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Abstract

In this paper, we propose a probabilistic framework for analyzing a multi-class majority
vote classifier in the case where training data is partially labeled. First, we derive a multi-
class transductive bound over the risk of the majority vote classifier, which is based on the
classifier’s vote distribution over each class. Then, we introduce a mislabeling error model
to analyze the error of the majority vote classifier in the case of the pseudo-labeled training
data. We derive a generalization bound over the majority vote error when imperfect labels
are given, taking into account the mean and the variance of the prediction margin. Finally,
we demonstrate an application of the derived transductive bound for self-training to find
automatically the confidence threshold used to determine unlabeled examples for pseudo-
labeling. Empirical results on different data sets show the effectiveness of our framework
compared to several state-of-the-art semi-supervised approaches.

Keywords: semi-supervised learning, learning theory, multi-class classification, trans-
ductive inference, self-training

1. Introduction

We consider multi-class classification problems where the scarce labeled training set comes
along with a huge number of unlabeled training examples. This is for example the case
in web-oriented applications where a huge number of unlabeled observations arrive sequen-
tially, and there is not enough time to manually label them all. In this context, the use of
traditional supervised approaches trained on available labeled data usually leads to poor
learning performance. In semi-supervised learning (Chapelle et al., 2010), it is generally as-
sumed that unlabeled training examples contain valuable information about the prediction
problem, so the aim is to exploit both available labeled and unlabeled training observations
in order to provide an improved solution.

A common approach when working with partially-labeled data is to pseudo-label un-
labeled data using the associated predictions of a classification model and treat them like
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labeled training examples (Tür et al., 2005; Lee, 2013). This paper theoretically studies
the pseudo-labeling approach with a focus on error estimation of majority vote classifiers
such as Random Forest (Lorenzen et al., 2019), AdaBoost (Germain et al., 2015) and SVM
(Fakeri-Tabrizi et al., 2015). The majority vote classifier is well studied in the binary super-
vised case, where the majority vote risk is usually bounded indirectly by twice the risk of
related stochastic Gibbs classifier (Langford and Shawe-Taylor, 2003). This is used to derive
tight PAC-Bayesian guarantees (McAllester, 1999), but not relevant for a more profound
analysis of the risk behavior as the voters may compensate the errors of each other, so the
majority vote risk can be much smaller than the Gibbs risk. This is why some works are fo-
cused on deriving direct upper-bounds on the majority vote error (Lacasse et al., 2007), and
the results were recently extended to the multi-class case (Laviolette et al., 2017; Masegosa
et al., 2020). However, when the multi-class framework meets semi-supervised learning,
the theoretical analysis is not straightforward as it is not clear how unlabeled data may be
integrated while some results for binary classifiers (Lacasse et al., 2007; Amini et al., 2008)
do not hold in this case.

Semi-supervised majority vote classifiers can be studied in two settings: the classical
inductive case and the transductive one (Vapnik, 1998, p. 339), which aims for correctly
classifying the given unlabeled training examples. In the latter case, Feofanov et al. (2019)
derived a bound for the multi-class majority vote classifier by analyzing distribution of
the class vote, focusing on the class confusion matrix as an error indicator as proposed
by Morvant et al. (2012). The proposed transductive bound is applied for a self-training
algorithm (Amini et al., 2023) to automatically find the subset of examples for pseudo-
labeling in the multi-class case. Our paper may be seen of as an expanded version of
Feofanov et al. (2019) with two distinct contributions. In order to improve upon earlier
work, we first generalize the transductive bound to the probabilistic framework, where
soft labels may be applied to the unlabeled set. Secondly, we propose a new direction for
theoretical analysis of the majority vote classifier in the inductive case when it is trained on
pseudo-labeled training examples, which inevitably contain label noise. For this, we take
explicitly into account possible mislabeling following the model introduced by Chittineni
(1980). First, we derive the connection between the classification error of the true and the
imperfect label. Based on this, we propose a new probabilistic generalization bound over
the error of the multi-class majority vote classifier in the presence of imperfect labels. This
bound is based on the mean and the variance of the prediction margin (Lacasse et al., 2007),
so it reflects both the individual strength of voters and their correlation in prediction.

The rest of this paper is organized as follows. In Section 2, we overview the related
work. Section 3 introduces the problem statement and the proposed framework. In Sec-
tion 4, we present a transductive error bound for the multi-class majority vote classifier;
this section is an extension of Feofanov et al. (2019) to the probabilistic case. Section 5
introduces a mislabeling error model and derives a probabilistic bound taking into account
mislabeling errors. In Section 6, we describe the extended self-training algorithm that learns
the threshold using the proposed transductive bound, present empirical evidence that the
proposed self-training strategy is effective compared to several state-of-the-art approaches,
and illustrate the behavior of the new generalization bound on real data sets. Finally, in
Section 7 we summarize the outcome of this study and discuss the future work.
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2. Related Work

Generalization guarantees of majority vote classifiers are well studied in the binary super-
vised setting. Many works are focused on deriving tight PAC guarantees for the Gibbs
classifier in the inductive case (McAllester, 2003; Maurer, 2004; Catoni, 2007) as well as in
the transductive one (Derbeko et al., 2004; Bégin et al., 2014), and applying these results
for optimization (Thiemann et al., 2017), linear classifiers (Germain et al., 2009), random
forests (Lorenzen et al., 2019), neural networks (Letarte et al., 2019). While this bound
can be tight, it reflects only the individual strength of voters, so using it as a minimization
criterion often leads to an increase in the test error (Masegosa et al., 2020). This motivates
to opt for bounds that directly upper bound the majority vote error. In the transductive
setting, Amini et al. (2008) derive a risk upper bound based on how voters agree on every
unlabeled example. In the inductive setting, Lacasse et al. (2007) propose an upper bound
(later called C-bound) for the generalization error that is based on the first and the second
statistical moments of the margin of the majority vote classifier. While the first moment re-
flects the individual errors of voters (the Gibbs risk), the second moment takes into account
the error correlation between them.

In the binary case, the majority vote classifier is usually defined through the sign function
(Germain et al., 2009, p. 790), which implies that the mathematical derivations are not
directly extendable to the multi-class case. In fact, most of the results hold for the binary
classification only, and only few results exist for the multi-class majority vote classifier.
In the supervised setting, Morvant et al. (2012) derive generalization guarantees on the
confusion matrix norm, whereas Laviolette et al. (2017) extend the C-bound of Lacasse
et al. (2007) to the multi-class case. Masegosa et al. (2020) study tight estimations from
data by deriving a relaxed version of Laviolette et al. (2017). In the transductive setting,
Feofanov et al. (2019) extend the bound of Amini et al. (2008) to the multi-class case.

However, the aforementioned studies are limited by assuming that all training examples
are perfectly labeled. Learning with an imperfect supervisor, in which training data contains
an unknown portion of imperfect labels, has been considered in both supervised (Natarajan
et al., 2013; Scott, 2015; Xia et al., 2019) and semi-supervised settings (Amini and Gallinari,
2003). In most cases, methods focus on the estimation of the mislabeling errors like the
anchor points approach either to train a classifier with a corrected loss (Patrini et al., 2017;
Xia et al., 2019) or to correct the classifier’s output after training (Zhang et al., 2021).
From the theoretical point of view, one can highlight the method of unbiased estimators
studied both in the binary (Natarajan et al., 2013; Scott, 2015) and the multi-class case
(van Rooyen and Williamson, 2018). Chittineni (1980) analyzes the connection between the
true and the imperfect label in the multi-class case but only for the maximum a posteriori
classifier. We extend the latter result to an arbitrary classifier and use it to derive a new
C-bound with imperfect labels. To the best of our knowledge, this is the first attempt to
extend the theoretical analysis of the majority vote classifier to the imperfect label scenario.

In this paper, our theoretical development has a particular focus on semi-supervised
learning. The question of learning on labeled and unlabeled examples is usually studied
under three related yet different assumptions (Chapelle et al., 2010). While the approaches
based on data clustering (Peikari et al., 2018; Maximov et al., 2018) suggest that the labeled
and unlabeled examples are divided into informative clusters, the graph-based approaches

3



Feofanov, Devijver and Amini

(Zhou et al., 2004; Chong et al., 2020) assume that the data lies on a low-dimensional
manifold. Then, pseudo-labeling approaches like self-training (Amini et al., 2023) and
unlabeled margin maximization (Feofanov et al., 2023) are based on an assumption that
the decision boundary passes through low-density regions of unlabeled data (Chapelle and
Zien, 2005), which is implemented by using pseudo-labeled unlabeled examples for classifier’s
training.

The self-training algorithm has been present in the literature since the late 1960s (Scud-
der, 1965; Fralick, 1967) and is still widely used in practice (Amini et al., 2023). Starting
from a supervised classifier initially trained on the labeled data only, the algorithm iter-
atively re-trains the classifier by assigning pseudo-labels to unlabeled examples with the
confidence score above a certain threshold and including them to the training set. To the
best of our knowledge, the theoretical analysis of self-training is limited to the binary clas-
sification setting (Amini et al., 2008; Frei et al., 2022). Recently, Frei et al. (2022) derived
guarantees for the self-training with a binary linear classifier considering a specific class of
mixture models, and Zhang et al. (2022) proved the convergence rate for one-hidden-layer
self-training neural networks in the case of regression and isotropic Gaussian distribution. In
practice, self-training is usually performed with a fixed threshold; another method consists
in controlling the number of pseudo-labeled examples by curriculum learning (Cascante-
Bonilla et al., 2021). We show that this threshold can be effectively found at every iteration
as a trade-off between the number of pseudo-labeled examples and the bounded transductive
error evaluated on them. The proposed policy allows us to partially address the confirma-
tion bias which underlies the self-training and consists in including wrongly pseudo-labeled
data into the training set thereby increasing the bias of the model towards its initial belief.
In the context of deep learning, there are also attempts to overcome this issue, we refer to
Arazo et al. (2020), Li et al. (2021) and Radhakrishnan et al. (2024) for more details.

We would also like to point out that the self-training approach has similarities with the
abstention paradigm (Freund, 1995; Bartlett and Wegkamp, 2008), whose theoretical studies
for the multi-class classification (Ramaswamy et al., 2018) may interest the reader. However,
the two main differences are that the abstention is studied in the supervised setting, and
a classifier guided by self-training is iteratively trained on pseudo-labeled examples, which
can be erroneous and for which the true labels are unknown.

3. Framework and Definitions

We consider multi-class classification problems with an input space X ⊂ Rd and an output
space {1, . . . ,K}, K ≥ 2. We denote by X = (X1, . . . , Xd) ∈ X (resp. Y ∈ {1, . . . ,K})
an input (resp. output) random variable. Considering the semi-supervised framework, we
assume an available set of labeled training examples ZL = {(xi, yi)}li=1 ∈ (X ×{1, . . . ,K})l,
where xi is identically and independently distributed (i.i.d.) with respect to a fixed yet
unknown marginal density fX over X while yi is sampled from the true label generator
P (Y |X = xi) defined over {1, . . . ,K}, and an available set of unlabeled training examples
XU = {xi}l+ui=l+1 ∈ X

u drawn i.i.d. from the density fX over the domain X .

Further, we denote by 0K the zero vector of size K, 0K,K is the zero matrix of size K×K
and we set n := l + u. In this work, a fixed class of classifiers H = {h : X → {1, . . . ,K}},
called the hypothesis space, is considered and defined without reference to the training set.
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Notation Description

X ∈ Rd input space
{1, . . . ,K} output space

l, u the number of labeled and unlabeled examples
ZL = {(xi, yi)}li=1 labeled set of training examples

XU = {xi}l+ui=l+1 unlabeled set of training examples

H = {h : X → {1, . . . ,K}} hypothesis space, supposed to be fixed
Q0 and Q the prior and the posterior distribution over H
BQ(x) Q-weighted majority vote (Bayes) classifier, Eq. (1)
GQ(x) stochastic Gibbs classifier
vQ(x, y) class vote, Eq. (2)
mQ(x, y) class margin, Eq. (3)

Table 1: List of notations used in this paper.

Over H, two probability distributions are introduced: the prior Q0 and the posterior Q
that are defined respectively before and after observing the training set. It can be useful
when some knowledge is given with the data, if not, one can use the uniform distribution.
We focus on two classifiers: the Q-weighted majority vote classifier (also called the Bayes
classifier1, which is reflected in our notations) defined for all x ∈ X as

BQ(x) := argmax
ŷ∈{1,...,K}

[Eh∼QI(h(x) = ŷ)] , (1)

and, the stochastic Gibbs classifier GQ that for every x ∈ X predicts the label using a
randomly chosen classifier h ∈ H according to Q. The former one represents a class of
learning methods, where the predictions of hypotheses are aggregated using the majority
vote rule scheme, while the latter one is often used to analyze the behavior of the Q-weighted
majority vote classifier.

The goal of learning is formulated as to choose a posterior distribution Q over H based
on the training set ZL ∪ XU such that the classifier BQ will have the smallest possible
error value. In contrast to the studies of Derbeko et al. (2004), Bégin et al. (2014) and
Feofanov et al. (2019), which considered the deterministic case where there is one and only
one possible label for each unlabeled example, in this study, we investigate a more generic
scenario with probabilistic labels assuming the possibility of different outcomes.

To measure confidence of the majority vote classifier in its prediction, the notions of
class votes and margin are further considered. Given an observation x, we define a vector
of class votes vx := (vQ(x, ŷ))Kŷ=1 where the ŷ-th component corresponds to the total vote
given to the class ŷ:

vQ(x, ŷ) := Eh∼QI(h(x) = ŷ) =
∑

h:h(x)=ŷ

Q(h). (2)

In practice, vQ(x, ŷ) can be regarded as an approximation of the posterior probability
P (Y = ŷ|X=x); a large value indicates a high confidence that the true label of x is ŷ.

