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Abstract
Probabilistic forecasting relies on past observations to provide a probability distribution for
a future outcome, which is often evaluated against the realization using a scoring rule. Here,
we perform probabilistic forecasting with generative neural networks, which parametrize
distributions on high-dimensional spaces by transforming draws from a latent variable. Gen-
erative networks are typically trained in an adversarial framework. In contrast, we propose
to train generative networks to minimize a predictive-sequential (or prequential) scoring
rule on a recorded temporal sequence of the phenomenon of interest, which is appealing
as it corresponds to the way forecasting systems are routinely evaluated. Adversarial-free
minimization is possible for some scoring rules; hence, our framework avoids the cumbersome
hyperparameter tuning and uncertainty underestimation due to unstable adversarial training,
thus unlocking reliable use of generative networks in probabilistic forecasting. Further, we
prove consistency of the minimizer of our objective with dependent data, while adversarial
training assumes independence. We perform simulation studies on two chaotic dynamical
models and a benchmark data set of global weather observations; for this last example, we
define scoring rules for spatial data by drawing from the relevant literature. Our method
outperforms state-of-the-art adversarial approaches, especially in probabilistic calibration,
while requiring less hyperparameter tuning.
Keywords: Generative Networks, GAN, Probabilistic Forecasting, Scoring Rules, Adversarial-
free.
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1. Introduction

In many disciplines (for instance econometrics and meteorology), practitioners want to forecast
the future state of a phenomenon. Providing prediction uncertainty (ideally by stating a
full probability distribution) is often essential. This task is called probabilistic forecasting
(Gneiting and Katzfuss, 2014) and is commonplace in Numerical Weather Prediction (NWP,
Palmer, 2012), where physics-based models are run multiple times to obtain an ensemble
of forecasts representing the possible evolution of the weather (Leutbecher and Palmer,
2008). To assess the performance of NWP systems, people commonly use Scoring Rules (SRs,
Gneiting and Raftery, 2007), functions quantifying the quality of a probabilistic forecast in
relation to the observed outcome.

Here, we use generative (neural) networks to provide probabilistic forecasts. In a generative
network, a neural network maps a latent random variable to the required output space; hence,
samples on the latter are obtained by transforming latent variable draws. As the density is
inaccessible, the distribution is implicitly defined and specialized techniques are necessary to
train generative networks. Among those, the popular Generative Adversarial Networks (GANs,
Goodfellow et al., 2014; Mirza and Osindero, 2014; Nowozin et al., 2016; Arjovsky et al., 2017)
framework trains a generative network by defining a min-max game against a competitor,
termed critic. However, adversarial training is unstable: it requires ad-hoc strategies
(Gulrajani et al., 2017) and careful hyperparameter tuning (Salimans et al., 2016) but, even
so, the trained generative network may not fully capture the data distribution, a phenomenon
referred to as mode collapse (Goodfellow, 2016; Isola et al., 2017; Arora et al., 2017; Bellemare
et al., 2017; Arora et al., 2018; Richardson and Weiss, 2018). This prevents practitioners from
reliably applying GANs to tasks where calibrated uncertainty quantification is paramount,
such as probabilistic forecasting. Additionally, it is unclear how to extend the GAN training
objective to the temporal data considered in probabilistic forecasting. Indeed, the adversarial
framework is derived from divergences between probability distributions and considers data
as independent and identically distributed samples from one of those distributions.

Therefore, motivated by the use of scoring rules to evaluate traditional forecasting systems,
we propose to train generative networks to minimize scoring rule values. Given a recorded
temporal sequence of the phenomenon of interest, we use the generative network to forecast all
steps of the sequence conditioned on the past. Then, our objective is the average over steps of
the scoring rule between forecasts and realizations. In contrast to the adversarial framework,
this so-called prequential (predictive-sequential, Dawid, 1984) scoring rule captures the
temporal structure of the data. Additionally, the minimizer of the prequential scoring
rule enjoys consistency under mild conditions on the temporal sequence. Furthermore, our
proposal allows adversarial-free training through a reparametrization trick (Kingma and
Welling, 2014) for SRs defined as expectations over the generative distribution. Training with
our objective is therefore drastically easier than with GAN, requires less hyperparameter
tuning and easily avoids mode collapse. More in detail, our contributions are:

• We introduce a novel training objective for probabilistic forecasting based on a pre-
quential scoring rule.

• Under stationarity and mixing conditions of the time series, we prove that the minimizer
of the prequential scoring rule coincides asymptotically with that of the expected
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prequential scoring rule. Importantly, the latter corresponds to the true parameter
value if the distribution induced by the generative network is well-specified.

• We leverage previous works in meteorology (Gneiting and Raftery, 2007; Scheuerer
and Hamill, 2015) and design training objectives for high-dimensional spatio-temporal
data, enabling good performance with no need for a learnable data transformation.

• We test our method and state-of-the-art adversarial approaches on two chaotic models
and a spatio-temporal weather data set. We find our method to be more stable and
perform better, particularly in terms of uncertainty quantification of the forecast.

The rest of the paper is organized as follows. In Sec. 2, we discuss how the adversarial
framework is obtained from a divergence minimization setup and overview the scoring rules
training formulation for independent data, which was considered in previous works. In
Sec. 3, which contains the main contributions of our work, we give our training objective for
probabilistic forecasting, show its consistency and discuss SRs for spatial data. We discuss
some related works in Sec. 4 and show simulation results in Sec. 5. We conclude in Sec. 6.

Notation: We use upper case X,Y and Z to denote random variables, and their lower-case
counterpart to denote observed values. Bold symbols denote vectors, and subscripts to bold
symbols denote sample index (for instance, yt). Instead, subscripts to normal symbols denote
component indices (for instance, yi is the i-th component of y, and yt,j is the j-th component
of yt). Finally, we use notation yj:k = (yj ,yj+1, . . . ,yk−1,yk), for j ≤ k.

2. Background

2.1 Generative networks via divergence minimization

A generative network represents a distribution P φ on a space Y via a map hφ : Z → Y
transforming samples from a probability distribution Q over the space Z; the map is
parametrized by a Neural Network (NN) with weights φ. Samples from P φ are obtained
by generating z ∼ Q and computing hφ(z) ∈ Y; therefore, for any function g on Y, the
expectation EY∼Pφ [g(Y)] can be computed by EZ∼Q[g(hφ(Z))]. However, in general, the
probability density of P φ cannot be evaluated.

Assume now we observe data from a distribution P ? on Y and want to tune φ so that
P φ approximates P ?. A divergence D(P ?||P φ) is a function of two distributions such that
D(P ?||P φ) ≥ 0 and D(P ?||P φ) = 0 ⇐⇒ P ? = P φ. Therefore, for a given D, we can
attempt solving

arg min
φ

D(P ?||P φ). (1)

Various proposed approaches differ according to (i) their choice of divergence D and (ii) how
they estimate the optimal solution in Eq. (1) using samples from P ? and P φ. A popular
strategy is choosing D to be an f -divergence (termed f -GAN, Nowozin et al., 2016), in which
case a variational lower bound can be obtained

Df (P ?||P φ) ≥ sup
c∈C

(EY∼P ?c(Y)− EX∼Pφf
∗(c(X))) ,

where f∗ is the Fenchel conjugate of the function f (see Appendix B.1.1) and C is any set
of functions from Y to the domain of f∗. By representing the set C by a neural network cψ
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(termed critic or discriminator) with parameters ψ ∈ Ψ, an equivalent problem to Eq. (1)
when D is an f -divergence is

arg min
φ

max
ψ

(EY∼P ?cψ(Y)− EX∼Pφf
∗(cψ(X))) . (2)

The WGAN of Arjovsky et al. (2017), which uses the 1-Wasserstein distance as D, has a
similar objective to Eq. (2), differing mainly in taking C to be the set of 1-Lipschitz functions.
Details are given in Appendix B.1.2.

Typically, the problem in Eq. (2) is tackled by alternating gradient optimization steps
over ψ and φ; the expectations are estimated via samples from both P ? (i.e., a minibatch of
observations) and from P φ (draws from the generative network). This approach is termed
adversarial as P φ and cψ respectively aim to minimize and maximize the same objective.

Adversarial training of generative networks is however unstable and difficult. A well-
known consequence of unstable adversarial training is mode collapse (Goodfellow, 2016; Isola
et al., 2017; Arora et al., 2017; Bellemare et al., 2017; Arora et al., 2018; Richardson and
Weiss, 2018), in which the generative distribution underestimates uncertainty and, in extreme
cases, can collapse to a single point. Mode collapse has been related to the approximations
involved in adversarial training: Arora et al. (2017) showed that mode collapse can arise due
to finite capacity of the critic cψ, while Bellemare et al. (2017) and Bińkowski et al. (2018)
respectively linked it to using finite data and a finite number of steps in optimizing the cψ
network and subsequently using it to obtain gradient estimates for φ, which are thus biased.

To avoid adversarial training altogether and bypass the above issues, Moment Matching
Networks (Li et al., 2015; Dziugaite et al., 2015) are trained by considering D to be the
squared Maximum Mean Discrepancy (MMD) induced by a positive definite kernel k

Dk

(
P ?||P φ

)
:= E

[
k
(
X,X′

)
− 2k(X,Y) + k

(
Y,Y′

)]
, X,X′ ∼ P φ, Y,Y′ ∼ P ? (3)

From Eq. (3), we can obtain an empirical unbiased estimate of Dk and its gradients without
introducing a critic network. However, using a fixed kernel on raw data can yield small
discriminative power (as in the case of images, where numerical values have little meaning),
leading to a poor fit of P φ to P ?. Hence, Li et al. (2017) suggested applying a learnable
transformation before computing the kernel, with parameters trained to maximize the MMD.
This approach, termed MMD-GAN, again leads to an adversarial setting and to the issues
mentioned above. Details in Appendix B.1.3.

2.1.1 Conditional setting

To represent a conditional distribution P φ(·|θ), for θ ∈ Θ, a map hφ : Z × Θ → Y can
be used; similarly to above, samples from P φ(·|θ) for fixed θ can be obtained via hφ(z;θ),
z ∼ Q. In this way, f -GAN, WGAN and MMD-GAN can all be easily extended to the
setting in which we have data

(θi,yi)
n
i=1, where θi ∼ Π and yi ∼ P ?(·|θi), (4)

and want P φ(·|θ) = P ?(·|θ) Π-almost everywhere. For instance, the f -GAN objective in
Eq. (2) becomes

min
φ

max
ψ

Eθ∼Π

(
EY∼P ?(·|θ)cψ(Y;θ)− EY∼Pφ(·|θ)f

∗(cψ(Y;θ))
)
,
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where now cψ : Y ×Θ→ domf∗ . More details can be found in Appendix B.1.

2.2 Generative networks via scoring rules minimization

Here, we review scoring rules and a formulation for training generative networks based on
them which, for some choices, is intrinsically adversarial-free.

2.2.1 Scoring rules

A Scoring Rule (SR) S is a function of a distribution and an observation; see Gneiting
and Raftery (2007); Dawid and Musio (2014) for an overview of their properties and usage.
Generally, S(P φ,y) represents a penalty assigned to the distribution P φ when y is observed.
If y is the realization of a random variable Y ∼ P ?, the expected SR is S(P φ, P ?) :=
EY∼P ?S(P φ,Y). S is said to be proper relative to a set of distributions P if the expected
Scoring Rule is minimized in P φ when P φ = P ?

S(P ?, P ?) ≤ S(P φ, P ?) ∀ P φ, P ? ∈ P.

Moreover, S is strictly proper relative to P if P φ = P ? is the unique minimum. In practice,
assuming that ∃ φ? : P φ

?
= P ?, P φ 6= P ? can still minimize an expected proper SR S(P φ, P ?),

which in turn implies there may be multiple minima (still, the different minima can be
thought of as more “similar” to P ? than other distributions, in some way); instead, if S is
strictly proper, P ? and P φ coincide if and only if P φ is the (unique) minimum of the expected
SR. In case where @ φ : P φ = P ?, then the expected proper SR decreases as P φ becomes
more similar to the data distribution P ?; however, nothing can be said on the number of
minima without more information on P, even if S is strictly proper.

For a strictly proper SR S, the quantity D(P ?||P φ) := S(P φ, P ?) − S(P ?, P ?) is a
statistical divergence, as in fact D(P ?||P φ) ≥ 0 and D(P ?||P φ) = 0 ⇐⇒ P φ = P ?.

A strictly proper SR which we will employ in the following is the Kernel Score (Gneiting
and Raftery, 2007)

Sk(P
φ,y) := E[k(X,X′)]− 2 · E[k(X,y)], X,X′ ∼ P φ, (5)

where k is a positive-definite kernel. This choice is due to the expectation form of the kernel
score, which, as explained in Sec. 2.2.2, is required by our method. The kernel score is
associated with the MMD in Eq. (3); see more details in Appendix B.2.

2.2.2 Adversarial-free training of generative networks

SRs have been previously used to train conditional generative networks in Bouchacourt et al.
(2016) and Gritsenko et al. (2020), where the authors considered

min
φ

Eθ∼ΠEY∼P ?(·|θ)S(P φ(·|θ),Y); (6)

for strictly proper S, the solution is P φ(·|θ) = P ?(·|θ) Π-almost everywhere. With (θi,yi)
n
i=1

as in Eq. (4), an unbiased estimate of the argument of minφ in Eq. (6) is

1

n

n∑
i=1

S(P φ(·|θi),yi). (7)
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Thus, to optimize Eq. (6) via Stochastic Gradient Descent (SGD), it is enough to obtain un-
biased estimates of ∇φS(P φ(·|θi),yi). That is possible whenever S is defined via a (possibly
repeated) expectation over P φ (as for the kernel score), which can be estimated unbiasedly
by generating samples xj ∼ Pφ, j = 1, . . . ,m, m > 1 at each SGD step. Additionally, by
recalling that samples xj ∼ Pφ are obtained as xj = hφ(z), z ∼ Q, automatic-differentiation
libraries (Paszke et al., 2019) can be exploited to compute gradients. Hence, considering the
kernel score as an example, at each SGD step, φ will be updated by

φ← φ− γ · 1

|B|
∑
i∈B
∇φ

 1

m(m− 1)

∑
j 6=k

k(xj ,xk)−
2

m

∑
j

k(xj ,yi)

 , (8)

where γ is the learning rate. More details are given in Appendix C. This algorithm is
equivalent to Moment Matching Networks (which use the objective in Eq. 3).

The Energy Score used in Bouchacourt et al. (2016) andGritsenko et al. (2020) can be
obtained from Sk by choosing k(x,y) = −||y − x||β for β ∈ (0, 2) (Gneiting and Raftery,
2007). As such, the Energy Score also takes the expectation form necessary for our method
and leads to a gradient descent update similar to Eq. (8). See more details in Appendix B.2.

3. Generative networks for spatio-temporal models via SR minimization

We will now extend the SR formulation to a training objective for probabilistic forecasting
(Sec. 3.1) which is intuitive for temporal data and enjoys some consistency (Sec. 3.1.1). Later
(Sec. 3.2), we will discuss how to exploit the SR formulation to tackle high dimensional
spatial data, by relying on a previously studied score from the probabilistic forecasting and
meteorology literature (Scheuerer and Hamill, 2015) and by introducing patched scores. The
resulting objectives can be minimized without resorting to adversarial training.

3.1 Time-series probabilistic forecasting via the prequential SR

Consider a discrete-time stochastic process (Y1,Y2, . . . ,Yt, . . .) = (Yt)t ∼ P ?, where
Yt ∈ Y; in general, Yt’s are not independent. For a generic distribution P for (Yt)t, we
denote by Pt the marginal distribution for Yt, and by Pr:s the marginal distribution for Yr:s;
the conditional distribution for Yt|yu:v will be denoted by Pt(·|yu:v) and similar for Yr:s.

Having observed y1:t, we produce a probabilistic forecast for Yt+l for a given lead time l
via a generative network conditioned on the last k observations, P φt+l(·|yt−k+1:t). We then
repeat this procedure for all t’s in a recorded window of length T and evaluate the forecast
performance via S(P φt+l(·|yt−k+1:t),yt+l) for a SR S (Fig. 1); we then propose setting φ to

φ̂T (y1:T ) := arg min
φ

T−l∑
t=k

S(P φt+l(·|yt−k+1:t),yt+l), (9)

which selects the value of φ for which the average l-steps ahead forecast in the training
data is optimal according to S. Operationally, Eq. (9) can be tackled in the same way as
Eq. (7), i.e., by simulating from P φ for each observation window yt−k+1:t in a training batch,
unbiasedly estimating the SR S and descending the gradient.
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The objective in Eq. (9) evaluates sequential predictions obtained from the generative net-
work; as such, we term it the prequential (or predictive-sequential) score (Dawid, 1984; Dawid
and Musio, 2015). This reflects what is usually done in evaluating traditional (physics-based)
probabilistic forecasting systems (Leutbecher and Palmer, 2008; Gneiting and Katzfuss, 2014).

3.1.1 Consistency of prequential SR minimization

Contrary to the independent-data setting of Eq. (7), Eq. (9) cannot be seen as the empirical
estimate of an expected SR. Still, under some stationarity and mixing conditions of (Yt)t,
we prove below that the empirical minimizer φ̂T (Y1:T ) converges to the minimizer of the
expected prequential SR. The reader uninterested in theoretical guarantees may skip this
section, as it does not contain necessary information for understanding the remained of the
paper.

