
Journal of Machine Learning Research 25 (2024) 1-60 Submitted 1/23; Revised 2/24; Published 6/24

Heterogeneity-aware Clustered Distributed Learning for
Multi-source Data Analysis

Yuanxing Chen yxchen research@163.com
Department of Statistics and Data Science, School of Economics
Xiamen University
Xiamen, 361005, China

Qingzhao Zhang qzzhang@xmu.edu.cn
Department of Statistics and Data Science, School of Economics
The Wang Yanan Institute for Studies in Economics
Xiamen University
Xiamen, 361005, China

Shuangge Ma shuangge.ma@yale.edu
Department of Biostatistics
Yale University
New Haven, CT 06520, USA

Kuangnan Fang∗ xmufkn@163.com

Department of Statistics and Data Science, School of Economics

Xiamen University

Xiamen, 361005, China

Editor: Dan Alistarh

Abstract

In diverse fields ranging from finance to omics, it is increasingly common that data is
distributed with multiple individual sources (referred to as “clients” in some studies). In-
tegrating raw data, although powerful, is often not feasible, for example, when there are
considerations on privacy protection. Distributed learning techniques have been developed
to integrate summary statistics as opposed to raw data. In many existing distributed
learning studies, it is stringently assumed that all the clients have the same model. To
accommodate data heterogeneity, some federated learning methods allow for client-specific
models. In this article, we consider the scenario that clients form clusters, those in the same
cluster have the same model, and different clusters have different models. Further consid-
ering the clustering structure can lead to a better understanding of the “interconnections”
among clients and reduce the number of parameters. To this end, we develop a novel pe-
nalization approach. Specifically, group penalization is imposed for regularized estimation
and selection of important variables, and fusion penalization is imposed to automatically
cluster clients. An effective ADMM algorithm is developed, and the estimation, selection,
and clustering consistency properties are established under mild conditions. Simulation
and data analysis further demonstrate the practical utility and superiority of the proposed
approach.

∗. Kuangnan Fang is the corresponding author.

©2024 Yuanxing Chen, Qingzhao Zhang, Shuangge Ma, and Kuangnan Fang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-0059.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-0059.html

Chen, Zhang, Ma, and Fang

Keywords: high dimensionality, data heterogeneity, clustering structure, sparsity, penal-
ization

1. Introduction

In diverse fields, it is increasingly common that data is distributed with multiple individual
sources (referred to as “clients” in this article and some published studies). For example,
in financial studies, it is common that data is with, for example, multiple individual bank
branches. In omics studies, it is common that multiple independent studies have generated
their own data and address the same scientific question. The power of integrating data from
multiple sources has been well identified (Liu et al., 2014). A family of studies/methods
integrate raw data (Tang and Song, 2016; Huang et al., 2017). Such integrative analysis
methods, although effective, are not always feasible due to the need for privacy protection.

Since the huge financial loss of Facebook due to its privacy breach (Kelleher, 2018),
privacy issues have once again attracted widespread attention from both the industry and
academia. The innovations in a wide range of industries, such as smart healthcare, financial
technology, and surveillance systems, rely on newly developing machine learning methods,
and then, the development of machine learning methods needs to take privacy protection
into full consideration (Liu et al., 2021). In machine learning, privacy protection can be
roughly divided into three mechanisms, including homomorphic encryption, obfuscation,
and aggregation (Liu et al., 2021). Homomorphic encryption facilitates the processing of
the encrypted data without the need to access the raw data. Such technique has been
successfully applied to regression (Chen et al., 2018), classification (Bost et al., 2015),
and deep neural networks (Gilad-Bachrach et al., 2016). Obfuscation mechanism can be
achieved by adding noises to the model parameters or the original data set, and differential
privacy (DP) (Dwork, 2006; Agarwal et al., 2018) is the most popular scheme in obfuscation.
Aggregation organizes multiple parties to join a machine learning task while avoiding the
transmission of the raw data (Zhang et al., 2021).

Distributed learning (DL), as the most famous framework in aggregation, aims to train
the global model by aggregating the summary statistics from all clients without sharing the
raw data. The existing works can be divided into two categories based on whether the num-
ber of iterations is once or multiple times (Zhou et al., 2024). One-shot approaches require
just one communication round between the local clients and the central server, in which
the divide-and-conquer (DC) strategy is the most popular one designed to reduce commu-
nication burden and improve feasibility and performance in the analysis of big data (Lee
et al., 2017; Battey et al., 2018). Although one-shot approaches have the lowest communi-
cation costs, to obtain the same convergence rate with a centralized estimator, a sufficient
sample size of each client relative to the number of clients is necessary (Wang et al., 2017).
To further relax this constraint, communication-iterative approaches, such as distributed
approximate Newton-type method (Shamir et al., 2014) and communication-efficient surro-
gate likelihood (Jordan et al., 2019), have been developed. Additionally, when data is large,
sending raw data from individual clients to a central server and constructing a statistical
model with the pooled data may lead to considerable computational cost (Bhowmick et al.,
2018). However, the transmission and aggregation of summary statistics in DL can alleviate
communication and computation burden simultaneously.

2

Heterogeneity-aware Clustered Distributed Learning

The DL methods described above all assume that the individual clients share the same
data generation model. This assumption, although convenient, may be overly stringent. In
raw data-based integrative analysis (Tang and Song, 2016; Huang et al., 2017), it has been
well established that data may be heterogeneous and demand different models. The issue of
data heterogeneity, known as non-i.i.d data, in the distributed learning setting has attracted
widespread attention. For example, different hospitals usually store electronic health records
(EHR) in their local sites and are unwilling to share their raw data with others. The data
heterogeneity (reflected by heterogeneous outcome-covariate relationships) due to different
patient populations should be further considered (Liu et al., 2022; Duan et al., 2022).
Besides, Yu et al. (2020) further confirmed that incorrectly borrowing information from
other sites with large heterogeneity leads to unreliable inferences and/or low prediction
power. As the data heterogeneity can be caused by differences in sample characteristics,
data collection techniques, and multiple other factors (Ghosh et al., 2020), the personalized
DL methods that borrow strength from similar individual clients have attracted growing
interest (Smith et al., 2017).

Federated learning (FL), as a popular DL paradigm, pays more attention to the problem
of data islands in a collaborative manner compared to general distributed learning (Kaissis
et al., 2020; Liu et al., 2021). It provides a novel method to build personalized models
without violating user privacy (Zhang et al., 2021). It typically involves multiple rounds of
communication between the central server and local clients to obtain the final model esti-
mates. Clustered federated learning (CFL), as a special case of FL, aims to classify clients
into multiple clusters such that clients in the same cluster share the same model, and dif-
ferent clusters have different models (Ghosh et al., 2020; Marfoq et al., 2021). This type
of heterogeneity analysis may have been more popular in computer science than statistics
and is crucial in applications such as recommendation systems and personalized advertise-
ment placement (Ghosh et al., 2020). Intuitively, assuming and identifying a clustering
structure can lead to a better understanding of the “interconnections” among clients (those
in the same cluster are more alike and can be more closely related to each other) and a
smaller number of model parameters. For instance, mobile phone users (clients) may fo-
cus on different clusters of news, like politics, sports, or fashion. Besides, different groups
of customers are interested in different categories of ads. Thus, having a deeper under-
standing of the “interconnections” within a cluster can benefit more accurate personalized
recommendations.

A common limitation shared by the existing CFL methods is that it is usually chal-
lenging to determine the number of clusters. For example, Ghosh et al. (2020) and Marfoq
et al. (2021) first pre-specified the number of clusters and then alternately updated the
cluster membership of each client and model parameters for each cluster. Similar to classic
clustering analysis, results can be sensitive to the number of clusters, and in practice, usu-
ally, there is not enough information to accurately specify this number. Specifically, Ghosh
et al. (2020) mentioned in one experiment that by setting a larger number of clusters, their
algorithm can identify the correct number by emptying the excess clusters. However, in
most cases (refer to the numerical results in Section 4), the ultimately estimated number
of clusters remains unchanged, staying at the initially pre-specified number. In addition,
since the membership updating algorithm in Ghosh et al. (2020) is similar to K-means,
the final clustering structure is highly sensitive to the initial clustering segmentation, which

3

Chen, Zhang, Ma, and Fang

further leads to unstable estimation results (refer to the numerical results in Section 4).
Moreover, both Ghosh et al. (2020) and Marfoq et al. (2021) focused on the dense setting
with all parameters being nonzero. Therefore, to deal with high-dimensional scenarios with
sparsity settings, we should develop a new clustered distributed learning method, which
can generate stable and sparse estimates (for interpretation) and identify the true number
of clusters in a data-driven way. Of course, this method should also accommodate data
heterogeneity and privacy protection at the same time.

In the statistical literature, there are also a few heterogeneous distributed learning
methods that allow for client-specific models. For example, Zhao et al. (2016) proposed
a heterogeneous distributed learning method with a partially linear model, under which
the nonparametric parameter is assumed to be shared by all clients, while the parametric
parameters are allowed to be client-specific. Duan et al. (2022) extended the surrogate
likelihood function approach to allow client-specific nuisance parameters by adopting a sur-
rogate estimating equation technique. It is noted that these two (and some other) studies are
limited to low-dimensional settings. Cai et al. (2022) further studied the high-dimensional
heterogeneous setting by aggregating local summary statistics under a generalized linear
model. As recognized in Tang et al. (2021), allowing all clients to have individual models
may lead to a large number of redundant parameters, negatively affecting estimation and
inference.

In this article, we consider the integrative analysis of multi-source data under privacy
protection. We utilize the summary statistics instead of the raw individual-level data to
avoid privacy breaches while learning parametric models based on the distributed learning
framework. Here the summary statistics can contain initial parameter estimates, gradient
vectors, hessian matrices, and so on. To sufficiently accommodate data heterogeneity, cap-
tured by different model parameters, clients are allowed to have different models. Specif-
ically, motivated by the success of clustered federated learning, we consider the scenario
where clients form clusters, and the models are cluster-specific. Besides, to address the
high-dimensional issues with sparsity assumption, we focus on the scenario where those
models have the same sparsity structure (set of important variables) and note that the
proposed strategy can be extended to accommodate different sparsity structures.

To achieve the goal of simultaneous estimation, variable selection, and clustering, we
develop an integrative clustered regression (ICR) method, which may advance from the
existing literature in multiple important ways. First, compared to methods that assume
homogeneity (Lee et al., 2017), it is more flexible and can effectively accommodate data het-
erogeneity. Second, compared to methods that allow for client-specific models (Zhao et al.,
2016; Duan et al., 2022), it can lead to a better understanding of the similarity/differences
among data sets and a smaller number of parameters (and hence improved estimation).
Third, compared to the existing CFL methods (Ghosh et al., 2020; Marfoq et al., 2021), it
can data-dependently and conveniently determine the number of clusters, and the estimated
cluster memberships are not sensitive to the initial cluster partition, with the assistance of
penalized fusion. Fourth, compared to the dense setting applied to neutral network (Ghosh
et al., 2020), the sparse parameter estimates due to sparsity penalty can facilitate model
interpretability as well as efficient inference and training in neutral network (Hoefler et al.,
2021). Last but not least, it can accommodate multiple types of data/models, and our
computational and theoretical developments can shed broader insights.

4

Heterogeneity-aware Clustered Distributed Learning

The rest of the article is organized as follows. In Section 2, we introduce the data/model
settings, the proposed approach, and an effective proximal ADMM algorithm. In Section 3,
we rigorously establish that the proposed approach enjoys the estimation, variable selection,
and clustering consistency properties. Numerical studies, including simulation in Section 4
and data analysis in Section 5, demonstrate the practical utilization and superiority of the
proposed approach. Brief discussions are provided in Section 6. The proofs of theoretical
results and additional numerical results are relegated to the Appendix.

2. Methods

In this section, we first introduce the integrative clustered model in a distributed setup and
then develop a proximal ADMM algorithm to obtain the ICR estimator.

2.1 Integrative Analysis under Privacy Constraints

Suppose that there are K independent clients, and for the kth client, there are nk ob-

servations. The total sample size is N =
∑K

k=1 nk. For the kth client, let y
(k)
i and

x
(k)
i = (x

(k)
i1 , . . . , x

(k)
ip)> ∈ Rp be the response and covariate vector of the ith observation,

respectively, where the first element of x
(k)
i is fixed as x

(k)
i1 ≡ 1 to accommodate intercept.

Accordingly, let X(k) = (x
(k)
1 , . . . ,x

(k)
nk)> and Y(k) = (y

(k)
1 , . . . , y

(k)
nk)> denote the design

matrix and response vector of the kth client, respectively. Let f(·) be the pre-specified
twice-differentiable loss function, and define the true population coefficients as

θ∗(k) = arg min
θ(k)∈Rp

Lk(θ(k)) and Lk(θ(k)) = E
[
f(θ(k)>x

(k)
i , y

(k)
i)
]
, k ∈ [K],

where θ(k) = (θ
(k)
1 , . . . , θ

(k)
p)> is the p-dimensional coefficient vector, and [d] denotes the in-

dex set {1, . . . , d} for an integer d. Accordingly, the empirical local and global loss functions
are defined as

L̂k(θ(k)) =
1

nk

nk∑
i=1

f
(
x

(k)>
i θ(k), y

(k)
i

)
, k ∈ [K] and L̂(θ) =

1

N

K∑
k=1

nkL̂k(θ(k)),

respectively, where θ = (θ(1), · · · ,θ(K)) is a p × K coefficient matrix with the jth row

θj = (θ
(1)
j , · · · , θ(K)

j)>. Assume that G = {G(1), . . . ,G(M)} forms a non-overlapping partition
of {1, . . . ,K}, and that clients from the same cluster share the same coefficient vector. That
is, given m ∈ [M], for any k ∈ G(m), θ∗(k) = ψ∗(m), where ψ∗(m) is the cluster-specific
coefficient vector for cluster m. Additionally, for each covariate, its coefficients across the
K clients can be viewed as a group (Cai et al., 2022), leading to p groups corresponding to
the covariates.

For simultaneous regularized estimation, variable selection, and identification of the
clustering structure of clients, we propose the objective function with the ideal pooling (IP)
strategy

Q̂IP(θ) = L̂(θ) + Pλ1(θ) + Pλ2(θ)

=
1

N

K∑
k=1

nkL̂k(θ(k)) +

p∑
j=2

pτ (‖θj‖2, λ1) +
∑
k<k′

pτ

(∥∥∥θ(k) − θ(k′)
∥∥∥

2
, λ2

)
,

(1)

5

Chen, Zhang, Ma, and Fang

where penalty Pλ1(θ) is mainly for regularized estimation and variable selection, and penalty
Pλ2(θ) is mainly for clustering. Here pτ (,) is a penalty function with concavity parameter
τ , ‖ · ‖2 is the L2 norm, and λ1, λ2 are two non-negative tuning parameters.

With the privacy-preservation constraints, raw data of the individual client is not avail-
able, and hence objective function Q̂IP(θ) in (1) cannot be directly implemented. To tackle
this problem, we adopt the least-square approximation (LSA) of He et al. (2016) and Zhu
et al. (2021), which leads to the objective function

Q̂1(θ) =
1

N

K∑
k=1

nk(θ
(k) − θ̃(k))>Ṽ(k)(θ(k) − θ̃(k)) + Pλ1(θ) + Pλ2(θ), (2)

where θ̃(k) is the local estimator of the kth client, and Ṽ(k) = ∂2L̂k(θ̃(k))/∂θ(k)∂θ(k)> is
the Hessian matrix of L̂k(θ(k)) with respect to θ(k) at θ̃(k). He et al. (2016) recommended
adopting ordinary least square (OLS) estimates as the local estimators when p < nk. Un-
der high-dimensional settings, OLS estimates are not available, and a “straightforward”
approach is to replace the OLS estimates with the Lasso estimates. However, the com-
putationally efficient ordinary Lasso estimates are usually biased, and the debiased Lasso
estimates (van de Geer et al., 2014) are often computationally expensive. Inspired by Cai
et al. (2022), we propose the ICR estimator θ̂ by minimizing the following objective function

Q̂ICR(θ) =
1

N

K∑
k=1

nk

(
θ(k)>Ṽ(k)θ(k) − 2θ(k)>ζ̃(k)

)
+ Pλ1(θ) + Pλ2(θ), (3)

where ζ̃(k) = Ṽ(k)θ̃(k) − g̃(k) and g̃(k) = ∂L̂k(θ̃(k))/∂θ(k) is the gradient of L̂k(θ(k)) with
respect to θ(k) at θ̃(k). Here we use Lasso estimators as local estimators θ̃(k). For the penalty
function, viable choices include SCAD (Fan and Li, 2001), MCP (Zhang, 2010), and others.
We adopt MCP in our numerical studies. Note that, with the first loss term in (3), we
can achieve debiasing without actually resorting to the computationally expensive debiased
estimates (we refer to Cai et al., 2022 for more details). The overall analysis approach is
schematically presented in Figure 1. It consists of generating individual estimates based on
raw data by individual clients, sending summary estimates from local clients to a central
server, conducting the proposed estimation, and outputting the final estimators to guide
downstream analysis/actions.

This approach has been motivated by the following considerations. In Q̂ICR(θ), we only
make use of four summary statistics, namely the initial local estimators {θ̃(k)}Kk=1, corre-

sponding gradient vectors {g̃(k)}Kk=1, Hessian matrices {Ṽ(k)}Kk=1, and local sample sizes
{nk}Kk=1. That is, the proposed approach and estimate are fully based on the summary
statistics as opposed to the raw data – data privacy protection is thus achieved. In (3), the
first term measures lack-of-fit, and similar forms have been considered in the literature (Zhu
et al., 2021; Cai et al., 2022). When higher-order estimation properties are not of interest,
the estimates and Hessian matrices from the local clients contain sufficient information.
The first penalty determines which covariates have overall nonzero effects, under the as-
sumptions that one covariate may have different effects/coefficients for different clients, but
the effects are either all nonzero or all zero. It is possible to replace it with more complex
penalties, for example, those that can conduct two-level selection (Huang et al., 2017), to

6

Heterogeneity-aware Clustered Distributed Learning

Figure 1: Scheme of the proposed analysis.

obtain “more subtle” information. The second is a fusion penalty (Ma and Huang, 2017),
with which some clients may have exactly equal estimates. Clients k and k′ are clustered
together if and only if their estimates are equal. For identifying clustering structures, fusion
penalization has been recognized to have multiple unique advantages and has been popu-
lar in the recent literature (Ma and Huang, 2017; Yang et al., 2019; Chen et al., 2021).
For example, it translates clustering to an “easier” estimation problem and can more con-
veniently determine the number/structure of clusters (by examining the estimates). It is
worth noting that most of the existing studies, such as Ma and Huang (2017) and Chen
et al. (2021), focus on heterogeneity analysis with a single data set, while here we study the
subgrouping structure of multiple clients (data sets). The identification of subgrouping can
facilitate “personalized” analysis and improve individual analysis by reducing the number
of parameters/increasing sample size. Additionally, different from Yang et al. (2019) and
others that demand raw data, we can achieve the goal of privacy protection and reduce
computational cost by analyzing summary statistics.

Remark 1 We claim that taking into account the clustering structure can reduce the num-
ber of parameters and we are going to further explain this from two perspectives. From the
theoretical perspective, after assuming a latent cluster partition within K clients and the
clients from the same cluster share the same parameters, the true number of model param-
eters depends on the number of clusters. To see this, note that if we allow client-specific
parameters for all K clients, there are a total of Kp parameters that need to be estimated.
However, the existing clustering structure leads to M cluster-specific parameters, which re-
sults in Mp parameters being estimated. Since M is usually much smaller than K, the
proposed ICR method can utilize samples from all clients belonging to a cluster to estimate
cluster-specific parameters, thus improving the theoretical convergence rate of estimation er-

7

Chen, Zhang, Ma, and Fang

rors (see Section 3 for more details). From the computational perspective, although there are
still Kp parameters involved in the estimation process, through penalized fusion, parameters
belonging to the same cluster tend to be the same. As a result, the number of distinct param-
eters is greatly reduced. Based on this, for subsequent observations generated by clients from
cluster m, predictions can be made based on the estimated mth cluster-specific parameters.

Remark 2 It is worth emphasizing that the local estimators {θ̃(k)}Kk=1, obtained by solving
the corresponding local penalized loss functions, serve only as a part of summary statis-
tics for obtaining the final ICR estimators {θ̂(k)}Kk=1. For the local estimators, the sparsity
structures vary across different clients and there is no clustering structure among clients.
On the contrary, the proposed ICR estimators share the same sparsity structure and clients
from the same cluster share the same estimated parameters. This difference leads to bet-
ter variable selection performance and higher estimation accuracy for the ICR estimators
compared to the local estimators (see the numerical results in Section 4).