1. This should not be confused with other learning paradigms based on the Bayesian inference, e.g., the
Bayesian statistics or the oracle Bayes classifier of the form BO(x) := maxŷ∈{1,...,K} P (Y = ŷ|X = x) .
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Given an observation x and its true class y, its margin is defined in the following way:

mQ(x, y) := Eh∼QI(h(x) = y)− max
ŷ∈{1,...,K}

ŷ 6=y

Eh∼QI(h(x) = ŷ) = vQ(x, y)− max
ŷ∈{1,...,K}

ŷ 6=y

vQ(x, ŷ).

(3)

The margin measures a gap between the vote of the true class and the maximal vote among
all other classes. If the value is strictly positive for an example x, then y will be the output
of the majority vote, so the example will be correctly classified.

4. Probabilistic Transductive Bounds

In this section, we derive guarantees for the multi-class majority vote classifier in the trans-
ductive setting (Vapnik, 1982, 1998), i.e., where the error is evaluated on the unlabeled set
XU only. The proposed bound assumes that the majority vote classifier makes mistakes
on low class votes and thereby uses votes as an indicator of confidence. This section is an
extension of Feofanov et al. (2019) to the setting with probabilistic labels. The derivations
of the bounds (established in Theorem 4.1 and Corollary 4.2) follow the similar steps, while
the analysis of the bound’s tightness (Proposition 4.3) differs in order to take into account
the probabilistic nature of the errors. All proofs are deferred to Appendix A.

4.1 Transductive Conditional Risk

At first, we show how to upper bound the risk evaluated conditionally to the values of the
true and the predicted class. Given a classifier h, for each class pair (ŷ, y) ∈ {1, . . . ,K}2
such that ŷ 6= y, the transductive conditional risk is defined as follows:

RU (h, y, ŷ) :=
1

uy

∑
x∈XU

P (Y = y|X = x)I(h(x) = ŷ), (4)

where uy =
∑

x∈XU
P (Y = y|X = x) is the expected number of unlabeled observations

from the class y ∈ {1, . . . ,K}. The value of RU (h, y, ŷ) indicates the expected proportion
of unlabeled examples that are classified to the class ŷ being from the class y. Particularly,
RU (BQ, y, ŷ) is called the transductive Q-weighted majority vote conditional risk. In the sim-
ilar way, the transductive Gibbs conditional risk is defined for all (y, ŷ) ∈ {1, . . . ,K}2, y 6= ŷ
by

RU (GQ, y, ŷ) := Eh∼QRU (h, y, ŷ).

Although the Gibbs classifier is stochastic, its error is defined in expectation over Q. In
other words, the Gibbs conditional risk represents the Q-weighted average conditional risk
of hypotheses h ∈ H.

In addition, we define the transductive joint Q-weighted majority vote conditional risk
for a threshold vector θ ∈ [0, 1]K , for (y, ŷ) ∈ {1, . . . ,K}2, y 6= ŷ, as follows:

RU∧θ(BQ, y, ŷ) :=
1

uy

∑
x∈XU

P (Y = y|X = x)I(BQ(x) = ŷ)I(vQ(x, ŷ) ≥ θŷ). (5)

If the Q-weighted majority vote classifier makes mistakes, i.e., outputs the class ŷ when the
true class is y, on the examples with low values of vQ(x, ŷ), then the joint risk computes the
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probability to make the conditional error on confident observations when a large enough
θŷ is set with respect to the distribution of vQ(x, ŷ). In Section 6.1, it will be seen that
the joint risk can be interpreted as the error evaluated on those unlabeled examples that
are going to be pseudo-labeled by the self-training algorithm, and the threshold is set to θ.
The following Theorem 4.1 derives a transductive bound over the joint Q-weighted majority
vote conditional risk.

Theorem 4.1 Let X ∈ X and Y ∈ {1, . . . ,K} be the input and the output random vari-
ables, and XU be a set of unlabeled examples. Let H be the fixed hypothesis space, Q be the
posterior distribution over H, and BQ be the Q-weighted majority vote classifier defined by
Eq. (1). Denote by vQ(x, ŷ) the assigned class vote of a given observation x for the class
ŷ. Let uy be the expected number of unlabeled observations from the class y ∈ {1, . . . ,K}.
Then, for any set XU , for any given θ ∈ [0, 1]K , for all (y, ŷ) ∈ {1, . . . ,K}2 we have

RU∧θ(BQ, y, ŷ) ≤ inf
γ∈[θŷ ,1]

{
I

(≤,<)
y,ŷ (θŷ, γ) +

1

γ

⌊
Ky,ŷ − V

(≤,<)
y,ŷ (θŷ, γ)

⌋
+

}
, (TBy,ŷ)

where

• Ky,ŷ = 1
uy

∑
x∈XU P (Y = y|X = x)vQ(x, ŷ)I(BQ(x) = ŷ) is the transductive Gibbs

conditional risk evaluated on the examples for which the majority vote class is ŷ,

• I(≤,<)
y,ŷ (θŷ, γ) = 1

uy

∑
x∈XU

P (Y =y|X=x)I(θŷ ≤ vQ(x, ŷ) < γ) is the expected propor-

tion of unlabeled examples in the class y satisfying θŷ ≤ vQ(x, ŷ) < γ,

• V (≤,<)
y,ŷ (θŷ, γ) = 1

uy

∑
x∈XU

P (Y = y|X = x)vQ(x, ŷ)I(θŷ≤ vQ(x, ŷ)<γ) is the average

of ŷ-votes in the class y satisfying θŷ ≤ vQ(x, ŷ) < γ.

The proof stands in Appendix A.1. By sorting the prediction votes over classes in the
ascending order, the transductive bound (TBy,ŷ) is derived as a solution of a linear program,
where the risk is maximized while the link with the Gibbs classifier is employed as a linear
constraint. The solution of the linear program can be formulated as the greatest feasible
solution in the lexicographic order. In other words, starting from the minimal class vote
value in the ascending order, we assign the maximal possible error on each unique class vote
value γ (i.e., the proportion of unlabeled examples with the class vote γ) until we reach the
equality for the imposed linear constraints. In the proof, we also show that the bound can
be computed2 without explicitly solving the linear program as its solution is the infimum
of the following function:

Uy,ŷ : γ 7→ I
(≤,<)
y,ŷ (θŷ, γ) +

1

γ

⌊
Ky,ŷ − V

(≤,<)
y,ŷ (θŷ, γ)

⌋
+

on the interval [θŷ, 1]. As illustrated in Figure 1, the optimal value γ∗ = argminγ Uy,ŷ(γ) is
found from minimization of the sum of the first term, an increasing function of γ, and the
second term that decreases with the increase of γ.

2. An implementation in python is publicly available for research purposes: https://github.com/

vfeofanov/trans-bounds-maj-vote.
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Figure 1: Illustration of how the transductive bound is evaluated on the Vowel data set
(presented in Table 2).

When θŷ = 0, a bound over the transductive Q-weighted majority vote conditional risk
is directly obtained from (TBy,ŷ) :

RU (BQ, y, ŷ) ≤ inf
γ∈[0,1]

{
I

(≤,<)
y,ŷ (0, γ) +

1

γ

⌊
Ky,ŷ − V

(≤,<)
y,ŷ (0, γ)

⌋
+

}
. (6)

We note that for the transductive bound obtained in the binary case by Amini et al.
(2008), the transductive Gibbs risk used inside the linear program can be bounded either
by the PAC-Bayesian bound (Derbeko et al., 2004; Bégin et al., 2014) or by 1/2 (the worst
possible error of the binary classifier), which allows to compute the transductive bound. In
the multi-class case, all the terms must be approximated. To achieve it, we approximate the
posterior probabilities by the predicted probabilities of a supervised classifier. We discuss
this choice in more details in Section 6.1 and Section C.1. Thus, we use this approach to
estimate all the terms of (TBy,ŷ), so we directly approximate the transductive conditional
Gibbs risk and do not upper bound it.

4.2 Transductive Confusion Matrix and Transductive Error Rate

Based on Theorem 4.1, we derive bounds for two other error measures: the error rate and
the confusion matrix (Morvant et al., 2012). We define the transductive error rate and
the transductive joint error rate of the Q-weighted majority vote classifier BQ over the
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unlabeled set XU given a vector θ = (θy)
K
y=1 ∈ [0, 1]K , as

RU (BQ) :=
1

u

∑
x∈XU

∑
y∈{1,...,K}
y 6=BQ(x)

P (Y = y|X = x),

RU∧θ(BQ) :=
1

u

∑
x∈XU

∑
y∈{1,...,K}
y 6=BQ(x)

P (Y = y|X = x)I(vQ(x, BQ(x)) ≥ θBQ(x)). (7)

Then, we define the transductive joint Q-weighted majority vote confusion matrix for
θ ∈ [0, 1]K , and (y, ŷ) ∈ {1, . . . ,K}2, as follows:

[
CU∧θBQ

]
y,ŷ

:=

{
0 y = ŷ,

RU∧θ(BQ, y, ŷ) y 6= ŷ.
(8)

From Theorem 4.1, we derive corresponding transductive bounds for the confusion ma-
trix norm and the error rate of the Q-weighted majority vote classifier. To simplify nota-
tions, we introduce a matrix Uθ of size K × K with zeros on the main diagonal and the
following (y, ŷ)-entries, y 6= ŷ:

[Uθ]y,ŷ := inf
γ∈[θŷ ,1]

{
I

(≤,<)
y,ŷ (θŷ, γ) +

1

γ

⌊
Ky,ŷ − V

(≤,<)
y,ŷ (θŷ, γ)

⌋
+

}
, (9)

which corresponds to the transductive bound proposed in Theorem 4.1.

Corollary 4.2 Let X ∈ X and Y ∈ {1, . . . ,K} be the input and the output random vari-
ables, and XU be a set of unlabeled examples. Let H be the fixed hypothesis space, Q be
the posterior distribution over H, and BQ be the Q-weighted majority vote classifier de-
fined by Eq. (1). Let uy be the expected number of unlabeled observations from the class
y ∈ {1, . . . ,K}. Denote ‖.‖2 the spectral norm of degree 2.
Then, for any set XU , for any given θ ∈ [0, 1]K , the spectral norm of the confusion matrix
CU∧θBQ

is bounded as

‖CU∧θBQ
‖2 ≤ ‖Uθ‖2. (10)

where Uθ is defined by Eq. (9). Moreover, we have the following bound for the transductive
joint error rate RU∧θ(BQ):

RU∧θ(BQ) ≤
∥∥Uᵀ

θ p
∥∥

1
. (11)

where p = {uy/u}Ky=1.

Note that the transductive bound of the Q-weighted majority vote error rate is obtained
from Eq. (11) by taking θ = 0K :

RU (BQ) ≤
∥∥Uᵀ

0K
p
∥∥

1
. (TB)

The proof stands in Appendix A.2.
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4.3 Tightness Guarantees

In this section, we assume that the Q-weighted majority vote classifier makes most of its
error on unlabeled examples with a low prediction vote, i.e., class votes can be considered
as indicators of confidence. In the following proposition, we show that the bound becomes
tight under certain conditions. As the value of the conditional error may be never zero in
the case of probabilistic labels for any confidence value, we introduce a hyperparameter τ
that is used to decide from which value the error is considered to be non-negligible.

Proposition 4.3 Let X ∈ X and Y ∈ {1, . . . ,K} be the input and the output random
variables, and XU be a set of unlabeled examples. Let H be the fixed hypothesis space, Q be
the posterior distribution over H, and BQ be the Q-weighted majority vote classifier defined
by Eq. (1). Denote by vQ(x, ŷ) the assigned class vote of a given observation x for the class
ŷ. Let uy be the expected number of unlabeled observations from the class y ∈ {1, . . . ,K}.
For 1 ≤ ŷ ≤ K, τ ∈ [0, 1], let consider the set Γτy,ŷ of unique votes with conditional error
larger than a threshold τ :

Γτy,ŷ :=

γ ∈ [0, 1]

∣∣∣∣∣∣ 1

uy

∑
x∈XU

P (Y =y|X=x)I(BQ(x)= ŷ)I(vQ(x, ŷ)=γ) ≥ τ

 .

Assume there exists a lower bound C ∈ [0, 1] such that for all γ ∈ Γτy,ŷ:∑
x∈XU

P (Y =y|X=x)I(BQ(x)= ŷ)I(vQ(x, ŷ)<γ) ≥ C
∑
x∈XU

P (Y =y|X=x)I(vQ(x, ŷ)<γ).

(12)

Then, for any set XU , for all (y, ŷ) ∈ {1, . . . ,K}2, the following inequality holds:

[U0K ]y,ŷ −RU (BQ, y, ŷ) ≤ 1− C
C

RU (BQ, y, ŷ) + ry,ŷ

(
1

γ∗y,ŷ
− 1

)
,

where

• γ∗y,ŷ := max Γτy,ŷ is the highest vote on which the conditional error is larger than τ ,
and

• ry,ŷ :=
∑

x∈XU
P (Y = y|X = x)vQ(x, ŷ)I(BQ(x) = ŷ)I(vQ(x, ŷ) > γ∗y,ŷ)/uy corre-

sponds to the average of ŷ-votes in the class y that greater than γ∗y,ŷ and on which the
Q-weighted majority vote classifier makes the conditional mistake.