First, the objective in Eq. (9) involves P φt+l(·|yt−k+1:t) for t ∈ {k, k+1, . . . , T−l−1, T−l}
and evaluates them against yk+l:T . In contrast, the initial part of the recorded sequence
y1:k+l−1 only enters as conditioning values (indeed, the generative network cannot provide a
forecast for the first k + l − 1 elements of the sequence). Formally, we can define the joint
distribution on Yk+l:T induced by the generative network as P φk+l:T (·|y1:k+l−1) and interpret
the objective in Eq. (9) as a SR evaluating P φk+l:T (·|y1:k+l−1) against yk+l:T

ST (P φk+l:T (·|y1:k+l−1),yk+l:T ) :=

T−l∑
t=k

S(P φt+l(·|yt−k+1:t),yt+l). (10)

The above only makes sense as P φt+l(·|yt−k+1:t) can be obtained from P φk+l:T (·|y1:k+l−1),
thanks to the marginal distribution for Yt+l in P φk+l:T (·|y1:k+l−1) being independent on
y1:k+l−1 conditionally on yt−k+1:t. If that was not the case, y1:k+l−1 would also appear
explicitly in the conditioning of P φt+l. Indeed, P

φ
k+l:T (·|y1:k+l−1) satisfies the following property

(which generalizes the standard k-Markov property):

Definition 1 A probability distribution P1:T is k-Markovian with lag l if, assuming it has
density p1:T with respect to some base measure, it can be decomposed as: p1:T (y1:T ) =
p1:k+l−1(y1:k+l−1)

∏T−l
t=k pt+l(yt+l|yt−k+1:t).

Therefore, ST defined in Eq. (10) is a SR for distributions over Yk+l:T |y1:k+l−1 which
are k-Markovian with lag l. The following result (proved in Appendix A.2.2) establishes
that ST meaningfully evaluates P φk+l:T (·|y1:k+l−1) although it only employs P φt+l(·|yt−k+1:t)
explicitly:

Theorem 2 If S is (strictly) proper, then ST is (strictly) proper for distributions over
Yk+l:T |y1:k+l−1 which are k-Markovian with lag l.
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Observation
window

yt-k+1 yt yt+l... ... ...

hφ
Noise

Draw
z',z''...

S

Predictions for yt+l

yt+l,' yt+l...
''

Generative net

yt+l+1

tObserved sequence

Figure 1: Estimation of the SR evaluating the forecast P φt+l(·|yt−k+1:t) for the realization
yt+l. The prequential SR is obtained by repeating this procedure for all t’s and
summing the scores.

Next, we introduce two quantities:

φ̃T (y1:k+l−1) := arg min
φ

:=S̃T (Pφk+l:T (·|y1:k+l−1))︷ ︸︸ ︷
EYk+l:T |y1:k+l−1

ST (P φk+l:T (·|y1:k+l−1),Yk+l:T ),

φ?T := arg min
φ

EST (P φk+l:T (·|Y1:k+l−1),Yk+l:T )︸ ︷︷ ︸
:=S?T (Pφk+l:T )

.

φ̃T (y1:k+l−1) minimizes the expected prequential SR with respect to Yk+l:T |y1:k+l−1, for
which we introduced the short-hand notation S̃T (P φk+l:T (·|y1:k+l−1)); by Theorem 2, if S is
strictly proper and the distribution of Yk+l:T |y1:k+l−1 is k -Markovian with lag l, φ̃T (y1:k+l−1)
parametrizes the true distribution. φ?T instead minimizes the expectation of ST with respect
to the full sequence Y1:T , which we shorten to S?T (P φk+l:T ).

Each term in the sum defining ST depends on a finite number of observations; therefore,
if (Yt)t satisfies some mixing and stationarity properties, we expect φ̃T (y1:k+l−1) to not
depend on y1:k+l−1 for large T ; similarly, we expect the empirical estimator φ̂T (y1:T ) to
converge to a fixed quantity. The following Theorem proves such consistency of φ̂T (y1:T )
and φ̃T (y1:k+l−1) to φ?T .

Theorem 3 Let the following assumptions hold almost surely for Y1:k+l−1 ∼ P ?1:k+l−1:

1. Φ is compact.

2. φ?T and φ̃T (Y1:k+l−1) are unique; additionally, there exist a metric d on Φ such that,
for all ε > 0,

lim inf
T→+∞

{
min

φ:d(φ,φ?T )≥ε
S?T (P φk+l:T )− S?T (P

φ?T
k+l:T )

}
> 0 and

lim inf
T→+∞

{
min

φ:d(φ,φ̃T (Y1:k+l−1))≥ε
S̃T (P φk+l:T (·|y1:k+l−1))− S̃T (P

φ̃T (Y1:k+l−1)
k+l:T (·|Y1:k+l−1))

}
> 0.
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3. (Asymptotic stationarity) Let Gt be the marginal distribution of Yt−k+1:t+l and G̃t be the
marginal distribution of Yt−k+1:t+l|Y1:k+l−1 for t ≥ k. Then, (T − l−k+1)−1

∑T−l
t=k Gt

and (T − l − k + 1)−1
∑T−l

t=k G̃t both converge weakly to some probability measures on
Yk+l as T →∞.

4. Both conditions below are satisfied:

(a) (Mixing)1 Both (Yt)t ∼ P ? and (Xt)t ∼ P ?(·|Y1:k+l−1) satisfy either one of these
mixing properties (defined in Appendix A.3.5; (Xt)t and (Yt)t can satisfy different
ones):

i. α-mixing with mixing coefficient of size r/(2r − 1), with r ≥ 1, or
ii. ϕ-mixing with mixing coefficient of size r/(r − 1) with r > 1.

(b) (Moment boundedness) Define H(yt−k+1:t+l) = supφ∈Φ |S(P φ(·|yt−k+1:t),yt+l)|;
then,

sup
t≥k

E
[
H(Yt−k+1:t+l)

r+δ
]
and sup

t≥k
EYt−k+1:t+l|y1:k+l−1

[
H(Yt−k+1:t+l)

r+δ
]

are finite for some δ > 0, for the value of r corresponding to the condition above
which is satisfied.

Then, d(φ?T , φ̂T (Y1:T ))→ 0 and d(φ̃T (Y1:k+l−1), φ̂T (Y1:T ))→ 0 when T →∞ almost surely
with respect to (Yt)t ∼ P ?. It also follows that d(φ̃T (Y1:k+l−1), φ?T )→ 0.

Under the assumptions of Theorem 3, with large enough T , φ̂T (y1:T ) and φ̃T (y1:k+l−1) will
be independent of the observed sequence y1:T and will converge to φ?T . Therefore, minimizing
the prequential SR in Eq. (9) asymptotically recovers the minimizer of an expected proper
SR, which does not depend on the initial conditions of the sequence y1:k+l−1.

Proof of Theorem 3 is given in Appendix A.3. The proof holds when P φt+l depends
on t only through the value of the past observations, which is our case of interest as we
use the same generative network for all t’s. The proof relies on the following steps: first,
Assumptions 1, 2 and 4 are used to obtain a uniform law of large numbers using Theorem 2
in Pötscher and Prucha (1989) (Appendix A.3.7); then, this is combined with Assumption 2
to obtain the results thanks to Theorem 5.1 in Skouras (1998) (Appendix A.3.6). As such,
Theorem 3 is a consequence of classical results in empirical process theory, adapted to our
specific objective function in Eq. (10). To make the intermediary results more easily usable
and the proof easier to follow, Appendix A.3 separately states and proves convergence of φ̂T
to φ?T (Appendix A.3.1) and that of φ̂T to φ̃T (Appendix A.3.2), by splitting the assumptions
in two sets.

The assumptions in Theorem 3 may be hard to verify. To make this easier, in Ap-
pendix A.3.4, we show that Assumption 2 is satisfied if S is strictly proper and P φ is a
well-specified model with φ being identifiable (Lemma 12). Moreover, we also provide simple
sufficient conditions under which the moment boundedness condition in Assumption 4 holds
for the Energy and Kernel score (Lemmas 14 and 13); the simplest of these conditions require
the kernel or the space to be bounded for the Kernel score and the Energy score respectively.

1. Roughly speaking, both mixing properties imply that Yt−m and Yt become independent as m→∞.

9
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3.2 Scoring rules for spatial data

In contrast to multivariate data, spatial data is structured: the relation between different
entries depends on their spatial distance. Computing, say, the Kernel SR in Eq. (5) would
discard this structure; we discuss here SRs which instead capture it, and which we will use
for a spatio-temporal data set (Sec. 5.2).

3.2.1 Variogram Score

Say now Y ⊆ Rd. For any p > 0, the Variogram Score Scheuerer and Hamill (2015) is defined
as

S(p)
v (P φ,y) :=

d∑
i,j=1

wij (|yi − yj |p − EX∼Pφ |Xi −Xj |p)2 , (11)

where wij > 0 are fixed scalars. If Y has a spatial structure wij can be set to be inversely
proportional to the spatial distance of locations i and j (Scheuerer and Hamill, 2015).
However, S(p)

v is proper but not strictly so: it is invariant to change of sign and shift of all
entries of X by a constant, and only depends on the moments of P φ up to order 2p (Scheuerer
and Hamill, 2015). We will fix p = 1 in the rest of our work.

3.2.2 Patched SR

To convey the spatial structure of the data, we can compute a SR on a localized patch of
the data. In this way, the resulting score only considers the correlation between nearby
components. We can then shift the patch across the map and cumulate the resulting score (see
Fig. 4 in Appendix). However, this SR is non-strictly proper as it does not evaluate long-range
dependencies. A similar approach was suggested for an adversarial setting in Isola et al. (2017),
where the critic outputs separate numerical values for different patches of an input image.

3.2.3 Sum of SRs

Both SRs introduced above are non-strictly proper; we can however obtain a strictly proper
SR by adding a strictly proper SR to a proper one, as stated by the lemma below (proof in
Appendix A.1).

Lemma 4 Consider two proper SRs S1 and S2, and let α1, α2 > 0; the quantity

S+(P,y) = α1 · S1(P,y) + α2 · S2(P,y)

is a proper SR. If at least one of S1 and S2 is also strictly proper, then S+ is strictly proper.

3.2.4 Probabilistic forecasting for spatial data

Inserting the spatial SRs discussed above in the prequential score in Eq. (9) enables prob-
abilistic forecasting for spatial data using generative networks. For the Variogram Score,
unbiased gradient estimates can be computed by simulating from P φ; same holds for the
patched SR if the underlying SR admits unbiased gradient estimates (Appendix C).

10
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4. Related works

Scoring rules have long been used in statistics: early characterisations are given in McCarthy
(1956) and Savage (1971). Their usage for parameter estimation is also commonplace, see
Gneiting and Raftery (2007) for an overview and Dawid et al. (2016) for theoretical properties.
Closer to our method, Dawid and Musio (2013) used SRs to infer parameters for spatial
models, considering the conditional distribution in each location given all the others to be
available; instead, Dawid and Musio (2015) considered model selection based on SRs and
studied a prequential application.

Prior works proved theoretical results related to our consistency result in Sec. 3.1.1:
Theorem 3 combines Theorem 5.1 in Skouras (1998), which proves parameter consistency
under uniform law of large numbers, with Theorem 2 in Pötscher and Prucha (1989), which
is a classical result in empirical process theory obtaining a uniform law of large numbers
for dependent data. Skouras (1998) also discusses other properties of prequential losses for
forecasting systems, such as our Eq. (9). Analogous results to our Theorem 3 in similar
settings were also shown: for instance, Dziugaite et al. (2015) showed consistency of the
minimizer of an unbiased MMD empirical estimate to minimizer of the population MMD;
they also rely on uniform convergence arguments, but, in contrast to our Theorem 3, their
result applied to i.i.d. data.

As mentioned before, SR minimization for generative networks had been previously
sparsely employed; however, a rigorous formulation such as the one we provide here was
missing; moreover, no work specifically applied SR minimization to forecasting. Specifically,
Bouchacourt et al. (2016) used a formulation corresponding to SR minimization with the
Energy Score, but obtained it using different arguments. Similarly to the latter, Gritsenko et al.
(2020) trained a generative network via a generalized Energy Distance for a speech synthesis
task, again considering independent samples. More recent works use SR minimization for
simulation-based Bayesian inference (Pacchiardi and Dutta, 2022), Neural SDEs (Issa et al.,
2023) and self-supervised representation learning (Vahidi et al., 2024).

A research niche focuses on generating full time series with GANs (Brophy et al., 2023)
often by using Recurrent NNs (RNN) as both discriminator and generator. In contrast, we
focus on forecasting a single time step by conditioning on previous elements of the time-series.
Some work aiming at generating full time-series can however be adapted for forecasting:
for instance, the trained generator of Yoon et al. (2019) can be conditioned on past data;
still, our training method is more convenient if forecasting is the task at hand, as we do not
require a temporal discriminator nor multiple independent time-series as training data.

Some works instead directly used GANs for probabilistic forecasting, such as Kwon and
Park (2019); Koochali et al. (2021); Bihlo (2021); Ravuri et al. (2021). However, they consid-
ered the training samples as independent and did not study theoretically the consequence of
using dependent data. Bihlo (2021) tested their method on a similar data set to ours (which
we privileged as it is a standardized benchmark) and found the GAN to underestimate uncer-
tainty, so they considered a GANs ensemble to mitigate uncertainty underestimation. Instead,
Ravuri et al. (2021) exploited GANs for a precipitation nowcasting task (i.e., predicting for
small lead time), achieving good deterministic and probabilistic performance. Rasul et al.
(2021) instead performed probabilistic forecasting with a normalizing flow (Papamakarios
et al., 2021), by conditioning it on the output of a RNN or a Transformed network (Vaswani
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et al., 2017) to which the past elements of the time series were input. While their method is
adversarial-free, the use of a normalizing flow reduces its flexibility, possibly inhibiting its
capacity to efficiently represent spatial data, which is instead straightforward with generative
networks (Sec. 5.2).

Deterministic forecasting with NNs for the WeatherBench data set (Sec. 5.2) was studied
extensively Dueben and Bauer (2018); Scher (2018); Scher and Messori (2019); Weyn et al.
(2019). Fewer studies tackled probabilistic forecasting: Scher and Messori (2021) combined
deterministic NNs with ad-hoc strategies, not guaranteed to lead to the correct distribution.
Clare et al. (2021) binned instead the data, thus mapping the problem to that of estimating
a categorical distribution.

5. Simulation study

We first study two low-dimensional time-series models which allow exhaustive hyperparameter
tuning and architecture comparison but still present challenging dynamics due to their chaotic
nature. We then move to a high-dimensional spatio-temporal meteorology data set. For all
examples, we train generative models with the Energy and the Kernel Scores (Appendix B.2)
and their sum, termed Energy-Kernel Score (a strictly proper SR due to Lemma 4). As
discussed in Sec. 2.2.2, we choose these scores as they can be written via an expectation, which
makes our method applicable. Other scores (such as, for instance, the log score, Gneiting
and Raftery, 2007), do not enjoy this property and are therefore unsuitable to our method.
Additional SRs, discussed later in Sec. 5.2, are used for the meteorology example. For the
Kernel Score, we use the Gaussian kernel (Appendix B.2) with bandwidth γ tuned from the
validation set (Appendix E.1). For all SR methods, we use 10 forecasts from the generator
for each observation window to estimate SR values during training; however, performance
does not degrade when using as few as 3 simulations (Appendix F.3.2), which lowers the
computational cost (Appendix F.3.3). We compare with the original GAN (Goodfellow
et al., 2014) and WGAN with gradient penalties (WGAN-GP, Gulrajani et al., 2017). The
latent variable Z has independent components with standard normal distribution. To have a
reference for the deterministic performance of the probabilistic methods, we compare them
with deterministic networks trained to minimize the standard regression loss.

All data sets consist of a long time series, which we split into training, validation and
test set. We use the validation set for early stopping and hyperparameter tuning and report
the final performance on the test set. The adversarial methods do not allow early stopping
or hyperparameter selection using the training objective, as the generator loss depends
on the critic state. For these methods, therefore, we use other metrics to pick the best
hyperparameters (see below).

On the test set, we assess the calibration of the probabilistic forecasts by the calibration
error (the discrepancy between credible intervals in the forecast distribution and the actual
frequencies). We also evaluate how close the means of the forecast distributions are to the
observation by the Normalized Root Mean-Square Error (NRMSE) and the coefficient of
determination R2; we detail all these metrics in Appendix D. As all these metrics are for
scalar variables, we compute their values independently for each component and report their
average (standard deviation in Appendix F).
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Figure 2: Results for selected methods for Lorenz63 and Lorenz96 (first data component):
median forecasts (solid line) and 99% credible area (shaded area) for a part of the
test set. For each t, forecasts are obtained using the previous observation window.
Credible regions for GAN and WGAN-GP are broader but contain the truth less
frequently.

Our simulations show how the SR methods are easier to train and provide better
uncertainty quantification. The adversarial methods require more hyperparameter tuning.
We find the original GAN to be unstable and very poor at quantifying uncertainty due to
mode collapse; WGAN-GP performs better but still has inferior performance than the SR
approaches. Likely, ad-hoc adversarial training strategies could lead to better performance;
however, the possibility of effortlessly training with off-the-shelf methods is an advantage of
the SR approaches. Code for reproducing results is available here.

5.1 Time-series models

We consider the Lorenz63 (Lorenz, 1963) and Lorenz96 (Lorenz, 1996) chaotic models
(Appendices E.2.1 and E.3.1). The former is defined on a 3-dimensional variable, a single
component of which we assume to observe. The latter contains two sets of variables; we
observe only one of them, which is 8-dimensional. In both cases, we generate an observed
trajectory from a long model integration, from which we take the first 60% as training set,
the following 20% as validation and the remaining 20% as test set.

