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Abstract

To learn partition-based index structures for approximate nearest neighbor (ANN)
search, both supervised and unsupervised machine learning algorithms have been used.
Existing supervised algorithms select all the points that belong to the same partition el-
ement as the query point as nearest neighbor candidates. Consequently, they formulate
the learning task as finding a partition in which the nearest neighbors of a query point
belong to the same partition element with it as often as possible. In contrast, we formulate
the candidate set selection in ANN search directly as a multilabel classification problem
where the labels correspond to the nearest neighbors of the query point. In the proposed
framework, partition-based index structures are interpreted as partitioning classifiers for
solving this classification problem. Empirical results suggest that, when combined with
any partitioning strategy, the natural classifier based on the proposed framework leads to
a strictly improved performance compared to the earlier candidate set selection methods.
We also prove a sufficient condition for the consistency of a partitioning classifier for ANN
search, and illustrate the result by verifying this condition for chronological k-d trees and
(both dense and sparse) random projection trees.

Keywords: approximate nearest neighbor search, multilabel classification, partitioning
models, statistical learning theory

1. Introduction

Approximate nearest neighbor (ANN) search is a fundamental algorithmic problem. The
task is to build an index structure that enables finding the approximate k nearest neighbors
of a query point from the set of corpus points in sub-linear time. There is a large body
of literature on ANN search spanning several research communities, including the ma-
chine learning community. Specifically, space-partitioning index structures—such as space-
partitioning trees (Friedman et al., 1976; Muja and Lowe, 2014; Dasgupta and Sinha, 2015)
and data-dependent hash tables (Indyk and Motwani, 1998; Datar et al., 2004; Weiss et al.,
2009)—are machine learning methods commonly used for ANN search. These partition-
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based ANN methods use a partition (or a collection of partitions) of the feature space to
select a smaller candidate set from the corpus points. They then return the k nearest neigh-
bors of the query point among the points of the candidate set as the approximate nearest
neighbors.

In this article1 we propose a theoretical framework for ANN search. In particular,
we formulate candidate set selection directly as a multilabel classification problem where
the labels represent the indices of the nearest neighbors of the query point. The proposed
framework has two immediate practical implications. First, it suggests that the performance
of space-partitioning index structures can be improved by using them in a theoretically
justified fashion as partitioning classifiers (see Devroye et al., 1996, Chapter 21), instead
of applying the earlier candidate set selection methods (see Fig. 1 for an illustration of the
difference between our approach and the earlier candidate set selection methods). Second,
the proposed framework enables applying a general purpose classifier directly as an index
structure for ANN search; we demonstrate this by using a multilabel random forest as an
index structure.

We begin by reviewing the relevant background on ANN search and multilabel classifica-
tion (Sec. 2). We then formulate the candidate set selection in ANN search as a multilabel
classification task (Sec. 3.1), characterize the optimal decision boundaries for this classi-
fication problem (Sec. 3.2), and define the natural (partitioning) classifier for the general
multilabel classification task (Sec. 4). In Sec. 5, we show how the natural classifier defined
in Sec.4 can be used as a candidate set selection for ANN search. In Sec. 6, we review
the earlier supervised partitioning methods for ANN search and elaborate the difference
between the proposed framework and the earlier supervised methods. The proposed multi-
label formulation also enables considering asymptotics in the standard statistical learning
framework: we establish a sufficient condition for the consistency of a partitioning classifier
for ANN search (Sec. 7.1). We then verify this condition for the chronological k-d tree
(Bentley, 1975), the random projection tree (Dasgupta and Freund, 2008; Dasgupta and
Sinha, 2015), and the sparse variant of random projection tree (Hyvönen et al., 2016); see
Secs. 7.2, 7.3.1, and 7.3.2, respectively. To empirically validate the proposed framework,
we show that the natural classifier suggested by it leads to a strictly improved performance
compared to the earlier candidate set selection methods when combined with three types
of space-partitioning trees (Sec. 8).

2. Background and notation

In this section, we review the conventional formulations of ANN search and multilabel
classification.

2.1 Approximate nearest neighbor search

Let the corpus {cj}mj=1 be a set of vectors in Rd. Any metric, or, more generally, any

dissimilarity measure, can be used to define the nearest neighbors of a query point x ∈ Rd
among the set of corpus points. In this article, we consider nearest neighbors defined by

1. This article extends our earlier work (Hyvönen et al., 2022) published in the Proceedings of the 36th
Conference on Neural Information Processing Systems (NeurIPS 2022).
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Figure 1: A comparison of two candidate set selection methods. Left: traditional lookup
search; Right: the natural classifier suggested by the proposed framework.
Lookup search selects all the corpus points that belong to the same partition ele-
ment as the query point into the candidate set. In contrast, the natural classifier
uses the observed label proportions among these points as probability estimates.
The fractions displayed in the right panel present these estimates for each label
(i.e., corpus point): the denominator is the number of points in the partition ele-
ment the query point belongs to, and the numerator is the number of these points
that have the corresponding corpus point among their k = 5 nearest neighbors.
The natural classifier selects the candidate set by thresholding these probability
estimates (in the figure the value of the threshold parameter is τ = 0.2). Observe
that unlike lookup search, the natural classifier may select points that are outside
of the partition element containing the query point into the candidate set.

the Euclidean distance || · ||. Denote the corpus points that are ordered according to their
distance to the query point by c(1), . . . , c(m). The k corpus points that are closest to the
query point are called its k nearest neighbors and the set of their indices is denoted by

nnk(x) := {j ∈ {1, . . . ,m} : ||x− cj || ≤ ||x− c(k)||}. (1)

Observe that in the corner case where there are other corpus points with the same distance
to the query point as c(k), nnk(x) contains more than k points2. However, when the dis-
tribution of the query point x is continuous, there are no ties almost surely, and thus a.s.
|nnk(x)| = k.

2. Another option for defining the set nnk(x) is to limit its size to k by breaking ties arbitrarily. However,
since this would lead to artefacts when measuring recall of ANN algorithms when ties are present, we
prefer definition (1). Observe that Aumüller et al. (2019a) define nnk(x) as always having exactly k
points, but circumvent this problem by handling ties in their definition of recall.
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The trivial solution to the problem of finding the nearest neighbors nnk(x) of the query
point x is to compute the distance from x to all the corpus points and then sort these
distances. However, when the dimensionality of the data is high and the corpus is large,
this brute force solution is often too slow if the downstream application requires fast response
times, which is often the case in, e.g., recommender systems and image recognition. The
first data structure proposed for speeding up nearest neighbor search was the k-d tree
(Bentley, 1975). However, for high-dimensional data, a k-d tree is not faster than the brute
force approach for exact nearest neighbor search. This is because of the well-known curse of
dimensionality that affects the non-parametric statistical methods—including the partition-
based methods for nearest neighbor search—in general (Lee and Wong, 1977). Although
the query speed of index structures for exact nearest neighbor search degrades to the extent
that they are not an improvement on the brute force approach when the dimensionality
of the data increases, this problem can be mitigated by allowing an approximate solution.
This is why in modern high-dimensional applications approximate nearest neighbor (ANN)
search is typically used when a fast solution to the nearest neighbor problem is required.

Algorithms for ANN search can be divided into three categories: graphs (Malkov et al.,
2014; Malkov and Yashunin, 2018; Iwasaki and Miyazaki, 2018; Baranchuk et al., 2019),
quantization (Jegou et al., 2010; Johnson et al., 2019; Guo et al., 2020), and space-partitioning
methods. In this article, we consider space-partitioning methods that can be further divided
into tree-based (Muja and Lowe, 2014; Dasgupta and Sinha, 2015; Jääsaari et al., 2019) and
hashing-based (Datar et al., 2004; Aumüller et al., 2019b; Gong et al., 2020) algorithms that
use trees and hash tables, respectively, as index structures.

Space-partitioning algorithms for ANN search use an index structure to select a candi-
date set S(x) ⊂ {1, . . . ,m} of potential nearest neighbors. They then calculate the exact
distances between the points of the candidate set and the query point, and return the k
nearest points as the approximate nearest neighbors. These algorithms will correctly re-
trieve a nearest neighbor j ∈ nnk(x) if and only if it belongs to the candidate set. Thus,
the recall of a space-partitioning algorithm can be written as

Rec(S(x)) :=
|nnk(x) ∩ S(x)|
|nnk(x)|

, (2)

where we denote the number of elements of the set A by |A|. The performance of an
approximate nearest neighbor algorithm is typically measured by its average recall-query
time tradeoff (see, e.g., Aumüller et al., 2019a or Li et al., 2019)—i.e., the average query
time required to reach a certain average recall level on a set of test queries.

2.2 Multilabel classification

Consider a standard multi-label classification problem with m labels. Let X ∈ Rd be a
random variable and let L(X) ⊆ {1, . . . ,m} be the corresponding label set. Equivalently,
the output variable can be defined with a binary encoding by letting Y ∈ {0, 1}m be an
m-bit random vector, where

Yj =

{
1, if j ∈ L(X),

0 otherwise.
(3)
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A multilabel classifier is an m-component function g = (g1, . . . , gm) : Rd → {0, 1}m that
attaches a label set to the value of the input variable X. Denote the training set that is as-
sumed to be an i.i.d. sample from the distribution of the pair (X,Y ) by Dn := {(Xi, Yi)}ni=1.
When the classifier g : Rd × {Rd × {0, 1}m}n → {0, 1}m is learned from the training set
of size n, we denote it by g(n)(x) := g(x,Dn). When the training set Dn is considered a
random variable, the classifier g(n) also becomes a random function.

The performance of a classifier is measured by a loss function L : {0, 1}m×{0, 1}m → R,
and the objective is to minimize the risk R(g) := E[L(g(X), Y )]. This risk is lower-bounded
by the Bayes risk R∗ = infg R(g), the minimizer of which is called the Bayes classifier.

The Bayes classifier for many common multilabel loss functions—such as Hamming loss,
ranking loss, precision, recall, and F -measures—is obtained by thresholding the conditional
label probabilities ηj(x) := P{Yj = 1 |X = x} (Dembczynski et al., 2010; Koyejo et al.,
2015). This justifies the standard plug-in approach of first estimating the conditional label
probabilities3 by η̂1(x), . . . , η̂m(x), and then defining the plug-in classifier as

g
(n)
j (x) :=

{
1, if η̂j(x) > τ

0, otherwise,
(4)

where τ ∈ [0, 1]. Equivalently, the plug-in classifier can be written as an estimate of the
label set L(x) as L̂(x) := {j ∈ {1, . . . ,m} : η̂j(x) > τ}.

