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Abstract

We use fixed point theory to analyze nonnegative neural networks, which we define as
neural networks that map nonnegative vectors to nonnegative vectors. We first show that
nonnegative neural networks with nonnegative weights and biases can be recognized as
monotonic and (weakly) scalable mappings within the framework of nonlinear Perron-
Frobenius theory. This fact enables us to provide conditions for the existence of fixed
points of nonnegative neural networks having inputs and outputs of the same dimension,
and these conditions are weaker than those recently obtained using arguments in convex
analysis. Furthermore, we prove that the shape of the fixed point set of nonnegative neural
networks with nonnegative weights and biases is an interval, which under mild conditions
degenerates to a point. These results are then used to obtain the existence of fixed points
of more general nonnegative neural networks. From a practical perspective, our results
contribute to the understanding of the behavior of autoencoders, and we also offer valuable
mathematical machinery for future developments in deep equilibrium models.

Keywords: Nonnegative neural networks, nonlinear Perron-Frobenius theory, monotonic
and (weakly) scalable mappings, fixed point analysis, convergence analysis.

1. Introduction

Neural networks consist of multiple layers that are able to extract patterns of input signals
for decision-making without any human intervention. This fact has profound consequences
in a wide range of wireless communications, image recognition, and speech processing tasks,
where neural networks set high standards of performance LeCun et al. (2015); Goodfellow
et al. (2016); Samek et al. (2021). Neural networks have also been recently introduced as
efficient iterative regularization methods in inverse problems, which opens a vista of new
applications, especially in medical imaging Adler and Öktem (2017); Benning and Burger
(2018); Ongie et al. (2020).
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Our study is specifically focused on nonnegative neural networks, defined as neural net-
works that map nonnegative vectors to nonnegative vectors. These networks have been
widely used in many applications such as spectral analysis, image processing, and text pro-
cessing Lemme et al. (2012); Nguyen et al. (2013); Chorowski and Zurada (2015); Hosseini-
Asl et al. (2015); Zhou et al. (2016); Ali and Yangyu (2017); Ayinde and Zurada (2018); Su
et al. (2018); Chen et al. (2019); Yu et al. (2019); Palsson et al. (2019). Nonnegative net-
works can be designed to decompose input signals into additive sparse components, leading
to the formation of an interpretable hierarchical representation of the input data, mirroring
the way the human brain processes sensory inputs Lee and Seung (1999); Shashanka et al.
(2008); Lemme et al. (2012); Nguyen et al. (2013); Chorowski and Zurada (2015); Ayinde
and Zurada (2018). This principle has been exploited in autoencoders with nonnegative
weights, which aims to break down input data into additive features within the encoding
layer, which are then additively recombined in the decoding layer to reconstruct the origi-
nal data Lemme et al. (2012); Ayinde and Zurada (2018). In some scenarios, the gains in
transparency and interpretation obtained by restricting the weights of the neural network
to be nonnegative do not translate into a significant loss of predictive power Nguyen et al.
(2013); Chorowski and Zurada (2015).

Neural networks with nonnegative weights have also been increasingly gaining atten-
tion in recent years because of the resurgence of analog neural networks, which have been
demonstrated to be both readily implementable and more energy efficient than their digital
counterparts Kendall et al. (2020); Paliy et al. (2021). In analog networks, the weight pa-
rameters are physically encoded in the conductance of programmable resistors. Thus, these
analog neural networks are examples of neural networks that are nonnegative because of the
laws of physics. Moreover, various approaches can be used to mitigate the loss of predictive
power caused by the physical nonnegative constraints Kendall et al. (2020). These results
are consistent with those obtained with the digital neural networks in Nguyen et al. (2013);
Chorowski and Zurada (2015).

With the objective of improving our understanding of nonnegative neural networks,
we shed light on questions related to the existence of fixed points and the shape of the
fixed point set of nonnegative neural networks (with matching input and output spaces).
To illustrate the importance of fixed point analysis using concrete examples, let us first
consider autoencoders, which can be seen as self-mappings taking the form T : Rk → Rk

with x 󰀁→ T1(T2(x)), where T1 : Rk → Rl with k > l is a mapping (encoder) used to
learn compact representations of typical inputs, and T2 : Rl → Rk is a mapping (decoder)
used to reconstruct the input from the compact representation obtained with T1. From this
mathematical perspective, the fixed points of an autoencoder T are exactly the inputs that
can be perfectly reconstructed. It is therefore important to determine whether the fixed
point set of an autoencoder is nonempty, and, if so, how rich this set is (i.e., determine its
shape).

As a second example of the significance of fixed point analysis in neural networks, we
mention deep equilibrium (DEQ) models Bai et al. (2019, 2020); Gilton et al. (2021); Huang
et al. (2021); Tsuchida and Ong (2023), which have been increasingly gaining attention from
the machine learning community in recent years. The core concept of implicit models is
that, instead of designing layers explicitly, as usually done, it suffices to define a layer’s
objective (target) functional equation to hold, without actually specifying how such a layer
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should achieve this goal. More precisely, a DEQ layer maps an input x ∈ Rk to an output
z󰂏 ∈ Fix(gx) ⊂ Rk, where gx : Rk → Rk is an explicit mapping parameterized by x. In the
above definition, closed-form expressions for the implicit function x 󰀁→ z󰂏 ∈ Fix(gx) are not
required, and the numerical scheme used to compute the output z󰂏 ∈ Fix(gx) from a given
input x is not specified. As a result, to ensure that the implicit function x 󰀁→ z󰂏 ∈ Fix(gx)
is well-defined and independent of the numerical scheme used to compute the output, it is
natural to require Fix(gx) to be a singleton for every x ⊂ X. This fixed point formulation
also allows for direct implicit differentiation, which is crucial for the efficiency of training of
DEQ models Bai et al. (2019).

Fixed point analysis in neural networks is also important in the context of inverse prob-
lems, which are often formulated as optimization problems with the objective of minimizing
a cost function f : Rk → R. These problems are typically solved with algorithms that can
be interpreted as fixed point iterations of mappings determined by f . For example, to
minimize a cost function f : Rk → R, we can use the standard gradient descent method:
xn+1 = (Id − α∇f)(xn), n = 0, 1, 2, . . . . The objective of this algorithm is to locate a
point x󰂏 satisfying ∇f(x∗) = 0, which is also a fixed-point of the mapping (Id − α∇f),
where Id : Rk → Rk : x 󰀁→ x is the identity mapping. Many other iterative algorithms for
optimization have a similar interpretation: they can be seen as fixed point algorithms based
on a particular instance of the Mann iteration Yamada et al. (2011). One potential limita-
tion of this traditional mathematical approach for inverse problems is that the function f
is often imperfectly known (e.g., owing to the uncertainty about the noise distribution), so,
in machine learning, data is used to train a neural network that is used as the mapping of a
Mann iteration. In this approach, known as loop unrolling, the number of layers is directly
related to the number of fixed point iterations. As a result, these neural networks effectively
emulate a fixed-point seeking algorithm.

In light of the above discussion, it is clear that studying the properties of the fixed point
set of neural networks is crucial for the development of general theory able to explain their
behavior in many applications. To this end, we show that, for nonnegative neural networks
with nonnegative weights and biases, one of the tractable paths for establishing the existence
and the shape of fixed point sets is the nonlinear Perron-Frobenius (PF) theory Lemmens
and Nussbaum (2012), which is used to study monotonic and weakly scalable mappings
defined on a cone (e.g., the nonnegative orthant). As shown in this manuscript, nonnegative
neural networks with nonnegative weights and biases can be considered as instances of
these mappings under mild and natural assumptions, which opens up the possibility for
establishing the existence of fixed points of general nonnegative neural networks. In more
detail, we organize the discussion of our results as follows:

1. In Section 2 we introduce notation and key concepts.

2. Section 3 contains the key technical contributions of our study:

• We first show that nonnegative neural networks with nonnegative weights and
biases are, under mild assumptions, both monotonic and (weakly) scalable in the
sense of Definition 1 introduced later. This result is a major departure from
a recent line of research Chen et al. (2019); Combettes and Pesquet (2020a,b)
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that has used convex analysis in Hilbert spaces to study the behavior of neural
networks.1

• Using the monotonicity and weak scalability properties of nonnegative neural
networks with nonnegative weights and biases, we then proceed to characterize
the shape of the fixed point set of these neural networks in the interior of the
nonnegative cone Rk

+. In particular, we prove that the shape of the fixed point set
is often an interval, which degenerates to a point if the neural network is not only
weakly scalable, but also scalable. We show that these conditions are weaker than
those found in some previous studies, which typically use arguments based on the
nonexpansivity of activation functions in Hilbert spaces and operator norms of
weight operators Combettes and Pesquet (2020a,b).

3. In Section 4, we give conditions that guarantee that general monotonic nonnegative
neural networks have at least one fixed point, and we show that the standard fixed
point iteration converges to a fixed point.

4. In Section 5, we provide conditions for the existence of fixed point(s) of general nonneg-
ative neural networks in settings where Brouwer’s fixed point theorem is not directly
applicable.

5. In Section 6, we illustrate the main theoretical results via numerical simulations, where
we evaluate the reconstruction performance of various nonnegative autoencoders. We
also discuss how the theoretical contributions of this study provide us with a powerful
mathematical machinery for designing efficient DEQ models. Results in this direction
are already available in Gabor et al. (2024).

6. In Section 7, we outline and discuss future research directions, which build on both
the theoretical and numerical results provided in Sections 3-6.

2. Key concepts

We start by introducing key concepts and definitions pertaining to vectors and mappings on
the nonnegative cone Rk

+. Let u, v ∈ Rk
+; then, u ≤ v denotes the partial ordering induced

by the nonnegative cone, i.e., u ≤ v ⇔ v− u ∈ Rk
+. Similarly, u < v means that v− u ∈ Rk

+

and u ∕= v, while u ≪ v means that v − u ∈ int(Rk
+), where int(Rk

+) denotes the interior of
the nonnegative cone Rk

+.

Definition 1 A continuous mapping f : Rs
+ → Rp is said to be

(A0) nonnegative if
∀x ∈ Rs

+ f(x) ∈ Rp
+, (1)

1. In the framework of nonlinear PF theory, monotonicity and (weak) scalability have been widely exploited
in the context of wireless networks Boche and Schubert (2008); Schubert and Boche (2011); Shindoh
(2019, 2020); Cavalcante et al. (2016); Cavalcante and Stańczak (2019); Cavalcante et al. (2019, 2014,
2017); You and Yuan (2020), economic studies Oshime (1992); Woodford (2022), and biological systems
Krause (2015), to cite a few fields.
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(A1) monotonic if
∀x, x̃ ∈ Rs

+ x ≤ x̃ =⇒ f(x) ≤ f(x̃), (2)

(A2) weakly scalable if
∀x ∈ Rs

+ ∀ρ ≥ 1 f(ρx) ≤ ρf(x), (3)

(A3) scalable if
∀x ∈ Rs

+ ∀ρ > 1 f(ρx) ≪ ρf(x). (4)

We use the convention that each subscript applied to A refers to one of the above properties,
so that, for example:

• continuous and nonnegative mappings are (A0)-mappings;

• continuous, nonnegative, and monotonic mappings are (A0,1)-mappings;

• continuous, nonnegative, monotonic, and weakly scalable mappings are (A0,1,2)-mappings;
and

• continuous, nonnegative, monotonic, and scalable mappings are (A0,1,2,3)-mappings.

The above classes of mappings satisfy the relations A0,1,2,3 ⊂ A0,1,2 ⊂ A0,1 ⊂ A0 by
definition. We will also use the class A0,2 of continuous, nonnegative, and weakly scalable
mappings in conjunction with a stricter than A1 notion of monotonicity.

Definition 2 An (A0)-mapping f : Rs
+ → Rp

+ is said to be strictly monotonic if

∀x, x̃ ∈ Rs
+ x < x̃ =⇒ f(x) < f(x̃) and x ≪ x̃ =⇒ f(x) ≪ f(x̃). (5)

We now introduce the standard definition of a neural network.