We train the generative networks to forecast the next time step (l = 1) from an observation
window of size k = 10. We use recurrent NNs based on Gated Recurrent Units (GRU, Cho
et al., 2014; Appendices E.2.2 and E.3.2); we also tested fully connected networks but they
had worse performance, so we do not report them here. For the SR methods, we select
the best learning rate among 6 values according to the validation loss. For the adversarial
methods, we consider instead 14 learning rates for both generator and critic; we also try
two hidden dimensions for the GRU layers and four numbers of critic training steps for
WGAN-GP; overall, we run 392 experiments for GAN and 1568 for WGAN-GP. As the
validation loss is not a meaningful metric for adversarial approaches, we report results
for 3 different configurations for GAN and WGAN-GP, maximizing either deterministic
performance (1) or calibration (2), or striking the best balance between these two (3). More
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Lorenz63 Lorenz96

Cal. error ↓ NRMSE ↓ R2 ↑ Cal. error ↓ NRMSE ↓ R2 ↑

Regression - 0.0079 0.9977 - 0.0198 0.9905

Energy 0.0380 0.0105 0.9960 0.0205 0.0166 0.9933
Kernel 0.0910 0.0083 0.9975 0.2196 0.0164 0.9935
Energy-Kernel 0.1000 0.0114 0.9953 0.0104 0.0173 0.9928
GAN (1) 0.4830 0.0274 0.9729 0.4644 0.0354 0.9696
GAN (2) 0.0860 0.2425 -1.1166 0.2671 0.1500 0.4537
GAN (3) 0.3590 0.0698 0.8245 0.3700 0.0763 0.8590
WGAN-GP (1) 0.4710 0.0398 0.9429 0.4134 0.0330 0.9736
WGAN-GP (2) 0.0270 0.1243 0.4440 0.0565 0.1081 0.7165
WGAN-GP (3) 0.2100 0.0914 0.6996 0.1648 0.0786 0.8502

Table 1: Performance on test set for the different methods, on the Lorenz63 and Lorenz96
models. Results with three hyperparameter configurations are reported for GAN
and WGAN-GP, see text. Overall, SR methods perform well on both calibration
and deterministic forecast metrics (NMRSE and R2), while adversarial approaches
are incapable of doing so.

details are in Appendix E.2.3 and E.3.3). These experiments are run on CPU machines and
take at most a few minutes to complete.

In Table 1, we report performance metrics on the test set. The Kernel Score excels in
deterministic forecasts, getting close to or outperforming the regression loss; however, all SR
methods lead to combined great deterministic and probabilistic performance. On the other
hand, adversarial methods are capable of good deterministic performance (1) or calibration
(2) independently; but either of these two is at the expense of the other; the configuration
with the best trade-off (3) is much worse than the SR methods (with WGAN-GP better
than GAN). In Fig. 2, we show observation and forecast for a part of the test set, for GAN
and WGAN-GP in configuration (3), the Energy Score for Lorenz63 and the Energy-Kernel
Score for Lorenz96. For the two SR methods, the median forecast is close to the observation
and the credible region contains the true observation for most time steps. For GAN and
WGAN-GP, the match with the observation is worse and credible regions generally contain
the truth less frequently albeit being wider. Additional results are given in Appendices F.1
and F.2.

5.2 Meteorological data set

The WeatherBench data set2 for data-driven weather forecasting (Rasp et al., 2020) contains
hourly values of several atmospheric fields from 1979 to 2018 at different resolutions; we
choose here a resolution of 5.625◦ over both longitude and latitude, corresponding to a 32×64

2. Released under MIT license, see here.

14

https://github.com/pangeo-data/WeatherBench/blob/master/LICENSE


Probabilistic Forecasting with Generative Networks via Scoring Rule Minimization

Figure 3: Realization and example of predictions obtained with the patched Energy Score
(patch size 16) for a specific date in the test set for the WeatherBench data set.
The predictions capture the main features but are slightly different from each
other.

grid. We consider a single observation per day (12:00 UTC) and the 500 hPa geopotential
(Z500) variable. We forecast with a lead of 3 days (l = 3) from a single observation (k = 1).
We use the years from 1979 to 2006 as training set, 2007 to 2016 as validation test and 2017
to 2018 as test set.

In addition to the Energy, Kernel and Energy-Kernel Scores, we test the spatial SRs
introduced in Sec 3.2. Specifically, we consider the Variogram Score with weights w inversely
proportional to the distance on the globe (Appendix E.4.1) and sum it to the Energy (Energy-
Variogram) or the Kernel (Kernel-Variogram) Scores. We also consider the Patched Energy
Score with patch sizes 8 and 16; to ensure the score is strictly proper, we add the overall Energy
Score (summation weights in Appendix E.4.2). We also consider patched regression loss.

We employ a U-NET architecture (Olaf et al., 2015) for the generative network and a
PatchGAN discriminator (Isola et al., 2017) for the critic (Appendix E.4.3). For the SR
methods, we select the best learning rate among 6 values according to the validation loss; for
the adversarial ones, we consider instead 7 values for both generator and critic, resulting in
49 experiments. We then pick the setups optimizing deterministic or calibration performance.
For WGAN-GP, a single configuration optimizes both; for GAN, that did not happen. As for
the time-series models, we report therefore results for setups maximizing either deterministic
performance (1) or calibration (2), or striking the best balance between these two (3). All
training is run on a single Tesla V100 GPU; computing times are reported in Appendix F.3.3.

Table 2 reports performance on the test set. According to the calibration error, NRMSE
and R2, the Patched Energy Scores perform best, with deterministic skill only slightly worse
than the regression loss. In Fig. 3 we show observation and three different predictions obtained
with the Patched Energy Score for a date in the test set. More results in Appendix F.3.
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Cal. error ↓ NRMSE ↓ R2 ↑

Regression - 0.1162 0.5300
Patched Regression, 8 - 0.1147 0.5459
Patched Regression, 16 - 0.1144 0.5509

Energy 0.0863 0.1208 0.4968
Kernel 0.0797 0.1200 0.5097
Energy-Kernel 0.0794 0.1194 0.5150
Energy-Variogram 0.0899 0.1192 0.5177
Kernel-Variogram 0.1704 0.1203 0.5050
Patched Energy, 8 0.0550 0.1189 0.5217
Patched Energy, 16 0.0690 0.1186 0.5248
GAN (1) 0.4845 0.1573 0.1418
GAN (2) 0.3130 0.2487 -2.7970
GAN (3) 0.3625 0.1693 -0.0117
WGAN-GP 0.1009 0.1302 0.4340

Table 2: Performance on WeatherBench test set for different methods. Results with three
hyperparameter configurations are reported for GAN, see text. SR methods perform
well on both calibration and deterministic forecast metrics (NMRSE and R2).
WGAN-GP is worse and GAN is drastically worse.
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6. Conclusions

We proposed a method to train generative networks for probabilistic forecasting by minimizing
a prequential scoring rule. Compared to the standard adversarial framework, the advantages
of the Scoring Rule formulation are: (i) it provides a principled objective for probabilistic
forecasting; (ii) it yields adversarial-free training, with which better uncertainty quantification
is possible, as we show empirically; (iii) it enables leveraging the literature on SRs to define
objectives for spatio-temporal data sets. The resulting training method is easier to use and
requires less hyperparameter tuning than adversarial methods.

We highlight the following limitations of our work: first, our Theorem 3 relies on
assumptions which are hard to verify, although, for some assumptions, we provide sufficient
conditions applicable to the Kernel and Energy Scores in Appendix A.3.4. However, we
believe similar consistency properties hold provided the temporal process satisfies some
generic stationarity and memory-less properties. Secondly, we do not experiment with
forecasting multiple time-steps at once as we preferred focusing on single time-step forecast
tasks for analytical simplicity while developing our framework. Doing so would be a useful
extension of our work; in practice, SRs assessing temporal coherence analogous to what is
done with temporal discriminators in Ravuri et al. (2021) in the adversarial setting could be
developed. Finally, we presented adversarial training and SR minimization as alternative
approaches, but it is plausible that combining them would be beneficial. We leave this for
future work.
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Appendix A. Proofs of theoretical results

A.1 Proof of Lemma 4

Proof By the definition of proper SR, we have that

α1 · S1(Q,Q) ≤ α1 · S1(P,Q) ∀ P,Q ∈ P,

and similar for S2. By adding the two inequalities, we have therefore that

α1 · S1(Q,Q) + α2 · S2(Q,Q) ≤ α1 · S1(P,Q) + α2 · S2(P,Q) ∀ P,Q ∈ P,

which implies that S+ is a proper SR.
Assume now additionally that S1, without loss of generality, is strictly proper, i.e.

α1 · S1(Q,Q) < α1 · S1(P,Q) ∀ P,Q ∈ P : P 6= Q;

then, summing the above with the corresponding inequality for S2 gives that

α1 · S1(Q,Q) + α2 · S2(Q,Q) < α1 · S1(P,Q) + α2 · S2(P,Q) ∀ P,Q ∈ P : P 6= Q,

which implies that S+ is a strictly proper SR.

A.2 Propriety of the prequential SR

In this Section, let P ? denote the data generating distribution for (Y1,Y2, . . . ,Yt, . . .) =
(Yt)t, and let P denote a generic distribution assigned to (Yt)t. From the distribution on
the full sequence P , conditional and marginals can be obtained, and denoted as follows:
Pt+1(·|y1:t) denotes the conditional distribution for Yt+1 given y1:t, and P1:t the (marginal)
distribution for (Y1,Y2, . . . ,Yt). Similar notation will be used for the conditional and
marginals induced by P ?.

A.2.1 Generic 1-step ahead prequential SR

We first consider a simplified case in which we can access the marginal for Y1 and all
subsequent conditionals from P . Given y1:t, we use the distribution P to construct a forecast
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distribution for Yt+1, namely Pt+1(·|y1:t); we penalize the forecast, against the verifying
observation yt+1, via a SR S

S(Pt+1(·|y1:t),yt+1).

From the above, we construct the prequential SR for the forecast P1:T as follows

ST (P1:T ,y1:T ) =
1

T

[
T−1∑
t=1

S(Pt+1(·|y1:t),yt+1) + S(P1,y1)

]
; (12)

the above assumes that at each time instant we obtain a probabilistic forecast Pt+1(·|y1:t)
from the distribution P and we verify it against the next observed element of the sequence
yt+1. Additionally, at the first time step, we have not yet received any observation, so our
forecast P1 is unconditional. Also, let us define the expected prequential score as

ST (P1:T , P
?
1:T ) := EY1:T∼P ?1:TST (P1:T ,Y1:T ),

Theorem 5 If the scoring rule S is proper, then the prequential score ST in Eq. (12) is
proper for distributions over YT , i.e.

ST (P ?1:T , P
?
1:T ) ≤ ST (P1:T , P

?
1:T ).

Similarly, if S is strictly proper, the prequential score ST is strictly proper, i.e. the equality
only holds if P1:T = P ?1:T .

Proof By definition of proper SR, we have that

EYt+1∼P ?t+1(·|y1:t)S(P ?t+1(·|y1:t),Yt+1) ≤ EYt+1∼P ?t+1(·|y1:t)S(Pt+1(·|y1:t),Yt+1)

for any conditional distribution Pt+1(·|y1:t) and for any values y1:t.
Similarly, it holds

EY1∼P ?1 S(P ?1 ,Y1) ≤ EY1∼P ?1 S(P1,Y1), (13)

for any distribution P1.
For the expected prequential SR, it holds that:

ST (P1:T , P
?
1:T ) = EY1:T∼P ?1:TST (P1:T ,Y1:T )

=
1

T

[
T−1∑
t=1

EY1:T∼P ?1:TS(Pt+1(·|Y1:t),Yt+1) + EY1:T∼P ?1:TS(P1,Y1)

]

=
1

T

[
T−1∑
t=1

EY1:t+1∼P ?1:t+1
S(Pt+1(·|Y1:t),Yt+1) + EY1∼P ?1 S(P1,Y1)

]
;

but now

EY1:t+1∼P ?1:t+1
S(Pt+1(·|Y1:t),Yt+1) = EY1:t∼P ?1:t

[
EYt+1∼P ?t+1(·|Y1:t)S(Pt+1(·|Y1:t),Yt+1)

]
≥ EY1:t∼P ?1:t

[
EYt+1∼P ?t+1(·|Y1:t)S(P ?t+1(·|Y1:t),Yt+1)

]
,

(14)
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so that

ST (P1:T , P
?
1:T ) ≥ 1

T

[
T−1∑
t=1

EY1:t+1∼P ?1:t+1
S(P ?t+1(·|Y1:t),Yt+1) + EY1∼P ?1 S(P ?1 ,Y1)

]

=
1

T

[
T−1∑
t=1

EY1:T∼P ?1:TS(P ?t+1(·|Y1:t),Yt+1) + EY1:T∼P ?1:TS(P ?1 ,Y1)

]
= ST (P ?1:T , P

?
1:T ),

(15)

which proves that ST is proper.
To show that ST is strictly proper if S is, we first notice that P1:T is fully determined by the

marginal P1 and by the conditionals Pt+1(·|y1:t) for all possible values of y1:t, 1 ≤ t ≤ T − 1.
In fact, if P1:T and its conditional marginals have densities, you can write

p1:T (y1:T ) = p1(y1)p2(y2|y1)p3(y3|y1:2) . . . pT−1(yT−1|y1:T−2)pT (yT |y1:T−1).

Next, notice that the ≥ sign in Eq. (15) is an equality if and only if the ≤ sign in Eq. (13)
is an equality and the ≥ sign in (14) is an equality for all 1 ≤ t ≤ T . As S is proper, the
latter being true requires

EYt+1∼P ?t+1(·|y1:t)S(Pt+1(·|y1:t),Yt+1) = EYt+1∼P ?t+1(·|y1:t)S(P ?t+1(·|y1:t),Yt+1)

for all values of y1:t in the support of P ?1:t. If S is strictly proper, however, the above
conditions require that P1 = P ?1 and Pt+1(·|y1:t) = P ?t+1(·|y1:t) ∀ y1:t in the support of P ?1:t

and for 1 ≤ t ≤ T − 1, which implies that P1:T = P ?1:T due to distributions on Y1:T being
determined by the marginal for Y1 and the conditional on Yt+1|y1:t for all values of y1:t in
the support of P ?1:t.

A.2.2 l-steps ahead prequential SR (Theorem 2)

We now go back to the specific setting considered in the main body of the paper. By
discarding the model parameter φ in the notation for simplicity, the generative network
induces conditional distributions Pt+l(·|y1:t) for Yt+l which only depend on the last k
observations, i.e. Pt+l(·|y1:t) = Pt+l(·|yt−k+1:t). Therefore, the joint distribution for Yk+l:T

induced by the generative network satisfies the following property:

Definition 6 A probability distribution P1:T is k-Markovian with lag l if it can be decomposed
as follows, assuming it has density p1:T with respect to some base measure:

p1:T (y1:T ) = p1:k+l−1(y1:k+l−1)
T−l∏
t=k

pt+l(yt+l|yt−k+1:t).

Setting l = 1 recovers the standard definition of k-Markovian models.
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Notice also that the set of distributions which are k-Markovian with lag l is a subset of
(k + l − 1)-Markovian distributions, for which in fact

p1:T (y1:T ) = p1:k+l−1(y1:k+l−1)

T∏
t=k+l

pt(yt|yt−k−l+1:t−1)

= p1:k+l−1(y1:k+l−1)
T−l∏
t=k

pt+l(yt+l|yt−k+1:t+l−1);

the additional assumption in Definition 6 with respect to (k + l − 1)-Markovian is that the
conditional distribution for Yt is not influenced by the last l − 1 elements.

In our setting, we can only access Pt+l(·|yt−k+1:t) for k ≤ t ≤ T − l; the marginals
P1:k+l−1 are not available. Therefore, we consider the following quantity

Sk,lT (Pk+l:T (·|y1:k+l−1),yk+l:T ) :=
1

T − l − k + 1

T−l∑
t=k

S(Pt+l(·|yt−k+1:t),yt+l); (16)

in contrast to Eq. (9) in the main text, we make explicit the dependence on k and l in
the notation for Sk,lT and introduce a scaling constant for simplicity, which however does
not impact the following arguments. The notation in Eq. (16) only makes sense if P is a
(k + l − 1)-Markovian distribution, as otherwise y1:k+l−1 would also appear explicitly in
the conditioning of Pt+l on the right hand-side. The notation therefore makes sense for P
obtained from the generative network, as that is k-Markovian with lag l which, as mentioned
above, is a specific case of (k + l − 1)-Markovian.

As mentioned in the main text, Sk,lT is the prequential score and is a SR for distributions
over Yk+l:T |y1:k+l−1 which are (k + l − 1)-Markovian.

From Eq. (16), we can define the expected SR as

Sk,lT (Pk+l:T (·|y1:k+l−1),P ?k+l:T (·|y1:k+l−1)) :=

EYk+l:T∼P ?k+l:T (·|y1:k+l−1)S
k,l
T (Pk+l:T (·|y1:k+l−1),Yk+l:T ).