The multilabel classification problem is often solved by reducing it to a series of binary
or multiclass classification problems and estimating the conditional label probabilities ηj(x)
under this model. (see, e.g., Menon et al. (2019) for a discussion of different reduction
methods). In what follows, we will employ the pick-all-labels (PAL) reduction (Reddi et al.,
2019) where we separate each label l ∈ L(xi) of the training set point xi into a multiclass
(but single-label) training instance (xi, l), and fit the classifier to this modified training set
by minimizing a multiclass loss function.

3. Candidate set selection as a multilabel classification problem

Equipped with the above definitions, we first formalize the candidate set selection in ANN
search described in Sec. 2.1 as an instance of the multilabel classification problem described
in Sec. 2.2. Then, we characterize the optimal decision boundaries of this classification
problem.

3.1 Formulation as a multilabel classification problem

In the classical formulation of ANN search, the input–output pair is defined as (x,nnk(x)).
It is straightforward to observe that this is an instance of the multilabel classification prob-
lem where the label set L(x) is nnk(x)—i.e., the set of indices of the k nearest neighbors
of the query point. Assuming that the values of x are i.i.d. draws from the distribution of

3. More generally, instead of the conditional label probability estimates η̂1(x), . . . , η̂m(x), any score function
values s1(x), . . . , sm(x) for the labels can be learned and thresholded to make the classification decision.
While we will present all the results for only the version of the plug-in classifier that uses the probability
estimates, they readily generalize to the version of the plug-in classifier that uses the score function
values.
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the random variable X (the query distribution), the objective is to predict the value of the
random variable Y (defined by (3) with nnk(X) as a label set) given the value of the random
variable X. Since the labels {1, . . . ,m} correspond to the indices of the corpus points, the
classification decision (4) where the probability estimates are thresholded corresponds to
the candidate set selection, and the estimated label set L̂(x) corresponds to the candidate
set S(x). Observe that it always holds for the true label set that |L(x)| =

∑m
j=1 yj ≥ k,

and when the query distribution is continuous, it holds almost surely that |L(x)| = k.
If no additional training data is available, the corpus itself can be used as a training set.

More precisely, in this case we interpret {cj}mj=1 as a sample from the query distribution,
compute the k nearest neighbors of the corpus points, and then use {(cj , yj)}mj=1 as a
training set. Note that in this case yjj = 1 for each j = 1, . . . ,m since each corpus point is
the nearest neighbor of itself.

3.2 Characterization of the optimal decision boundaries

Next, we examine the form of the optimal decision boundary—i.e., the decision boundary
of the Bayes classifier—of the classification problem defined above. The components of the
Bayes classifier g∗ = (g∗1, . . . , g

∗
m) for the multilabel 0-1 loss and, by extension, for other

common multilabel loss functions, such as F -measures, can be written as

g∗j (x) =

{
1, if j ∈ nnk(x),

0, otherwise,

for each j = 1, . . . ,m. Equivalently, the optimal decisions are described by the optimal

decision regions E
(k)
1 , . . . , E

(k)
m , where

E
(k)
j := {x ∈ Rd : g∗j (x) = 1} = {x ∈ Rd : j ∈ nnk(x)}

for each j = 1, . . . ,m. When k = 1,

E
(1)
j = {x ∈ Rd : j ∈ nn1(x)}

= {x ∈ Rd : ||x− cj || ≤ ||x− cj′ || for all j′ 6= j},
(5)

for each j = 1, . . . ,m, i.e., the sets E
(1)
1 , . . . , E

(1)
m define the standard Voronoi tessellation

of the feature space. The cells of the Voronoi tessellation are convex polytopes. When

k > 1, the sets E
(k)
1 , . . . , E

(k)
m are not necessarily convex. However, we can show that they

are star-convex polytopes (see Fig. 2 for an illustration). In particular, we will show that,

first, E
(k)
1 , . . . , E

(k)
m are star-convex; and, second, they can be written as finite unions of

finite intersections of half-spaces.

Definition 1 (Star-convexity) The set S ∈ Rd is called star-convex if there exists x0 ∈ S
s.t. for every point x ∈ S the line segment connecting x to x0 is in S.

Theorem 2 For any j, k ∈ {1, . . . ,m}, the set

E
(k)
j = {x ∈ Rd : j ∈ nnk(x)}

is star-convex.
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k=1 k=2

k=3 k=4

Figure 2: An example of the star-convex optimal decision regions E
(k)
j related to the corpus

point cj (the highlighted point in the middle) for k = 1, 2, 3, 4. Dots represent
the corpus points. The outer boundary of the indicated region is the decision
boundary: the highlighted corpus point is among the k nearest neighbors of a
query point if and only if the query point falls within the boundary. The smaller

regions E
(k)
I inside the decision boundary correspond to the cells of a kth order

Voronoi tessellation. In other words, each region E
(k)
I represents the region where

nnk(x) = I, i.e. the k distinct corpus points defined by the set I are the k nearest
neighbors of any x ∈ I.
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Proof We prove that cj is the center-point x0 of Definition 1 by assuming that there exists

x1 ∈ E(k)
j and x2 /∈ E(k)

j s.t. x2 lies on the line segment connecting x1 to cj , and showing
that this leads to a contradiction. Denote by cj′ any corpus point that belongs to nnk(x2).
Since cj /∈ nnk(x2), it holds that ||x2 − cj′ || < ||x2 − cj ||. Using the triangle inequality and
the assumption that x2 lies on the line segment connecting x1 to cj we have

||x1 − cj′ || ≤ ||x1 − x2||+ ||x2 − cj′ ||
< ||x1 − x2||+ ||x2 − cj ||
= ||x1 − cj ||.

This means that all the corpus points that belong to nnk(x2) are closer to x1 than cj . But

this contradicts the assumption that j ∈ nnk(x1). Since cj ∈ E
(k)
j , we have proven the

claim.

By definition, each cell of the Voronoi tessellation E
(1)
1 , . . . , E

(1)
m can be written as a

finite intersection of half-spaces. Denote by

Ej,j′ := {x ∈ Rd : ||x− cj || ≤ ||x− cj′ ||}

the half-space that contains the points that are closer to or as close to the jth than the j′th

corpus point. The set E
(1)
j is now obtained as

E
(1)
j = {x ∈ Rd : ∀j′ 6= j : ||x− cj || ≤ ||x− cj′ ||}

=
⋂
j′ 6=j
{x ∈ Rd : ||x− cj || ≤ ||x− cj′ ||}

=
⋂
j′ 6=j

Ej,j′ .

The cells of the k-th order Voronoi tessellation {E(k)
I }I∈Π(k)([m]), where Π(k)(A) denotes

the set of all k-combinations—i.e., subsets with k distinct elements—of the set A and
[m] := {1, . . . ,m}, are defined as

E
(k)
I := {x ∈ Rd : I ⊂ nnk(x)},

i.e., they are sets that contain the points of the feature space that have the corpus points
indexed by I as their k nearest neighbors. Like the cells of the standard Voronoi tessellation,
the cells of k-th order Voronoi tessellation can also be written as finite intersections of the
half-spaces as

E
(k)
I = {x ∈ Rd : I ⊂ nnk(x)}

= {x ∈ Rd : ∀j ∈ I, j′ /∈ I : ||x− cj || ≤ ||x− cj′ ||}

=
⋂

j∈I,j′ /∈I

{x ∈ Rd : ||x− cj || ≤ ||x− cj′ ||}

=
⋂

j∈I,j′ /∈I

Ej,j′ ,

(6)
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where the second equality holds because |I| = k.

Finally, we show that the sets E
(k)
1 , . . . , E

(k)
m that define the optimal decision boundary

can be obtained as finite unions of finite intersections of half-spaces, or, equivalently, as
finite unions of the cells of the kth order Voronoi tessellation.

Theorem 3 For any j, k ∈ {1, . . . ,m}, the set E
(k)
j can be written as

E
(k)
j =

⋃
{I∈Π(k)([m]) : I3j}

⋂
j′∈I,j′′ /∈I

Ej′, j′′

=
⋃

{I∈Π(k)([m]) : I3j}

E
(k)
I .

Proof A point x has cj among its k nearest neighbors if and only if there exists a set of
k corpus points that contains cj and the corpus points that do not belong into this set are
not closer to x than any of the corpus points of this set. Thus, we have

E
(k)
j = {x ∈ Rd : ∃I ∈ Π(k)([m]) s.t. I 3 j and ∀j′ /∈ I, j′′ ∈ I : ||x− cj′′ || ≤ ||x− cj′ ||}

=
⋃

{I∈Π(k)([m]) : I3j}

{x ∈ Rd : ∀j′ /∈ I, j′′ ∈ I : ||x− cj′′ || ≤ ||x− cj′ ||}

=
⋃

{I∈Π(k)([m]) : I3j}

⋂
j′∈I,j′′ /∈I

Ej′, j′′

=
⋃

{I∈Π(k)([m]) : I3j}

E
(k)
I ,

where the last equality follows from (6).

4. Partitioning classifiers for multilabel classification

Partitioning classifier is a general term for a classifier that is based on a partition of the
feature space and whose classification decision is based on the labels of the training set
points that belong to the same partition element as the query point. Partitioning classi-
fiers can be divided into two categories depending on whether they learn flat or recursive
partitions. There is a vast literature on recursive partitioning classifiers (i.e., classification
trees); specifically, gradient boosted trees (Friedman et al., 2000; Friedman, 2001) are one
of the most widely used and efficient classifiers (Chen and Guestrin, 2016). Flat partitions
are more typically used for unsupervised tasks, such as density estimation (Kontkanen and
Myllymäki, 2007; López-Rubio, 2013; Cui et al., 2021) and clustering (Hartigan, 1975; Es-
ter et al., 1996), but they have also been applied to classification (Lugosi and Nobel, 1996;
McAllester and Ortiz, 2003).

4.1 Learning a partition

Denote by P = {R1, R2, . . . , RL} a partition of Rd, i.e., a collection of disjoint sets for which⋃L
l=1Rl = Rd. Denote the structure function that maps the query point to the index of the
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partition element it belongs into by q : Rd → {1, 2, . . . , L}. When the partition is learned
from the training data Dn, we denote it by P(n) = πn(Dn), where πn is a partitioning rule,
i.e., a function that associates the n-tuple {(xi, yi)}ni=1 with a (measurable) partition of Rd
from the fixed family of partitions

Fn := {πn((x1, y1), . . . , (xn, yn)) : (xi, yi) ∈ Rd × {0, 1}m for each i = 1, . . . , n}.