Definition 3 Let Ti : Rki−1 → Rki of the form Ti(xi−1)
df.
= σi(Wixi−1 + bi) be the i-th layer

of an n-layered feed forward neural network, i = 1, . . . , n, where xi−1 ∈ Rki−1 is the input to
the layer, Wi : Rki−1 → Rki is the linear weight operator (matrix), bi ∈ Rki is the bias, and
σi : Rki → Rki is the activation function. A neural network T is then the composition

T
df.
= Tn ◦ · · · ◦ T1, (6)

with the zeroth layer corresponding to the input to the network. Hereafter, we assume that
the input and output layers have the same dimension k

df.
= k0 = kn, which enables us to

consider traditional recurrent neural networks and autoencoders as particular cases.

We also assume that the layers of a neural network T taking the form in (6) use separable
activation functions in the sense defined below.
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Definition 4 Let Ti be the i-th layer of a neural network T in (6). An activation function
σi : Rki → Rki for this layer is composed of ki scalar activation functions σij : R → R
(j = 1, 2, . . . , ki), and its operation is defined as

σi(yi) =

ki󰁛

j=1

(σij (yij ))eij , (7)

where yij ∈ R is the j-th coefficient of the vector yi
df.
= Wixi−1 + bi ∈ Rki and eij is the

j-th coefficient of the canonical basis of Rki for j = 1, 2, . . . , ki. For later reference, we
equivalently express a layer Ti with the activation function σi in (7) as

Ti(xi−1) = σi(yi) =
󰀓
σi1(yi1),σi2(yi2), . . . ,σiki (yiki )

󰀔
, (8)

where σij are scalar activation functions for j = 1, 2, . . . , ki.

We are now ready to study the set of fixed points of nonnegative neural networks, which
are networks that have already been used in the literature and that are increasingly gaining
attention because of the new trends in analog computation Nguyen et al. (2013); Lemme
et al. (2012); Ayinde and Zurada (2018); Chorowski and Zurada (2015); Hosseini-Asl et al.
(2015); Chen et al. (2019); Ali and Yangyu (2017); Palsson et al. (2019); Su et al. (2018);
Kendall et al. (2020); Paliy et al. (2021). With the theory we develop in Sections 3 and 4,
we can, for example, understand some limitations of autoenconders and gain insights into
useful approaches for improving their reconstruction performance.

3. Fixed points of (A0,1,2)-neural networks

We begin with the following assumption.

Assumption 5 In Section 3 we assume that, for all layers i = 1, . . . , n:

1. the weight matrices Wi and biases bi have nonnegative coefficients; and

2. the activation functions σi are (A0,1,2)-mappings.

In Corollary 9 below, we show that Assumption 5 guarantees that the resulting network is
an (A0,1,2)-neural network, and, in certain cases, even an (A0,1,2,3)-neural network. However,
we first demonstrate that Assumption 5.2 holds for activation functions constructed with
commonly used scalar activation functions, and we show an explicit construction of neural
networks satisfying Assumption 5.

3.1 Construction of (A0,1,2)-activation functions

Many commonly used scalar activation functions (σij in Definition 4) are continuous and con-
cave in the nonnegative orthant. Therefore, in light of [Lemma 1]Cavalcante and Stańczak
(2019), they belong to a proper subclass of (A0,1,2)-scalar activation functions. Some of
them are listed below.
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Remark 6 The following two lists provide examples of widely-used continuous scalar con-
cave activation functions (with their domains restricted to ξ ∈ R+), and, hence, (A0,1,2)-
scalar activation functions. We divide them into two classes:

• functions satisfying limξ→∞ σ′(ξ) = 0, and

• functions satisfying limξ→∞ σ′(ξ) = 1.

(L1) continuous scalar concave activation functions satisfying limξ→∞ σ′(ξ) = 0:

• (sigmoid) ξ 󰀁→ 1
1+exp (−ξ)

• (capped ReLU) ξ 󰀁→ min{ξ,β},β > 0

• (saturated linear) ξ 󰀁→
󰀝

1, if ξ > 1;
ξ, if 0 ≤ ξ ≤ 1

• (inverse square root unit) ξ 󰀁→ ξ√
1+ξ2

• (arctangent) ξ 󰀁→ (2/π) arctan ξ

• (hyperbolic tangent) ξ 󰀁→ tanh ξ

• (inverse hyperbolic sine) ξ 󰀁→ arcsinh ξ

• (Elliot) ξ 󰀁→ ξ
1+ξ

• (logarithmic) ξ 󰀁→ log(1 + ξ)

(L2) continuous scalar concave activation function satisfying limξ→∞ σ′(ξ) = 1:

• (ReLU, inverse square root linear unit) ξ 󰀁→ ξ

The above lists are by no means exhaustive. Indeed, a variety of the commonly used
scalar activation functions reduce to a certain function from the above two lists if restricted
to R+, so we do not list all variations here. For example, various versions of the ReLU (e.g.,
parameterized, exponential), including the original ReLU listed above, and also the inverse
square root linear unit, reduce to the identity mapping on R+.

The following fact enables us to establish scalability and strict monotonicity of activation
functions, and it will be useful later in Section 3.2.

Fact 7 Consider an (A0,1,2)-activation function σi constructed with continuous scalar con-
cave activation functions listed in Remark 6. Then:

• if all scalar activation functions σij are such that σij (0) > 0 for j ∈ {1, 2, . . . , ki},
then, by (Cavalcante et al., 2016, Proposition 1), σi in (7) is an (A0,1,2,3)-activation
function. Thus, limiting the choice to scalar activation functions from lists (L1)-(L2)
in Remark 6, we obtain that σi in (7) is an (A0,1,2,3)-activation function only if it is
constructed with the sigmoid scalar activation function; and

• σi in (7) is strictly monotonic if it is constructed with scalar activation functions from
lists (L1)-(L2) in Remark 6, except for the capped ReLU and the saturated linear scalar
activation functions.
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3.2 Construction of (A0,1,2)-neural networks

We now prove that the neural networks satisfying Assumption 5 are in the (A0,1,2) class.
Namely, the following lemma provides simple sufficient conditions to construct such net-
works.

Lemma 8 Consider a neural network T of the form in (6), and let Ti : Rki−1 → Rki : xi−1 󰀁→
σi(Wixi−1 + bi) be its i-th layer. Then:

1. if the affine mapping yi = Wixi−1 + bi has nonnegative weights Wi and biases bi, then
it is in (A0,1,2);

2. if the affine mapping yi = Wixi−1 + bi has nonnegative weights Wi and positive biases
bi, then it is in (A0,1,2,3);

3. if the affine mapping yi = Wixi−1 + bi is in (A0,1,2) and the activation function σi is
also in (A0,1,2), then the layer Ti is in (A0,1,2);

4. if the affine mapping yi = Wixi−1 + bi is in (A0,1,2) and the activation function σi is
in (A0,1,2,3), then the layer Ti is in (A0,1,2,3);

5. if the affine mapping yi = Wixi−1 + bi is in (A0,1,2,3), and the activation function σi
is strictly monotonic and is in the class (A0,2), then the layer Ti is in (A0,1,2,3);

6. if all layers Ti for i = 1, 2, . . . , n are in (A0,1,2), then T is an (A0,1,2)-neural network;

7. if Ti0 is in (A0,1,2,3) for some 1 ≤ i0 ≤ n, Ti are in (A0,1,2) for i = 1, . . . , i0 − 1,
and Ti are strictly monotonic and are in (A0,2) for i = i0 + 1, . . . , n, then T is an
(A0,1,2,3)-neural network.

Proof See Appendix C.

Corollary 9 Suppose that a neural network T with the general structure in (6) satisfies
Assumption 5. Then:

1. T is an (A0,1,2)-neural network;

2. if, in addition, the n-th layer Tn has a bias vector bn such that bn ≫ 0, and it uses a
strictly monotonic activation function, then T is an (A0,1,2,3)-neural network; or

3. if, in addition, the n-th layer Tn uses only (A0,1,2,3) activation functions (e.g., sigmoid
scalar activation functions), then T is an (A0,1,2,3)-neural network.

Proof By Assumption 5 and Lemma 8, points 1 and 3, the layers Ti are in (A0,1,2) for
i = 1, . . . , n. By Lemma 8, point 6, T is an (A0,1,2)-neural network, which establishes point 1
above. Furthermore, if the additional assumption of point 2 above is used, from Lemma 8,
points 2 and 5, we obtain that the layer Tn is in (A0,1,2,3). In Lemma 8, point 7, we set i0 = n
to obtain the assertion of point 2 above. Similarly, if the additional assumption of point
3 above is used, from the first point in Fact 7 we obtain that σn is an (A0,1,2,3)-activation
function. Thus, from Lemma 8, point 4, we conclude that Tn is in (A0,1,2,3). For i0 = n,
from Lemma 8, point 7, we conclude that T is an (A0,1,2,3)-neural network. 󰃈
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3.3 Existence and uniqueness of fixed points of (A0,1,2)-neural networks

Next, we prove the following key properties of (A0,1,2)-neural networks, which, as shown in
the previous section, include as a subset neural networks satisfying Assumption 5:

1. We provide conditions for the existence of fixed points of an (A0,1,2)-neural network
(Corollary 14).

2. We provide conditions for the uniqueness of the fixed point of a neural network T in
cases where T is:

(a) an (A0,1,2,3)-neural network (Corollary 15),

(b) a strongly primitive2 (A0,1,2)-neural network, and with its activation functions
constructed with the continuous scalar concave activation functions listed in Re-
mark 6 (Corollary 20).

3. We show that the condition for the existence of a fixed point of an (A0,1,2)-neural net-
work (Corollary 14) is weaker than those obtained using arguments in convex analysis
(Remark 17).

4. We provide numerically efficient methods for verifying the existence and uniqueness of
fixed point(s) of (A0,1,2)-neural networks (Proposition 19 and Corollary 20).

3.3.1 Nonlinear spectral radius of an (A0,1,2)-neural network

The path toward obtaining the main results of Section 3.3 is via the concept of the asymptotic
mapping associated with an (A0,1,2)-neural network (Definition 10), and we provide a closed
algebraic form of the asymptotic mapping of an (A0,1,2)-neural network in Proposition 11.
This result is then used to determine the (nonlinear) spectral radius of an (A0,1,2)-neural
network in Corollary 13.

Definition 10 Let T : Rk
+ → Rk

+ be an (A0,1,2)-neural network of the form (6). The
asymptotic mapping associated with T is the mapping defined by

T∞ : Rk
+ → Rk

+ : x 󰀁→ lim
p→∞

1

p
T (px). (9)

We recall that the above limit always exists Cavalcante et al. (2019).

We now prove that the asymptotic mapping T∞ associated with an (A0,1,2)-neural net-
work T is linear, even if the activation functions are possibly nonlinear. This property is
very special because asymptotic mappings are nonlinear in general Cavalcante et al. (2019),
and linearity is a property that can be exploited to simplify the analysis of the set of fixed
points of (A0,1,2)-neural networks.

For the common case of a nonnegative neural network with activation functions con-
structed with continuous scalar concave activation functions listed in Remark 6, we have
the following result:

2. The definition of strong primitivity is given in Definition 18 below.
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Proposition 11 Consider a neural network T of the form in (6) with nonnegative weight
matrices and biases. Assume that the activation functions are constructed with continuous
scalar concave activation functions from lists (L1)-(L2) in Remark 6. Then T is an (A0,1,2)-
neural network. Moreover:

1. If all layers use continuous scalar concave activation functions from list (L2) in Re-
mark 6, then the asymptotic mapping of T is given by T∞(x) =

󰁔1
i=nWix.

2. On the other hand, if at least one layer of T uses only continuous scalar concave
activation functions from list (L1) in Remark 6, then T∞(x) = 0.

Proof From Remark 6 we obtain that σi are (A0,1,2)-activation functions for i = 1, 2, . . . , n.
Thus, T satisfies both parts of Assumption 5, and, hence, from Corollary 9, point 1, we
obtain that T is an (A0,1,2)-neural network.