2.2 Computational Algorithm

We use local linear approximation — LLA (Zou and Li, 2008) to approximate the fused
penalty and propose an iterative algorithm. Specifically, in the tth iteration, we update the
coefficients by solving

arg min
θ∈Rp×K

1

N

K∑
k=1

nk

(
θ(k)>Ṽ(k)θ(k)−2θ(k)>ζ̃(k)

)
+
∑
k<k′

ωt−1
kk′

∥∥∥θ(k) − θ(k′)
∥∥∥

2
+

p∑
j=2

pτ (‖θj‖2, λ1),

where ωt−1
kk′ = p′τ (‖θ(k),t−1−θ(k′),t−1‖2, λ2) denotes the weight and p′τ (x, λ) is the derivative

of pτ (x, λ) with respect to x. The above minimization problem can be reformulated as a
constrained minimization problem

arg min
θ∈Rp×K

{
`(θ) :=

g(θ)︷ ︸︸ ︷
1

N

K∑
k=1

nk

(
θ(k)>Ṽ(k)θ(k) − 2θ(k)>ζ̃(k)

)
+
∑
k<k′

ωt−1
kk′ ‖αkk′‖2︸ ︷︷ ︸
h1(α)

+

p∑
j=2

pτ (‖θj‖2, λ1)︸ ︷︷ ︸
h2(θ)

}
,

subject to θ(k) − θ(k′) = αkk′ , 1 ≤ k < k′ ≤ K,

where α = (α12, . . . ,α(K−1)K) is a p × K(K − 1)/2 matrix composed of the auxiliary
variables. This optimization problem is equivalent to the minimization of the augmented
Lagrangian

`ν(θ,α, ξ) = `(θ) +
∑
k<k′

ξ>kk′(θ
(k) − θ(k′) −αkk′) +

ν

2

∑
k<k′

∥∥∥θ(k) − θ(k′) −αkk′
∥∥∥2

2
, (4)

where ξ = (ξ12, . . . , ξ(K−1)K) is a p ×K(K − 1)/2 matrix composed of the dual variables.
ν is a small positive constant. Following Shimmura and Suzuki (2022), we can minimize

8

Heterogeneity-aware Clustered Distributed Learning

objective function `ν(θ,α, ξ) in (4) via the following iterations

(θt,αt) = arg min
θ,α

`ν(θ,α, ξt−1),

ξtkk′ = ξt−1
kk′ + ν(θ(k),t − θ(k′),t −αtkk′), 1 ≤ k < k′ ≤ K.

(5)

To update (θ,α) via (4), we minimize η(θ) defined by

η(θ)

:= min
α

`ν(θ,α, ξt−1)

= min
α

{ η1(θ,α)︷ ︸︸ ︷∑
k<k′

[
ωt−1
kk′ ‖αkk′‖2 + ξt−1

kk′
>

(θ(k) − θ(k′) −αkk′) +
ν

2

∥∥∥θ(k) − θ(k′) −αkk′
∥∥∥2

2

]}
+ g(θ) + h2(θ)

= η2(θ) + h2(θ).
(6)

Following Chi and Lange (2015), we define the proximal map with respect to Ω(v) as

proxσΩ(u) = arg min
v

[
σΩ(v) +

1

2
‖u− v‖22

]
.

Besides, the conjugate function of Ω(v) is defined by Ω∗(u) = supv[u>v − Ω(v)]. Then, it
is easy to show that η1(θ,α) is minimized when

α(θ) = proxν−1h1(θA + ν−1ξt−1), (7)

where A = (e12, . . . , e(K−1)K) is a K×K(K− 1)/2 matrix and ekk′ = ek−ek′ , in which ek
is a K × 1 vector whose kth element is 1 and the remaining elements are 0. Plugging (7)
into η1(θ,α) in (6) and combining the results of Theorem 1 and Lemmas 1—2 of Shimmura
and Suzuki (2022), we can show that η2(θ) is differentiable, and the gradient of η2(θ) is

∂η2(θ)

∂θ
= θg +

[
proxνh∗1(νθA + ξt−1)

]
A>,

where θg = 2/N
[
n1(Ṽ(1)θ(1)− ζ̃(1)), . . . , nK(Ṽ(K)θ(K)− ζ̃(K))

]
is a p×K matrix and h∗1 is

the conjugate function of h1. Then, we can adopt one proximal gradient technique, called
Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) (Parikh et al., 2014), to obtain
the solution of the first minimization problem in (5). Further, similar to equations (26) and
(27) in Shimmura and Suzuki (2022), the second iterative step in (5) can be reformulated
as

ξt =
[
proxνh∗1(νθtA + ξt−1)

]
.

The proposed proximal ADMM algorithm is summarized as follows.

Step 1. Obtain the initial estimates with (θ0, ξ0).

Step 2. At iteration t, t = 1, 2, . . . , update θt as follows.

9

Chen, Zhang, Ma, and Fang

Step 2.1. Initialize ut−1,0 = θt−1,0 = θt−1 and ρ0 = 1.

Step 2.2. At iteration s, s = 1, 2, . . . , compute

ωt−1,s
kk′ ← p′τ

(∥∥∥u(k),t−1,s−1 − u(k′),t−1,s−1
∥∥∥

2
, λ2

)
, 1 ≤ k < k′ ≤ K,

θt−1,s ← proxςh2

[
ut−1,s−1 − ς ∂η2(ut−1,s−1)

∂θ

]
,

ρs ←
1 +

√
1 + 4ρ2

s−1

2
, ut−1,s ← θt−1,s +

ρs−1 − 1

ρs
(θt−1,s − θt−1,s−1).

Step 2.3. Repeat Step 2.2 until convergence, and set θt ← θt−1,s.

Step 3. For 1 ≤ k < k′ ≤ K, update ωtkk′ ← p′τ (‖θ(k),t − θ(k′),t‖2, λ2).

Step 4. Update ξt ← proxνh∗1(νθtA + ξt−1).

Step 5. Repeat Steps 2—4 until convergence, and set αt ← proxν−1h1(θtA + ν−1ξt).

In the above calculation, we conclude convergence if the absolute difference of estimates
from two consecutive iterations is smaller than a predefined cutoff.

Remark 3 There exist closed-form solutions for the proximal maps of νh∗1, ν−1h1, and
ςh2. Specifically, the proximal map of νh∗1 is a projection function. And the proximal maps
of ν−1h1 and ςh2 can be easily derived as in Ma and Huang (2017) with τ > ς. In Step 2.2,
ς denotes the step size. As in Shimmura and Suzuki (2022), we can derive the Lipschitz
constant of η2(θ), denoted by Lη = 1 + 2νmaxk∈[K](AA>)k,k, and then set ς = L−1

η . With
ν = 1 and τ = 3, τ > ς since ς ≤ 1/3. Here, although superlinear convergence may be
achieved if ν → ∞ (Rockafellar, 1976), it is difficult to prove the convergence of ADMM
when ν varies by iteration (see Boyd et al., 2011, Section 3.4.1). Therefore, while there
may be improvements in convergence rate, varying ν may also lead to the algorithm failing
to converge. In practice, ν = 1 is widely adopted and achieves good convergence in the
implementation of the ADMM algorithm for extensive studies (Ma and Huang, 2017; Zhu
and Qu, 2018; Ren et al., 2023).

Remark 4 The basic framework of our algorithm is ADMM (Boyd et al., 2011), of which
one variant accommodates a differential loss function plus nonconvex penalties, and its
convergence properties have been studied in Ma and Huang (2017) and Tang et al. (2021).
The “standard” method for minimizing the first problem in (5) involves inverting a matrix
(Ma and Huang, 2017; Zhu and Qu, 2018), which can be computationally difficult if p and K
are large. A novelty in our algorithm is to replace this with the proximal gradient method,
and convergence of the FISTA technique has been studied in Beck and Teboulle (2009).
Therefore, by combining the convergence properties of Beck and Teboulle (2009) and Tang
et al. (2021), the proposed algorithm is also expected to have satisfactory convergence.

Tuning parameter selection Following the literature, we set ν = 1 and the concavity
related parameter τ = 3. Following Yang et al. (2019), we select λ1 and λ2 by minimizing

10

Heterogeneity-aware Clustered Distributed Learning

the modified BIC defined as

mBIC(λ1, λ2) =
1

N

K∑
k=1

nk

([
θ̂(k)(λ1, λ2)

]>
Ṽ(k)

[
θ̂(k)(λ1, λ2)

]
− 2

[
θ̂(k)(λ1, λ2)

]>
ζ̃(k)

)
+ CN

logN

N
q̂(λ1, λ2),

where q̂(λ1, λ2) is the number of nonzero distinct coefficient vectors, and CN is a positive
constant depending on N . Following Ma and Huang (2017), we adopt CN = log(log(Kp)),
which can automatically adapt to a diverging number of parameters.

3. Theoretical Properties

Here we establish that the proposed ICR estimator has the well-desired estimation consis-
tency, model selection consistency, and clustering consistency properties. Although sharing
some similar spirit with the existing studies, with a significantly different problem and
penalized estimation, our theoretical development can have a unique value.

3.1 Notations and Definitions

For a vector z = (z1, . . . , zp) ∈ Rp, and 1 ≤ l < ∞, define ‖z‖l = (
∑p

j=1 |zj |l)1/l and
‖z‖∞ = maxj∈[p] |zj |. Given an index set S, let zS denote the subvector of z corresponding
to the elements of S. For a matrix Zs×p, let ‖Z‖2 = supv∈Rp,‖v‖2=1 ‖Zv‖2, ‖Z‖∞ =

max1≤i≤s
∑p

j=1 |Zij |, ‖Z‖max = max1≤i≤s,1≤j≤p |Zij |, and ‖Z‖F =
√∑s

i=1

∑p
j=1 Z

2
ij . For

two index sets S1 and S2, let ZS1S2 denote the submatrix of Z corresponding to the rows
in S1 and columns in S2, and ZS1 denote the submatrix of Z corresponding to the rows in
S1. For a vector v0 ∈ Rp, let Br(v0) = {v ∈ Rp : ‖v − v0‖2 ≤ r} be the `2-ball around v0

with radius r > 0. For a random variable X, its sub-Gaussian norm is defined by ‖X‖ψ2 =
sups≥1 s

−1/2(E|X|s)1/s. For a random vector z ∈ Rp, its sub-Gaussian norm is defined
by ‖z‖ψ2 = supv∈B1(0) ‖v>z‖ψ2 . For a symmetric matrix H, its maximum and minimum
eigenvalues are denoted by Λmax(H) and Λmin(H), respectively. For two sequences of real
numbers {an} ≥ 1 and {bn} ≥ 1, bn � an (or bn = o(an)) means that lim supn→∞ bn/an = 0,
bn . an (or bn = O(an)) means that ∃C > 0 such that bn ≤ Can for all n, and we use
an � bn if an . bn and bn . an. Similarly, we let op(·) and Op(·) represent each of the
corresponding rates with probability approaching 1 as n → ∞. Let f ′(a, y) = ∂f(a, y)/∂a
and f ′′(a, y) = ∂2f(a, y)/∂a2, where ∂f(a, y)/∂a and ∂2f(a, y)/∂a2 denote the first and
second order derivatives of f(a, y) with respect to a, respectively.

Let MG be a subspace of Rp×K defined as

MG =
{
θ ∈ Rp×K : θ(k) = ψ(m), for any k ∈ G(m), 1 ≤ m ≤M

}
,

where ψ(m) is the distinct coefficient vector for the mth cluster. Further, we define the
p × M common coefficient matrix ψ = (ψ(1), . . . ,ψ(M)) = (ψ1, . . . ,ψp)

>,where ψ(m) =

(ψ
(m)
1 , . . . , ψ

(m)
p)> and ψj = (ψ

(1)
j , . . . , ψ

(M)
j)>. Let θ∗ and ψ∗ be the true coefficient

matrices corresponding to θ and ψ, respectively. Without loss of generality, assume the

11

Chen, Zhang, Ma, and Fang

first q groups of covariates have nonzero effects, and the rest (p − q) have zero effects.
Let A = {1, . . . , q} and Ac = {q + 1, . . . , p}. Further, denote d1 = minj∈A ‖ψ∗j ‖2 and

d2 = minm,m′∈[M],m 6=m′ ‖ψ
∗(m)
A −ψ∗(m

′)
A ‖2.

Let V(k)(θ(k)) = ∂2L̂k(θ(k))/∂θ(k)∂θ(k)> and g(k)(θ(k)) = ∂L̂k(θ(k))/∂θ(k). We further
denote Ṽ(k) = V(k)(θ̃(k)), V∗(k) = V(k)(θ∗(k)), g̃(k) = g(k)(θ̃(k)) and g∗(k) = g(k)(θ∗(k)) for

simplicity. Let ϕ(k) =
∥∥∥E(V

∗(k)
AcA)

[
E(V

∗(k)
AA)

]−1
∥∥∥
∞

for any k ∈ [K] and ϕmax = maxk∈[K] ϕ
(k).

Let Nm =
∑

k∈G(m) nk, Nmax = maxm∈[M]Nm, and Nmin = minm∈[M]Nm. Let |G(m)| be

the cardinality of index set G(m) with m ∈ [M], and denote |Gmax| = maxm∈[M] |G(m)| and

|Gmin| = minm∈[M] |G(m)|.
When the underlying true clustering structure G = {G(1), . . . ,G(M)} is known, we can

define the cluster-oracle objective function for θ by

arg min
θ∈MG

{
L(θ) =

1

N

K∑
k=1

nk

(
θ(k)>Ṽ(k)θ(k) − 2θ(k)>ζ̃(k)

)
+

p∑
j=2

pτ (‖θj‖2, λ1)

}
. (8)

Accordingly, the cluster-oracle objective function for the common coefficient matrix ψ is

LG(ψ) =
1

N

M∑
m=1

[
ψ(m)>

(∑
k∈G(m)

nkṼ
(k)

)
ψ(m) − 2ψ(m)>

(∑
k∈G(m)

nkζ̃
(k)

)]

+

p∑
j=2

pτ

(√√√√ M∑
m=1

(
|G(m)|1/2ψ(m)

j

)2
, λ1

)
.

(9)

3.2 Asymptotic Properties

Assume that nk � N/K for k ∈ [K], and we denote n∗ � nk. We further assume the
following mild conditions.

(C1) For each k ∈ [K] and i ∈ [nk], {x
(k)
i , y

(k)
i }’s are independent and identically dis-

tributed. There exists a constant Cx > 0 such that maxk∈[K],i∈[nk] ‖x
(k)
i ‖∞ ≤ Cx and

maxx∈B1(0) E(x>x
(k)
i)2 ≤ C2

x.

(C2) For each k ∈ [K] and i ∈ [nk], f
′(θ∗(k)>x

(k)
i , y

(k)
i)’s are sub-Gaussian. That is, there

exists a constant κx > 0 such that ‖f ′(θ∗(k)>x
(k)
i , y

(k)
i)‖ψ2 ≤ κx.

(C3) For each k ∈ [K], there exist two constants Cmin and Cmax such that 0 < Cmin ≤
Λmin

(
E(V

∗(k)
AA)

)
≤ Λmax

(
E(V

∗(k)
AA)

)
≤ Cmax.

(C4) For each k ∈ [K], if δ = o(1), then there exists a constant CL > 0 such that∣∣∣f ′′(θ(k)>x
(k)
i , y

(k)
i)
∣∣∣ ≤ CL, for all θ(k) ∈ Bδ(θ∗(k)).

Further, the second-order derivatives are Lipschitz continuous. That is,∣∣f ′′(a, y)− f ′′(b, y)
∣∣ ≤ CL|a− b|, for any a, b, y ∈ R.

12

Heterogeneity-aware Clustered Distributed Learning

(C5) The local estimators satisfy

max
k∈[K]

∥∥∥θ̃(k) − θ∗(k)
∥∥∥

2
� max

k∈[K]
n
−1/2
k

∥∥∥X(k)(θ̃(k) − θ∗(k))
∥∥∥

2
= Op

(√
q log p

n∗

)
.

(C6) The penalty function pτ (t, λ) is non-decreasing and concave in t for t ∈ [0,∞). For
τ > 0, λ−1pτ (t, λ) is a constant for all t ≥ τλ, and pτ (0, λ) = 0. In addition, p′τ (t, λ)
exists and is continuous except for a finite number of t values and λ−1p′τ (0+, λ) = 1.

(C7) (|Gmax|/|Gmin|)2q4 log p� n∗ and K � p.

Condition (C1) assumes that all covariates are uniformly bounded. Similar conditions
have been commonly assumed in the literature, especially including Cai et al. (2022). It
is satisfied under many practical scenarios. Condition (C2) controls the tail behavior of

x
(k)
ij f

′(a, y) and bounds the random error g∗(k). Condition (C3) has been commonly assumed

to ensure that the eigenvalues of E(V
∗(k)
AA) are bounded above and below. The first part of

Condition (C4) assumes that the second-order derivatives of the loss function are bounded,
and the second part is a Lipschitz condition to ensure that the loss function is sufficiently
smooth. Condition (C5) provides the error bounds for the local estimators and similar
conditions have been assumed in Cai et al. (2022) and Battey et al. (2018). It is noted
that such error bounds have been established in Negahban et al. (2012). Condition (C6) is
commonly assumed under high-dimensional settings, and it can be easily verified that both
MCP and SCAD satisfy this condition.

It is noted that in Cai et al. (2022) and Jordan et al. (2019), restricted strong convexity
has been assumed to derive the upper bound of distributed estimators with full p dimensions.
Different from such studies, we follow another framework designed for nonconvex penalties
(Fan and Lv, 2011) to study the upper bound of the proposed ICR estimator constrained
on the true q-dimensional variables and achieve sparsity by the KKT conditions.

Theorem 1 Suppose that Conditions (C1)-(C7) hold. If λ1 � |Gmax|1/2r1N + ϕmaxr2N ,
|Gmin|1/2d1 > τλ1 and r1N = o(1), then there exists a strictly local minimizer ψ̂or of LG(ψ)
in (9) such that∥∥∥ψ̂orA −ψ∗A∥∥∥

F
= Op(r1N), P (ψ̂orAc = 0)→ 1 as N →∞,

where

r1N =

√
(K/|Gmin|)q

Nmin
+
|Gmax|M1/2q3/2 log p

Nmin
,

r2N =

√
(|Gmax|/|Gmin|)M log p

KN
+

(|Gmax|/|Gmin|1/2)M1/2q log p

N
.

Theorem 1 establishes the estimation consistency and model selection consistency of
the cluster-oracle estimator ψ̂or. Note that the second term of r1N is the additional er-
ror due to the aggregation of summary statistics as opposed to raw data. If M |Gmax| =
o(
√
N/[q2(log p)2]), the second term in the error bound can be dominated by the first term,

13

Chen, Zhang, Ma, and Fang

which means that the additional errors are asymptotically negligible. Furthermore, if M is
fixed and |Gm| � K/M for m ∈ [M], then r1N turns to be

√
q/N+Kq3/2 log p/N . Similarly,

the additional errors are asymptotically negligible if K = o(
√
N/q2(log p)2).

Similar constraints regarding the number of clients and sample sizes of clients are widely
recognized in the existing literature (Jordan et al., 2019; Cai et al., 2022). In theory,
one-shot algorithms require a sufficient sample size for each client to achieve the same
statistical accuracy as centralized algorithms (Battey et al., 2018). However, this condition
can be relaxed in communication-iterative algorithms via multiple rounds of communication
(Jordan et al., 2019). As a result, if the sample size of each client is not large enough,
compared with communication-iterative algorithms with a sufficient number of rounds, one-
shot algorithms may yield poorer estimation results. In this paper, the proposed ICR
method belongs to one-shot algorithms and then the asymptotic equivalence between ICP
and IP holds if such constraint can be satisfied.

Based on Theorem 1 and the equivalence of L(θ) in (8) and LG(ψ) in (9), we can similarly
construct a strictly local minimizer θ̂or of L(θ) such that ‖θ̂orA − θ∗A‖F = Op(|Gmax|1/2r1N)

and P (θ̂orAc = 0) → 1. Furthermore, in the following Theorem 2, we will show that θ̂or is

a strictly local minimizer of Q̂ICR(θ) in (3) with probability approaching 1. Consequently,
with probability approaching 1, the ICR estimator θ̂ is equal to the cluster-oracle estimator
θ̂or, which indicates that θ̂ also possesses estimation consistency with the same convergence
rate as θ̂or and model selection consistency. As clustering is based on estimation, we can
obtain P (M̂ = M)→ 1 and P (Ĝ = G)→ 1, which indicates clustering consistency.

Theorem 2 Suppose that the conditions of Theorem 1 hold. If λ1 � ϕmax(log p/N)1/2,
d2 > τλ2 and λ2 � |Gmax|1/2r1N , then there exists a strictly local minimizer θ̂ of Q̂ICR(θ)
in (3) such that

P (θ̂ = θ̂or)→ 1 as N →∞.

It is noted that, compared to the local estimators with convergence rate Op(
√
q log p/n∗)

as shown in Condition (C5), each θ̂(k) possesses a much faster convergence attributable to
information aggregation across clients sharing common coefficients. To see this, note that
if |Gm| � K/M for m ∈ [M] and M � log p, r1N turns to be

√
q log p/Nmin. This rate is

the same as that of the cluster-oracle estimator θ̂or(k), which has a
√
|Gmin| times faster

convergence compared to the local estimators.

4. Simulation Study

We conduct abundant simulations to gauge the performance of the proposed approach. For
benchmarking, we consider three classes of alternatives, which include local methods, homo-
geneous integrative methods (homoIM), and heterogeneous integrative methods (heterIM).
A straightforward local method is (a) the Local estimator obtained by minimizing a local
penalized loss function for each client separately. For the class of homoIM, we consider
(b) the distributed least square approximation (DLSA) estimator (Zhu et al., 2021); and
(c) the weighted one-shot distributed ridge (WONDER) estimator (Dobriban and Sheng,
2020). For the class of heterIM, we consider (d) the Sparse K-means (SK) estimator ob-
tained by applying the sparse K-means approach (Witten and Tibshirani, 2010) to the

14

Heterogeneity-aware Clustered Distributed Learning

local estimators in (a), of which the process can be achieved via R package sparcl; (e) the
clustered federated learning (CFL) estimator (Ghosh et al., 2020); (f) the data-Shielding
High dimensional Integrative Regression (SHIR) estimator Cai et al. (2022); and (g) the
Sparse Meta-Analysis (SMA) estimator (He et al., 2016) obtained after executing the sure
independent screening procedure (Fan and Lv, 2008) to reduce dimension to n/(3 log n) as
recommended by He et al. (2016). For the SK estimator, we adopt two criteria, namely
the Hartigan statistic (Hartigan, 1975) and gap statistic (Tibshirani et al., 2001), to choose
the number of clusters – this is realized using R package NbClust. The corresponding two
variants are referred to as SK(har) and SK(gap), respectively. For the CFL estimator, we
separately analyze one-shot CFL (OCFL) and iterative CFL with multiple rounds (ICFL),
where the number of clusters is specified as the true value for them. Here, both ICFL and
OCFL correspond to Algorithm 2 of Ghosh et al. (2020), but the former sets the number
of communication rounds as R = 100, while the latter sets R = 1. Since WONDER and
CFL methods all focus on dense estimation, for comparison in variable selection, we apply
a hard threshold of 0.1 to their dense estimators for obtaining sparse estimates. For the
alternatives, tuning parameters are chosen in a way compatible with the proposed.