When the the partitioning rule πn is randomized, we define it as a function that asso-
ciates the n-tuple {(xi, yi)}ni=1 and the observed value of the random vector Z ∈ Z with a
partition of Rd from the fixed family of partitions

Fn := {πn((x1, y1), . . . , (xn, yn), z) : (xi, yi) ∈ Rd × {0, 1}m for each i = 1, . . . , n, z ∈ Z}.

A randomized partitioning rule is typically used to learn a collection of partitions {P(n)
t }Tt=1,

where the tth partition is P(n)
t = πn(Dn, Zt); we denote by Z1, . . . , ZT the i.i.d. random

vectors that are used to construct T randomized partitions. Further, denote by qt : Rd →
{1, 2, . . . , Lt} the structure function corresponding to tth partition Pt = {R(t)

1 , . . . R
(t)
Lt
}

4.2 Natural classifier

Partitioning classifiers use the training set twice: first, to learn the partition P(n) = π(Dn),
and second, to classify the query point x using the training set points that belong to the same
partition element Rq(x) with it. In the binary and multiclass classification the classification
decision is typically done via majority voting among the classes of the training set points
that belong to the same partition element as the query point. This partitioning classifier is
called the natural classifier (Devroye et al., 1996, Chapter 21).

In multilabel classification, majority voting is not defined unambiguously, since the query
point can have more than one correct label. Instead, a typical approach is to use a plug-in
classifier (4) that assigns the labels to the query point x by thresholding the conditional
label probability estimates η̂1(x), . . . , η̂j(x). The most straightforward way to obtain these
estimates is to use the observed label proportions

η̂j(x) =
1

Nq(x)

∑
i :xi∈Rq(x)

yij . (7)

among the training set points that belong to the same partition element with the query
point. We denote by Nq(x) := |{i : xi ∈ Rq(x)}| the number of training set points in that
partition element. The labels of the ith training set point are denoted by yi1, . . . yim, and
encoded using binary encoding as in (3).

We call the plug-in classifier (4) where the conditional label probability estimates are
defined by (7) the natural classifier. Estimating the conditional label probabilities by (7) can
be motivated via the one-versus-all reduction4 under which the observed label proportions
among the training set points that belong to Rq(x) are the maximum likelihood estimates
of the piecewise constant binomial model. Observe that when all the data points have
the same number of labels, the observed label proportions (7) are also proportional to the

4. See Menon et al. (2019) for a review of multilabel problem reductions.
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maximum likelihood estimates of the piecewise constant multinomial model under the PAL
reduction.

When a collection of partitions {P(n)
t }Tt=1, where each partition P(n)

t := {R(t)
1 , . . . , R

(t)
Lt
}

is learned by a randomized partitioning rule πn(Dn, Z), is used as a classifier, the con-
tributions of the partitions are aggregated. The conditional label probability estimates
of an ensemble can be obtained in a straightforward fashion by averaging the conditional
probability estimates of the individual partitions:

η̂j(x) =
1

T

T∑
t=1

η̂
(t)
j (x). (8)

The estimates η̂
(1)
j (x), . . . , η̂

(T )
j (x) are defined as the observed label proportions as in (7). We

also refer to the plug-in classifier (4) where the conditional label probabilities are estimated
by (8) as the natural classifier.

5. Natural classifier for candidate set selection

Partition-based index structures can be interpreted as partitioning classifiers for the multil-
abel classification problem introduced in Sec. 3.1. In particular, it follows immediately that
the natural classifier defined in the previous section can be used as a candidate set selection
method for ANN search. To this end, consider an algorithm for learning a partition, such as
Algorithm 3 that grows a RP tree. Formally, this algorithm is a (randomized) partitioning
rule πn that associates a training set {(xi, yi)}ni=1 and an observed value of the random
vector Z with a partition P(n) = {R1, . . . , RL}. Given this partition and the threshold
parameter τ ∈ [0, 1], the label set estimated by the natural classifier is

L̂(x) = {j ∈ {1, . . . ,m} | η̂j(x) > τ}, (9)

where the conditional label probability estimates η̂j(x) are defined by (7) as the observed
label proportions among the training set points in the partition element Rq(x) that contains
the query point. In other words, the natural classifier selects into the candidate set those
corpus points that are among the k nearest neighbors of a sufficiently high proportion of
the training set points that belong to Rq(x). For clarity, Algorithm 1 describes the natural
classifier for the candidate set selection in detail5.

In contrast, in lookup search the candidate set selected as

S(x) = {j ∈ {1, . . . ,m} | cj ∈ Rq(x)},

i.e., a corpus point cj is selected into the candidate set if and only if it belongs to the
same partition element as the query point. Also this candidate set can be interpreted as
a classification decision of a multilabel classifier by writing it in a same form as a natural
classifier (9); in this case the conditional label probability estimates are of the form η̂j(x) =
1Rq(x)

(cj). However, this is not a natural classifier for the multilabel classification problem

5. We observed that on some data sets it improves performance of the algorithm to compute the conditional
label probability estimates η̂j(x) using a value k′ > k; this adds an additional tuning parameter to the
algorithm.
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Algorithm 1 Natural classifier for ANN search using a single partition

Input: query point x, corpus {cj}mj=1, training set {xi}ni=1 partition P = (R1, . . . , RL),
threshold parameter τ , number of neighbors searched for k, number of neighbors of the
training set points used to compute the conditional label probability estimates k′

Output: indices of the approximate k nearest neighbors of the query point x among the
corpus points {cj}mj=1

procedure natural-classifier(x, {cj}mj=1, {xi}ni=1, P, τ , k, k′)
Nq(x) ← |{xi ∈ Rq(x)}|
for j ∈ 1, . . . ,m do

η̂j(x)← 1
Nq(x)

∑
xi∈Rq(x)

1{j ∈ nnk′(xi)}

L̂(x)← {j ∈ {1, . . . ,m} | η̂j(x) > τ}
for j ∈ L̂(x) do

compute d(x, cj)

return indices of the k corpus points in L̂(x) for which d(x, cj) is smallest

we defined in Sec. 3.1. Instead, it is a natural classifier for a distinct multilabel classification
problem in which the labels of the training set point xi are defined as ỹij = 1Rq(xi)(cj). In
other words, the labels represent the corpus points that belong to the same partition element
with xi. This suggests that the natural classifier would be a more efficient candidate set
selection method than lookup search since the natural classifier is directly optimized (under
the common OVA and PAL problem reductions) to solve the problem of interest.

The experimental results support the above analysis. Fig. 5 compares different candidate
set methods on four benchmark data sets while keeping the partition type fixed. The natural
classifier is significantly faster candidate set method compared to lookup search in all the
cases.

Finally, consider an ensemble of partitions {P(n)
t }Tt=1, that is obtained by a randomized

partitioning rule πn (such as Algorithm 3 for growing a RP tree) with T different random
vectors. As in the case of a single partition, the natural classifier can be used to estimate
the label set as in (9). The only difference is that the conditional label probability estimates
are obtained by (8) as the averages of the estimates of the single partitions. The natural
classifier for candidate set selection using a collection of partitions is described in detail in
Algorithm 2.

6. Related work

The most directly relevant earlier literature consists of studies that learn space-partitioning
index structures for ANN search using supervised information. The idea of optimising the in-
dex structure for the particular query distribution was first presented by Maneewongvatana
and Mount (2001), and later extended by Cayton and Dasgupta (2007) who formulate ANN
search as a supervised learning problem and propose a tree-based and a hashing-based al-
gorithm for solving it. More recently, many supervised learning to hash-methods have been
proposed. In this section, we first briefly discuss the supervised hashing methods, and then
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Algorithm 2 Natural classifier for ANN search using multiple partitions

Input: query point x, corpus {cj}mj=1, training set {xi}ni=1 collection of partitions {Pt}Tt=1,
threshold parameter τ , number of neighbors searched for k, number of neighbors of the
training set points used to compute the conditional label probability estimates k′

Output: indices of the approximate k nearest neighbors of the query point x among the
corpus points {cj}mj=1

procedure natural-classifier(x, {cj}mj=1, {xi}ni=1, {Pt}Tt=1, τ , k, k′)
for j = 1, . . . ,m do

for t = 1, . . . , T do

N ← |{xi ∈ R(t)
qt(x)}|

η̂
(t)
j (x)← 1

N

∑
xi∈R

(t)
qt(x)

1{j ∈ nnk′(xi)}

η̂j(x)← 1
T

∑T
t=1 η̂

(t)
j (x)

L̂(x)← {j ∈ {1, . . . ,m} | η̂j(x) > τ}
for j ∈ L̂(x) do

compute d(x, cj)

return indices of the k corpus points in L̂(x) for which d(x, cj) is smallest

discuss how the proposed framework differs from the earlier supervised methods for ANN
search.

6.1 Data-dependent hashing methods

Data-dependent hashing methods partition the feature space by using binary hash functions
q1, . . . , qL, where ql : Rd → {−1, 1} for each l = 1, . . . , L. Typically, these hash functions
have the form of generalized linear projection

ql(x) = sign(f(wl · x+ bl)), (10)

where f : R→ R is a non-linear link function that is applied to the linear term wl · x+ bl.
The data-dependent hashing methods learn the weight term wl and the bias term bl from
the training set.

There exists many different data-dependent hashing methods that differ on their choice
of a link function f and the learning method used to obtain the weights and the bias term.
Data-dependent hashing methods can be classified into unsupervised (see, e.g., Weiss et al.,
2009; Gong et al., 2012; Liu et al., 2011; Kong and Li, 2012) and supervised methods.
Among them, the most directly relevant to our work are supervised methods that use
the true nearest neighbors of the training set points as the output variable when learning
the hash functions. Representative examples of supervised hashing methods include linear
discriminant analysis hashing (LDAH) (Strecha et al., 2011), minimal loss hashing (Norouzi
and Fleet, 2011), kernel-based supervised hashing (KSH) (Liu et al., 2012), and central
similarity quantization (CSQ) (Yuan et al., 2020). See, e.g., Wang et al. (2015) or Wang
et al. (2017) for a more detailed survey on data-dependent hashing methods.
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6.2 Difference to the earlier supervised methods

There are two key components in a partition-based ANN algorithm: the index structure and
the candidate set selection method. A vast amount of different index structures have been
proposed for ANN search. However, candidate set selection methods have received relatively
little attention. Even the earlier supervised methods use lookup search, i.e., they select to
the candidate set all the corpus point that belong to the same partition element as the
query point (or to all the partition elements the query point is routed into if backtracking is
used). Hence, the earlier supervised methods formulate the learning problem in an indirect
fashion, typically as maximizing the number of nearest neighbors of the query point that
belong to the same partition element as the query point, while simultaneously minimizing
the number of non-neighbors in the same element.