Case 1) : Define

T1∞(x)
df.
= lim

p→∞

1

p
T1(px) = lim

p→∞

σ1(W1px+ b1)

p
.

Applying L’Hôpital’s rule to the coordinate continuous scalar concave activation functions
(σ1j : R → R)j∈{1,...,k1} from list (L2) in Remark 6, with the scalar p as their arguments
with x fixed, we deduce

T1∞(x) = lim
p→∞

σ′
1(W1px+ b1)W1x = W1x.

Analogously, for the second layer we have

T1,2∞(x)
df.
= lim

p→∞

1

p
T2(T1(px)) = lim

p→∞

σ2

󰀓
W2

󰀃
σ1(W1px+ b1)

󰀄
+ b2

󰀔

p
.

Then, applying L’Hôpital’s rule to the coordinate functions (σ2j : R → R)j∈{1,...,k2} from list
(L2) in Remark 6, we obtain

T1,2∞(x) = lim
p→∞

σ′
2

󰀓
W2

󰀃
σ1(W1px+ b1)

󰀄
+ b2

󰀔
W2σ

′
1(W1px+ b1)W1x = W2W1x. (10)

Proceeding as above for the remaining layers, we conclude that T∞(x) =
󰁔1

i=nWix.
Case 2) : If σi is composed only of continuous scalar concave activation functions from

list (L1) in Remark 6 for some 1 ≤ i ≤ n, then limp→∞ σ′
i(p) = 0. In such a case, we obtain

T∞(x) = 0, as can be deduced from the special case n = 2 in (10). 󰃈
The asymptotic mapping obtained in Proposition 11 associated with an (A0,1,2)-neural

network T can be used to define the (nonlinear) spectral radius of T as follows:

Definition 12 The (nonlinear) spectral radius of an (A0,1,2)-neural network T of the form
(6) is given by the largest eigenvalue of the corresponding (linear) asymptotic mapping Os-
hime (1992); Cavalcante et al. (2019):

ρ(T∞) = max{λ ∈ R+ : ∃ x ∈ Rk
+\{0} s.t. T∞(x) = λx} ∈ R+.
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From Proposition 11 and Definition 12 we obtain the following corollary yielding the
desired result of this section.

Corollary 13 Consider a neural network T of the form (6) with nonnegative weight matri-
ces and biases. Assume that the activation functions are constructed with continuous scalar
concave activation functions from lists (L1)-(L2) in Remark 6 [from Proposition 11, T is an
(A0,1,2)-neural network]. Then the spectral radius of T is given by

ρ(T∞) = max{λ ∈ R+ : ∃ x ∈ Rk
+\{0} s.t.

1󰁜

i=n

Wix = λx} (11)

if all layers i = 1, 2, . . . , n use continuous scalar concave activation function from list (L2) in
Remark 6. On the other hand, if at least one layer of T uses only continuous scalar concave
activation functions from list (L1) in Remark 6, then ρ(T∞) = 0.

3.3.2 Conditions for existence of fixed points of (A0,1,2)-neural networks

The following corollary of Proposition 38 gives a sufficient condition for (A0,1,2)-neural net-
works to have a nonempty fixed point set.

Corollary 14 Consider an (A0,1,2)-neural network T of the form (6). Assume that ρ(T∞) <
1. Then, from Proposition 38, we have that Fix(T ) ∕= ∅.

Furthermore, the following corollary shows that for (A0,1,2,3)-neural networks, the asser-
tion of Corollary 14 can be significantly strengthened. More precisely, in this setting the
condition ρ(T∞) < 1 is not only sufficient but also necessary to prove the existence and
uniqueness of the fixed point.

Corollary 15 Consider an (A0,1,2,3)-neural network T of the form (6). Then, from Propo-
sition 39, the neural network T has a fixed point if and only if ρ(T∞) < 1. Furthermore,
from Proposition 40 the fixed point is unique, and it is also positive as a consequence of the
scalability of T.

3.3.3 Comparison of the assumptions implying the existence of fixed points
of (A0,1,2)-neural networks

In this subsection, we emphasize that the results of Proposition 11, Corollary 14, and Corol-
lary 15 yield weaker conditions for the existence of fixed points of (A0,1,2)-neural networks
than existing conditions based on arguments in convex analysis. To establish this claim, we
use the following fact.

Fact 16 Consider a neural network T of the form (6) with nonnegative weight matrices and
biases. Assume that the activation functions are constructed with continuous scalar concave
activation functions from lists (L1)-(L2) in Remark 6 [from Proposition 11, T is an (A0,1,2)-
neural network]. A standard result is that the spectral radius of a matrix, in the conventional

11
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sense in linear algebra, is the infimum of all matrix operator norms, so the spectral radius
ρ(W ) of the nonnegative matrix W , given by

Rk×k ∋ W
df.
=

1󰁜

i=n

Wi,

can be equivalently written as ρ(W ) = inf{󰀂W󰀂 : 󰀂 ·󰀂 - operator norm of W}. Therefore, if
all layers i = 1, 2, . . . , n use continuous scalar concave activation function from list (L2) in
Remark 6, from Corollary 13 and arguments in classical Perron-Frobenius theory (Meyer,
2000, p. 670) we obtain that

ρ(T∞) = ρ(W ) ≤ 󰀂W󰀂 ≤
n󰁜

i=1

󰀂Wi󰀂, (12)

where the matrix norm 󰀂 · 󰀂 in (12) is an arbitrary operator norm. The second inequality
follows from the submultiplicativity property of operator norms.

We are now able to provide concrete examples of (A0,1,2)-neural networks for which the
existence of fixed points can be established using the above results, but not from previous
arguments based on convex analysis. We summarize them in the following remark.

Remark 17 Let T be a neural network of the form in (6) with nonnegative weight matrices
and biases. Assume that the activation functions are selected from the continuous scalar
concave activation functions in lists (L1)-(L2) in Remark 6 [from Proposition 11, T is an
(A0,1,2)-neural network]. Then:

• From Proposition 11 and Corollary 14, we conclude that if at least one layer of T
uses only continuous scalar concave activation functions from list (L1) in Remark 6,
then T has a nonempty fixed point set for arbitrary (finite) nonnegative weights. No
assumptions on the (operator or other) norms of the weight matrices are necessary to
guarantee the existence of fixed points.

• From Fact 16, we obtain that, even if all layers i = 1, 2, . . . , n use exclusively continu-
ous scalar concave activation functions from list (L2) in Remark 6, the conditions for
the existence of a nonempty fixed point set stated in Corollaries 14 and 15 are weaker
than those obtained using arguments in convex analysis Combettes and Pesquet (2020a)
[see also the bounds on the Lipschitz constant of a neural network with nonnegative
weights in (Combettes and Pesquet, 2020b, Section 5.3)].

3.3.4 Numerically efficient methods for verifying the existence of fixed
points of strongly primitive (A0,1,2)-neural networks

We now introduce the concepts of primitivity and strong primitivity of (A0,1,2)-neural net-
works. The former is used in Section 3.4.2,3 and the latter is used in Proposition 19 and
Corollary 20 below to obtain numerically efficient methods for verifying the existence and
uniqueness of fixed points of neural networks.

3. We present both definitions here because they are closely related.

12
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Definition 18 We say that an (A0,1,2)-neural network T : Rk
+ → Rk

+ is primitive if

∀x ∈ Rk
+\{0} ∃m ∈ N s.t. Tm(x) ≫ 0.

Similarly, we say that T is strongly primitive if

∀x ∈ Rk
+ ∃m ∈ N s.t. Tm(x) ≫ 0.

Proposition 19 Consider an (A0,1,2)-neural network T : Rk
+ → Rk

+. In addition, assume
that there exists m ∈ N such that Tm(0) ≫ 0. Then each of the following holds:

1. T is strongly primitive.

2. If ρ(T∞) < 1, then ∅ ∕= Fix(T ) ⊂ int(Rk
+). In contrast, if ρ(T∞) > 1, then Fix(T ) = ∅.

3. If H : Rk
+ → Rk

+ : x 󰀁→ Tm(x) is an (A0,1,2,3)-neural network and T is as in
Proposition 11, then T has a fixed point if and only if ρ(T∞) < 1. Furthermore,
Fix(T ) = Fix(H), and the fixed point of T is unique and positive.

4. If H : Rk
+ → Rk

+ : x 󰀁→ Tm(x) is an (A0,1,2,3)-neural network and T is as in Proposi-
tion 11 with ρ(T∞) < 1, then the sequence (xn)n∈N generated via xn+1 = T (xn), with
x1 ∈ Rk

+ arbitrarily chosen, converges to the unique fixed point of T .

Proof 1) By assumption, ∃m ∈ N such that Tm(0) ≫ 0. Let x ∈ Rk
+. From the monotonicity

of T , one has ∀n ≥ m Tn(x) ≥ Tn(0) ≫ 0, and the desired result follows.
2) The first statement is immediate from Corollary 14 and strong primitivity of T. Now,

for the sake of contradiction, assume that ρ(T∞) > 1 and the network has a fixed point
denoted by x ∈ Fix(T ). Part 1) of the proposition shows that x = Tm(x) ≫ 0, which
is a contradiction because (Cavalcante and Stańczak, 2019, Proposition 2) asserts that a
monotonic and weakly scalable T with ρ(T∞) > 1 has no fixed points in int(Rk

+).

3) From the definition of H, we verify that Fix(T ) ⊆ Fix(H), because if x󰂏 is such that
T (x󰂏) = x󰂏, then H(x󰂏) = Tm(x󰂏) = x󰂏. By repeating the proof of Proposition 11 for H, we
obtain that H∞(x) = Wm(x) if and only if T∞(x) =

󰁔1
i=nWix, where W

df.
=

󰁔1
i=nWi, and

H∞(x) = 0 if and only if T∞(x) = 0. Then, for the first case, the equality ρ(H∞) = (ρ(T∞))m

is obtained from (Johnson and Bru, 1990, Theorem 1), whereas it is immediate for the second
case. Hence, in particular, ρ(T∞) < 1 if and only if ρ(H∞) < 1.

Now consider the case ρ(T∞) < 1. Then, we conclude that the extended neural net-
work H has a unique (positive) fixed point as a consequence of the statement in Corol-
lary 15. Moreover, Part 2) of the proposition guarantees that Fix(T ) ∕= ∅, so we must
have Fix(H) = Fix(T ) because Fix(H) is a singleton and ∅ ∕= Fix(T ) ⊆ Fix(H). Similarly,
for the case ρ(T∞) ≥ 1, we deduce ρ(H∞) = (ρ(T∞))m ≥ 1, which implies Fix(H) = ∅
from the statement of Corollary 15. Therefore, T cannot have a fixed point because
Fix(T ) ⊆ Fix(H) = ∅, and the proof is complete.

4) Part 3) of the proposition and the assumptions of Part 4) guarantee that T and H have
a common unique positive fixed point that we denote by x󰂏 ∈ int(Rk

+). We also note that, as
T is monotonic and weakly scalable on int(Rk

+), by (Lemmens and Nussbaum, 2012, Lemma

13
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2.1.7) it is nonexpansive in the Thompson metric space (int(Rk
+), dT ), see Definition 37. Let

i ∈ N and let k ≥ im. Then

∀x ∈ Rk
+ ∀k ≥ im dT (T

k(x), x󰂏) = dT (T
k(x), T k−im(x󰂏)) ≤ dT (T

im(x), x󰂏),

where the last inequality follows from the nonexpansivity of T w.r.t. dT . We note that for
k ≥ im if i → ∞ then k → ∞. Thus, we obtain that

∀x ∈ Rk
+ lim

k→∞
dT (T

k(x), x󰂏) ≤ lim
i→∞

dT (T
im(x), x󰂏) = lim

i→∞
dT (H

i(x), x󰂏) = 0,

where the last equality follows from (Cavalcante et al., 2019, Fact 1(iv)). 󰃈
One of the practical implications of Proposition 19 is that we can obtain a simple numeri-

cal certificate of uniqueness of the fixed point of a monotonic and weakly scalable nonnegative
neural network T with concave activation functions, by simply computing Tm(0) for some
sufficiently large m, as formally described below. It is also important to note that in such a
case, the network T needs only to be monotonic and weakly scalable to have a unique fixed
point if ρ(T∞) < 1, which is a stronger result than the one given in Corollary 15, which
requires scalability of the network.