For the scoring rule defined in Eq. (16), the following Theorem holds, which we state in
more generality with respect to Theorem 2 in the main text:

Theorem 7 If the scoring rule S is proper, then, for all choices of y1:k+l−1, the prequential
score Sk,lT in Eq. (16) is proper for distributions on Yk+l:T |y1:k+l−1 which are (k + l −
1)−Markovian; namely, the following inequality holds

Sk,lT (P ?k+l:T (·|y1:k+l−1), P ?k+l:T (·|y1:k+l−1)) ≤ Sk,lT (Pk+l:T (·|y1:k+l−1), P ?k+l:T (·|y1:k+l−1)),
(17)

where P1:T and P ?1:T are (k + l − 1)-Markovian.
If additionally S is strictly proper, then, for all choices of y1:k+l−1, S

k,l
T is proper for

distributions on Yk+l:T |y1:k+l−1 which are k-Markovian with lag l, i.e. the equality in Eq. (17)
only holds if Pk+l:T (·|y1:k+l−1) = P ?k+l:T (·|y1:k+l−1), where P1:T and P ?1:T are k-Markovian
with lag l.
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The prequential score Sk+l
T is non-strictly proper for distributions that are (k + l − 1)-

Markovian but not k-Markovian with lag l. In fact, it builds forecasts from P ?k+l:T (·|y1:k+l−1)
with lead of l timesteps, meaning that the information included in observations yt+1:t+l−1 is
not used in formulating the forecast for Yt+l. It is therefore unable to distinguish between
different distributions for Yk+l:T |y1:k+l−1 which have the same conditionals at lead l, but
for which the conditionals change if one takes into account yt+1:t+l−1 in forecasting Yt+l.
Therefore, you need to restrict the class of distributions to those in which the value yt+1:t+l−1

does not impact the distribution for Yt+l in order to get strict propriety.
We now prove the Theorem.

Proof The proof steps follow those of Theorem 5.
By definition of proper SR, we have that, for all t ≥ k

EYt+l∼P ?t+l(·|yt−k+1:t)S(P ?t+l(·|yt−k+1:t),Yt+l) ≤ EYt+l∼P ?t+l(·|yt−k+1:t)S(Pt+l(·|yt−k+1:t),Yt+l)

(18)
for any conditional distribution Pt+l(·|yt−k+1:t) and for any values yt−k+1:t.

For the expected prequential SR, it holds that

Sk,lT (P ?k+l:T (·|y1:k+l−1), P ?k+l:T (·|y1:k+l−1))

= EYk+l:T∼P ?k+l:T (·|y1:k+l−1)S
k,l
T (P ?k+l:T (·|y1:k+l−1),Yk+l:T )

= EY1:T∼P ?1:T (·|y1:k+l−1)S
k,l
T (P ?k+l:T (·|Y1:k+l−1),Yk+l:T )

=
1

T − l − k + 1

T−l∑
t=k

EY1:T∼P ?1:T (·|y1:k+l−1)S(P ?t+l(·|Yt−k+1:t),Yt+l)

=
1

T − l − k + 1

T−l∑
t=k

EY1:t+l∼P ?1:t+l(·|y1:k+l−1)S(P ?t+l(·|Yt−k+1:t),Yt+l);

the second equality in the Equation above is trivial but we use it to simplify notation in the
following. Now

EY1:t+l∼P ?1:t+l(·|y1:k+l−1)S(P ?t+l(·|Yt−k+1:t),Yt+l)

= EYt−k+1:t∼P ?t−k+1:t(·|y1:k+l−1)

[
EYt+l∼P ?t+l(·|Yt−k+1:t,y1:k+l−1)S(P ?t+l(·|Yt−k+1:t),Yt+l)

]
= EYt−k+1:t∼P ?t−k+1:t(·|y1:k+l−1)

[
EYt+l∼P ?t+l(·|Yt−k+1:t)S(P ?t+l(·|Yt−k+1:t),Yt+l)

]
≤ EYt−k+1:t∼P ?t−k+1:t(·|y1:k+l−1)

[
EYt+l∼P ?t+l(·|Yt−k+1:t)S(Pt+l(·|Yt−k+1:t),Yt+l)

]
= EY1:t+l∼P ?1:t+l(·|y1:k+l−1)S(Pt+l(·|Yt−k+1:t),Yt+l);

(19)

in the first equality above, we have marginalized over all components of Y1:t+l which do not
appear in the expected quantity and we have used the definition of conditional probability
together with the tower property of expectations. In the second equality, we have exploited
the (k + l − 1)−Markov property3 of P ? which ensures that the distribution for Yt+l does
not depend on Y1:t−k. The inequality holds for any conditional distribution Pt+l(·|yt−k+1:t)

3. Technically, you can relax the (k + l − 1)−Markov assumption for the full sequence to assuming (k + l −
1)−Markovianity for Y1:2k+l−1 and independence of Y2k+l:T on Y1:k+l−1; this is however quite artificial.
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and for any values yt−k+1:t thanks to Eq. (18). Finally, the last equality is obtained via the
reverse of the argument used for the first one.

Now, we can write

Sk,lT (P ?k+l:T (·|y1:k+l−1), P ?k+l:T (·|y1:k+l−1))

≤ 1

T − l − k + 1

T−l∑
t=k

EY1:t+l∼P ?1:t+l(·|y1:k+l−1)S(Pt+l(·|Yt−k+1:t),Yt+l)

=
1

T − l − k + 1

T−l∑
t=k

EY1:T∼P ?1:T (·|y1:k+l−1)S(Pt+l(·|Yt−k+1:t),Yt+l)

=
1

T − l − k + 1

T−l∑
t=k

EYk+l:T∼P ?k+l:T (·|y1:k+l−1)S(Pt+l(·|Yt−k+1:t),Yt+l)

= Sk,lT (Pk+l:T (·|y1:k+l−1), P ?k+l:T (·|y1:k+l−1)),

(20)

which proves that Sk,lT is proper for distributions over Yk+l:T |y1:k+l−1 which are (k +
l)−Markov.

Now, consider P1:T and P ?1:T to be k-Markovian with lag l. The ≤ sign in Eq. (20) is an
equality if and only if the ≤ sign in Eq. (19) is an equality for all k ≤ t ≤ T − l. As S is
proper, the latter requires

EYt+l∼P ?t+l(·|yt−k+1:t)S(P ?t+l(·|yt−k+1:t),Yt+l) = EYt+l∼P ?t+l(·|yt−k+1:t)S(Pt+l(·|yt−k+1:t),Yt+l)

for all values of yt−k+1:t, If S is strictly proper, however, the latter is satisfied if and only
if Pt+l(·|yt−k+1:t) = P ?t+l(·|yt−k+1:t) ∀ yt−k+1:t and for k ≤ t ≤ T − l, which implies that
Pk+l:T (·|y1:k+l−1) = P ?k+l:T (·|y1:k+l−1) due to the k-Markov with lag l property. This implies
that ST is strictly proper for distributions which are k-Markov with lag l.

A.3 Proof and precise statement of the consistency result (Theorem 3)

We follow here the notation introduced at the start of Appendix A.2. Specifically, P ? denotes
the data generating distribution for (Y1,Y2, . . . ,Yt, . . .) = (Yt)t.

We consider a model class parametrized by a set of parameters φ. For such models,
we assume the conditional distributions P φt+l(·|y1:t) for Yt+l only depends on the last k
observations, i.e. P φt+l(·|y1:t) = P φt+l(·|yt−k+1:t). Additionally, we assume that the conditional
distribution does not depend explicitly on t, such that P φt+l(·|yt−k+1:t) = P φ(l)(·|yt−k+1:t),
where the bracketed subscript denotes that the forecast is for l steps ahead. This is the
setting considered in the main manuscript.

In this specific case, therefore, the scoring rule used to penalize the forecast P φ(l)(·|yt−k+1:t)

against the verification yt+l (Eq. 16) becomes

S(P φ(l)(·|yt−k+1:t),yt+l).
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Therefore, the prequential score defined in Eq. (16) becomes

Sk,lT (P φk+l:T (·|y1:k+l−1),yk+l:T ) =
1

T − l − k + 1

T−l∑
t=k

S(P φ(l)(·|yt−k+1:t),yt+l); (21)

notice that we introduce here a scaling constant for simplicity; that however does not impact
any of the following arguments. Recall also the definition of the expected prequential score

Sk,lT (P φk+l:T (·|y1:k+l−1),P ?k+l:T (·|y1:k+l−1))

:= EYk+l:T∼P ?k+l:T (·|y1:k+l−1)S
k,l
T (P φk+l:T (·|y1:k+l−1),Yk+l:T ),

(22)

for which we will use the following notation for brevity

S̃k,lT (P φk+l:T (·|y1:k+l−1)) := Sk,lT (P φk+l:T (·|y1:k+l−1), P ?k+l:T (·|y1:k+l−1))

As discussed in Appendix A.2.2 and shown in Theorem 7, provided that S is strictly proper,
Sk,lT is a strictly proper SR for k-Markovian with lag l distributions over Yk+l:T |y1:k+l−1, for
all values of y1:k+l−1.

We will also consider the minimizer of the expectation of the expected prequential SR in
Eq. (22) with respect to the initial data y1:k+l−1, i.e.

Sk,l?T (P φk+l:T ) : = EY1:k+l−1∼P ?1:k+l−1
Sk,lT (P φk+l:T (·|Y1:k+l−1), P ?k+l:T (·|Y1:k+l−1))

= EY1:T∼P ?1:TS
k,l
T (P φk+l:T (·|Y1:k+l−1),Yk+l:T ).

(23)

Theorem 3 in the main text states that the value of φ minimizing the empirical prequential
SR (Eq. (21)) converges to both the minimizer of the expected (with respect toYk+l:T |y1:k+l−1

for fixed y1:k+l−1) SR in Eq. (22) and to the minimizer of the expected (with respect to
Yk+l:T ) SR in Eq. (23). We will split the original result in two separate statements, which
hold under similar Assumptions.

We now set notation and introduce the relevant quantities. From now onwards, we will
drop k and l for brevity in the definition of ST ; all following results hold for each fixed value of
k and l. We write therefore ST (P φk+l:T (·|y1:k+l−1),yk+l:T ) = Sk,lT (P φk+l:T (·|y1:k+l−1),yk+l:T ),
S̃T (P φk+l:T (·|y1:k+l−1)) = S̃k,lT (P φk+l:T (·|y1:k+l−1)) and S?T (P φk+l:T ) = Sk,l?T (P φk+l:T ). Next, we
define the minimizers of the empirical and expected prequential scores

φ̂T (y1:T ) : ST (P
φ̂T (y1:T )
k+l:T (·|y1:k+l−1),yk+l:T ) = min

φ∈Φ
ST (P φk+l:T (·|y1:k+l−1),yk+l:T )

φ̃T (y1:k+l−1) : S̃T (P
φ̃T (y1:k+l−1)
k+l:T (·|y1:k+l−1)) = min

φ∈Φ
S̃T (P φk+l:T (·|y1:k+l−1)).

φ?T : S?T (P
φ?T
k+l:T ) = min

φ∈Φ
S?T (P φk+l:T ).

A.3.1 Convergence of φ̂T to φ?T

We first introduce Assumptions and give the statement linking φ̂T (y1:T ) to φ?T (Theorem 8).
We require the sequence (Yt)t to be stationary and to satisfy some mixing properties.
Specifically, the following Assumptions are required. The precise definition of the mixing
properties is postponed to later in Appendix A.3.5.
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A1 Φ is compact.

A2 φ?T is unique; additionally, there exist a metric d on Φ such that, for all ε > 0

lim inf
T→+∞

{
min

φ:d(φ,φ?T )≥ε
S?T (P φk+l:T )− S?T (P

φ?T
k+l:T )

}
> 0

A3 (Asymptotic stationarity) Let Gt be the marginal distribution of Yt−k+1:t+l for t ≥ k;
then, (T − l− k+ 1)−1

∑T−l
t=k Gt converges weakly to some probability measure on Yk+l

as T →∞.

A4 Both conditions below are satisfied:

(a) (Mixing) Either one of the following holds:

i. (Yt)t is α-mixing with mixing coefficient of size r/(2r − 1), with r ≥ 1, or
ii. (Yt)t is ϕ-mixing with mixing coefficient of size r/(r − 1) with r > 1.

(b) (Moment boundedness) Define H(yt−k+1:t+l) = supφ∈Φ |S(P φ(·|yt−k+1:t),yt+l)|;
then,

sup
t≥k

E
[
H(Yt−k+1:t+l)

r+δ
]
<∞

for some δ > 0, for the value of r corresponding to the condition above which is
satisfied.

S being strictly proper and P φk+l:T (·|y1:k+l−1) being a well specified model for Yk+l:T |y1:k+l−1

is a sufficient (but not necessary) condition for the uniqueness of φ?T in Assumption A2 (see
Lemma 12 in Appendix A.3.4), provided that the parameters φ are identifiable. Notice that
neural networks do not have identifiable parameters; we require however this assumption to
prove the Theorem. In case the parameters are not identifiable, we believe it is possible to
show asymptotic convergence of the distributions minimizing the empirical and expected
prequential SR, instead of convergence of the parameters. Extending the proof to this setting
is technically challenging, as the distance in Assumption A1 needs to be replaced by a
divergence between probability distributions. We leave this extension for future work.

The rest of Assumption A2 is a standard condition ensuring that the function which we
are minimizing does not get flatter and flatter around the optimal value as T → ∞. The
asymptotic stationarity condition in Assumption A3 is implied by the stronger condition
of the marginals Gt being the same for each t. Assumption A4(a) is a mixing condition,
ensuring that the dependence between two different Yt,Y

′
t decreases as t− t′ →∞ (defined

precisely in Appendix A.3.5). Finally, Assumption A4(b) is a boundedness condition; for
the specific case of the Kernel and Energy SR, that can be verified by simpler conditions as
discussed in Lemmas 13 and 14 in Appendix A.3.4.

We will now state our first result.

Theorem 8 If (yt−k+1:t+l, φ)→ S(P φ(·|yt−k+1:t),yt+l) is continuous on Yk+l × Φ, and if
Assumptions A1, A2, A3 and A4 hold, then d(φ̂T (Y1:T ), φ?T )→ 0 with probability 1 with
respect to (Yt)t ∼ P ?.
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The Theorem above relies on a generic consistency result (discussed in Appendix A.3.6)
for which a uniform law of large numbers is required. Such a uniform law of large numbers can
be obtained under stationarity and mixing conditions; we report in Appendix A.3.7 a result
ensuring this. We prove Theorem 8 by combining the above two elements in Appendix A.3.8.

A.3.2 Convergence of φ̂T to φ̃T

We now give the statement linking φ̂T (y1:T ) to φ̃T (y1:t) (Theorem 10). We will require
similar Assumptions to what considered above, but holding for fixed values of y1:k+l−1:

B1 φ̃T (y1:k+l−1) is unique; additionally, there exist a metric d on Φ such that, for all ε > 0

lim inf
T→+∞

{
min

φ:d(φ,φ̃T (y1:k+l−1))≥ε
S̃T (P φk+l:T (·|y1:k+l−1))− S̃T (P

φ̃T (y1:k+l−1)
k+l:T (·|y1:k+l−1))

}
> 0

B2 (Asymptotic stationarity) Let G̃t be the marginal distribution of Yt−k+1:t+l|y1:k+l−1

for t ≥ k; then,

(T − l − k + 1)−1
T−l∑
t=k

G̃t

converges weakly to some probability measure on Yk+l as T →∞.

B3 Both conditions below are satisfied:

(a) (Mixing) Let (Xt)t ∼ P ?(·|y1:k+l−1); then, either one of the following holds:
i. (Xt)t is α-mixing with mixing coefficient of size r/(2r − 1), with r ≥ 1, or
ii. (Xt)t is ϕ-mixing with mixing coefficient of size r/(r − 1) with r > 1.

(b) (Moment boundedness) Define H(yt−k+1:t+l) = supφ∈Φ |S(P φ(·|yt−k+1:t),yt+l)|;
then,

sup
t≥k

EYt−k+1:t+l|y1:k+l−1

[
H(Yt−k+1:t+l)

r+δ
]
<∞

for some δ > 0, for the value of r corresponding to the condition above which is
satisfied.

We can therefore state the following:

Theorem 9 If (yt−k+1:t+l, φ)→ S(P φ(·|yt−k+1:t),yt+l) is continuous on Yk+l × Φ, and if
Assumptions A1, B1, B2 and B3 hold, then d(φ̂T (y1:k+l−1,Yk+l:T ), φ̃T (y1:k+l−1))→ 0 with
probability 1 with respect to (Yt)t ∼ P ?(·|y1:k+l−1).

Notice how now in φ̂T we split the dependence with respect to the fixed y1:k+l−1 and the
random Yk+l:T .
Proof Theorem 9 is proven following the same steps as Theorem 8 (given in Appendix A.3.8).
Specifically, Corollary 21 can be used to obtain a uniform Law of Large Numbers such as in
Assumption A5. Then, an equivalent to Theorem 18 can be shown following the exact same
steps. That implies the result of Theorem 9.
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The above result is saying that, for the sequence (Yt)t conditioned on y1:k+l−1, if
stationarity and mixing conditions hold for a fixed y1:k+l−1, then the empirical minimizer
φ̂T converges to the minimizer φ̃, both with fixed y1:k+l−1.

Clearly, if the above Assumptions hold for all values of y1:k+l−1, the statement also does.
This is made precise by the following Corollary:

Corollary 10 If Assumptions A1, B1, B2 and B3 hold almost surely for Y1:k+l−1 ∼
P ?1:k+l−1, and if (yt−k+1:t+l, φ)→ S(P φ(·|yt−k+1:t),yt+l) is continuous on Yk+l × Φ, then

d(φ̂T (Y1:k+l−1,Yk+l:T ), φ̃T (Y1:k+l−1))→ 0

with probability 1 with respect to (Yt)t ∼ P ?.

