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Abstract

Machine learning, the predominant approach in the field of artificial intelligence, enables
computers to learn from data and experience. In the supervised learning framework, accu-
rate and efficient learning of dependencies between data instances and their corresponding
labels requires auxiliary information about the data distribution and the target function.
This central concept aligns with the notion of regularization in statistical learning theory.
Real-world datasets are often characterized by multiscale data instance distributions and
well-behaved, smooth target functions. Scale-invariant probability distributions, such as
power-law distributions, provide notable examples of multiscale data instance distributions
in various contexts. This paper introduces a hierarchical learning model that leverages
such a multiscale data structure with a multiscale entropy-based training procedure and
explores its statistical and computational advantages. The hierarchical learning model is
inspired by the logical progression in human learning from easy to complex tasks and fea-
tures interpretable levels. In this model, the logarithm of any data instance’s norm can be
construed as the data instance’s complexity, and the allocation of computational resources
is tailored to this complexity, resulting in benefits such as increased inference speed. Fur-
thermore, our multiscale analysis of the statistical risk yields stronger guarantees compared
to conventional uniform convergence bounds.

Keywords: machine learning, neural network, chaining, information theory, scale-invariant
distribution, curriculum learning, logarithmic binning

1. Introduction

This paper introduces a hierarchical learning model with a multiscale entropy-based training
mechanism. Designed to exploit the multiscale structure in many real-world datasets, the
proposed model aims to provide statistical and computational efficiency while featuring
interpretability.

1.1 Background

In contemporary times, machine learning is the predominant approach in artificial intel-
ligence, enabling computers to acquire knowledge from data and experience. Within the
supervised learning paradigm, training data is postulated to arise randomly as pairs (X,Y),
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denoting the data instance and its corresponding label, respectively. A computer is pre-
sented with a sequence of such instances and labels independently drawn from the underlying
data probability distribution. Its task is to discern the relationship between the data in-
stances and their labels, ultimately predicting the label of new, randomly drawn instances.
In this paper, for simplicity, we adopt the function learning setting, part of the realiz-
ability assumption in statistical learning theory. That is, we assume that the dependency
between data instances and their corresponding labels is modeled noiselessly by a deter-
ministic target function Y = T'(X), mapping any data instance to its label (Shalev-Shwartz
and Ben-David, 2014; Mendelson, 2008).

An insightful observation is that the sequence of training examples typically lacks com-
prehensive information about the target function or the data domain. Beyond the training
data, providing the computer auziliary information through the learning model is crucial.
Higher auxiliary information enables the computer to learn the target function more accu-
rately and more efficiently. To illustrate this point further, consider the extreme scenario
where no auxiliary information is given to the computer, implying a total lack of knowledge
about the target function or the data domain beyond the training data. In such a case, the
optimal task for the computer becomes merely memorizing the training examples, leaving
it unable to predict the label for any new instance not present in the training data. This
approach is very prone to overfitting, most likely resulting in poor performance on new and
unseen data instances.

This notion of auxiliary information aligns with the idea of regularization studied in
statistical learning theory; see, for example, (Vapnik, 1999). Regularization manifests in
various forms, such as restricting the hypothesis class and explicitly and implicitly reg-
ularizing the training mechanism. Moreover, it is intricately linked to the no-free-lunch
theorem, which underscores the necessity for every learning algorithm to possess some level
of prior knowledge about the underlying assumptions of the learning problem to attain suc-
cess; see, for instance, (Shalev-Shwartz and Ben-David, 2014, Theorem 5.1). Analogously,
in most tasks, human knowledge is acquired through a combination of training data, prior
knowledge, and intuition.

A prevalent characteristic in many real-world datasets is the multiscale nature of their
data instances. In other words, in these datasets, data manifest across different scales of
magnitude, exhibiting a diverse range of sizes and complexities. This inherent property is
used in applications in various fields, such as wavelet theory, Fourier analysis, and signal
processing, as detailed in (E, 2011) and references within. In particular, empirical data
distributions across various domains such as physics, biology, medicine, finance, natural
language processing, and the social sciences frequently exhibit power-law distributions. No-
table instances of power-law probability distributions include the distributions of people’s
incomes, city populations, stars’ brightness, file sizes in computing, earthquake magnitudes,
and word frequencies in human languages, among other examples. These phenomena have
been extensively studied, as demonstrated in works such as (Newman, 2005; Clauset et al.,
2009) and references therein. The generation of power-law distributions in the real world in
natural and artificial systems involves diverse mechanisms, and each is believed to apply to
specific applications; see (Sornette, 2006, Chapter 14) and (Newman, 2005; Mitzenmacher,
2004). The most important of such mechanisms are considered to be growth with prefer-
ential attachment (Yule’s process) and critical phenomena (Newman, 2005). Furthermore,
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the generalized central limit theorem posits that the normalized sum of independent and
identically distributed random variables with infinite variance can only converge to a stable
distribution; see, for example, (Nolan, 2020). All stable distributions with infinite variance
exhibit power-law tails, whereas the Gaussian distribution is the sole stable distribution with
finite variance (Samoradnitsky and Taqqu, 2017). Power-law distributions are examples of
scale-invariant probability distributions.

Additionally, target functions in the real world, relating continuous data instances to
their real-valued labels, tend to be smooth and well-behaved. Leveraging such characteris-
tics of real-world data instances and target functions as auxiliary information in a machine-
learning model presents an opportunity to yield statistical and computational benefits in
real-world applications.

1.2 Overview of the Contributions

In this paper, we introduce a hierarchical learning model to take advantage of the aforemen-
tioned multiscale nature of data instances and the smoothness of their target functions. The
model comprises a compositional learning architecture with a sequential multiscale train-
ing mechanism. First, the training data is partitioned at different scales, and the training
mechanism starts by learning from the batch of the smallest data and progressing step by
step toward the batches of larger data. The learning process at each batch of data takes
advantage of the learned model over smaller data as prior information. This is inspired by
the logical learning mechanism observed in humans, who progressively learn different tasks,
commencing with small (easy) examples and advancing toward large (complex) examples.
Due to the ubiquity of such multiscale data, our proposed learning model holds promise for
many applications.
More precisely, we consider the following two assumptions:

(a) Data instances X; € R™ emerge in different scales of magnitude from a distribution
1 defined on the data domain X. Here, we assume that for 0 < ¢ < R, the data
domain is X = {x € R™ : ¢ < || < R}, where |z| denotes the Euclidean norm of
datum x. Typically, € is much smaller than R. Later in the paper in Subsection 5.2,
we assume that p is a scale-invariant probability distribution with shape parameter «,
whose probability density g(x) satisfies the following condition: For all x € X and any
v > 1 such that /v € X, we have

q(:) =7%q(z). (1)

(b) The target function T : B — R™ is well-behaved, where B} = {z € R™ : |z| < R}
denotes the m-dimensional Euclidean ball with radius R > 0, centered at the origin. In
this paper, we assume that 7T is differentiable and smooth, and we further assume both
the invertibility of T and the Lipschitz continuity of its inverse, T~'. For the special
case of m = 1, we show (in Theorem 19) that an additional smoothness assumption of
T~ leads to a strengthened result. We further assume that from prior knowledge or
intuition, the learning model knows the behavior of function 7" on B[", data instances
at very small scales.



AsSADI

We take advantage of such assumptions on the data in our hierarchical learning model
based on the following contributions:

Ladder decompositions of functions The first main result of the paper studies ladder
decompositions of invertible functions T : By — R™. The decomposition is defined in terms
of dilations Tp : By — R™ of T', where for any scale 0 <y <1 and all z € By,

The dilation T},) can be conceptualized as a ‘zoomed’ version of the original function 7" into
the origin, where the degree of zooming is determined by the scale v. Given a sequence
of dilation scales 0 < v < -+ < 74 = 1, the ladder decomposition is defined based on
the sequence of dilations {7},,; : k = 0,...,d} interpolating between T}, and Tj;; = T.
The decomposition is constructed as a sequence of successive compositions of functions
Ty := Ty 0 T[;qu] forall k=1,...,d, and writing

T[’ch] = Tk o.. -Tl 9} T[’YO]'

Building on an earlier result from (Bartlett et al., 2018), we show that the smaller the value
of v —vx—1 is, then the closer T} is to the identity mapping, thus being more well-behaved
and ‘easier’ to learn. To elaborate, for all 1 < k < d, let ¢p(z) := Ti(x) — x. The first
main contribution of the paper, Corollaries 20 and 26 in Section 3, states that if Ms-smooth
invertible function 7" : B — R™ is such that T~ is M;-Lipschitz, then

1rllnip < Clv — -1),

where [|¢y||Lip denotes the Lipschitz norm of v, and constant C' only depends on M, Ms
and R.

The definitions of the ladder decomposition and functions vy, yield that, forall 1 < k < d,
we have

Tiy) =Tk 0 Ty ) = Ty} + Yk 0 Ty )

This dependency between the levels of the ladder decomposition fits with a hierarchical
learning model with residual levels of the following form:

hi(z) := hg—1(x) + f(hr—1(z); wy). (2)

Here, ho := Tj,,), and f(-;w) is a learnable model with parameters w (a vector), for exam-
ple, a neural network. A specific example of f, a two-layer network with step activation
functions, is explored in Section 6. Let w = (wy,...,wy) denote the parameters of the
whole hierarchical model. For any 1 < k < d, define wy.x := (w1,...,wy). Level hy is a
function of the input datum x and the weights wy.;. Therefore, we sometimes denote hy
with hg(x; wy.). Parameters wy, ..., wy will be chosen sequentially by the training mecha-
nism such that f(-;wy) approximates ¢y well for all k =1,...,d. Thus, forall k =1,...,d,
the kth level of our learning model (hy) aims to approximate the dilation 1iy) of the target
function.
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The hierarchical learning model By defining v := (R/¢)'/¢, we split the data domain
X into d scales:

Xy = {x eR™:exbf < 2] < s’yk},

for all 1 < k < d. This multiscale partitioning of data domains is sometimes referred
to as logarithmic binning in the literature; see, for instance, (Newman, 2005). We then
consider the ladder decomposition of the target function 7' with respect to v := v*~¢, for
k =0,...,d. The logarithm of the norm of a datum z € X is viewed as a measure of its
complexity; that is, the sets Xp, X1, ..., Xy represent inputs of increasing complexity. We
assume that the target function is known at level o, that is, T}, is given. In other words,
the behavior of the function 7" at minimal values of x is known, and we shall sequentially
learn T, ..., T}y,. For all 1 <k < d, since the training mechanism aims to make hy(x)
closely approximate dilation T}, () = T'(y)/, we define the output of the learned
model for any = € A}, as

T

M@%Z%M(%> (3)

Given training examples s = (z;, T'(x;))I, the training of the model is performed by
sampling the parameters wy, ws,...,wy in a sequential manner from a sequence of Gibbs
measures. Namely, we start by considering training data examples whose instances belong
to the smallest scale X7, corresponding to the ‘easiest’ instances. An approximation of 1)y
is then learned by sampling w; from a Gibbs measure, a maximum entropy distribution,
defined with the empirical risk over these small-scaled examples with the absolute error loss
function and with hyperparameter A;. More precisely, w; is sampled from a discrete set
Wi according to the Gibbs measure:

1 x;
eXP(—W DN 71h1<4;w1> —T(z;) >
Py = w1) i= I

Z’LU/1€W1 exXp (_TLL)\l Zaz¢€sﬂX1 ,‘Ylhl (%7 w;c) - T(xl)

Subsequently, we observe data at the next scale X5, characterized by a higher magnitude.
Similarly, given the learned approximation f(-,w1) of ¥1, an approximation f(-,ws) of 1)g is

learned by sampling wo from a Gibbs measure with hyperparameter Ao, and this process is
iteratively repeated. That is, for k = 2,...,d, we sample wy, € W}, conditionally on wy._1)

with probability
%hk(%; wl:k) —T(x:) )

Yihi (%, wl:(kq)w;) — T(x)

1
exp (7 n\g Z:Q-Esﬁ)(k

Py Wiy (W[ 01-1)) =

Consequently, learning the target function for data at smaller scales is inherently ‘easier,’
serving as a foundational step for tackling more challenging learning tasks at higher scales.
Thus, this hierarchical model is also a model for implementing the concept of easy-to-hard

learning, commonly known as curriculum learning (Bengio et al., 2009). Here, scale serves
as a temporal progression—akin to how humans learn a course by starting with simpler

1
Zw;CGWk exp (_ n\g inESDXk
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examples and gradually advancing to more complex ones. This hierarchical approach to
learning the ladder decomposition is metaphorically akin to the step-by-step ascent of a
ladder.