Corollary 20 Consider a neural network T of the form (6) with nonnegative weight matri-
ces and biases. Assume that the activation functions are selected from the continuous scalar
concave activation functions in lists (L1)-(L2) in Remark 6 [from Proposition 11, T is an
(A0,1,2)-neural network]. If there exists m ∈ N such that Tm(0) ≫ 0, then T has a fixed
point if and only if ρ(T∞) < 1. Furthermore, the fixed point is unique and positive.

Proof Let f1, f2 : Rk1
+ → R+ be nonnegative concave functions and let t ∈ (0, 1). We

note that, by [Lemma 1]Cavalcante and Stańczak (2019), they are (A0,1,2)-functions. From
concavity of f1 one has

f1(tx1 + (1− t)x2) ≥ tf1(x1) + (1− t)f1(x2).

Hence, monotonicity of f2 implies that

f2[f1(tx1 + (1− t)x2)] ≥ f2[tf1(x1) + (1− t)f1(x2)].

From the concavity of f2 we deduce

f2[tf1(x1) + (1− t)f1(x2)] ≥ tf2(f1(x1)) + (1− t)f2(f1(x2)).

By combining the above two inequalities, we conclude that

(f2 ◦ f1)(tx1 + (1− t)x2) ≥ t(f2 ◦ f1)(x1) + (1− t)(f2 ◦ f1)(x2),

establishing that f2 ◦ f1 is also a nonnegative concave function. We can use induction to
extend the validity of the above arguments to an arbitrary number of nonnegative concave
functions. By definition, a mapping F

df.
= (f1 . . . , fk2) : R

k1
+ → Rk2

+ is said to be nonnegative
concave if all coordinate functions (f1 . . . , fk2) are nonnegative concave functions. Thus, we
conclude that the layers of T are nonnegative concave mappings because they are constructed

14
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by composing nonnegative affine mappings with nonnegative concave activation functions.
Hence, the neural network T is itself a nonnegative concave mapping as a composition of
n nonnegative concave layers. Furthermore, H : Rk

+ → Rk
+ : x 󰀁→ Tm(x) is a nonnegative

concave mapping because it is the m-fold composition of T with itself. We also deduce that
H is necessarily a positive mapping because, by the monotonicity of T , ∀x ∈ Rk

+ H(x) =
Tm(x) ≥ Tm(0) ≫ 0. Concavity and positivity of H in the nonnegative orthant imply
that H is an (A0,1,2,3)-neural network (Cavalcante et al., 2016, Proposition 1). Thus, from
Proposition 19, point 3, we obtain that T has a fixed point if and only if ρ(T∞) < 1.
Furthermore, this fixed point is unique and positive. 󰃈

3.4 The shape of fixed point sets of (A0,1,2)-neural networks

In the previous sections, we provided conditions for the existence and uniqueness of fixed
points of (A0,1,2)-neural networks under different mild assumptions. However, if the fixed
point set is not a singleton, we have not yet established the shape of this set. In the following,
we address this limitation of the analysis done so far. In more detail, in this section, we
show the following results:

1. First, in Section 3.4.1:

(a) in Proposition 22, we show the shape of the fixed point set of a generic (A0,1,2)-
mapping under the assumption of lower- and upper-primitivity (see Definition 21
below) at its fixed points; and

(b) we show that the condition of lower- and upper-primitivity is essential to obtain
a meaningful shape of the fixed point set of a generic (A0,1,2)-mapping, otherwise
the fixed point set of such a mapping can be in principle arbitrary (Examples 1
and 2).

2. Afterwards, in Section 3.4.2, we specialize the results of Section 3.4.1 to the case of
(A0,1,2)-neural networks. More precisely:

(a) we compare the results in Section 3.3.2 and Section 3.4.1 related to the shape of
the fixed point set of (A0,1,2)-neural networks (Remark 25);

(b) we derive a numerically verifiable sufficient condition for an (A0,1,2)-neural net-
work to be lower- and upper-primitive at its fixed points (Lemma 26).

3.4.1 Nonlinear Perron-Frobenius Theory

The results of this section establish the shape of the fixed point sets of (A0,1,2)-mappings
f : Rk

+ → Rk
+ in the interior of the Rk

+ cone. They are derived using tools from nonlinear
Perron-Frobenius theory, and the following definition is required to state the main contri-
butions:

Definition 21 (Lemmens and Nussbaum, 2012, Definition 6.5.2) Let f : int(Rk
+) → int(Rk

+).
We say that f is lower-primitive at x ∈ int(Rk

+) if there exists an open neighbourhood
U ⊆ int(Rk

+) of x such that for each y ∈ U with y < x there exists an integer py ≥ 1 with
fpy(y) ≪ fpy(x). Likewise, we say that f is upper-primitive at x ∈ int(Rk

+) if there exists
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an open neighbourhood U ⊆ int(Rk
+) of x such that for each y ∈ U with x < y there exists

an integer py ≥ 1 with fpy(x) ≪ fpy(y).

The following proposition provides the shape of the fixed point set of an (A0,1,2)-mapping
under the conditions of lower- and upper-primitivity. It extends (Cavalcante and Stańczak,
2019, Proposition 3) to the case x ∈ int(Rk

+), and it can be seen as a corollary of (Lemmens
and Nussbaum, 2012, Theorem 6.5.6). For clarity, we provide a proof that quotes parts of
the original proof of (Lemmens and Nussbaum, 2012, Theorem 6.5.6).

Proposition 22 (cf. Theorem 6.5.6 in Lemmens and Nussbaum (2012)) Let us de-
fine f : int(Rk

+) → int(Rk
+) to be the restriction of an (A0,1,2)-mapping to the positive orthant.

Furthermore, let Fix(f) ∕= ∅ and let f satisfy the conditions of lower- and upper-primitivity
at u ∈ Fix(f). Let x ∈ int(Rk

+). Then, there exists λx > 0 such that limp→∞ fp(x) = λxu ∈
Fix(f). Moreover, define

s0
df.
= inf{λ > 0 : λu ∈ Fix(f)},

and
t0

df.
= sup{λ > 0 : λu ∈ Fix(f)}.

Then:

if s0 > 0 and t0 < ∞ ⇒ Fix(f) = {λu : s0 ≤ λ ≤ t0};
if s0 = 0 and t0 < ∞ ⇒ Fix(f) = {λu : 0 < λ ≤ t0};
if s0 > 0 and t0 = ∞ ⇒ Fix(f) = {λu : s0 ≤ λ}; and
if s0 = 0 and t0 = ∞ ⇒ Fix(f) = {λu : 0 < λ}.

(13)

Proof Let u ∈ Fix(f) and let x ∈ int(Rk
+). As f is monotonic and weakly scalable on

int(Rk
+), by (Lemmens and Nussbaum, 2012, Lemma 2.1.7) it is nonexpansive in the Thomp-

son metric space (int(Rk
+), dT ) (see Definition 37), which is a complete metric space (Lem-

mens and Nussbaum, 2012, Proposition 2.5.2). We further note from (Piotrowski and Cav-
alcante, 2022, Remark 3 and Corollary 1) that (int(Rk

+), dT ) is also a proper metric space
in the sense that every closed ball in (int(Rk

+), dT ) is compact.
Denote the orbit of f at x by O(x; f)

df.
= {fp(x) : p = 0, 1, 2, . . . } with f0(x)

df.
= x.

Then, the orbit O(u; f) = {u} is bounded, thus, by Całka’s Theorem (Lemmens and Nuss-
baum, 2012, Theorem 3.1.7), O(x; f) is also bounded in (int(Rk

+), dT ). The closure O(x; f)
of O(x; f) consists of O(x; f) and the bounded set of all limit points of subsequences of
O(x; f). Hence, by (Piotrowski and Cavalcante, 2022, Corollary 1), O(x; f) is compact in
(int(Rk

+), dT ). Then, from (Lemmens and Nussbaum, 2012, Lemma 3.1.2), one has that
f(ω(x; f)) = ω(x; f), where ω(x; f)

df.
= {y ∈ int(Rk

+) : fpi(x) → y for some (pi)i with pi →
∞}, and, consequently, fp(ω(x; f)) = ω(x; f) for any p ∈ N.

Furthermore, by our assumptions on f , we can apply (Lemmens and Nussbaum, 2012,
Lemma 6.5.4) to f and conclude that there are two cases: either there exists 0 < αx ≤ 1
such that m(y/u) = αx for all y ∈ ω(x; f), or there exists βx ≥ 1 such that M(y/u) = βx for
all y ∈ ω(x; f), where m(y/u)

df.
= sup{γ > 0 : γu ≤ y} and M(y/u)

df.
= inf{γ > 0 : y ≤ γu}.

We note that for y, u ∈ int(Rk
+) one has simply m(y/u) = mini=1,...,k{yi/ui} and M(y/u) =

maxi=1,...,k{yi/ui}, see (Lemmens and Nussbaum, 2012, eqs.(2.8),(2.9)).
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We now show that, in the first case, ω(x; f) = {αxu}. To obtain a contradiction, we
assume that there exists z ∈ ω(x; f) with z ∕= αxu such that m(z/u) = αx. Then zi ≥ αxui
for i = 1, . . . , k, and there exists i0 ∈ {1, . . . , k} such that zi0 > αxui0 , hence αxu < z. Since
f is upper-primitive at u, there exists p ∈ N such that

αxu = αxf
p(u) ≪ αxf

p(α−1
x z) ≤ fp(z),

where the second inequality follows from the weak scalability of f. Consequently, αxu ≪
fp(z). It follows that m(fp(z)/u) = sup{γ > 0 : γu ≤ fp(z)} > αx, which is impossible, as
fp(z) ∈ ω(x; f). In a similar way, it can be shown that, in the second case, ω(x; f) = {βxu}.
Thus, we have proved that there exists λx > 0 such that ω(x; f) = {λxu}.

Consequently, since f(ω(x; f)) = ω(x; f), we have f(λxu) = λxu, thus λxu ∈ Fix(f).
We also note that, if v ∈ Fix(f) is such that v ∕= u, we obtain that ω(v; f) = {v}, and thus
it must be either v = αvu or v = βvu, where 0 < αv ≤ 1 and 1 ≤ βv.

Furthermore, as αxu ≤ u ≤ βxu for each x ∈ int(Rk
+), from (Lemmens and Nussbaum,

2012, Lemma 6.5.5) we obtain that Fix(f) is in this case one of the intervals in (13). More-
over, from (Lemmens and Nussbaum, 2012, Lemma 3.1.3) for a periodic point with period 1,
one has that

lim
p→∞

fp(x) = λxu ∈ Fix(f). 󰃈

The conditions of lower- and upper-primitivity are important, as the following examples
demonstrate.

Example 1 Let f : int(R2
+) → int(R2

+) be defined as f(x) = (x1,min{2, x2}) for x =
(x1, x2) ∈ int(R2

+). Then f is an (A0,1,2)-mapping that is also subadditive, see (Oshime,
1992, Example 2.4). We can check that Fix(f) = int(R+) × (0, 2]. However, neither of
the conditions of lower- and upper-primitivity are satisfied by f on Fix(f), as the following
analysis shows.

Let u = (u1, u2) ∈ Fix(f), and let x = (2u1, u2). Then x ∈ Fix(f) and u < x because
x ∕= u and x−u = (u1, 0) ∈ R2

+. However, for all px ≥ 1, we have fpx(u) = u ∕≪ fkx(x) = x
because x− u = (u1, 0) /∈ int(R2

+). Similarly, if x = (u1/2, u2) ∈ Fix(f), then x < u because
u ∕= x and u−x = (u1/2, 0) ∈ R2

+. However, for all px ≥ 1, we have fpx(x) = x ∕≪ fpx(u) =
u because u− x = (u1/2, 0) /∈ int(R2

+).

