differences to the potential
non-convexity of the set C. By the assumption for every x ∈ Rd there exists a unique
point of C nearest to x. Then the fact that S(x) = (δC(x))2 is `-smooth and continuously
differentiable with the gradient ∇S(x) = 2(x − PC(x)) is a direct consequence of Federer
(1959, Theorem 4.8). Note that for x1, x2 ∈ Rd,

‖∇S(x1)−∇S(x2)‖ ≤ 2‖x1 − x2‖+ 2‖PC(x1)− PC(x2)‖ ≤ 4‖x1 − x2‖,

where in the last step we applied Federer (1959, Theorem 4.8, part (8)). Therefore, S is
`-smooth with ` = 4. Also,

〈x,∇S(x)〉 = 〈x, 2(x− PC(x))〉 ≥ 2‖x‖2 −R‖x‖ ≥ mS‖x‖2 − bS ,

for mS = 1, bS = R2/4. This completes the proof. �

Proof of Lemma C.2

Lemma C.1 shows that S(x) is (mS , bS)-dissipative and `-smooth. Then it follows that
f + 1

δS is also Lδ-smooth, where Lδ := L+ `
δ . By (mS , bS)-dissipativity of S, we have〈

x,∇f(x) +
1

δ
∇S(x)

〉
≥ 〈x,∇f(x)〉+

mS

δ
‖x‖2 − bS

δ

≥ 〈x,∇f(x)−∇f(0)〉 − ‖x‖ · ‖∇f(0)‖+
mS

δ
‖x‖2 − bS

δ

≥ −L‖x‖2 − ‖x‖ · ‖∇f(0)‖+
mS

δ
‖x‖2 − bS

δ

≥ −L‖x‖2 − 1

2
‖x‖2 − 1

2
‖∇f(0)‖2 +

mS

δ
‖x‖2 − bS

δ
, (67)

where we used L-smoothness of f . Therefore, f + 1
δS is also (mδ, bδ)-dissipative with

mδ := −L − 1
2 + mS

δ > 0 and bδ := 1
2‖∇f(0)‖2 + bS

δ , provided that δ < mS/(L + 1
2). This

completes the proof. �

Proof of Lemma C.3

Since f is L-smooth, we have

f(x) ≥ f(0)− ‖∇f(0)‖ · ‖x‖ − L

2
‖x‖2,

and since S is (mS , bS)-dissipative and bounded below by 0, by Lemma 2 in Raginsky et al.
(2017), we have

S(x) ≥ mS

3
‖x‖2 − bS

2
log 3,

for any x ∈ Rd and thus

f(x) +
S(x)

δ
≥ f(0)− ‖∇f(0)‖ · ‖x‖ − L

2
‖x‖2 +

mS

3δ
‖x‖2 − bS

2δ
log 3

≥ f(0)− 1

2
‖∇f(0)‖2 − 1

2
‖x‖2 − L

2
‖x‖2 +

mS

3δ
‖x‖2 − bS

2δ
log 3 ≥ −M,
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where M := −f(0) + 1
2‖∇f(0)‖2 + bS

2δ log 3, provided that δ ≤ 2mS
3(1+L) . This completes the

proof. �

Proof of Lemma C.4

If Assumption 2.9 and Assumption 2.2 hold, according to Lemma C.3, function f + 1
δS

is uniformly lower bounded, i.e. f + 1
δS ≥ −M for an explicit non-negative scalar M

defined in (40), which leads to the result that f + 1
δS +M is non-negative. Then according

to Lemma C.2, function f + 1
δS is Lδ-smooth and (mδ, bδ)-dissipative, where Lδ,mδ, bδ is

defined in (39). By Lemma 2 in Raginsky et al. (2017), we have

f(x) +
S(x)

δ
+M ≥ mδ

3
‖x‖2 − bδ

2
log 3,

for any x ∈ Rd. Hence e−f is integrable over C, and moreover,∫
Rd
e
mδ
6
‖x‖2e−f(x)−S(x)

δ dx ≤ e
bδ
2

log 3+M

∫
Rd
e−

mδ
6
‖x‖2dx <∞.