For instance, Cayton and Dasgupta (2007) formulate the learning problem as maximizing
the expected recall

EXRec(X) = EX

[
|nnk(X) ∩ S(X)|

k

]
while minimizing the expected candidate set size EX |S(X)| over the query distribution.
However, in this formulation the candidate set S(x) is explicitly defined as the set of corpus
points that belong to the same partition element as the query point in an index structure,
i.e.,

S(x) = {j ∈ {1, . . . ,m} : cj ∈ Rq(x)}. (11)

The same principle holds for supervised hashing methods. They select into the candidate
set the corpus points whose hash code is within a certain Hamming radius of the hash code
of the query point. Using the terminology of this article, their candidate set selection
method is lookup search with backtracking. This leads to a formulation of the learning
problem that differs from ours (Sec. 3.1). For instance, in supervised kernel hashing (Liu
et al., 2012) the problem is formulated as learning a binary embedding that minimizes
the Hamming distance between the query and its nearest neighbors, while maximizing the
Hamming distance between the query and its non-neighbors.

To summarize, the key observation of this article that distinguishes the proposed frame-
work from the earlier supervised methods for ANN search is that the lookup search is not a
necessary component of a partition-based algorithm. This means that the learning problem
does not have to be formulated in an indirect fashion as maximizing the number of nearest
neighbors that belong to the partition elements that are near the query point. Instead, we
formulate the candidate set selection itself directly as a multilabel classification problem
and, consequently, interpret the points that belong to the same partition element with the
query point as training set points whose labels—that represent their nearest neighbors—are
used to make the classification decision. Our empirical results (see Fig. 5) indicate the util-
ity of the proposed formulation: the natural classifier directly suggested by the proposed
framework has superior performance compared to lookup search.

7. Theoretical results

In this section, we first provide a sufficient condition for the consistency of a partitioning
classifier for ANN search (Sec. 7.1). We then verify this condition for chronological k-d trees
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(Sec. 7.2), dense RP trees (Sec. 7.3.1), and sparse RP trees (Sec. 7.3.2). The consistency
of ensembles of both sparse and dense RP trees also follow immediately from the results of
this section. Table 1 provides a summary of results used to establish consistency of these
trees and their ensembles, and the required assumptions on the distribution of the input
variable X.

Table 1: Summary of the consistency results of this article.

Tree type Proof Assumptions on X

Chronological k-d tree Theorem 5 + Theorem 11 Density
RP tree Theorem 6 + Theorem 13 Density + bounded support
Sparse RP tree Theorem 6 + Theorem 15 Density + bounded support
Ensemble of RP trees Corollary 7 + Theorem 13 Density + bounded support
Ensemble of sparse RP trees Corollary 7 + Theorem 15 Density + bounded support

7.1 A sufficient condition for consistency

We first provide a sufficient condition for the consistency of a partitioning classifier for ANN
search (Theorem 5). Then we show that the result holds with a slightly weaker condition
when the distribution of the input X variable has bounded support (Theorem 6). Finally,
we show that if the conditions of either of these results hold for a randomized partitioning
rule, then the partitioning classifier based on the collection of classifiers learned by this
partitioning rule is also consistent (Corollary 7).

The classical theorem for proving the consistency of partitioning classifiers for binary
classification is the following:

Theorem 4 (Devroye et al. (1996), Theorem 6.1, p. 94–95) Assume that only the features
X1, . . . , Xn are used to learn the partition P(n) = π(X1, . . . , Xn). The natural classifier6

g(n) defined by P(n) is consistent (under 0-1 loss) for binary classification, if

(i) Nq(X) →∞ in probability, and

(ii) diam
(
Rq(X)

)
→ 0 in probability,

when n→∞.

The number of the training set points in the partition element the query point x belongs
to is denoted by Nq(x) := |{i : Xi ∈ Rq(x)}|, and the diameter of a set A is defined as the
maximum distance between any two points of this set, which we denote by

diam(A) := sup
a, b∈A

‖a− b‖.

While the above result is for binary classification, it can be readily extended to the multil-
abel case. However, as a multilabel classification problem ANN search has two distinctive

6. The natural classifier for binary classification is defined as the classifier that classifies the query point
into the majority class of the training set points that belong to the same partition element with it.
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properties: (i) the Bayes error R∗ is zero; (ii) the decision boundaries of the Bayes classifier
are defined by a finite set of hyperplanes (see Theorem 3). It turns out that in this case, the
second condition of Theorem 4 is sufficient for the consistency of a partitioning classifier.

Theorem 5 Let g(n) be a natural classifier for ANN search defined by the partition P(n) =
(R1, . . . , RL) that is learned by the partitioning rule π(Dn, Z), and the threshold parameter
τ ∈ [0, 1) for ANN search. Assume that the distribution of X, denoted by µ, is continuous.
If diam(Rq(X))→ 0 in probability—that is, if for every ε > 0,

P{diam(Rq(X)) > ε} → 0

when n→∞, then the classifier g(n) is consistent (for 0-1 loss)—i.e., EDnR(g(n))→ 0.

Proof If for all the pairs of corpus points (cj , cj′), j
′ 6= j, all the points of the partition

element Rl are closer to cj than cj′ (or vice versa)—that is, if there is no such pair (cj , cj′)
for which there exists a, b ∈ Rl such that ‖a− cj‖ < ‖a− cj′‖ and ‖b− cj‖ > ‖b− cj′‖—then
also η̂j(x) = ηj(x) for each x ∈ Rl and j = 1, . . . ,m; consequently, each x ∈ Rl is classified
correctly for any τ ∈ [0, 1). Now, since

P{g(n)(X) 6= η(X)}
≤ P{∃Xi, Xi′ ∈ Rq(X) s.t. Yi 6= Yi′}
≤ P

(
∃j′ 6= j : ∃a, b ∈ Rq(X) s.t. ‖a− cj‖ < ‖a− cj′‖, ‖b− cj‖ > ‖b− cj′‖

)
≤
∑
j′ 6=j

P{∃a, b ∈ Rq(X) s.t. ‖a− cj‖ < ‖a− cj′‖, ‖b− cj‖ > ‖b− cj′‖},

(12)

to prove consistency of g(n) it is sufficient to show that for all j, j′ ∈ {1, . . . ,m}, j 6= j′,

P{∃a, b ∈ Rq(X) s.t. ‖a− cj‖ < ‖a− cj′‖, ‖b− cj‖ > ‖b− cj′‖} → 0

in probability when n→∞.
Choose any j, j′, j 6= j′, and denote the hyperplane that is halfway in between the

corpus points cj and cj′ by H := {x ∈ Rd : ‖x − cj‖ = ‖x − cj′‖}. For any t = 1, 2, . . . ,
let Ht denote the set surrounding H by a margin of width 1/t. Since H1 ⊃ H2 ⊃ H3 . . . ,
and H = ∩∞t=1Ht, it follows from the upper continuity of the probability measure that
lim
t→∞

µ(Ht) = µ(H). Because the Lebesgue measure of the hyperplane H in Rd is zero

and µ is absolutely continuous w.r.t. the Lebesgue measure by the assumption, then also
lim
t→∞

µ(Ht) = µ(H) = 0.

Now, for any t = 1, 2, . . . , if Rq(x) crosses the hyperplane H, then either x ∈ Ht or the
diameter of the Rq(x) is greater than 1/t. Hence,

P{∃a, b ∈ Rq(X) s.t. ‖a− cj‖ < ‖a− cj′‖, ‖b− cj‖ > ‖b− cj′‖}
≤ P{X ∈ Ht or diam(Rq(X)) > 1/t}
≤ µ(Ht) + P{diam(Rq(X)) > 1/t}.

We can get µ(Ht) as small as desired by choosing a large enough t; and since by assumption
the second term is arbitrarily small when n is large enough, the result follows.
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The result holds with a weaker condition when the query distribution has bounded
support.

Theorem 6 Let g(n) be a natural classifier for ANN search defined by the partition P(n) =
(R1, . . . , RL) learned by the partitioning rule πn(Dn, Z), and the threshold parameter τ ∈
[0, 1). Assume that the distribution of X, denoted by µ, is continuous. If there exists M > 0
for which P{X ∈ [−M,M ]d} = 1 and

P{diam(Rq(X) ∩ [−M,M ]d) > ε} → 0

for every ε > 0 when n → ∞, then the classifier g(n) is consistent (for 0-1 loss)—i.e.,
EDnR(g(n))→ 0.

Proof By assumption, it holds for any n that

P

(
n⋃
i=1

{Xi /∈ [−M,M ]d}

)
≤

n∑
i=1

P{Xi /∈ [−M,M ]d} = 0,

and, hence,

P{g(n)(X) 6= η(X)} ≤ P{∃Xi, Xi′ ∈ Rq(X) s.t. Yi 6= Yi′}
= P{∃Xi, Xi′ ∈ Rq(X) ∩ [−M,M ]d s.t. Yi 6= Yi′}.

The rest of the proof now proceeds as in Theorem 5 with the set Rq(x) replaced by its

intersection with the hypercube [−M,M ]d.

As an immediate consequence of the above theorems, we have a sufficient condition for
the consistency of the the natural classifier (8) that is based on a collection of randomized
partitions.

Corollary 7 If conditions of Theorem 5 or 6 hold for the distribution of X and a partition
P(n) learned by the randomized partitioning rule π(Dn, Z), then the natural classifier (8)

defined by the threshold parameter value τ ∈ [0, 1) and a collection of partitions {P(n)
t }Tt=1

that are learned by π(Dn, Z) is consistent.