Example 2 Let f : int(R2
+) → int(R2

+) be the Gauss arithmetic-geometric mean given by
f(x) = (x1+x2

2 ,
√
x1x2) for x = (x1, x2) ∈ int(R2

+). Then f is an (A0,1,2)-mapping, and, for
each x ∈ int(R2), there exists λ > 0 such that limp→∞ fp(x1, x2) = (λ,λ) (Lemmens and
Nussbaum, 2012, Section 1.4). Indeed, it is clear that Fix(f) = {x ∈ int(R2

+) | x1 = x2},
and, from the properties of arithmetic and geometric means, we verify that f is both lower-
and upper-primitive at each u ∈ Fix(f). Hence, let u = (λ,λ) for some λ > 0, and let
x ∈ int(R2

+). Then, from Proposition 22 we conclude that there exists λx > 0 such that
limp→∞ fp(x) = (λxλ,λxλ). It is also seen that, in this case, Fix(f) = {(γ, γ), γ > 0},
see (13).

We close this section with the following remarks, which will be useful later in this study.

Remark 23 From the proof of Proposition 22 it is seen that, if f is both lower- and upper-
primitive at any u ∈ Fix(f), then it satisfies these conditions on the whole Fix(f).
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Remark 24 Every (A0,1,2)-mapping f : int(Rk
+) → int(Rk

+) has a continuous extension
fext : Rk

+ → Rk
+ that is also an (A0,1,2)-mapping (Burbanks et al., 2003, Theorem 3.10).

This fact justifies calling f itself an (A0,1,2)-mapping in the sense of Definition 1.

3.4.2 Applications to neural networks

We now specialize the results derived above to neural networks.

Remark 25 From Corollary 15, we verify that, if a neural network T of the form (6) is in
(A0,1,2,3), then Fix(T ) is either the empty set or a singleton. Moreover, from Corollary 14
and Proposition 22, we conclude that Fix(T ) remains simple if T is more generally an
(A0,1,2)-neural network, because in this case Fix(T ) is an interval. This result is obtained in
Proposition 22 under the assumption that T grows “fast enough” at its fixed points, i.e., it
satisfies the conditions of lower- and upper-primitivity on ∅ ∕= Fix(T ) ⊂ int(Rk

+).

From the above remark, we note that providing an easily verifiable sufficient condition of
lower- and upper-primitivity to hold at an arbitrary u ∈ Fix(T ) is important for obtaining
information about the shape of the fixed point set of neural networks. Fortunately, for neural
networks that are differentiable at their fixed points, the following sufficient condition exists.
We note that, in view of Remark 23, it is sufficient to verify this condition for a particular
fixed point u ∈ Fix(T ) to guarantee that it holds for every other point in Fix(T ).

Lemma 26 Consider an (A0,1,2)-neural network T : int(Rk
+) → int(Rk

+) of the form (6)
along with its continuous extension (see Remark 24). Let T have a fixed point u ∈ int(Rk

+),
and let T be differentiable at u ∈ int(Rk

+). Then T is both lower- and upper-primitive at u if
the Jacobian matrix of T evaluated at u is primitive.

Proof Since T is differentiable at u ∈ int(Rk
+), it is Fréchet differentiable at u ∈ int(Rk

+) with
DTu(v) = JT (u)v for v ∈ Rk, where DTu : Rk → Rk is the Fréchet derivative of T at u, and
JT (u) is the Jacobian matrix of T evaluated at u. Then the assertion of the lemma follows
from (Lemmens and Nussbaum, 2012, Lemma 6.5.7) specialized to a Fréchet-differentiable
mapping at u. 󰃈

Remark 27 With notation as in Lemma 26, the Jacobian JT (x) of T evaluated at x ∈
int(Rk

+) is nonnegative owing to the monotonicity of T. Moreover, JT (x) is primitive in the
sense of Definition 18 if and only if ∃p ∈ N s.t. Jp

T (x) is positive, i.e., all of its entries are
strictly positive.

We close Section 3 by anticipating that, later in Fact 31 in Section 4, we establish
convergence of the fixed point iteration of any (A0,1)-neural network (and, hence, of any
(A0,1,2)-neural network) to its fixed point.

4. Fixed points of (A0,1)-neural networks

The results of Section 3 provide a largely complete answer to the problem of determining
fixed point(s) of (A0,1,2)-neural networks satisfying Assumption 5 in Section 3. We now
proceed to relax the assumptions imposed on the neural networks studied so far. In partic-
ular, we extend the concepts of nonnegativity and monotonicity to mappings defined on the
whole space as follows:
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Definition 28 A continuous mapping f : Rs → Rp is said to be

(A′
0) globally nonnegative if

∀x ∈ Rs f(x) ∈ Rp
+, (14)

(A′
1) globally monotonic if

∀x, x̃ ∈ Rs x ≤ x̃ =⇒ f(x) ≤ f(x̃), (15)

where u ≤ v ⇔ v − u ∈ Rs
+ for u, v ∈ Rs.

We note that, with ζ ∈ R, the sigmoid: ζ 󰀁→ 1
1+exp (−ζ) and ReLU: ζ 󰀁→ 0 for ζ < 0 and

ζ 󰀁→ ζ for ζ ≥ 0 are activation functions that are in (A0′,1′).
Below, we replace Assumption 5 with the following assumptions, which, in particular, lift

the restriction of nonnegative biases in all layers and enlarge the class of possible activation
functions.

Assumption 29 For all layers i = 1, . . . , n:

1. The weight matrices Wi have nonnegative coefficients.

2. Let S ∈ 2{1...,n}, where 2{1...,n} denotes the power set of {1, . . . , n}, be the set of layers
with activation functions σs that belong to the class (A0′,1′) (e.g., layers constructed
with the ReLU or sigmoid scalar activation functions), where s ∈ S. The biases bs are
allowed to be negative.

3. Define P
df.
= {1, . . . , n}\S. Then, the activation functions σp for p ∈ P are required to

be in the class (A0,1). The biases bp are assumed to be nonnegative.

To emphasize that Assumption 29 covers well-known activation functions that have not
been considered in our analysis until this moment, we list the following activation functions,
which are in (A0,1) but not in (A0,1,2) for ξ ∈ R+:

(L3) scalar (A0,1)-activation functions:

• (Mish) ξ 󰀁→ ξ tanh(log(1 + exp(ξ)))

• (Swish) ξ 󰀁→ ξ
1+exp (−ξ)

• (GELU) ξ 󰀁→ ξΦ(ξ), where Φ(ξ)
df.
= P(X ≤ ξ), X ∼ N (0, 1).

Corollary 30 If a neural network T of the form (6) satisfies Assumption 29, then T is an
(A0,1)-neural network.

Proof If S ∕= ∅, then nonnegativity of layers TS for s ∈ S is implied by the assumption that
the activation functions σs are nonnegative on the whole Rks . To establish monotonicity
of Ts for s ∈ S, let x, x̃ ∈ Rks−1

+ such that x ≤ x̃. Then, by Assumption 29, point 1,
Wsx ≤ Wsx̃, and by Assumption 29, point 2, σs(Wsx + b) ≤ σs(Wsx̃ + b) for any b ∈ Rks .
Similarly, if P ∕= ∅, then Tp for p ∈ P is an (A0,1)-layer from Lemma 8, point 1, followed by
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an application of Lemma 41, point 2(a). The fact that T is an (A0,1)-neural network now
follows by application of Lemma 41, point 2(a), across layers. 󰃈

As the following examples show, we may leverage the results of Section 3 together with
Fact 34 from Section 5 below to establish the existence of fixed points of (A0,1)-neural
networks.

Example 3 Assume that T2 : Rk
+ → Rk

+ satisfies Assumption 29 with S = {1, . . . , n} and
P = ∅ and such that the (A0′,1′)-activation functions σs are in (A0,1,2) if their domains are
restricted to Rks

+ , e.g., composed of ReLU or sigmoid activation functions for s ∈ S. Define
L : Rk

+ → Rk
+ by replacing the negative biases on layers S with arbitrary nonnegative values.

Such an L is an (A0,1,2)-neural network by Lemma 8, point 3, followed by Lemma 8, point
6, and we have that ∀x ∈ Rk

+ T2(x) ≤ L(x). We may now use Corollary 14 and Fact 34 to
conclude that, if ρ(L∞) < 1, then Fix(T2) ∕= ∅.

Example 4 Assume that T2 : Rk
+ → Rk

+ satisfies Assumption 29 with S = ∅ and P =
{1, . . . , n}. Construct a neural network L : Rk

+ → Rk
+ from T2 by replacing the activation

functions in layers P with pointwise upper-bounding (A0,1,2)-activation functions, e.g., by
replacing the Swish, Mish, or GELU activation functions with the ReLU function. Then,
analogously as in the previous example, the neural network L is an (A0,1,2)-neural network
by Lemma 8, point 3, and Lemma 8, point 6, and such that ∀x ∈ Rk

+ T2(x) ≤ L(x). We can
now use Corollary 14 and Fact 34 to conclude that Fix(T2) ∕= ∅ if ρ(L∞) < 1.

If T2 satisfies Assumption 29 with ∅ ∕= S ⊊ {1, . . . , n}, then the previous two examples
can be combined to obtain a pointwise upper-bounding network L that can be used to infer
the existence of fixed points of T2 if ρ(L∞) < 1.

We close Section 4 with the following fact yielding convergence of the fixed point iteration
of an (A0,1)-neural network to its fixed point. This fact is well-known, and it can be obtained,
for example, by following the proof of (Cavalcante and Stańczak, 2019, Proposition 3). We
remark that, although the statement of (Cavalcante and Stańczak, 2019, Proposition 3)
considers mappings in class (A0,1,2), the proof uses only the assumptions of continuity and
monotonicity of the mappings under consideration.

Fact 31 (Cavalcante and Stańczak (2019)) Let T be an (A0,1)-neural network of the
form (6) with Fix(T ) ∕= ∅. Then, there exists x󰂏 ∈ Fix(T ) such that, for all y ∈ Fix(T ), we
have x󰂏 ≤ y. Furthermore, this least fixed point x󰂏 is obtained as the limit of the fixed point
iteration xn+1

df.
= T (xn) of T with x1 = 0.

5. Fixed points of (A0)-neural networks

In Section 5, we further relax the assumptions made so far to include in our analysis neural
networks that are only nonnegative. More specifically, we replace Assumption 5 with the
following:

Assumption 32 The final n-th layer of the neural network has an (A′
0)-activation function

σn. All other layers are only required to be constructed with continuous activation functions.
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We emphasize that Assumption 32 imposes no restrictions on the weight matrices or
biases. They can have arbitrary real coefficients in any layer. As an immediate consequence
of Assumption 32, we have the following result.

Corollary 33 If a neural network T of the form (6) satisfies Assumption 32, then T is an
(A0)-neural network.

We close the analytical derivations of this paper with a simple result establishing the
existence of a fixed point of an (A0)-neural network.

Fact 34 Let L : Rk
+ → Rk

+ be an (A0,1)-neural network. Assume that Fix(L) ∕= ∅. Let T2 :
Rk
+ → Rk

+ be an (A0)-neural network such that ∀x ∈ Rk
+ T2(x) ≤ L(x). Then Fix(T2) ∕= ∅.