The proof stands in Appendix A.3. This proposition states that if Eq. (12) holds, the
difference between the transductive Q-weighted majority vote conditional risk and its upper
bound does not exceed an expression that depends on a constant C and a threshold τ .
When the majority vote classifier makes most of its mistake for the class ŷ on observations
with a low value of vQ(x, ŷ), ry,ŷ and γ∗y,ŷ are decreasing with a reasonable choice of τ .
This also implies that Eq. (12) accepts a high value C (close to 1) and the bound will be
tighter. The closer our framework to the deterministic one, the closer ry,ŷ will be to 0 ( in

10
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the deterministic case, τ can be set to 0, so ry,ŷ will be 0), so the bound becomes tight.
Although our bound is tight only under the condition of making mistakes on low prediction
votes, the assumption is reasonable from the theoretical point of view, since if, for some
observation, the Q-weighted majority vote classifier gives a relatively high vote to the class
ŷ, we expect that the observation is most probably from this class and not from the class
y. From the practical point of view, this assumption requires the learning model to be well
calibrated (Gebel, 2009).

5. Probabilistic C-Bound with Imperfect Labels

In this section, we consider another setup: the inductive generalization error is taken as the
learning objective, which is defined for any h : X → {1, . . . ,K} in the case of probabilistic
labels as follows:

R(h) := EX [r(h,x)] , (13)

where r(h,x) :=
∑

y∈{1,...,K}
y 6=h(x)

P (Y = y|X = x) = 1− P (Y = h(x)|X = x).

In addition, we consider that pseudo-labels have been inferred by a teacher model that is
trained independently, either by using a hold-out set or pre-trained on a similar benchmark.
We propose a way to evaluate the error of the classifier that is trained on both labeled and
pseudo-labeled data, which implies that the training example come with the label noise.
For this, we derive a new generalization bound in the presence of imperfect labels.

5.1 C-Bound in the Probabilistic Setting

Lacasse et al. (2007) proposed the C-bound that upper bounds the Q-weighted majority
vote error by taking into account the mean and the variance of the prediction margin,
which, we recall Eq. (3), is defined as vQ(x, y)−maxŷ∈{1,...,K}\{y} vQ(x, ŷ) with y denoting
the true class for x. A similar result was obtained in a different context by Breiman (2001).
Laviolette et al. (2017) extended the C-bound to the multi-class case. Below, we derive
their C-bound in the probabilistic setting.

Theorem 5.1 Let X ∈ X and Y ∈ {1, . . . ,K} be the input and the output random vari-
ables, respectively. Let H be the fixed hypothesis space, and Q be the posterior distribution
over H. Let BQ and mQ be the majority vote classifier and the associated margin defined by
Eq. (1) and Eq. (3), respectively. Assuming mQ is measurable, let MQ be a random variable

defined as MQ := mQ(X, Y ) with its first and second statistical moments denoted by µ
MQ

1

and µ
MQ

2 , respectively. Then, for all choices of Q on a fixed hypothesis space H, and for

any density fX over X and any distribution P (Y |X) over {1, . . . ,K} such that µ
MQ

1 > 0,
we can upper-bound the generalization error R(BQ), defined in Eq. (13), as follows:

R(BQ) ≤ 1−

(
µ
MQ

1

)2

µ
MQ

2

. (CB)

11
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Proof At first, we show that R(BQ) = P (MQ ≤ 0). We notice that

P (MQ ≤ 0|X = x) =
K∑
y=1

P (Y = y|X = x)I(mQ(x, y) ≤ 0) =
∑

y∈{1,...,K}
y 6=BQ(x)

P (Y = y|X = x).

Then, we obtain that

P (MQ ≤ 0) =

∫
X
P (MQ ≤ 0|X = x)fX(x)dx = EXP (MQ ≤ 0|X = x) = R(BQ). (14)

By applying the Cantelli-Chebyshev inequality (Lemma B.1, Appendix B), we deduce:

P (MQ ≤ 0) ≤
µ
MQ

2 −
(
µ
MQ

1

)2

µ
MQ

2 −
(
µ
MQ

1

)2
+
(
µ
MQ

1

)2 = 1−

(
µ
MQ

1

)2

µ
MQ

2

. (15)

The bound is obtained by combining Eq. (14) and Eq. (15).

Thus, the probabilistic C-bound allows to bound the generalization error of the Q-
weighted majority vote classifier when examples are provided with probabilistic labels. Note
that when only one label is possible for every example, the bound comes back to the usual
deterministic case. The main advantage of C-bound is the involvement of the second margin
moment, which can be related to correlation between hypotheses’ predictions (Lacasse et al.,
2007).

5.2 Mislabeling Error Model

In this section, we further assume that pseudo-labeling of unlabeled training examples
is performed by a teacher classifier that did not have access to the training labeled and
unlabeled data during its training. We model the pseudo-labels by considering a random
variable Ŷ that may differ from the true label Y in its distribution, thereby containing
label noise. From the point of view of the training of the student classifier, which error we
want to evaluate, pseudo-labeled unlabeled training data {(xi, ŷi)}l+ui=l+1 may be thought as
identically and independently distributed with the marginal density fX but another label
generator P (Ŷ |X = xi), compared to P (Y |X = x) used for the labeled data.

The goal of introducing the random variable Ŷ is to understand the difference between
the risk of a classifier h : X → {1, . . . ,K}, when it is evaluated on the true label Y , R(h),
and on the imperfect label Ŷ , defined in the following way:

R̂(h) := EX [r̂(x)]

where r̂(h,x) :=
∑

y∈{1,...,K}
y 6=h(x)

P (Ŷ = y|X = x).

One can notice that P (Ŷ = ŷ|X = x) =
∑K

y=1 P (Ŷ = ŷ|Y = y,X = x)P (Y = y|X =

x) for all (ŷ, y) ∈ {1, . . . ,K}2, x ∈ X . Probabilities P (Ŷ = ŷ|Y = y,X = x) are called

12
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the mislabeling probabilities, and they allow us to explicitly model imperfection of labels.
However, their estimation is very challenging as they depend on x. A common approach to
overcome this is to assume that the mislabeling probabilities are class-related and instance-
independent (Chittineni, 1980; Amini and Gallinari, 2003; Scott, 2015).

Assumption 1 (Class-related Mislabeling Model) We assume that the imperfect la-
bel Ŷ does not influence the true class distribution: P (X|Y, Ŷ ) = P (X, Y ), and the label
imperfection is summarized through the mislabeling matrix P = (pŷ,y)1≤ŷ,y≤K , defined by

pŷ,y := P (Ŷ = ŷ|Y = y) ∀(ŷ, y) ∈ {1, . . . ,K}2, (16)

where
∑K

ŷ=1 pŷ,y = 1.

Particularly, this assumption implies that the posterior distribution of Ŷ is decomposed for
any ŷ ∈ {1, . . . ,K} as follows:

P (Ŷ = ŷ|X = x) =

K∑
y=1

pŷ,yP (Y = y|X = x). (17)

Assumption 1 can be regarded as realistic or unrealistic depending on the application. For
example, in the case of MNIST classification the class Y generates features X, so we gener-
ally expect that mislabeling of Ŷ would depend mostly on how digits differ fundamentally
from each other. It is well known that in the MNIST data set digits 4 and 9 can be confused
between each other, so we anticipate P (Ŷ = 4|Y = 9) and P (Ŷ = 9|Y = 4) to be high even
if we do not know where exactly the classifier is going to mistake.

Further, we derive several results assuming the class-related model described in Eq. (17).
Nevertheless, Theorem 5.2 and Theorem 5.3, which will be given later, hold also for a
more general case when mislabeling probabilities are instance-dependent. In the following
theorem, we derive a bound that connects the error of the true and the imperfect label in
misclassifying a particular example x ∈ X .

Theorem 5.2 Let X ∈ X , Y ∈ {1, . . . ,K} and Ŷ ∈ {1, . . . ,K} be the input, the true output
and the imperfect output random variables, respectively. Let H be the fixed hypothesis space,
Q be the posterior distribution over H, and BQ be the majority vote classifier defined by
Eq. (1). Following Assumption 1, let P be the mislabeling matrix defined in Eq. (16), and
assume that pŷ,ŷ > pŷ,y, for all ŷ, y ∈ {1, . . . ,K}2. Then, for any x ∈ X ,

r(BQ,x) ≤
r̂(BQ,x)

δ(x)
− 1− α(x)

δ(x)
, (18)

with

• δ(x) := pBQ(x),BQ(x) −maxy∈{1,...,K}\{BQ(x)} pBQ(x),y,

• α(x) := pBQ(x),BQ(x).
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Proof First, from the definition of r̂(BQ,x) and applying Eq. (17) we obtain that

r̂(BQ,x) = 1− P (Ŷ = BQ(x)|X = x) = 1−
K∑
y=1

pBQ(x),yP (Y = y|X = x)

= 1− pBQ(x),BQ(x)P (Y = BQ(x)|X = x)−
K∑
y=1

y 6=BQ(x)

pBQ(x),yP (Y = y|X = x)

One can notice that

K∑
y=1

y 6=BQ(x)

pBQ(x),yP (Y = y|X = x) ≤
(

max
y∈{1,...,K}\{BQ(x)}

pBQ(x),y

) K∑
y=1

y 6=BQ(x)

P (Y = y|X = x)

=

(
max

y∈{1,...,K}\{BQ(x)}
pBQ(x),y

)
(1−P (Y =BQ(x)|X=x)).

Finally, we infer the following inequality:

r̂(BQ,x) ≥ (pBQ(x),BQ(x) − max
y∈{1,...,K}\{BQ(x)}

pBQ(x),y)(1− P (Y = BQ(x)|X = x))

+ 1− pBQ(x),BQ(x) = δ(x)r(BQ,x) + 1− α(x).

Taking into account the assumption that pBQ(x),BQ(x) > pBQ(x),y, ∀BQ(x) ∈ {1, . . . ,K},
y ∈ {1, . . . ,K} \ {BQ(x)}, we deduce that δ(x) > 0, which concludes the proof.

This theorem gives us insights on how the true error rate can be bounded given the error
rate of the imperfect label and the mislabeling matrix. With the quantities δ(x) and α(x),
we perform a correction of r̂(BQ,x). Note that when there is no mislabeling, the left and
right sides of Eq. (18) are equal, since α(x) = 1 and δ(x) = 1 in this case.

In the theorem, the mislabeling matrix is assumed given, while in practice it has to be
estimated. Since the number of matrix entries grows quadratically with the increase of K,
a direct estimation of the true posterior probabilities from Eq. (17) may be more affected
by the estimation error than the bound itself as the latter needs to know only 2K entries.
We give more details about estimation of the mislabeling matrix in Section 7.

The bound can be compared with a bound derived by Chittineni (1980, Eq. (3.14), p.
284) for the oracle Bayes classifier BO(x) := maxŷ∈{1,...,K} P (Y = ŷ|X=x). It is shown that

r(BO,x) ≤ 1 − 1−r̂(BO,x)
β , where β = maxŷ=1,...,K

(∑K
y=1 pŷ,y

)
. One can notice that the

regularizer β is constant with respect to x, so the penalization of the error rate r̂(BO,x)
does not depend on the label the classifier predicts. Another limitation is that the bound
holds for the oracle Bayes classifier only, while Theorem 5.2 holds for any classifier.

The assumption of Theorem 5.2 requires that the diagonal entries of the mislabeling
matrix are the largest elements in their corresponding columns, which means that the
imperfect label is reasonably correlated with the true label. However, in practice, the
assumption may not hold (at least, for some of the classes), so the theorem is not applicable.
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To overcome this, it can be relaxed by considering λ > 0 such that λ+ δ(x) > 0, and so we
obtain the following bound:

r(BQ,x) ≤
r̂(BQ,x)

λ+ δ(x)
− 1− λ− α(x)

λ+ δ(x)
. (19)

When δ(x) is close to 0, it also avoids the bound to become arbitrarily large. The use of
this bound is illustrated in Section C.3 of Appendix.

5.3 C-Bounds with Imperfect Labels

Based on Theorem 5.2, we bound the generalization error of the majority vote classifier
R(BQ), defined as the expectation of r(BQ,x). By taking expectation in Eq. (18), we
obtain that

R(BQ) = EXr(BQ,x) ≤ EX
r̂(BQ,x)

δ(x)
− EX

1− α(x)

δ(x)
. (20)

One can see that for every x, r̂(BQ,x) is multiplied by a positive weight 1/δ(X) > 0, so the
first term of the right-hand side is a weighted generalization error of the imperfect label. In
the following theorem, we show how to derive a C-bound in this scenario.

Theorem 5.3 Let X ∈ X , Y ∈ {1, . . . ,K} and Ŷ ∈ {1, . . . ,K} be the input, the true
output and the imperfect output random variables, respectively. Let H be the fixed hypothesis
space, and Q be the posterior distribution over H. Let BQ and mQ be the majority vote
classifier and the associated margin defined by Eq. (1) and Eq. (3), respectively. Assuming
mQ is measurable, let M̂Q be a random variable defined as M̂Q := mQ(X, Ŷ ) with its

first and second statistical moments denoted by µ
M̂Q

1 and µ
M̂Q

2 , respectively. Following
Assumption 1, let P be the mislabeling matrix defined in Eq. (16), and assume that every
diagonal entry of P is the largest element in the corresponding column, i.e., pŷ,ŷ > pŷ,y, for
all (ŷ, y) ∈ {1, . . . ,K}2. Then, for all choice of Q on a fixed hypothesis space H, and for
any density fX over X and all distributions P (Y |X) and P (Ŷ |X) over {1, . . . ,K}, we can
upper-bound the generalization error R(BQ), defined in Eq. (13), as follows:

R(BQ) ≤ ψP −

(
µ
M̂Q,P
1

)2

µ
M̂Q,P
2

, (CBIL)

if µ
M̂Q,P
1 > 0, where

• ψP := EX
α(x)
δ(x) with δ and α defined as in Theorem 5.2,

• µM̂Q,P
1 :=

∫
Rd+1

m
δ(x)fM̂Q,X

(m,x)dxdm is the weighted 1st margin moment, where

fM̂Q,X
denotes the joint density of M̂Q and X,

• µM̂Q,P
2 :=

∫
Rd+1

m2

δ(x)fM̂Q,X
(m,x)dxdm is the weighted 2nd margin moment.