Proof Assume first that the partitioning rule πn(Dn, Z) and the distribution of X satisfy
the conditions of Theorem 5. Now,

P{g(X) 6= η(X)}

≤ P
{
∃t : ∃j 6= j′ : ∃a, b ∈ R(t)

q(X) s.t. ||a− cj || < ||a− cj′ ||, ||b− cj || > ||b− cj′ ||
}

≤
T∑
t=1

P
{
∃j 6= j′ : ∃a, b ∈ R(t)

q(X) s.t. ||a− cj || < ||a− cj′ ||, ||b− cj || > ||b− cj′ ||
}
.
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where the second inequality follows from the union bound. Now the result follows im-
mediately by continuing the proof of Theorem 5 from (12). In case the partitioning rule
πn(Dn, Z) and the distribution of X satisfy the conditions of Theorem 6 the proof proceeds
in a similar fashion.

7.2 Consistency of chronological k-d trees

Next, we illustrate the utility of Theorem 5 by applying it to prove the consistency of the
chronological k-d tree (Bentley, 1975) that rotates the split directions and uses the same
split direction for all the nodes at one level of a tree. At the first level the training data is
split at the median of the first coordinates of the data points. At the second level both nodes
are split at the median of the second coordinates of the node points. At the (d+ 1)th level,
the nodes are split again at the median of the first coordinates, and so on (see Appendix
B.1).

More precisely, let X,X1, . . . , Xn ∈ Rd be i.i.d. random variables. A chronological
k-d tree can be formalized as a partitioning rule π that returns the partition P(n) =
π(X1, . . . , Xn). When the tree height is `, this partition has 2` elements (also called leafs).
The leafs are hyperrectangles in Rd. Some of the edges of these hyperrectangles may have
an infinite length. To handle these leafs, we introduce the notation where for any M > 0
the hypercube [−M,M ]d divides the partition elements R1, . . . , R2` into three disjoint sets:

A := {l ∈ {1, . . . , 2`} : Rl ⊂ [−M,M ]d},
C := {l ∈ {1, . . . , 2`} : Rl ⊂ Rd \ [−M,M ]d},
B := {1, . . . , 2`} \ (A ∪ C).

(13)

Here A is the set of indexes of the partition elements that are completely inside the hyper-
cube [−M,M ]d, B is the set of indexes of the partition elements that cross its boundary,
and C is the set of indexes of the partition elements that are completely outside of it.

First, we prove two auxiliary results that bound the number of nodes crossing the
boundary of the box [−M,M ]d and the combined length of the edges (in any fixed coordinate
direction) of the nodes that reside completely inside [−M,M ]d, respectively. It is worth
noting that these bounds are of purely combinatorial nature and thus do not depend on the
training set.

Lemma 8 For any training set Dn, it holds for the number of nodes of a chronological k-d
tree, denoted by NB := |B|, crossing the border of the hypercube [−M,M ]d that

NB ≤ 4d · 2`−
`
d .

Proof The border of the hypercube consists of (d − 1)-dimensional faces. Choose a co-
ordinate direction j ∈ {1, . . . , d} and consider a (d − 1)-face that is orthogonal to that

coordinate axis. Denote the number of nodes crossing that (d− 1)-face by N
(j)
B . Before any

splits there is one node—the whole feature space Rd—that crosses it. Splitting a node that
crosses that (d − 1)-face at a coordinate direction other than j creates two nodes crossing
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it if the splitting hyperplane intersects with [−M,M ]d (if the splitting hyperplane does not

intersect with [−M,M ]d then it does affect N
(j)
B ). Splitting at the jth direction does not

increase N
(j)
B since the splitting hyperplane is perpendicular to the (d− 1)-face we consider

and so cannot cross it.
Therefore, if ` is a multiple of d, we have N

(j)
B ≤ 2`−

`
d since each full round of d splits

contains d− 1 splits orthogonal to the jth coordinate direction, each of which may double
the number of nodes crossing the (d − 1)-face, and one split parallel to the jth coordinate
direction that doesn’t increase the number. If ` is not a multiple of d, then

N
(j)
B ≤ 2`−b

`
d
c ≤ 2`−

`
d

+1

because the last incomplete round of splits may not contain a split at the jth coordinate
direction. Since for each coordinate direction a d-dimensional hypercube has two (d − 1)-
faces that are orthogonal to that coordinate axis, we have7

NB ≤ 2
d∑
j=1

N
(j)
B ≤ 4d · 2`−

`
d .

Lemma 9 Let j ∈ {1, . . . , d} be any coordinate direction. Denote the length of the node Rl
in the jth coordinate direction by Vl. Then for any training set Dn,∑

l∈A
Vl ≤ 4M · 2`−

`
d .

Proof For each l = 1, . . . , 2`, denote the length of the hyperrectangle R′l := Rl ∩ [−M,M ]d

in the jth coordinate direction by V ′l . Clearly, Vl = V ′l for each l ∈ A by the definition of
the set A. Thus, ∑

l∈A
Vl =

∑
l∈A

V ′l ≤
2`∑
l=1

V ′l .

Before any splits, there is one node with V ′l = 2M . Splitting a node in a coordinate
direction other than j creates two child nodes with the same length in the jth coordinate
direction as the parent node, and thus doubles the contribution of the parent node to the
sum over the nodes8. When we split a node in the jth coordinate direction, the sum of the
lengths of the child nodes in the jth direction equals the length of the parent node in that
direction; thus, the split does not affect the sum over the nodes. Hence, we have

2`∑
l=1

V ′l ≤ 2M · 2`−
`
d (14)

7. Since we are proving an upper bound it does not matter that we double count nodes that cross more
than one (d− 1)-face.

8. Here we assume that the splitting hyperplane intersects with [−M,M ]d. If the splitting hyperplane does

not intersect with [−M,M ]d, then the split does not increase
∑2`

l=1 V
′
l . Thus, the inequality in (14) holds

as an equality if and only if all the splitting hyperplanes that are not orthogonal to the jth coordinate
direction intersect with [−M,M ]d.
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when ` is a multiple of d. When ` is not a multiple of d, the last incomplete round may not
contain a split in the jth coordinate direction, and thus

2`∑
l=1

V ′l ≤ 2M · 2`−b
`
d
c ≤ 4M · 2`−

`
d .

Before proceeding to the main result of this section, we prove the following well-known
variation of Markov’s inequality for completeness.

Lemma 10 Suppose H is an event, a > 0, and X is a non-negative random variable for
which E|X| <∞. Then,

P{X > a,H} ≤ E[1HX]

a
.

Proof We can write

E[1HX] ≥ E[1HX1{X > a}] ≥ aE[1H1{X > a}] = aP{X > a,H},

and the result follows by dividing by a.

We are now in a position to establish the consistency of a chronological k-d tree for
approximate nearest neighbor search. In view of Theorem 5 it suffices to prove that the leaf
diameter converges to zero in probability when the query distribution is continuous:

Theorem 11 If for the height of a chronological k-d tree holds that `→∞ when n→∞,
then the leaf diameter diam(Rq(X)) converges to zero in probability.

Proof Choose a coordinate direction j ∈ {1, . . . , d} and denote the length of an edge of
the hyperrectangle Rl in that direction by Vl. Since the coordinate direction was chosen
arbitrarily, it suffices to show that Vq(X) converges to zero in probability to prove that also
the cell diameter converges to zero in probability.

For any training set size n, define `′ := min(`, blog2 log2 nc). Since for any training set9

Dn the probability P{Vq(X) > δ |Dn} is non-increasing w.r.t. to the tree height and `′ ≤ `,
in order to prove that P{Vq(X) > δ} → 0 for the original tree height `, it is sufficient to
show that it goes to zero for the tree height `′.

For any θ > 0, there exists M > 0 s.t. P{X /∈ [−M,M ]d} < θ. The box [−M,M ]d

divides any partition of Rd into three disjoint sets A, B, and C as defined in (13) that
correspond to the indexes of the nodes completely inside [−M,M ]d, the indexes of the nodes
crossing its border and the indexes of the nodes completely outside of it, respectively10. We

9. To keep notation consistent throughout the article, we denote the training set also here by Dn :=
{(Xi, Yi)}ni=1. However, it should be observed that the chronological k-d tree uses only the inputs
X1, . . . , Xn to learn the partition; thus, the learned partition does not depend on the labels Y1, . . . , Yn.

10. We define the sets A, B, and C here for a tree of height `′.
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can now decompose the probability of the event {Vq(X) > δ} into three parts corresponding
to the sets A, B, and C:

P{Vq(X) > δ} ≤ P{Vq(X) > δ, q(X) ∈ A}+ P{q(X) ∈ B}+ P{q(X) ∈ C}. (15)

Choose ε > 0 and denote the event that no partition element has a probability mass
larger than (1 + ε)/2`

′
by

G :=
2`
′⋂

l=1

{
µ(Rl) ≤

1 + ε

2`′

}
,

where µ(A) := P{X ∈ A} is the probability distribution of X for any measurable set
A. Our strategy is to first handle this case where all the leafs contain an approximately
equal probability mass, and then bound the probability of GC by applying the Vapnik-
Chervonenkis inequality to show the uniform convergence of the empirical distribution of
X to its true distribution in the class of leafs of a chronological k-d tree, i.e., in the class of
hyperrectangles in Rd. To this end, we further partition the right hand side of (15) as

P{Vq(X) > δ} ≤ P{Vq(X) > δ, q(X) ∈ A,G}︸ ︷︷ ︸
I

+P{q(X) ∈ B,G}︸ ︷︷ ︸
II

+P (GC)︸ ︷︷ ︸
III

+P{q(X) ∈ C}︸ ︷︷ ︸
IV

and bound these four terms.
Term IV: Since P{q(X) ∈ C} ≤ P{X /∈ [−M,M ]d} < θ, we can get this term as small

as desired by choosing a small enough θ.
Term I: By applying Lemma 10 (with the event {q(X) ∈ A} ∩G), we see that

P{Vq(X) > δ, q(X) ∈ A,G} ≤
E
[
1GVq(X)1{q(X) ∈ A}

]
δ

.