Proof If Assumptions A1, B1, B2 and B3 hold almost surely for Y1:k+l−1 ∼ P ?1:k+l−1, and
under the continuity condition, the following statement holds with probability 1 with respect
to Y1:k+l−1 ∼ P ?1:k+l−1: “d(φ̂T (Y1:k+l−1,Yk+l:T ), φ̃T (Y1:k+l−1))→ 0 with probability 1 with
respect to (Yt)t ∼ P ?(·|Y1:k+l−1),” from which the result follows by considering that a
statement holding with probability 1 with respect to (Yt)t ∼ P ?(·|Y1:k+l−1), for each value
Y1:k+l−1 takes, and with probability 1 with respect to Y1:k+l−1 ∼ P ?1:k+l−1 holds almost
surely with respect to (Yt)t ∼ P ?.

A.3.3 Putting the two results together

Finally, we also have the following, which correspond to Theorem 3 in the main text with
the two sets of assumptions for the conditional and unconditional case kept separate:

Corollary 11 If Assumptions A1, A2, A3 and A4 hold, and if Assumptions B1, B2 and
B3 hold almost surely for Y1:k+l−1 ∼ P ?1:k+l−1, and if (yt−k+1:t+l, φ)→ S(P φ(·|yt−k+1:t),yt+l)

is continuous on Yk+l × Φ, then

1. d(φ̂T (Y1:T ), φ?T )→ 0 with probability 1 with respect to (Yt)t ∼ P ?;

2. d(φ̂T (Y1:T ), φ̃T (Y1:k+l−1))→ 0 with probability 1 with respect to (Yt)t ∼ P ?;

3. d(φ?T , φ̃T (Y1:k+l−1))→ 0 with probability 1 with respect to Y1:k+l−1 ∼ P ?1:k+l−1.

Proof Under the Assumptions, both Theorem 8 and Corollary 10 hold, from which the first
two statements follow. For the last statement, applying the triangle inequality yields

d(φ?T , φ̃T (Y1:k+l−1)) ≤ d(φ̂T (Y1:T ), φ̃T (Y1:k+l−1)) + d(φ̂T (Y1:T ), φ?T )→ 0.

As the left-hand side above depends only on Y1:k+l−1, the result holds almost surely with
respect to Y1:k+l−1 ∼ P ?1:k+l−1.

In case in which all the Assumption hold, therefore, the minimizer of the expected
prequential SR over Yk+l:T |Y1:k+l−1 converges to the minimizer of the expected prequential
SR over Y1:T , which is a deterministic quantity. Therefore, this result is saying that for
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large T , φ̃T does not depend on the initial conditions, as it is intuitive under mixing and
stationarity of (Yt)t. Indeed, the same holds for the empirical minimizer φ̂T , in which no
expectation at all is computed.

In the next Subsections, we will discuss how to verify the Assumptions in some specific
cases, and then move to introducing preliminary results for proving Theorem 8, which we do
in Appendix A.3.8. As mentioned above, the proof of Theorem 9 follows the same steps as
the one for Theorem 8, but with the corresponding set of Assumptions. For this reason, we
do not give that in details.

A.3.4 Verifying the Assumptions in specific cases

Before delving into proving Theorem 8, we here show sufficient conditions under which φ?T
and φ̃T (y1:k+l−1) are unique and under which Assumption A4(b) holds. Specifically, for the
former (Lemma 12), we consider the model P φk+l:T (·|y1:k+l−1) to be a well specified model
and the scoring rule S to be strictly proper; for the latter, we consider instead the Kernel
and Energy SR and obtain more precise conditions, which are easily satisfied.

First, consider uniqueness of φ?T :

Lemma 12 If both

• S is strictly proper, and

• for all values of T , P φk+l:T (·|y1:k+l−1) is a well specified model for Yk+l:T |y1:k+l−1 and
the mapping φ→ P φk+l:T (·|y1:k+l−1) is unique,

then φ?T and φ̃T (y1:k+l−1) are unique for all values of T and y1:k+l−1.

Proof If P φ is well specified, there exists a φ? such that

P ?k+l:T (·|y1:k+l−1) = P φ
?

k+l:T (·|y1:k+l−1) ∀ T, ∀ y1:k+l−1.

Notice that this implies that P ? is k-Markovian with lag l. If S is strictly proper, we have
by Theorem 7 that

φ? = arg min
φ∈Φ

ST (P φk+l:T (·|y1:k+l−1), P ?k+l:T (·|y1:k+l−1)

is unique, for all y1:k+l−1. Therefore, φ̃T (y1:k+l−1) = φ? for all values of y1:k+l−1. Recalling
now the definition of S?T (P φk+l:T ) in Eq. (23), notice that the quantity inside the expectation
EY1:k+l−1∼P ?1:k+l−1

is minimized uniquely by φ = φ?, so that S?T (P φk+l:T ) is also uniquely
minimized by φ?T = φ?.

The following two Lemmas show conditions under which Assumption A4(b) holds.

Lemma 13 When S = Sk, Assumption A4(b) is verified for a kernel k which satisfies either
of the following:
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1. with probability 1 with respect to (Yt)t ∼ P ?,4 for all t ≥ k and φ,
E
X,X′∼Pφ

(l)
(·|Yt−k+1:t)

|k(X,X′)| <∞ and E
X∼Pφ

(l)
(·|Yt−k+1:t)

|k(X,Yt+l)| <∞;

2. k is bounded, i.e. |k(y,x)| < κ < +∞ ∀ y,x ∈ Y (this implies the above condition).

Proof First, notice that supt≥k E
[
H(Yt−k+1:t+l)

r+δ
]
< ∞ ⇐⇒ E

[
H(Yt−k+1:t+l)

r+δ
]
<

∞ ∀ t ≥ k.
Consider the kernel SR S = Sk

|Sk(P φ(l)(·|yt−k+1:t),yt+l)| = |EX,X′∼Pφ
(l)

(·|yt−k+1:t)
[k(X,X′)− 2k(X,yt+l)]|

≤ E
X,X′∼Pφ

(l)
(·|yt−k+1:t)

|k(X,X′)− 2k(X,yt+l)|

≤ E
X,X′∼Pφ

(l)
(·|yt−k+1:t)

[|k(X,X′)|+ 2|k(X,yt+l)|].

(24)

We first show why condition 1 yields the result. If, with probability 1 with respect to
(Yt)t ∼ P ?, for all t ≥ k and φ

E
X,X′∼Pφ

(l)
(·|Yt−k+1:t)

|k(X,X′)| ≤ κ1 <∞ and E
X∼Pφ

(l)
(·|Yt−k+1:t)

|k(X,Yt+l)| ≤ κ2 <∞,

we have that
|Sk(P φ(l)(·|Yt−k+1:t),Yt+l)| ≤ κ1 + 2κ2 <∞,

from which

E
[
H(Yt−k+1:t+l)

r+δ
]

= E

(sup
φ∈Φ
|Sk(P φ(l)(·|Yt−k+1:t),Yt+l)|

)r+δ
≤ E

(sup
φ∈Φ

κ1 + 2κ2

)r+δ = (κ1 + 2κ2)r+δ <∞.

Now, condition 2 implies condition 1. Therefore, condition 2 yields the result.

Lemma 14 When S = S
(β)
E , Assumption A4(b) is verified when either of the following

holds:

1. with probability 1 with respect to (Yt)t ∼ P ?, for all t ≥ k and φ,
E
X,X′∼Pφ

(l)
(·|Yt−k+1:t)

||X−X′|| <∞ and E
X∼Pφ

(l)
(·|Yt−k+1:t)

||X−Yt+l|| <∞;

2. the space Y is bounded, such that ||y|| ≤ B < ∞ ∀ y ∈ Y (this implies the first
condition);

3. β ≥ 1, E||Yt+l||β(r+δ) <∞ for all t and, with probability 1 with respect to (Yt)t ∼ P ?,
for all t and φ, E

X∼Pφ
(l)

(·|yt−k+1:t)
||X||β ≤ B <∞.

4. Put simply, this condition means that the following has to be true for all observed sequences (yt)t which
can be generated by the distribution P ?.
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Proof First, notice that supt≥k E
[
H(Yt−k+1:t+l)

r+δ
]
< ∞ ⇐⇒ E

[
H(Yt−k+1:t+l)

r+δ
]
<

∞ ∀ t ≥ k.
Notice how the kernel SR recovers the Energy SR when k(y,x) = −||y − x||β ; condition

1 for the kernel SR corresponds therefore to condition 1 for the Energy SR; therefore, the
result holds under condition 1.

For condition 2 for the Energy SR, notice that

|k(y,x)| = ||y − x||β ≤ (||y||+ ||x||)β ≤ (2B)β,

where the first inequality comes from applying the triangle inequality and the second comes
from condition 2 for the Energy SR. Therefore, condition 2 for the Energy SR implies
condition 2 for the corresponding Kernel SR, from which the result follows.

Finally, an alternative route leads to condition 3. Specifically, for the Energy SR,
Equation (24) becomes

|S(β)
E (P φ(l)(·|yt−k+1:t),yt+l)|

≤ E
X,X′∼Pφ

(l)
(·|yt−k+1:t)

[||X−X′||β + 2||X− yt+l||β]

≤ E
X,X′∼Pφ

(l)
(·|yt−k+1:t)

[(||X||+ ||X′||)β + 2(||X||+ ||yt+l||)β]

by triangle inequality. Now, for any β > 1, a, b > 0, (a+ b)β ≤ 2β−1(aβ + bβ);5 therefore,

|S(β)
E (P φ(l)(·|yt−k+1:t),yt+l)|

≤ E
X,X′∼Pφ

(l)
(·|yt−k+1:t)

[2β−1(||X||β + ||X′||β) + 2β(||X||β + ||yt+l||β)].

From the above, we have that

E
[
H(Yt−k+1:t+l)

r+δ
]

= E

(sup
φ∈Φ
|S(β)
E (P φ(l)(·|Yt−k+1:t),Yt+l)|

)r+δ
≤E

(sup
φ∈Φ

E
X,X′∼Pφ

(l)
(·|Yt−k+1:t)

[2β−1(||X||β + ||X′||β) + 2β(||X||β + ||Yt+l||β)]

)r+δ .
If, with probability 1 with respect to (Yt)t ∼ P ?, for all t ≥ k and φ, E

X∼Pφ
(l)

(·|Yt−k+1:t)
||X||β ≤

B <∞, we have therefore

E
[
H(Yt−k+1:t+l)

r+δ
]
≤ E

[(
2β−1(B +B) + 2β(B + ||Yt+l||β)

)r+δ]
= E

[(
2β+1B + 2β||Yt+l||β

)r+δ]
.

Now, denote δ′ = r + δ; δ′ > 1 by assumption. It holds therefore, as above, (a + b)δ
′ ≤

2δ
′−1(aδ

′
+ bδ

′
) for a, b > 0; we have therefore that

E
[
H(Yt−k+1:t+l)

δ′
]
≤ 2−1

(
2β+2B

)δ′
+ 2δ

′(β+1)−1E||Yt+l||βδ
′
;

5. This inequality is well-known and can be shown by convexity.
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the above expression is therefore bounded whenever E||Yt+l||β(r+δ) <∞.

A.3.5 Defining the mixing conditions

Here, we give the precise definitions for the mixing conditions stated in Assumption A4(a).
More background on the following definitions can be found, for instance, in Bradley (2005).

Definition 15 (Measures of dependence) Consider a probability space (Ω,F , P ); for
any two sigma algebras A ⊆ F and B ⊆ F , define

αP (A,B) := sup
A∈A,B∈B

|P (A ∩B)− P (A)P (B)| ,

ϕP (A,B) := sup
A∈A,B∈B:P (B)>0

|P (B|A)− P (B)| .

For 1 ≤ r ≤ s ≤ ∞, define the Borel σ-algebra of events generated from
(Yr,Yr+1, . . . ,Ys−1,Ys) as Gsr . Then, we define

αY(m) = sup
r≥1

αP ?(Gr1 ,G+∞
r+m), ϕY(m) = sup

r≥1
ϕP ?(Gr1 ,G+∞

r+m).

Definition 16 The random sequence (Yt)t is said α-mixing if αY(m) → 0 as m → ∞
and ϕ-mixing if ϕY(m) → 0 as m → ∞. It can be seen that ϕ-mixing implies α-mixing
(Domowitz and White, 1982).

Definition 17 We say that the mixing coefficients ϕY(m) are of size s (Domowitz and White,
1982) if ϕY(m) = O(m−λ) for λ > s; similar definition can be given for the coefficients
αY(m).

In Bradley (2005), the definitions for the quantities above consider a sequence (Xt)t∈Z,
and defined

αX(m) = sup
r∈Z

αP (Gr−∞,G+∞
r+m),

for some distribution P , and similar for φX(m). Our definition can be cast in this way by
defining Xt = Yt ∀ t ≥ 1 and Xt = 0 ∀ t ≤ 0.

A.3.6 Generic consistency result

We consider here the following Assumption:

A5 (Uniform Law of Large Numbers.) The following holds with probability 1 with respect
to (Yt)t ∼ P ?

sup
φ∈Φ

∣∣∣ST (P φk+l:T (·|Y1:k+l−1),Yk+l:T )− S?T (P φk+l:T )
∣∣∣→ 0.

We give here a consistency result more general than Theorem 8, as in fact Assumption A5
is more general than the stationarity and mixing conditions in Assumption A3 and A4.
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Theorem 18 (Theorem 5.1 in Skouras, 1998) If Assumptions A2 and A5 hold, then
d(φ̂T (Y1:T ), φ?T )→ 0 with probability 1 with respect to (Yt)t ∼ P ?.

We report here a proof for ease of reference.
Proof By the definition of lim inf, for a fixed ε > 0, Assumption A2 implies that there
exists T1(ε) such that

δ(ε) :=

{
inf

T>T1(ε)
min

φ:d(φ,φ?T )≥ε
S?T (P φk+l:T )− S?T (P

φ?T
k+l:T )

}
> 0. (25)

Due to Assumption A5, with probability 1 with respect to (Yt)t ∼ P ?, there exists
T2((Yt)t, δ(ε)) such that, for all T > T2((Yt)t, δ(ε))∣∣∣ST (P

φ?T
k+l:T (·|Y1:k+l−1),Yk+l:T )− S?T (P

φ?T
k+l:T )

∣∣∣ < δ(ε)/2,

which implies

S?T (P
φ?T
k:T ) > ST (P

φ?T
k:T (·|Y1:k+l−1),Yk+l:T )− δ(ε)/2

≥ ST (P
φ̂T (Y1:T )
k+l:T (·|Y1:k+l−1),Yk+l:T )− δ(ε)/2,

(26)

where the second inequality is valid thanks to the definition of φ̂T (Y1:T ).
Similarly, by exploiting Assumption A5 again, with probability 1 with respect to (Yt)t ∼

P ?, there exists T3((Yt)t, δ(ε)) such that, for all T > T3((Yt)t, δ(ε))∣∣∣S?T (P
φ̂T (Y1:T )
k+l:T )− ST (P

φ̂T (Y1:T )
k+l:T (·|Y1:k+l−1),Yk+l:T )

∣∣∣ < δ(ε)/2. (27)

Then, with probability 1 with respect to (Yt)t ∼ P ?, for all
T > max{T2((Yt)t, δ(ε)), T3((Yt)t, δ(ε))}

S?T (P
φ̂T (Y1:T )
k+l:T )− S?T (P

φ?T
k+l:T ) ≤ S?T (P

φ̂T (Y1:T )
k+l:T )− ST (P

φ̂T (Y1:T )
k+l:T (·|Y1:k+l−1),Yk+l:T ) + δ(ε)/2

< δ(ε)/2 + δ(ε)/2 = δ(ε),
(28)

where the first inequality is thanks to Eq. (26) and the second is thanks to Eq (27).
Now, Eq. (25) and Eq. (28) both hold with probability 1 with respect to (Yt)t ∼ P ? for

all T > max{T1(δ(ε)), T2((Yt)t, δ(ε)), T3((Yt)t, δ(ε))}. Notice that Eq. (28) ensures that the
difference considered in Eq. (25) is smaller than δ(ε) for φ = φ̂T (Y1:T ); However, Eq. (25)
states that the same difference is larger or equal than δ(ε) for all φ : d(φ, φ?T ) ≥ ε, from which
it follows that d(φ̂T (Y1:T ), φ?T ) < ε with probability 1 with respect to (Yt)t ∼ P ?. As ε is
however arbitrary, it follows that, with probability 1 with respect to (Yt)t ∼ P ?

d(φ̂T (Y1:T ), φ?T )→ 0.
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A.3.7 Uniform law of large numbers

We will here show how the Uniform Law of Large Numbers in Assumption A5 can be
obtained from the stationarity and mixing conditions in A3 and A4. To this aim, we exploit
a result in Pötscher and Prucha (1989).

We consider now a generic sequence of random variables Zt ∈ Z, and a function q :
Z × Φ→ R. Let us denote now by F the Borel σ-algebra generated by the sequence (Zt)t,
ΩZ the space of realizations of (Zt)t and Q? the probability distribution for it.

Consider the following Assumptions:

C1 (Dominance condition) For D(z) = supφ∈Φ |q(z, φ)|, there is some δ > 0 such that

sup
t

1

N

N∑
t=1

E
[
D(Zt)

1+δ
]
<∞.

C2 (Asymptotic stationarity) LetQ?t be the marginal distribution of Zt; then, N−1
∑N

t=1Q
?
t

converges weakly to some probability measure F on Z.