15



Feofanov, Devijver and Amini

Proof At first, let us introduce a normalization factor ωP defined as follows:

ωP := EX
1

δ(x)
=

∫
Rd+1

fM̂Q,X
(m,x)

δ(x)
dxdm.

Remind that r̂(h,x) = P (M̂Q ≤ 0|X = x). Then, we can write:

EX
r̂(BQ,x)

δ(x)
=

∫
Rd

1

δ(x)
P (M̂Q ≤ 0|X = x)fX(x)dx =

∫ 0

−∞

∫
Rd

fM̂Q,X
(m,x)

δ(x)
dxdm

= ωP

∫ 0

−∞

∫
Rd fM̂Q,X

(m,x)/δ(x)dx∫
Rd+1 fM̂Q,X

(m,x)/δ(x)dxdm
dm = ωPP (M̂ω < 0), (21)

where the last equality is given by a random variable M̂ω coming from the density fω defined
as the expression inside the integral in Eq. (21). We further notice that the weighted first
and second moments can be represented as

µ
M̂Q,P
1 =

∫
Rd+1

m

δ(x)
fM̂Q,X

(m,x)dxdm = ωPµ
M̂ω
1 ,

µ
M̂Q,P
2 =

∫
Rd+1

m2

δ(x)
fM̂Q,X

(m,x)dxdm = ωPµ
M̂ω
2 .

From this, we also obtain that var(Mω) =

(
µ
M̂Q,P
2 /ωP

)
−
(
µ
M̂Q,P
1 /ωP

)2

. Then, using

the Cantelli-Chebyshev inequality (Lemma B.1) with λ = µM̂ω
1 = µ

M̂Q,P
1 /ωP we deduce the

following inequality:

P (M̂ω < 0) ≤

(
µ
M̂Q,P
2 /ωP

)
−
(
µ
M̂Q,P
1 /ωP

)2

(
µ
M̂Q,P
2 /ωP

)
−
(
µ
M̂Q,P
1 /ωP

)2

+

(
µ
M̂Q,P
1 /ωP

)2 = 1−

(
µ
M̂Q,P
1

)2

ωPµ
M̂Q,P
2

. (22)

Combining Eq. (22) and Eq. (20) we infer (CBIL):

R(BQ) ≤ EX
r̂(BQ,x)

δ(x)
− EX

1− α(x)

δ(x)
= ωPP (M̂ω < 0)− ωP + ψP ≤ ψP −

(
µ
M̂Q,P
1

)2

µ
M̂Q,P
2

.

Given data with imperfect labels, the direct evaluation of the generalization error rate may
be biased, leading to an overly optimistic evaluation. Using the mislabeling matrix P we
derive a more conservative C-bound, where the error of x is penalized by the factor 1/δ(x).

When there is no mislabeling, ψP = 1, µ
M̂Q,P
1 and µ

M̂Q,P
2 are equivalent to µ

M̂Q

1 and µ
M̂Q

2 ,
so we obtain the regular C-bound (CB).

In particular, we can use this general result to evaluate the error rate when mislabeling is
caused by pseudo-labeling of unlabeled data. Note that Lacasse et al. (2007) and Roy et al.
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(2011) proposed another way to evaluate the C-bound in the semi-supervised setting: they
use unlabeled data to estimate the second margin moment by expressing it via disagreement
of hypotheses. However, this is only possible in the binary classification case.

While we have combined the mislabeling bound given by Eq. (18) with the supervised
C-bound (Laviolette et al., 2017), the bound based on the second-order Markov’s inequality
could be an alternative. As pointed out by Masegosa et al. (2020), the latter can be regarded
as a relaxation of the C-bound but is easier to estimate from data in some cases.

5.4 PAC-Bayesian Theorem for C-Bound Estimation

When the margin mean, the margin variance and the mislabeling matrix are empirically
estimated from data, evaluation of (CBIL) may be optimistically biased. In this section,
we analyze the behavior of the estimate with respect to the sample size. To achieve that,
we use the PAC-Bayesian theory initiated by McAllester (1999, 2003) to derive a Probably
Approximately Correct bound defined below.

Theorem 5.4 Under the notations of Theorem 5.3, for any fixed set of classifiers H, for
any prior distribution Q0 on H and any ε ∈ (0, 1], with a probability at least 1− ε over the
choice of the sample {xi, yi}li=1 ∪ {xi}

l+u
i=l+1, for every posterior distribution Q over H, if

µ
M̂Q

1 > 0 and δ̃(x) > 0, we have:

R(BQ) ≤ ψ̃ − µ̃2
1

µ̃2
, (23)

where

µ̃1 :=
1

u

l+u∑
i=l+1

1

δ̃(xi)

K∑
k=1

mQ(xi, k)P (Ŷ =k|X=xi)− J1

√
2

u

[
KL(Q ‖Q0) + ln

2
√
u

ε/ρ

]

µ̃2 :=
1

u

l+u∑
i=l+1

1

δ̃(xi)

K∑
k=1

(mQ(xi, k))2P (Ŷ =k|X=xi) + J2

√
2

u

[
2KL(Q ‖Q0) + ln

2
√
u

ε/ρ

]

ψ̃ :=
1

u

l+u∑
i=l+1

α̃(xi)

δ̃(xi)
+ J3

√
2

u
ln

2
√
u

ε/ρ

δ̃(x) := δ̂(x)−

√
1

2lkx
ln

2
√
lkx

ε/ρ
−

√
1

2ljx
ln

2
√
ljx

ε/ρ
, with kx := BQ(x), jx :=argmin

j 6=kx
lj ,

α̃(x) := α̂(x) +

√
1

2lkx
ln

2
√
lkx

ε/ρ
, for all x ∈ X

J1 := max
x
|(1/δ̃(x))

K∑
ŷ=1

mQ(x, ŷ)P (Ŷ = ŷ|X=x)|

J2 := max
x
|1/δ̃(x)

K∑
ŷ=1

(mQ(x, ŷ))2P (Ŷ = ŷ|X=x)|
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J3 := max
x∈X

[α̂(x) + ι(lkx)]/[δ̂(x)− ι(lkx)− ι(ljx)]

ι(ly) :=

√
1

2ly
ln

2
√
ly

ε
,

and where δ̂(x) and α̂(x) are empirical estimates respectively of δ(x) and α(x) based on
the available labeled set, KL(Q ‖Q0) is the Kullback-Leibler divergence between Q and Q0,
ly =

∑l
i=1 I(yi = y)/l is the proportion of the labeled training examples from the true class

y, and ρ := 2K + 3 comes from applying a union bound.

The proof is a combination of Propositions B.5, B.7 and B.9 deferred to Appendix B.
Thus, by using Eq. (23) we additionally penalize the C-bound by the sample size and

the divergence between Q and Q0. As u grows, the penalization becomes less severe, so µ̃1

and µ̃2 are close to µ
M̂Q

1 and µ
M̂Q

2 . Similarly, δ̃(x) and α̃(x) are closer to δ̂(x) and α̂(x)
with the increase of the number examples used to estimate the mislabeling matrix, which
we take l for the sake of simplicity. Note that, in contrast to the supervised case (Laviolette
et al., 2017, Theorem 3), J1 and J2 can have a drastic influence on the bound’s value, when
δ̃(x) is close to 0, which motivates in practice to use the λ-relaxation given by Eq. (19).

The obtained bound may be used to estimate the error of the majority vote from data,
with the pseudo-labeled unlabeled examples serving as a hold-out set for estimating the
margin moments, and the labeled examples are used to estimate the mislabeling matrix.
In the case of classical ensembles, it can be performed in the out-of-bag fashion following
Thiemann et al. (2017) and Lorenzen et al. (2019). However, the bound does not appear
tighter in practice compared to the supervised case (Laviolette et al., 2017) due to the
additional penalization on estimation of the mislabeling matrix. Making this bound tighter
could be a good direction for future work. Nevertheless, when the focus is set on model
selection, a common choice is to simply use an empirical estimate of the C-bound as an
optimization criterion (Bauvin et al., 2020).

6. Algorithm and Experimental Results

In this section, we show that the proposed bound on the transductive conditional risk found
in Theorem 4.1 can be applied for developing a new self-training technique for multi-class
classification. Then, in order to support our suggested framework, we carried out several
numerical experiments in real-world scenarios and compared with other semi-supervised
classification algorithms. Finally, we illustrate the proposed (CBIL) on real data sets and
analyze its behavior.

6.1 Multi-class Self-training Algorithm

In this section, we consider the classical setting where the self-training algorithm is initial-
ized by a supervised base classifier that has been trained first on available labeled training
data. Then, at each iteration, the predictions of the base classifier, called pseudo-labels, are
assigned to those unlabeled examples that have a confidence score above a certain threshold.
The pseudo-labeled examples are then included in the training set, and the base classifier
is retrained. The process is repeated until no examples for pseudo-labeling are left.
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The central question of applying the self-training algorithm is how to choose the con-
fidence threshold. While setting the threshold to a low value would imply a lot of label
noise, setting it to a very high value would put excessive trust in the confidence score ini-
tially biased by the small labeled set. Considering the prediction vote of the majority vote
classifier as an indicator of confidence, we propose the strategy to automatically select the
threshold by minimizing the following criterion RU|θ(BQ) defined as

RU|θ(BQ) :=
RU∧θ(BQ)

1
u

∑
x∈XU

I(vQ(x, BQ(x)) ≥ θBQ(x))
. (24)

Thus, the threshold is found by making a trade-off between the error we induce by pseudo-
labeling and the number of pseudo-labeled examples. Algorithm 1 summarizes mains steps
of our method that we further call MSTA3.

To evaluate RU|θ(BQ), we bound the numerator of Eq. (24) by Corollary 4.2. However,
the bound can practically be computed only with assumptions, since the posterior probabil-
ities P (Y =y|X=x) for unlabeled examples are not known. In this work, we approximate
the posterior P (Y =y|X=x) by vQ(x, y) of the base classifier trained on labeled examples
only (the initial step of MSTA). Although this approximation is optimistic, by formulating
the bound as probabilistic we keep some chances for other classes so the error of the super-
vised classifier can be smoothed. Nevertheless, it must be borne in mind that the hypothesis
space should be diverse enough so that the entropy of (vQ(x, y))Ky=1 would not be always
zero, and the errors are made mostly on low prediction votes. In our experiments, as the
base classifier, we use the random forest (Breiman, 2001) that aggregates predictions from
trees learned on different bootstrap samples. In Appendix C.1, we validate the proposed
approximation by empirically comparing it with the case when the posterior probabilities
are set to 1/K, i.e., when we treat all classes as equally probable.

To find an optimal θ∗ we perform a grid search over the hypercube (0, 1]K . The same
algorithm is used for computing the optimal γ∗y,ŷ that provides the value of an upper bound
for the conditional risk (see Theorem 4.1). As the direct grid search in the multi-class
setting costs O

(
RK
)
, where R is the sampling rate of the grid, we notice that

RU|θ(BQ) ≤
K∑
ŷ=1

R
(ŷ)
U∧θ(BQ)

1
u

∑
x∈XU

I(vQ(x, ŷ) ≥ θŷ)I(BQ(x) = ŷ)
, (∗)

where R
(ŷ)
U∧θ(BQ) =

∑K
y=1 uyRU∧θ(BQ, y, ŷ)/u. Thus, (∗) might be minimized term by term,

tuning independently each component of θ. This replaces the K-dimensional minimization
task by K tasks of 1-dimensional minimization.

6.2 Experimental Setup

All experiments were performed on a cluster with an Intel(R) Xeon(R) CPU E5-2640 v3

at 2.60GHz, 32 cores, 256GB of RAM, the Debian 4.9.110-3 x86 64 OS. Experiments
are conducted on publicly available data sets (Dua and Graff, 2017; Chang and Lin, 2011;
Xiao et al., 2017). Since we are interested in the practical use of our approach in the

3. The source code of MSTA can be found at https://github.com/vfeofanov/trans-bounds-maj-vote.
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Algorithm 1 Multi-class Self-training algorithm (MSTA)

Input:
Labeled observations ZL
Unlabeled observations XU
Initialisation:.
A set of pseudo-labeled instances, ZP ← ∅
A classifier BQ trained on ZL
repeat

1. Compute the vote threshold θ∗ that minimizes the conditionalQ-weighted majority
vote error rate:

θ∗ = argmin
θ∈(0,1]K

RU|θ(BQ). (?)

2. S ← {(x, y′)|x ∈ XU ; [vQ(x, y′) ≥ θ∗y′ ] ∧ [y′ = argmaxk∈{1,...,K} vQ(x, k)]}
3. ZP ← ZP ∪ S, XU ← XU \ S
4. Learn a classifier BQ with the following loss function:

L(BQ, ZL,ZP) =
l + |ZP |

l
L(BQ, ZL) +

l + |ZP |
|ZP |

L(BQ,ZP)

until XU = ∅ or S = ∅
Output: The final classifier BQ

semi-supervised context, we would like to see if it has good performance when l � u.
Therefore, we do not use the train/test splits that are proposed by data sources. Instead,
we propose our own splits that makes a situation closer to the semi-supervised context.
Each experiment is conducted 20 times, by randomly splitting an original data set on a
labeled and an unlabeled parts keeping fixed their respective size at each iteration. The
reported performance results are averaged over the 20 trials. We evaluate the performance
as the accuracy score over the unlabeled training set (ACC-U).

In all our experiments, we consider the Random Forest algorithm (Breiman, 2001) (de-
noted by RF) with 200 trees and the maximal depth of trees as the majority vote classifier
with the uniform prior and posterior distributions. For an observation x, we evaluate the
vector of class votes {v(x, i)}Ki=1 by averaging over the trees the vote given to each class
by the tree. A tree computes a class vote as the fraction of training examples in a leaf
belonging to a class.