The total training is then modeled with the following measure:

Py (W) := P, (w1) Py, (w2lw1) - - Py, oy, (walwiza-1))-

The next main result of the paper, Theorem 29, states that Py, minimizes a multiscale loss
regularized by a multiscale form of entropy. That is,

d
Py = arg min{E[ﬁ(A) (W,s)} — Z()\k — )\kJrl)H(Wl:k)}a (4)
By k=1

where ¢V is related to the total loss over the multiple scales and H(Wi.;) is Shannon
entropy. The proof’s idea, which expands upon the proof technique of (Asadi and Abbe,
2020, Theorem 13), is to show that the functional optimized by P}, can be decomposed into
a sum of conditional entropies of Wy, given Wy, (;_1), for all 1 <k < d.

The statistical risk The paper’s final main result bounds the model’s statistical risk
when the parameters are chosen according to the above multiscale training mechanism.
The result proceeds through a ‘chaining’ argument, where the loss is decomposed over the
successive stages of the training procedure, during which the parameters w = (w1, ..., wq)
are chosen.

Under the assumption that the model is realizable, that is, there exists a choice of
parameters Wi, ..., wy such that ¥ (-) = f(-;wy), for all 1 < k < d, we define the chained
risk as

d
Ll(tC) (W) =K [Z (ﬁk (wlzk, X) — U (’wlz(k_l)wk, X))] ,

k=1

where X ~ p and, for all 1 < k < d,

(@) = T(@)| = |he (£, 014) = T(@)| il a € X

b (g, @) = '
0 if v ¢ X

is the loss of the model on data at scale k.

Theorem 33 then states that when (S,W) ~ ,LL®”IP>§V|S, that is, when training data S
are n independent samples from distribution p and the parameters W are the outputs of
the multiscale entropy-based training mechanism given random training data S, then the
expected chained risk satisfies

d k 2 .2
4
© B B , _ Pk
E[Lu (W)} _2;_1: (M — Mep1) ;bglwﬂ sl L

where Agy1 := 0 and pp = O(¥¥) is the maximum output norm of ¥y (-), for all 1 < k < d.
Optimizing the hyperparameters Aj, ..., Aq of our learning mechanism in the bound above
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yields that, for all 1 < k < d, we have
2Pk

\/n Sk log W)

This, in turn, establishes the following bound on the expected chained risk:

Ak — App1 =

E[LOW)] <

Although the true parameter w = (wy,...,%wy) achieves zero chained risk, in general it is
not clear if a low expected chain risk implies low statistical risk. In fact, the chained risk
is always a lower bound for the statistical risk. However, for any scale-invariant proba-
bility distribution satisfying equation (1), with sufficiently large shape parameter «, we
demonstrate in Subsection 5.2 an upper bound on the statistical risk, based on the chained
risk. More precisely, we show that for such scale-invariant pu, there exists a constant C>0

independent of w such that )
CLu(w) < L9 (w),

yielding an upper bound on the expected statistical risk from (5).

Bounded-norm parameterization example In Section 6, we study a particular exam-
ple of the function f in (2), where invertible functions that are Lipschitz and smooth are
approximated by two-layer neural networks with step activation functions and bounded-
norm parameters. We study the approximation error, a bound on the network’s output,
and a bound on the network parameters’ norm. The parameters of the example are dis-
cretized, hence the hypothesis set of the whole hierarchical model is finite. We then apply
the derived bound on the statistical risk of the hierarchical model from the earlier sections
to this example.

1.3 Related Work

This work draws inspiration primarily from integrating concepts presented in (Bartlett et al.,
2018) and (Asadi and Abbe, 2020). The paper (Bartlett et al., 2018) establishes that any
smooth bi-Lipschitz function T" can be represented as a composition of d functions Tyo- - -0T7,
where each function T}, for 1 < k < d, approximates the identity function, manifested by the
Lipschitz norm of Ty (z) —x decreasing inversely with d. Notably, the proof of (Bartlett et al.,
2018, Theorem 2) employs the concepts of function dilation and ladder decomposition. On
the other hand, the paper (Asadi and Abbe, 2020) addresses the solution to the multiscale
entropy regularization problem, an extension of the Gibbs probability distribution to a
multiscale context. However, efficient sampling from the optimal probability distribution,
the output of the Marginalize-Tilt algorithm of (Asadi and Abbe, 2020), remains challenging
due to multiple steps of marginalizations of probability distributions. To alleviate this
problem, (Asadi and Loh, 2024) considers finding self-similar approximations to the optimal
probability distribution. Developing on the proof technique of (Asadi and Abbe, 2020), this
paper introduces the multiscale loss function ¢V that, when regularized with multiscale
entropy in (4), is minimized by the self-similar and computable distribution Pj,. Distinct
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from these works, our approach emphasizes interpretability by hierarchically learning ladder
decompositions of target functions and involves reading the output of the multilevel learning
model from different levels and depths, contingent on the scale of the input data instance,
as in (3). In essence, we align the multiscale architecture of the learning model with the
multiscale data domain.

Information-theoretic methods for analyzing the statistical risk and the generalization
error of learning algorithms have been pioneered within the framework of PAC-Bayesian
bounds (McAllester, 1999). This line of inquiry later evolved, adopting a related form that
utilizes mutual information, exemplified by the works (Russo and Zou, 2019), (Xu and
Raginsky, 2017) and (Bu et al., 2020). In a related vein, (Raginsky et al., 2016) introduces
alternative information-theoretic measures to assess the stability of learning algorithms and
bounds on their generalization capabilities. The extension of these information-theoretic
methods to multiscale techniques, inspired by the method of ‘chaining’ in probability theory
(see, for example, Talagrand, 2014), is presented in (Audibert and Bousquet, 2007),(Asadi
et al., 2018), (Asadi and Abbe, 2020), and (Clerico et al., 2022). Multiscale entropies,
a combination of entropies at different scales, play an implicit role in chaining. Notably,
Dudley’s inequality (Dudley, 1967) can be variationally transformed, expressing the bound
as a linear mixture of metric entropies across multiple scales. The work (Xu and Raginsky,
2017) also studies into the expected statistical risk of sampling from the Gibbs distribution,
sometimes referred to as maximum-entropy training. A subsequent multiscale extension of
this analysis has likewise been derived in (Asadi and Abbe, 2020).

The work (Fletcher and Markovic, 2012) establishes that any diffeomorphism defined
on the sphere can be decomposed as the composition of bi-Lipschitz functions with small
distortion.

Hierarchical learning models comprising layers that are nearly identity functions find ap-
plications in deep learning, evident in the context of residual networks (He et al., 2016) and
through dynamical systems approaches; see, for example, (E, 2017). A plausible rationale
behind the superior performance of deep neural networks compared to shallow networks is
their capability to learn different aspects of the data distribution across various layers. This
hypothesis finds support in empirical evidence where pre-trained bottom layers combined
with task-specific layers achieve excellent performance in image classification tasks; see, for
instance, (Devlin et al., 2018) and (Girshick et al., 2014).

1.4 Organization of This Paper

The rest of the paper is organized as follows: We provide the preliminaries and notation in
Section 2. Following that, in Section 3, we introduce the concept of ladder decompositions
of functions, examining the Lipschitz continuity and smoothness of its components. Section
4 explains our proposed learning model. Section 5 comprises two parts: Subsection 5.1
demonstrates the efficacy of multiscale entropy-based training in achieving low chained
risk, a new analytical tool. Subsection 5.2 establishes that if the data distribution p is
scale-invariant, the chained risk can serve as an upper bound on the statistical risk, thereby
providing an overall upper bound on the statistical risk of the learned model. Section 6
gives an example where diffeomorphisms can be represented using a parameterized model
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with bounded-norm parameters. We then compute the bound on the statistical risk from
Section 5 for this example. Finally, Section 7 encapsulates our work’s conclusions.

2. Preliminaries and Notation

The sets of real numbers and integers are symbolized by R and Z, respectively. Throughout
the paper, |z| denotes the Euclidean norm of a vector x € R™, |x|; represents the ¢1-norm
of a vector z € R™, |A|y denotes the spectral norm of a matrix A € R™™, and || f||Lip
is the Lipschitz norm of a function f. The identity function is denoted as id. For a pair
of positive integers k < n, let (Z) represent the ‘n choose k’ binomial coefficient. For any
x € R, the floor function |z| equals the largest integer smaller than or equal to x. Given
two matrices A, B € R™*™ A < B indicates that B — A is a positive semidefinite matrix.

Random variables and vectors are denoted by capital letters, while lowercase letters
represent their specific realizations. The equiprobable (uniform) probability distribution is
represented by U, and its support is indicated with a subscript. If X is a random variable
and P is a probability measure, the notation X ~ P signifies that X is distributed according
to P. The Dirac probability measure on w is denoted as d,,. The n-fold tensor product of a
measure p with itself is represented by p®". For two distributions P and @, P < ) means
that P is absolutely continuous with respect to Q.

In supervised batch learning, we define X as the instance domain and ) as the label
domain. A target function 7' : X — ) exists, which maps any data instance to its label.
We also define the hypothesis set H = {hy, : w € W} consisting of hypotheses indexed by
the set W. A loss function £ : W x X — R is introduced.

A learning algorithm is presented with a random training sequence S = (X1, ..., X,) com-
prising n data instances along with their corresponding labels (T'(X1),...,T(X,)), where
S is drawn i.i.d. from X with an unknown distribution g. In other words, S ~ p®". During
the training procedure, the algorithm selects hyy € H, modeled by a random transformation

Pus.