C3 (Pointwise law of large numbers) For some metric ρ on Φ, let

q̄(z, φ, τ) := sup
φ′:ρ(φ,φ′)<τ

q(z, φ′), q(z, φ, τ) := inf
φ′:ρ(φ,φ′)<τ

q(z, φ′).

For all φ ∈ Φ, there exists a sequence of positive numbers τi(φ) such that τi(φ)→ 0
as i→∞, and such that for each τi the random variables q̄(Zt, φ, τi) and q(Zt, φ, τi)
satisfy a strong law of large numbers, i.e., as N →∞:

1

N

N∑
t=1

{q̄(Zt, φ, τi)− E [q̄(Zt, φ, τi)]} → 0

1

N

N∑
t=1

{
q(Zt, φ, τi)− E

[
q(Zt, φ, τi)

]}
→ 0,

where the two above equations hold with probability 1 with respect to (Zt)t ∼ Q?.

Theorem 19 (Theorem 2 in Pötscher and Prucha, 1989) If Assumptions A1, C1,
C2 and C3 hold and if q(z, φ) is continuous on Z × Φ, then:

(i) with probability 1 with respect to (Zt)t ∼ Q?,

lim
t→∞

sup
φ∈Φ

∣∣∣∣∣ 1

N

N∑
t=1

{q(Zt, φ)− E [q(Zt, φ)]}

∣∣∣∣∣ = 0;

(ii)
∫
q(z, φ)dF (z) exists and is finite, continuous on Φ and, with probability 1 with respect

to (Zt)t ∼ Q?,

lim
t→∞

sup
φ∈Φ

∣∣∣∣∣ 1

N

N∑
t=1

q(Zt, φ)−
∫
q(z, φ)dF (z)

∣∣∣∣∣ = 0;
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We now give sufficient conditions for Assumption C3 to hold. In fact, sequences for
which the dependence of Zt on a past observation Zt−m decreases to 0 quickly enough as
m→∞ satisfy Assumption C3. This can be made more rigorous considering the definitions
of α- and ϕ-mixing sequences given in Appendix A.3.5.

Given the sequence (Zt)t, for 1 ≤ r ≤ s ≤ ∞, define the Borel σ-algebra of events
generated from (Zr,Zr+1, . . . ,Zs−1,Zs) as Fsr . Then, we define the mixing coefficients for
(Zt)t as

αZ(m) = sup
r≥1

αQ?(Fr1 ,F+∞
r+m), ϕZ(m) = sup

r≥1
ϕQ?(Fr1 ,F+∞

r+m).

Similarly to before, the random sequence (Zt)t∈Z is said α-mixing if αZ(m) → 0 as
m → ∞ and ϕ-mixing if ϕZ(m) → 0 as m → ∞. Additionally, we say that the mixing
coefficients ϕZ(m) are of size s (Domowitz and White, 1982) if ϕZ(m) = O(m−λ) for λ > s;
similar definition can be given for the coefficients αZ(m).

Let us define now the following additional assumption:

C4 Both conditions below hold:

(a) (Mixing) Either one of the following holds:

i. (Zt)t is α-mixing with mixing coefficient of size r/(2r − 1), with r ≥ 1, or
ii. (Zt)t is ϕ-mixing with mixing coefficient of size r/(r − 1) with r > 1.

(b) (Moment boundedness) supt E
[
D(Zt)

r+δ
]
<∞ for some δ > 0, for the value of r

corresponding to the condition above which is satisfied.

We give the following Lemma, which is contained in Corollary 1 in Pötscher and Prucha
(1989).

Lemma 20 (Corollary 1 in Pötscher and Prucha, 1989) Assumption C4 implies As-
sumptions C1 and C3.

We can therefore state the following.

Corollary 21 If Assumptions A1, C2 and C4 hold and if q(z, φ) is continuous on Z × Φ,
then the conclusions of Theorem 19 are satisfied.

A.3.8 Proving Theorem 8

Here, we finally prove Theorem 8 by combining the generic consistency result in Ap-
pendix A.3.6 with the uniform law of large number result reported in Appendix A.3.7.

Notice that, in stating Theorem 19 and Corollary 21, we have considered a generic
sequence (Zt)t. In the setting of our interest, however, we want to study the prequential
scoring rule defined in Eq. (21), and use Corollary 21 to state conditions under which
Assumption A5, and therefore Theorem 18, hold.
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To this aim, we identify now N = T − k − l + 1, Zt = Yt:t+k+l−1 and q(Zt, φ) =

S(P φ(l)(·|Yt:t+k−1),Yt+k+l−1); which leads to

1

N

N∑
t=1

q(Zt, φ) =
1

T − k − l + 1

T−k−l+1∑
t=1

S(P φ(l)(·|Yt:t+k−1),Yt+k+l−1)

=
1

T − k − l + 1

T−l∑
t=k

S(P φ(l)(·|Yt−k+1:t),Yt+l)

= ST (P φk+l:T (·|Y1:k+l−1),Yk+l:T ).

The distribution Q? on (Zt)t considered in the previous section is induced therefore by P ?

over (Yt)t.
We want now to relate αY(m) and ϕY(m) to αZ(m) and ϕZ(m); in order to do so, notice

that, as Zt = Yt:t+k+l−1, Fsr = Gs+k+l−1
r . Therefore,

αZ(m) = sup
r≥1

αZ(Fr1 ,F+∞
r+m) = sup

r≥1
αY(Gr+k+l−1

1 ,G+∞
r+m)

= sup
r≥k+l

αY(Gr1 ,G+∞
r+m−k−l+1) ≤ sup

r≥1
αY(Gr1 ,G+∞

r+m−k−l+1) = αY(m− k − l + 1),

and, similarly, ϕZ(m) ≤ ϕY(m − k − l + 1). As k is fixed, ϕY(m) → 0 =⇒ ϕZ(m) → 0
as m → ∞, which is to say, (Yt)t being ϕ-mixing implies (Zt)t is ϕ-mixing as well, and
similar for α-mixing. Additionally, if the mixing coefficients for (Zt)t have a given size
s, then the mixing coefficients for (Yt)t will have the same size, and viceversa. In fact,
ϕZ(m) ≤ ϕY(m−k−l+1) = O(m−λ) implies either ϕY(m) = O(m−λ) or ϕY(m) = o(m−λ),
and similar for α-mixing.

We are now ready to prove Theorem 8.
Proof [Proof of Theorem 8.]

Notice that, by identifying Zt = Yt:t+k+l−1 and q(Zt, φ) = S(P φ(l)(·|yt:t+k−1),yt+k+l−1),
AssumptionA3 corresponds to Assumption C2, and AssumptionA4 implies Assumption C4,
due to the conservation of size of the mixing coefficients discussed above.

Together with Assumption A1 and the continuity condition, therefore, Corollary 21 holds,
from which you have that, with probability 1 with respect to (Yt)t ∼ P ?,

lim
T→∞

sup
φ∈Φ

∣∣∣∣∣ 1

T − k − l + 1

T−l∑
t=k

{
S(P φ(l)(·|Yt−k+1:t),Yt+l)− E

[
S(P φ(l)(·|Yt−k+1:t),Yt+l)

]}∣∣∣∣∣ = 0;

which, recalling the definition of ST (P φk+l:T (·|Y1:k+l−1),Yk+l:T ) and S?T (P φk+l:T ) in Eqs. (21)
and (22), is the same as Assumption A5. Thanks to this and Assumption A2, therefore,
Theorem 18 holds, from which the result follows.
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Appendix B. More details on the different methods

B.1 Training generative networks via divergence minimization

B.1.1 f-GAN

The f -GAN approach is defined by considering an f -divergence in place of D in Eq. (1) in
the main text

Df (P ?||P φ) =

∫
Y
pφ(y)f

(
p?(y)

pφ(y)

)
dµ(y),

where f : R+ → R is a convex, lower-semicontinuous function for which f(1) = 0, and where
pφ and p? are densities of P φ and P ? with respect to a base measure µ. Let now domf

denote the domain of f . By exploiting the Fenchel conjugate f∗(t) = supu∈domf
{ut− f(u)},

Nowozin et al. (2016) obtain the following variational lower bound

Df (P ?||P φ) ≥ sup
c∈C

(EY∼P ?c(Y)− EX∼Pφf
∗(c(X))) ,

which holds for any set of functions C from Y to domf∗ . By considering a parametric set of
functions C = {cψ : Y → domf∗ , ψ ∈ Ψ}, a surrogate to the problem in Eq. (1) in the main
text becomes:

min
φ

max
ψ

(EY∼P ?cψ(Y)− EX∼Pφf
∗(cψ(X))) .

In the conditional setting discussed in Section 2.1 in the main text, the above generalizes
to

min
φ

max
ψ

Eθ∼Π

(
EY∼P ?(·|θ)cψ(Y;θ)− EY∼Pφ(·|θ)f

∗(cψ(Y;θ))
)
, (30)

By denoting as P ?θ,Y and P φθ,Y the joint distributions over Θ× Y, Eq. (30) corresponds to
the relaxation of Df (P ?θ,Y||P

φ
θ,Y) under the constraint that the marginal of P φθ,Y for θ is

equal to Π.
In order to solve the problem in Eq. (30), alternating optimization over φ and ψ can be

performed; in Algorithm 1, we show a single epoch (i.e., a loop on the full training data set)
of conditional f -GAN training; for simplicity, we consider here using a single pair (θi,yi) to
estimate the expectations in Eq. (30) (i.e., the batch size is 1), but using a larger number
of samples is indeed possible. Notice how in Algorithm 1 we update the critic once every
generator update; however, multiple critic updates can be done.

Algorithm 1 Single epoch conditional f -GAN training.
Require: Parametric map hφ, critic network cψ, learning rates ε, γ.
for each training pair (θi,yi) do

Sample z ∼ Q
Obtain x̂φi = hφ(z,θi)

Set ψ ← ψ + γ · ∇ψ
[
cψ(yi,θi)− f∗(cψ(x̂φi ,θi))

]
Set φ← φ− ε · ∇φ

[
− f∗(cψ(x̂φi ,θi))

]
end for
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B.1.2 Wasserstein-GAN (WGAN)

Arjovsky et al. (2017) exploited the following expression for the 1-Wasserstein distance

W
(
P ?, P φ

)
= sup

c:‖c‖L≤1
EY∼P? [c(Y)]− EX∼Pφ [c(X)], (31)

where ||c||L denotes the Lipschitz constant of the function c. The different notation here
highlights how W is a symmetric function. Plugging Eq. (31) into Eq. (1) in the main text
leads again to an adversarial setting; here, the Lipschitz constraint can be enforced by clipping
the weights of the neural network to a given range (Arjovsky et al., 2017). Alternatively,
this hard constraint can be relaxed to a soft one via gradient penalization (Gulrajani et al.,
2017).

B.1.3 MMD-GAN

A specific case of the MMD (Eq. 3 in the main text) is the Energy Distance

E
(
P ?, P φ

)
= E

[
2||X−Y||β2 − ||X−X′||β2 − ||Y −Y′||β2

]
, (32)

where β ∈ (0, 2) and || · ||2 denotes the `2 norm. In Bellemare et al. (2017), the above is used
to define an algorithm to train generative networks, termed Cramer-GAN.

In Li et al. (2017), the authors proposed to compute the kernel k in Eq. (3) in the main
text on a learnable transformation cψ, whose weights are trained to maximize the discrepancy.
Specifically, that leads to a new discrepancy measure

max
ψ

E
[
k
(
cψ(X), cψ(X′)

)
− 2k(cψ(X), cψ(Y)) + k

(
cψ(Y), cψ(Y′)

) ]
,

which is a meaningful divergence between probability distributions (Li et al., 2017). In this
setting, again people resort to alternating maximization steps over ψ with minimization over
φ. This, as mentioned in the main text, leads to biased estimates of gradients. However,
for MMD-GANs, training is made easier by applying the gradient regularization techniques
described in Gulrajani et al. (2017), as shown in Bińkowski et al. (2018).

Notice that, in minimizing Equations (3) in the main text with respect to φ, one could
ignore the term involving Y,Y′; however, when introducing cψ, this cannot be done as that
term depends on ψ as well.

In the conditional setting, a natural approach for MMD-GAN is minimizing
Eθ∼Π[MMD2

(
P ?(·|θ), P φ(·|θ)

)
], as MMD2(P ?θ,Y, P

φ
θ,Y) would require computing kernel over

Θ× Y.
Notice however how, in estimating MMD2

(
P ?(·|θ), P φ(·|θ)

)
, multiple samples Y,Y′ ∼

P ?(·|θ) are used (see Eq. 3 in the main text), but those are unavailable (empirical samples
are of the form in Eq. 4 in the main text); as discussed before, however, k(Y,Y′) does not
depend on φ, so that it can be discarded in the minimization process. However, if the data is
transformed via cψ, k(cψ(Y), cψ(Y′)) cannot be dropped anymore, which makes the problem
intractable. In Bellemare et al. (2017), this problem is solved by replacing k(cψ(Y), cψ(Y′))
with some other tractable terms; however, that approach leads to an ill-defined statistical
divergence, as it can be minimized by two distributions which are not the same (Bińkowski
et al., 2018).
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B.2 Scoring Rules

We now introduce some common SRs; let X,X′ ∼ P φ be independent samples for the forecast
distribution P φ.

B.2.1 Energy Score

For β ∈ (0, 2), the energy score is

S
(β)
E (P φ,y) = 2 · E‖X− y‖β2 − E‖X−X′‖β2 . (33)

The probabilistic forecasting literature (Gneiting and Raftery, 2007) use a different
convention of the energy score and the subsequent kernel score, which amounts to multiplying
our definitions by 1/2. We follow here the convention used in the statistical inference
literature (Rizzo and Székely, 2016; Chérief-Abdellatif and Alquier, 2020; Nguyen et al.,
2020)

The Energy Score is strictly proper for the class of probability measures P φ such that
EX∼Pφ‖X‖β <∞ (Gneiting and Raftery, 2007). The Energy Score is related to the Energy
distance (Eq. (32)), which is a metric between probability distributions (Rizzo and Székely,
2016). We will fix β = 1 in the rest of this work. Additionally, for a univariate distribution
and β = 1, the Energy Score recovers the Continuous Ranked Probability Score (CRPS),
widely used in meteorology (e.g, see Hersbach, 2000).

B.2.2 Kernel Score

For a positive definite kernel k(·, ·), the kernel Scoring Rule can be defined as (Gneiting and
Raftery, 2007)

Sk(P
φ,y) = E[k(X,X′)]− 2 · E[k(X,y)].

The Kernel Score is connected to the squared Maximum Mean Discrepancy (MMD, Gretton
et al., 2012) relative to the kernel k, see Eq. (3) in the main text. Sk is proper for the class
of probability distributions for which E[k(X,X′)] is finite (by Theorem 4 in Gneiting and
Raftery, 2007). Additionally, it is strictly proper under conditions on k ensuring that the
MMD is a metric for probability distributions on Y Gretton et al. (2012). These conditions
are satisfied, among others, by the Gaussian kernel (which we will use in this work)

k(x,y) = exp

(
−‖x− y‖22

2γ2

)
, (34)

in which γ is a scalar bandwidth.

B.2.3 Patched Score

For the Patched Score, we consider different overlapping patches of the input data; denote as
P the set of patches and as p ∈ P an individual patch; the patches are of a given size and
spaced by a given spacing.

Then, we compute a SR S for multivariate distributions on each patch separately, and
then add the results

Sp(P
φ,y) =

∑
p∈P

S(P φ|p,y|p), (35)
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Stot = S1 + S2 + S3

Figure 4: Patched SR: a SR for multivariate data is computed on localized patches, and the
resulting values are summed.

where y|p denotes the components of y in the patch p and P φ|p denotes the marginal
distribution induced by P φ for components in the patch p. See Figure 4 for a representation.
As mentioned in the main body (Sec. 3.2 in the main text), the resulting SR is not strictly
proper, as far away correlations are discarded. Notice how the topology of data for our global
weather data set is periodic along the longitudinal direction (i.e., horizontally in Figure 4).
The patches we define follow this.

Appendix C. Stochastic Gradient Descent for generative-SR networks

We discuss here how we can get unbiased gradient estimates for the prequential SR in Eq. (9)
in the main text with respect to the parameters of the generative network φ.

In order to do that, we first discuss how to obtain unbiased estimates of the SRs we use
across this work. Then, we show how those allow to obtain unbiased gradient estimates.

C.1 Unbiased scoring rule estimates

Consider we have draws xj ∼ P, j = 1, . . . ,m.

C.1.1 Energy Score

An unbiased estimate of the energy score can be obtained by unbiasedly estimating the
expectations in S(β)

E (P,y) in Eq. (33)

Ŝ
(β)
E ({xj}mj=1,y) =

2

m

m∑
j=1

‖xj − y‖β2 −
1

m(m− 1)

m∑
j,k=1
k 6=j

‖xj − xk‖β2 .

39



Pacchiardi, Adewoyin, Dueben and Dutta

C.1.2 Kernel Score

Similarly to the energy score, we obtain an unbiased estimate of Sk(P, y) by

Ŝk({xj}mj=1,y) =
1

m(m− 1)

m∑
j,k=1
k 6=j

k(xj ,xk)−
2

m

m∑
j=1

k(xj ,y).

C.1.3 Variogram Score

It is immediate to obtain an unbiased estimate of S(p)
v (P,y) in Eq. (11) in the main text by

Ŝv
(p)

({xj}mj=1,y) =
d∑

i,j=1

wij

(
|yi − yj |p −

1

m

m∑
k=1

|xk,i − xk,j |p
)2

.