Experiments are conducted on 11 real data sets. The associated applications are im-
age classification with the Fashion data set, the Pendigits and the MNIST databases of
handwritten digits; a signal processing application with the SensIT data set for vehicle type
classification and the human activity recognition HAR database; speech recognition using the
Vowel, the Isolet and the Letter data sets; document recognition using the Page Blocks

database; and finally applications to bioinformatics with the Protein and DNA data sets.
The main characteristics of these data sets are summarized in Table 2.

The proposed MSTA that automatically finds the threshold by minimizing the criterion
given by Eq. (24), is compared with the following baselines:
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Data set # of labeled examples, # of unlabeled examples, Dimension, # of classes,
l u d K

Vowel 99 891 10 11
Protein 129 951 77 8

DNA 31 3155 180 3
PageBlocks 1094 4379 10 5
Isolet 389 7408 617 26
HAR 102 10197 561 6

Pendigits 109 10883 16 10
Letter 400 19600 16 26
Fashion 175 69825 784 10
MNIST 175 69825 784 10
SensIT 49 98479 100 3

Table 2: Characteristics of data sets used in our experiments ordered by the size of the
training set (n = l + u).

• a fully supervised RF trained using only labeled examples. The approach is obtained
at the initialization step of MSTA and once learned it is directly applied to predict the
class labels of the whole unlabeled set;

• the scikit-learn implementation (Pedregosa et al., 2011) of the graph-based, label
spreading algorithm (Zhou et al., 2004) denoted by LS;

• the one-versus-all extension of a transductive support vector machine Joachims (1999)
using the Quasi-Newton scheme. The approach was proposed by Gieseke et al. (2014)
ans is further denoted as QN-S3VM4;

• a semi-supervised extension of the linear discriminant analysis Semi-LDA, which is
based on the contrastive pessimistic likelihood estimation proposed by Loog (2015);

• a semi-supervised extension of the random forest DAS-RF proposed by Leistner et al.
(2009) where the classifier is repeatedly re-trained on the labeled and all the unlabeled
examples with pseudo-labels optimized via deterministic annealing;

• the multi-class extension of the classical self-training approach (denoted by FSTA, Tür
et al., 2005) with a fixed prediction vote threshold θ;

• a self-training approach (denoted by CSTA) where the threshold is defined via cur-
riculum learning by taking it as the (1 − t · ∆)-th percentile of the prediction vote
distribution at the step t = 1, 2, . . . (Cascante-Bonilla et al., 2021).

As the size of the labeled training examples |ZL| is small, the hyperparameter tun-
ing can not be performed properly. At the same time, the performance of baselines
may be sensitive to some of their hyperparameters. For this reason, we compute LS,
QN-S3VM, Semi-LDA, DAS-RF on a grid of hyperparameters’ values, and then choose the

4. The source code for the binary QN-S3VM is available at http://www.fabiangieseke.de/index.php/code/
qns3vm.

21

http://www.fabiangieseke.de/index.php/code/qns3vm
http://www.fabiangieseke.de/index.php/code/qns3vm


Feofanov, Devijver and Amini

Data set RF LS QN-S3VM Semi-LDA DAS-RF FSTAθ=0.7 CSTA∆=1/3 MSTA

Vowel .586± .028 .602± .026 .208↓ ± .029 .432↓ ± .029 .587 ± .028 .531↓ ± .034 .576↓ ± .031 .586 ± .026

Protein .764↓ ± .032 .825± .028 .72↓ ± .034 .842 ± .029 .768↓ ± .036 .687↓ ± .036 .771↓ ± .035 .781↓ ± .034

DNA .693↓ ± .074 .584↓ ± .038 .815± .025 .573↓ ± .037 .693↓ ± .083 .521↓ ± .095 .671↓ ± .112 .702↓ ± .082

PageBlocks .965± .003 .905↓ ± .004 .931↓ ± .003 .935↓ ± .009 .965 ± .003 .964 ± .004 .965 ± .003 .966 ± .002

Isolet .854↓ ± .016 .727↓ ± .01 .652↓ ± .016 .787↓ ± .019 .859↓ ± .018 .7↓ ± .04 .843↓ ± .021 .875 ± .014

HAR .851± .024 .215↓ ± .05 .78↓ ± .02 .743↓ ± .043 .852 ± .024 .81↓ ± .041 .841 ± .029 .854 ± .026

Pendigits .863↓ ± .022 .916± .013 .675↓ ± .022 .824↓ ± .012 .872↓ ± .023 .839↓ ± .036 .871↓ ± .029 .884↓ ± .022

Letter .711± .011 .664↓ ± .01 .064↓ ± .013 .589↓ ± .016 .718 ± .012 .651↓ ± .015 .72 ± .013 .717 ± .013

Fashion .718± .022 NA NA .537↓ ± .027 .722 ± .023 .64↓ ± .04 .713 ± .026 .723 ± .023

MNIST .798↓ ± .015 NA NA .423↓ ± .029 .822↓ ± .017 .705↓ ± .055 .829↓ ± .02 .857 ± .013

SensIT .723± .022 NA NA .647↓ ± .042 .723 ± .022 .692↓ ± .023 .713 ± .024 .722 ± .021

Table 3: Classification performance on different data sets described in Table 2. The perfor-
mance is computed using the accuracy score on the unlabeled training examples
(ACC-U). The sign ↓ shows if the performance is statistically worse than the best
result on the level 0.01 of significance. NA indicates the case when the time limit
was exceeded.

value for which the performance is the best in average on 20 trials. We tune the RBF
kernel parameter σ ∈ {10, 1.5, 0.5, 10−1, 10−2, 10−3} for LS, the regularization parameters
(λ, λ′) ∈ {10−1, 10−2, 10−3}2 for QN-S3VM, the learning rate α ∈ {10−4, 10−3, 10−2} for
Semi-LDA, the initial temperature T0 ∈ {10−3, 5 · 10−3, 10−2} for DAS-RF. Other hyperpa-
rameters for these algorithms are left to their default values. Particularly, in DAS-RF the
strength parameter and the number of iterations are respectively set to 0.1 and 10.

While the aforementioned parameters are rather data-dependent, the choice of θ for FSTA
and ∆ for CSTA depend more on what prediction vote distribution the base classifier outputs.
After manually testing different values, we have found that FSTAθ=0.7 and CSTA∆ = 1/3 are
good choices for the random forest. For FSTA, we terminate the learning procedure as
soon as the algorithm makes 10 iterations, which reduces the computation time and may
also improve the performance, since, in this case, the algorithm is less affected by noise.
Cascante-Bonilla et al. (2021) used for CSTA a slightly other architecture for self-training,
where the set of selected pseudo-labeled examples included just for one iteration (like if in
Algorithm 1 Step 3 would be replaced by ZP ← S). In our context, we have found that the
performance of CSTA is identical for both architectures.

6.3 Illustration of MSTA

In our setup, a time deadline is set: we stop computation for an algorithm if one trial takes
more than 4 hours. Table 3 summarizes results obtained by RF, LP, QN-S3VM, Semi-LDA,
DAS-RF, FSTA, CSTA and MSTA. We used bold face to indicate the highest performance rates
and the symbol ↓ indicates that the performance is significantly worse than the best result,
according to Mann-Whitney U test (Mann and Whitney, 1947) used at the p-value threshold
of 0.01.
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From these results it comes out that

• in 5 of 11 cases, the MSTA performs better than its opponents. On data sets Isolet

and MNIST it significantly outperforms all the others, and it significantly outperforms
the baseline RF on Isolet, Pendigits and MNIST (6% improvement);

• the LS and the QN-S3VM did not pass the scale over larger data sets (Fashion, MNIST
and SensIT), while the MSTA did not exceeded 2 minutes per trial on these data sets
(see Table 5);

• the performance of LS and Semi-LDA performance varies greatly on different data
sets, which may be caused by the topology of data. In contrast, MSTA has more stable
results over all data sets as it is based on the predictive score, and the RF is used as
the base classifier;

• since the QN-S3VM is a binary classifier by nature, its one-versus-all extension is not
robust with respect to the number of classes. This can be observed on Vowel, Isolet
and Letter, where the number of classes is high;

• from our observation, both LS and QN-S3VM are highly sensitive to the choice of the
hyperparameters. However, it is not very clear whether these hyperparameters can
be properly tuned given a insufficient number of labeled examples. The same concern
is applied to all the other semi-supervised baselines, while MSTA does not require any
particular tuning since it finds automatically the threshold θ;

• while the approach proposed by Loog (2015) always guarantees an improvement of
the likelihood compared to the supervised case, we have observed that the classifica-
tion accuracy is not always improved for Semi-LDA and may even degrade over the
supervised linear discriminant analysis;

• compared to the fully supervised approach, RF, the use of pseudo-labeled unlabeled
training data (in DAS-RF, FSTA, CSTA or MSTA) may generally give no benefit or even
degrade performance in some cases (Vowel, PageBlocks, SensIT). This may be due
to the fact that the learning hypotheses are not met regarding the data sets where
this effect is observed;

• although for DAS-RF the performance is usually not degraded when T0 is properly
chosen, it has rather little improvement compared to RF. The performance of FSTA

degrades most of the time, while degradation for CSTA is observed on 6 data sets.
The latter suggests that the choice of the threshold for pseudo-labeling is crucial
and challenging in the multi-class framework. Using the proposed criterion based on
Eq. (24), we can find the threshold efficiently;

• from the results it can be seen that self-training is also sensitive to the choice of the
initial classifier. On some data sets, the number of labeled examples might be too
small leading to a bad initialization of the first classifier trained over the labeled set.
This implies that the initial votes are biased, so even with a well picked threshold we
do not expect a great increase in performance (see Appendix C.1 for more details).

23



Feofanov, Devijver and Amini

3 5 10 30 50
% of labeled examples

0.75

0.80

0.85

0.90

0.95

AC
C

U

MSTA
RF
FSTA = 0.7
QN S3VM

Figure 2: Classification accuracy with respect to the proportion of unlabeled examples for
the MNIST data set (a subsample of 3500 examples). On the graph, dots represent
the average performance on the unlabeled examples over 20 random splits. For
simplicity of illustration, the other considered algorithms are not displayed.

We also analyze the behavior of the various algorithms with an increasing number of
labeled examples in the training set. Figure 2 illustrates this by showing the accuracy on
a subsample of 3500 observations from MNIST of RF, QN-S3VM, FSTAθ=0.7 and MSTA with
respect to the percentage of the labeled training examples. As expected, all performance
curves increase monotonically with respect to the additional labeled data. When there
are sufficient labeled training examples, MSTA, FSTA and RF actually converge to the same
accuracy score, suggesting that the labeled data carries enough information, so it can not
be extracted further from the unlabeled data.

Now, we present a comparison of the learning algorithms under consideration by analyz-
ing their complexity. The time complexity of the random forest RF is O(Tdl̃ log2 l̃) (Louppe,
2014), where T is the number of decision trees in the forest and l̃ ≈ 0.632 · l is the number
of training examples used for each tree. Since RF is employed in DAS-RF and self-training,
the time complexity of DAS-RF, FSTA and CSTA is O(CTdñ log2 ñ), where C is the number
of times RF has been learned, ñ ≈ 0.632 · n. In our experimental setup, C = 11 for FSTA

and DAS-RF, and C = 1/∆ + 1 = 4 for CSTA.

The time required for finding the optimal threshold at every iteration of the MSTA is
O(K2R2n), where R is the sampling rate of the grid. From this we deduce that the com-
plexity of MSTA is O(C max(Tdn log2 n,K2R2n)). As n grows, the complexity is written
as O(dn log2 n), since C, T,R are constant. This indicates a good scalability of all consid-
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ered pseudo-labeling methods for large-scale data as they also have a memory consumption
proportional to nd, so the computation can be performed on a regular PC even for the large-
scale applications. In the label spreading algorithm, an iterative procedure is performed,
where at every step the affinity matrix is computed. Hence, the time complexity of the
LS is O(Mn2d), where M is the maximal number of iterations. From our observation, the
convergence of LS is highly influenced by the value of σ and the data topology. The time
complexity of the QN-S3VM is O(n2d) (Gieseke et al., 2014). Both algorithms suffer from
high run-time for large-scale applications. Since LS and QN-S3VM evaluate respectively the
affinity matrix and the kernel matrix of size n by n, these algorithms have also large space
complexity proportional to n2. From our observation, for the large-scale data (Fashion,
MNIST, SensIT) the maximal resident set size5 of LS and QN-S3VM may reach up to 200GB
of RAM, which is practically infeasible with the lack of resources.

Finally, the time complexity of Semi-LDA is O(M max(nd2, d3)), where M is the maxi-
mal number of iterations and O(max(nd2, d3)) is the complexity of the linear discriminant
analysis assuming n > d (Cai et al., 2008), and the space complexity is O(nd). The ap-
proach passes the scale well with respect to the sample size, but may significantly slow down
in the case of very large dimension. In Section C.2, we further analyze the time complexity
empirically for all the methods under consideration.

6.4 Illustration of (CBIL)

In this section, we empirically illustrate the value of (CBIL) evaluated in the following way.
We split the labeled data into two separate sets, where one is used to train a teacher model,
and another is for training a student model. Then, the performance of the student model
is evaluated on the unlabeled examples pseudo-labeled by the teacher model, which ensures
the i.i.d. assumption imposed on the pseudo-labeled data. We empirically compare (CBIL)
with the oracle C-bound (CB) evaluated as if the labels for the considered unlabeled data
would be known.

To do so, we compute the value of the two bounds varying the number of examples used
for evaluation with respect to the prediction confidence: the pseudo-labeled examples are
sorted by the value of the student’s prediction vote in the descending order, and we keep
only the first ρ% of the examples for ρ ∈ {20, 40, 60, 80, 100}.