Therefore, it suffices to bound E
[
1GVq(X)1{q(X) ∈ A}

]
, for which we have

E
[
1GVq(X)1{q(X) ∈ A}

]
= E

[
1GE

[
Vq(X)1{q(X) ∈ A} |Dn

]]
= E

1G 2`
′∑

l=1

µ(Rl)Vl1{l ∈ A}


= E

[
1G

∑
l∈A

µ(Rl)Vl

]

≤ 1 + ε

2`′
E

[∑
l∈A

Vl

]

≤ 1 + ε

2`′
· 4M · 2`′−

`′
d

= 4M · 1 + ε

2`′/d
,

(16)

where the outermost expectation on the right hand side is w.r.t. Dn, the first inequality
follows from the definition of G, and the second inequality follows from Lemma 8. Since by
assumption `′ →∞ when n→∞, also P{Vq(X) > δ, q(X) ∈ A,G} → 0.
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Term II: Applying a similar technique as in (16), we have

P{q(X) ∈ B,G} = E [1GP{q(X) ∈ B |Dn}]

= E

1G 2`
′∑

l=1

1{l ∈ B}µ(Rl)


≤ 1 + ε

2`′
E [NB]

≤ 1 + ε

2`′
· 4d · 2`′−

`′
d

= 4d · 1 + ε

2`′/d
,

where the expectation is w.r.t. Dn, the first inequality follows from the definition of G
and the second inequality follows from Lemma 9. Hence, also P{q(X) ∈ B,G} → 0 when
n→∞.

Term III: Finally, we bound the probability of the event GC . Let R be the class of all
hyperrectangles in Rd. The Vapnik-Chervonenkis dimension of R is 2d (see, e.g., Theorem
13.8. by Devroye et al. (1996, p. 220-221)), and hence we have s(R, n) ≤ n2d for its shatter

coefficient (see, e.g., Theorem 13.3. by Devroye et al. (1996, p. 218)). If n ≥ 2· log2 n
ε ≥ 2· 2`

′

ε ,
then 1

n ≤
1
2 ·

ε
2`′

. This means that for large enough n, we have

P (GC) = P

{
∃l s.t. µ(Rl) >

1 + ε

2`′

}
= P

{
∃l s.t. µ(Rl)−

(
1

2`′
+

1

n

)
>

ε

2`′
− 1

n

}
≤ P

{
∃l s.t. µ(Rl)− µn(Rl) >

ε

2`′
− 1

n

}
≤ P

{
∃l s.t. µ(Rl)− µn(Rl) >

ε

2`′+1

}
≤ P

{
sup
R∈R
|µ(R)− µn(R)| > ε

2`′+1

}
≤ 8s(R, n) exp

{
− nε2

128 · 22`′

}
≤ 8n2d exp

{
− nε2

128 · 22`′

}
≤ 8n2d exp

{
− nε2

128(log2 n)2

}
→ 0

(17)

when n → ∞. The first inequality on the right hand side of (17) follows because for the
empirical measure—denoted by µn(A) := 1

n

∑n
i=1 1A(Xi) for any measurable set A—of any

leaf Rl it holds that µn(Rl) ≤ 1
2`′

+ 1
n . The fourth inequality follows from the Vapnik-

Chervonenkis inequality (Vapnik and Chervonenkis, 1971); we use the version presented in
Theorem 12.5. by Devroye et al. (1996, p. 197-198). The last inequality follows because
22`′ ≤ (log2 n)2 by the definition of `′.
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Algorithm 3 Grow a random projection (RP) tree (Dasgupta and Freund, 2008; Dasgupta
and Sinha, 2015; Hyvönen et al., 2016)

Input: data X, current depth, maximum depth `, random vectors Z = (Z(1), . . . , Z(`))
Output: subtree of depth `− depth
procedure grow-rp(X, depth, `, Z)

if depth = ` then
return X as a leaf node

proj ← project(X,Z(depth))
ŝ← median(proj)
left← grow-rp(points in X for which proj ≤ ŝ, depth + 1, `, Z)
right← grow-rp(points in X for which proj > ŝ, depth + 1, `, Z)
return (left, right, directions[depth], ŝ) as an inner node

7.3 Consistency of random projection trees

The random projection (RP) tree (Dasgupta and Freund, 2008; Dasgupta and Sinha, 2015),
is a data structure that is randomized by construction. At each level of an RP tree, the
normal of the splitting hyperplanes is generated from the d-dimensional standard normal
distribution N(0, I) (for computational efficiency, the same split direction can be used at
each of the sibling nodes on a given level of the tree, as suggested by Hyvönen et al. (2016)).
The data in the node are projected onto this random vector and split into two subsets at
the median of the projections. Algorithm 3 describes the method of growing an RP tree;
in the dense RP tree the random vectors Z = (Z(1), . . . , Z(`)) on each level are generated
from the d-dimensional standard normal distribution, i.e.,

Z
(l)
j ∼ N(0, 1)

for each l = 1, . . . , `, j = 1, . . . , d.

We can formalize an RP tree as a randomized partitioning rule π(Dn, Z). In addition
to the training data Dn, this partitioning rule takes as an argument the random vectors Z.
The partitioning rule π(Dn, Z) returns a partition P(n) = (R1, . . . , R2`) with 2` partition
elements which are called leafs. The leafs are (possibly unbounded) convex polytopes—i.e.,
areas constrained by the ` hyperplanes.

We will first prove consistency of the original (dense) RP tree described above. We will
then describe its sparse variant(s) and prove their consistency in Sec. 7.3.2.

7.3.1 The dense case

By Theorem 6, assuming that the query distribution is continuous and has a bounded
support, it suffices to show that the diameter of the intersection of the leaf that contains
the query point and the hypercube [−M,M ]d converges to zero in probability. For each
j = 1, . . . , d, denote by

V (j)(A) := max
a,b∈A

|aj − bj |
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the longest distance between the jth coordinates of any two points that belong to the set
A, and denote by

jmax(A) := arg max
j=1,...,d

V (j)(A)

the coordinate direction in which this distance is longest.11 Geometrically, V (1), . . . , V (d)

represent the lengths of the edges of the smallest axis-aligned hyperrectangle containing A,
and V (jmax) is the longest edge of this hyperrectangle.

Since diam(A) ≤
√
d V (jmax(A))(A) for any set A, it is sufficient to show that V (jmax) of

the intersection of the leaf node that contains the query point and the hypercube [−M,M ]d

converges to zero in probability. To this end, the following lemma gives a lower bound on
the probability that for any node R, the length of this intersection in its longest coordinate
direction jmax decreases at least by a factor of 3/4 in at least one of the two child nodes
when R is split by a randomly oriented hyperplane as described in Algorithm 3. Fig. 3
illustrates the lemma and its proof. Note that this lower bound does not depend on the
training data but only on the i.i.d. random vectors.

Lemma 12 Let R be a node of an RP tree. Denote its child nodes by Rleft and Rright,
and the intersections of these nodes with the hypercube [−M,M ]d by R′, R′left, and R′right,

respectively. Further, for any j = 1, . . . , d, denote V (j) := V (j)(R′), V
(j)

left := V (j)(R′left), and

V
(j)

right := V (j)(R′right). It holds for the coordinate direction j′ := jmax(R′) that

P

{
V

(j′)
left ≤

3

4
V (j′) or V

(j′)
right ≤

3

4
V (j′)

}
≥ F

(
1

4d− 3

)
,

where F is the c.d.f. of a random variable following the beta distribution Beta
(
d−1

2 , 1
2

)
.

Proof If R ∩ [−M,M ]d = ∅, then the claim holds trivially. When R ∩ [−M,M ]d 6= ∅,
by scale and translation invariance, we can assume w.l.o.g. that the set R′ is located so
that the smallest hyperrectangle containing it, denoted by U , is centered at the origin; that
j′ = jmax(R′) = 1, i.e., that the longest edge of U is aligned with the first coordinate axis
which we call the x-axis or the horizontal axis; and that this edge has unit length, V (1) = 1.
The claim of the theorem now simplifies to

P
{
V

(1)
left ≤ 3/4 or V

(1)
right ≤ 3/4

}
≥ F

(
1

4d− 3

)
.

The hyperplane that splits node R into the two child nodes is defined by its normal
vector, given by the random vector Z = (Z1, . . . , Zd) ∼ Nd(0, I), where we have dropped
the index l for brevity, and the median of the projections of the training set points of R
onto Z. Our strategy is to show that

P
{
V

(1)
left ≤ 3/4 and V

(1)
right ≤ 3/4

}
≥ F

(
1

4d− 3

)
(18)

11. In what follows, we will drop the argument A and denote the lengths by V (j) whenever the set in question
is clear from the context.
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Z

U

α

Figure 3: An illustration of the proof strategy of Lemma 12. Pictured is the worst-case
scenario where all the edges of the smallest hyperrectangle U containing the set
R∩ [−M,M ]d have unit length, i.e., U is a hypercube. If the splitting hyperplane
passes through the center of U and intersects with all the edges of U that are

parallel to the x-axis in their middle half, then both V
(1)

left ≤ 3/4 and V
(1)

right ≤ 3/4.
This event amounts to the random vector Z (that is the normal of the splitting
hyperplane) intersecting with a side of U that is orthogonal to the x-axis inside
of an L1 ball (in the 3D case, a diamond-shaped polygon), which can be further
approximated by an L2 ball (in the 2D case, a circle).

in the special case where the splitting hyperplane passes through the origin. Since trans-
lating the splitting hyperplane away from the origin (while keeping its normal Z constant)

reduces either V
(1)

left or V
(1)

right, verifying (18) for the origin-centered hyperplane proves the
original claim.

Let xmin and xmax be the smallest and the largest x-coordinate values among the points
where the centered splitting hyperplane intersects with lines that pass through the horizontal
edges of the bounding hyperrectangle U . It suffices to show that xmax ≤ 1/4, since then by

symmetry we also have xmin ≥ −1/4, and thus both V
(1)

left ≤ 3/4 and V
(1)

right ≤ 3/4.

Denote by u1, . . . , u2d−1 the points (1/4,±V (2)/2, . . . ,±V (d)/2), i.e., the points whose
x-coordinate is 1/4, and the last d− 1 components match the coordinates of the corners of
the hyperrectangle U . It is easy to see that xmax ≥ 1/4 if and only if all these points are
on the same side of the centered splitting hyperplane. This holds if and only if

sign (〈u1, Z〉) = · · · = sign (〈u2d−1 , Z〉) ,
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or equivalently, by expanding the dot product, if and only if

Z1

4
± Z2V

(2)

2
± · · · ± ZdV

(d)

2
≥ 0

or
Z1

4
± Z2V

(2)

2
± · · · ± ZdV

(d)

2
< 0

for all permutations of the signs. This is equivalent to the condition

|Z1| > 2
d∑
j=2

V (j)|Zj |.