C.1.4 Patched SR

Assume the patched SR in Eq. (35) is built from a SR S which admits an unbiased empirical
estimate Ŝ({xj}mj=1,y). Therefore, an unbiased estimate of the patched SR can be obtained
as

Ŝp({xj}mj=1,y) =
∑
p∈P

S({xj |p}mj=1,y|p),

as in fact the components of samples xj in the patch p are samples from the marginal
distribution over the patch P |p.

C.1.5 Sum of SRs

When adding multiple SRs, an unbiased estimate of the sum can be obtained by adding
unbiased estimates of the two addends.

C.2 Unbiased estimate for gradient of ST

Recall now we want to solve:

φ̂T (y1:T ) := arg min
φ

ST (P φk+l:T (·|y1:k+l−1),yk+l:T ),

where, for simplicity, we re-define ST in Eq. (9) in the main text with an additional scaling
constant:

ST (P φk+l:T (·|y1:k+l−1),yk+l:T ) :=
1

T − l − k + 1

T−l∑
t=k

S(P φt+l(·|yt−k+1:t),yt+l). (36)

In order to do this, we exploit Stochastic Gradient Descent (SGD), which requires
unbiased estimates of ST (P φk+l:T (·|y1:k+l−1),yk+l:T ) (notice we are not talking here of unbiased
estimates with respect to the observed sequence y1:T ).

Notice how, for all the Scoring Rules used across this work, as well as any weighted sum
of those, we can write: S(P,y) = EY,Y′∼P [g(Y,Y′,y)] for some function g; namely, the SR
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is defined through an expectation over (possibly multiple) samples from P . That is the form
exploited in Appendix C.1 to obtain unbiased SR estimates.

Now, we will use this fact to obtain unbiased estimates for the objective in Eq. (36). For
brevity, let us now denote J(φ) = ST (P φk+l:T (·|y1:k+l−1),yk+l:T ), which we can rewrite as
(letting N = T − l − k + 1 for brevity)

J(φ) =
1

N

T−l∑
t=k

EY,Y′∼Pφ(·|yt−k+1:t)

[
g(Y,Y′,yt+l)

]
=

1

N

T−l∑
t=k

EZ,Z′∼Q
[
g(hφ(Z;yt−k+1:t), hφ(Z′;yt−k+1:t),yt+l)

]
,

where we used the fact that P φ is the distribution induced by a generative network with
transformation hφ; this is called the reparametrization trick Kingma and Welling (2014).
Now

∇φJ(φ) = ∇φ
1

N

T−l∑
t=k

EZ,Z′∼Q
[
g(hφ(Z;yt−k+1:t), hφ(Z′;yt−k+1:t),yt+l)

]
=

1

N

T−l∑
t=k

EZ,Z′∼Q
[
∇φg

(
hφ(Z;yt−k+1:t), hφ(Z′;yt−k+1:t),yt+l

)]
.

In the latter equality, the exchange between expectation and gradient is not a trivial step,
due to the non-differentiability of functions (such as ReLU) used in hφ. Luckily, Theorem 5
in Bińkowski et al. (2018) proved the above step to be valid almost surely with respect to a
measure on Φ, under mild conditions on the NN architecture.

We can now easily obtain an unbiased estimate of the above. Additionally, Stochastic
Gradient Descent usually consider a small batch of training samples, obtained by considering
a random subset T ⊆ {k, k + 1 . . . , n − l − 1, n − l}. Therefore, the following unbiased
estimator of ∇φJ(φ) can be obtained, with samples zt,j ∼ Q, j = 1, . . . ,m

∇̂φJ(φ) =
1

|T |
∑
t∈T

1

m(m− 1)

m∑
i,j=1
i 6=j

∇φg(hφ(zt,i;yt−k+1:t), hφ(zt,j ;yt−k+1:t),yt+l).

In practice, we then use autodifferentiation libraries (see for instance Paszke et al., 2019) to
compute the gradients in the above quantity.

In Algorithm 2, we train a generative network for a single epoch using a scoring rule S
for which unbiased estimators can be obtained by using more than one sample from P φ. As
in Algorithm 1, we use a single pair (θi,yi) to estimate the gradient.

Appendix D. Performance measures for probabilistic forecast

D.1 Deterministic performance measures

We discuss two measures of performance of a deterministic forecast ŷt+l for a realization yt+l;
across our work, we take ŷt+l to be the mean of the probability distribution P φ(·|yt−k+1:t).
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Algorithm 2 Single epoch generative-SR training.
Require: Parametric map hφ, SR S, learning rate ε.
for each training pair (θi,yi) do

Sample multiple z1, . . . , zm
Obtain x̂φi,j = hφ(zj ,θi)

Obtain unbiased estimate Ŝ(P φ(·|θi),yi) from x̂φi,j
Set φ← φ− ε · ∇φŜ(P φ(·|θi),yi)

end for

D.1.1 Normalized RMSE

We first introduce the Root Mean-Square Error (RMSE) as

RMSE =

√√√√ 1

N

N∑
t=1

(ŷt+l − yt+l)2,

where we consider here for simplicity t = 1, . . . , N . From the above, we obtain the Normalized
RMSE (NRMSE) as

NRMSE =
RMSE

maxt{yt+l} −mint{yt+l}
.

NRMSE = 0 means that ŷt+l = yt+l for all t’s.

D.1.2 Coefficient of determination

The coefficient of determination R2 measures how much of the variance in {yt+l}Nt=1 is
explained by {ŷt+l}Nt=1. Specifically, it is given by

R2 = 1−
∑N

t=1 (yt+l − ŷt+l)2∑N
t=1 (yt+l − ȳ)2

,

where ȳ = 1
N

N∑
t=1

yt+l. R2 ≤ 1 and, when R2 = 1, ŷt+l = yt+l for all t’s. Notice how R2 is

unbounded from below, and can thus be negative.

D.2 Calibration error

We review here a measure of calibration of a probabilistic forecast; this measure considers the
univariate marginals of the probabilistic forecast distribution P φ(·|yt−k+1:t); for component
i, let us denote that by Pφ,i(·|yt−k+1:t).

The calibration error (Radev et al., 2020) quantifies how well the credible intervals of
the probabilistic forecast Pφ,i(·|yt−k+1:t) match the distribution of the verification Yt+l,i.
Specifically, let α?(i) be the proportion of times the verification yt+l,i falls into an α-credible
interval of Pφ,i(·|yt−k+1:t), computed over all values of t. If the marginal forecast distribution
is perfectly calibrated for component i, α?(i) = α for all values of α ∈ (0, 1).

42



Probabilistic Forecasting with Generative Networks via Scoring Rule Minimization

We define therefore the calibration error as the median of |α?(i)− α| over 100 equally
spaced values of α ∈ (0, 1). Therefore, the calibration error is a value between 0 and 1, where
0 denotes perfect calibration.

In practice, the credible intervals of the predictive are estimated using a set of samples
from P φ(·|yt−k+1:t).

Appendix E. Additional experimental details

E.1 Tuning γ in the Gaussian kernel

Similar to what was suggested for instance in Park et al. (2016), we set γ in the Gaussian
kernel in Eq. (34) to be the median of the pairwise distances ||yi − yj || over all pairs of
observations yi,yj , i 6= j in the validation window.

E.2 Lorenz63 model

E.2.1 Model definition

The Lorenz63 model (Lorenz, 1963) is defined by the following differential equations

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz.

To generate our data set, we consider σ = 10, ρ = 28, β = 2.667 and integrate the model
using Euler scheme with dt = 0.01 starting from x = 0, y = 1, z = 1.05. We discard the first
10 time units and integrate the model for additional 9000 time units, during which we record
the value of y every ∆t = 0.3 and discard the values of x and z.

E.2.2 Neural Networks architecture

We experiment with Recurrent Neural Networks (RNNs), which capture the temporal
structure in the data.

For the generative network, the observation window is passed through a Gated Recurrent
Units (GRU, Cho et al., 2014) layer with depth 1 and hidden size 8 or 16 (that is a tuning
hyperparameter, the choice of which we discuss below). The output of the GRU layer is then
concatenated to the latent variable Z with size 1 and passed through 3 fully connected layers,
which output a forecast for the next timestep. For the deterministic setting trained with
the regression loss, the architecture is analogous, the only difference being that no latent
variable Z is concatenated to the output of the GRU layer.

In the adversarial settings, the critic has a GRU layer with depth 1 that, analogously to
the generative net, processes the information in the past observation window. As above, we
try hidden sizes 8 and 16. Then, the output of the GRU layer and the observation/forecast
are concatenated and transformed by 3 fully connected layers. In the GAN case, the critic
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Energy Kernel Energy-Kernel Regression

0.01 0.001 0.01 0.001

Table 3: Optimal learning rate values for SR and regression (deterministic) approaches for
Lorenz63.

GAN (1) GAN (2) GAN (3) WGAN-GP (1) WGAN-GP (2) WGAN-GP (3)

Generator l.r. 0.0003 0.001 0.0001 0.003 0.0003 0.0003
Critic l.r. 0.03 0.01 0.001 0.001 0.1 0.03
GRU hidden size 16 8 8 8 8 8
Critic training steps 1 1 1 5 5 5

Table 4: Optimal hyperparameter values for adversarial approaches for Lorenz63 model.

outputs a value between 0 and 1 indicating how confident the critic believes that is a fake
sample. In the WGAN-GP case, the critic output is a real number.

E.2.3 Training hyperparameters

For the experiments on Lorenz63, we considered the batch size to be 1000. For the SR and
deterministic approaches, we used Adam optimizer and tested the following learning rate
values: 10−i for i = 1, . . . , 6 for the SR methods and 10−i−1 and 3 · 10−i−1 for i = 1, . . . , 3
for regression. We fix the GRU hidden size to 8. We report then the performance achieved
with the learning rate yielding lower loss on the validation set, which is indicated in Table 3.

For the GAN and WGAN-GP approach, we used Adam optimizer and we tested the
following learning rate values for both critic and generative network: 10−i and 3 · 10−i for
i = 1, . . . , 7. In total, those are 14 learning rate values. We tested GRU hidden size to 8 and
16; further, we experiment with 4 number of critic training steps for WGAN-GP (1, 3, 5, 10),
in order to have the best possible results to compare with our SR methods, while we left
the number of critic training steps to 1 for GAN. Overall, therefore, we had 2 · 142 = 392
experiments for GAN and 2 · 4 · 142 = 1568 for WGAN-GP; notice the extremely larger
number number of experiments for the adversarial approaches with respect to SR ones, which
highlights an advantage of our approach. We stress that such a number of trials could be
possible only for the low-dimensional setting of the Lorenz63 and Lorenz96 models, in which
training is cheap, but not in real-life applications.

Additionally, the adversarial approaches do not allow to select hyperparameters according
to loss on a validation set, as the generator loss depends on the current state of the
discriminator (i.e., there is no absolute loss scale). Therefore, we report results for 3 different
configurations for GAN and WGAN-GP, maximizing either deterministic performance (1) or
calibration (2), or striking the best balance between these two (3). The resulting learning
rates are in Table 4.
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E.3 Lorenz96 model

E.3.1 Model definition

The Lorenz96 model (Lorenz, 1996) is a toy representation of atmospheric behavior containing
slow (x) and fast (y) evolving variables.

Specifically, the evolution of the variables is determined by the following differential
equations

dxk
dt

= −xk−1(xk−2 − xk+1)− xk + F − hc

b

kJ∑
j=J(k−1)+1

yj ;

dyj
dt

= −cbyj+1(yj+2 − yj−1)− cyj +
hc

b
Xint[(j−1)/J ]+1,

where k = 1, . . . ,K, and j = 1, . . . , JK, and cyclic boundary conditions are assumed, so that
index k = K + 1 corresponds to k = 1 and similarly for j. The above equations connect
the fast and slow variables in a cyclic way. Additionally, xk reciprocally depends on J fast
variables.

Following Gagne et al. (2020), we take K = 8, J = 32, h = 1, b = 10, c = 10 and F = 20.
We then integrate the above equations with RK4 scheme with dt = 0.001, starting from
xk = yj = 0 for k = 2, . . . ,K and j = 2, . . . JK and x1 = y1 = 1. We discard the first 2
time units and record the values of x every ∆t = 0.2 (which corresponding to roughly one
atmospheric day with respect to predictability, Gagne et al., 2020). We do this for additional
4000 time units, and split the resulting data set in training, validation and test according to
the proportions 60%, 20% and 20%.

E.3.2 Neural Networks architecture

We experiment with Recurrent Neural Networks (RNNs), which capture the temporal
structure in the data.

For the generative network, the observation window is passed through a Gated Recurrent
Units (GRU, Cho et al., 2014) layer with depth 1 and hidden size 32 or 64 (that is a tuning
hyperparameter, the choice of which we discuss below). The output of the GRU layer is then
concatenated to the latent variable Z with size 1 and passed through 3 fully connected layers,
which output a forecast for the next timestep. For the deterministic setting trained with
the regression loss, the architecture is analogous, the only difference being that no latent
variable Z is concatenated to the output of the GRU layer.

In the adversarial settings, the critic has a GRU layer with depth 1 that, analogously to
the generative net, processes the information in the past observation window. As above, we
try hidden sizes 8 and 16. Then, the output of the GRU layer and the observation/forecast
are concatenated and transformed by 3 fully connected layers. In the GAN case, the critic
outputs a value between 0 and 1 indicating how confident the critic believes that is a fake
sample. In the WGAN-GP case, the critic output is a real number.

E.3.3 Training hyperparameters

For the experiments on Lorenz96, we considered the batch size to be 1000. For the SR and
deterministic approaches, we used Adam optimizer and tested the following learning rate
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Energy Kernel Energy-Kernel Regression

0.01 0.001 0.001 0.003

Table 5: Optimal learning rate values for SR and regression (deterministic) approaches for
Lorenz96.

GAN (1) GAN (2) GAN (3) WGAN-GP (1) WGAN-GP (2) WGAN-GP (3)

Generator l.r. 0.01 0.0001 0.0001 0.001 0.00003 0.0001
Critic l.r. 0.001 0.003 0.001 0.001 0.1 0.01
GRU hidden size 64 32 64 64 64 64
Critic training steps 1 1 1 10 1 5

Table 6: Optimal hyperparameter values for adversarial approaches for Lorenz96 model.

values: 10−i for i = 1, . . . , 6 for the SR methods and 10−i−1 and 3 · 10−i−1 for i = 1, . . . , 3
for regression. We fix the GRU hidden size to 32. We report then the performance achieved
with the learning rate yielding lower loss on the validation set, which is indicated in Table 5.

For the GAN and WGAN-GP approach, we used Adam optimizer and we tested the
following learning rate values for both critic and generative network: 10−i and 3 · 10−i for
i = 1, . . . , 7. In total, those are 14 learning rate values. We tested hidden size 32 and 64;
further, we experiment with 4 number of critic training steps for WGAN-GP (1, 3, 5, 10),
in order to have the best possible results to compare with our SR methods, while we left
the number of critic training steps to 1 for GAN. Overall, therefore, we had 2 · 142 = 392
experiments for GAN and 2 · 4 · 142 = 1568 for WGAN-GP; notice the extremely larger
number number of experiments for the adversarial approaches with respect to SR ones, which
highlights an advantage of our approach. We stress that such a number of trials could be
possible only for the low-dimensional setting of the Lorenz63 and Lorenz96 models, in which
training is cheap, but not in real-life applications.

Additionally, the adversarial approaches do not allow to select hyperparameters according
to loss on a validation set, as the generator loss depends on the current state of the
discriminator (i.e., there is no absolute loss scale). Therefore, we report results for 3 different
configurations for GAN and WGAN-GP, maximizing either deterministic performance (1) or
calibration (2), or striking the best balance between these two (3). The resulting learning
rates are in Table 6. Notice that, for GAN, there was no configuration leading to intermediate
performance between (1) and (2), so that the column for (3) is left empty.

E.4 WeatherBench data set

E.4.1 Variogram Score

For the Variogram Score, we use a weight matrix which is inversely proportional to the
Haversine distance, which measures the angular distance between two points on the surface
of a sphere. Specifically, by denoting the longitude and latitude (in radians) of component i
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Energy-Kernel Energy-Variogram Kernel-Variogram

α1 1/70 1 1
α2 1 6.94 · 10−7 1.3 · 10−8

Table 7: Weights for summed Scores.

of y as loni, lati, the Haversine distance is defined as:

dij = 2 arcsin

[√
sin2((lati− latj)/2) + cos(lati) cos(latj) sin2((loni− lonj)/2)

]
The physical distance along the sphere can be computed by multiplying the above by Earth’s
radius (approximately 6371 km). However, that is just a scaling constant, therefore we ignore
it in defining the variogram, which we take to be wij = 1/dij .

E.4.2 Choice of weights for summed scores

In the summed Scores (Energy-Variogram, Kernel-Variogram, Energy-Kernel and Patched
Energy Score), we need to select the weights for the two addends. Notice that, in the Patched
Energy Score, we consider the Energy Score computed on the full data to be the first addend,
and the sum of the Energy Scores computed on each patch to be the second addend.

We fix the weights such that the two addends have roughly the same magnitude. This
results, for the Energy-Variogram, Kernel-Variogram, Energy-Kernel, in the choices reported
the Table 7.

For the Patched Energy Score, we use the following two setups in our experiments:

• Patches of size 16 separated by 8 grid points: this leads to 32 patches. As the Energy
Score scales as the data dimensionality, each of the 16× 16 = 256 patches has relative
magnitude with respect to Energy Score computed on the full WeatherBench grid
256/2048 = 0.125, where 32×64 = 2048 is the size of the WeatherBench grid. However,
we sum the Score for each of the 32 patches, which leads to a quantity with magnitude
4 times the one of the overall Energy Score.