We use the votes of the current classifier and expect that with increase of ρ we have
more mislabels, so the (CBIL) is more penalized. In (CBIL), we use the true value of the
mislabeling matrix (i.e., evaluated using the labels of unlabeled data) for clear illustration
of the C-bound’s penalization. In Section 7, we discuss the possible estimations of the
mislabeling matrix. The experimental results on 4 data sets HAR, Isolet, Letter and
MNIST are illustrated in Figure 3. As expected, the classifier makes mistakes mostly on
low class votes, so the error increases when ρ grows. One can see that when ρ is small
and the majority of pseudo-labels are true, (CBIL) appears to be conservative giving a
pessimistic result. This may be due to the fact that even if each example is subject to
a small penalty, the value of (CBIL) will accumulate these penalties. When more noisy
pseudo-labels are included, the difference between the two bounds becomes small, and it

5. Maximal resident set size (maxRSS) is the peak portion of memory that was occupied in RAM during
the run.
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Figure 3: (CBIL) and Oracle C-Bound when varying the number of pseudo-labels on 4 data
sets. We keep the most confident one (with respect to prediction vote) from 20%
to 100%.

becomes more evident that a mislabeling error model needs to be considered, since otherwise
the pseudo-label-estimated bound would be overly optimistic.

7. Conclusion and Future Work

In this paper, we proposed a new probabilistic framework for analysis of the majority
vote classifier in the case of semi-supervised multi-class classification. At first, we derived a
bound for the transductive conditional risk of the majority vote classifier. This probabilistic
bound is based on the distribution of the class vote over unlabeled examples for a predicted
class. We deduced corresponding bounds on the confusion matrix norm and the error
rate as a corollary and determined when the bounds are tight. Based on this result, we
proposed a multi-class self-training algorithm where the threshold for selecting unlabeled
data to pseudo-label is automatically found from minimization of the transductive bound
on the majority vote error rate. From the numerical results, it came out that the self-
training algorithm is sensitive to the supervised performance of the base classifier, but it
passes well the scale and significantly outperforms the case when the threshold is manually
fixed. However, when the classifier is trained on the pseudo-labeled examples, the training
labels can be erroneous, so we proposed a mislabeling error model to take explicitly into
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account these mislabeling errors. We established the connection between the true and the
imperfect output and consequently extended the C-bound to the case of imperfect labeling,
and derived a PAC-Bayesian Theorem for controlling the sample effect. We illustrated the
influence of the mislabeling error model on the bound’s value on several real data sets. With
the proposed bound we initiated a new direction to study the effect of pseudo-labeled data
on the error of the majority vote classifier.

This work raises several open practical and theoretical questions. Firstly, the proposed
self-training policy has been experimentally validated when it is coupled with the random
forest, but it would be interesting to test with other classifiers, e.g., with deep learning
methods. However, we should note that modern neural networks are not always well cal-
ibrated, and examples can be misclassified with a high prediction vote (Guo et al., 2017).
This is a significant limitation in our case, since we make the assumption that the classifier
makes its mistakes on examples with low prediction votes, which is used for the bound’s
approximation. Possible solutions to overcome this issue could be negative entropy regular-
ization (Zou et al., 2019) or ensemble diversification (Odonnat et al., 2023), but a theoretical
study of the problem is also valuable.

Secondly, further analysis of the learning model learned on pseudo-labels is perplexing
due to the so-called confirmation bias, which arises from classifier’s overconfidence to its
initial decisions that could be erroneous. When self-training assigns highly confident but
wrong predictions to unlabeled examples, the hypotheses tend to have a small disagreement
on the unlabeled set, so the votes are no more adequate for measuring prediction confidence.
A correct estimation of mislabeling probabilities or changing the self-training procedure are
possible solutions.

Thirdly, (CBIL) requires in practice the estimation of the mislabeling matrix, which is a
complex problem, but an active field of study (Natarajan et al., 2013). Most of these studies
tackle this problem from an algorithmic point of view: for example, in the semi-supervised
setting, Krithara et al. (2008) learn the mislabeling matrix together with the classifier
parameters through the classifier likelihood maximization for document classification; in
the supervised setting, a common approach is to detect anchor points whose labels are
surely true (Scott, 2015). A potential idea would be to transfer this idea to the semi-
supervised case in order to detect the anchor points in the unlabeled set and use them
together with the labeled set for correct estimation of the noise in pseudo-labels; this may
require additional assumptions such as the existence of clusters (Rigollet, 2007; Maximov
et al., 2018) or manifold structure (Belkin and Niyogi, 2004).

Fourthly, in this paper, we derived (CBIL) assuming that the pseudo-labels come inde-
pendently from the training data, which requires us to have a hold-out set or a pre-trained
model. Then, a promising direction is to extend this result to a broader scenario when
the noisy training examples are interdependent, which would fit the generic self-training
framework and give the light on the learnability of this algorithm. One way to achieve it
would be to model the dependency using β-mixing processes following the work on learning
with interdependent data (Mohri and Rostamizadeh, 2010; Amini and Usunier, 2015).

Finally, we also point out possible applications of (CBIL). At first, the bound can be
used for model selection tasks such as semi-supervised wrapper feature selection (Sheikhpour
et al., 2017; Feofanov et al., 2022). Since minimization of the C-bound implies simultane-
ously maximization of the margin mean and minimization of the margin variance, (CBIL)
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would guide a feature selection algorithm to choose an optimal feature subset based on the
labeled and the pseudo-labeled sets. Next, (CBIL) can be used as a criterion to learn the
posterior Q in the semi-supervised setting. This issue is actively studied in the supervised
context, e.g., Roy et al. (2016); Bauvin et al. (2020) have been developed the boosting-based
C-bound optimization algorithms. It should be noticed that for these two applications, the
main objective is to rank models so that the best model has the minimal error on the un-
labeled set. Hence, the bound analysis goes beyond the classical question of tightness: the
tightest bound does not always imply the minimal error, and a bound relaxation can have
a positive effect (see Appendix C.3).
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Appendix A. Tools for Section 4

In this section, we provide complete proofs of all theoretical results presented in Section 4.

A.1 Tools for Theorem 4.1

The proof of Theorem 4.1 relies on Lemma A.1 and Lemma A.2. First, we prove Lemma
A.1 that establishes a connection between the joint majority vote and the Gibbs conditional
risks.

Lemma A.1 For ŷ ∈ {1, . . . ,K}, let Γŷ = {γŷ ∈ [0, 1]| ∃ x ∈ XU : γŷ = vQ(x, ŷ)} be the
set of unique votes for the unlabeled examples to the class ŷ. Let enumerate its elements
such that they form an ascending order:

γ
(1)
ŷ ≤ γ

(2)
ŷ ≤ · · · ≤ γ

(Nŷ)
ŷ ,

where Nŷ := |Γŷ|. Denote b
(t)
y,ŷ := 1

uy

∑
x∈XU

P (Y =y|X=x)I(BQ(x)= ŷ)I(vQ(x, ŷ)=γ
(t)
ŷ ).

Then, for all (y, ŷ) ∈ {1, . . . ,K}2:

RU (GQ, y, ŷ) ≥ Ky,ŷ :=

Nŷ∑
t=1

b
(t)
y,ŷγ

(t)
ŷ , (25)

RU∧θ(BQ, y, ŷ) =

Nŷ∑
t=mŷ+1

b
(t)
y,ŷ, (26)

where mŷ = max{t|γ(t)
ŷ < θŷ} with max(∅) = 0 by convention.
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Proof First, we obtain Eq. (25):

RU (GQ, y, ŷ) =
1

uy
Eh∼Q

∑
x∈XU

P (Y =y|X=x)I(h(x)= ŷ)

=
1

uy

∑
x∈XU

P (Y =y|X=x)vQ(x, ŷ)

≥ 1

uy

∑
x∈XU

P (Y = y|X = x)vQ(x, ŷ)I(BQ(x) = ŷ)

=
1

uy

Nŷ∑
t=1

∑
x∈XU

(
P (Y =y|X=x)I(BQ(x)= ŷ)I(vQ(x, ŷ)=γ

(t)
ŷ )
)
γ

(t)
ŷ

=

Nŷ∑
t=1

b
(t)
y,ŷγ

(t)
ŷ .

Then, we deduce Eq. (26):

RU∧θ(BQ, y, ŷ) =
1

uy

∑
x∈XU

P (Y = y|X = x)I(BQ(x) = ŷ)I(vQ(x, ŷ) ≥ θŷ)

=
1

uy

Nŷ∑
t=1

∑
x∈XU

P (Y = y|X = x)I(BQ(x) = ŷ)I(vQ(x, ŷ) = γ
(t)
ŷ )I(γ(t)

ŷ ≥ θŷ)

=
1

uy

Nŷ∑
t=mŷ+1

∑
x∈XU

P (Y =y|X=x)I(BQ(x)= ŷ)I(vQ(x, ŷ)=γ
(t)
ŷ )

=

Nŷ∑
t=mŷ+1

b
(t)
y,ŷ.

The next lemma formulates a linear program and shows that its solution is the greatest
feasible one in the lexicographic order.

Lemma A.2 (Amini et al., 2008, Lemma 4) Let (gi)i∈{1,...,N} be such that 0 < g1 <
· · · < gN ≤ 1. Consider also (pi)i∈{1,...,N} with pi ≥ 0, Z ≥ 0, m ∈ {1, . . . , N}. Then, the
optimal solution of the linear program:

maxq:=(q1,...,qN ) F (q) := maxq1,...,qN
∑N

i=m+1 qi

0 ≤ qi ≤ pi ∀i ∈ {1, . . . , N}∑N
i=1 qigi ≤ Z

will be q∗ := (q∗1, . . . , q
∗
N ) defined as q∗i = min

(
pi,
⌊
Z−

∑
j<i q

∗
j gj

gi

⌋
+

)
I(i > m) for all i ∈

{1, . . . , N}, where, the sign b·c+ denotes the positive part of a number, bxc+ = x · I(x > 0).

29



Feofanov, Devijver and Amini

Proof of Theorem 4.1 We would like to find an upper bound for the joint Q-weighted
majority vote conditional risk. Hence, for all (y, ŷ) ∈ {1, . . . ,K}2, for all θ ∈ [0, 1]K , we
consider the case when the mistake is maximized. Then, using Lemma A.1:

RU∧θ(BQ, y, ŷ) =

Nŷ∑
t=mŷ+1

b
(t)
y,ŷ ≤ max

b
(1)
y,ŷ ,...,b

(Nŷ)

y,ŷ

Nŷ∑
t=mŷ+1

b
(t)
y,ŷ, (27)

with mŷ = max{t|γ(t)
ŷ < θŷ}I({t|γ

(t)
ŷ < θŷ} 6= ∅).

Let b̄
(t)
y,ŷ =

∑
x∈XU

P (Y = y|X = x)I(vQ(x, ŷ) = γ
(t)
ŷ )/uy. Then, it can be noticed that

0 ≤ b(t)y,ŷ ≤ b̄
(t)
y,ŷ. Remember that Ky,ŷ can also be written as

∑Nŷ

t=1 b
(t)
y,ŷγ

(t)
ŷ . Hence the bound

defined by Eq. (27) should satisfy the following linear program :

max
b
(1)
y,ŷ ,...,b

(Nŷ)

y,ŷ

Nŷ∑
t=mŷ+1

b
(t)
y,ŷ (28)

s.t. ∀t, 0 ≤ b(t)y,ŷ ≤ b̄
(t)
y,ŷ and

Nŷ∑
t=1

b
(t)
y,ŷγ

(t)
ŷ = Ky,ŷ.

Applying Lemma A.2, the solution of (28) is found as

b
(t)
y,ŷ = min

b̄(t)y,ŷ,
 1

γ
(t)
ŷ

(Ky,ŷ −
∑

mŷ<w<t

γ
(w)
ŷ b̄

(w)
y,ŷ )


+

 I(t ≤ mŷ). (29)

Further, we can notice that, for all (y, ŷ) ∈ {1, . . . ,K}2,∑
mŷ<w<t

γ
(w)
ŷ b̄

(w)
y,ŷ = V

(≤,<)
y,ŷ (θŷ, γ

(t)
ŷ ).

Let p = max{t|Ky,ŷ − V
(≤,<)
y,ŷ (θŷ, γ

(t)
ŷ ) > 0}. Then, Eq. (29) can be re-written as follows:

b
(t)
y,ŷ =



0 t ≤ mŷ

b̄
(t)
y,ŷ mŷ + 1 ≤ t < p
1

γ
(p)
ŷ

(
Ky,ŷ − V

(≤,<)
y,ŷ (θŷ, γ

(p)
ŷ )
)

t = p

0 t > p.

(30)

Notice that
∑p−1

t=mŷ+1 b̄
(t)
y,ŷ = I

(≤,<)
y,ŷ (θŷ, γ

(p)
ŷ ). Using this fact as well as Eq. (30), we infer:

RU∧θ(BQ, y, ŷ) ≤ I(≤,<)
y,ŷ (θŷ, γ

(p)
ŷ ) +

1

γ
(p)
ŷ

(
Ky,ŷ − V

(≤,<)
y,ŷ (θŷ, γ

(p)
ŷ )
)
.

Consider the following function:

γ 7→ Uy,ŷ(γ) := I
(≤,<)
y,ŷ (θŷ, γ) +

1

γ

⌊
Ky,ŷ − V

(≤,<)
y,ŷ (θŷ, γ)

⌋
+
.
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To prove the theorem, it remains to verify that, for all (y, ŷ) ∈ {1, . . . ,K}2, for all γ ∈
[θŷ, 1], Uy,ŷ(γ

(p)
ŷ ) ≤ Uy,ŷ(γ). For this, consider γ

(w)
ŷ with w ∈ {1, . . . , Nŷ}.