Proof Define F
df.
= {x ∈ Rk

+ : x ≤ x󰂏}, where x󰂏 ∈ Fix(L). We note that F is convex and
compact in the standard Euclidean metric space. Therefore,

∀x ∈ F Rk
+ ∋ T2(x) ≤ L(x) ≤ L(x󰂏) = x󰂏, (16)

which proves that T2(x) ∈ F for all x ∈ F. As a result, T2|F is a continuous self-mapping on
F , and, by Brouwer’s fixed point theorem, it possesses a fixed point in F. 󰃈

Remark 35 From Fact 34, we conclude that, in order to establish the existence of fixed
points of an (A0)-neural network T2 of the form (6), it suffices to upper-bound T2 by an
(A0,1)-neural network L, which could be, for example, one satisfying Assumption 29 (see
Corollary 30). Then, the existence of fixed points of both T2 and L can be established by
upper-bounding L (for example, with the approaches in Examples 3 and 4) by an A0,1,2-
neural network T and by using the results of Section 3.

Remark 36 The existence of a fixed point of an (A0)-neural network can be established
using Fact 34, but the fixed point iteration of such a network does not necessarily converge
to its fixed point.

Below, we discuss applications of the analytical results derived in this paper.

6. Applications

6.1 Autoencoders

For all experiments in this section, we trained a two-layered autoencoder with input and
output layers of dimension k = 784 and hidden layer with k1 = 200 neurons.4 The networks
were trained for 30 epochs using the ADAM optimization algorithm with a learning rate of
0.005. The batch size was set to 64, and, as a loss function, the mean squared error was
chosen. To enforce nonnegativity of the weights and biases, the negative values were clipped
to zero after each iteration of the ADAM algorithm. The experiments were performed on
both the entire MNIST dataset and a subset containing only the digit “zero,” which we refer
to as the ZERO dataset. We considered various constraints on the weights and biases, so,
to simplify notation, we use the following acronyms in the text that follows:

4. The source code is available at the following link: https://github.com/mateuszgabor/nn_networks.
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• NN denotes an autoencoder with nonnegative weights and nonnegative biases;

• PN denotes an autoencoder with positive weights and nonnegative biases;

• NR denotes an autoencoder with nonnegative weights and real-valued biases; and

• RR denotes an autoencoder with real-valued weights and real-valued biases.

6.1.1 Sigmoid NN

In this setup, the autoencoder T uses the sigmoid activation functions in both layers. Thus,
according to Corollary 9, point 3, T is an (A0,1,2,3)-neural network. The sigmoid activation
function is in the list (L1) in Remark 6, and, hence, from Proposition 11, point 2, and
Corollary 13, the spectral radius of T is ρ(T∞) = 0. Thus, from Corollary 15, T has a
unique and positive fixed point. Moreover, it follows from Fact 31 that this fixed point can
be computed with the fixed point iteration of T starting at x1 = 0. The fixed points obtained
on the MNIST and ZERO datasets are presented in Figure 1.

(a) (b)

Figure 1: The unique fixed points of an autoencoder with sigmoid activation functions and
nonnegative weights and biases on (a) the full MNIST dataset and (b) the ZERO dataset.

6.1.2 Tanh NN

In this setup, the autoencoder T uses hyperbolic tangent activation functions in both layers.
Thus, according to Corollary 9, point 1, T is an (A0,1,2)-neural network. The hyperbolic
tangent activation function is in the list (L1) in Remark 6, hence, from Proposition 11,
point 2, and Corollary 13, the spectral radius of T is ρ(T∞) = 0. Thus, from Corollary 14,
T has at least one fixed point. Moreover, it follows from Fact 31 that the least fixed point
of T can be computed using the fixed point iteration of T starting at x1 = 0. We have
also checked that the other fixed points of T can be obtained for different positive starting
points of the fixed point iteration of T. However, the sufficient condition of lower- and upper-
primitivity of T at its fixed point given in Lemma 26 was not satisfied by T , thus the shape
of the fixed point set of T could not be determined. Numerically, the fixed points obtained
in the MNIST and ZERO datasets are shown in Figure 2. For the considered case, we have
empirical evidence that the shape of the fixed point set is probably an interval, but there is
no theory to prove formally this claim at this moment, and this topic should be investigated
in future studies.
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(a)

(b)

Figure 2: Sample fixed points of an autoencoder with hyperbolic tangent activation functions
and with nonnegative weights and biases on (a) the full MNIST dataset and (b) the ZERO
dataset.

6.1.3 Tanh PN

In this setup, we modified slightly the autoencoder T in Section 6.1.2 by clipping the negative
coefficients of the weights in training to 0.001 instead of 0. The resulting autoencoder T
has a primitive Jacobian matrix evaluated at a fixed point of T . Hence, by Lemma 26 and
Remark 23, such an autoencoder is both lower- and upper-primitive on the whole Fix(T ).
Thus, from Proposition 22, we deduce that Fix(T ) is an interval and that the fixed point
iteration of T converges to u ∈ Fix(T ) for any positive starting point x1 ≫ 0. Figure 3
depicts fixed points of T obtained for various positive starting points of the fixed point
iteration. We note that the fixed points are very similar to the fixed points obtained for the
autoencoder in Section 6.1.2.

6.1.4 ReLU spectral NN

In this setup, the autoencoder T used the ReLU activation function in both layers. Thus,
according to Corollary 9, point 1, T is an (A0,1,2)-neural network. The ReLU activation
function is in the list (L2) in Remark 6. Hence, from Proposition 11, point 1, and Corol-
lary 13, the spectral radius of T is ρ(T∞) = max{λ ∈ R+ :

󰁔1
i=nWix = λx}. After training,

we obtained a neural network T with ρ(T∞) = 1.01 > 1 for both the MNIST and ZERO
datasets. In such a case, according to (Cavalcante and Stańczak, 2019, Proposition 2), the
fixed-point of T may only exist on the boundary of the cone. Indeed, we have numerical
evidence that, in this case, the only fixed point of T is the zero vector. Moreover, the
obtained autoencoder had a high test loss compared to other setups. Therefore, to obtain
a nondegenerate fixed point set of T , we enforced the spectral radius of the autoencoder
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(a)

(b)

Figure 3: Sample fixed points of an autoencoder with a primitive Jacobian, positive weights,
nonnegative biases, and hyperbolic tangent activation functions on (a) the full MNIST
dataset and (b) the ZERO dataset.

to be less than 1 using spectral normalization Miyato et al. (2018), which normalizes all
weight values by the largest singular value of the weight matrix. Indeed, the spectral radius
obtained by the autoencoder T trained with spectral normalization on the MNIST dataset
is ρ(T∞) = 0.93, and, on the ZERO dataset, we have ρ(T∞) = 0.91. Thus, from Corollary
14, T has at least one fixed point. Moreover, it follows from Fact 31 that the least fixed
point of T can be computed with the fixed point iteration of T starting at x1 = 0. We have
also checked that the other fixed points of T can be obtained for different positive starting
points of the fixed point iteration of T. However, similarly to the Tanh NN autoencoder in
Section 6.1.2 above, the sufficient condition of lower- and upper-primitivity of T at its fixed
point given in Lemma 26 was not satisfied by T , thus the shape of the fixed point set of T
could not be determined. Numerically, the fixed points obtained in the MNIST and ZERO
datasets are shown in Figure 4. For this case under consideration, the shape of the fixed
point set is probably an interval, but, as already mentioned, at this moment there is no
theory to prove formally this claim.

6.1.5 ReLU spectral PN

In this setup, we modified slightly the autoencoder T in Section 6.1.4 by clipping the negative
coefficients of the weights during training to 0.001 instead of 0. The resulting autoencoder
T has a primitive Jacobian matrix evaluated at a fixed point of T . Hence, by Lemma 26 and
Remark 23, such an autoencoder is both lower- and upper-primitive on the whole Fix(T ).
Thus, from Proposition 22, we conclude that Fix(T ) is an interval and that the fixed point
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(a)

(b)

Figure 4: Sample fixed points of an autoencoder with nonnegative weights and biases and
with ReLU activation functions using spectral normalization on (a) the MNIST dataset and
(b) the ZERO dataset.

iteration of T converges to some u ∈ Fix(T ) for any positive starting point x1 ≫ 0. Figure 5
presents sample fixed points of T obtained for various positive starting points of the fixed
point iteration.

(a)

(b)

Figure 5: Sample fixed points of an autoencoder with primitive Jacobian, positive weights,
nonnegative biases, and ReLU activation functions on (a) the MNIST dataset and (b) the
ZERO dataset.
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6.1.6 Tanh + Swish NN

In this setup, the autoencoder T2 used the hyperbolic tangent activation functions in the
first layer and the Swish activation functions in the second layer. Such an autoencoder
satisfies Assumption 29 for S = ∅ and P = {1, 2}, and thus it is an (A0,1)-neural network by
Corollary 30. Then, following Example 4, this autoencoder is pointwise upper-bounded by
an autoencoder L constructed by replacing the Swish activation functions with the ReLU
activation functions in the second layer, and we verify that L is an (A0,1,2)-neural network.
Therefore, using Proposition 11, point 2, and Corollary 13, we obtain that ρ(L∞) = 0, and,
consequently, from Corollary 14 we know that Fix(L) ∕= ∅. Hence, from Fact 34, we conclude
that the autoencoder T2 has at least one fixed point, and, from Fact 31, we obtain that the
least fixed point of T2 is the limit of the sequence constructed via the fixed point iteration
of T2 starting at x1 = 0. We have also checked that the other fixed points of T2 can be
obtained for different positive starting points of the fixed point iteration of T2. The sample
fixed points obtained for T2 are depicted in Figure 6.

(a)

(b)

Figure 6: Sample fixed points of an autoencoder with nonnegative weights and biases and
with the hyperbolic tangent and Swish activation functions on (a) the MNIST dataset and
(b) the ZERO dataset.

6.1.7 ReLU + Sigmoid NR

In this setup, the autoencoder T2 had nonnegative weights and real-valued biases, and it
used ReLU activation functions in the first layer and sigmoid activation functions in the
second layer. Such an autoencoder satisfies Assumption 29 for S = {1, 2} and P = ∅,
and thus it is an (A0,1)-neural network by Corollary 30. Then, following Example 3, such
an autoencoder is pointwise upper-bounded by the autoencoder L with the same structure
but with negative biases replaced with zeros. By doing so, L is an (A0,1,2)-neural network.
Therefore, using Proposition 11, point 2, and Corollary 13, we verify that ρ(L∞) = 0.
Consequently, from Corollary 14 we deduce that Fix(L) ∕= ∅. Hence, from Fact 34 we
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conclude that the autoencoder T2 has at least one fixed point, and, from Fact 31, we know
that the least fixed point of T2 can be computed using the fixed point iteration of T2 starting
at x1 = 0. We have also checked that the other fixed points of T2 can be computed for
different positive starting points of the fixed point iteration of T2. The sample fixed points
obtained for T2 are depicted in Figure 7.

(a)

(b)

Figure 7: Sample fixed points of an autoencoder with only nonnegative weights and with
the ReLU and sigmoid activation functions on (a) the MNIST dataset and (b) the ZERO
dataset.

6.1.8 ReLU + Sigmoid RR

In this setup, the autoencoder T2 had real-valued weights and biases, and it used ReLU acti-
vation functions in the first layer and sigmoid activation functions in the second layer. Thus,
the autoencoder satisfies Assumption 32, and, hence, by Corollary 33, T2 is an (A0)-neural
network. By replacing negative weights and biases with zeros, we obtain from Corollary 9,
point 3, an (A0,1,2,3)-neural network L that upper-bounds T2. From Proposition 11, point 2,
and Corollary 13, we have that ρ(L∞) = 0, and, from Corollary 15, we conclude that L has
a unique and positive fixed point. We note that L is in particular an (A0,1)-neural network,
which follows from the relations (A0,1,2,3) ⊂ (A0,1,2) ⊂ (A0,1). Therefore, using Fact 34 and
Remark 35, we conclude that Fix(T2) ∕= ∅. However, as stated in Remark 36, the fixed point
iteration of T2 does not necessarily converge to its fixed point. Indeed, using the fixed point
iteration of T2 for various starting points, we obtained fixed points for the MNIST dataset,
but not for the ZERO dataset. The sample fixed points obtained on the MNIST dataset are
depicted in Figure 8.
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Figure 8: The sample fixed points of an autoencoder with real-valued weights and biases on
the MNIST dataset.