Definition 1 (Statistical Risk) For any w € W, the statistical (or population) risk of w
1s defined as

Ly(w) := E[f(w, X)], (6)
where X ~ p.

A primary goal of statistical learning is to identify computationally efficient learning algo-
rithms for which, given a random training set of size n, the expected statistical risk E[L,(W)]
is small. Here, W is distributed with the marginal distribution of Rys = M®"PW‘S.

Next, we present some preliminary tools later used in the paper.

Definition 2 (Entropy) The Shannon entropy of a discrete random variable X, taking
values on set A, is defined as

H(X):=—_ Px(z)log Px(x).
z€EA
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The relative entropy between two distributions Px and Qx, if Px < Qx is defined as

D(Px|Qx):=>_ Px(x (gj{ig)

zeA

otherwise, we define D(Px||Qx) := oo. The conditional relative entropy is

D(Py|x||Qyx|Px) : ZD Py |x—2||Qy|x=2)Px ()
z€A

=E[D(Pyx(1X)|Qv|x(1X))], X ~ Px.

The following useful property of entropy is called the ‘chain rule’. For proof, see, for
example, (Cover and Thomas, 2012, Theorem 2.5.3):

Lemma 3 (Entropy Chain Rule) Let Pxy and Qxy be two distributions. We have
D(Pxy|Qxy) = D(Px|Qx) + D(Py|x||Qy x| Px)-
The next definition relates to ‘geometric’ transformations of probability measures:

Definition 4 (Escort and Tilted Distributions) Given a discrete probability measure
P defined on a set A, and any X € [0, 1], we define the escort distribution (P)* for alla € A

as P

erA P)\(‘T) ‘

Given two discrete probability measures P and Q defined on a set A, and any X € [0,1], we
define the tilted distribution (P,Q)* as the following geometric mixture:

PNa)Q'"*(a)
e PA@)QA(z)

Evidently, if U is the equiprobable distribution on A, then

(P))a) :=

(P.Q)Ma) =

(P = (PO
In our analysis in Section 5, similar to (Asadi and Abbe, 2020), we encounter linear com-
binations of relative entropies. The next lemma shows the role of tilted distributions in

dealing with such linear combinations; see, for example, (van Erven and Harremoés, 2014,
Theorem 30):

Lemma 5 (Entropy Combination) Let A € [0,1]. For any distributions P,Q and R
defined on a discrete set A such that P < Q and P < R, we have

D(P|Q)+ (1= ND(P|R) = D(P||(Q. 7)) - 1og<ZQA )R >>

10
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Proof Let Z:=3 ., Q)R (z). We have

D(P||Q)+ (1 = \)D(P||R) = A Z P(x) log(ggg> +(1—=X) Z P(x) log(ZEB)
€A

€A
:ZP < 1,\ >
zeA R
:ZP 10g( )Rl/\ ) log Z
zeA

:D(PH(Q,R)A> 10g(ZQ YRIA( )).

We provide the following definition to later simplify the notation in the proof of Theorem
29:

Definition 6 (Congruent Functionals) We call two functionals £L1(P) and L2(P) of a
distribution P congruent and write L1 = Lo if L1 — Lo does not depend on P.

For example, Lemma 5 implies that if () and R are fixed distributions, then as functionals
of P, the following congruency holds:

D(P|Q) + (1 = ND(P||R) = D(P||(@, R)*).

Specifically, if U is the equiprobable distribution, then

D(P|Q) + (1 - ND(P|U) = D(P||(@)*). (7)

The following well-known result, sometimes referred to as the Gibbs variational principle,
implies that the distribution that minimizes the sum of average energy (loss) and entropy
(regularization) is the Gibbs measure:

Lemma 7 (Gibbs Variational Principle) Let W be an arbitrary finite set and Uy be
the equiprobable distribution on W. Given a function g : W — R and X > 0, we define the
following Gibbs probability distribution for all w € W:
, (-
Qw (w) = o)
Zw 'eWw eXp( A )

Then, for any probability measure Py defined on VW, we have

ECO]

w'eW

Elg(W)] + AD(Pw ||Uw) = AD(Pw | Qw) — MOg(
where W ~ Pyy.

11
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Particularly, Lemma 7 yields the following congruency identity as functionals of Py :
ElgW)] + AD(Pw [|Uw) = AD (P [|Qw)- (8)

We later make use of the congruency relations (7) and (8) iteratively in the proof of Theorem
29.
In Section 5, we require the following well-known result on the Log-Sum-Exp function:

Lemma 8 (Log-Sum-Exp) For any positive integer N, let z = (21, 22,...,2n) € RY be
arbitrarily chosen. For any A > 0, the Log-Sum-Fxp function

G

Ga(z) := —Alog iv:exp( )\)

satisfies

min z; — Alog N < Gy(z) < min z;.
j=1,..N 7 gN < GA\(2) = j=1,.N 7

The proof of Theorem 33 requires some tools on the topic of concentration of measures, as
stated next.

Definition 9 (Subgaussian) A random variable X is called o-subgaussian if for all X €
R, its cumulant generating function satisfies

logE [eA(X_EX)} < )\2202.

The next result is based on (Xu and Raginsky, 2017, Lemma 1), which itself can be derived
from (Boucheron et al., 2013, Lemma 4.18). This result and its variants are key ingredients
in information-theoretic generalization bounds.
Lemma 10 If g(/_l, B) s o-subgaussian where (A, B) ~ PaPpg, then for all A > 0,
2
o o
E[g(A, B)] = E[g(A, B)] < Mlog | A| — H(A|B)) + 5.
The Azuma—Hoeffding inequality shows the subgaussianity of the sum of independent and
bounded random variables:

Lemma 11 (Azuma—Hoeffding) Let Xi,..., X, be independent random variables such
that a < X; < b for all1 <i<mn. Then,

E|en Tt (Xi—EXy) | < )‘72(() —a)?
~ 2n '
In other words, Y\ | X;/n is (b — a)/\/n-subgaussian.
Let g : [a,b] — R be a differentiable function and assume that n is a positive integer. Let
A = (b—a)/n. We define the Riemann sum at level n as

S i=A (Z gla+ (i — 1)A)> .

i=1
The subsequent well-known lemma, which we use in Section 6, bounds the approximation
error of the Riemann sum. For proof, see, for example, (Hughes-Hallett et al., 2020).

12
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Lemma 12 (Riemann Sum) The approximation error of the Riemann sum is bounded
as follows:

~

M
< —(b—a)?
—2n( a)?

[ stz s,

where M is the mazimum absolute value of the deriwative of g on |a,b].

3. Ladder Decompositions of Functions

In this section, we first precisely define dilations and ladder decompositions of invertible
functions. Then, we study Lipschitzness and smoothness of the components of the ladder
decompositions of smooth functions 7" : By — R™ defined on bounded Euclidean balls with
radius R > 0. For simplicity, we first consider the special case m = 1 in Subsection 3.1
and investigate multi-dimensional functions in Subsection 3.2. We first provide the precise
definition of dilations of a function.

Definition 13 For any 0 <y <1, let the dilation of function T : Bl — R™ at scale v be
defined as

T(vyx
Tiy () = (3), for all x € BE.

If T is differentiable and T'(0) = 0, as a continuous extension for v = 0, we define Tjy as
the derivative of T' at the origin. Namely, Tig(x) := Jr(0)z, where Jr(0) is the Jacobian
matriz of T at the origin.

The next lemma relates the inverse of the dilation with the dilation of the inverse function:

Lemma 14 Let T be an invertible function. For any 0 < v < 1, we have (TM)f1 =75

[]
Moreover, if T is differentiable and T(0) = 0, then (T[O])_l = T[a]l.
Proof If v > 0, then (Th])_l(x) =T Y(yz)/y = T[;]l (x). The case v = 0 follows from
the well-known inverse function theorem; see, for example, (Baxandall and Liebeck, 1986,
Chapter 4). [ |

The next definition characterizes the concept of ladder decompositions:

Definition 15 For all 1 <k <d, let Ty, :=T},,j o T[;kl,l]' We call the following multiscale

decomposition the ladder decomposition of T at scale parameters {Vk}z:o-'
T=Tyo-oTioT,. (9)
For all 1 < k < d, we further define v, := T}, — id.

Clearly, for all 1 < k < d, we have T[m =Tpo---0Tjo0 T[wo]' Owing to the smoothness
of the function T', for all 1 < k£ < d, when consecutive scale parameters v; and ~y,_1 are
close, we intuitively expect that the transformation T}, acting between the dilations of T’
at scales v5_1 and 7, be close to the identity function. In the rest of this section, we make
this intuition precise, starting from the simpler case of one-dimensional functions (m = 1)
and then studying the more general case of multi-dimensional functions (m > 2).

13
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3.1 One-Dimensional Functions
We begin by providing the definition of smooth functions for one-dimensional functions.

Definition 16 Let V be a bounded subset of R. The one-dimensional function T :V — R
is M -smooth if it is differentiable and its derivative T is M -Lipschitz.

If T:V — R is twice differentiable, then it is M-smooth if |T”(x)| < M for all x € V, where
T" denotes the second derivative of T'.
The next definition concerns the concept of diffeomorphisms:

Definition 17 A function T : (—R, R) — R is an (My, My)-diffeomorphism if it is invert-
ible and both T and its inverse T~ are twice differentiable, Mi-Lipschitz and May-smooth.
If T is smooth, then one may expect 7}, to get closer to Tjg as v — 0. The following

preliminary result can be viewed as a formalization of this insight. Its proof is based on a
simple extension of the proof of (Bartlett et al., 2018, Theorem 2).

Proposition 18 Let T': (—R, R) — R be a Ms-smooth function and T'(0) = 0. Then, for
any 0 <~ <1,

HTM — Ty HLip < VMR
Proof The statement is trivial if y = 0. Assume that 0 < <1, and let z,y € (—R, R) be

arbitrarily chosen. Based on the mean value theorem, there exists z between x and y such
that T(vx) — T(vy) =T (vz)(x — y). We can write

(T o) = Ty o)) = (o) ~ T )] = |(F22 = F02) — 2000 =)
= |T"(y2)(z —y) = T'(0)(z — )|
= |z —ylIT"(v2) — T'(0)|
< |o = yllyz[M;
< |z —y[yMaR,
which implies the statement. |

Since T'(0) = 0, then based on Proposition 18 we have
(T} (2) = Ty (2))| < YMaRlz].

Thus, the smaller 4 is in the ladder decomposition, the closer function Tj,,; is to the linear
function Tig;.

The next result makes precise the intuition that if two subsequent scale parameters i
and 7,_1 are close, then T} := Tm] o T[;klil] is a function close to the identity function:

Theorem 19 Let T : (—R, R) — R be an invertible My-smooth function such that T—! is
M, -Lipschitz and T'(0) = 0. Then, for any 0 <~y <~' <1, we have

| Ty o 1t —ia

If T is further assumed to be an (My, Ma)-diffeomorphism, then Ti,n o T[;}l —id is (M? +
M) Mjy-smooth as well.

| < (/=) MLE
Lip

14
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Proof The statement is trivial when v = 4. It is enough to prove that for any 0 < v <
v <1 and any z,y in the domain of Ty 0 T[;]l, the following inequality holds:

(T o T} @) =) = (T o T 2) = ) | < (4 = 2) M MaRly — .