In addition to these alternatives, we also consider two ideal golden methods, including
(h) the Oracle estimator obtained by minimizing objective function Lor,G(ψ) in (A.3); and
(i) the ideal pooling (IP) estimator obtained by minimizing objective function (1). Note
that the Oracle method is not realistic in practice and the IP method is not feasible in a
distributed framework. Here, they serve as the ideal targets and help to verify the theoretical
properties established in Section 3.

4.1 Simulation Settings

In this subsection, we design six examples to observe the performance of the proposed
method and the other alternatives. Examples 1-2 and 5-6 are on logistic regression and
logistic loss, and Examples 3-4 are on linear regression and squared loss. The true number
of clusters is M = 2 in Examples 1 and 3, and M = 4 in Examples 2, 4 and 5. For Examples
1-4, we let n1 = · · · = nK = n. Example 5 is an imbalanced setting with varying nk. To
match the real data of the anomaly detection study (used in Section 5), we further design
Example 6, in which both the sample sizes and the cluster sizes are imbalanced, and the
proportion of anomalies can vary significantly across clients. More specific settings are as
follows.

Example 1. ψ(1) = (0.4×1>8 ,0
>
p−8)> and ψ(2) = (−0.4×1>8 ,0

>
p−8)>. We generate x

(k)
i,−1, i ∈

[nk], k ∈ [K], where x
(k)
i,−1 = (x

(k)
i2 , . . . , x

(k)
ip)>, from a multivariate normal distribution with

mean 0 and cov(Xw, Xt) = ρ|w−t| for w, t ∈ {2, · · · , p} and ρ = 0.5. Given X(k), we generate
Y(k) from a logistic model. We set the number of clients in each cluster as |G1| = |G2| = K/2.
We further set n = 200 and consider K ∈ {16, 32, 64} and p ∈ {100, 500}.
Example 2. ψ(1) = (0.6 × 1>4 ,−0.6 × 1>4 ,0

>
p−8)>, ψ(2) = (0.6 × 1>2 ,−0.6 × 1>2 , 0.6 ×

1>2 ,−0.6×1>2 ,0
>
p−8)>, ψ(3) = (−0.6×1>2 , 0.6×1>2 ,−0.6×1>2 , 0.6×1>2 ,0

>
p−8)>, and ψ(4) =

(−0.6× 1>4 , 0.6× 1>4 ,0
>
p−8)>. We set the number of clients in each cluster as |G1| = |G2| =

|G3| = |G4| = K/4. X(k) and Y(k) are generated in a similar manner as in Example 1. We
consider K ∈ {64, 128} and n ∈ {200, 400, 800} and set p = 100.

15

Chen, Zhang, Ma, and Fang

Example 3. The data generation is the same as in Example 1. The difference is that the
response is generated from a linear regression model, where the random error has a normal
distribution N (0, σ2). We consider K ∈ {16, 32, 64} and σ ∈ {1, 2} and set p = 100 and
n = 100.

Example 4. The data generation is the same as in Example 2. The difference is that the
response is generated from a linear regression model, where the random error has a normal
distribution N (0, σ2). We consider σ ∈ {1, 2} and n ∈ {100, 200, 400} and set p = 100 and
K = 64.

Example 5. The data generation is the same as in Example 2. We sample each nk from
{n0 · a : a ∈ [U]} to allow imbalanced sample sizes across different clients. Here, larger U
indicates greater imbalance. We consider U ∈ {5, 10} and p ∈ {200, 500, 800} as well as
fixed K = 40 and n0 = 100.

Example 6. We consider M = 6 clusters with coefficients ψ(1) = (1.5,β(1)>,0>p−11)>,

ψ(2) = (1.0,β(2)>,0>p−11)>, ψ(3) = (0.5,β(3)>,0>p−11)>, ψ(4) = (−0.5,β(4)>,0>p−11)>, ψ(5) =

(−1.0,β(5)>,0>p−11)>, and ψ(6) = (−1.5,β(6)>,0>p−11)>, where β(m) = (β
(m)
1 , . . . , β

(m)
10)>.

Here, for all m ∈ [M], we let β
(m)
j = Z1 · sign(W) if j ∈ [5], and β

(m)
j = Z2 · sign(W) other-

wise, where Z1, Z2 are normally distributed with Z1 ∼ N (0.4, 0.12) and Z2 ∼ N (0.8, 0.12),
and W is uniform distributed with W ∼ U(−0.5, 0.5). We set the number of clients in each
cluster as |G1| = |G2| = 10, |G3| = |G4| = 15 as well as |G5| = |G6| = 20. We generate X(k)

and Y(k) in a similar manner as in Example 1, and each nk is sampled from {n0 ·a : a ∈ [U]}.
We consider n0 ∈ {200, 400} and set p = 100 and U = 5.

For each example, we generate 100 replicates. We first observe that the proposed compu-
tational algorithm has satisfactory convergence properties. With all of our simulated data
sets, convergence is achieved within 100 iterations. Additionally, the proposed approach
is computationally affordable. For example, the analysis of one simulated data set under
Example 1 with K = 32, p = 100, and 25 candidate tuning parameter values takes about 3
minutes using a desktop with standard configurations – here we note that penalized fusion
estimation is in general computationally more expensive. For evaluation and comparison,
we comprehensively consider the following measures. Denote the set of selected variables
as Â = {j : θ̂j 6= 0}. For evaluating variable selection accuracy, we consider (1) TPR, the
percentage of correctly identified important variables across the K studies; (2) FPR, the
percentage of falsely identified important variables across the K studies; and (3) MS, the
model size defined by MS =

∑p
j=1 q̂j , where q̂j is the number of distinct nonzero coefficients

of the jth variable. For evaluating clustering accuracy, we consider: (4) M̂ , the number
of identified clusters; (5) Per, the percentage of fully accurate identification; (6) RI, the
Rand Index defined as RI = (TP + TN)/(TP + FP + FN + TN), where TP (true positive)
is the number of pairs of data sets from the same cluster classified into the same cluster,
and TN (true negative), FP (false positive), and FN (false negative) are defined accord-
ingly. Since Rand index tends to be large even under random clusterings, we also adopt (7)
ARI, the adjusted Rand index defined by ARI = (RI− E(RI))/(max (RI)− E(RI)), where
E(RI) and max (RI) are the expected value and maximum value of Rand index, respectively.
Rand index ranges from 0 to 1, adjusted Rand index ranges from -1 to 1, and higher val-
ues indicate a better agreement between the identified and true clustering structures. For

16

Heterogeneity-aware Clustered Distributed Learning

Table 1: The clustering accuracy: mean (sd) based on 100 replicates in Example 1.

K = 16 K = 32 K = 64

Method M̂ Per RI ARI M̂ Per RI ARI M̂ Per RI ARI

p = 100 ICR 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000

(0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

IP 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000

(0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

ICFL 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000

(0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

OCFL 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000

(0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

SK(har) 4.640 0.000 0.779 0.539 5.230 0.000 0.759 0.508 5.220 0.000 0.734 0.462

(1.508) (-) (0.097) (0.208) (1.847) (-) (0.098) (0.202) (1.495) (-) (0.065) (0.133)

SK(gap) 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000

(0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

p = 500 ICR 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000

(0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

IP 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000

(0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

ICFL 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000

(0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

OCFL 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000

(0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

SK(har) 4.580 0.000 0.793 0.570 5.440 0.000 0.754 0.499 5.150 0.000 0.766 0.528

(1.505) (-) (0.101) (0.216) (1.684) (-) (0.097) (0.199) (1.720) (-) (0.098) (0.199)

SK(gap) 2.010 0.990 0.999 0.999 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000

(0.100) (-) (0.006) (0.012) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

evaluating estimation, we consider (8) RMSE, the root mean squared error of θ̂ defined as

RMSE =
√∑

j∈A ‖θ̂j − θ∗j ‖22/K.

4.2 Simulations Results

Results for Example 1 are summarized in Table 1, Table 2, and Figure 2. It is observed
that the proposed ICR approach tends to have larger TPR and smaller FPR values as K
increases. It has an average MS value of around 16, which is the true model size, while the
alternatives (in the categories of heterIM or local) generate much larger models and DLSA
(in the categories of homoIM) generates much smaller models. When K is sufficiently large,
it outperforms the alternatives (except for IP) in variable selection. Compared to IP, ICR
has slightly worse performance in variable selection and estimation accuracy, which is a
reasonable result. Figure 2 suggests that the estimation accuracy of ICR is very close to
that of Oracle, especially when K is large, which is consistent with our theoretical results.
Compared with ICFL and OCFL (clustered heterIM) with a pre-specified true number of
clusters, ICR shows the same performance in the estimation of the number of clusters with
M̂ = 2 (the true number of clusters) and clustering accuracy and comparable performance
in estimation accuracy. Compared to Local, ICR shows much better performance in both
variable selection and estimation accuracy. This further illustrates why we need to inte-

17

Chen, Zhang, Ma, and Fang

Table 2: The variable selection accuracy: mean (sd) based on 100 replicates in Example 1.

K = 16 K = 32 K = 64

Method TPR FPR MS TPR FPR MS TPR FPR MS

p = 100 ICR 0.990 0.000 15.840 1.000 0.000 16.000 1.000 0.000 16.000

(0.058) (0.000) (0.929) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

IP 0.990 0.000 15.840 1.000 0.000 16.000 1.000 0.000 16.000

(0.038) (0.000) (0.615) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ICFL 1.000 0.257 63.320 1.000 0.093 33.100 1.000 0.017 19.040

(0.000) (0.050) (9.137) (0.000) (0.034) (6.204) (0.000) (0.013) (2.470)

OCFL 1.000 0.337 78.020 1.000 0.175 48.260 1.000 0.056 26.360

(0.000) (0.046) (8.502) (0.000) (0.040) (7.378) (0.000) (0.021) (3.912)

SHIR 1.000 0.010 128.900 1.000 0.008 256.730 1.000 0.007 512.670

(0.000) (0.012) (1.087) (0.000) (0.009) (0.863) (0.000) (0.010) (0.922)

SMA 1.000 0.008 128.780 1.000 0.007 256.660 1.000 0.003 512.920

(0.000) (0.011) (0.991) (0.000) (0.008) (0.742) (0.000) (0.007) (6.402)

Local 0.889 0.102 264.180 0.893 0.100 524.470 0.891 0.102 1056.990

(0.026) (0.020) (29.586) (0.018) (0.013) (37.805) (0.013) (0.009) (54.532)

SK(har) 0.985 0.350 173.690 0.996 0.516 268.430 1.000 0.728 379.450

(0.051) (0.161) (57.414) (0.021) (0.210) (87.220) (0.000) (0.183) (104.023)

SK(gap) 1.000 0.571 121.000 1.000 0.817 166.400 1.000 0.964 193.300

(0.000) (0.109) (20.013) (0.000) (0.075) (13.775) (0.000) (0.025) (4.613)

DLSA 0.125 0.001 1.060 0.125 0.000 1.020 0.125 0.000 1.010

(0.000) (0.003) (0.239) (0.000) (0.002) (0.141) (0.000) (0.001) (0.100)

p = 500 ICR 0.921 0.000 14.740 0.999 0.000 16.000 1.000 0.000 16.340

(0.100) (0.000) (1.599) (0.013) (0.000) (0.284) (0.000) (0.001) (0.945)

IP 0.958 0.000 15.320 1.000 0.000 16.000 1.000 0.000 16.000

(0.084) (0.000) (1.340) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ICFL 1.000 0.447 455.520 1.000 0.190 203.120 1.000 0.036 51.680

(0.000) (0.028) (27.275) (0.000) (0.021) (20.981) (0.000) (0.009) (9.197)

OCFL 1.000 0.017 32.660 1.000 0.002 17.960 1.000 0.001 17.440

(0.000) (0.006) (5.498) (0.000) (0.001) (1.449) (0.000) (0.001) (0.903)

SHIR 0.999 0.004 129.730 0.999 0.004 257.730 1.000 0.002 513.100

(0.013) (0.003) (2.206) (0.013) (0.003) (3.681) (0.000) (0.002) (1.185)

SMA 0.999 0.004 129.580 1.000 0.003 257.230 1.000 0.001 512.610

(0.013) (0.003) (2.180) (0.000) (0.002) (1.230) (0.000) (0.002) (0.886)

Local 0.849 0.034 373.360 0.846 0.033 741.420 0.844 0.034 1493.910

(0.029) (0.006) (49.342) (0.021) (0.004) (71.624) (0.016) (0.003) (107.543)

SK(har) 0.984 0.119 281.850 0.993 0.181 487.520 1.000 0.354 865.340

(0.052) (0.067) (121.622) (0.043) (0.106) (211.896) (0.000) (0.180) (357.825)

SK(gap) 1.000 0.235 248.190 1.000 0.418 427.740 1.000 0.662 667.620

(0.000) (0.061) (59.641) (0.000) (0.061) (59.943) (0.000) (0.050) (49.399)

DLSA 0.477 0.540 269.717 0.449 0.531 264.800 0.443 0.510 254.370

(0.163) (0.055) (27.438) (0.171) (0.050) (25.376) (0.157) (0.049) (24.475)

18

Heterogeneity-aware Clustered Distributed Learning

p = 100 p = 500
K

 =
 16

K
 =

 32
K

 =
 64

ICR IP Oracle ICFL OCFL SHIR SMA Local SK(har) SK(gap) DLSA ICR IP Oracle ICFL OCFL SHIR SMA Local SK(har) SK(gap) DLSA

0.25

0.50

0.75

1.00

1.25

0.25

0.50

0.75

1.00

1.25

0.25

0.50

0.75

1.00

1.25

R
M

S
E

Figure 2: Boxplots of RMSE in Example 1.

grate clustering structure into distributed learning. Besides, compared to the SK(har) and
SK(gap) (two-step clustered heterIM), ICR has better variable selection performance. ICR,
ICFL, and OCFL all perform better than SK(har) in clustering and estimation accuracy
since SK(har) often overestimates the number of clusters.

Results for Example 2 are summarized in Table 4, Table 5, and Figure 5 (Appendix B).
It is observed that ICR also outperforms the other alternatives (except for IP) in variable
selection and clustering accuracy and the performance improves as n increases. The perfor-
mance of ICR approaches IP for larger n, which further verifies the asymptotic equivalence
between ICR and IP. In this setting, although both ICFL and OCFL set the correct number
of clusters, they show much worse performance in clustering accuracy compared with ICR,
which leads to extremely unstable estimation results. Besides, for larger p in Example 5,
compared to ICR, both ICFL and OCFL have poorer and more unstable performance (see
Figure 8), since the estimation of important variables is significantly influenced by a large
number of abundant parameters due to dense estimation. These results explain why we
should develop a new clustered distributed learning method to address sparsity issues in
high-dimensional data. Compared to Local, SHIR, and SMA have worse estimation per-

19

Chen, Zhang, Ma, and Fang

formance, which suggests that inappropriate data integration may not help. Table 5 shows
that, with ICR and SK(har), the identified number of clusters is close to the true. Further,
the RI and ARI values are close to 1, indicating satisfactory clustering performance. In
comparison, SK(gap) usually underestimates the number of clusters and has much lower
clustering accuracy. Thus, SK methods are very sensitive to the number of clusters. This
further illustrates how crucial it is to automatically select the correct value for M . Finally,
due to model misspecification, DLSA (in the category of homoIM) has the worst variable
selection and estimation performance in both Examples 1 and 2. Since WONDER (also in
the category of homoIM), is only feasible in linear regression, so its performance can be ob-
served in Examples 3-4. Similar to DLSA, it also shows much worse performance compared
with alternatives in the category of heterIM.

Results for Examples 3-6 are summarized in Tables 6-15 and Figures 6-9 (Appendix B).
The overall findings are very similar to Examples 1-2.

5. Data Application

With the emergence of technological innovations, cyberattacks (generally carried out by
abnormal requests) are becoming increasingly serious and may hinder enterprise operations
or interrupt critical infrastructure systems. Web logs, which are generated by systems to
record detailed access information, have been widely used to detect abnormal requests in
system monitoring and intrusion detection (also called anomaly detection) systems (Hu
et al., 2017; Guo et al., 2021; Ünal and Dağ, 2022). Large-scale web logs are usually stored
with distributed clients, and the transmission of raw logs from local clients to a central
server is often infeasible. As discussed in Guo et al. (2021), on one hand, only a small part
of raw logs contains useful information, and hence the full transmission of raw logs, which is
very time-consuming, is not necessary. On the other hand, to facilitate log analysis, raw logs
are often transferred to third-party analytic services, which increases the risks of privacy
leakage. To tackle this problem, Guo et al. (2021) resorted to federated learning for anomaly
detection under distributed settings. A limitation of this study is that homogeneity among
clients is assumed. Hu et al. (2017) and Ünal and Dağ (2022) pointed out the heterogeneity
among clients and constructed client-specific models. This study can be limited with too
many redundant parameters. In this section, we apply the proposed method, which takes
into consideration both multi-source heterogeneity and estimation efficiency, to a bank
website logs data, which is stored in multiple interfaces (clients).

In this analysis, the request type is the binary response and takes values “normal”
and “abnormal”. Our goal is to distinguish the abnormal requests from the normal ones
based on the log contents, which poses a binary classification problem. There are a total of
K = 123 URL interfaces, and the sample sizes range from 60 to 25,552. The total sample
size is N = 306, 377, and the overall percentage of abnormal requests is 21.6%. Among the
123 interfaces, 76 have the percentages of abnormal requests equal to 50%, and for the rest
47 interfaces, the percentages range from 1.2% to 75.9%. In Figure 10 (Appendix B), we
present the percentages of abnormal requests for these 47 URL interfaces. The significant
differences across interfaces suggest the possibility of heterogeneity.

The collected request logs can only be observed in the form of character strings. In
particular, each request log contains the interface name and two submitted parameters

20

Heterogeneity-aware Clustered Distributed Learning

from “POST” and “GET” access, respectively. In addition, each parameter from POST or
GET access consists of a series of key-value pairs separated by “&”. For demonstration,
in Table 17, we present one representative record of the initial request logs from URL
interface “ajaxNoSessionGetSmsAction”. The unstructured parameters can be difficult to
model, and we extract statistical features from the submitted parameters as follows. First,
we generate two features, namely Gnum and Pnum, which are defined as the number of GET
and POST key-value pairs, respectively. Second, we generate two features, namely Glen and
Plen, which are defined as the total length of the GET and POST parameters, respectively.
Third, we generate a series of features to measure the lengths of some key-value pairs in
the GET and POST parameters, denoted by Glx and Plx, which are defined as the lengths
of the (x+1)-th key-value pairs, respectively. Finally, we generate a series of features to
measure the types of some key-value pairs in the GET and POST parameters, denoted by
Gtx and Ptx, which are defined as the types of the (x+1)-th key-value pairs, respectively.
There are three types of key-value pairs, namely “na”, “str”, and “num”, which indicate
that the key-value pair is missing, string and numeric, respectively. Take the record in
Table 17 (Appendix B) as an example. We can obtain the following feature values: Gnum
= 1, Glen = 9, Pnum = 4, Plen = 72, Gl0 = 9, Gl1 = · · · = Gl19 = 0, Pl0 = 19, Pl1 = 16,
Pl2 = 10, Pl3 = 24, Pl4 = · · · = Pl19 = 0, Gt0 =“str”, Gt1 = · · · = Gt19 =“na”,
Pt0 = · · · = Pt2 =“str”, Pt3 =“num”, Pt4 = · · · = Pt19 =“na”. Since the values of
Gl1, . . . , Gl19 are 0 for all requests, we delete these features. To further utilize the character
strings, we concatenate Gt0 – Gt19 and Pt0 – Pt19 consecutively into a sequence of strings
and train the Skip-gram model (which is a popular model of word2vec) to obtain an 80-
dimensional continuous word vector features, denoted by GPw1, . . . , GPw80. Overall, there
are 105 features available for analysis.

Prior to analysis, we standardize the p = 105 continuous variables to have means 0 and
variances 1. The proposed method identifies five nontrivial clusters (with sizes larger than
one and denoted as ICR(1), . . . , ICR(5)), which have sizes 37, 30, 11, 7, and 4, respectively.
Additionally, there are 34 interfaces forming their own individual clusters. In Table 3, we
present important variables identified by the proposed method and/or the four integrative
analysis alternatives ICFL, SHIR, SMA, and DLSA, where the DLSA method identifies
another 46 important variables (due to space limitation, they are not listed in Table 3).
For the ICFL method, we separately pre-specify the number of clusters as 5 or 10 and the
corresponding estimators are denoted by ICFL(5) and ICFL(10). Besides, due to space

limitation, we only present the cluster-specific parameters ICFL
(1)
5 , . . . , ICFL

(5)
5 (with clus-

ter sizes 47, 39, 25, 9 and 3) corresponding to 5 clusters in the ICFL(5) method, and the

estimated parameters ICFL
(1)
10 , . . . , ICFL

(9)
10 (with cluster sizes 42, 25, 23, 14, 6, 5, 4, 2 and 2)

in the ICFL(10) method are reported in Table 16 (Appendix B). The ICFL(10) method
identifies a cluster with 0 members, which leads to 9 final clusters. It is observed that
different methods lead to quite different identification and selection results. Note that, for
the proposed method, we only present estimates for the nontrivial clusters. The results for
the trivial clusters are omitted and available from the authors. Besides, to obtain sparse
estimates in two ICFL methods, we similarly introduce a hard threshold of 0.1, as in the
simulation.

At first, both our method and the two variants of ICFL result in highly imbalanced
clustering structures, which partially contribute to the heterogeneity. From Table 3, we can

21

Chen, Zhang, Ma, and Fang

Table 3: The identified important variables and their estimates using the five integrative
analysis methods in data analysis. For the proposed method, only estimates for the non-
trivial clusters are shown.