Since V (j) ≤ V (1) = 1 for all j = 2, . . . , d, we have

P

|Z1| > 2
d∑
j=2

V (j)|Zj |

 ≥ P
|Z1| > 2

d∑
j=2

|Zj |

 . (19)

When d = 2, it follows from the rotational symmetry of the standard normal distribution
and an elementary trigonometric argument that

P{|Z1| > 2|Z2|} =
2 arctan 1

2

π
.

When d > 2, the probability on the right hand side of (19) cannot be written in a closed
form but we will provide a lower bound for it. Denote by Z>1 := (Z2, . . . , Zd) the vector of
the last d− 1 components of the random vector Z. Since

2
d∑
i=2

|Zi| = 2 ||Z>1||1 ≤ 2
√
d− 1 ||Z>1||2,

it holds that

P

{
|Z1| > 2

d∑
i=2

|Zi|

}
≥ P

{
|Z1|
||Z>1||2

> 2
√
d− 1

}
= P

{
||Z>1||2
|Z1|

<
1

2
√
d− 1

}
= P

{
α < arctan

1

2
√
d− 1

}
= P

{
sinα <

1√
4d− 3

}
,

where α = arctan ||Z>1||2
|Z1| = arcsin ||Z>1||2

||Z||2 is the smaller angle between the random vector Z
and the first coordinate axis. By the rotational symmetry of the standard normal distribu-
tion, this probability is given by the area of the hyperspherical cap of a d-dimensional unit
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sphere defined by the angle α (denoted by A
(d)
α∗ , where α∗ := arcsin 1√

4d−3
), divided by the

area of the hemisphere of the d-dimensional unit sphere (denoted by A(d)/2):

P

{
sinα <

1√
4d− 3

}
=

A
(d)
α∗

A(d)/2

=
(A(d)/2)Isin2 α∗

(
d−1

2 , 1
2

)
A(d)/2

= I 1
4d−3

(
d− 1

2
,
1

2

)
= F

(
1

4d− 3

)
,

where the area of A
(d)
α∗ is given by Li (2011), and Ix(a, b) denotes the regularized incomplete

beta function that is also the value of the c.d.f. of the distribution Beta(a, b) evaluated at
the point x.

We are now in a position to show that the leaf diameter of an RP tree converges to zero
in probability. The following theorem verifies the conditions of Theorem 6 and thus proves
consistency of RP trees for ANN search.

Theorem 13 Assume that for the height of a random projection tree holds that ` → ∞
when n → ∞. Then, for any M > 0, the leaf diameter constrained to within [−M,M ]d

converges to zero in probability, i.e.,

P{diam(Rq(X) ∩ [−M,M ]d > δ} → 0

for any δ > 0 as n→∞.

Proof Since nodes cannot grow in size when they are split, it suffices to show the
claim for the partition induced by any intermediate level ˜̀ ≤ `. To this end, define
`′ := min(`, blog2 log2 nc). Denote the nodes of the `′th level of a tree by R1, . . . , R2`′ ,
and the maximum coordinate-wise diameters of their intersections with the hypercube
[−M,M ]d by W1, . . . ,W2`′ , where Wl := V (jmax)(Rl ∩ [−M,M ]d) for each l = 1, . . . , 2`

′
.

Since diam(A) ≤
√
d V (jmax)(A) for any set A, to prove that diam(Rq(X)) converges to zero

in probability, it suffices to show that for any δ > 0, P{Wq(X) > δ} → 0 when n→∞.
Choose ε > 0 and denote the event that no node (again, at the `′th level of a tree) has

a probability mass larger than (1 + ε)/2`
′

by

G :=
2`
′⋂

l=1

{
µ(Rl) ≤

1 + ε

2`′

}
,

where µ(A) := P{X ∈ A} is the probability distribution of X for any measurable set A.
As in the proof of Theorem 11, our strategy is to first handle this case where all the nodes
contain an approximately equal probability mass, and then bound the probability of the
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event GC by applying the Vapnik-Chervonenkis inequality to show the uniform convergence
of the empirical distribution of X to its true distribution in the class of nodes of a random
projection tree of height `′, i.e., in the class of convex polytopes in Rd that have `′ faces.
To this end, we partition the probability of the event of interest as

P{Wq(X) > δ} ≤ P{Wq(X) > δ,G}︸ ︷︷ ︸
I

+P (GC)︸ ︷︷ ︸
II

,

and bound both of these terms separately.

Term I: It follows from Lemma 10 that

P{Wq(X) > δ,G} ≤
E
[
1GWq(X)

]
δ

.

Therefore, it suffices to bound E
[
1GWq(X)

]
, for which we have

E
[
1GWq(X)

]
= E

[
1GE

[
Wq(X) |Z,Dn

]]
= E

1G 2`
′∑

l=1

µ(Rl)Wl


≤ 1 + ε

2`′
E

 2`
′∑

l=1

Wl

 ,
where the first equality holds because 1G is independent of X, and the last inequality follows
from the definition of G.

Consider any node R and its child nodes by Rleft and Rright; denote the intersections
of these node with the hypercube [−M,M ]d by R′, R′left, and R′right, respectively. Lemma
12 provides a lower bound for the probability of the event that the length of either R′left

or R′right is less than or equal to the length of R′ in the coordinate direction where the
original set R′ is longest. More precisely, the probability of this event is greater than or
equal to F ( 1

4d−3), where F is c.d.f. of the random variable B ∼ Beta(d−2
2 , 1

2). Observe that

Cd := F ( 1
4d−3) ∈ (0, 1) is a constant that depends only on the data dimension.

It follows from the rotational invariance of the standard normal distribution that the
random vectors Z and −Z have an equal density. Hence, we can assume that the indices of
the left and the right child node are assigned uniformly at random. Therefore, at any node
Rl on the path from the root, the probability that the diameter of R′l := Rl ∩ [−M,M ]d in
the coordinate direction where it is longest decreases at least by a factor of 3/4 is greater
than or equal to Cd/2. Clearly, if this event occurred d times on any path from the root to
node Rl, then the maximum diameter of the node in any coordinate direction would shrink
at least by a factor of 3/4, i.e., Wl ≤ 3

4 · 2M .

For any node Rl at `′th level of a tree, denote by Kn the number of times the coordinate-
wise diameter of R′l in the coordinate direction where it is longest has shrunk at least by a

factor of 3/4 on the path from the root to Rl. Now, we have EWl ≤ 2M · E
[
(3/4)b

Kn
d
c
]
,

where Kn is a random variable that follows the binomial distribution Bin (`′, p) for whose
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parameter p holds that p ≥ Cd/2. Therefore,

1 + ε

2`′
E

 2`
′∑

l=1

Wl

 =
1 + ε

2`′

2`
′∑

l=1

EWl ≤ 2M(1 + ε)E
[
(3/4)b

Kn
d
c
]
→ 0

when n→∞ (since by the assumption then also `′ →∞).

Term II: Let A be the class of all half-spaces in Rd and let A`′ be the class of all convex
polytopes in Rd that have `′ faces. It holds for the shatter coefficient of the class A that
s(A, n) ≤ 2(n − 1)d + 2 (see, e.g., Corollary 13.1 by Devroye et al. (1996, p. 223)). Since

each A ∈ A`′ can be written as A =
⋂`′

l=1, Al where Al ∈ A for each l = 1, . . . , `′, it follows
from Theorem 13.5 (iii) by Devroye et al. (1996, p. 219) that

s(A`′ , n) ≤ s(A, n)d ≤ nd`′

for a large enough n. If n ≥ 2 · log2 n
ε ≥ 2 · 2`

′

ε , then 1
n ≤

1
2 ·

ε
2`′

. This means that for large
enough n, we have

P (GC) = P

{
∃l s.t. µ(Rl) >

1 + ε

2`′

}
= P

{
∃l s.t. µ(Rl)−

(
1

2`′
+

1

n

)
>

ε

2`′
− 1

n

}
≤ P

{
∃l s.t. µ(Rl)− µn(Rl) >

ε

2`′
− 1

n

}
≤ P

{
∃l s.t. µ(Rl)− µn(Rl) >

ε

2`′+1

}
≤ P

{
sup
R∈A`′

|µ(R)− µn(R)| > ε

2`′+1

}

≤ 8s(A`′ , n) exp

{
− nε2

128 · 22`′

}
≤ 8nd`

′
exp

{
− nε2

128 · 22`′

}

(20)

when n→∞ since `′ ≤ log2 log2 n by definition. The first inequality on the right hand side
of (17) follows because for the empirical measure—denoted by µn(A) := 1

n

∑n
i=1 1A(Xi) for

any measurable set A—of any leaf Rl it holds that µn(Rl) ≤ 1
2`
′ + 1

n . The fourth inequality
follows from the Vapnik-Chervonenkis inequality (Vapnik and Chervonenkis, 1971); we use
the version presented in Theorem 12.5. by Devroye et al. (1996, p. 197-198).

7.3.2 The sparse case

In a sparse RP tree, proposed by Hyvönen et al. (2016), the non-zero coordinate directions
of a random vector Z = (Z1, . . . , Zd) are first selected by sampling the binary random
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variables B1, . . . , Bd from a Bernoulli(a)-distribution with a sparsity parameter 0 < a ≤ 1.
The components of the random vector are then generated as

Zj |Bj ∼

{
N(0, 1), if Bj = 1

0, otherwise
(21)

for each j = 1, . . . , d. Like a dense RP tree, a sparse RP tree is grown as in Algorithm 3.

Another version of a sparse RP tree can be obtained by sampling dade coordinate direc-
tions uniformly at random from the set {1, . . . , d} without replacement, and letting Bj = 1
for these directions while letting Bj = 0 for the remaining d− dade directions; the random
vector Z is then generated as in (21). There is little practical difference between these
two randomization methods when the data dimension d is high—as it usually is in the
applications of ANN search12.

A result analogous to Lemma 12 also holds for sparse RP trees.

Lemma 14 Let R be a node of the sparse RP tree where the indicators for non-zero coor-
dinate directions are sampled as B1, . . . , Bd ∼ Bernoulli(a) for any 0 < a ≤ 1. Denote the
child nodes of R by Rleft and Rright, and the intersections of these nodes with the hypercube

[−M,M ]d by R′, R′left, and R′right, respectively. Further, denote V (j) := V (j)(R′), V
(j)

left :=

V (j)(R′left), and V
(j)

right := V (j)(R′right). It holds for the coordinate direction j := jmax(R′)
that

P

{
V

(j)
left ≤

3

4
V (j) or V

(j)
right ≤

3

4
V (j)

}
≥ 1

2
aF

(
1

4dade+ 1

)
,

where F is the c.d.f. of a random variable following the beta distribution Beta
(
d−1

2 , 1
2

)
.