Table 1: Empirical mean of the test loss for different configurations of the autoencoders.
The test loss is averaged over 10 runs of the autoencoder training. The deviations shown in
the table indicate the standard error of the mean, extending one standard error above and
below the empirical mean.

Configuration Test loss

Sigmoid NN 6.1.1 0.2308± 2.3 · 10−6

Tanh NN 6.1.2 0.0063± 3.9 · 10−6

Tanh PN 6.1.3 0.0246± 5.6 · 10−5

ReLU spectral NN 6.1.4 0.0061± 1.1 · 10−5

ReLU spectral PN 6.1.5 0.0059± 1.3 · 10−5

Tanh + Swish NN 6.1.6 0.0041± 2.5 · 10−6

ReLU + Sigmoid NR 6.1.7 0.0031± 4.7 · 10−5

ReLU + Sigmoid RR 6.1.8 0.0042± 7.7 · 10−5

Table 2: Empirical mean for the spectral radii, products of spectral norms of weight matrices,
and spectral norms of product of weight matrices for different configurations of autoencoders.
The deviations shown in the table indicate the standard error of the mean, extending one
standard error above and below the empirical mean. All values have been computed by
considering 10 runs of the autoencoder training.

Configuration ρ(T∞) 󰀂W1󰀂 · 󰀂W2󰀂 󰀂W2 ·W1󰀂

Sigmoid NN 6.1.1 0.00 6.26± 0.07 5.23± 0.03
Tanh NN 6.1.2 0.00 373.9± 3.8 95.2± 0.6
Tanh PN 6.1.3 0.00 35.5± 0.6 31.9± 0.5
ReLU spectral NN 6.1.4 0.988± 3.7 · 10−4 1.066± 4.7 · 10−4 0.999± 4.3 · 10−4

ReLU spectral PN 6.1.5 0.987± 7.7 · 10−5 1.001± 3.5 · 10−5 0.999± 2.9 · 10−5

Tanh + Swish NN 6.1.6 — 15.8± 0.09 8.96± 0.04
ReLU + Sigmoid NR 6.1.7 — 123.3± 0.7 100.7± 0.6
ReLU + Sigmoid RR 6.1.8 — 271.5± 0.1 214.7± 1.0

6.1.9 Connections between the existence of fixed points, the nonlinear
spectral radius, and the spectral norm of the weight matrices

The fixed points obtained in the above simulations on the MNIST dataset resemble a noisy
average of input classes, which is visually very different from any reasonable input signal (i.e.,
handwritten digits from 0 to 9). In scenarios of this type, fast convergence of the autoencoder
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iterations to the set of fixed points is undesirable because the output of the autoencoder can
be seen as the first iteration of a fixed point algorithm. Fast convergence of the autoencoders
leads to significant differences between the autoencoder input (the handwritten digits) and
the output. To optimize the performance of nonnegative autoencoders, a natural strategy
is to ensure slow convergence to fixed points for samples of the expected input classes.
We discuss this promising but challenging research line in more detail in Section 7.1.1.
However, to provide precise mathematical statements that motivate this discussion, we need
a clear understanding of some key properties: the nonlinear spectral radius and the weight
matrices of the trained neural networks. To this end, we show in Table 1 the performance
of the autoencoders considered in this section, and in Table 2 we show key characteristics
of these autoencoders with respect to spectral norms of weight matrices and the nonlinear
spectral radius. The important aspect to highlight is that previous studies deriving sufficient
conditions for the existence of fixed points (and convergence of the fixed point iteration to
the fixed points) would require the spectral norm of the product of weight matrices to be
strictly less than one, which is a condition often violated in the experiments depicted in
Table 2. However, we have verified numerically the existence of fixed points regardless of
the values taken by these weight matrices, and these numerical results are consistent with
the theory discussed in, for example, Section 3.3.2. We have also verified that, for the
autoencoders for which the concept of nonlinear spectral radius is well defined, the best
performing autoencoders have spectral radius close to one. This aspect will be crucial for
the discussion later in Section 7.1.1.

6.2 Deep equilibrium models

As discussed in the Introduction, fixed point analysis plays a pivotal role in the development
of deep equilibrium models. In these models, we typically need to guarantee existence and
uniqueness of the fixed point, in addition to establishing convergence of the fixed point
iteration. In our recent study in Gabor et al. (2024), we leverage the theoretical framework
laid out in the preceding sections to achieve these objectives. More specifically, in that
study, we use the results related to (A0,1,2,3)-mappings to construct a deep equilibrium model
that is guaranteed to have a unique fixed point. Furthermore, we also establish geometric
convergence of fixed point iteration based of the results in Piotrowski and Cavalcante (2022).
We refer readers to Gabor et al. (2024) for details.

7. Future research directions

Current studies indicate that obtaining simple and general results about the shape of the
fixed point set of generic (A0,1)-neural networks can be difficult. As an example, a very recent
result Reich and Zaslavski (2023) shows that, even for the simple case of (A1) (continuous
and monotonic) self-mappings defined on an interval [a, b], i.e., nondecreasing functions
f : [a, b] → [a, b], the problem of determining explicitly Fix(f) is a highly non-trivial task.
In particular, (Reich and Zaslavski, 2023, Theorem 2.2) asserts that, for any integer n ≥ 2,
there exists an open and everywhere dense set of such functions for which the cardinality
of Fix(f) is lower bounded by n. Furthermore, any uniqueness conditions on fixed points
of (A0,1,2)-mappings, beyond those presented in this paper, must clearly preclude simple
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cases such as the identity mapping Id : Rk
+ → Rk

+, which is the simplest example of an
(A0,1,2)-mapping with an uncountable number of fixed points (Fix(Id) = Rk

+).
Two additional important questions, especially from an application perspective, are the

following:

(i) determine the sets of approximate fixed points, that is, find x ∈ Rk
+ such that T (x) ≈ x

(in some sense), where T is the nonnegative neural network under consideration; and

(ii) lift the restriction of nonnegative inputs and outputs.

Below we discuss potential research directions toward these goals.

7.1 Approximate fixed points

At first glance, the imposition of a nonnegativity constraint on neural networks, as explored
in this study and inspired by biological mechanisms, might seem to significantly impair their
performance. We might expect, for instance, that this constraint could dramatically hinder
the ability of neural networks to reconstruct input data perfectly. Nevertheless, we argue
that achieving perfect signal reconstruction is unnecessary for a wide array of applications.
To support this viewpoint, we refer to the analogy of human cognition, where the brain
is understood to process sensory information to a level considered “adequate,” rather than
aiming for “perfection.” This viewpoint is consistent with established computational neu-
roscience principles Doya et al. (2007); Arbib and Bonaiuto (2016); Poggio and Anselmi
(2016).

Using this analogy, we posit that autoencoders subjected to nonnegativity constraints
can, with proper training, process input data “sufficiently well” in some applications of
practical interest. This assertion is supported by empirical evidence Lemme et al. (2012);
Ayinde and Zurada (2018), and our discussions in previous sections link this practical aspect
with theoretical insights using simple autoencoders on the MNIST dataset. In particular, as
briefly mentioned in Section 6.1.9, viewing the output of an autoencoder as the first iteration
of a fixed point algorithm offers a natural strategy for developing autoencoders that closely
emulate an ideal encoder-decoder model, which compresses and reconstructs perfectly input
signals. The nuances of this strategy are explored in the next two subsections.

7.1.1 Slow convergence to fixed points

Let us consider the input-output relation x 󰀁→ T (x) of a nonnegative autoencoder T as the
first iteration of the fixed point algorithm xn+1

df.
= Tn(x) for n ∈ N. From this fixed point

theory viewpoint, an autoencoder T is expected to provide good reconstruction performance
(x ≈ T (x)) if the fixed point algorithm xn+1 = Tn(x) generates slowly converging or diverg-
ing sequences. Building on the theoretical foundations laid out in prior sections, we now
introduce simple, analytically justified heuristics designed to fulfill this objective.

For the special case of a positive concave autoencoder T ,5 which belongs to the subclass
of (A0,1,2,3)-autoencoders, the results in (Piotrowski and Cavalcante, 2022, Remark 8) and

5. For example, autoencoders T of the form (6) that satisfies T (0) ≫ 0 and that uses activation functions
constructed with continuous scalar concave activation functions from lists (L1)-(L2) in Remark 6. The
Sigmoid NN autoencoder considered in Section 6.1.1 is an example of a positive concave neural network.
See also Corollary 20.

30



Fixed points of nonnegative neural networks

(Cavalcante and Stańczak, 2018, Proposition 5) derive a contraction factor c ∈ [0, 1) that
indicates the rate of geometric convergence of the fixed point iteration of T to its unique fixed
point in Euclidean spaces. The closer c is to one, the slower the convergence speed of the
fixed point algorithm is expected to be, and, hence, the better reconstruction performance
we may expect from the autoencoder. While a contraction factor c close to the value one does
not provide us with formal guarantees of small progress at the first iteration, we illustrate
via a simple numerical experiment that designing autoencoders experiencing potentially slow
convergence or divergence in their fixed point iterations is a useful strategy to enhance their
performance.

In more detail, for positive concave autoencoders, the contraction factor c is lower
bounded by the spectral radius ρ(T∞), and ρ(T∞) < 1 if and only if the autoencoder is
c-Lipschitz continuous with c < 1 in a neighborhood of the fixed point with respect to
Thompson’s metric described in Definition 37 in the Appendix Piotrowski and Cavalcante
(2022). If ρ(T∞) > 0, it follows from (11) that we can modify the autoencoder T to have
its spectral radius to an arbitrary nonnegative value u by simply rescaling the weights of
any layer by u/ρ(T∞), so, based on the above arguments, we should set u to a value close
to one to improve the performance of autoencoders. This idea is similar to spectral normal-
ization of neural network layers, but our motivation for normalization is uniquely grounded
in fixed point theory, providing further theoretical justifications even in nonlinear settings.
To demonstrate that this principle can also be exploited by autoencoders that are not nec-
essarily positive and concave, we conducted an experiment with the trained (A0,1,2)-ReLU
spectral PN autoencoder T from Section 6.1.5. We rescaled the weights of the first layer of
T to obtain 25 instances of the autoencoder T with spectral radii [0.92, 0.93, 0.94, . . . , 1.2].
The results are shown in Figure 9, and we verify that the test loss indeed achieves its min-
imum value if the spectral radius is close to one. More precisely, if 1 − 󰂃 < c < 1 for some
sufficiently small 󰂃 > 0, we may expect slowly converging fixed point iterations. On the
other hand, if 1 ≤ c < 1+ 󰂃, Figure 9 suggests that autoencoders with slowly diverging fixed
point iterations are also able to produce good approximate fixed points.

The above considerations constitute only a sample starting point of a much deeper anal-
ysis that is necessary to establish approximate fixed points of more general nonnegative
neural networks. As another example of a possible direction towards this goal, we note
that, for the ReLU spectral PN autoencoder considered above, if W1W2 is diagonalizable
and the input classes are (approximately) within the subspace spanned by the eigenvec-
tors of W1W2 corresponding to eigenvalues approximately equal to one, we should observe
the “slow-convergence” behaviour described above, and, consequently, good reconstruction
performance of the autoencoder.

7.1.2 Lipschitz continuity in normed vector spaces

Many of the networks we have considered in the previous sections are in fact c-Lipschitz
continuous with c ≤ 1 with respect to Thompson’s metric defined in the Appendix. However,
we now show that, in normed vector spaces – which are arguably the spaces of most practical
significance for engineers – providing bounds on the Lipschitz constant is not likely to succeed
because the best Lipschitz constant can be prohibitively large in Euclidean settings. This
insight provides us with information about the output variability in response to minor input
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Figure 9: Empirical mean of the test loss as a function of the spectral radius for the ReLU
spectral PN autoencoder described in Section 6.1.5 on the MNIST dataset. The test loss
is averaged over 10 runs of the autoencoder training. The error bars indicate the standard
error of the mean, extending one standard error above and below the empirical mean.

modifications in Euclidean settings. Importantly, it also also provides us with a means of
evaluating the robustness of neural networks against adversarial attacks.