If w > p, then Uy,ŷ(γ
(p)
ŷ ) ≤ I(≤,<)

y,ŷ (θŷ, γ
(p+1)
ŷ ) ≤ Uy,ŷ(γ

(w)
ŷ ).

If w < p, then

Uy,ŷ(γ
(p)
ŷ )− Uy,ŷ(γ

(w)
ŷ ) =

p∑
t=w

b
(t)
y,ŷ −

1

γ
(w)
ŷ

(
Ky,ŷ − V

(≤,<)
y,ŷ (θŷ, γ

(w)
ŷ )

)

=

p∑
t=w

b
(t)
y,ŷ −

1

γ
(w)
ŷ

 p∑
t=mŷ+1

b
(t)
y,ŷγ

(t)
ŷ −

w−1∑
t=mŷ+1

γ
(t)
ŷ b

(t)
y,ŷ


=

1

γ
(w)
ŷ

(
p∑

t=w

b
(t)
y,ŷγ

(w)
ŷ −

p∑
t=w

b
(t)
y,ŷγ

(t)
ŷ

)
≤ 0,

which completes the proof of Theorem 4.1.

A.2 Tools for Corollary 4.2

The following lemma establishes a connection between the joint error rate and the joint
confusion matrix of the Q-weighted majority vote classifier.

Lemma A.3 Let BQ be the majority vote classifier. Given a vector θ ∈ [0, 1]K , for p :=
{uy/u}Ky=1, where uy =

∑
x∈XU

P (Y = y|X = x), we have:

RU∧θ(BQ) =
∥∥∥(CU∧θBQ

)ᵀ
p
∥∥∥

1
. (31)

Proof To prove Eq. (31), combine the definition of transductive joint Q-weighted majority
vote conditional risk given in Eq. (5) and Eq. (7) as follows:

RU∧θ(BQ) =
1

u

K∑
y=1

K∑
ŷ=1
ŷ 6=y

∑
x∈XU

P (Y = y|X = x)I(BQ(x) = ŷ)I(vQ(x, ŷ) ≥ θŷ)

=
K∑
y=1

uy
u

K∑
ŷ=1
ŷ 6=y

RU∧θ(BQ, y, ŷ) =
∥∥∥(CU∧θBQ

)ᵀ
p
∥∥∥

1
.

Proof of Corollary 4.2 The confusion matrix CU∧θBQ
is always non-negative, and from

Theorem 4.1, each of its entries is smaller than the corresponding entry of Uθ. Hence, from
the property of spectral norm for two positive matrices A and B :

0K,K � A � B⇒ ‖A‖ ≤ ‖B‖,
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where A � B denotes that each element of A is smaller than the corresponding element of
B, we deduce Eq. (10).

With the same computations, we observe the following inequality:(
CU∧θBQ

)ᵀ
p ≤ Uᵀ

θ p.

Elements of the left vector are non-negative. Hence the inequality holds for the `1-norm,
and taking into account Lemma A.3 we infer:

RU∧θ(BQ) =
∥∥∥(CU∧θBQ

)ᵀ
p
∥∥∥

1
≤
∥∥Uᵀ

θ p
∥∥

1
.

A.3 Tools for Proposition 4.3

Before proving Proposition 4.3, we formulate the following lemma.

Lemma A.4 For all x ∈ XU , for all (y, ŷ) ∈ {1, . . . ,K}2, the following inequality holds:

RU (BQ, y, ŷ) ≥ 1

uy

∑
x∈XU

P (Y = y|X = x)I(BQ(x) = ŷ)I(vQ(x, ŷ) < γ∗y,ŷ)

+
1

γ∗y,ŷ

⌊
bKy,ŷ − V

(≤,<)
y,ŷ (0, γ∗y,ŷ)c+ − ry,ŷ

⌋
+

+ ry,ŷ, (32)

where γ∗y,ŷ := max Γτy,ŷ.

Proof Following notations of Section A.1, we denote γ∗y,ŷ as γ
(p)
ŷ . According to Lemma A.1,

Ky,ŷ =
∑Nŷ

t=1 b
(t)
y,ŷγ

(t)
ŷ , where b

(t)
y,ŷ := 1

uy

∑
x∈XU

P (Y =y|X=x)I(BQ(x)= ŷ)I(vQ(x, ŷ)=γ
(t)
ŷ ).

We can express b
(p)
y,ŷ in the following way:

b
(p)
y,ŷ =

Ky,ŷ −
∑p−1

t=1 b
(t)
y,ŷγ

(t)
ŷ −

∑Nŷ

t=p+1 b
(t)
y,ŷγ

(t)
ŷ

γ
(p)
ŷ

=
Ky,ŷ −

∑p−1
t=1 b

(t)
y,ŷγ

(t)
ŷ − ry,ŷ

γ
(p)
ŷ

.

Remind b̄
(t)
y,ŷ = 1

uy

∑
x∈XU

P (Y = y|X=x)I(vQ(x, ŷ) =γ
(t)
ŷ ). From this we derive the follow-

ing:

−
p−1∑
t=1

b
(t)
y,ŷγ

(t)
ŷ ≥ −

p−1∑
t=1

b̄
(t)
y,ŷγ

(t)
ŷ = −V (≤,<)

y,ŷ (0, γ
(p)
ŷ ) = −V (≤,<)

y,ŷ (0, γ∗y,ŷ).

Taking into account this as well as b
(p)
y,ŷ ≥ 0, we deduce a lower bound for b

(p)
y,ŷ:

b
(p)
y,ŷ ≥

1

γ∗y,ŷ
bKy,ŷ−V

(≤,<)
y,ŷ (0, γ∗y,ŷ)− ry,ŷc+ =

1

γ∗y,ŷ

⌊
bKy,ŷ − V

(≤,<)
y,ŷ (0, γ∗y,ŷ)c+ − ry,ŷ

⌋
+
. (33)
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Also, taking into account Lemma A.1, one can notice that:

RU (BQ, y, ŷ) =

Nŷ∑
t=1

b
(t)
y,ŷ =

p−1∑
t=1

b
(t)
y,ŷ + b

(p)
y,ŷ +

Nŷ∑
t=p+1

b
(t)
y,ŷ

≥ 1

uy

∑
x∈XU

P (Y = y|X = x)I(BQ(x) = ŷ)I(vQ(x, ŷ) < γ∗y,ŷ) + b
(p)
y,ŷ + ry,ŷ,

(34)

since
∑Nŷ

t=p+1 b
(t)
y,ŷ ≥

∑Nŷ

t=p+1 b
(t)
y,ŷγ

(t)
ŷ . Combining Eq. (33) and Eq. (34) we infer Eq. (32):

RU (BQ, y, ŷ) ≥ 1

uy

∑
x∈XU

P (Y = y|X = x)I(BQ(x) = ŷ)I(vQ(x, ŷ) < γ∗y,ŷ)

+
1

γ∗y,ŷ

⌊
bKy,ŷ − V

(≤,<)
y,ŷ (0, γ∗y,ŷ)c+ − ry,ŷ

⌋
+

+ ry,ŷ.

Proof of Proposition 4.3 Taking into account Eq. (32) and Eq. (12) we deduce the
following:

RU (BQ, y, ŷ) ≥C I(≤,<)
y,ŷ (0, γ∗y,ŷ) +

1

γ∗y,ŷ

⌊
bKy,ŷ − V

(≤,<)
y,ŷ (0, γ∗y,ŷ)c+ − ry,ŷ

⌋
+

+ ry,ŷ. (35)

By definition of U0K we have, for all (y, ŷ) ∈ {1, . . . ,K}2,

[U0K ]y,ŷ ≤ I
(≤,<)
y,ŷ (0, γ∗y,ŷ) +

1

γ∗y,ŷ

⌊
Ky,ŷ − V

(≤,<)
y,ŷ (0, γ∗y,ŷ)

⌋
+
. (36)

Subtracting Eq. (35) from Eq. (36) we obtain:

[U0K ]y,ŷ −RU (BQ, y, ŷ) ≤ (1− C)I
(≤,<)
y,ŷ (0, γ∗y,ŷ)

+
1

γ∗y,ŷ

(⌊
Ky,ŷ − V

(≤,<)
y,ŷ (0, γ∗y,ŷ)

⌋
+
−
⌊
bKy,ŷ − V

(≤,<)
y,ŷ (0, γ∗y,ŷ)c+ − ry,ŷ

⌋
+

)
− ry,ŷ.

We can notice that for all a, b ∈ R+ : b− bb− ac+ ≤ a. Then, we have:

[U0K ]y,ŷ −RU (BQ, y, ŷ) ≤ (1− C)I
(≤,<)
y,ŷ (0, γ∗y,ŷ) + ry,ŷ

(
1

γ∗y,ŷ
− 1

)
. (37)

Also, from Eq. (35) one can derive:

I
(≤,<)
y,ŷ (0, γ∗y,ŷ) ≤

1

C

(
RU (BQ, y, ŷ)− 1

γ∗y,ŷ

⌊
bKy,ŷ − V

(≤,<)
y,ŷ (0, γ∗y,ŷ)c+ − ry,ŷ

⌋
+
− ry,ŷ

)

≤
RU (BQ, y, ŷ)

C
. (38)
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Taking into account Eq. (37) and Eq. (38), we infer:

[U0K ]y,ŷ −RU (BQ, y, ŷ) ≤ 1− C
C

RU (BQ, y, ŷ) + ry,ŷ

(
1

γ∗y,ŷ
− 1

)
.

Appendix B. Tools for Section 5

In this section, we detail the proofs of Theorem 5.1 and Theorem 5.4.

B.1 Tools for Theorem 5.1

Theorem 5.1 is based on the well-known Cantelli-Chebyshev inequality (for example, see
Boucheron et al., 2013, Ex. 2.3).

Lemma B.1 (Cantelli-Chebyshev inequality) Let Z be a random variable with the
mean µ and the variance σ2. Then, for every a > 0, we have:

P (Z ≤ µ− a) ≤ σ2

σ2 + a2
.

B.2 Tools for Theorem 5.4

We divide the proof of Theorem 5.4 into several parts formulated as Proposition B.4, B.5,
B.7 and B.9. The proofs of all propositions are based on the following two lemmas.

Lemma B.2 (Pinsker’s Inequality, Boucheron et al., 2013, Theorem 4.19) For
all p1, p2 ∈ [0, 1]2,

2(p2−p1)2 ≤ kl(p2||p1)

kl(p2||p1) :=p2 ln
p2

p1
+ (1−p2) ln

1−p2

1−p1
= KL(P2 ‖P1),

where P2 and P1 are Bernoulli distributions with parameters p2 and p1 respectively.

Lemma B.3 (Maurer, 2004, Theorem 1, and Germain et al., 2015, Lemma 19)
Let X = (X1, . . . , Xn) be a random vector, whose components Xi ∈ [0, 1] are i.i.d. with an
expectation µ. Let X′ = (X ′1, . . . , X

′
n) denotes a random vector, where each X ′i is the unique

Bernoulli random variable of the corresponding Xi: P (X ′i = 1) = EX ′i = EXi = µ, for all
i ∈ {1, . . . , n}. Then,

E
[
enKL(X̄ ‖µ)

]
≤ E

[
enKL(X̄′ ‖µ)

]
≤ 2
√
n,

where X̄ = 1
n

∑n
i=1Xi and X̄ ′ = 1

n

∑n
i=1X

′
i.
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B.2.1 Bounds for the Mislabeling Matrix’ Entries

We remind that the imperfection is summarized through the mislabeling matrix P =
(pŷ,y)1≤ŷ,y≤K with

pŷ,y := P (Ŷ = ŷ|Y = y) for all (ŷ, y) ∈ {1, . . . ,K}2

such that
∑K

ŷ=1 pŷ,y = 1. Also, recall that α(x) = pBQ(x),BQ(x) and δ(x) := pBQ(x),BQ(x) −
maxy∈{1,...,K}\{BQ(x)} pBQ(x),y.

Proposition B.4 Let P be the mislabeling matrix, and assume that pŷ,ŷ > pŷ,y, ∀(ŷ, y) ∈
{1, . . . ,K}2. For any ε ∈ (0, 1], with probability 1 − ε over the choice of the sample S =
{xi}nS

i=1 with the true class labels {yi}nS
i=1, for all (ŷ, y) ∈ {1, . . . ,K}2, for all x ∈ X ,

p̂ŷ,y − ι(nS,y) ≤ pŷ,y ≤ p̂ŷ,y + ι(nS,y), (39)

α(x) ≤ α̃(x) := α̂(x) + ι(nS,kx), (40)

1

δ(x)
≤ 1

δ̃(x)
:=

1

δ̂(x)− ι(nS,kx)− ι(nS,jx)
, if δ̂(x) ≥ ι(nS,kx) + ι(nS,jx), (41)

where

• ι(nS,y) =
√

1
2nS,y

ln
2
√
nS,y

ε ,

• nS,y =
∑nS

i=1 I(yi = y)/nS is the proportion of the examples from S with the true class
label y,

• kx := BQ(x), jx := argminŷ∈{1,...,K}\{kx} nS,ŷ,

• p̂ŷ,y, α̂(x) and δ̂(x) are empirical estimates respectively of pŷ,y, α(x) and δ(x) based
on the available sample S.