Variable ICR(1) ICR(2) ICR(3) ICR(4) ICR(5) ICFL
(1)
5 ICFL

(2)
5 ICFL

(3)
5 ICFL

(4)
5 ICFL

(5)
5 SHIR SMA DLSA

Intercept 3.321 -0.303 7.530 -1.003 8.345 1.266 1.572 -2.545 -0.254 0.981 -1.651 -1.764 -0.362
Gnum -0.437 0.002 -0.025 0.184 -0.093 -0.213 -0.213 0.142 0.819 -0.189 – – 0.213
Glen -0.145 0.009 -0.281 0.008 -0.156 -0.233 -0.184 0.117 -0.175 -0.271 -0.057 -0.059 -0.362
Pnum 0.096 0.066 -0.040 -0.114 0.213 0.102 – -0.120 0.455 – 0.044 0.004 0.139
Plen -0.087 0.123 -0.507 -0.834 -0.348 -0.358 -0.171 -0.338 0.274 – -0.034 – 0.070
Gl0 1.686 0.034 1.304 0.622 1.834 1.252 1.535 0.594 -0.528 2.021 0.270 0.159 0.134
Pl0 1.393 0.131 2.266 1.731 2.840 1.661 0.404 1.026 0.452 2.882 0.261 0.179 -0.081
Pl1 4.115 0.338 8.460 4.488 11.026 2.420 2.486 1.778 1.611 1.083 0.575 0.503 0.167
Pl2 3.376 0.264 7.736 6.376 3.162 2.117 2.720 1.712 1.031 0.224 0.478 0.411 0.107
Pl3 0.013 0.013 0.089 0.087 0.061 0.142 – – 0.112 – – – –
Pl4 0.018 0.030 0.010 -0.031 0.007 – – 0.101 0.787 – 0.080 0.062 –
Pl5 0.005 0.013 0.004 0.175 0.067 – 0.104 – 0.332 – 0.035 0.024 –
Pl6 0.011 -0.002 0.013 0.041 -0.082 – – – – – – – –
Pl7 – – – – – – – – – – – – -0.008
Pl8 – – – – – – – – -0.685 – – – –
Pl9 – – – – – – – – 0.257 – 0.017 0.028 –
Pl10 – – – – – – – – -0.161 – 0.016 0.004 –
Pl11 – – – – – – – – 0.123 – – – –
Pl13 – – – – – – – – 0.143 – – – –
Pl14 – – – – – – – – 0.134 – 0.013 0.008 -0.011
Pl19 – – – – – – – – – – – – -0.035
GPw1 -0.032 0.017 0.069 0.119 -0.001 – – – – – – – -0.028
GPw4 – – – – – – – – 0.113 – – – –
GPw6 0.004 0.011 0.135 -0.028 -0.241 – – – – – – – 0.044
GPw11 – – – – – – – – 0.140 – – – –
GPw15 – – – – – – – – – – -0.007 – -0.024
GPw22 – – – – – – – – -0.114 – – – –
GPw26 – – – – – – – – – – -0.009 – –
GPw27 – – – – – – – – – – – -0.029 –
GPw32 – – – – – – – – – – 0.017 – -0.036
GPw33 – – – – – – – – – – -0.010 – -0.013
GPw34 – – – – – – – – – – 0.006 – 0.049
GPw38 – – – – – – – – -0.103 – – – –
GPw39 – – – – – – – 0.118 – – – – –
GPw40 – – – – – – – – – – -0.015 – 0.016
GPw43 – – – – – – – – -0.150 – – – –
GPw50 – – – – – – – – -0.112 – – – –
GPw53 – – – – – – – – -0.128 – – – –
GPw54 – – – – – – – – -0.103 – – – –
GPw59 – – – – – – – – 0.112 – – – –
GPw63 – – – – – – – – – – 0.009 – 0.093
GPw64 – – – – – – – – – – -0.010 – 0.063
GPw68 – – – – – – – 0.111 -0.113 – – – –
GPw74 – – – – – – – -0.112 – – – – –

22

Heterogeneity-aware Clustered Distributed Learning

see that, with the proposed method, Gl0, Pl0, Pl1, and Pl2 all have strong positive effects
for the five identified clusters, while Gnum, Glen, Pnum, and Plen have heterogeneous effects
across the five clusters. For example, Pnum has negative effects in clusters ICR(3), ICR(4)

and positive effects in clusters ICR(1), ICR(2), ICR(5). This suggests that requests with a
longer length of the first key-value pair in GET and longer lengths of the first three key-
value pairs in POST are more likely to be abnormal for most of the interfaces. This can
potentially lead to a general security rule for the initial screening of abnormal requests.
The heterogeneous security rules for the specific interfaces should be derived cluster-by-
cluster. Here we note that the traditional anomaly detection for logs is to extract security
rules from samples (El Hadj et al., 2018). Moreover, the numbers of important variables
identified by the proposed ICR and the other two heterogeneous integrative methods (SHIR
and SMA) are much less than that by the homogeneous DLSA method. Too many selected
variables can lead to poor prediction performance, which can be further observed by the
latter analysis. Additionally, the proposed analysis can reduce the number of models to 39
(5 clustered ones and 34 individual ones), which corresponds to a lower cost of maintaining
models than the client-specific modeling methods (with 123 models).

With practical data, it is difficult to objectively evaluate identification and estimation
results. To support our findings, we conduct a prediction evaluation. Specifically, we ran-
domly select 4/5 of the samples and form the training data. In this selection, the normal:
abnormal ratio is retained. The remaining samples form the testing data. Estimation is
conducted using the training data, and we evaluate prediction performance on the test-
ing data via several accuracy measures, which include the area under the receiver operating
characteristic curve (AUC), the Brier score defined as the mean squared residuals, as well as
the F1-score at threshold value chosen to attain a false positive rate of 0.1‰ and 0.5‰ (de-
noted by F0.1‰ and F0.5‰). The F1-score is defined as the harmonic mean of the sensitivity
and positive predictive value. Note that AUC and the Brier score measure the prediction
accuracy across the entire range of class distributions and error costs, while F1-score is used
to evaluate the prediction accuracy under a deterministic class distribution, which is usually
obtained after using a cutoff for the predicted probabilities to enable the separation of the
positive and negative classes. For comparison, we also consider the OCFL method with the
pre-specified number of clusters 5 or 10, denoted by OCFL(5) and OCFL(10), respectively.
This process is repeated 100 times, and the results are summarized in Figures 3 and 4.

It is observed that the proposed method outperforms all alternatives except for the two
variants of ICFL and OCFL (referred to as CFLs), in terms of AUC, brier score as well as
two F1-scores. From the AUC and Brier score, the CFLs show slightly better performance
than the proposed method. Nevertheless, two F1-scores reveal a completely different phe-
nomenon. Specifically, by Figure 4(a), the proposed method outperforms the CFLs in terms
of F0.5‰, meanwhile, the CFLs exhibit significant volatility, which is consistent with their
simulation results. Moreover, Figure 4(b) shows that this situation appears much more
severe on the F0.1‰. However, the proposed method shows much higher and more stable
F1-scores even if the FPR is controlled in 0.1‰. Therefore, in terms of overall prediction
performance, the proposed method also beats the CFLs. Additionally, the Local method
also has competitive performance, which suggests that inappropriate integration may lead
to inferior prediction. Compared to the Local method, the proposed one can have better
interpretability and prediction performance.

23

Chen, Zhang, Ma, and Fang

0.5

0.6

0.7

0.8

0.9

1.0

ICR ICFL(10) ICFL(5) OCFL(10) OCFL(5) SHIR SMA Local SK(har) SK(gap) DLSA

Method ICR ICFL(10) ICFL(5) OCFL(10) OCFL(5) SHIR SMA Local SK(har) SK(gap) DLSA

(a) AUC

0.0

0.1

0.2

0.3

0.4

0.5

ICR ICFL(10) ICFL(5) OCFL(10) OCFL(5) SHIR SMA Local SK(har) SK(gap) DLSA

Method ICR ICFL(10) ICFL(5) OCFL(10) OCFL(5) SHIR SMA Local SK(har) SK(gap) DLSA

(b) Brier Score

Figure 3: Boxplots of (a) AUC and (b) Brier Score based on 100 random splits in data
analysis.

24

Heterogeneity-aware Clustered Distributed Learning

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ICR ICFL(10) ICFL(5) OCFL(10) OCFL(5) SHIR SMA Local SK(har) SK(gap) DLSA

Method ICR ICFL(10) ICFL(5) OCFL(10) OCFL(5) SHIR SMA Local SK(har) SK(gap) DLSA

(a) F0.5‰

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ICR ICFL(10) ICFL(5) OCFL(10) OCFL(5) SHIR SMA Local SK(har) SK(gap) DLSA

Method ICR ICFL(10) ICFL(5) OCFL(10) OCFL(5) SHIR SMA Local SK(har) SK(gap) DLSA

(b) F0.1‰

Figure 4: Boxplots of (a) F0.5‰ and (b) F0.1‰ based on 100 random splits in data analysis.

25

Chen, Zhang, Ma, and Fang

6. Conclusion

In this article, we have developed a new integrative data analysis method that is based
on summary statistics and hence can sufficiently protect the privacy of individual clients’
data. The most significant advancement is that it allows for data/model heterogeneity and
can automatically identify the underlying clustering structure. Our rigorous theoretical
investigation has shown that the proposed method has multiple much-desired consistency
properties. Additionally, simulation and data analysis have shown its competitive numerical
performance.

This study can be potentially extended in multiple directions. The same as the existing
one-shot methods, the proposed analysis only demands one communication round between
the local clients and the central server. Our Theorem 1 suggests that the additional error
due to the aggregation of summary statistics is asymptotically negligible when we properly
restrict the divergence rate of K. If we allow multiple communication rounds (which may
lead to higher computational costs), this condition can be relaxed, and there is also a
possibility of further improving numerical performance. The proposed method demands
mild conditions on the lack-of-fit function. In numerical studies, we have investigated the
logistic and linear regressions, which are involved in the framework of generalized linear
models. The proposed strategy can be potentially applied to much broader models/loss

functions. For example, given the loss function specified as f(θ(k)>x
(k)
i , y

(k)
i), we can further

extend it to survival data with Cox proportional hazards model (Li et al., 2023) and others.

Besides, if we consider a more general loss function f(θ(k),x
(k)
i , y

(k)
i), we can extend the

proposed method to generalized additive model (Wood, 2017) or generalized additive partial
linear model (Wang et al., 2011) for heterogeneity identification.

Another possible extension, as previously mentioned, is to consider different sparsity
structures. For example, two-level penalized selection (Huang et al., 2017) can be conducted
to allow different sparsity structures for multiple clients. Besides, for clients in which the
observed variables have a spatial or temporal order, the same sparsity for a group of adjacent
variables within a client can be further assumed (Li and Sang, 2019; Park et al., 2023). These
aforementioned extensions will be postponed for future research.

Acknowledgments

Qingzhao Zhang’s research is supported by the National Bureau of Statistics of China
[2022LZ34] and the National Natural Science Foundation of China [11971404]. Shuangge
Ma’s research is supported by NSF 2209685 and NIH CA204120. Kuangnan Fang’s research
is supported by the National Natural Science Foundation of China (72071169, 72233002),
the National Social Science Foundation of China (21&ZD146), and the MOE Project of Key
Research Institute of Humanities and Social Sciences (22JJD910001). The authors are very
grateful to the action editor and five anonymous referees for their constructive comments
and suggestions that substantially improve the quality of the paper.

26

Heterogeneity-aware Clustered Distributed Learning

Appendix A. Proofs

This section includes two lemmas and the proofs of Theorems 1 and 2.

A.1 Auxiliary Lemmas

Lemma 1 Suppose that z1, . . . , zn ∈ R are independent and centered sub-Gaussian random
variables. Let z = (z1, . . . , zn)> and κ = maxi∈[n] ‖zi‖ψ2. Then for any a = (a1, . . . , an)> ∈
Rn and t > 0, there exists a constant C1 > 0 such that

P (|a>z| ≥ t) ≤ 2 exp

(
− C1t

2

κ2‖a‖22

)
.

Proof. Lemma 1 follows directly from Lemma 14.3, Chapter 14.2.2 of Bühlmann and Van
De Geer (2011). �

Lemma 2 Under Conditions (C1), (C4), (C5) and (C7), we have

max
k∈[K]

∥∥∥Ṽ(k) − E(V∗(k))
∥∥∥

max
= Op

(√
q log p

n∗

)
.

Proof. Note that,

max
k∈[K]

∥∥∥Ṽ(k) − E(V∗(k))
∥∥∥

max

≤ max
k∈[K]

∥∥∥Ṽ(k) − E(Ṽ(k))
∥∥∥

max︸ ︷︷ ︸
I1

+ max
k∈[K]

∥∥∥E(Ṽ(k))− E(V∗(k))
∥∥∥

max︸ ︷︷ ︸
I2

. (A.1)

At first, we derive the upper bound of I1. Note that, under Conditions (C5) and (C7),
maxk∈[K] ‖θ̃(k) − θ∗(k)‖2 = op(1). Then by Conditions (C1) and (C4), for all k ∈ [K] and
j1, j2 ∈ [p], with probability approaching 1,∣∣∣Ṽ(k)

j1j2

∣∣∣ =

∣∣∣∣n−1
k

nk∑
i=1

f ′′(θ̃(k)>x
(k)
i , y

(k)
i)xij1xij2

∣∣∣∣ ≤ CLC2
x.

Then, for any given t > 0, Hoeffding’s inequality and the union bound yield that

P (I1 > t) ≤ 2Kp2 exp

{
−

mink∈[K] nkt
2

2C4
xC

2
L

}
,

which leads to I1 = Op(
√

log p/n∗).
Next, we derive the bound of I2. For all k ∈ [K] and j1, j2 ∈ [p], under Conditions (C1)

and (C4),∣∣∣E(Ṽ
(k)
j1j2

)− E(V
∗(k)
j1j2

)
∣∣∣ ≤ E

[∣∣∣f ′′(θ̃(k)>x
(k)
i , y

(k)
i)xij1xij2 − f ′′(θ∗(k)>x

(k)
i , y

(k)
i)xij1xij2

∣∣∣]
≤ CLC2

xE
[∣∣∣x(k)>

i (θ̃(k) − θ∗(k))
∣∣∣]

≤ CLC2
x

{
max
v∈B1(0)

E
[
(v>xi)

2
] ∥∥∥θ̃(k) − θ∗(k)

∥∥∥2

2

}1/2

≤ CLC3
x

∥∥∥θ̃(k) − θ∗(k)
∥∥∥

2
.

27

Chen, Zhang, Ma, and Fang

Thus,

I2 ≤ CLC3
x max
k∈[K]

∥∥∥θ̃(k) − θ∗(k)
∥∥∥

2
= Op

(√
q log p

n∗

)
.

Combining the bounds of I1 and I2 as well as (A.1), we can prove the result. �

A.2 Proof of Theorem 1

Recall the definitions of L(θ) in (8) and LG(ψ) in (9), we are going to define another two
objective functions. If both the true clustering structure and important covariate set are
known, we can define the oracle estimator θ̂or = (θ̂or>A ,0>(p−q)×K)> for θ as

arg min
θ∈MG ,θAc=0

Lor(θ) :=
1

N

K∑
k=1

nk

(
θ(k)>Ṽ(k)θ(k) − 2θ(k)>ζ̃(k)

)
. (A.2)

Accordingly, the oracle estimator ψ̂or = (ψ̂or>A ,0>(p−q)×M)> for ψ can be defined as

arg min
ψ∈Rp×M ,ψAc=0

Lor,G(ψ) :=
1

N

M∑
m=1

[
ψ(m)>

(∑
k∈G(m)

nkṼ
(k)

)
ψ(m)−2ψ(m)>

(∑
k∈G(m)

nkζ̃
(k)

)]
.

(A.3)
The results in Theorem 1 can be proved via two steps. In Step 1, we want to show

that ‖ψ̂orA − ψ∗A‖2 = Op(r1N), where r1N is defined in (A.15). In Step 2, we further show

that ψ̂or is a strictly local minimizer of LG(ψ) with probability approaching 1. As a result,
combining Steps 1 and 2, the sparsity and upper bound of estimation error for the nonzero
coefficients can be naturally obtained.

Step 1: Let ψA = (ψ
(1)
A , . . . ,ψ

(M)
A) with ψ

(m)
A = (ψ

(m)
1 , . . . , ψ

(m)
q)>. Based on the

definition of Lor,G(ψ), we can further define

Lor,GA (ψA) =
1

N

M∑
m=1

[
ψ

(m)>
A

(∑
k∈G(m)

nkṼ
(k)
AA

)
ψ

(m)
A − 2ψ

(m)>
A

(∑
k∈G(m)

nkζ̃
(k)
A

)]
. (A.4)

The solution of (A.4) is denoted by ψ̂orA = (ψ̂
or(1)
A , . . . , ψ̂

or(M)
A), and the corresponding true

coefficient matrix is denoted by ψ∗A = (ψ
∗(1)
A , . . . ,ψ

∗(M)
A). Then we have Lor,GA (ψ̂orA) ≤

Lor,GA (ψ∗A), and accordingly,

M∑
m=1

(
ψ̂
or(m)>
A Ṽ

G(m)
AA ψ̂

or(m)
A −2ψ̂

or(m)>
A ζ̃

G(m)
A

)
≤

M∑
m=1

(
ψ
∗(m)>
A Ṽ

G(m)
AA ψ

∗(m)
A −2ψ

∗(m)>
A ζ̃

G(m)
A

)
,

(A.5)
where

ṼG(m) = N−1
∑

k∈G(m)

nkṼ
(k), ζ̃G(m) = N−1

∑
k∈G(m)

nkζ̃
(k).

Motivated by Cai et al. (2022), for a vector or matrix A(t) whose (i, j)th entry Aij(t) is

a function of a scalar t ∈ [0, 1], we define
∫ 1

0 A(t)dt as the vector or matrix with its (i, j)th

28

Heterogeneity-aware Clustered Distributed Learning

entry being
∫ 1

0 Aij(t)dt. Then, we can transform the term −ζ̃(k) in (A.5) into

g̃(k) − Ṽ(k)θ̃(k) = g∗(k) − Ṽ(k)θ∗(k)

+

∫ 1

0

{
V(k)

([
θ∗(k) + t(θ̃(k) − θ∗(k))

])
− Ṽ(k)

}
(θ̃(k) − θ∗(k)) dt.

(A.6)

Plugging (A.6) into (A.5), we have

M∑
m=1

[(
ψ̂
or(m)
A −ψ∗(m)

A

)>
Ṽ
G(m)
AA

(
ψ̂
or(m)
A −ψ∗(m)

A

)]

≤ 2

M∑
m=1

(
ψ
∗(m)
A − ψ̂or(m)

A

)>[
N−1

∑
k∈G(m)

nkg
∗(k)

]
A

+ 2

M∑
m=1

(
ψ
∗(m)
A − ψ̂or(m)

A

)>
×

[
N−1

∑
k∈G(m)

nk

∫ 1

0

{
V(k)

([
θ∗(k) + t(θ̃(k) − θ∗(k))

])
− Ṽ(k)

}
(θ̃(k) − θ∗(k)) dt

]
A

.

(A.7)

Let α =
[
vec(ψ̂orA) − vec(ψ∗A)

]
and Ṽ(G,A) = bdiag(Ṽ

G(1)
AA , . . . , Ṽ

G(M)
AA), where vec(A)

is a vectorization of the matrix A by columns and bdiag(A1, . . . ,AM) denotes the block
diagonal matrix with the diagonal elements being A1, . . . ,AM . Besides, we denote ξ =(
ξ(1), . . . , ξ(M)

)
and η =

(
η(1), . . . ,η(M)

)
, where

ξ(m) =

[
N−1

∑
k∈G(m)

nkg
∗(k)

]
,

η(m) =

[
N−1

∑
k∈G(m)

nk

∫ 1

0

{
V(k)

([
θ∗(k) + t(θ̃(k) − θ∗(k))

])
− Ṽ(k)

}
(θ̃(k) − θ∗(k)) dt

]
.

Then by (A.7), we have

α>Ṽ(G,A)α ≤
∣∣α>vec(ξA)

∣∣+
∣∣α>vec(ηA)

∣∣. (A.8)

Since α>Ṽ(G,A)α ≥ Λmin(Ṽ(G,A))‖α‖22, (A.8) turns to be

‖α‖22Λmin(Ṽ(G,A)) ≤
∣∣α>vec(ξA)

∣∣+
∣∣α>vec(ηA)

∣∣. (A.9)

To obtain the lower bound of Λmin(Ṽ
(k)
AA), noting that for each k ∈ [K], we have

Λmin(Ṽ
(k)
AA) ≥ Λmin

[
Ṽ

(k)
AA − E(V

∗(k)
AA)

]
+ Λmin[E(V

∗(k)
AA)]

≥ −
∣∣∣∣∣∣Ṽ(k)
AA − E(V

∗(k)
AA)

∣∣∣∣∣∣
F

+ Λmin[E(V
∗(k)
AA)].

(A.10)

By Lemma 2, since q3 log p� n∗ by Condition (C7), for all k ∈ [K],∥∥∥Ṽ(k)
AA − E(V

∗(k)
AA)

∥∥∥
F
≤
(
q2 · max

k∈[K]

∥∥∥Ṽ(k) − E(V∗(k))
∥∥∥2

max

)1/2

= Op

(√
q3 log p/n∗

)
= op(1).