Let v := T[;]l(x) and w = T[;}l(y). Based on Lemma 14, z = T},)(v) and y = T}, (w).

According to Definition 13, the domain of T}, is (=R, R), thus max{|v|,|w|} < R. By

defining the function r := T}, — 1},}, we observe that

']
(T 0 T ) =) = (T 0 T (@) = ) = (T () = Thy(w)) = (T (v) = Ty (0)
=r(w) —r(v).

Note that the derivative of r at point v is equal to r'(v) = T'(y'v) — T'(yv). Based on the
mean value theorem, there exists ¢ € R between w and v such that

r(w) = r(v) = (w —v)r'(c)

= (w—0)(T"(v'¢) = T'(vc)).

(T 0 75 @) =) = (Thy o T @) = )| = Ir(w) = r(v)]
= |w —[[T"(y'¢) = T'(y0)]

< |w —v[Ma|y'e — ¢ (10)
= |w —v|Ma|c| (' — )

< |lw —v|[MyR(v =) (11)
< |y —z|MiMaR(Y — ), (12)

where (10) follows from T" being Ms-smooth, (11) follows from |c¢| < max{|v|, |w|} < R, and
(12) is based on the assumption that 7! is M;-Lipschitz.

We now prove the smoothness property. Let g(z) := T~ (x) and ¢ := Ty 0 T[;]l —id.
The chain rule of derivatives yields

/ /
gl 2 2
V(@) =+'T" <79(7$)> (¢'(v2))” + T (ﬁ(%))g”(v)-
Since T and g are both M;j-Lipschitz and Ms-smooth and 0 < v,+" < 1, we deduce

9" (2)] < (M7} + M) M.

Therefore, v is (M? + M;)Ma-smooth. [ |

Corollary 20 Theorem 19 implies that for the ladder decomposition of T at scale param-
eters {’Yk}g:o; the following inequality holds for all 1 < k < d:

[kllLip < (v — Ye—1) M1 MaR. (13)
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The following is an example in which the functions ¢, 1 < k < d, have a closed-form
expression:

Example 1 Let T'(z) := tanh(xz) be the hyperbolic tangent function where it is known
that T~ (z) = %m(}%ﬁ) for 2] < 1. Assume that 75 = 25~ for all 0 < k < d. For all

|x| < 1, we can derive

Yr(z) = Ti(v) —
= Ty 0 Ty _y(@) — @

exp (27kT[;;71](x)> -1

Vi (exp (2%1@;1](@) + 1)
1 _
~ew(gm(ir)) 1
- Vi 1 1+v,—1 1
Tk &XP V-1 n 1=vyk_12 +
Vi
(1+7k—1x>7k71 1
1—vyg_1z
= ! Tk -
g ((ﬂiiii) s 1>
291
V(1475 _12%)
. X
142 a?
3

— T

— T

_ 713715”
1+ 7,371332
1

- —.
Yeqr 3+l

Figure 1 depicts the plot of ¢;(x) for all 1 < k < d, where d = 5. It clearly demonstrates
that the Lipschitz norm of v increases with k.

3.2 Multi-Dimensional Functions

In this subsection, we extend the first part of Theorem 19 to multi-dimensional functions
with m > 2. We commence by providing the definition of smooth multi-dimensional func-
tions. The well-known extension of Definition 16 to real-valued functions of multiple vari-
ables is as follows:

Definition 21 The scalar-valued function g : B — R is M-smooth if it is differentiable,
and its gradient Vg is M -Lipschitz with respect to the Euclidean distance. Namely, for any
x,y € B, we have

Vg(z) = Vg(y)| < M|z —y|.

16
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Figure 1: A plot of ¢y (x) for different values k: k = 1 the solid line, k& = 2 the dotted line, &k = 3
the dashed line, k¥ = 4 the dotted-dashed line and k£ = 5 the large dashed line.

A twice differentiable function g : BjY — R is M-smooth if the absolute value of any
eigenvalues of its Hessian Hgy(x) is smaller than or equal to M, for all x € B}}. In other
words, if I denotes the identity matrix, then —MI < Hy(x) < M1 for all x € B}.

We now extend the previous definition to vector-valued functions:

Definition 22 The multi-dimensional function T' : B — R™ is M-smooth if it is differ-
entiable and its Jacobian Jr is M-Lipschitz with respect to the spectral distance. In other
words, for any x,y € By, the subsequent inequality holds:

[ Jr(x) = Jr(y)ll, < M|z —yl.
The next result shows the relation between Definitions 21 and 22.

Proposition 23 Assume that T : B} — R™ is a function with components
T(w) = (T1(2), .., Ton(2).

Then, the multi-dimensional function T is M-smooth if and only if each scalar-valued func-
tion T; : B} — R is M-smooth, where 1 < i < m.

Proof Let x,y € BE be arbitrarily chosen. Assume that each function T; is M-smooth
for all 1 < ¢ < m. For any u € R™, we observe

|(Jr(z) = Jr(y))u| < max [(VTi(x) - VTi(y)) ul.

1<i<m
Moreover, given any 1 < ¢ < m, the Cauchy-Schwartz inequality implies
(VTi(w) = VTi(y)) " u| < |VTi(z) = VTi(y)|lul
< Mz — yllul.

17
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Thus, for any v € R™,
|(Jr(x) = Jr(y))ul < Mz —yllul,
which implies that
17 (2) = Jr(y)lly < Mz —yl.

This proves the ‘if’ part. To prove the ‘only if’ part, assume that T' is M-smooth. For any
1 <1i < m, let e; be the ¢th standard unit vector. Then, for all 1 <1i < m,

(VTi(z) = V()" | = [(Jr(x) — Jr(y))eil
< |[Jr(z) = Jr(y)llsleil
< Mz —yl,

which implies that T; is M-smooth. |

The proof of Theorem 19 relied upon the mean value theorem. The following result is a
multi-dimensional extension of the mean value theorem:

Lemma 24 Let r : B — R be a differentiable function. For any a,b € By, there exists
X € (0,1) such that for ¢ := Ab+ (1 — N)a € B}, we have

r(b) = r(a)] < [[Jr(c)2]b — al,
where Jy.(c) is the Jacobian of v at c.

Proof Define ¢ : [0,1] — R as &(t) := (r(b) — r(a))Tr(th + (1 — t)a). Based on the mean
value theorem, there exists A € (0, 1) such that £(1) — £(0) = £'()). Thus, according to the
chain rule of derivatives, we can write

(r(b) = (@) (r(b) = r(a)) = (r(b) = r(a))" Jr(c) (b — a).
The Cauchy-Schwartz inequality yields

[r(b) = r(@)* < |r(b) = r(a)l|Jx(c)(b — a)]
< |r(0) = r(@)|[|J-(c)2]b - al,

which implies the statement. |

We now have sufficient tools to extend the first part of Theorem 19 to multi-dimensional
functions.

Theorem 25 Let T' : BY — R™ be an invertible May-smooth function such that T s
M, -Lipschitz and T(0) = 0. Then, for any 0 <~ <~' <1, we have

-1 .
| Ty o 1t~ ia

| < (=) MR
Lip

18
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Proof The case v = v/ is easy to verify. Thus, it is enough to prove that for any 0 < v <
v <1 and any z,y in the domain of Ty 0 T[;]l, we have

‘(TM ° T[;]l(y) B y) N <Th’] © T[;]l(@ - 33)‘ < (Y =) MiMyRly — x|.

[v]
According to Definition 13, the domain of T}, is Bf, thus max{[v[, |w[} < R. Let

T[ — T L We observe that

Let v := T[;]l(ac) and w := T_'(y). Based on Lemma 14, z = Tiy(v) and y = Tiy(w).
r

']
(T o T35 ) = 0) = (T o T @) = 2) = (Thy(w) = Ty () = (Thy(v) = Ty (v)
=r(w) —r(v).

The Jacobian of function r at point z is equal to J,.(z) = Jp(v'z) — Jr(yz), where Jr is the
Jacobian of T', for all z € Bjy. According to Lemma 24, there exists ¢ € R™ as a convex
combination of v and w such that

[r(w) = r(@)] < |1:()l2hw = o]
Hence,
(Thy o T3 @) =) = (T 0 T @) = @) | = Ir(w) = (o)
S e PACIE
= |w = vl |Jr(+'¢) = Tr(z0)]l

< Jw — v|Male| (v = 7) (14)
< Jw —v|MaR(y — ) (15)
< |y — x| My MaR(y — ), (16)

where (14) follows from 7" being Ms-smooth, (15) is based on the fact that
le| < max{|v|,|w|} < R, and (16) follows from the assumption that 7! is M;-Lipschitz. B

Corollary 26 Similar to Corollary 20, Theorem 25 implies that for the ladder decomposi-
tion of multi-dimensional function T at scale parameters {%}i:o; the following inequality

holds for all 1 < k < d:
[YkllLip < (V6 — W—1) M1 Mo R. (17)

Remark 27 The proof of (Bartlett et al., 2018, Theorem 2) establishes that, forall 1 < k <
d, function ¢y, is C (v —7k—1)/7vk-Lipschitz for some constant C'. However, this implication is
weaker than our result. For example, for each 1 < k < d, when scale parameters are chosen
as v, = k/d, then our result yields that ||¢y||Lip = O(1/d). However, (Bartlett et al., 2018,
Theorem 2) states that there exist functions 77, ...,Ty such that T =T, 0--- 0T} and for
each 1 <k <d, ||T; —id||Lip = O((logd)/d).

Corollaries 20 and 26, when applied to the ladder decomposition of the target function
T, are key results underpinning our learning model.
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4. The Proposed Learning Model

In this section, we precisely formulate the learning model and discuss its strengths.
Assume that for 0 < € < R, the data instance domain is

X:={zxeR":ec<|z| < R}

Typically, € is much smaller than R. The label set is ) = R™, and the target function
T is an invertible Ms-smooth function such that 7! is M;-Lipschitz. Suppose that from
previous knowledge or intuition, we know the behavior of function 7T at data instances in
very small scales 0 < |z| < e. This is equivalent to knowing T},}, where 7o := R/e. Without
loss of generality, we further assume that 7'(0) = 0.! For example, it may be assumed that
Ti,,) is a linear function equal to Tjg|, the derivative of T at the origin. Let v := (R/ e)l/d,
We split the data domain X into d scales. For all 1 < k < d, define

Xy = {:c ER™: eyt < 2] < Evk}.