So that the assumptions in Theorem 2.7 are satisfied with α̂ = mδ
6 and x̂ = 0. This

completes the proof. �

Proof of Lemma C.5

Since it follows from Lemma 2.6 that S(x) is convex and `-smooth, it follows that under
Assumption 2.18, f + 1

δS is also µ-strongly convex and Lδ-smooth, where Lδ := L + `
δ .

Moreover, we notice that since f is µ-strongly convex, f(x) ≥ f(x∗) + µ
2‖x − x∗‖

2, where
x∗ is the unique minimizer of f . Hence, e−f is integrable over C and moreover∫

Rd
e
µ
4
‖x−x∗‖2e−

S(x)
δ
−f(x)dx ≤

∫
Rd
e
µ
4
‖x−x∗‖2e−f(x)dx ≤ e−f(x∗)

∫
Rd
e−

µ
4
‖x−x∗‖2dx <∞,

so that the assumptions in Theorem 2.7 are satisfied with α̂ = µ
4 and x̂ = x∗. This completes

the proof. �

Proof of Lemma D.1

We denote xCα and yCα as the projections of x and y onto Cα. Since we can compute that
Sα(x) = ‖x− xCα‖2 and ∇S(x) = 2(x− xCα), we have:

∇Sα(x)−∇Sα(y) = 2 (x− xCα)− 2 (y − yCα) = 2(x− y)− 2 (xCα − yCα) .

It follows that:

(∇Sα(x)−∇Sα(y))>(x− y) = 2‖x− y‖2 − 2 (xCα − yCα)> (x− y)

≥ 2‖x− y‖2 − 2 ‖xCα − yCα‖ ‖x− y‖.

By the assumptions, Cα := {x : hα(x) ≤ 0}, where hα(x) is a continuous (α + β)-strongly
convex function. By the convexity of hα, it is Lipschitz on compact sets (Roberts and
Varberg, 1974) and therefore there exists a positive constant B such that ‖y‖ ≤ B for any
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y ∈ ∂hα(x) and x ∈ Cα. According to Corollary 2 in Vial (1982), the set Cα is strongly
convex with radiusB/(α+β) in the sense of Definition 1.1 in Balashov and Golubev (2012).10

Then by applying Corollary 2.1 in Balashov and Golubev (2012), for any x, y ∈ Rd\U(Cα, ρ),
we have:

‖xCα − yCα‖ ≤
B

B + (α+ β)ρ
‖x− y‖.

By combining these two inequalities, we have:

(∇Sα(x)−∇Sα(y))>(x− y) ≥ 2(α+ β)ρ

B + (α+ β)ρ
‖x− y‖2.

By Theorem 2.1.10 in Nesterov (2013), we conclude that the penalty function Sα(x) is

strongly convex with constant 2(α+β)ρ
B+(α+β)ρ outside the ρ-neighborhood of the set Cα. The

proof is complete. �

Proof of Corollary D.2

By Lemma D.1, the penalty function Sα(x) is strongly convex with constant 2(α+β)ρ
B+(α+β)ρ on

the set Rd\U(Cα, ρ), where U(Cα, ρ) is the open ρ-neighborhood of Cα i.e.

U(Cα, ρ) := {x : dist(x, Cα) < ρ}.