(A.11)

29

Chen, Zhang, Ma, and Fang

With (A.10), (A.11), and Condition (C3), for all k ∈ [K], with probability approaching 1,

Λmin(Ṽ
(k)
AA) ≥ Cmin/2. Consequently, from (A.9) and the Cauchy-Schwarz inequality,

CminNmin

2N
‖α‖22 ≤ ‖α‖2 ‖vec(ξA)‖2 + ‖α‖2 ‖vec(ηA)‖2 . (A.12)

Now we prepare to get the upper bounds of ‖vec(ξA)‖2 and ‖vec(ηA)‖2, respectively.
For ‖vec(ξA)‖2, note that the product of a sub-Gaussian random variable and a bounded
random variable is also sub-Gaussian and the fact of E(nkg

∗(k)) = E(X(k)>Φ(k)) with

Φ(k) = (f ′(x
(k)>
1 θ∗(k), y

(k)
1), . . . , f ′(x

(k)>
nk θ∗(k), y

(k)
nk))>. Then, by Conditions (C1), (C2),

and Lemma 1, for all m ∈ [M], j ∈ [p] and any t > 0, we have

P

(
1√
Nm

∣∣∣∣∣ ∑
k∈G(m)

nkg
∗(k)
j

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− C1t

2

C2
xκ

2
x

)
.

Accordingly, there exists a constant C2 > 0 such that

E

 ∑
k∈G(m)

nkg
∗(k)
j

2 ≤ C2Nm.

Then, by Markov’s inequality,

P
(
‖vec(ξA)‖22 ≥ t

2
)
≤
∑M

m=1E(‖ξ(m)
A ‖22)

t2

≤

∑M
m=1

∑
j∈A E

[(∑
k∈G(m) nkg

∗(k)
j

)2
]

N2t2
≤ C2q

Nt2
,

(A.13)

which leads to ‖vec(ξA)‖2 = Op(
√
q/N).

For ‖vec(ηA)‖2, note that, for all k ∈ [K] and any t ∈ [0, 1], by Conditions (C1), (C4)
and (C5), we have∥∥∥∥{V(k)

([
θ∗(k) + t(θ̃(k) − θ∗(k))

])
− Ṽ(k)

}
(θ̃(k) − θ∗(k))

∥∥∥∥
∞

=

∥∥∥∥∥ 1

nk

nk∑
i=1

x
(k)
i x

(k)>
i

{
f ′′
(

[θ∗(k) + t(θ̃(k) − θ∗(k))]>x
(k)
i , y

(k)
i

)
− f ′′(θ̃(k)>x

(k)
i , y

(k)
i)
}

(θ̃(k) − θ∗(k))

∥∥∥∥∥
∞

≤
maxi,j,k |x

(k)
ij |

nk

nk∑
i=1

∣∣∣(θ̃(k) − θ∗(k))>x
(k)
i

∣∣∣ · CL∣∣∣(1− t)(θ̃(k) − θ∗(k))>x
(k)
i

∣∣∣
≤ CLCx

nk

∥∥∥X(k)(θ̃(k) − θ∗(k))
∥∥∥2

2
= Op

(
q log p

n∗

)
.

30

Heterogeneity-aware Clustered Distributed Learning

Thus, we have

‖vec(ηA)‖2 =

√√√√ M∑
m=1

∥∥∥η(m)
A

∥∥∥2

2

≤

√√√√ M∑
m=1

(
√
q‖η(m)‖∞)2

= Op

(√∑M
m=1 |G(m)|2q3(log p)2

N2

)

= Op

(
M1/2|Gmax|q3/2 log p

N

)
.

(A.14)

Combining (A.12)–(A.14), we have

‖α‖2 ≤ Op(r1N), (A.15)

where

r1N =

√
(K/|Gmin|)q

Nmin
+
|Gmax|M1/2q3/2 log p

Nmin
.

Step 2: Let ψ̂or = (ψ̂or>A ,0>(p−q)×M)> and define

LG1 (ψ) =
1

N

M∑
m=1

[
ψ(m)>

(∑
k∈G(m)

nkṼ
(k)

)
ψ(m) − 2ψ(m)>

(∑
k∈G(m)

nkζ̃
(k)

)]
.

We show that ψ̂or is a local minimizer of LG(ψ) in (9) through verifying the KKT conditions

∂LG1 (ψ̂or)

∂ψj
+ ∂pτ

(√√√√ M∑
m=1

(
|G(m)|1/2ψ̂or(m)

j

)2
, λ1

)
/∂ψj = 0, j ∈ A, (A.16)∥∥∥∥∥∂LG1 (ψ̂or)

∂ψj

∥∥∥∥∥
2

≤ p′τ (0+, λ1) · |Gmin|1/2, j ∈ Ac. (A.17)

Note that ψ̂orA is the solution of (A.4), then (A.16) holds if we can show that

∂pτ

(√√√√ M∑
m=1

(
|G(m)|1/2ψ̂or(m)

j

)2
, λ1

)
/∂ψj = 0.

By the properties of penalty function in Condition (C6), it suffices to show√√√√ M∑
m=1

(
|G(m)|1/2ψ̂or(m)

j

)2
> τλ1, j ∈ A.

31

Chen, Zhang, Ma, and Fang

As a result, the above KKT conditions hold if the following conditions hold

|Gmin|1/2
∥∥∥ψ̂orj ∥∥∥

2
> τλ1, j ∈ A, (A.18)∥∥∥∥∥∂LG1 (ψ̂or)

∂ψj

∥∥∥∥∥
2

≤ λ1|Gmin|1/2, j ∈ Ac. (A.19)

The similar proof logic has also been employed in Huang et al. (2010) and Fan and Lv
(2011). At first, we show that Condition (A.18) is satisfied with probability approaching 1.
By the triangle inequality and (A.15), when N is sufficiently large,

|Gmin|1/2 min
j∈A

∥∥∥ψ̂orj ∥∥∥
2
≥ |Gmin|1/2

(
min
j∈A
‖ψ∗j ‖2 −max

j∈A
‖ψ̂orj −ψ∗j ‖2

)
≥ |Gmin|1/2

(
min
j∈A
‖ψ∗j ‖2 − ‖α‖2

)
≥ |Gmin|1/2(d1 − Cr1N) > τλ1,

where C is a constant. The last inequality is satisfied since |Gmin|1/2d1 > τλ1 and λ1 �
|Gmin|1/2r1N . Accordingly, (A.18) is satisfied with probability approaching 1 when N →∞.

Second, we show that Condition (A.19) is satisfied with probability approaching 1. Note

that
∥∥∥∂LG1 (ψ̂or)/∂ψj

∥∥∥
2

=
√∑M

m=1(∂LG1 (ψ̂or)/∂ψ
(m)
j)2. Then Condition (A.19) holds if∥∥∥∥∥∂LG1 (ψ̂or)

∂ψ
(m)
Ac

∥∥∥∥∥
∞

≤ λ1(|Gmin|/M)1/2, m ∈ [M]. (A.20)

Since for each m ∈ [M], ∂Lor,G(ψ̂orA)/∂ψ
(m)
A = 0, we have

ψ̂
or(m)
A −ψ∗(m)

A =
(
Ṽ
G(m)
AA

)−1(
ξ

(m)
A + η

(m)
A
)
, m ∈ [M]. (A.21)

Thus, combining (A.20) and (A.21) leads to

1

2

∥∥∥∥∥∂LG1 (ψ̂or)

∂ψ
(m)
Ac

∥∥∥∥∥
∞

=
∥∥∥ṼG(m)
AcA

(
ψ̂
or(m)
A −ψ∗(m)

A
)

+ (ξ
(m)
Ac + η

(m)
Ac

)∥∥∥
∞

≤
∥∥∥∥ṼG(m)
AcA

(
Ṽ
G(m)
AA

)−1(
ξ

(m)
A + η

(m)
A
)∥∥∥∥
∞

+
∥∥∥ξ(m)
Ac + η

(m)
Ac

∥∥∥
∞

≤
(∥∥∥∥ṼG(m)

AcA

(
Ṽ
G(m)
AA

)−1
∥∥∥∥
∞

+ 1

)(∥∥∥ξ(m)
∥∥∥
∞

+
∥∥∥η(m)

∥∥∥
∞

)
.

(A.22)

Following Xue et al. (2012), we can derive the upper bound of ‖ṼG(m)
AcA

(
Ṽ
G(m)
AA

)−1
‖∞,m ∈

[M]. Following the definition of ṼG(m)(m = 1, . . . ,M), we can also define V∗G(m)(m =
1, . . . ,M) accordingly. By Condition (C3), we define

cm :=
∥∥∥[E(V∗G(m)

AA
)]−1

∥∥∥
∞
≤ √q

∥∥∥[E(V∗G(m)
AA

)]−1
∥∥∥

2
≤

√
qK

|Gmin|Cmin
. (A.23)

32

Heterogeneity-aware Clustered Distributed Learning

Furthermore, we define

φm =

∥∥∥∥ṼG(m)
AcA

(
Ṽ
G(m)
AA

)−1
− E

(
V
∗G(m)
AcA

)[
E
(
V
∗G(m)
AA

)]−1
∥∥∥∥
∞
,

φ1m =
∥∥∥(ṼG(m)

AA
)−1 −

[
E
(
V
∗G(m)
AA

)]−1
∥∥∥
∞
,

φ2m =
∥∥∥ṼG(m)
AA − E

(
V
∗G(m)
AA

)∥∥∥
∞
, φ3m =

∥∥∥ṼG(m)
AcA − E

(
V
∗G(m)
AcA

)∥∥∥
∞
.

Then by definition,

φm =
∥∥∥[ṼG(m)

AcA − E
(
V
∗G(m)
AcA

)][(
Ṽ
G(m)
AA

)−1 −
[
E
(
V
∗G(m)
AA

)]−1
]

+ E
(
V
∗G(m)
AcA

)[
E
(
V
∗G(m)
AA

)]−1
[
− Ṽ

G(m)
AA + E

(
V
∗G(m)
AA

)](
Ṽ
G(m)
AA

)−1

+
[
Ṽ
G(m)
AcA − E

(
V
∗G(m)
AcA

)][
E
(
V
∗G(m)
AA

)]−1
∥∥∥
∞

≤ φ3mφ1m + ϕG(m)φ2m

∥∥∥(ṼG(m)
AA

)−1
∥∥∥
∞

+ φ3mcm

≤ φ3mφ1m + ϕG(m)φ2m(cm + φ1m) + φ3mcm.

Besides, φ1m can be reformulated as

φ1m =
∥∥∥(ṼG(m)

AA
)−1
[
E
(
V
∗G(m)
AA

)
− Ṽ

G(m)
AA

][
E
(
V
∗G(m)
AA

)]−1
∥∥∥
∞

≤
∥∥∥(ṼG(m)

AA
)−1
∥∥∥
∞
·
∥∥∥E(V∗G(m)

AA
)
− Ṽ

G(m)
AA

∥∥∥
∞
·
∥∥∥[E(V∗G(m)

AA
)]−1

∥∥∥
∞

≤ (cm + φ1m)φ2mcm.

Thus, as long as φ2mcm < 1, we have φ1m ≤ φ2mc
2
m/(1− φ2mcm), which yields

φm ≤ (φ3m + ϕG(m)φ2m)
cm

1− φ2mcm
. (A.24)

Then, by Lemma 2,

φ2m =
∥∥∥ṼG(m)
AA − E(V

∗G(m)
AA)

∥∥∥
∞
≤
q
∑

k∈G(m) nk

∥∥∥Ṽ(k)
AA − E(V

∗(k)
AA)

∥∥∥
max

N

= Op

(
|Gmax|
K

·
√
q3 log p

n∗

)
.

(A.25)

Combining (A.23), (A.25), and Condition (C7), we have

φ2mcm = Op

(
|Gmax|
|Gmin|

·
√
q4 log p

n∗

)
= op(1). (A.26)

Following the proof of (A.26), we also have

φ3mcm = Op

(
|Gmax|
|Gmin|

·
√
q4 log p

n∗

)
= op(1). (A.27)

33

Chen, Zhang, Ma, and Fang

Combining (A.24), (A.26) and (A.27), with probability approaching 1, for all m ∈ [M]
φm = op(ϕmax),

max
m∈[M]

∥∥∥∥ṼG(m)
AcA

(
Ṽ
G(m)
AA

)−1
∥∥∥∥
∞
≤ max

m∈[M]
φm + max

m∈[M]

∥∥∥E(V∗G(m)
AcA

)[
E
(
V
∗G(m)
AA

)]−1
∥∥∥
∞

≤ 2ϕmax.

(A.28)

Now we consider ‖ξ(m)‖∞,m ∈ [M]. By Conditions (C1), (C2), Lemma 1, and the union
bound

P

(
max
m∈[M]

max
j∈[p]

∣∣∣∣∣ ∑
k∈G(m)

nkg
∗(k)
j

∣∣∣∣∣ ≥ t√Nmax log p

)

≤ 2pM exp

(
− C1t

2 log p

C2
xκ

2
x

)
≤ 2p2−C3 ,

where C3 = C1t
2/(C2

xκ
2
x). When t is sufficiently large and 2 − C3 < 0, 2p2−C3 → 0 when

p→∞. Hence,

max
m∈[M]

∥∥∥ξ(m)
∥∥∥
∞

= Op

(√
|Gmax| log p

KN

)
. (A.29)

Following the proof of (A.14), we have

max
m∈[M]

∥∥∥η(m)
∥∥∥
∞

= Op

(
|Gmax|q log p

N

)
. (A.30)

Combining (A.22), (A.28), (A.29), (A.30), since ϕmaxr2N � λ1, where

r2N =

√
(|Gmax|/|Gmin|)M log p

KN
+

(|Gmax|/|Gmin|1/2)M1/2q log p

N
,

we have verified that (A.20) is satisfied with probability approaching 1. Therefore, the KKT
conditions have been verified, and the proof of Step 2 is completed. �

A.3 Proof of Theorem 2

Define

Q(θ) = L1(θ) + P1(θ)︸ ︷︷ ︸
L(θ)

+P2(θ), QG(ψ) = LG1 (ψ) + PG1 (ψ)︸ ︷︷ ︸
LG(ψ)

+PG2 (ψ),

34

Heterogeneity-aware Clustered Distributed Learning

where

L1(θ) =
1

N

K∑
k=1

nk

(
θ(k)>Ṽ(k)θ(k) − 2θ(k)>ζ̃(k)

)
,

P1(θ) =

p∑
j=2

pτ
(
‖θj‖2, λ1

)
,

P2(θ) =
∑
k<k′

pτ

(∥∥∥θ(k) − θ(k′)
∥∥∥

2
, λ2

)
,

LG1 (ψ) =
1

N

M∑
m=1

[
ψ(m)>

(∑
k∈G(m)

nkṼ
(k)

)
ψ(m) − 2ψ(m)>

(∑
k∈G(m)

nkζ̃
(k)

)]
,

PG1 (ψ) =

p∑
j=2

pτ

([M∑
m=1

|G(m)|ψ(m)
j

2
]1/2

, λ1

)
,

PG2 (ψ) =
∑
m<m′

∣∣G(m)
∣∣∣∣G(m′)

∣∣pτ (∥∥∥ψ(m) −ψ(m′)
∥∥∥

2
, λ2

)
.

Define two mapping functions T G(·) and T (·). Specifically, let T G : MG → Rp×M be
the function such that T G(θ) is the p ×M matrix whose mth column equals the common
coefficient vector of θ(k) for k ∈ G(m). Additionally, let T : Rp×K → Rp×M be the function

such that T (θ) =
{
|G(m)|−1

∑
k∈G(m) θ(k)

}M
m=1

. Obviously, if θ ∈MG , T G(θ) = T (θ).

For every θ ∈ MG , we have P2(θ) = PG2 (T G(θ)). Similarly, for every ψ ∈ Rp×M , we

have P2(T G−1
(ψ)) = PG2 (ψ). Hence,

Q(θ) = QG(T G(θ)), QG(ψ) = Q(T G−1
(ψ)). (A.31)

Consider the neighborhood of θ∗, denoted by Θ, which is defined as

Θ1 =
{
θ ∈ Rp×K : ‖θ − θ∗‖F ≤ C|Gmax|1/2r1N

}
.

Define the event
E1 =

{
‖θ̂or − θ∗‖F ≤ C|Gmax|1/2r1N

}
.

Then, by the result in Theorem 1, for any ε > 0, there exists a constant Cε > 0 such that
for any C ≥ Cε, P (E1) ≥ 1 − ε. Accordingly, θ̂or ∈ Θ1 with probability at least 1 − ε.
Furthermore, we define another neighborhood

Θ2 =
{
θ ∈ Rp×K : ‖θ − θ̂or‖F ≤ tN

}
,

where tN is a positive sequence. For any θ = (θ>A,θ
>
Ac)> ∈ Θ1, let θ̆ = (θ>A,0

>
(p−q)×K)>

and θ̆G = T G−1
(T (θ̆)). Then we show that θ̂or is a strictly local minimizer of objective

function (3) with probability approaching 1 through the following two steps

(a) On event E1, Q(θ̆G) > Q(θ̂or) for any θ ∈ Θ1 and θG 6= θ̂or;

35

Chen, Zhang, Ma, and Fang

(b) On event E1, Q(θ) ≥ Q(θ̆) ≥ Q(θ̆G) for any θ ∈ Θ1 ∩Θ2 for a sufficiently large N .

For any θ ∈ Θ1, let T (θ̆) = (ψ̆(1), . . . , ψ̆(M)). Note that,

PG2 (T (θ̆)) =
∑
m<m′

∣∣G(m)
∣∣∣∣G(m′)

∣∣pτ (∥∥∥ψ̆(m) − ψ̆(m′)
∥∥∥

2
, λ2

)
,

and, for any m,m′ ∈ [M] and m 6= m′, we have∥∥∥ψ̆(m) − ψ̆(m′)
∥∥∥

2
≥ min

m,m′∈[M],m 6=m′

∥∥∥ψ∗(m) −ψ∗(m′)
∥∥∥

2
− 2 · max

m∈[M]

∥∥∥ψ̆(m) −ψ∗(m)
∥∥∥

2

≥ d2 − 2 · max
m∈[M]

∥∥∥∥∥∥∣∣G(m)
∣∣−1

∑
k∈G(m)

(θ̆(k) − θ∗(k))

∥∥∥∥∥∥
2

≥ d2 − 2 · max
k∈[K]

∥∥∥θ̆(k) − θ∗(k)
∥∥∥

2

≥ d2 − 2C|Gmax|1/2r1N

> τλ2,

(A.32)

where C is a constant and the last inequality follows from d2 > τλ2 and λ2 � |Gmax|1/2r1N .
Consequently, for any θ ∈ Θ1, PG2 (T (θ̆)) = CN , and CN > 0 is a constant. By the result

of Theorem 1, ψ̂or is the local minimizer of objective function LG(ψ) with probability
approaching 1. Thus we have LG(ψ̂or) < LG(T (θ̆)) for any θ ∈ Θ1 and T (θ̆) 6= ψ̂or.
Combining this with PG2 (T (θ̆)) = CN for θ ∈ Θ1, we have QG(ψ̂or) < QG(T (θ̆)). By
(A.31), we have

QG(ψ̂or) = Q(T G−1
(ψ̂or)) = Q(θ̂or), QG(T (θ̆)) = Q(T G−1

(T (θ̆))) = Q(θ̆G).

Accordingly, we have Q(θ̂or) < Q(θ̆G) for any θ ∈ Θ1 and θ̆G 6= θ̂or. This finishes the proof
of the result in (a).

Next, we show that the result in (b) holds with probability approaching 1. First, we
show that, on event E1, Q(θ) ≥ Q(θ̆) for any θ ∈ Θ1 ∩Θ2. By the Taylor series expansion,
we have

Q(θ)−Q(θ̆) = Ω11 + Ω12 + Ω13, (A.33)

where

Ω11 =

p∑
j=1

∂L1(θ)

∂θ>j
(θj − θ̆j), Ω12 =

p∑
j=2

∂P1(θ)

∂θ>j
(θj − θ̆j),

Ω13 =
∑
k<k′

[
pτ

(∥∥∥θ(k) − θ(k′)
∥∥∥

2
, λ2

)
− pτ

(∥∥∥θ̆(k) − θ̆(k′)
∥∥∥

2
, λ2

)]
,

in which θ = δ1θ + (1 − δ1)θ̆ for some δ1 ∈ (0, 1). Note that, for any j ∈ A, θj = θ̆j , and

for any j ∈ Ac, θ̆j = 0 and θj = δ1θj . Since pτ (t, λ2) is a nondecreasing function of t with

36

Heterogeneity-aware Clustered Distributed Learning

t ∈ [0,∞), Ω13 ≥ 0. Besides,

Ω12 =
∑
j∈Ac

p′τ
(∥∥θj∥∥2

, λ1

) θ>j (θj − θ̆j)∥∥θj∥∥2

=
∑
j∈Ac

p′τ (δ1‖θj‖2, λ1)‖θj‖2

≥
∑
j∈Ac

p′τ (tN , λ1)‖θj‖2,

(A.34)

where the last inequality follows from the concavity of pτ (t, λ1). Furthermore,

|Ω11| =

∣∣∣∣∣ ∑
j∈Ac

∂L1(θ)

∂θ>j
(θj − θ̆j)

∣∣∣∣∣
≤
∑
j∈Ac

∥∥∥∥∥∂L1(θ)

∂θ>j

∥∥∥∥∥
2

‖θj‖2

≤
√
K max

k∈[K]

∥∥∥∥∥∂L1(θ)

∂θ
(k)
Ac

∥∥∥∥∥
∞

∑
j∈Ac

‖θj‖2.

(A.35)

Combining (A.33), (A.34), and (A.35), we have

Q(θ)−Q(θ̆) = Ω11 + Ω12 + Ω13

≥
∑
j∈Ac

[
p′τ (tN , λ1)−

√
K max

k∈[K]

∥∥∥∂L1(θ)/∂θ
(k)
Ac

∥∥∥
∞

]
‖θj‖2. (A.36)

Following the proof from (A.21) to (A.30), we have

√
K max

k∈[K]

∥∥∥∂L1(θ)/∂θ
(k)
Ac

∥∥∥
∞

= Op

(
ϕmax

[√
log p/N +K1/2q log p/N

]
+ (Kq)1/2tN

)
.