Proof Let Sy = {xi ∈ S|y = yi} be the subset of the available examples for which the true
class is y. Consider the non-negative random variable exp

{
2nS,y(p̂ŷ,y − pŷ,y)2

}
. From the

Markov’s inequality we obtain that the following holds with probability at least 1− ε over
Sy ∼ P (X|Y = y)nS,y :

exp
{

2nS,y(p̂ŷ,y − pŷ,y)2
}
≤ 1

ε
ESy exp

{
2nS,y(p̂ŷ,y − pŷ,y)2

}
. (42)

By successively applying Lemma B.2 and Lemma B.3, we deduce that

ESy exp
{

2nS,y(p̂ŷ,y − pŷ,y)2
}
≤ ESy exp {nS,y · kl(p̂ŷ,y||pŷ,y)} ≤ 2

√
nS,y. (43)

Combining Eq. (42) and Eq. (43), we infer 2nS,y(p̂ŷ,y − pŷ,y)2 ≤ ln
(
2
√
nS,y/ε

)
. Eq. (39)

is directly obtained from the last inequality, and hence, we derive also Eq. (40). To prove
Eq. (41), let us define

qx := argmax
y∈{1,...,K}\{BQ(x)}

pkx,y, q̂x := argmax
y∈{1,...,K}\{BQ(x)}

p̂kx,y.
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Then, we write:

1

δ(x)
=

1

pkx,kx − pkx,qx
≤ 1

p̂kx,kx − p̂kx,qx − ι(nS,kx)− ι(nS,qx)

≤ 1

p̂kx,kx − p̂kx,q̂x − ι(nS,kx)− ι(nS,jx)
=

1

δ̂(x)− ι(nS,kx)− ι(nS,jx)
.

These transitions hold only when the denominator is positive, which is ensured if δ̂(x) ≥
ι(nS,kx) + ι(nS,jx).

B.2.2 Lower Bound of the First Moment of the Margin

Proposition B.5 Given the input X and the imperfect output Y , let M̂Q be a random

variable defined as M̂Q := mQ(X, Ŷ ) with its first statistical moment denoted by µ
M̂Q

1 .
Given the result of Proposition B.4, for any set of classifiers H, for any prior distribution
Q0 on H and any ε ∈ (0, 1], with a probability at least 1 − ε over the choice of the sample
S = {xi}nS

i=1, for every posterior distribution Q over H, we have:

µ
M̂Q

1 ≥ µ̄S1 − J1

√
2

nS

[
KL(Q ‖Q0) + ln

2
√
nS
ε

]
,

where

• µ̄S1 = 1
nS

∑nS
i=1(1/δ̃(xi))

∑K
ŷ=1mQ(xi, ŷ)P (Ŷ = ŷ|X = xi) is the empirical weighted

margin mean based on the available sample S,

• δ̃(x) is defined as in Eq. (41),

• J1 := maxx |(1/δ̃(x))
∑K

ŷ=1mQ(x, ŷ)P (Ŷ = ŷ|X=x)|,

• KL denotes the Kullback–Leibler divergence.

Proof Let µh1 and µ̄S,h1 be the random variables such that µ
M̂Q

1 = Eh∼Qµh1 and µ̄S1 =

Eh∼Qµ̄S,h1 . We apply the Markov’s inequality to Eh∼Q0 exp
{
nS

2J2
1

(µ̄S,h1 − µh1)2
}

, that is a

non-negative random variable, and obtain that with probability at least 1 − ε over S ∼
P (X, Ŷ )nS :

Eh∼Q0 exp

{
nS
2J2

1

(µ̄S,h1 − µh1)2

}
≤ 1

ε
ESEh∼Q0 exp

{
nS
2J2

1

(µ̄S,h1 −µ
h
1)2

}
. (44)

Since the prior distribution Q0 over H is independent on S, we can swap ES and Eh∼Q0 .
One can notice that

1

2J2
1

(
µ̄S,h1 − µh1

)2
= 2

[
1

2

(
1− µ̄

S,h
1

J1

)
− 1

2

(
1−µ

h
1

J1

)]2

,
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which is the squared of the difference of two random variables that are both ∈ [0, 1]. Then,
we successively apply Lemma B.2 and Lemma B.3 deriving that:

Eh∼Q0ES exp

2nS

[
1

2

(
1− µ̄

S,h
1

J1

)
− 1

2

(
1−µ

h
1

J1

)]2


≤ Eh∼Q0ES exp

{
nS · kl

[
1

2

(
1− µ̄

S,h
1

J1

)∥∥∥∥∥1

2

(
1−µ

h
1

J1

)]}
≤ Eh∼Q02

√
nS = 2

√
nS .

We apply this result for Eq. (44), and by taking the natural logarithm from the both
sides we obtain that:

ln

(
Eh∼Q0 exp

{
nS
2J2

1

(µ̄S,h1 −µ
h
1)2

})
≤ ln

(
2
√
nS
ε

)
. (45)

Using the change of measure (Lemma B.6) and the Jensen’s inequalities, we derive that:

ln

(
Eh∼Q0 exp

{
nS
2J2

1

(µ̄S,h1 − µh1)2

})
≥ Eh∼Q

nS
2J2

1

(
µ̄S,h1 − µh1

)2
−KL(Q ‖Q0)

≥ nS
2J2

1

(
Eh∼Q[µ̄S,h1 − µh1 ]

)2
−KL(Q ‖Q0).

Combining with Eq. (45), we derive:

nS
2J2

1

(
µ̄S1 − µ

M̂Q

1

)2

≤ ln

(
2
√
nS
ε

)
+KL(Q ‖Q0). (46)

The final inequality is directly inferred from Eq. (46).

Lemma B.6 (Change of Measure Inequality, Donsker and Varadhan, 1975) For
any measurable function φ defined on the hypothesis space H and all distributions Q0, Q on
H, the following inequality holds:

Eh∼Qφ(h) ≤ KL(Q ‖Q0) + lnEh∼Q0e
φ(h).

B.2.3 Other Required Bounds

Proposition B.7 Given the input X and the imperfect output Y , let M̂Q be a random

variable defined as M̂Q := mQ(X, Ŷ ) with its first statistical moment denoted by µ
M̂Q

1 .
Given the result of Proposition B.4, for any set of classifiers H, for any prior distribution
Q0 on H and any ε ∈ (0, 1], with a probability at least 1 − ε over the choice of the sample
S = {xi}nS

i=1, for every posterior distribution Q over H

µ
M̂Q

2 ≤ µ̄S2 + J2

√
2

nS

[
2KL(Q ‖Q0) + ln

2
√
nS
ε

]
,

where
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• µ̄S2 = 1
nS

∑nS
i=1(1/δ̃(xi))

∑K
ŷ=1(mQ(xi, ŷ))2P (Ŷ = ŷ|X = xi) is the empirical weighted

2nd margin moment based on the available sample S,

• δ̃(x) is defined as in Eq. (41),

• J2 := maxx |1/δ̃(x)
∑K

ŷ=1(mQ(x, ŷ))2P (Ŷ = ŷ|X=x)|,

• KL denotes the Kullback–Leibler divergence.

Proof The proof is similar to the one given for Proposition B.5, but relies on the extension
of the change of measure inequality (Lemma B.8).

Lemma B.8 (Laviolette et al., 2017, Lemma 1) For any set of voters H, for any dis-
tributions Q0, Q on H, and for any measurable function φ : H × H → R, the following
inequality holds:

E(h,h′)∼Q2φ(h, h′) ≤ 2KL(Q ‖Q0) + lnE(h,h′)∼Q2
0
eφ(h,h′).

Proposition B.9 Given the result of Proposition B.4, for any ε ∈ (0, 1], with a probability
at least 1− ε over the choice of the sample S = {xi}nS

i=1,

ψP ≤
1

nS

nS∑
i=1

α̃(xi)

δ̃(xi)
+ J3

√
2

nS
ln

2
√
nS
ε

,

where J3 := maxx∈X [α̃(x)]/[δ̃(x)], and α̃(x) and δ̃(x) are defined in Eq. (40) and Eq. (41),
respectively.

Proof First, we take into consideration the result of Proposition B.4 and deduce that
ψP ≤ EX[α̃(xi)/δ̃(xi)]. The rest of proof is similar to those are given for Proposition B.4
and Proposition B.5.

Appendix C. Additional Experiments

In this section, we provide some additional experimental results. First, we give more details
on estimation of the transductive bound (TBy,ŷ) in practice. Then, we compare the run-
time of MSTA and its competitors. Finally, we empirically analyze the behavior of (CBIL)
in the case of relaxation of one of the assumptions.

C.1 Approximation of the Posterior Probabilities for Self-training

In this section, we analyze the behavior of MSTA depending on how the transductive bound
given by Eq. (TBy,ŷ) is evaluated. Since the posterior probabilities for unlabeled data
are not known, we have proposed to estimate them as the votes of the base supervised
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classifier learned using the labeled data only (Sup. Estimation). This approach has been
used in Section 6 for running MSTA. We compare it with another strategy that is to assign
P (Y = y|X = x) = 1/K, ∀x ∈ XU , ∀y ∈ {1, . . . ,K}. In this case, we consider the worst
case when every class is equally probable for each example (Unif. Estimation). Finally, we
provide the performance of MSTA when the labels of unlabeled data are given, which means
that the transductive bound is truly estimated (Oracle). Table 4 illustrates the performance
results. As we can see, the supervised approximation generally outperforms the uniform one
(significantly on MNIST). This might be explained by the fact that the supervised votes may
give some additional information on the most probable labels for each example. In addition,
we have observed that on the last iterations the votes of MSTA tend to be biased, so such
posteriors can play a role of regularization. The performance results of the oracle show that
better estimation of the posteriors can give an improvement, though not significantly on
most of data sets. Note that the performance of the oracle is not perfect, because the true
labels are used only for the bound estimation, and the votes are used for pseudo-labeling.

Data set
MSTA

Unif. Estimation Sup. Estimation Oracle

Vowel .586 ± .029 .586 ± .026 .599 ± .028

Protein .773 ± .034 .781 ± .034 .805 ± .036

DNA .697 ± .079 .702 ± .082 .721 ± .09

Page Blocks .965 ± .002 .966 ± .002 .966 ± .002

Isolet .869 ± .015 .875 ± .014 .885 ± .012

HAR .852 ± .025 .854 ± .026 .856 ± .022

Pendigits .873 ± .024 .884 ± .022 .892 ± .016

Letter .716 ± .013 .717 ± .013 .723 ± .012

Fashion .722 ± .022 .723 ± .023 .728 ± .024

MNIST .834 ± .016 .857 ± .013 .87 ± .012

SensIT .722 ± .021 .722 ± .021 .722 ± .021

Table 4: The performance comparison of MSTA depending on how the posterior probabilities
are estimated in the evaluation of the transductive bound (Eq. (TBy,ŷ)).

C.2 Time

In this section, we present the run-time of all the algorithms empirically compared in Sec-
tion 6.3. The results are depicted in Table 5. In general, the obtained run-time is coherent
with the complexity analysis presented in Section 6.3. LS and QN-S3VM have a very large
run-time when they converge slowly, and they are generally slower than the other algo-
rithms. Semi-LDA is fast on the considered data sets, though it may slow down on data of
large dimension not considered in this paper.
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It can be seen that DAS-RF is slower than the self-training algorithms, which is due to
the fact that the classifier is trained on all labeled and unlabeled examples at each iteration.
CSTA is the fastest approach since it re-trains the base classifier only 3 times compared to 10
times for FSTA. From our observation, MSTA needs usually around 3-5 iterations to pseudo-
label the whole unlabeled set, but it takes more time than CSTA, since it searches at each
iteration the threshold by minimizing the conditional Bayes error. We have implemented
the search in a single core, but it can be potentially parallelized. Nevertheless, the MSTA

still runs fast.

Data set RF LS QN-S3VM Semi-LDA DAS-RF FSTAθ=0.7 CSTA∆=1/3 MSTA

Vowel 1 s 6 s 2 s 3 s 7 s 11 s 2 s 5 s

Protein 1 s 22 s 4 m 5 s 6 s 10 s 2 s 4 s

DNA 1 s 1 m 26 s 1 s 9 s 7 s 3 s 4 s

PageBlocks 1 s 2 m 2 m 14 s 9 s 12 s 3 s 6 s

Isolet 1 s 1 m 1 h 10 s 38 s 16 s 5 s 28 s

HAR 1 s 18 m 32 m 3 s 42 s 23 s 6 s 13 s

Pendigits 1 s 30 m 10 m 37 s 13 s 13 s 3 s 14 s

Letter 1 s 3 h 40 m 1 m 20 s 16 s 5 s 1 m

Fashion 1 s >4 h >4 h 1 m 2 m 1 m 29 s 1 m

MNIST 1 s >4 h >4 h 1 m 2 m 1 m 29 s 1 m

SensIT 1 s >4 h >4 h 2 m 3 m 2 m 30 s 1 m

Table 5: The average run-time of the learning algorithms under consideration on the data
sets described in Table 2. s stands for seconds, m for minutes and h for hours.

C.3 Relaxation of CBIL

The proposed (CBIL) is based on Eq. (18), which holds only when δ(x) ≥ 0. As it was
discussed in Section 5.2, Eq. (18) can be relaxed by adding some λ > 0 leading to Eq. (19).
In practice, it not only can make the bound computable, but also make it smoother, since
arbitrarily small values of δ(x) implies arbitrarily large values of r̂(BQ,x)/δ(x). The latter
should be avoided if (CBIL) is used as some optimization or selection criterion.

In this section, we study the impact of λ on the bound’s value on different data sets.
In Figure 4, we display the results of all 20 experimental trials for HAR, Isolet, Letter,
MNIST and Fashion when λ ∈ [0.1, 0.2, . . . , 1]. One can observe that when the bound is not
penalized much (i.e., δ(x) is far from 0), then the increase of λ makes the bound looser, so
λ = 0.1 is the tightest choice. Exactly the opposite situation is observed when δ(x) is small
(trials 4 and 14 for Letter, most of trials for Fashion): higher values of λ diminish the
influence of hyperbolic weights 1/δ(x), so λ = 1 leads to the tightest bound.
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Figure 4: The value of (CBIL) with different λ over 20 different labeled/unlabeled splits of
5 data sets.
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