Clearly, X = nglé\,’k, indicating that these sets form a partition of X'. Each set &}, is called
the domain of instances at scale k. We define the scale parameters {’Yk}z:o to constitute a
geometric sequence such that for all 0 < k < d,

Y =" (18)

Consider the ladder decomposition of 7' at scale parameters {7y }{_, (Definition 15). For
all 1 <k <d, we have

T[’Yk] =Tro T['Yk—l] = T[’kaﬂ + i o CT['kal]' (19)

To progressively learn the target function 7" on X through multiple stages, we introduce a
d-level hierarchical learning model that aligns with the relation (19). We set hy := Ty
and for all 1 < k < d, define

hi(z) := hg—1(x) + f(hk—1(z);wy), (20)

where f is a function dependent on the parametrization of the learning model. The choice
of function f is important for ensuring enough representation power of the model, and we
explore an example in Section 6.

Remark 28 One may rely on the universal approximation theorem for neural networks and
assume that function f is a two-layer neural network with sufficient width; see a discussion
in (Bartlett et al., 2018).

We denote the parameters of the kth level of the learning model with wy, allowing it to
take values from a finite set W, during training. The training mechanism aims to make the
mapping between the input and each layer hy approximate 77,,;, the dilated version of the

'Tn general, one can replace T(-) with T(-) := T(-) — T/(0) and learn this new function. Clearly, T(0) = 0.
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target function T at scale 7. For a successfully trained model, f(-;wy) should effectively
approximate (). Let Cy := M;M3R. According to Theorem 25, we have

[kllLip = Crlve = y-1) = Ci(y — Dy~ (21)
Since T'(0) = 0, we have 1;(0) =0, for all 1 < k < d. Thus, (21) implies that
V()] < Oy — 1) = O(YF). (22)

Hence, we regularize our hypothesis set as follows:
|f(5wk)| < pg, for all wy € W, (23)

where py, is at least the maximum value of |(+)].

In a successfully trained model, each level hy approximates T}, ;. Knowing 7}, is
enough to determine the label of each instance x € X} with appropriate rescalings. Thus,
we define the output of our model hy,(x) as follows:

’71h1 % if =xz¢€ X1
hw(x) :: ’}/th % if xz¢ XQ,
ha(x) if ze Xy

Therefore, there is no necessity to propagate every data instance x through all levels of our
hierarchical model. Rather, the processing steps required to evaluate hy(x) for an input
instance € X’ are proportional to the logarithm of the instance norm |z|, determining in
which X} does z belong to. Consequently, the logarithm of the norm of each data instance
x can be construed as a metric for its difficulty or complexity.

Let the n-tuple of training instances be denoted by s = (z1,...,z,). We assume the
training set includes instance-label pairs (z;, T'(z;)) for all 1 < ¢ < n. The training mech-
anism commences with the simplest training examples whose instances are at the smallest
scale X7, and progressively trains the model’s layers by using the larger-scaled (more com-
plex) examples. At each level, corresponding to each scale of the data, training is represented
by sampling wy, from a Gibbs measure with the loss (energy) as the empirical risk evaluated
for that specific scale of the training data and with hyperparameter (temperature) Ag. The
temperature vector ()\k)%zl consists of model hyperparameters that can be chosen based
on cross-validation or by Corollary 34, which provides their values that optimize the de-
rived bound on the statistical risk. It is well-known that Gibbs probability measures are
maximum-entropy distributions; see (Jaynes, 1957), a property that we later use in the
analysis. Precisely, for all 1 < k < d, given trained values for wy.(_1), we sample the vector
value for wy, with the following probability:

%hk(%; wl:k) —T(x:) )

Yehi (%7 wl:(k:—l)“’é) —T(z;) ) ‘
(24)

1
exp <_ nA\k ZmEsﬁXk

]P)Wklwl:(kfl) (wk‘wli(k—l)) =

1
Zw;CGWk exp (_ n\g inESDXk
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This training mechanism is hierarchical and stochastic. Furthermore, it exhibits self-
similarity, as at all steps, we sample from Gibbs distributions consisting of loss functions
with similar absolute error forms, albeit on data at different scales and with different tem-
peratures. We refer to this training mechanism as multiscale entropy-based training, see
Algorithm 1.

Algorithm 1 Multiscale entropy-based training

Hyperparameters: Temperature vector (Ak)ﬁzl.
Input: Training data (z;, T'(z;))7 ;.

Output: Trained parameters wy, ..., wq.
1: for k=1 to ddo
2: Given training data at scale k (s N A}) and sampled values for wy.(,_1), obtain wy,

by sampling from the Gibbs measure:

1
PWk|W1:(k—1) (wk‘wli(kfl)) X exp(—m Zmiesﬂ){k

Vil (%7 wl:k) — T'(x;)

).

The proposed learning model and the forthcoming analysis of its statistical risk possess
the following advantages:

1. Hierarchical learning model with interpretable levels: The training objective
is to ensure each level h; approximates the dilation of the target function 7" at scale v,
that is, T},,;. Thus, each level in our hierarchical learning model holds a meaningful
interpretation—a departure from black-box hierarchical models such as commonly
used neural networks. In other words, the mapping between the input of the whole
compositional model

(id + f(5wa)) o -+ o (id + f(5;w1)) o Thyg),

with any of its intermediate levels is aimed to be close to dilations of the original
target function at different scales.

2. Measuring the complexity of any data instance with the logarithm of its
norm: For any data instance z, the logarithm of its norm log |z| can be interpreted
as a measure of its complexity. This complexity determines the training and infer-
ence stage at which the label of x can be predicted in the learning model. Thus, our
learning model can also be observed as a mathematical model for curriculum learn-
ing. For illustrative examples of norm-based complexity interpretations, consider the
following scenarios: In finance, predicting fraud becomes increasingly challenging as
a company’s revenue resources grow. In image processing, higher degrees of sparsity
lead to lower norms in feature vectors, making their targets easier to predict.

3. Computational savings in inference: Assume that z € &} is a new data instance
that we want to predict its label using our model. To compute the model’s output
for z and predict its label, it is sufficient to process x/vx only up to the kth level
and calculate yphi(z/v;). In other words, there is no necessity to pass the instance
through all d levels of the learning model, and processing only the first k levels is
adequate, in contrast to commonly used neural networks. This efficiency stems from
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the fact that, on the one hand, hj approximates the dilation 7},,;. On the other hand,
given that |z| < 7% and with proper rescaling, one can compute the value of T'(x) just
by knowing Tj,,;. More precisely, we have T'(z) = v T},,)(z/y%) whenever |z| < .
In practical terms, when using the trained model to predict the target of new data,
the computational workload for computing the output of the learned model with a
particular data instance as input is directly tied to the complexity of that instance.
Since, by assumption (such as scale-invariant distributions (1)), data instances are
distributed heterogeneously across different scales and difficulties, this characteristic
may lead to substantial computational savings and an increased inference speed.

4. Statistical guarantee stronger than uniform convergence: The statistical anal-
ysis of the risk of the trained compositional model is tailored to the hierarchical train-
ing mechanism and takes its multiscale structure into account when deriving the bound
on its statistical risk. Consequently, the bound can be much sharper than a uniform
convergence bound for the classical empirical-risk-minimizing training algorithm, as
shown in the next section.

5. Robustness to interruptions during training: The training of current hierarchi-
cal learning models (such as neural networks) on massive datasets may take extensive
amounts of time and are prone to interruptions. Our sequential training mechanism
consists of d stages. If, for any reason, this mechanism terminates prematurely after
stage k for any 1 < k < d — 1, we can still ensure the availability of a useful model.
More precisely, this model remains capable of accurately predicting the labels of data
instances belonging to X U - - - U X}, which are all z € R™ such that ¢ < |z| < en*.

6. Computational savings in training for diverse users: The proposed learning
model can provide computational savings when there are d different users, each re-
quiring accurate prediction of the labels of data instances at scale k (set X)) for
k=1,...,d. Instead of training separate models for each of the d users, we stream-
line the process by using the trained model for user k — 1 as ‘prior information’ in
training the model for user k, for all 2 < k < d.

5. Statistical Analysis of the Learning Model

In this section, we statistically analyze the learning model’s performance. In Subsection 5.1,
we prove an upper bound on the training mechanism’s chained risk. Then, in Subsection
5.2, we show that if the data instance distribution p is scale-invariant, we can bound the
statistical risk from above based on the chained risk.

5.1 Multiscale Entropy-Based Training and the Chained Risk

For all 1 < k < d, we define the loss at scale k as

lhw(z) = T(z)| = "Ykhk (,Yik, wl;k) — T(m)‘ if x € Xy

le(wig, o) i= {
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Furthermore, suppose that
Cp (w1, 8) : ka W1k Ti)-

Equation (24) in the previous section can be written more succinctly as

exp (—ifk(wlzk, s))

Zw;ewk exp <—i€k (wlt(kfl)w;ga 5))

PWk|W1:(k71) (wk‘wlz(k—l)) =

We denote the whole random parameters as W := (Wy,...,Wy). The measure

Jop—
]PW = PW1PW2\W1 . ']P)Wd‘wlz(dfl)

models the total training mechanism. For ease of presentation, define the extra parameter
Ad+1 := 0. The next theorem indicates that the self-similar measure Py, is the minimizing
distribution of the sum of a multiscale loss and a multiscale entropy. Consider the definition
of the multiscale loss

d
Z (Ck (w1, s) — O (Wi 5—1),5)) s (26)
k=1
where, for all 1 < k <d,
- 1
Uk (wr:(k—1),5) := — g log Z eXP<_)\€k (wls(k—l)w;ms)> (27)
'LU;CGWk k
is a Log-Sum-Exp function.
Theorem 29 We have
d
Py = ar%rlin{E [M (W, s)} =) (- )\Ic—f—l)H(Wl:k)}- (28)
k=1

Proof We develop what we call the ‘multiscale congruent technique’ used in the proof
of (Asadi and Abbe, 2020, Theorem 13). Specifically, recalling the definition of congruent
functionals (Definition 6), we aim to show that, as a functional of Ry,

]P)Wk‘wlz(k—l)

PWl:(kq))'

(29)
This will then immediately imply (28), as setting Ry = P}y, makes the entropies in the right
side of (29) vanish altogether. For all 1 < k < d, define

d d
[ (/\) W S i| Z )\k — )\k+1 (lek) = Z )‘kD (PWk|W1:(k71)
k=1 k=1

k

Li(wik,s) =Y Li(wiy,s),

J=1
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and
exp <_iLk(w1:ka s))

1 .
ZwllrkGV\h X X W exXp <_ELk (wgzk’ S))

Qi (wi) =

Recall that Uy, , denotes the equiprobable distribution. We can write

d
Ej(wlzja s)| + Z(Ak - /\k+1)D(PW1:k ”le:k)
k=1

E

Q.
=l M&
_ =

I
(]

(M — Mot 1) D(Pwy 10w ) + (E[La(Whiay 8)] + AaD (P, [|Uw.,)

k=1
d—1 J
= 3 = Mes) DB [0 + 2aD (P @F1) (30)
k=1
d—1

(Ak - >‘k+1)D(PW1:k ||UW1:k)