More precisely, the result in (Combettes and Pesquet, 2020a, Section 2) shows that
all activation functions from lists (L1)-(L2) in Remark 6 are nonexpansive in a Hilbert
space. Thus, from (Combettes and Pesquet, 2020b, Proposition 4.3), we deduce that neural
networks satisfying the conditions in Definitions 3-4, and, in particular, those considered in
Sections 3-5, are Lipschitz continuous, and the corresponding Lipschitz constant θ in the
standard Euclidean space can be bounded by the spectral norm 󰀂 · 󰀂 of the weight matrices
W1, . . . ,Wn, or, more precisely:

󰀂
1󰁜

i=n

Wi󰀂 ≤ θ ≤
n󰁜

i=1

󰀂Wi󰀂. (17)

The results presented in Table 2 at the end of Section 6.1 show that, for n = 2, the lower
bound of the spectral norm 󰀂

󰁔1
i=nWi󰀂 (achievable by neural networks with nonnegative

weights (Combettes and Pesquet, 2020b, Section 5.3)) is too large to obtain meaningful
bounds for 󰀂T (x) − x󰀂 around its fixed point(s) x󰂏 ∈ Fix(T ), where the vector norm 󰀂 · 󰀂
is the standard Euclidean norm. Therefore, a more subtle argument, perhaps based on
local Lipschitz continuity for specific input classes, should be considered for exploiting the
continuity of T with the aim of determining all inputs x satisfying T (x) ≈ x, or, equivalently,
󰀂T (x)− x󰀂 ≈ 0.

7.2 Extending the current results beyond nonnegativity

This study mostly focuses on monotonic neural networks with nonnegative inputs and out-
puts, but a well-known pre- and post-processing step enables us to extend the above results
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to a particular class of monotonic neural networks with inputs and outputs possibly taking
values in the whole real line. More precisely, let T : int(Rk

+) → int(Rk
+) be a neural network

with a structure that can be analyzed with the theory in this study. To train and operate
a neural network of this type with inputs and outputs taking values in Rk, we can proceed
as follows. Let L : int(Rk

+) → Rk : x 󰀁→ [log(x1), . . . , log(xk)] and E : Rk → int(Rk
+) : x 󰀁→

[exp(x1), . . . , exp(xk)] denote, respectively, the coordinate-wise log and exponential map-
pings. Now, consider the neural network defined by N : Rk → Rk : x 󰀁→ L(T (E(x))); i.e.,
we first map an input in Rk to int(Rk

+) with the exponential mapping, process the mapped
input with the original positive neural network T , and then map the output of T back to Rk

with the log mapping. Some properties of N can be directly deduced from T . For example,
we verify that N has a fixed point if and only if T also has a fixed point. Furthermore, the
uniqueness of the fixed point of T implies the uniqueness of the fixed point of N . These are
all properties that can be verified with the theory described in the previous sections. From
a mathematical perspective, the mapping L is the known isometry between Thompson’s
metric space (int(Rk

+), dT ) (see Definition 37) and the normed vector space (Rk, 󰀂 ·󰀂∞), and
further properties of the neural network N are strongly connected to the theory of topical
mappings (Lemmens and Nussbaum, 2012, Sect. 1.5).

8. Conclusion

We have shown that the behavior of many neural networks that can be seen as self-mappings
with nonnegative weights (as often proposed in the literature) can be rigorously analyzed
with the framework of nonlinear Perron-Frobenius theory. We also demonstrated that the
concept of the spectral radius of asymptotic mappings is useful for determining whether a
neural network has an empty or nonempty fixed point set, and, for an autoencoder, we recall
that its fixed point set corresponds to the inputs that can be perfectly reconstructed at the
output. Our conditions for the existence of fixed points of nonnegative neural networks
are weaker than those previously considered in the literature, which are often based on
arguments in convex analysis in Hilbert spaces.
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Appendix A. Known results

Definition 37 We define Thompson’s metric by

dT : int(Rk
+)× int(Rk

+) → [0,∞)
(x, y) 󰀁→ ln(max{M(x, y),M(y, x)}), (18)
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where
M : int(Rk

+)× int(Rk
+) → [0,∞)

(x, y) 󰀁→ inf{β > 0 | x ≤ βy}.

We call the metric space (int(Rk
+), dT ) the Thompson metric space.

Proposition 38 ((Cavalcante and Stańczak, 2019, Proposition 1)) Let T : Rk
+ → Rk

+

be an (A0,1,2)-mapping. If ρ(T∞) < 1, then Fix(T ) ∕= ∅.

Proposition 39 ((Cavalcante et al., 2019, Proposition 4)) Let T : Rk
+ → int(Rk

+) be
an (A0,1,2,3)-mapping. Then Fix(T ) ∕= ∅ if and only if ρ(T∞) < 1.

Proposition 40 ((Cavalcante et al., 2019, Fact 1(ii))) Let T : Rk
+ → Rk

+ be an (A0,1,2,3)-
mapping. Then Fix(T ) ∕= ∅ is either a singleton or the empty set.

Appendix B. Construction of monotonic and weakly scalable mappings

The following general lemma introduces building blocks to construct (A0,1,2)-mappings, or
even (A0,1,2,3)-mappings. It extends (Oshime, 1992, Proposition 2.3) to mappings that are
not necessarily self-mappings.

Lemma 41

1. Let f1 : Rs
+ → Rp

+ and f2 : Rs
+ → Rp

+ be (A0)-mappings and let α,β ≥ 0. Consider the
following mappings:

x 󰀁→ (αf1 + βf2)(x), (19)
x 󰀁→ max{f1(x), f2(x)}, (20)
x 󰀁→ min{f1(x), f2(x)}. (21)

Then we have:

(a) If f1, f2 are (A0,1)-mappings, then so are the mappings in (19)-(21).

(b) If f1, f2 are (A0,1,2)-mappings, then so are the mappings in (19)-(21).

(c) If f1 in as (A0,1,2)-mapping and f2 is an (A0,1,2,3)-mapping, α ≥ 0 and β > 0,
then the mapping in (19) is an (A0,1,2,3)-mapping.

(d) if f1, f2 are (A0,1,2,3)-mappings, then so are the mappings in (20)-(21).

2. Let g : Rp
+ → Rr

+ be an (A0)-mapping and consider the following mapping:

x 󰀁→ (g ◦ f1)(x). (22)

(a) If f1, g are (A0,1)-mappings, then so is the mapping in (22).

(b) If f1, g are strictly monotonic, then so is the mapping in (22).

(c) If f1 is an (A0,2)-mapping and g is an (A0,1,2)-mapping, then the mapping in (22)
is an (A0,2)-mapping.
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(d) If f1 is an (A0,2)-mapping and g is an (A0,1,2,3)-mapping, then the mapping in
(22) is an (A0,2,3)-mapping.

(e) If f1 is an (A0,2,3)-mapping, and g is a strictly monotonic (A0,2)-mapping, then
the mapping in (22) is an (A0,2,3)-mapping.

Proof

Part 1: Properties of mappings in (19)-(21)
1.(a) Let x, x̃ ∈ Rs

+ be such that x ≤ x̃, let α,β ≥ 0, and let f1, f2 be (A0,1)-mappings.
Then αf1(x) ≤ αf1(x̃) and βf2(x) ≤ βf2(x̃). By adding these two inequalities we ob-
tain monotonicity of x 󰀁→ (αf1 + βf2)(x). Furthermore, we also have max{f1(x), f2(x)} ≤
max{f1(x̃), f2(x̃)} and min{f1(x), f2(x)} ≤ min{f1(x̃), f2(x̃)}.

1.(b) Let x ∈ Rs
+, let α,β ≥ 0, and let f1, f2 be (A0,1,2)-mappings. Fix ρ ≥ 1. Then

αf1(ρx) ≤ αρf1(x) and βf2(ρx) ≤ βρf2(x). By adding these two inequalities we obtain
weak scalability of x 󰀁→ (αf1 + βf2)(x). Furthermore, we have max{f1(ρx), f2(ρx)} ≤
max{ρf1(x), ρf2(x)} = ρmax{f1(x), f2(x)}, with the same arguments for weak scalability
of min{f1(ρx), f2(ρx)}.

1.(c) Let f1 be an (A0,1,2)-mapping and f2 be an (A0,1,2,3)-mapping, with α ≥ 0 and
β > 0, and let ρ > 1. Then αf1(ρx) ≤ αρf1(x) and βf2(ρx) ≪ βρf2(x). By adding these
two inequalities we obtain scalability of x 󰀁→ (αf1 + βf2)(x).

1.(d) We have max{f1(ρx), f2(ρx)} ≪ max{ρf1(x), ρf2(x)} = ρmax{f1(x), f2(x)}, with
the same arguments for scalability of min{f1(ρx), f2(ρx)}.
Part 2: Properties of mapping in (22)
2.(a) Let x, x̃ ∈ Rs

+ be such that x ≤ x̃ and let f1, g be (A0,1)-mappings. Then f1(x) ≤
f1(x̃), and, hence, g(f1(x)) ≤ g(f1(x̃)).

2.(b) As above.

2.(c) Let x ∈ Rs
+, and let f1 be an (A0,2)-mapping and g be an (A0,1,2)-mapping. Fix

ρ ≥ 1. From weak scalability of f1, we have f1(ρx) ≤ ρf1(x), and, from monotonicity of g,
we deduce g(f1(ρx)) ≤ g(ρf1(x)). Weak scalability of g yields g(ρf1(x)) ≤ ρg(f1(x)).

2.(d) Let x ∈ Rs
+, and let f1 be an (A0,2)-mapping and g be an (A0,1,2,3)-mapping. Fix

ρ > 1. As above, we have g(f1(ρx)) ≤ g(ρf1(x)). Then, from scalability of g, it follows that
g(ρf1(x)) ≪ ρg(f1(x)).

2.(e) Let x ∈ Rs
+, and let f1 be an (A0,2,3)-mapping, and g be a strictly monotonic

(A0,2)-mapping. Fix ρ > 1. By our assumptions, we have f1(ρx) ≪ ρf1(x), and, from
strict monotonicity of g, we have g(f1(ρx)) ≪ g(ρf1(x)). Weak scalability of g implies
g(ρf1(x)) ≤ ρg(f1(x)), and the proof is completed. 󰃈

Appendix C. Proof of Lemma 8

Proof We use the results of Lemma 41 to prove points 1)-7) as follows:
1) Put f1(x) = Wx and g(x) = x + b, and note that f1 is an (A0,1,2)-mapping if W is

nonnegative, whereas g is a strictly monotonic (A0,2)-mapping for b ≥ 0. Then, from 2(a)
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in Lemma 41, the affine mapping yi = Wixi−1 + bi is monotonic, and from 2(d) in Lemma
41, it is also weakly scalable.

2) From point 1) we have that yi = Wixi−1 + bi is an (A0,1,2)-mapping. To prove
scalability, we note that, if b ≫ 0, then g(x) = x+b is a strictly monotonic (A0,2,3)-mapping.
The desired assertion now follows from 2(e) in Lemma 41.

3) Monotonicity of Ti follows from 2(a) in Lemma 41 and its weak scalability from 2(d)
in Lemma 41.

4) Monotonicity of Ti follows from point 3) above. Scalability of Ti follows from 2(e)
in Lemma 41.

5) Monotonicity of Ti follows from point 3) above. Scalability of Ti follows from 2(f)
in Lemma 41.

6) Monotonicity and weak scalability of T follows from, respectively, an application of
2(a) and 2(d) in Lemma 41 to consecutive layers of T.

7) Monotonicity of T follows from point 6) above. To prove scalability, verify from
2(e) in Lemma 41 that a subnetwork of T composed of the first i0 layers of T is scalable.
Scalability of T now follows from an application of 2(f) in Lemma 41 to consecutive layers
of T , starting with the i0 + 1-st layer. 󰃈
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