In addition, let tN = o(1), and then p′τ (tN , λ1) → λ1. Furthermore, let (Kq)1/2tN � λ1,
and then

λ1 � ϕmax

[
r2N +

√
log p/N

]
leads to

λ1 � ϕmax

[√
log p/N +K1/2q log p/N

]
+ (Kq)1/2tN . (A.37)

Then, by (A.36) and (A.37), when N is sufficiently large, with probability approaching 1,

Q(θ)−Q(θ̆) ≥ 0.

Next, we show that, on event E1, Q(θ̆) ≥ Q(θ̆G) for any θ ∈ Θ1 ∩ Θ2. By the Taylor
series expansion, we have

Q(θ̆)−Q(θ̆G) = Ω21 + Ω22 + Ω23,

37

Chen, Zhang, Ma, and Fang

where

Ω21 =
K∑
k=1

∂L1(θ̆~)

∂θ(k)> (θ̆(k) − θ̆G(k)), Ω22 =

p∑
j=2

∂P1(θ̆~)

∂θ>j
(θ̆j − θ̆Gj),

Ω23 =
∑
k<k′

∂P2(θ̆~)

∂θ(k)> (θ̆(k) − θ̆G(k)),

in which θ̆~ = δ2θ̆ + (1 − δ2)θ̆G for some δ2 ∈ (0, 1). Next, we bound Ω21, Ω22, and Ω23.
Recall that, for any j ∈ Ac, θ̆~Ac = θ̆Ac = θ̆GAc = 0. Then,

Ω22 =

q∑
j=2

∂P1(θ̆~)

∂θ>j
(θ̆j − θ̆Gj) =

q∑
j=2

p′τ

(∥∥∥θ̆~j∥∥∥
2
, λ1

) θ̆~>j (θ̆j − θ̆Gj)

||θ̆~j ||2
. (A.38)

Note that,

∥∥∥θ̆Gj − θ∗j∥∥∥
2

=

√√√√ M∑
m=1

|G(m)|

(∑
k∈G(m)(θ̆

(k)
j − ψ

∗(m)
j)

|G(m)|

)2

≤

√√√√√ M∑
m=1

|G(m)| ×
|G(m)|

[∑
k∈G(m)

(
θ̆

(k)
j − ψ

∗(m)
j

)2]
|G(m)|2

=
∥∥∥θ̆j − θ∗j∥∥∥

2
.

Besides, since θ̆~j = δ2θ̆j + (1− δ2)θ̆Gj ,

∥∥∥θ̆~j − θ∗j∥∥∥
2
≤ δ2

∥∥∥θ̆j − θ∗j∥∥∥
2

+ (1− δ2)
∥∥∥θ̆Gj − θ∗j∥∥∥

2
≤
∥∥∥θ̆j − θ∗j∥∥∥

2
.

Hence, for any j ∈ A, by the triangle inequality,

∥∥∥θ̆~j∥∥∥
2
≥
∥∥θ∗j∥∥2

−
∥∥∥θ̆~j − θ∗j∥∥∥

2

≥ min
j∈A

∥∥θ∗j∥∥2
−max

j∈A

∥∥∥θ̆j − θ∗j∥∥∥
2

≥ |Gmin|1/2d1 − C|Gmax|1/2r1N

> τλ1,

(A.39)

where the last inequality follows from |Gmin|1/2d1 > τλ1 � |Gmax|1/2r1N . Combining (A.38)
and (A.39), since pτ (t, λ1) is a constant for t ≥ τλ1, we have Ω22 = 0.

38

Heterogeneity-aware Clustered Distributed Learning

Now consider Ω23. Recall that, for any j ∈ Ac, θ̆~Ac = θ̆Ac = θ̆GAc = 0. Then,

Ω23 =
∑
k<k′

{
p′τ

(∥∥∥θ̆~(k)
A − θ̆~(k′)

A

∥∥∥
2
, λ2

)∥∥∥θ̆~(k)
A − θ̆~(k′)

A

∥∥∥−1

2

×
(
θ̆
~(k)
A − θ̆~(k′)

A

)>[(
θ̆

(k)
A − θ̆

G(k)
A

)
−
(
θ̆

(k′)
A − θ̆G(k′)

A
)]}

=
M∑
m=1

∑
k,k′∈G(m),k<k′

p′τ

(∥∥∥θ̆~(k)
A − θ̆~(k′)

A

∥∥∥
2
, λ2

)∥∥∥θ̆(k)
A − θ̆

(k′)
A

∥∥∥
2

+
∑
m<m′

∑
k∈G(m),k′∈G(m′)

{
p′τ

(∥∥∥θ̆~(k)
A − θ̆~(k′)

A

∥∥∥
2
, λ2

)∥∥∥θ̆~(k)
A − θ̆~(k′)

A

∥∥∥−1

2

×
(
θ̆
~(k)
A − θ̆~(k′)

A

)>[(
θ̆

(k)
A − θ̆

G(k)
A

)
−
(
θ̆

(k′)
A − θ̆G(k′)

A
)]}

,

(A.40)
where the first term of the second equality follows from the fact that, when k, k′ ∈ G(m),

θ̆
G(k)
A = θ̆

G(k′)
A and θ̆

~(k)
A − θ̆~(k′)

A = δ2(θ̆
(k)
A − θ̆

(k′)
A). Note that, for any m ∈ [M], k ∈ G(m),

∥∥∥θ̆G(k)
A − θ∗(k)

A

∥∥∥
2

=

∥∥∥∥∥
∑

k∈G(m) θ̆
(k)
A

|G(m)|
−ψ∗(m)

A

∥∥∥∥∥
2

≤ max
k∈[K]

∥∥∥θ̆(k)
A − θ

∗(k)
A

∥∥∥
2
.

And then for any k ∈ [K], we have ‖θ̆~(k)
A − θ∗(k)

A ‖2 ≤ maxk∈[K] ‖θ̆
(k)
A − θ

∗(k)
A ‖2. Hence,

similar to (A.32), for any m < m′, k ∈ G(m), k′ ∈ G(m′),∥∥∥θ̆~(k)
A − θ̆~(k′)

A

∥∥∥
2
≥ min

k∈G(m),k′∈G(m′)

∥∥∥θ∗(k)
A − θ∗(k

′)
A

∥∥∥
2
− 2 max

k∈[K]

∥∥∥θ̆~(k)
A − θ∗(k)

A

∥∥∥
2

≥ min
k∈G(m),k′∈G(m′)

∥∥∥θ∗(k)
A − θ∗(k

′)
A

∥∥∥
2
− 2 max

k∈[K]

∥∥∥θ̆(k)
A − θ

∗(k)
A

∥∥∥
2

≥ d2 − 2C|Gmax|1/2r1N > τλ2.

(A.41)

Combining (A.40) and (A.41), since that∥∥∥θ̆~(k)
A − θ̆~(k′)

A

∥∥∥
2
≤ 2 max

k∈[K]

∥∥∥θ̆(k)
A − θ

∗(k)
A

∥∥∥
2
≤ 2C|Gmax|1/2r1N ,

we have

Ω23 =

M∑
m=1

∑
k,k′∈G(m),k<k′

p′τ

(∥∥∥θ̆~(k)
A − θ̆~(k′)

A

∥∥∥
2
, λ2

)∥∥∥θ̆(k)
A − θ̆

(k′)
A

∥∥∥
2

≥
M∑
m=1

∑
k,k′∈G(m),k<k′

p′τ

(
2C|Gmax|1/2rN , λ2

)∥∥∥θ̆(k)
A − θ̆

(k′)
A

∥∥∥
2

≥
M∑
m=1

∑
k,k′∈G(m),k<k′

λ2

2

∥∥∥θ̆(k)
A − θ̆

(k′)
A

∥∥∥
2
,

(A.42)

39

Chen, Zhang, Ma, and Fang

where the last inequality follows from 2C|Gmax|1/2r1N → 0 when N →∞.
We now consider the bound of Ω21. For k ∈ [K], we define

ω(k) :=
∂L1(θ̆~)

∂θ
(k)
A

= 2
{[

(nk/N)Ṽ
(k)
AA
]
θ̆
~(k)
A − (nk/N)ζ̃

(k)
A

}
= 2

{[
(nk/N)Ṽ

(k)
AA
]
(θ̆

~(k)
A − θ∗(k)

A) + (nk/N)g
∗(k)
A

+ (nk/N)

∫ 1

0

{
V(k)

([
θ∗(k) + t(θ̃(k) − θ∗(k))

])
− Ṽ(k)

}
(θ̃(k) − θ∗(k)) dt

}
:= ω

(k)
1 + ω

(k)
2 + ω

(k)
3 .

Then,

Ω21 =

K∑
k=1

ω(k)>(θ̆
(k)
A − θ̆

G(k)
A) =

M∑
m=1

∑
k,k′∈G(m)

ω(k)>(θ̆
(k)
A − θ̆

(k′)
A)

|G(m)|

=

M∑
m=1

∑
k,k′∈G(m)

ω(k′)>(θ̆
(k′)
A − θ̆(k)

A)

2|G(m)|
+

M∑
m=1

∑
k,k′∈G(m)

ω(k)>(θ̆
(k)
A − θ̆

(k′)
A)

2|G(m)|

=

M∑
m=1

∑
k,k′∈G(m)

(ω(k) − ω(k′))>(θ̆
(k)
A − θ̆

(k′)
A)

2|G(m)|

=

M∑
m=1

∑
k,k′∈G(m),k<k′

(ω(k) − ω(k′))>(θ̆
(k)
A − θ̆

(k′)
A)

|G(m)|
.

Following the proof from (A.10) to (A.14) in Theorem 1, we can show that

max
k∈[K]

∥∥∥ω(k)
1

∥∥∥
2

= Op
(
|Gmax|1/2r1N/K

)
,

max
k∈[K]

∥∥∥ω(k)
2

∥∥∥
2

= Op
(√

q/(KN)
)
,

max
k∈[K]

∥∥∥ω(k)
3

∥∥∥
2

= Op
(
q3/2 log p/N

)
.

Then,

|Ω21| ≤
M∑
m=1

∑
k,k′∈G(m),k<k′

2 maxk∈[K] ||ω(k)||2
|Gmin|

∥∥∥θ̆(k)
A − θ̆

(k′)
A

∥∥∥
2
. (A.43)

Combining (A.42) and (A.43), since λ2 � |Gmax|1/2r1N , we have

λ2 �
|Gmax|1/2r1N

K|Gmin|
+

√
q

KN |Gmin|2
+
q3/2 log p

N |Gmin|
,

which leads to

Q(θ̆)−Q(θ̆G) ≥
M∑
m=1

∑
k,k′∈G(m),k<k′

{
λ2

2
−

2 maxk∈[K] ‖ω(k)‖2
|Gmin|

}∥∥∥θ̆(k)
A − θ̆

(k′)
A

∥∥∥
2
≥ 0,

40

Heterogeneity-aware Clustered Distributed Learning

for a sufficiently large N with probability approaching 1. Thus, we have proved the result
in (b). This finishes all the proofs of Theorem 2. �

Appendix B. Additional Numerical Results

This section contains simulation results for Examples 2–6 and additional data application
results.

Table 4: The variable selection accuracy: mean (sd) based on 100 replicates in Example 2.

n = 200 n = 400 n = 800

Method TPR FPR MS TPR FPR MS TPR FPR MS

K = 64 ICR 1.000 0.000 33.920 1.000 0.000 32.000 1.000 0.000 32.000

(0.000) (0.000) (3.959) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

IP 1.000 0.000 34.880 1.000 0.000 32.000 1.000 0.000 32.000

(0.000) (0.000) (5.514) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ICFL 0.903 0.099 65.280 0.896 0.016 34.680 0.900 0.002 29.360

(0.193) (0.062) (27.846) (0.203) (0.024) (12.777) (0.201) (0.006) (7.083)

OCFL 0.909 0.137 79.360 0.895 0.018 35.120 0.900 0.001 29.000

(0.183) (0.067) (29.144) (0.205) (0.024) (12.771) (0.201) (0.003) (6.639)

SHIR 0.760 0.001 389.220 1.000 0.001 512.700 1.000 0.004 533.770

(0.042) (0.004) (21.718) (0.000) (0.003) (6.400) (0.000) (0.005) (30.463)

SMA 0.763 0.001 390.500 1.000 0.001 513.330 1.000 0.003 528.000

(0.042) (0.004) (21.367) (0.000) (0.003) (9.002) (0.000) (0.005) (27.852)

Local 0.853 0.148 1309.750 0.987 0.198 1673.740 1.000 0.218 1794.750

(0.020) (0.010) (63.847) (0.005) (0.010) (56.069) (0.001) (0.011) (63.438)

SK(har) 0.945 0.526 222.880 0.996 0.934 375.480 1.000 0.967 387.880

(0.098) (0.456) (169.339) (0.028) (0.137) (51.331) (0.000) (0.020) (7.335)

SK(gap) 1.000 0.995 199.000 1.000 0.999 199.840 1.000 0.987 273.200

(0.000) (0.008) (1.518) (0.000) (0.003) (0.615) (0.000) (0.020) (92.285)

DLSA 0.125 0.000 1.030 0.125 0.000 1.000 0.125 0.000 1.000

(0.000) (0.002) (0.171) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

K = 128 ICR 1.000 0.000 34.800 1.000 0.000 32.080 1.000 0.000 32.000

(0.000) (0.000) (5.005) (0.000) (0.000) (0.800) (0.000) (0.000) (0.000)

IP 1.000 0.000 36.560 1.000 0.000 32.000 1.000 0.000 32.000

(0.000) (0.000) (7.391) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ICFL 0.915 0.033 41.240 0.940 0.005 31.760 0.890 0.000 28.600

(0.189) (0.046) (19.750) (0.163) (0.016) (8.372) (0.208) (0.002) (6.760)

OCFL 0.915 0.056 49.880 0.940 0.006 32.240 0.890 0.000 28.600

(0.189) (0.062) (25.732) (0.163) (0.018) (8.932) (0.208) (0.002) (6.760)

SHIR 0.784 0.000 802.560 1.000 0.005 1077.770 1.000 0.011 1152.000

(0.068) (0.000) (70.120) (0.000) (0.005) (63.485) (0.000) (0.000) (0.000)

SMA 0.781 0.000 800.000 1.000 0.004 1067.530 1.000 0.011 1152.000

(0.074) (0.000) (75.835) (0.000) (0.005) (60.954) (0.000) (0.000) (0.000)

Local 0.851 0.147 2602.260 0.987 0.199 3351.110 1.000 0.219 3599.230

(0.015) (0.007) (94.466) (0.003) (0.007) (84.503) (0.000) (0.007) (85.526)

SK(har) 0.899 0.505 216.400 1.000 0.988 394.320 1.000 0.980 392.440

(0.121) (0.497) (189.078) (0.000) (0.100) (38.757) (0.000) (0.141) (52.333)

SK(gap) 1.000 1.000 199.980 1.000 1.000 200.000 1.000 0.990 299.240

(0.000) (0.001) (0.200) (0.000) (0.000) (0.000) (0.000) (0.100) (102.996)

DLSA 0.125 0.000 1.000 0.125 0.000 1.000 0.125 0.000 1.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

41

Chen, Zhang, Ma, and Fang

Table 5: The clustering accuracy: mean (sd) based on 100 replicates in Example 2.

n = 200 n = 400 n = 800

Method M̂ Per RI ARI M̂ Per RI ARI M̂ Per RI ARI

K = 64 ICR 4.240 0.790 0.998 0.995 4.000 1.000 1.000 1.000 4.000 1.000 1.000 1.000

(0.495) (-) (0.004) (0.010) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

IP 4.360 0.740 0.997 0.992 4.000 1.000 1.000 1.000 4.000 1.000 1.000 1.000

(0.689) (-) (0.005) (0.015) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

ICFL 4.000 1.000 0.944 0.865 4.000 1.000 0.951 0.881 4.000 1.000 0.941 0.858

(0.000) (-) (0.075) (0.181) (0.000) (-) (0.072) (0.174) (0.000) (-) (0.076) (0.183)

OCFL 4.000 1.000 0.944 0.865 4.000 1.000 0.951 0.881 4.000 1.000 0.941 0.858

(0.000) (-) (0.075) (0.181) (0.000) (-) (0.072) (0.174) (0.000) (-) (0.076) (0.183)

SK(har) 3.980 0.980 0.994 0.984 4.000 1.000 1.000 1.000 4.000 1.000 1.000 1.000

(0.141) (-) (0.020) (0.048) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

SK(gap) 2.000 0.000 0.746 0.487 2.000 0.000 0.746 0.488 2.780 0.390 0.845 0.688

(0.000) (-) (0.002) (0.003) (0.000) (-) (0.000) (0.000) (0.980) (-) (0.124) (0.251)

K = 128 ICR 4.350 0.640 0.991 0.978 4.010 0.990 1.000 1.000 4.000 1.000 1.000 1.000

(0.626) (-) (0.030) (0.070) (0.100) (-) (0.000) (0.001) (0.000) (-) (0.000) (0.000)

IP 4.570 0.620 0.998 0.994 4.000 1.000 1.000 1.000 4.000 1.000 1.000 1.000

(0.924) (-) (0.003) (0.010) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

ICFL 4.000 1.000 0.944 0.866 4.000 1.000 0.952 0.885 4.000 1.000 0.935 0.844

(0.000) (-) (0.075) (0.179) (0.000) (-) (0.072) (0.172) (0.000) (-) (0.077) (0.184)

OCFL 4.000 1.000 0.944 0.866 4.000 1.000 0.952 0.885 4.000 1.000 0.935 0.844

(0.000) (-) (0.075) (0.179) (0.000) (-) (0.072) (0.172) (0.000) (-) (0.077) (0.184)

SK(har) 4.000 0.960 0.994 0.984 3.980 0.980 0.997 0.994 3.990 0.990 0.999 0.997

(0.201) (-) (0.019) (0.044) (0.141) (-) (0.018) (0.041) (0.100) (-) (0.013) (0.029)

SK(gap) 2.000 0.000 0.748 0.494 2.000 0.000 0.748 0.494 3.030 0.510 0.878 0.754

(0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000) (1.000) (-) (0.126) (0.253)

42

Heterogeneity-aware Clustered Distributed Learning

K = 64 K = 128

n =
 200

n =
 400

n =
 800

ICR IP Oracle ICFL OCFL SHIR SMA Local SK(har) SK(gap) DLSA ICR IP Oracle ICFL OCFL SHIR SMA Local SK(har) SK(gap) DLSA

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

R
M

S
E

Figure 5: Boxplots of RMSE in Example 2.

43

Chen, Zhang, Ma, and Fang

Table 6: The variable selection accuracy: mean (sd) based on 100 replicates in Example 3.

K = 16 K = 32 K = 64

Method TPR FPR MS TPR FPR MS TPR FPR MS

σ = 1 ICR 1.000 0.000 16.000 1.000 0.000 16.000 1.000 0.000 16.060

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.343)

IP 1.000 0.000 16.000 1.000 0.000 16.000 1.000 0.000 16.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ICFL 0.980 0.070 28.640 0.990 0.007 17.140 1.000 0.000 16.040

(0.141) (0.027) (5.832) (0.100) (0.010) (2.366) (0.000) (0.002) (0.281)

OCFL 0.980 0.156 44.300 0.991 0.042 23.580 1.000 0.003 16.580

(0.141) (0.046) (9.344) (0.088) (0.024) (4.942) (0.000) (0.006) (1.112)

SHIR 1.000 0.019 129.920 1.000 0.022 258.030 1.000 0.015 513.410

(0.000) (0.016) (2.347) (0.000) (0.015) (1.374) (0.000) (0.014) (1.248)

SMA 1.000 0.001 128.410 1.000 0.002 256.190 1.000 0.003 512.240

(0.000) (0.003) (2.257) (0.000) (0.005) (0.419) (0.000) (0.005) (0.495)

Local 0.990 0.116 297.450 0.989 0.117 598.030 0.990 0.115 1184.390

(0.008) (0.022) (32.006) (0.007) (0.015) (43.364) (0.004) (0.011) (62.616)

SK(har) 0.994 0.382 198.580 0.998 0.571 300.420 1.000 0.802 383.890

(0.033) (0.183) (74.091) (0.018) (0.201) (95.568) (0.000) (0.142) (90.112)

SK(gap) 1.000 0.646 134.820 1.000 0.861 174.340 1.000 0.982 196.700

(0.000) (0.104) (19.080) (0.000) (0.062) (11.353) (0.000) (0.019) (3.416)

DLSA 0.445 0.431 43.250 0.424 0.402 40.370 0.395 0.372 37.420

(0.141) (0.104) (10.011) (0.195) (0.109) (10.977) (0.161) (0.102) (9.995)

WONDER 0.124 0.113 11.390 0.073 0.066 6.640 0.026 0.029 2.880

(0.251) (0.231) (23.132) (0.202) (0.186) (18.659) (0.127) (0.125) (12.483)

σ = 2 ICR 0.996 0.000 16.190 1.000 0.000 16.000 1.000 0.000 16.060

(0.021) (0.003) (1.522) (0.000) (0.000) (0.000) (0.000) (0.002) (0.343)

IP 0.996 0.000 16.200 1.000 0.000 16.000 1.000 0.000 16.000

(0.021) (0.001) (1.435) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ICFL 0.899 0.344 77.300 0.951 0.195 49.970 1.000 0.057 26.440

(0.251) (0.069) (15.793) (0.199) (0.100) (17.030) (0.000) (0.024) (4.500)

OCFL 0.823 0.480 101.120 0.858 0.333 73.870 0.990 0.166 46.300

(0.254) (0.100) (21.438) (0.294) (0.116) (23.646) (0.068) (0.072) (13.353)

SHIR 1.000 0.135 228.320 1.000 0.144 436.990 1.000 0.139 762.890

(0.000) (0.064) (81.849) (0.000) (0.054) (116.607) (0.000) (0.034) (134.836)

SMA 1.000 0.111 283.240 1.000 0.110 515.970 1.000 0.088 772.130

(0.000) (0.036) (55.266) (0.000) (0.057) (182.428) (0.000) (0.048) (266.909)

Local 0.816 0.099 250.050 0.818 0.100 504.280 0.819 0.099 1000.380

(0.034) (0.020) (31.474) (0.022) (0.015) (44.000) (0.016) (0.011) (65.717)

SK(har) 0.986 0.319 168.58 0.996 0.485 255.770 1.000 0.701 365.340

(0.053) (0.166) (71.974) (0.038) (0.203) (97.201) (0.000) (0.204) (118.276)

SK(gap) 1.000 0.555 118.370 1.000 0.809 165.630 1.000 0.967 193.840

(0.000) (0.150) (26.845) (0.000) (0.084) (15.860) (0.000) (0.026) (4.745)

DLSA 0.648 0.657 65.630 0.590 0.622 61.900 0.649 0.638 63.860

(0.178) (0.076) (7.498) (0.170) (0.075) (7.132) (0.160) (0.073) (7.027)

WONDER 0.141 0.137 13.690 0.088 0.093 9.250 0.028 0.033 3.290

(0.249) (0.233) (23.212) (0.211) (0.212) (21.085) (0.112) (0.110) (10.931)

44

Heterogeneity-aware Clustered Distributed Learning

Table 7: The clustering accuracy: mean (sd) based on 100 replicates in Example 3.