Since Cα is contained in an Euclidean ball centered at 0 of radius R, it follows that Sα is
strongly convex with constant 2(α+β)ρ

B+(α+β)ρ outside a Euclidean ball with radius R + ρ and
moreover,

Sα(x) ≥ Sα(y) + 〈∇Sα(x), y − x〉+
1

2

2(α+ β)ρ

B + (α+ β)ρ
‖x− y‖2,

for any x, y outside an Euclidean ball with radius R + ρ. On the other hand, by Assump-
tion 2.9, it follows that for any x, y: f(x) ≥ f(y) + 〈∇f(x), y − x〉 − L

2 ‖x − y‖2, which
implies:

f(x) +
Sα(x)

δ
≥ f(y) +

Sα(y)

δ

+

〈
∇f(x) +

Sα(x)

δ
, y − x

〉
+

1

2

(
2(α+ β)ρ

δ(B + (α+ β)ρ)
− L

)
‖x− y‖2,

for any x, y outside an Euclidean ball with radius R+ ρ. This completes the proof. �

Proof of Lemma D.3

We start with defining

U(x) := f(x) +
Sα(x)

δ
+ u(x),

10. A nonempty subset C ⊂ Rd is called strongly convex of radius R > 0 if it can be represented as the
intersection of closed balls of radius R > 0, i.e., there exists a subset X ⊂ Rd such that C =

⋂
x∈X BR(x),

where BR(x) is a closed ball with radius R centered with x, see Def. 1.1 in Balashov and Golubev (2012).
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where

u(x) :=


m+L

2 ‖x‖
2 for ‖x‖ < R+ ρ,

−µδ
4 ‖x‖

2 + aδ‖x‖+ bδ for R+ ρ ≤ ‖x‖ ≤ (R+ ρ)
(

1 + 2(m+L)
µδ

)
,

cδ for ‖x‖ > (R+ ρ)
(

1 + 2(m+L)
µδ

)
,

with

aδ := (m+ L+ µδ/2)(R+ ρ),

bδ := −1

2
(R+ ρ)2(m+ L+ µδ/2),

cδ := (R+ ρ)2

(
m+ L+

2(m+ L)2

µδ

)
.

In the first region, when ‖x‖ < R+ ρ, we observe that the function u(x) is a piecewise-
defined quadratic that is clearly (m + L)-strongly convex. Since Sα(x) is convex and f is
L-smooth, this implies that U is m-strongly convex in the first region when ‖x‖ < R+ ρ.

In the second region, when R + ρ ≤ ‖x‖ ≤ (R + ρ)
(

1 + 2(m+L)
µδ

)
, u is a quadratic that

is µδ/2-strongly concave (or equivalently −u(x) is µδ/2-strongly convex) and f + S/δ is
strongly convex with constant µδ, consequently U is strongly convex with constant µδ/2.

In the third region, outside the Euclidean ball with radius (R + ρ)
(

1 + 2(m+L)
µδ

)
, we

observe that u(x) ≡ cδ is a constant. Therefore U = f + Sα/δ + u is µδ-strongly convex.
Moreover, it is straightforward to check that the piecewise function u has continuous

derivatives and is of class C1 and therefore U = f + Sα

δ + u is a C1 function. Finally, it is
easy to check that supx∈Rd ‖u(x)‖ = cδ. Therefore,

sup
x∈Rd

(
U(x)−

(
f(x) +

Sα(x)

δ

))
− inf
x∈Rd

(
U(x)−

(
f(x) +

Sα(x)

δ

))
≤ 2cδ,

and the result follows. The proof is complete. �

67


	Introduction
	Our Approach and Contributions
	Related Work

	Main Results
	Bounding the Distance Between  and 
	Penalized Langevin Algorithms with Deterministic Gradient
	Penalized Langevin Dynamics
	Penalized Underdamped Langevin Monte Carlo

	Penalized Langevin Algorithms with Stochastic Gradient
	Strongly Convex Case
	Non-Convex Case

	Avoiding Projections

	Numerical Experiments
	Synthetic Experiment for Dirichlet Posterior
	Bayesian Constrained Linear Regression
	Synthetic 2-Dimensional Problem
	Diabetes Dataset Experiment

	Bayesian Constrained Deep Learning

	Conclusion
	Notations
	Weighted Csiszár-Kullback-Pinsker Inequality
	Technical Lemmas
	Technical Proofs