I
g

(d)
+ AaD (PW1 (d—1) le (d— 1)) + XD <PWd‘W1:(d—1) QWd\Wl;(dq) PWI:(d—l)) (31)
d—2
= (/\k - >\k‘+1)D(PW1:k ||UW1:k)
k=1
+ (()\d—l — Aa)D <PW1 @1 ||[UWr, 1)) +)\dD<PW1 (@-1) QW1 - 1)>)
+ AaD <PWd\W1 (d—1) QWd\Wl (d-1) PWI:(d71)>

T
no

I
(]

(A — )\k+1)D(PW1:k ||UW1:k-) + Ad—1D (PW1:(d1)

(@) ")

Ple(d71)>’ (32)

1
AdD (PWd\Wl:(d—l)

+ =

(d)
QWd\le(d—l)

where (30) is based on the Gibbs variational principle (Lemma 7), (31) is based on the
chain rule of entropy (Lemma 3), and (32) is based on Lemma 5 on entropy combination.
To reiterate, we have derived

d
i(wig,8) | + DAk = Mes 1) D(Pov | Uy
k=1

M&
l\’)»—\

= Z Ak — Ag41) D PWl:k ||UW1:k-) + Aa—1D (PW1:(d1)
k=1

(@) ")

PWLWU). (33)

+/\dD<PWd\W1 (d-1) QWd|W1 (d=1)

25



AsSADI

Marginalizing the distribution Q%)l‘d over Wy yields

1 1
le (1) 0<6XP<—)\de—1(w1;(d1)a5)> Z eXP<_)\d€d(w1:(d1)w(/j75)>

whEW,

Thus, its escort distribution is

Ad
Ag 1 1 Ad—1
Na—
(le " 1)) a1 o<exp<—)\ Lg—1(wy.(g— 1),S)> Z eXp<_)\£d(w1:(d1)w:175)>
-1 wZiEWd d
Y
Let Z and Z denote the normalizing constants (partition functions) of <QW1 " 1)) Aa-1 and

Q%l <1d , respectively. We have

Y
Py
D<PW1 (d—1) QW1 (d— 1)) _D<Pwlt(d1) (QW1 (d— 1)) ‘ 1>
(@)
AP ) (wia)
= Z log lild 11)> PWl:(dﬂ) (wli(dfl))
W1:(d—1) QWI (d— 1>( 11(d*1))
Ad
7 Ca(wy.(g_ywh,s ha-t
_ Z log 2 Z exp<— d( 1(d)\ D% )) PWL(d,l)(wl:(d—l))
: d
W1:(d—1) w €Wy
A
=)\7d Z log ZGXP(—/\fd(wl (d=1) W)y, S )) PWL(d,l)(wl:(d—l))
d=1 o, (d—1) w)
+ Z 10g< )Pwlz(dl) (wli(d—l))
W1:(d—1)
A Z
)\ Z log Zexp(—/\éd(wl (d— 1)wd7 )) PWl:(d—l) (wlz(d—l)) ‘Hog(Z)
- wl:(d—l) w)
A
§)\di Z log ZGXP(—/\fd(wl (d—1) W), S )) PWL(d,l)(wl:(d—l))
W1:(d—1) wd

Ad
)\d 1E log Zexp(—/\fd(wl (d— 1)wd7 ))

wg
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Therefore,

(@..)"))

= \E |log Zexp(—)\éd(Wl (d— 1)wd, )) (34)

wy

(d-1)
Ad—1 (D (PW1:(d71) QW1:(4—1)> -D (Pwlz(dl)

By adding both sides of (33) and (34), we obtain

d
E Zgj(wl:], + Z Ak — )‘k’-i-l PWl:k ||UW1:k)
) k=1

1
+ ME [log ZeXp(—/\dEd(Wl:(d—l)wélvs))

!
Wq

d—2
~ (d
= (Z()‘k - /\k+1)D(PW1:k ”lezk) + Ad_l‘D(PWl:(d—l) (QWl (1(1) 1)>)>

k=1

+ AdD (PWd|W1:(d—1) PWL(dA))'

By iterating this argument for k =d —1,...,1, we deduce that

(d)
QWd|W1:(d—1)

d
E[g(/\) W,s) } + Z M — A1) D(Pwy, 10w,
k=1

~ (k)
= Z AkD('PWk‘Wl:(k—l) QWk\Wh(k,D PWl:(kﬂ))' (35)
k=1

For all 1 < k < d, it is apparent that
D(Pw,, [|Uw,,,) = log(IWh x - x Wg[) — H(Wi) & —H(Wi).

Thus, based on (35), we obtain

d

E [E(A)(W, 5)} — Z()\k — A1) H(Wig) Z A D (PWk\W1 (k—1)
k=1 k=1

Since, for all 1 < k <d,

QWk\Wl (k—1) PWL(’C—U)'

Qu Wy, (WeW1:e-1) = Py (W[ wrge-n)),

we deduce that

d d
E[ﬁ(/\) (W’S)} o Z(Ak = Akp1) H(Wig) = Z AxD (PWk|W1:(k71) ]P)Wk\Wl;(kq) PWl:(k71)>’
k=1 k=1
as desired. u
Straightforwardly, the result extends for random training sequences S := (Xq,...,X,) ~
Xn
uom.
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Corollary 30 Assume that for all 1 < k <d,

exp <_$£k(w1:ka s))

Zw;ewk exp (-ifk (w1 (k1)) S))

,‘;Vk|W1:(k71)5(wk‘wli(k—l)s) =

Let ]P;V'S = Pﬁfl\sp%2|wls .. .]P){(/Vd‘wl;(d—l)s. Then,
d
P$V|S = ar}g) min{E {f()‘) (W, S)] — Z()\k — )\k+1)H(W1;k|S)}, (36)
wis k=1

where (S, W) ~ u®" Ry;s.

Proof The expression in (36) is linear in Ps = u®". Conditioned on any realization S = s,
we can use Theorem 29 to yield the result. |

Recall the definition of the function ¢y, for all 1 < k < d, in the ladder decomposition
(19). We assume that our hypothesis set is realizable, meaning that there exist parameters
W = (w1,...,Wq) in our hypothesis index set such that, for all 1 < k < d,

V() = f(50). (37)

In other words, we assume that function T belongs to the hypothesis set and is represented
with parameters w as hy = T. In case T is represented with different parameterizations;
we choose one of these and denote it with (wy,...,wq). Now, consider the definition of the
chained risk:

Definition 31 (Chained Risk) Let X ~ u. For any w € W, we define the chained risk
of w as

d
L/(LC) (w):=E Z(ﬁk(wm, X) = b (wy.k—1y0r, X)) |- (38)
=1

The training mechanism of the learning model chooses the values of the parameters w1, ..., wqg
sequentially. At the kth stage, choosing wy instead of the true target function parameter
Wy, results in the following difference between the risks at scale k:

E [£r (w1, X) — O (w1, g1y, X)].

The chained risk is equal to the accumulation of these deviations of risk at each of the d
stages of the training mechanism. Obviously, we have LLC) (W) = 0. In an intuitive and
approximate sense, if the chained risk of w is small, then it suggests that hy, could be close
to the target function hy = T.

It is informative to compare the chained risk with the statistical risk (6). Based on the

definition of ¢ (wi., ) in (25) for all 1 < k < d, the loss of the model with parameters w
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on any data instance z € X is equal to (w,z) = Zzzl li (w1, ). Assume that X ~ p.
The statistical risk of the model with parameters w € W is

L,(w) :=E[{(w, X)]

d
= E[ka(wlzk,X)]

S 1

where (39) is based on the realizability assumption L, (W) = 0. The difference between the
right sides of (38) and (39) is between the terms £y (wy.(,—1)Wk, X) and £x (1., X). In fact,
we have

B
Il

™=~

(ék(wl:ka X) - Zk(wlzka X))] ) (39)

b
Il

1

d d
L/(LC) (W) =K [Z Ek(wlzk, X) —E ka (’u}l:(kfl)?bk, X)]
k=1 k=1
d
=Lu(w) —E ng (Wi (k—1) Wk X)]
k=1
< Lu(w).

Hence, the chained risk is always smaller than or equal to the statistical risk. However,
in the next subsection, for scale-invariant data instance distributions p with sufficiently
large shape parameters, we find a reverse form of this inequality: an upper bound on the
statistical risk based on the chained risk.

Remark 32 The difference between the chained risk and the statistical risk can be large
when the data instance distribution p is not ‘multiscale.” For example, assume that the data
instance distribution y is supported only on Xy. Consider parameters w = (wy, . .., w4—1,Wq).
We claim that the chained risk of w is zero. Since the probability that X ~ u takes values
on Xy U---UXy_q is zero, for any 1 < k < d — 1 we have

B[l (wig, X)] = E[Ek (wlz(kfl)wkvX)} =0.
Therefore,
L{S (w) = E[la(wi.a, X)] — E[la(wr,(g-1)ta, X)] = 0.

On the other hand, we have

d
Lu(w) =E > l(wig, X) | = Ellg(wr.q, X)).
k=1
However, if the parameters w1, ..., wqy_1 are chosen significantly far from the optimal values
w1, ..., W41, then hy, can be far from the target function T and E[¢4(w1.4, X )] tends to be

large, thereby resulting in a high statistical risk.
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In the next theorem, we derive an upper bound on the expected value of the chained
risk ]E[L,SQ (W)] for the output of the training mechanism IP’W|S Recall the definition of

{pr}¢_, when regularizing the hypothesis set in (23).

Theorem 33 Let (S,W) ~ PP

Wis* Then,

© - - 430}

Proof Let

d
Z Ui (w1, s) — O (W (p—1) Wk, ) ) -
k=1

Recall from (26) and (27) that

d
Z Ce(wiek, s) — Ok (wis(e—1),9) ),
k=1

where, for all 1 <k <d,

_ 1
O (wi.(k—1,5) := — i log Z eXp(_)\kgk(wl:(kl)w;cas)>

w, EWg

Forall 1 <k <d, { (wl:(k,l), s) is a Log-Sum-Exp function, thus Lemma 8 yields

d
E(C) (W7 S) = Z(&c(wl;k, S) — Ek (wl:(k,l)u?k, S))

d
< S tu(wi,s) ¢ ,
1< k(W1k,s) ilglv k(W1 (k1) Wy S ))

k= 1
= tW(w,s). (40)

Lemma 8 also implies that

d
Z(A) (\;Vv S) = Z(ﬁk(wlzka S) - Zk (wlz(k—l)a S))
k=1
d
< Z(Ek(wlzm s)— min {p (k1) W, S) + Ak log!Wk’>
1 wi, EWg
d
=3 Aulog Wl (an)
k=1
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Let V_\{ and 57: (Xl, . ,Xn) be independent copies of W and S, respectively, and assume
that W and S are independent from each other. Thus, (W, S) ~ Py Ps. We have,

E [L,(f) (W)} [e(c)( S)]

Based on (20) and (25), for any fixed w = (w1, ...,wy) and all 1 < k < d, we can write

O (wrg, ) = {"Yk(hk_1<,ﬁ) f(hk 1( ) wk)) T(J,‘)‘ if 2 € X

0 if v ¢ Xy,

and

O (w1 (k—1)Wks T) = {L%(hk 1( )+f(hk 1( ) u%)) —T(x)‘ ii;j}:

The triangle inequality implies that, for any a,b € R™, we have ||a|] — [b|| < |a — b|. Thus,

b () )1 )
e (o () )3 )

< 29kpr; (42)

}Kk(wlzk, x) — Ll (M:(k—l)wk@)‘ < Yk

where (42) is due to (23). Hence, based on Azuma-Hoeffding’s inequality (Lemma 11), for
any fixed w and all 1 < k < d,

1 n
O (wiek, S) — L (W1, (j—1) Wk, S *Z (Ce (Wi i) — O (Wi (p—1) D, 7))

3

is 4y pr//n-subgaussian. Since W and S are independent, Ek( 1ks ) Uy, (W1;(k—1)121k:, §)
is 47k pr/+/n-subgaussian as well. Using Lemma 10 for all 1 < k < d and adding up the
derived inequalities, we can write

E [N-) (W, §)} “E [e@(w, 5)]

I
M=

(E[tk W1k, S) — le(Wh.(5—1)@k, S) | — E[(Wiik, S) — e (Wi (1) @0k, S)])

k=1
d /- 822
< Z()\k(log Wi X - x Wy| — H(W1[S)) + n’;;) (43)
k=1
d 2.2
_ 3 8Pk
—Z Ak Zlog!W | = H(W1.4[S) +T§xk ) (44)

B
Il
—
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where we define, for all 1 < k < d,
Mo i= A — Mg
Therefore,
E[LOW)| = E[dOW,S)

8 2 2
3 log|Wy| - H(Wi4lS) | + &7k
nAg

7j=1

_ _ d
<E[(OW, )+ [ M
i 174

k
1 =

~ _ d
<E[VW,9)| +>
i 74

_ k 8’72[)2
Ak Zlog]W!— (Wik|S) | + —&F% (46)

1 = n)\k
d k 2 9
< IE + ST 2 S108 Wyl | + SiPi (47)
1 T n)\k
d
<> M Zlogle\ + A Log W + 87’;2’“ (48)
k=1 j=
d k 2 9
:; 2 | 3 log W] +8Z’§’;’“ , (49)

where (45) is obtained by rewriting (44), (46) is based on (40), (47) is obtained based on
Corollary 30 and by replacing IP’TN‘S with the conditional distribution Rys = dg (the Dirac

measure on W), (48) is based on (41), and (49) is a simple calculation based on summation
by parts. |

Optimizing the bound in (49) over the values of (A1,...,\q) gives the following result:

Corollary 34 Assume that (A1,...,\q) are chosen such that for all 1 < k < d,

) 2
e =M — A1 = TPk : (50)
(s )

Then, the right side of (49) is minimized with respect to (A1,...,\q). In this case, the
bound simplifies to the following form:

E[L@ (W)} < % ‘k . (51)

5.2 Bounding the Statistical Risk Based on the Chained Risk

Until now, the analysis did not require any restrictions on the data instance distribution pu.
However, we could derive an upper bound only on the expected chained risk of the training
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mechanism. We also observed that the chained risk is always smaller than or equal to the
statistical risk. In this subsection, we show that if u is scale-invariant, a small chained risk
can imply a small statistical risk.

Assume that the instance distribution p is scale-invariant: If ¢(z) denotes the density
function of u, then there exists a shape parameter a > 0 such that for all z € X such that
z/v€EX,

& (03
q() =7%(x). (52)
8
Thus, scale-invariant distributions have homogenous density functions. One particular ex-
ample of such distributions is the following power-law probability density function with
shape parameter a:

1
r)=———forall x € X,
(=) Colz|*
where C; = [, |#|~*dz. Given this assumption, in the following result, we show an upper
bound on the statistical risk based on the chained risk:

Theorem 35 If i is a scale-invariant probability distribution with shape parameter « de-
fined on X C R™, then for any w € W, we have
(1 —A™H=(1+ C1R(1 — v 1Y) Lu(w) < LI (w).

Proof For ease of presentation, let ﬁk(x) denote the kth level of the model given parameters
w and input x, for any 1 < k < d. For any 2 < k < d and any x € X}, we have

X

(i + 0x) o b (W) ()

Cp (Wy(h—1yto, ) =

Ve (id + ¢x) 0 hy—q (x> — v (id + ) 0 Iy <$> ’
Yk Yk

s (3) () o (3)) 00 (2)
Tk Yk Yk Yk
<ufrucs(5) e () [ ufon (e (5)) -0 (e ()
Yk Vi Vi Yk
S Yk hk;—l <x> — Bk—l <$> ‘
Tk Yk

xr ~ xr

—d— x ~ x
=V (1 + Cl(")/ — 1)")/k d 1) hk,1 <%> — hk,1 <%>

where in (53), we used the fact that ||1g||lLip < Ci(y — 1)y*~971, according to (21). Now,
define

)

/ Ve—1 z
==
V& Y
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We observe that 2’ € Xy_1, and that the transformation x <+ 2’ establishes a bijection

between X}, and X),_q1. Therefore, we obtain
T - T
hy—1 (> —hg—1 <>
Yk Yk

o x . x/
=V (1 + Cr(y — 1)yFe 1> hi—1 — hp—1
Vk—1 Vk—1

L x! . x!
SLE (1+O( 1)kd 1) ’Yk—lhk—1< >—’Yk—1hk—1( >‘
Ve—1 Ve—1

Uk (wl:(kfl)ﬁ)k; z) < v (1 +Ci(y — 1)7k—d71>

Ye—1
= 7(1 + Ci(y — 1)7k_d_1)£k—1(w1:(k—1), a'). (54)

Since z € R™, the change of variables formula for differentials is do = y™dz’. Let X be
distributed according to density ¢(x). Based on (54), for all 2 < k < d, we derive

E [ (w1 (k—1)k, X) ]

/ Uk (wlz(k—l)wka$)Q($)d$
TEX}

< / ’y(l + Ci(y - 1)7k_d_1>€k71(w1;(k—1), ') q(x)dz
TEX}

= / ’7(1 +Ci(y - 1)vk_d_1>€’“—1(w1:(k—1>a )y %q(a’)dz (55)
rEX)
— fmerl*a (1 +C (")/ - 1)7k7d71>£k71 (wlz(kfl)vx/)q(x/)d'x/
' €Xy_1
7m+1 « (1 +Ch(y - )/yk_d_1>E[€k—1(w1:(k—l)7 X)]
<A™ (14 Cily = Dy E [l (w1 X)) (56)

where (55) is due to the scale invariance property (52). We can extend inequality (56) to
the case k = 1 by defining ¢y = 0. Thus,

d
LiO (w) =Y (B[l (wrg, X)] = B[l (w01 r: X)])
k=1
d
> Z(E[fk(wLmX)] — " (14 Oy = Dy DE[Ger (wr5-1), X)])  (57)
k=1
d
=E ka(wlzk,X)] A1+ Ciy ka (W1 (k-1)> )]
k=1
d
>E| Y be(wig, X) | =" (14 Ci(y ka w1, ]
k=1
= (1 =" 1+ Coly = )77 Y)) Ly(w),
where (57) is based on (56). [ |
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Theorem 35 in conjunction with Theorem 33 or Corollary 34 yields an upper bound on the
expected statistical risk of multiscale entropy-based training, as follows:

Corollary 36 If the shape parameter o of density q satisfies

log(l + Ci(y — 1)7_1)

a>m-+1+4+ , (58)
log v
then the following upper bound on the expected statistical risk holds:
2.2
25 (O = M) (o log W) + a5 )
E[L,,(W)] < d )/ (59)

1 —qymH=e(l 4+ Ci(y —1)y7)

If the hyperparameters (A1, ..., Aq) are chosen as in (50), then (59) reduces to

8 [ ko wkpry/ X log W)l
ElLu(W)] < Va\ 1=y i1+ Ci (v - 1)y ) | (60)

Proof Inequality (58) is equivalent to 1 — ™1~ (1+ Ci(y —1)y~!) > 0, which, in
conjunction with Theorem 35 and Theorem 33 or Corollary 34, yields the results. |

Given the realizability assumption on the hypothesis set, the regular union bound applied
to the empirical-risk-minimizing hypothesis yields

(ZZ:1 Pk)
Vn

d

E[L,(WErm)] < > log [Wjl. (61)
=1

Even when ignoring the effect of (1 — 'ym+1_o‘(1 +Ci(y — 1)7_1))/8, the right side of (60)
can be quite smaller than the right side of (61). Consider the following example:

Example 2 Recall that vy := R/e, v = (70)Y? and vy, = v*~¢, for all 1 < k < d, as in
(18). Assume that px = poy* for all 1 < k < d and [Wy| = --- = |Wjy|. We compute the
following ratio

2

d k 2
S B L) (ot )

A =
d
(Zizl Pk) >, log |Wj| > YEVd

The power of two exists to compare the bounds on the required number of samples n. For
example, given vy = 10 and d = 20, we obtain A ~ 0.2648.

6. Bounded-Norm Parameterization Example

In this section, for the case of one-dimensional functions (m = 1), we show that any
(M, Ms)-diffeomorphism defined on (—R, R) can be represented with a hierarchical pa-
rameterized model with bounded-norm parameters of the form (20). The approach to
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proving this is by constructing the ladder decomposition of the diffeomorphism. We then
proceed to discretize the parameters of this model and apply the bound of Corollary 36 to
the corresponding hypothesis set.

Assume that the target function 7" is a (M;, My)-diffeomorphism with 7(0) = 0, and
consider its ladder decomposition at scale parameters {Wk}g:y The range of T},, |}, which
is the domain of ), is an interval subset of (—M;R, M;R) that includes 0. Note that for
a (M, Ms)-diffeomorphism, since the function is Mj-bilipschitz, it is easy to observe that
M; > 1. Therefore (—M;R, M1 R) includes (—R, R).

Let ¥ : R — R be an arbitrary invertible ¢1-Lipschitz and ¢9-smooth function with
support Dy = (ai,as) C (=M1R, M1R) such that 0 € Dy (that is, a1 < 0 < ag) and
U (0) = 0. We will later replace ¥ with each function 1y of the ladder decomposition of the
target function T'. For any z € Dy, we can write

U(z) = / O (b)db + U(a)

1

_ /a2 V'(5)O(z — b)db + U(ay), (62)

al

where ©(z) is the Heaviside (unit) step function. Since ¥ is ¢1-Lipschitz, for all b € Dy, we
have |U’(b)| < ¢1. Moreover, since ¥(0) = 0, we conclude that |¥(a1)| < ¢1la1]| < p1 M1 R.

The idea is now to derive the Riemann sum approximation to the integral representation
of ¥(z) in (62) and to view it as a two-layer neural network. For a given integer 7 > 2, let a
7-width two-layer network with continuous parameters w := {wq, ..., wr, w(c)} be defined
for any = € (=M1 R, M1 R) as

w(T) Z w (x —bj) w'®. (63)

For all 1 < j <7, we set

2
bj == (T] - 1> MiR.