K = 16 K = 32 K = 64

Method M̂ Per RI ARI M̂ Per RI ARI M̂ Per RI ARI

σ = 1 ICR 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000

(0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

IP 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000

(0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

ICFL 2.000 1.000 0.990 0.980 2.000 1.000 0.995 0.990 2.000 1.000 1.000 1.000

(0.000) (-) (0.074) (0.141) (0.000) (-) (0.051) (0.100) (0.000) (-) (0.000) (0.000)

OCFL 2.000 1.000 0.990 0.980 2.000 1.000 0.995 0.990 2.000 1.000 1.000 1.000

(0.000) (-) (0.074) (0.141) (0.000) (-) (0.051) (0.100) (0.000) (-) (0.000) (0.000)

SK(har) 4.900 0.000 0.752 0.483 5.340 0.000 0.739 0.468 4.790 0.000 0.744 0.484

(1.418) (-) (0.085) (0.182) (1.821) (-) (0.088) (0.182) (1.274) (-) (0.065) (0.132)

SK(gap) 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000

(0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

σ = 2 ICR 2.020 0.980 0.999 0.998 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000

(0.141) (-) (0.008) (0.017) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

IP 2.030 0.970 0.998 0.996 2.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000

(0.171) (-) (0.013) (0.026) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

ICFL 1.990 0.990 0.926 0.860 1.970 0.970 0.964 0.930 2.000 1.000 1.000 1.000

(0.100) (-) (0.183) (0.349) (0.171) (-) (0.132) (0.256) (0.000) (-) (0.000) (0.000)

OCFL 1.990 0.990 0.827 0.665 1.970 0.970 0.887 0.779 2.000 1.000 0.983 0.965

(0.100) (-) (0.225) (0.433) (0.171) (-) (0.199) (0.389) (0.000) (-) (0.074) (0.149)

SK(har) 4.800 0.000 0.764 0.507 5.180 0.000 0.754 0.497 5.200 0.000 0.736 0.466

(1.589) (-) (0.097) (0.207) (1.850) (-) (0.095) (0.195) (1.589) (-) (0.077) (0.156)

SK(gap) 2.020 0.980 0.996 0.993 2.010 0.990 0.998 0.997 2.000 1.000 0.999 0.999

(0.141) (-) (0.019) (0.039) (0.100) (-) (0.013) (0.026) (0.000) (-) (0.004) (0.009)

45

Chen, Zhang, Ma, and Fang

σ = 1 σ = 2

K
 =

 16
K

 =
 32

K
 =

 64

ICR IP Oracle ICFL OCFL SHIR SMA Local SK(har)SK(gap) DLSAWONDER ICR IP Oracle ICFL OCFL SHIR SMA Local SK(har)SK(gap) DLSAWONDER

0.00

0.25

0.50

0.75

1.00

1.25

0.00

0.25

0.50

0.75

1.00

1.25

0.00

0.25

0.50

0.75

1.00

1.25

R
M

S
E

Figure 6: Boxplots of RMSE in Example 3.

46

Heterogeneity-aware Clustered Distributed Learning

Table 8: The variable selection accuracy: mean (sd) based on 100 replicates in Example 4.

n = 100 n = 200 n = 400

Method TPR FPR MS TPR FPR MS TPR FPR MS

σ = 1 ICR 1.000 0.000 32.040 1.000 0.000 32.000 1.000 0.000 32.000

(0.000) (0.001) (0.400) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

IP 1.000 0.000 32.000 1.000 0.000 32.000 1.000 0.000 32.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ICFL 0.915 0.012 33.250 0.885 0.000 28.440 0.900 0.000 28.880

(0.189) (0.057) (22.316) (0.211) (0.002) (6.891) (0.201) (0.002) (6.522)

OCFL 0.918 0.040 43.440 0.885 0.001 28.600 0.900 0.000 28.880

(0.185) (0.050) (21.119) (0.211) (0.005) (7.200) (0.201) (0.002) (6.522)

SHIR 1.000 0.077 531.640 1.000 0.081 524.450 1.000 0.072 523.670

(0.000) (0.029) (31.566) (0.000) (0.030) (17.815) (0.000) (0.030) (17.975)

SMA 1.000 0.060 539.570 1.000 0.078 524.870 1.000 0.073 525.040

(0.000) (0.026) (38.983) (0.000) (0.030) (19.013) (0.000) (0.028) (21.384)

Local 0.989 0.204 1709.120 1.000 0.199 1685.360 1.000 0.195 1658.000

(0.005) (0.012) (70.651) (0.000) (0.011) (63.342) (0.000) (0.011) (64.948)

SK(har) 0.999 0.932 375.080 1.000 0.933 375.160 1.000 0.937 376.680

(0.013) (0.137) (50.832) (0.000) (0.098) (36.120) (0.000) (0.036) (13.237)

SK(gap) 1.000 0.998 203.380 1.000 0.967 301.720 1.000 0.959 320.040

(0.000) (0.010) (24.503) (0.000) (0.036) (89.220) (0.000) (0.039) (83.909)

DLSA 0.359 0.305 30.950 0.203 0.069 7.930 0.168 0.025 3.660

(0.167) (0.116) (11.400) (0.123) (0.067) (6.753) (0.076) (0.035) (3.514)

WONDER 0.006 0.012 1.120 0.000 0.000 0.000 0.000 0.000 0.000

(0.037) (0.072) (6.896) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

σ = 2 ICR 1.000 0.000 32.400 1.000 0.000 32.000 1.000 0.000 32.040

(0.000) (0.000) (1.752) (0.000) (0.000) (0.000) (0.000) (0.001) (0.400)

IP 1.000 0.000 32.240 1.000 0.000 32.000 1.000 0.000 32.000

(0.000) (0.000) (1.372) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ICFL 0.916 0.175 91.030 0.915 0.048 47.080 0.905 0.008 31.840

(0.179) (0.101) (40.681) (0.189) (0.042) (18.872) (0.197) (0.030) (13.465)

OCFL 0.915 0.340 150.420 0.915 0.065 53.200 0.905 0.009 32.120

(0.163) (0.119) (49.251) (0.189) (0.049) (21.846) (0.197) (0.031) (13.709)

SHIR 1.000 0.270 1542.320 1.000 0.229 1246.210 1.000 0.197 1084.500

(0.000) (0.080) (486.815) (0.000) (0.076) (367.035) (0.000) (0.068) (350.924)

SMA 1.000 0.263 1575.730 1.000 0.230 1246.960 1.000 0.188 1058.500

(0.000) (0.0840) (469.041) (0.000) (0.076) (391.310) (0.000) (0.068) (374.399)

Local 0.719 0.127 1116.360 0.944 0.176 1519.300 0.998 0.194 1650.780

(0.030) (0.013) (85.809) (0.014) (0.012) (75.027) (0.002) (0.011) (64.969)

SK(har) 0.908 0.285 140.730 0.994 0.868 351.280 0.999 0.928 373.640

(0.106) (0.410) (161.999) (0.033) (0.223) (83.034) (0.013) (0.101) (37.494)

SK(gap) 0.998 0.980 196.360 1.000 0.998 199.580 1.000 0.991 230.660

(0.025) (0.100) (18.750) (0.000) (0.005) (0.955) (0.000) (0.022) (68.584)

DLSA 0.614 0.608 60.830 0.368 0.228 23.920 0.248 0.044 6.070

(0.191) (0.086) (8.705) (0.159) (0.109) (10.723) (0.132) (0.048) (5.127)

WONDER 0.036 0.045 4.440 0.000 0.000 0.000 0.000 0.000 0.000

(0.136) (0.135) (13.444) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

47

Chen, Zhang, Ma, and Fang

σ = 1 σ = 2

n =
 100

n =
 200

n =
 400

ICR IP Oracle ICFL OCFL SHIR SMA Local SK(har)SK(gap) DLSAWONDER ICR IP Oracle ICFL OCFL SHIR SMA Local SK(har)SK(gap) DLSAWONDER

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

R
M

S
E

Figure 7: Boxplots of RMSE in Example 4.

48

Heterogeneity-aware Clustered Distributed Learning

Table 9: The clustering accuracy: mean (sd) based on 100 replicates in Example 4.

n = 100 n = 200 n = 400

Method M̂ Per RI ARI M̂ Per RI ARI M̂ Per RI ARI

σ = 1 ICR 4.000 1.000 1.000 1.000 4.000 1.000 1.000 1.000 4.000 1.000 1.000 1.000

(0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

IP 4.000 1.000 1.000 1.000 4.000 1.000 1.000 1.000 4.000 1.000 1.000 1.000

(0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

ICFL 3.930 0.930 0.956 0.894 4.000 1.000 0.943 0.863 4.000 1.000 0.944 0.865

(0.256) (-) (0.067) (0.160) (0.000) (-) (0.075) (0.181) (0.000) (-) (0.075) (0.181)

OCFL 3.930 0.930 0.956 0.894 4.000 1.000 0.943 0.863 4.000 1.000 0.944 0.865

(0.256) (-) (0.067) (0.160) (0.000) (-) (0.075) (0.181) (0.000) (-) (0.075) (0.181)

SK(har) 4.000 1.000 1.000 1.000 4.000 1.000 1.000 1.000 4.000 1.000 1.000 1.000

(0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

SK(gap) 2.040 0.020 0.751 0.498 3.140 0.570 0.891 0.780 3.350 0.670 0.917 0.833

(0.281) (-) (0.036) (0.072) (0.995) (-) (0.126) (0.255) (0.936) (-) (0.119) (0.240)

σ = 2 ICR 4.050 0.950 1.000 0.999 4.000 1.000 1.000 1.000 4.000 1.000 1.000 1.000

(0.219) (-) (0.002) (0.005) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

IP 4.030 0.970 1.000 0.999 4.000 1.000 1.000 1.000 4.000 1.000 1.000 1.000

(0.171) (-) (0.001) (0.004) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

ICFL 3.880 0.890 0.946 0.872 4.000 1.000 0.949 0.877 4.000 1.000 0.949 0.876

(0.356) (-) (0.072) (0.168) (0.000) (-) (0.073) (0.176) (0.000) (-) (0.073) (0.177)

OCFL 3.880 0.890 0.930 0.832 4.000 1.000 0.949 0.877 4.000 1.000 0.949 0.876

(0.356) (-) (0.073) (0.173) (0.000) (-) (0.073) (0.176) (0.000) (-) (0.073) (0.177)

SK(har) 4.150 0.860 0.977 0.935 4.000 1.000 1.000 1.000 4.000 1.000 1.000 1.000

(0.386) (-) (0.021) (0.058) (0.000) (-) (0.000) (0.000) (0.000) (-) (0.000) (0.000)

SK(gap) 2.000 0.000 0.745 0.485 2.000 0.000 0.746 0.488 2.340 0.170 0.789 0.575

(0.000) (-) (0.005) (0.010) (0.000) (-) (0.000) (0.000) (0.755) (-) (0.096) (0.193)

49

Chen, Zhang, Ma, and Fang

Table 10: The variable selection accuracy: mean (sd) under 100 replicates in Example 5.

p = 200 p = 500 p = 800

Method TPR FPR MS TPR FPR MS TPR FPR MS

U = 5 ICR 1.000 0.000 32.560 1.000 0.000 32.420 1.000 0.000 32.160

(0.000) (0.000) (2.051) (0.000) (0.000) (2.128) (0.000) (0.000) (1.126)

IP 1.000 0.000 32.400 1.000 0.000 32.240 1.000 0.000 32.000

(0.000) (0.000) (1.752) (0.000) (0.000) (1.372) (0.000) (0.000) (0.000)

ICFL 0.934 0.184 170.840 0.964 0.249 520.680 0.934 0.250 822.080

(0.161) (0.098) (79.131) (0.126) (0.089) (177.677) (0.170) (0.086) (275.921)

OCFL 0.934 0.103 109.160 0.963 0.016 61.840 0.926 0.002 37.040

(0.162) (0.045) (37.966) (0.121) (0.024) (47.272) (0.175) (0.004) (14.345)

SHIR 1.000 0.065 332.450 1.000 0.039 339.050 1.000 0.026 340.210

(0.000) (0.025) (4.719) (0.000) (0.013) (6.475) (0.000) (0.008) (6.217)

SMA 1.000 0.064 332.210 1.000 0.032 335.700 1.000 0.020 335.470

(0.000) (0.027) (5.149) (0.000) (0.010) (5.098) (0.000) (0.005) (4.270)

Local 0.838 0.100 1038.480 0.769 0.048 1199.800 0.733 0.032 1263.060

(0.035) (0.010) (88.302) (0.042) (0.006) (132.189) (0.036) (0.004) (119.201)

SK(har) 0.969 0.432 373.770 0.944 0.193 429.890 0.948 0.127 468.470

(0.082) (0.305) (242.129) (0.104) (0.194) (397.009) (0.096) (0.145) (503.149)

SK(gap) 1.000 0.881 355.890 1.000 0.624 632.980 1.000 0.486 786.440

(0.000) (0.046) (24.108) (0.000) (0.094) (95.989) (0.000) (0.061) (96.642)

DLSA 0.128 0.008 2.510 0.355 0.373 186.350 0.591 0.589 471.300

(0.018) (0.017) (3.274) (0.141) (0.067) (33.167) (0.189) (0.060) (48.197)

U = 10 ICR 1.000 0.000 32.560 1.000 0.000 32.080 1.000 0.000 32.000

(0.000) (0.000) (2.346) (0.000) (0.000) (0.800) (0.000) (0.000) (0.000)

IP 1.000 0.000 32.320 1.000 0.000 32.080 1.000 0.000 32.000

(0.000) (0.000) (1.576) (0.000) (0.000) (0.800) (0.000) (0.000) (0.000)

ICFL 0.959 0.098 106.240 0.946 0.117 260.600 0.964 0.131 446.760

(0.133) (0.101) (79.170) (0.154) (0.072) (145.067) (0.144) (0.070) (223.048)

OCFL 0.959 0.066 81.240 0.958 0.020 69.400 0.966 0.008 55.360

(0.134) (0.076) (59.372) (0.128) (0.019) (39.399) (0.137) (0.036) (114.654)

SHIR 1.000 0.074 335.320 1.000 0.046 342.410 1.000 0.022 337.390

(0.000) (0.024) (9.045) (0.000) (0.015) (7.429) (0.000) (0.008) (6.334)

SMA 1.000 0.070 334.280 1.000 0.045 342.740 1.000 0.020 335.550

(0.000) (0.022) (7.721) (0.000) (0.015) (8.864) (0.000) (0.006) (4.659)

Local 0.919 0.121 1223.780 0.883 0.061 1488.800 0.865 0.043 1639.920

(0.028) (0.009) (75.231) (0.031) (0.005) (97.978) (0.037) (0.005) (160.497)

SK(har) 0.983 0.480 402.570 0.973 0.331 702.860 0.976 0.225 765.640

(0.053) (0.313) (242.951) (0.072) (0.203) (413.880) (0.068) (0.163) (531.936)

SK(gap) 1.000 0.913 366.800 1.000 0.719 723.220 1.000 0.587 945.320

(0.000) (0.096) (36.036) (0.000) (0.043) (42.432) (0.000) (0.081) (128.451)

DLSA 0.130 0.000 1.090 0.133 0.033 17.240 0.300 0.293 234.810

(0.030) (0.002) (0.379) (0.035) (0.039) (19.086) (0.153) (0.075) (59.824)

50

Heterogeneity-aware Clustered Distributed Learning

U = 5 U = 10

p =
 200

p =
 500

p =
 800

ICR IP Oracle ICFL OCFL SHIR SMA Local SK(har) SK(gap) DLSA ICR IP Oracle ICFL OCFL SHIR SMA Local SK(har) SK(gap) DLSA

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

R
M

S
E

Figure 8: Boxplots of RMSE in Example 5.

51

Chen, Zhang, Ma, and Fang

Table 11: The clustering accuracy: mean (sd) based on 100 replicates in Example 5.

p = 200 p = 500 p = 800

Method M̂ Per RI ARI M̂ Per RI ARI M̂ Per RI ARI

U = 5 ICR 4.070 0.930 0.999 0.998 4.040 0.960 1.000 0.999 4.020 0.980 1.000 0.999

(0.256) (-) (0.003) (0.008) (0.197) (-) (0.002) (0.007) (0.141) (-) (0.002) (0.005)

IP 4.050 0.950 0.999 0.998 4.030 0.970 1.000 0.999 4.000 1.000 1.000 1.000

(0.219) (-) (0.003) (0.007) (0.171) (-) (0.002) (0.006) (0.000) (-) (0.000) (0.000)

ICFL 4.000 1.000 0.955 0.890 4.000 1.000 0.936 0.839 4.000 1.000 0.876 0.696

(0.000) (-) (0.070) (0.170) (0.000) (-) (0.070) (0.169) (0.000) (-) (0.081) (0.184)

OCFL 4.000 1.000 0.955 0.890 4.000 1.000 0.935 0.836 4.000 1.000 0.876 0.695

(0.000) (-) (0.070) (0.170) (0.000) (-) (0.070) (0.169) (0.000) (-) (0.081) (0.185)

SK(har) 4.180 0.830 0.964 0.901 4.250 0.780 0.939 0.833 4.340 0.750 0.936 0.820

(0.796) (-) (0.038) (0.103) (1.029) (-) (0.048) (0.127) (1.165) (-) (0.042) (0.116)

SK(gap) 2.010 0.000 0.744 0.481 2.020 0.000 0.743 0.477 2.000 0.000 0.742 0.476

(0.100) (-) (0.014) (0.023) (0.141) (-) (0.016) (0.027) (0.000) (-) (0.007) (0.013)

U = 10 ICR 4.070 0.940 0.999 0.998 4.010 0.990 1.000 1.000 4.000 1.000 1.000 1.000

(0.293) (-) (0.003) (0.010) (0.100) (-) (0.001) (0.003) (0.000) (-) (0.000) (0.000)

IP 4.040 0.960 1.000 0.999 4.010 0.990 1.000 1.000 4.000 1.000 1.000 1.000

(0.197) (-) (0.002) (0.007) (0.100) (-) (0.001) (0.003) (0.000) (-) (0.000) (0.000)

ICFL 4.000 1.000 0.958 0.898 4.000 1.000 0.943 0.860 4.000 1.000 0.942 0.855

(0.000) (-) (0.065) (0.157) (0.000) (-) (0.075) (0.185) (0.000) (-) (0.073) (0.178)

OCFL 4.000 1.000 0.958 0.898 4.000 1.000 0.943 0.860 4.000 1.000 0.942 0.854

(0.000) (-) (0.065) (0.157) (0.000) (-) (0.075) (0.185) (0.000) (-) (0.073) (0.178)

SK(har) 4.050 0.900 0.981 0.950 4.130 0.890 0.974 0.926 4.100 0.910 0.967 0.907

(0.575) (-) (0.033) (0.081) (0.800) (-) (0.032) (0.090) (0.541) (-) (0.033) (0.090)

SK(gap) 2.010 0.000 0.744 0.481 2.000 0.000 0.743 0.479 2.010 0.000 0.744 0.480

(0.100) (-) (0.013) (0.023) (0.000) (-) (0.003) (0.007) (0.100) (-) (0.012) (0.019)

Table 12: The Computational time: mean (sd) based on 100 replicates in Example 5. For
methods (ICR, IP, SHIR and SMA), computation time refers to the average computation
time for each tuning parameter based on a set of tuning parameters.