• Patches of size 8 separated by 4 grid points: this leads to 128 patches. Following
the argument above, each 8 × 8 = 64 patch gives a Score with relative magnitude
64/2048 = 0.03125. As there are 128 patches, again the cumulative patched score has
magnitude 4 times the overall one.

In both cases, we leave therefore α1 = α2 = 1, as the patched and overall components
are already of similar magnitude (they just differ by a factor 4).

E.4.3 Neural Networks architecture

For the generative network, we use a U-NET architecture (Olaf et al., 2015), which is an
encoder-decoder structure, where each subsequent layer of the encoder outputs a downscaled
latent representation of the input variables. The final output of the encoder is passed to a
bottleneck layer, which performs no up/down scaling. The output of this bottleneck layer is
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(a) Structure of each
block.

(b) Full U-NET architecture.

Figure 5: U-NET architecture.

then passed to the decoder. Conversely to the encoder, each subsequent layer of the decoder
outputs an upscaled latent representation of the bottleneck layer output. Additionally, skip
connections allow information to pass directly between layers of the encoder and decoder
at the same scale; in this way, both large scale structures and high-frequency information
contributes to the output. The latent variable Z is summed to the latent representation
in the bottleneck layer. Figure 5 gives a graphical representation of the UNet. For the
deterministic setting trained with the regression loss, the architecture is analogous, the only
difference being that no latent variable Z is summed to the latent representation.

In the adversarial setups, we use the PatchGAN critic suggested in Isola et al. (2017).
Specifically, this is a convolutional network which considers separate patches of the input
image and outputs a numerical value for each patch, corresponding, in the original GAN
setting of Goodfellow et al. (2014), to the confidence with which the critic believes that patch
is real, in contrast to generated from the generative network. The GAN or WGAN loss is
then computed for each of the output values and averaged.

The PatchGAN critic employs some Batch Normalization layers; however, these cannot
be used when the gradient penalization strategy of WGAN-GP is used (Gulrajani et al.,
2017). Therefore, as suggested in Gulrajani et al. (2017), we replace the Batch Normalization
layers with Layer Normalization.

As before, in the GAN case, the critic outputs a value between 0 and 1 indicating how
confident the critic believes that is a fake sample. In the WGAN-GP case, the critic output
is a real number.
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Regression Energy kernel Energy-Kernel Energy-Variogram

Learning rate 0.01 0.0001 0.0001 0.0001 10−5

Kernel-Variogram Patched Energy (8) Patched Energy (16)

Learning rate 10−5 10−5 10−5

Table 8: Optimal learning rate values for the SR and regression (deterministic) approaches
for WeatherBench.

E.4.4 Training hyperparameters

For the SR approaches for the WeatherBench data set, we considered the batch size to be
128 for all experiments, except for those on the Energy-Variogram and Kernel-Variogram
score, which resulted in GPU memory overflow with that batch size (in fact, computing the
Variogram Score is an operation requiring quadratic memory with respect to data size); for
these two, we fixed therefore the batch size to be 48. We used Adam optimizer and tested
the following learning rate values 10−i for i = 1, . . . , 6. We report then the performance
achieved with the learning rate yielding lower loss on the validation set in Table 8.

For the deterministic network trained via regression, we test learning rule values 10−i−1

for i = 1, . . . , 4; additionally, we use an exponential learning rate scheduler which reduces the
learning rate by multiplying it by a factor γ every 10 training epochs. We also use a `2 weight
regularization with weight λ. We try different values of these parameters in conjunction with
the learning rate values; the ones with which best validation loss is obtained are γ = 0.8 and
λ = 0.001. The best learning rate value is reported in Table 8. Notice that the same learning
rate value was optimal for the full (non-patched) regression loss and for the patched loss in
both configurations.

For the GAN and WGAN-GP approach, we used Adam optimizer and we tested the
following learning rate values for both critic and generative network: 10−i, i = 1, . . . , 7. In
total, those are 7 learning rate values, which result in 72 = 49 experiments. Notice additionally
that the adversarial approaches does not allow to select hyperparameters according to loss on
a validation set, as the generator loss depends on the current state of the discriminator (i.e.,
there is no absolute loss scale). Additionally, the adversarial approaches do not allow to select
hyperparameters according to loss on a validation set, as the generator loss depends on the
current state of the discriminator (i.e., there is no absolute loss scale). Therefore, we report
results for 3 different configurations for GAN, maximizing either deterministic performance
(1) or calibration (2), or striking the best balance between these two (3). For WGAN-GP, a
single configuration maximized both calibration and deterministic performance, so that we
report that one. The resulting learning rates are in Table 9.
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GAN (1) GAN (2) GAN (3) WGAN-GP

Generator learning rate 0.001 10−6 10−5 10−5

Critic learning rate 0.0001 0.0001 10−5 0.01

Table 9: Optimal hyperparameter values for adversarial approaches for WeatherBench.

Cal. error ↓ NRMSE ↓ R2 ↑

Regression - 0.0198 ± 0.0006 0.9905 ± 0.0006
Energy 0.0205 ± 0.0176 0.0166 ± 0.0014 0.9933 ± 0.0012
Kernel 0.2196 ± 0.0123 0.0164 ± 0.0003 0.9935 ± 0.0003
Energy-Kernel 0.0104 ± 0.0060 0.0173 ± 0.0004 0.9928 ± 0.0004
GAN (1) 0.4644 ± 0.0062 0.0354 ± 0.0026 0.9696 ± 0.0044
GAN (2) 0.2671 ± 0.0559 0.1500 ± 0.0090 0.4537 ± 0.0619
GAN (3) 0.3700 ± 0.0369 0.0763 ± 0.0030 0.8590 ± 0.0099
WGAN-GP (1) 0.4134 ± 0.0051 0.0330 ± 0.0007 0.9736 ± 0.0009
WGAN-GP (2) 0.0565 ± 0.0339 0.1081 ± 0.0037 0.7165 ± 0.0200
WGAN-GP (3) 0.1648 ± 0.0444 0.0786 ± 0.0041 0.8502 ± 0.0149

Table 10: Average and standard deviation of performance measures for forecasts obtained
with the different methods, on the test set for the Lorenz96 data set. Metrics are
computed on each data component individually; then, the average and standard
deviation is computed.

Appendix F. Additional experimental results

F.1 Additional results for Lorenz63 model

We report here additional results. Figure 6 contains separate plots for all methods showing
forecasts and realization for a portion of the test set (the same used in Section 5.1 in the
main text).

F.2 Additional results for Lorenz96 model

We report here additional results. Table 10 reports the average and standard deviation of the
different performance measures computed across the different data components. It contains
the same results as Table 1 in the main text, where however the standard deviation was not
reported.

Figure 7 contains separate plots for all methods showing forecasts and realization for a
portion of the test set (the same used in Section 5.1 in the main text).

50



Probabilistic Forecasting with Generative Networks via Scoring Rule Minimization

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Forecast

(a) Regression

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(b) Energy Score

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(c) Kernel Score

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(d) Energy-Kernel Score

100 120 140 160 180 200
t

20

10

0

10

y

True
Median forecast
99% credible region

(e) GAN (1)

100 120 140 160 180 200
t

20

0

20

40

60

y

True
Median forecast
99% credible region

(f) GAN (2)

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(g) GAN (3)

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(h) WGAN-GP (1)

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(i) WGAN-GP (2)

100 120 140 160 180 200
t

20

10

0

10

y

True
Median forecast
99% credible region

(j) WGAN-GP (3)

Figure 6: Results for the Lorenz63 model with all considered methods. The figures show
observations, median forecast and 99% credible interval for a portion of the test set.
For each time-step, forecasts are obtained using the previous observation window.

F.3 WeatherBench data set

F.3.1 Standard deviation of performance measures

In Table 11, the average and standard deviation of the different performance measures are
computed across the different data components.

F.3.2 Number of generator simulations for the SR methods

We study here the effect of using different numbers of simulations from the generative network
for each input (i.e., how many forecasts the generative network provides) during training.
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Cal. error ↓ NRMSE ↓ R2 ↑

Regression - 0.1162 ± 0.0256 0.5300 ± 0.2559
Patched Regression, 8 - 0.1147 ± 0.0238 0.5459 ± 0.2297
Patched Regression, 16 - 0.1144 ± 0.0227 0.5509 ± 0.2188
Energy 0.0863 ± 0.0407 0.1208 ± 0.0256 0.4968 ± 0.2596
Kernel 0.0797 ± 0.0455 0.1200 ± 0.0226 0.5097 ± 0.2226
Energy-Kernel 0.0794 ± 0.0433 0.1194 ± 0.0226 0.5150 ± 0.2225
Energy-Variogram 0.0899 ± 0.0541 0.1192 ± 0.0220 0.5177 ± 0.2180
Kernel-Variogram 0.1704 ± 0.0607 0.1203 ± 0.0238 0.5050 ± 0.2399
Patched Energy, 8 0.0550 ± 0.0348 0.1189 ± 0.0209 0.5217 ± 0.2064
Patched Energy, 16 0.0690 ± 0.0478 0.1186 ± 0.0208 0.5248 ± 0.2034
GAN (1) 0.4845 ± 0.0089 0.1573 ± 0.0391 0.1418 ± 0.5267
GAN (2) 0.3130 ± 0.1143 0.2487 ± 0.2248 -2.7970 ± 17.1346
GAN (3) 0.3625 ± 0.0545 0.1693 ± 0.0494 -0.0117 ± 0.8348
WGAN-GP 0.1009 ± 0.0679 0.1302 ± 0.0214 0.4340 ± 0.2271

Table 11: Average and standard deviation of performance measures for forecasts obtained
with the different methods, on the test section of the WeatherBench data set.
Metrics are computed on each data component individually; then, the average and
standard deviation is computed.

Cal. error ↓ NRMSE ↓ R2 ↑

2 0.0625 ± 0.0340 0.1211 ± 0.0258 0.4935 ± 0.2656
3 0.0701 ± 0.0342 0.1176 ± 0.0208 0.5338 ± 0.1961
5 0.0727 ± 0.0348 0.1164 ± 0.0198 0.5446 ± 0.1842
10 0.0863 ± 0.0407 0.1208 ± 0.0256 0.4968 ± 0.2596
20 0.0738 ± 0.0336 0.1179 ± 0.0206 0.5329 ± 0.1925
30 0.0738 ± 0.0350 0.1169 ± 0.0202 0.5407 ± 0.1864
50 0.0749 ± 0.0356 0.1172 ± 0.0203 0.5379 ± 0.1889

Table 12: Performance on test set of probabilistic forecasts obtained by training with the En-
ergy Score, with different numbers of generator simulations, for the WeatherBench
data set.

Recall in fact how the Energy and Kernel Score need multiple samples to be estimated
(Appendix B.2).

Specifically, we consider the WeatherBench data set and the Energy Score, with learning
rate 0.0001, which was found to be the optimal value when using 10 generator simulations
(Appendix E.4.4). We report the measures used in the main text in Table 12. Notice how
good performance is achieved when using as little as 2 or 3 simulations.
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Per-epoch Computational cost Early stopping at epoch Total computational cost

Regression 8.45 250 2112
Patched Regression, 8 8.65 200 1729
Patched Regression, 16 8.5 250 2122
Energy 54.2 100 5417
Kernel 53.3 100 5329
Energy-Kernel 55.4 100 5542
Energy-Variogram 97.38 250 24346
Kernel-Variogram 95.52 250 24393
Patched Energy, 8 56.71 400 22682
Patched Energy, 16 54.93 450 24717
GAN (1) 8.36 - 8357
GAN (2) 8.37 - 8373
GAN (3) 8.33 - 8326
WGAN-GP 7.00 - 7000

Table 13: Per-epoch and total computational cost, in seconds, for the different methods
reported in the main text. We also report epoch at which early stopping occurred.

F.3.3 Computational cost and early stopping

In Table 13, we report the computational cost and the early stopping achieved by the methods
presented in the main text. All experiments are run on a Tesla v100 GPU, and methods
are run for a maximum of 1000 epochs. We use early stopping for the SR methods, but
not for GAN and WGAN-GP, for which early stopping is not possible. Recall that the
methods with the Variogram Score used training batch size 48, while all others used 128;
this fact contributes to the larger computational time for both the Energy-Variogram and
Kernel-Variogram Scores.

Additionally, recall that, in order to achieve the performance reported in the main text,
we tried 49 learning rate values for GAN and WGAN-GP, but only 6 for the SR methods.
Therefore, the total computing time for GAN and WGAN-GP is the one below multiplied by
49, with respect to 6 for the SR methods. Under that perspective, even the total computing
time for Energy-Variogram and Kernel-Variogram Scores is smaller than the one for the
adversarial methods. For instance, if we consider Energy-Variogram, do not use early stopping
and run for 1000 epochs 6 times, we get a total of 97.38 × 6000 = 584280 seconds. For
WGAN-GP, we obtain instead 7.00 × 49 × 1000 = 343000 seconds, which is only slightly
smaller than the grand total for Energy-Variogram. For the latter, this number does not
take into account early stopping which, as can be seen from Table 13, reduces largely the
total number of epochs required for training.

Additionally, we highlight how, in the results used for Table 13, the SR methods were
trained using 10 simulations from the generator for each observation window (i.e., 10 forecasts).
In Appendix F.3.2, we studied the effect of the number of simulations used on training,
highlighted how the performance is good with as little as 2 or 3 simulations. This greatly
reduces the computational cost; we report that in Table 14; for this study, the Energy Score
was used.
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Per-epoch Computational cost Early stopping at epoch Total computational cost

2 13.7 100 1371
3 19.1 100 1913
5 29.6 100 2967
10 54.2 100 5417
20 107.0 100 10700
30 159.2 100 15916
50 258.7 100 25865

Table 14: Per-epoch and total computational cost, in seconds, for the Energy Score for
different numbers of generator simulations. We also report epoch at which early
stopping occurred.

F.3.4 Maps for a chosen date

We provide figures similar to Fig. 3 in the main text in this online PDF file, due to space
constraints in the present document. There, we also show deviation of draws from the forecast
distribution and the realization from the forecast mean (obtained empirically from 100 draws
from the forecast distribution).

F.3.5 Time-series plots for selected variables on the grid

In Figures 8, 9, 10 and 11, and show the time series evolution, for a portion of the test period,
for 8 randomly selected locations on the WeatherBench grid, for all considered methods (the
same locations are shown for all methods). The dashed line represents the true evolution,
the solid one the forecast mean, while the shaded region represents 99% credible intervals.
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(b) Energy Score.
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(c) Kernel Score.
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(f) GAN (2)
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(h) WGAN-GP (1)
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Figure 7: Results for the Lorenz96 model with all considered methods. Panels show observa-
tions (dashed line), median forecast (solid line) and 99% credible interval (shaded
region) for a portion of the test set. That is done for all 8 components of x. For
each time-step, forecasts are obtained using the previous observation window.
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(b) Patched Regression, 8
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(c) Patched Regression, 16

Figure 8: Results with the Regression and patched regression losses for 8 locations on the
WeatherBench grid. The panels show observations (dashed line) and median
forecast (solid line)
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(a) Energy Score.
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(b) Kernel Score.

7.5
5.0
2.5

x 1

5
0

x 2

0.0
2.5

x 3

2.53.03.5

x 4

3.0
3.5

x 5

0.0
2.5x 6

2.50.02.5

x 7

100 120 140 160 180 200
t

2.5
0.0

x 8

(c) Energy-Kernel.

Figure 9: Results with the the Energy, Kernel and Energy-Kernel Scores for 8 locations
on the WeatherBench grid. The panels show observations (dashed line), median
forecast (solid line) and 99% credible interval (shaded region) for a portion of the
test set.

56



Probabilistic Forecasting with Generative Networks via Scoring Rule Minimization

7.5
5.0x 1

5
0

x 2

0.0
2.5

x 3

2.53.03.5

x 4

2.5
3.0
3.5

x 5

0.0
2.5x 6

5
0x 7

100 120 140 160 180 200
t

2.5
0.0

x 8

(a) Energy-Variogram Score
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(b) Kernel-Variogram Score
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(c) Patched Energy Score (8)

7.5
5.0
2.5

x 1

5
0

x 2

0.0
2.5x 3

2
3x 4

2
3x 5

0.0
2.5x 6

2.50.02.5

x 7

100 120 140 160 180 200
t

2.5
0.0

x 8

(d) Patched Energy Score (16)

Figure 10: Results with the Energy-Variogram, Kernel-Variogram and Patched Energy Score
(with patch size both 8 and 16) Scores for 8 locations on the WeatherBench grid.
The panels show observations (dashed line), median forecast (solid line) and 99%
credible interval (shaded region) for a portion of the test set.

57



Pacchiardi, Adewoyin, Dueben and Dutta

7.5
5.0x 1

5
0

x 2

0.0
2.5x 3

2.5
3.0x 4

2.753.003.25

x 5

2
4

x 6

2.50.0x 7

100 120 140 160 180 200
t

2.5
0.0

x 8

(a) GAN (1).
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(b) GAN (2).
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(c) GAN (3).
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(d) WGAN-GP

Figure 11: Results with the three considered GAN setups and WGAN-GP Scores for 8
locations on the WeatherBench grid. The panels show observations (dashed
line), median forecast (solid line) and 99% credible interval (shaded region) for a
portion of the test set. Notice how the first GAN setup severely underestimates
the uncertainty region, while the second one forecasts unpyhsical evolution for
some time intervals.
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