Clearly, {b;}]_; is an arithmetic progression with common difference A := 2M; R/7, where
by & —MR and b, = M;R. We allow the parameters of (63) to take values

wl) « AV (b;) if b; € Dy
w) « 0 if b; ¢ Dy

and
w'® — U(ay).

Using the Riemann sum approximation bound, given as Lemma 12 in Section 2, we deduce
the following result:

Lemma 37 For all x € Dy, we have

D (@) = W(a)| <
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Proof Recall that since W is ¢;-Lipschitz, for all b € Dy, we have |¥/(b)| < ¢1. If
x—a; <A, then 1@(;) (x) = ¥(a1). Based on the triangle inequality, we have

which implies the result. Therefore, assume that z — a1 > A, and let j; and js be the
smallest and largest integer j such that a; < b; < z, respectively. We have

2M1R

¢17

db‘ /\\If )|db < Agy =

1@(}}7)(37) _ \Ij(w)‘ = iw(j)@(g; —bj) — /az V' (b)O(x — b)db
i—1 al

- i AT (b;)

J=Jj1

I
ai
J2 bjs, T
= ZM/(bj)—/ ' (b)db — / db—/ ' (b)db
b
bjz
/ w
bjl

b)db

J=i 72

'(b)db| + 2A¢, (64)

S avin) -

J=Jj1

IN

IN

Jj2—1
> AT / ' (b)db| + 3A¢1, (65)
b

_31 J1

where, (64) and (65) are based on the triangle inequality. If jo = ji, then

Jj2—1 b,
> AT / W' (b)db| = 0,
J=Jj1 bjy

which implies the result. Otherwise, we have jo > j;. In this case, we obtain

jo—1 2
72 T ¢2(bj2 - bjl)
A P2\955 — Y5,)"
P - v < o
_ 9202 — J1)2A2
2(j2 — j1)
= %(]é — j1)A?
< % (”‘ilR)A? (67)
— MiRA¢»
2
- 2R, (63)
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where (66) is based on Lemma 12, and (67) is based on the fact that (jo—j1)A < (b, —b1) <
2M7 R. The proof of the statement is now complete. |

We proceed to discretize the parameters of the network. Let 1 > 0 be the precision
level of the parameters. For any y € R, we denote the closest real number in nZ =
{-..,—21,—n,0,1n,2n,...} to y with [y],. For any function ¥, the approximate 7-width
two-layer network with discretized parameters at precision level 7 is

Yl () = i: [w(j)]n@(:c —b;) + [w(c)] . (69)

j=1 !

We define the norm of the network ¢£J 1) as the sum of the absolute values of its parameters:

norm( Z‘ (J +' (ﬂ

The next result studies the approximation error, the output norm, and the norm of the
network of w(T’n .

n

Proposition 38 The two-layer network wﬁjm), approximating function W, satisfies the fol-
lowing properties:

(a) For all x € Dy,
2(M;R)?

T

¢2.

6M1R
Ty 20+
2 T

v (@) - (@) < (74 1)
(b) For all x € (—MR, M R),
[ )| < norm (7).

(c) We have
2MiR

norm(zbg’")) <(t+ )727 <3M1R+ >¢1+ 20 R)” ————¢2 =: 0($1,¢2). (70)

Proof

(a) For all z € Dy, we have
[0 (@) = W(w)| = [65 (@) = 6D (@) + 50 () — W ()|
< |pr (@) = 0 @)| + |9 (@) - $(@)

w) — [wo)}
— n

., 6M1R 2(M;R)?

S (7—+1)§ ¢1+ ¢27

where (71) is based on Lemma 37 and the triangle inequality.
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(b) Based on the triangle inequality,

T

’@bg’n) (33)‘ = 2 [w(j)}n@(aj —bj) + [w(C)L
< J; [wmh jLHw@]?7
= norm <¢,EUT ”7)>.
(c) We have
() = 5[], +[1],
j=1
< ZT: w(j)‘ + MiRo1 + (7 + 1)2, (72)

<.
I
—

where (72) is based on ‘w(c)‘ = |¥(a1)| < MiR¢;. If ag — a1 < A, then Z;:1|w(j)‘ =0
and the result is proven. Thus, assume that as — a1 > A, and let j; and jo be the
smallest and largest integer j such that a; < b; < ag, respectively. If j; = ja, then
Z;zllw(j)‘ = |A¥'(b;,)| < A¢y, which implies the result. Therefore, assume that
Jo > j1. Since U(z) is ¢o-smooth, ¥/ (x) is ¢po-Lipschitz. Thus, |¥’(z)| is ¢a-Lipschitz as
well. Moreover, due to the fact that ¥ is invertible, |¥’(z)| is either identical to ¥'(x)
or —U/(x), thus is differentiable. We derive

i’ww’ _ i}wm’
j=1

J=j1

J2
= Z\Mf’(bm

J=n
< JQZS’A\I/’(I)J-)’ + Ady

J=j1
< /bb 10 (b)[db + M + Ady (73)
< [ w202, + ne, (71
< (bj; = bjy)é1 + 2(MTIR)2¢>2 + Ay
< (2MiR+ A)g1 + 2(M;R)2¢2,
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where (73) is due to Lemma 12 and (74) is based on the same derivation of (68) from
the right side of (66). The result is now proven.

Now, consider the ladder decomposition of the target function 7T at scale parameters
{Vk}g:y For any 1 < k < d, we replace function v, with the function ¥ in Proposi-
tion 38. Let Cy := (M? + M;)Ms. Based on Theorem 19, 9, is C17*~4~1(y — 1)-Lipschitz
and Cy-smooth. Thus, we take ¢ < C17* 4 1(y — 1) and ¢ « Cy. For all 1 < k < d,
define

Pk = Q(Cﬂk_d_lﬁ —1), C2>,

where the function g is defined in (70). Note that, as function of k, pr = O(¥*), conforming
with (22). Suppose Wi, the set of parameters for our learning model at level k, is

Wy, = {w = (w(l),...,w(T),w(c)> enZ™ |y < pk}.

In (20), the recursive definition of the model, we define

f (b (2); wr) 2= 95" (hi-a (@),

for all 1 < k < d. Therefore, the kth level of our learning model is the following function:
hy, = (wg;;m + id) o0 (qu;n) + id) 0 (%71777) n id).

Notice that since Wy is a discretization of the ¢1-ball {|w|1 < pi}, it is a finite set. The
next result finds the cardinality of Wj:

Proposition 39 For all1 < k < d, we have

. [T+ ([ Lox/n]
— 2T+1 r(T .
Wil ;) ( r ) <T +1—-r
Proof For all 1 < k < d, suppose

Wy, = {w eZ™ | < V:J }

Based on the one-to-one correspondence w <+ nw, we have |W| = |[W;|. We will employ a
counting argument to find |[W;|. Assume that r components of w € W; are equal to zero,
and the rest are non-zero, where 0 < r < 7. There are (le) ways to choose the r zero
components. We now count the number of configurations that 7 4+ 1 — r positive integers
have a sum less than or equal to |p/n]. For each such configuration, there are 27 71~" ways
to make each component retain its positive value or negate it.

By adding a slack variable, it is easy to observe that the number of configurations that
T+ 1 — r positive integers have sum less than or equal to |pg/n] is equal to the number of
configurations that (7 +1—1r)+ 1 positive integers have sum equal to | pi/n] + 1. Based on
a basic result in combinatorics (Niven, 1965, (4.7) in Section 4.2), this number is equal to

(%)

40



AN ENTROPY-BASED MODEL FOR HIERARCHICAL LEARNING

Therefore,

= o () (),

r=0

Corollary 40 Based on Proposition 39, the optimized bound on the statistical risk in Corol-
lary 36 for the example studied in this section is as follows:

_ 8 Y1 o/ 30—y log [ Wl
o\ 1=yt (1 + Ci(y — 1)y7Y)

E[L,(W)]

] Zizl ~Edpy, \/2?:1 103;(2::0 27T (le) (TLT{EJT))
vn 1 —qymt=e(d 4+ Ci(y = 1)y7h) ’

where p, = Q(C’wk—d_l(y - 1), 02), foralll <k <d.

7. Conclusions

In this paper, we introduced an entropy-based hierarchical learning model designed to lever-
age the multiscale structure of data instance distributions and the smoothness inherent in
real-world target functions. We started with the definition of ladder decompositions of in-
vertible functions, followed by an examination of Lipschitz continuity and smoothness in
the components of this decomposition for smooth functions. Subsequently, we analyzed the
effectiveness of the proposed multiscale entropy-based training, demonstrating its capability
to achieve low chained risk. Notably, where the data distribution u is scale-invariant with
a sufficiently large shape parameter, this paper showed an upper bound on the statistical
risk based on the chained risk. Consequently, we derived a guarantee on the statistical risk
of our training mechanism for these data distributions. Finally, for the specific case of one-
dimensional functions, the paper provided an illustrative example of a parameterized model
featuring bounded-norm parameters to showcase a simple application of our methodology.

Our proposed learning model offers several noteworthy advantages. Firstly, it adopts
a hierarchical structure with interpretable levels. Each level in the model is trained to
approximate a dilation of the target function, offering interpretable roles for different levels,
which contrasts opaque black-box hierarchical models.

Secondly, our model introduces a new perspective on data instance complexity. The
logarithm of the norm of data instances serves as a measure of their individual complexity.
The training procedure can also be conceptualized as a mathematical model for curriculum
learning.

Another merit of the proposed model is the computational point of view. The amount
of computation required to compute the output of the learned model for a given data
instance is directly proportional to the complexity of that instance. Given the heterogeneous
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distribution of data instances at different scales and complexities, this characteristic may
translate into significant computational savings and faster inference speeds.

Furthermore, our model’s statistical analysis accounts for its hierarchical and multiscale
structure, leading to sharper bounds on the statistical risk for scale-invariant distributions
compared to uniform convergence bounds for empirical-risk-minimizing mechanisms.

Additionally, the multi-staged nature of our training mechanism can be beneficial when
dealing with the challenge of extensive training times on massive datasets. Even if the
training terminates prematurely, the mechanism ensures a useful model capable of accu-
rately predicting the labels of data instances with norms smaller than a specific threshold,
depending on the terminated stage.

Finally, our learning model proves advantageous in scenarios involving multiple users
learning the target function at a particular scale of data instances. It provides computational
savings by using each user’s learned model as prior information to train the model for the
following user.

Our current work has limitations in that the derived risk bounds are applied only when
the parameters of our model are discrete and the hypothesis set is finite. Section 6 provided
an example of parameterization where diffeomorphisms are expressed using parameters with
bounded norms. Consequently, the hypothesis set becomes finite when these parameters
are discretized due to, for instance, real-world memory constraints. While the multiscale
entropy-based training procedure (Algorithm 1) remains well-defined in the scenario where
the hypothesis set is infinite, an extension of our technique is needed to analyze the statistical
risk comprehensively. It is plausible that leveraging the Lipschitz property of the hypothesis
set, as demonstrated in the derivation of the risk bound on the classical Gibbs distribution
with infinite hypothesis set in (Xu and Raginsky, 2017), could prove beneficial. We defer
the exploration of this direction to our future investigations.
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