Method ICR IP ICFL OCFL SHIR SMA

U = 5 p = 200 Time (seconds) 20.18 288.51 2.15 0.03 112.05 120.77

(4.62) (48.07) (0.29) (0.01) (20.15) (21.23)

p = 500 Time (seconds) 77.72 1248.41 8.34 0.12 425.79 307.55

(13.77) (136.72) (1.40) (0.02) (64.02) (68.99)

p = 800 Time (seconds) 151.32 2199.70 13.55 0.19 222.01 111.53

(18.14) (331.44) (1.93) (0.02) (41.48) (25.39)

U = 10 p = 200 Time (seconds) 13.80 293.61 6.31 0.08 130.55 180.83

(3.80) (36.41) (1.24) (0.01) (13.36) (23.52)

p = 500 Time (seconds) 71.21 954.14 23.44 0.26 599.04 497.45

(32.37) (79.07) (6.22) (0.04) (91.95) (76.09)

p = 800 Time (seconds) 91.09 3284.76 42.68 0.46 390.31 206.13

(14.66) (272.30) (12.91) (0.11) (66.77) (36.91)

52

Heterogeneity-aware Clustered Distributed Learning

Table 13: The variable selection accuracy: mean (sd) under 100 replicates in Example 6.

n0 = 200 n0 = 400

Method TPR FPR MS TPR FPR MS

ICR 1.000 0.000 70.400 1.000 0.000 66.220

(0.000) (0.000) (11.274) (0.000) (0.000) (3.823)

IP 0.999 0.000 70.560 1.000 0.000 66.220

(0.009) (0.000) (11.654) (0.000) (0.000) (3.823)

ICFL 0.891 0.054 87.900 0.867 0.013 64.380

(0.164) (0.086) (50.671) (0.175) (0.061) (35.674)

OCFL 0.895 0.046 83.580 0.875 0.009 62.520

(0.149) (0.079) (46.077) (0.171) (0.060) (34.506)

SHIR 0.963 0.000 826.750 0.990 0.002 942.920

(0.058) (0.002) (114.240) (0.039) (0.005) (86.582)

SMA 0.805 0.000 480.570 0.987 0.002 936.620

(0.121) (0.001) (83.700) (0.047) (0.004) (97.650)

Local 0.889 0.239 2794.920 0.961 0.285 3236.110

(0.026) (0.015) (135.467) (0.014) (0.014) (119.034)

SK(har) 0.987 0.870 470.700 1.000 0.934 561.980

(0.070) (0.262) (171.349) (0.000) (0.155) (120.517)

SK(gap) 0.975 0.960 193.320 0.936 0.870 177.460

(0.129) (0.197) (39.317) (0.177) (0.338) (66.105)

DLSA 0.704 0.000 7.740 0.777 0.000 8.550

(0.159) (0.000) (1.750) (0.149) (0.000) (1.641)

Table 14: The clustering accuracy: mean (sd) based on 100 replicates in Example 6.

n0 = 200 n0 = 400

Method M̂ Per RI ARI M̂ Per RI ARI

ICR 6.400 0.680 0.993 0.976 6.020 0.910 0.977 0.992

(1.025) (-) (0.019) (0.058) (0.348) (-) (0.013) (0.040)

IP 6.420 0.680 0.993 0.977 6.020 0.910 0.977 0.992

(1.056) (-) (0.018) (0.056) (0.348) (-) (0.013) (0.040)

ICFL 6.000 1.000 0.941 0.828 6.000 1.000 0.947 0.839

(0.000) (-) (0.060) (0.152) (0.000) (-) (0.046) (0.123)

OCFL 6.000 1.000 0.940 0.824 6.000 1.000 0.947 0.838

(0.000) (-) (0.060) (0.152) (0.000) (-) (0.046) (0.123)

SK(har) 5.240 0.420 0.940 0.837 5.970 0.510 0.977 0.932

(1.334) (-) (0.073) (0.178) (0.989) (-) (0.043) (0.115)

SK(gap) 2.010 0.000 0.652 0.320 2.020 0.000 0.651 0.321

(0.100) (-) (0.021) (0.024) (0.141) (-) (0.035) (0.038)

Table 15: The computational time: mean (sd) based on 100 replicates in Example 6. For
methods (ICR, IP, SHIR and SMA), computation time refers to the average computation
time for each tuning parameter based on a set of tuning parameters.

Method ICR IP ICFL OCFL SHIR SMA

n0 = 200 Time (seconds) 22.63 347.57 5.83 0.09 125.66 99.63

(4.25) (43.96) (0.45) (0.01) (54.08) (33.50)

n0 = 400 Time (seconds) 19.65 657.10 20.88 0.26 84.15 59.21

(3.44) (84.94) (3.11) (0.03) (23.17) (11.94)

53

Chen, Zhang, Ma, and Fang

n0 = 200 n0 = 400

ICR IP Oracle ICFL OCFL SHIR SMA Local SK(har) SK(gap) DLSA ICR IP Oracle ICFL OCFL SHIR SMA Local SK(har) SK(gap) DLSA

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

R
M

S
E

Figure 9: Boxplots of RMSE in Example 6.

0.0

0.2

0.4

0.6

0.8

ac
co

un
tV

ie
w

Ac
tio

n

aj
ax

Bu
yM

an
ag

eM
on

ey
Pr

od
uc

tA
ct

io
n

aj
ax

C
ha

ck
Li

m
itT

ra
ns

fe
rA

ct
io

n

aj
ax

C
he

ck
Bi

gA
m

tT
ra

ns
Ac

tio
n

aj
ax

C
he

ck
C

od
eA

ct
io

n

aj
ax

C
he

ck
G

ra
ph

ic
C

od
eA

ct
io

n

aj
ax

C
he

ck
Q

uo
ta

Ac
tio

n

aj
ax

El
ec

tro
ni

cL
is

tQ
ue

ry
Ac

tio
n

aj
ax

M
cr

yp
tK

ey
Ac

tio
n

aj
ax

N
oS

es
si

on
G

et
Sm

sA
ct

io
n

aj
ax

Q
ry

Ad
D

et
ai

lA
ct

io
n

aj
ax

Q
ry

Ba
nk

In
fo

rm
at

io
nB

yC
ar

dA
ct

io
n

aj
ax

Q
ry

Ba
nk

Li
st

Ac
tio

n

aj
ax

Q
ry

Ba
nk

N
ot

ic
eA

ct
io

n

aj
ax

Q
ry

Q
ui

ck
M

en
uA

ct
io

n

aj
ax

Q
ry

Sa
m

eT
ra

ns
fe

rB
al

an
ce

Ac
tio

n

aj
ax

Q
ue

ry
Ac

cB
al

an
ce

Ac
tio

n

aj
ax

Q
ue

ry
Ac

ct
Va

lid
at

io
nA

ct
io

n

aj
ax

Q
ue

ry
At

te
nt

io
nA

ct
io

n

aj
ax

Q
ue

ry
C

us
to

m
er

R
is

kL
ev

el
Ac

tio
n

aj
ax

Q
ue

ry
Em

ai
lIn

Bo
xA

ct
io

n

aj
ax

Q
ue

ry
H

os
tD

et
ai

lA
ct

io
n

aj
ax

Q
ue

ry
Ib

ps
Tr

an
sR

es
ul

tA
ct

io
n

aj
ax

Q
ue

ry
In

te
gr

at
io

nA
ct

io
n

aj
ax

Q
ue

ry
M

ar
ke

tIn
fo

Ac
tio

n

aj
ax

Q
ue

ry
Pa

yB
oo

kA
ct

io
n

aj
ax

Q
ue

ry
Su

bA
cc

Li
st

Ac
tio

n

aj
ax

Q
ue

ry
Tr

an
D

et
ai

lA
ct

io
n

aj
ax

Tr
an

sf
er

R
ep

ea
tC

he
ck

Ac
tio

n

bu
yM

an
ag

eM
on

ey
Pr

od
uc

tA
ct

io
n

bu
yS

tru
ct

ur
al

Pr
od

uc
tA

ct
io

n

bu
yS

tru
ct

ur
al

Pr
od

uc
tC

on
fir

m
Ac

tio
n

bu
yS

tru
ct

ur
al

Pr
od

uc
tIn

pu
tA

ct
io

n

el
ec

tro
ni

cA
cc

ou
nt

R
eg

is
tA

ct
io

n.
ac

tio
n

el
ec

tro
ni

cA
cc

ou
nt

R
eg

is
tC

he
ck

Ac
tio

n.
ac

tio
n

in
de

xA
ct

io
n.

ac
tio

n

in
ne

rB
an

kT
ra

ns
fe

rA
ct

io
n

lo
go

nA
ct

io
n.

ac
tio

n

lo
go

ut
Ac

tio
n.

ac
tio

n

ou
tB

an
kT

ra
ns

fe
rA

ct
io

n

qu
er

yA
cc

Li
st

Ac
tio

n

qu
er

yD
et

ai
lR

eq
Ac

tio
n

qu
er

yF
un

cI
nf

oP
ag

eA
ct

io
n

re
qE

le
R

ec
ei

pt
Pr

ov
in

gA
ct

io
n.

ac
tio

n

re
se

tL
og

on
Pa

ss
w

or
dV

er
ify

Ac
tio

n.
ac

tio
n

re
se

tL
og

on
Pw

dV
er

ify
R

eq
Ac

tio
n.

ac
tio

n

tra
ns

Si
ng

le
Ac

tio
n

URL interface

P
ro

po
rt

io
n

Figure 10: The abnormal proportions among the 47 URL interfaces in data analysis.

54

Heterogeneity-aware Clustered Distributed Learning

Table 16: The identified important variables and their estimates using the five integra-
tive analysis methods in data analysis. For the proposed method, only estimates for the
nontrivial clusters are shown.

Variable ICFL
(1)
10 ICFL

(2)
10 ICFL

(3)
10 ICFL

(4)
10 ICFL

(5)
10 ICFL

(6)
10 ICFL

(7)
10 ICFL

(8)
10 ICFL

(9)
10

Intercept 1.401 -2.545 1.199 1.437 1.149 -0.970 0.926 0.868 1.406
Gnum -0.181 0.142 -0.205 -0.239 – 0.288 -0.284 -0.139 0.606
Glen -0.191 0.117 -0.231 -0.210 – – -0.316 – -0.523
Pnum – -0.120 0.159 – -0.207 0.903 0.323 – -0.714
Plen -0.380 -0.338 -0.334 – – 0.417 – 2.115 0.149
Gl0 1.534 0.594 1.032 1.895 – -0.272 1.372 2.800 -0.867
Pl0 1.031 1.026 1.730 – 0.394 0.641 2.282 0.431 –
Pl1 2.494 1.778 2.359 2.118 2.770 1.831 2.237 0.202 0.533
Pl2 2.369 1.712 2.103 2.730 2.840 0.797 0.376 – 0.363
Pl3 – – 0.196 – – 0.390 – – 0.110
Pl4 0.106 0.101 0.101 – 0.228 0.276 – – 2.439
Pl5 – – – – 0.113 – – – 1.205
Pl6 – – – – – – – – 0.622
Pl7 – – – – – 0.151 – – 0.579
Pl8 – – – – – – – – -1.714
Pl9 – – – – 0.118 – – – 0.288
Pl10 – – – – 0.137 – – – 0.219
Pl11 – – – – – – – – 0.168
Pl12 – – – – – – – – 0.169
Pl13 – – – – – – – – 0.139
Pl14 – – – – – 0.107 – – 0.157
Pl15 – – – – – 0.110 – – 0.175
Pl17 – – – -0.131 – – – – –
Pl18 – – – – – – -0.104 – –
Pl19 – – – 0.129 – – – – –
GPw6 – – – – -0.103 – – – –
GPw39 – 0.118 – – – – – – –
GPw68 – 0.111 – – – – – – –
GPw74 – -0.112 – – – – – – –

Table 17: One record of the initial request logs in data analysis.

URL interface GET Parameter POST Parameter

ajaxNoSessionGetSmsAction s=captcha
method= construct&filter[]=phpinfo&

method=get&server[REQUEST METHOD]=1

55

Chen, Zhang, Ma, and Fang

References

Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar, and Brendan
McMahan. cpsgd: Communication-efficient and differentially-private distributed sgd.
Advances in Neural Information Processing Systems, 31, 2018.

Heather Battey, Jianqing Fan, Han Liu, Junwei Lu, and Ziwei Zhu. Distributed testing
and estimation under sparse high dimensional models. The Annals of Statistics, 46(3):
1352–1382, 2018.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor, and Ryan Rogers.
Protection against reconstruction and its applications in private federated learning. arXiv
preprint arXiv:1812.00984, 2018.

Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine learning
classification over encrypted data. In Proceedings 2015 Network and Distributed System
Security Symposium. Internet Society, 2015.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

Peter Bühlmann and Sara Van De Geer. Statistics for high-dimensional data: methods,
theory and applications. Springer Science & Business Media, 2011.

Tianxi Cai, Molei Liu, and Yin Xia. Individual data protected integrative regression analysis
of high-dimensional heterogeneous data. Journal of the American Statistical Association,
117(540):2105–2119, 2022.

Jingxiang Chen, Quoc Tran-Dinh, Michael R. Kosorok, and Yufeng Liu. Identifying het-
erogeneous effect using latent supervised clustering with adaptive fusion. Journal of
Computational and Graphical Statistics, 30(1):43–54, 2021.

Yi-Ruei Chen, Amir Rezapour, and Wen-Guey Tzeng. Privacy-preserving ridge regression
on distributed data. Information Sciences, 451:34–49, 2018.

Eric C Chi and Kenneth Lange. Splitting methods for convex clustering. Journal of Com-
putational and Graphical Statistics, 24(4):994–1013, 2015.

Edgar Dobriban and Yue Sheng. Wonder: Weighted one-shot distributed ridge regression
in high dimensions. Journal of Machine Learning Research, 21(66):1–52, 2020.

Rui Duan, Yang Ning, and Yong Chen. Heterogeneity-aware and communication-efficient
distributed statistical inference. Biometrika, 109(1):67–83, 2022.

Cynthia Dwork. Differential privacy. In International colloquium on automata, languages,
and programming, pages 1–12. Springer, 2006.

56

Heterogeneity-aware Clustered Distributed Learning

Maryem Ait El Hadj, Mohammed Erradi, Ahmed Khoumsi, and Yahya Benkaouz. Valida-
tion and correction of large security policies: a clustering and access log based approach.
2018 IEEE international conference on big Data (Big Data), pages 5330–5332, 2018.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American Statistical Association, 96(456):1348–1360,
2001.

Jianqing Fan and Jinchi Lv. Sure independence screening for ultrahigh dimensional feature
space. Journal of the Royal Statistical Society Series B: Statistical Methodology, 70(5):
849–911, 2008.

Jianqing Fan and Jinchi Lv. Nonconcave penalized likelihood with np-dimensionality. IEEE
Transactions on Information Theory, 57(8):5467–5484, 2011.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient frame-
work for clustered federated learning. Advances in Neural Information Processing Sys-
tems, 33:19586–19597, 2020.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and
John Wernsing. Cryptonets: Applying neural networks to encrypted data with high
throughput and accuracy. In International conference on machine learning, pages 201–
210. PMLR, 2016.

Yalan Guo, Yulei Wu, Yanchao Zhu, Bingqiang Yang, and Chunjing Han. Anomaly de-
tection using distributed log data: A lightweight federated learning approach. 2021
International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2021.

John A Hartigan. Clustering algorithms. Wiley, New York, 1975.

Qianchuan He, Hao Helen Zhang, Christy L. Avery, and D. Y. Lin. Sparse meta-analysis
with high-dimensional data. Biostatistics, 17(2):205–220, 2016.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Spar-
sity in deep learning: Pruning and growth for efficient inference and training in neural
networks. The Journal of Machine Learning Research, 22(1):10882–11005, 2021.

Qiaona Hu, Baoming Tang, and Derek Lin. Anomalous user activity detection in enter-
prise multi-source logs. 2017 IEEE International Conference on Data Mining Workshops
(ICDMW), pages 797–803, 2017.

Jian Huang, Joel L Horowitz, and Fengrong Wei. Variable selection in nonparametric
additive models. The Annals of Statistics, 38(4):2282–2313, 2010.

Yuan Huang, Qingzhao Zhang, Sanguo Zhang, Jian Huang, and Shuangge Ma. Promoting
similarity of sparsity structures in integrative analysis with penalization. Journal of the
American Statistical Association, 112(517):342–350, 2017.

Michael I Jordan, Jason D Lee, and Yun Yang. Communication-efficient distributed statis-
tical inference. Journal of the American Statistical Association, 114(526):668–681, 2019.

57

Chen, Zhang, Ma, and Fang

Georgios A Kaissis, Marcus R Makowski, Daniel Rückert, and Rickmer F Braren. Secure,
privacy-preserving and federated machine learning in medical imaging. Nature Machine
Intelligence, 2(6):305–311, 2020.

K Kelleher. Facebook loses around $13 billion in value after data breach affects 50 million
of its users. Retrieved, 12:2019, 2018.

Jason D Lee, Qiang Liu, Yuekai Sun, and Jonathan E Taylor. Communication-efficient
sparse regression. The Journal of Machine Learning Research, 18(1):115–144, 2017.

Dongdong Li, Wenbin Lu, Di Shu, Sengwee Toh, and Rui Wang. Distributed cox propor-
tional hazards regression using summary-level information. Biostatistics, 24(3):776–794,
2023.

Furong Li and Huiyan Sang. Spatial homogeneity pursuit of regression coefficients for large
datasets. Journal of the American Statistical Association, 114(527):1050–1062, 2019.

Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu, Farhad Farokhi, and Zihuai Lin. When
machine learning meets privacy: A survey and outlook. ACM Computing Surveys
(CSUR), 54(2):1–36, 2021.

Jin Liu, Jian Huang, Yawei Zhang, Qing Lan, Nathaniel Rothman, Tongzhang Zheng,
and Shuangge Ma. Integrative analysis of prognosis data on multiple cancer subtypes.
Biometrics, 70(3):480–488, 2014.

Xiaokang Liu, Rui Duan, Chongliang Luo, Alexis Ogdie, Jason H Moore, Henry R Kranzler,
Jiang Bian, and Yong Chen. Multisite learning of high-dimensional heterogeneous data
with applications to opioid use disorder study of 15,000 patients across 5 clinical sites.
Scientific reports, 12(1):11073, 2022.

Shujie Ma and Jian Huang. A concave pairwise fusion approach to subgroup analysis.
Journal of the American Statistical Association, 112(517):410–423, 2017.

Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard Vidal.
Federated multi-task learning under a mixture of distributions. Advances in Neural In-
formation Processing Systems, 34:15434–15447, 2021.

Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu. A unified
framework for high-dimensional analysis of -estimators with decomposable regularizers.
Statistical Science, 27(4):538–557, 2012.

Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and trends® in
Optimization, 1(3):127–239, 2014.

Seyoung Park, Eun Ryung Lee, and Hyokyoung G Hong. Varying-coefficients for regional
quantile via knn-based lasso with applications to health outcome study. Statistics in
Medicine, 42(22):3903–3918, 2023.

Mingyang Ren, Sanguo Zhang, and Junhui Wang. Consistent estimation of the number of
communities via regularized network embedding. Biometrics, 79(3):2404–2416, 2023.

58

Heterogeneity-aware Clustered Distributed Learning

R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal
on control and optimization, 14(5):877–898, 1976.

Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimiza-
tion using an approximate newton-type method. In International conference on machine
learning, pages 1000–1008. PMLR, 2014.

Ryosuke Shimmura and Joe Suzuki. Converting admm to a proximal gradient for efficient
sparse estimation. Japanese Journal of Statistics and Data Science, pages 1–21, 2022.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated
multi-task learning. Advances in Neural Information Processing Systems, 30, 2017.

Lu Tang and Peter XK Song. Fused lasso approach in regression coefficients clustering:
learning parameter heterogeneity in data integration. The Journal of Machine Learning
Research, 17(1):3915–3937, 2016.

Xiwei Tang, Fei Xue, and Annie Qu. Individualized multidirectional variable selection.
Journal of the American Statistical Association, 116(535):1280–1296, 2021.

Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of clusters
in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 63(2):411–423, 2001.

Uğur Ünal and Hasan Dağ. Anomalyadapters: Parameter-efficient multi-anomaly task
detection. IEEE Access, 10:5635–5646, 2022.

Sara van de Geer, Peter Bühlmann, Ya’acov Ritov, and Ruben Dezeure. On asymptoti-
cally optimal confidence regions and tests for high-dimensional models. The Annals of
Statistics, 42(3):1166–1202, 2014.

Jialei Wang, Mladen Kolar, Nathan Srebro, and Tong Zhang. Efficient distributed learning
with sparsity. In International conference on machine learning, pages 3636–3645. PMLR,
2017.

Li Wang, Xiang Liu, Hua Liang, and Raymond J Carroll. Estimation and variable selection
for generalized additive partial linear models. The Annals of Statistics, 39(4):1827–1851,
2011.

Daniela M Witten and Robert Tibshirani. A framework for feature selection in clustering.
Journal of the American Statistical Association, 105(490):713–726, 2010.

Simon N Wood. Generalized additive models: an introduction with R. CRC press, 2017.

Lingzhou Xue, Hui Zou, and Tianxi Cai. Nonconcave penalized composite conditional
likelihood estimation of sparse ising models. The Annals of Statistics, 40(3):1403–1429,
2012.

Xinfeng Yang, Xiaodong Yan, and Jian Huang. High-dimensional integrative analysis with
homogeneity and sparsity recovery. Journal of Multivariate Analysis, 174:104529, 2019.

59

Chen, Zhang, Ma, and Fang

Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Salvaging federated learning by local
adaptation. arXiv preprint arXiv:2002.04758, 2020.

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on federated
learning. Knowledge-Based Systems, 216:106775, 2021.

Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics, 38(2):894–942, 2010.

Tianqi Zhao, Guang Cheng, and Han Liu. A partially linear framework for massive hetero-
geneous data. The Annals of Statistics, 44(4):1400–1437, 2016.

Ling Zhou, Ziyang Gong, and Pengcheng Xiang. Distributed computing and inference for
big data. Annual Review of Statistics and Its Application, 11, 2024.

Xiaolu Zhu and Annie Qu. Cluster analysis of longitudinal profiles with subgroups. Elec-
tronic Journal of Statistics, 12(1):171–193, 2018.

Xuening Zhu, Feng Li, and Hansheng Wang. Least-square approximation for a distributed
system. Journal of Computational and Graphical Statistics, 30(4):1004–1018, 2021.

Hui Zou and Runze Li. One-step sparse estimates in nonconcave penalized likelihood models.
The Annals of Statistics, 36(4):1509–1533, 2008.

60

	Introduction
	Methods
	Integrative Analysis under Privacy Constraints
	Computational Algorithm

	Theoretical Properties
	Notations and Definitions
	Asymptotic Properties

	Simulation Study
	Simulation Settings
	Simulations Results

	Data Application
	Conclusion
	Proofs
	Auxiliary Lemmas
	Proof of Theorem 1
	Proof of Theorem 2

	Additional Numerical Results