Proof Denote the event of interest by

A :=

{
V

(j)
left ≤

3

4
V (j) or V

(j)
right ≤

3

4
V (j)

}
.

The jth coordinate direction must be among the non-zero coordinate directions of the
random vector for the length of the node in that direction to be affected. The probability
of this event is P{Bj = 1} = a. Thus,

P (A) = P{A,Bj = 1} = aP{A |Bj = 1}.

We provide a lower bound for the conditional probability P{A |Bj = 1} by considering the

case in which the total number of non-zero coordinate directions, denoted by B :=
∑d

i=1Bi,
is no more than dade+ 1:

P{A |Bj = 1} ≥ P{A,B ≤ dade+ 1 |Bj = 1}
= P{A |B ≤ dade+ 1, Bj = 1}P{B ≤ dade+ 1 |Bj = 1}.

(22)

12. In the experimental section of this article, we use the first version.
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First, we provide a lower bound for the second term on the right hand side of (22). Denote
by B−j =

∑
i 6=j Bi the sum of all but the jth indicator for the non-zero coordinate directions.

Since B1, . . . , Bd are independent,

P {B ≤ dade+ 1 |Bj = 1} = P{B−j ≤ dade}

≥ P{B−j ≤ da(d− 1)e} ≥ 1

2
.

The last inequality follows because B−j ∼ Bin(d − 1, a), and for the median m(X) of
the binomially distributed random variable X holds that m(X) ≤ dEXe (see Kaas and
Buhrman, 1980).

Finally, the proof is completed by applying the argument of Lemma 12 to the (dade+1)-
dimensional subspace containing the non-zero coordinate directions to obtain the lower
bound

P{A |B ≤ dade+ 1, Bj = 1} ≥ F
(

1

4dade+ 1

)
for the first term on the right hand side of (22).

We can also prove the consistency of sparse RP trees as in Theorem 13 by verifying the
condition Theorem 6, i.e., verifying that the leaf diameter converges to zero as the sample
sizes grows to infinity.

Theorem 15 Assume that for the height of a sparse RP tree where the non-zero coordinate
directions are sampled from Bernoulli(a) for any 0 < a ≤ 1 holds that `→∞ when n→∞.
Then, for any M > 0, the leaf diameter constrained to within [−M,M ]d converges to zero
in probability, i.e.,

P{diam(Rq(X) ∩ [−M,M ]d > δ} → 0

for any δ > 0 as n→∞.

Proof As the proof of Theorem 13 but apply Lemma 14 instead of Lemma 12.

Remark 16 The above results (Lemma 14 and Theorem 15) apply to the variant of sparse
RP trees where the non-zero coordinate directions are sampled from Bernoulli(a) for any 0 <
a ≤ 1. In the variant of an sparse RP tree where the dade non-zero coordinate directions are
sampled uniformly at random without replacement, a lower bound corresponding to Lemma

14 and Lemma 12 can be obtained as aF
(

1
4dade−3

)
. The consistency of this variant can

then be established as in Theorem 13 and Theorem 15 by applying this lower bound.

8. Experiments

In this section, we present empirical results validating the utility of the proposed framework.
In particular, we compare the natural classifier to the earlier candidate set selection methods
(lookup search and voting search) when combined with different types of unsupervised trees
that have been widely used for ANN search. Specifically, we use ensembles of randomized
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k-d trees (Friedman et al., 1976; Silpa-Anan and Hartley, 2008), random projection (RP)
trees (Dasgupta and Freund, 2008; Dasgupta and Sinha, 2015; Hyvönen et al., 2016), and
principal component (PCA) trees (Sproull, 1991; Jääsaari et al., 2019) (see Sec. 7.3 and
Appendix B for detailed descriptions of these data structures).

Another consequence of the multilabel formulation of Sec. 3.1 is that it enables using
any established multilabel classifier for ANN search. To demonstrate this concretely, we
train a random forest consisting of standard multilabel classification trees (trained under the
PAL reduction (Reddi et al., 2019) by using multinomial log-likelihood as a split criterion)
and use it as an index structure for ANN search; it turns out that the fully supervised
classification trees have an improved performance compared to the earlier unsupervised
trees on some—but, curiously, not on all—data sets.

We follow a standard ANN search performance evaluation setting (Aumüller et al.,
2019a; Li et al., 2019) by using the corpus as the training set, searching for k = 10 near-
est neighbors in Euclidean distance, and measuring performance by evaluating average
recall and query time over the test set of 1000 points. We use four benchmark data sets:
Fashion (m = 60000, d = 784), GIST (m = 1000000, d = 960), Trevi (m = 101120,
d = 4096), and STL-10 (m = 100000, d = 9216). All the algorithms are implemented
in C++ and run using a single thread. We tune the hyperparameters by grid search and
plot the Pareto frontiers of the optimal hyperparameters. Further details of the experi-
mental setup are found in Appendix A. The code used to produce the experimental results
is attached as supplementary material and can also be found at https://github.com/

vioshyvo/a-multilabel-classification-framework.

8.1 Comparison of candidate set selection methods

The candidate set selection method proposed in this article is the natural classifier (Algo-
rithm 2). The earlier methods are lookup search and voting search (Hyvönen et al., 2016;
Jääsaari et al., 2019). We first compare the averages of precision

Prec(S(x)) :=
|NNk(x) ∩ S(x)|

|S(x)|

and recall (2) of the candidate sets selected by the different methods. The results are shown
in Fig. 4. We plot the Pareto frontiers with the optimal hyperparameters. Lookup search
requires the largest candidate set to reach a given recall level in every case, and the natural
classifier requires the smallest candidate set in every case, except for the RP trees on Fashion
data set (and for the RP trees and PCA trees on the highest recall levels on GIST data
set) where voting search reaches higher precision. Since the exact k-nn search time in the
candidate set is approximately linear w.r.t. the candidate set size, a smaller candidate set
at a given recall level leads to faster ANN queries at that recall level.

However, the query times depend also on the time it takes to select the candidate set.
Thus, we follow the standard method (see, e.g., Aumüller et al., 2019a) of comparing the
actual query times of different candidate set selection methods at different recall levels. The
results are shown in Fig. 5 as the Pareto frontiers with the optimal hyperparameters (recall
on the x-axis and query time on the y-axis). The results indicate that, as the discussion of
Sec. 5 suggests, the natural classifier performs better than the earlier lookup-based methods
for all types of trees; this finding holds consistently over all four data sets.
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Figure 4: Recall (x-axis) vs. precision (y-axis) of ensembles of, RP, k-d, and PCA trees.
The Pareto frontiers with the optimal hyperparameter combinations are shown.
The solid blue line is the natural classifier proposed in this paper; the dashed
green line is voting; and the dash-dotted red line is lookup search. The natural
classifier has the highest precision at a given recall level in every case, expect
with RP trees on the Fashion data set and on high recall levels on the GIST data
set where voting search has the highest precision at a given recall level. Lookup
search has the lowest precision at a given recall level in every case.
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Figure 5: Recall (x-axis) vs. query time (y-axis; on the log scale) of ensembles of, RP,
k-d, and PCA trees. The solid blue line is the natural classifier proposed in this
paper; the dashed green line is voting; and the dash-dotted red line is lookup
search. The natural classifier is the fastest method and the lookup search is the
slowest method for each tree type.

8.2 Comparison of tree types

We compare the aforementioned ensembles of unsupervised (RP, KD, and PCA) trees and
the random forest consisting of supervised classification trees (RF); for all four tree types
the candidate set is selected by the natural classifier (Algorithm 2). The results are shown
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in Table 2. Since the random forest (RF) leverages supervised information to learn the
trees, we would expect that it is the fastest tree-based method. Indeed, this is the case
on Fashion and GIST. However, on STL-10 and Trevi, the unsupervised PCA tree is the
fastest method. We hypothesize that this is because of the high dimensionality of STL-
10 and Trevi: standard supervised classification trees employed by the random forest are
restricted to axis-aligned splits, whereas PCA trees—although they use an unsupervised
split criterion—can find more informative oblique split directions. An interesting topic for
future work would be to apply supervised classification trees that can utilize oblique split
directions.

Table 2: Query times (seconds / 1000 queries) at different recall levels for the different tree
types. The fastest method in each case is typeset in boldface.

data set R (%) PCA KD RP RF

80 0.075 0.076 0.099 0.063
Fashion 90 0.111 0.126 0.172 0.095

95 0.163 0.171 0.261 0.146

80 1.330 0.958 1.009 0.705
GIST 90 2.942 2.286 2.226 1.530

95 5.641 4.451 4.598 3.253

80 0.382 0.872 1.211 0.756
STL-10 90 0.756 2.126 3.248 1.774

95 1.315 4.376 7.330 3.654

80 0.330 0.543 0.591 0.582
Trevi 90 0.684 1.464 1.468 1.234

95 1.212 3.244 3.289 2.350

9. Conclusion

We establish a general theoretical framework for ANN search by formulating the candidate
set selection as a multilabel learning task. The empirical results validate the utility of the
proposed framework: the natural classifier derived directly from the multilabel formulation
is a strict improvement over the earlier candidate set selection methods. In addition, we
provide a sufficient condition that guarantees the consistency of a partitioning classifier for
ANN search. We verify this condition for chronological k-d trees and (both dense and sparse)
random projection trees: given enough training data, these trees retrieve the candidate set
that contains all the k nearest neighbors of the query point and no other corpus points.

9.1 Limitations

Supervised ANN search methods typically have longer pre-processing times compared to
the unsupervised methods. This is, first, because they require the computation of the true
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nearest neighbors {yi}ni=1 of the training set points {xi}ni=1; and, second, because supervised
index structures are often slower to build compared to their unsupervised counterparts (see
Appendix C.1). If fast index construction is required, the second issue can be mitigated by
learning the trees in an unsupervised fashion, and then using them as partitioning classifiers
as described in Sec. 4. The experiments of Sec. 8 suggest that the candidate set selection
method has a more pronounced effect on the performance than the tree type.

9.2 Future research directions

An important consequence of the proposed framework is that it enables the use of any type
of classifier as an index structure for ANN search. In particular, the gradient boosted trees
model (Friedman, 2001) appears a promising candidate since it is often more accurate than
the random forest that we applied in this article. Extreme classification models, including
tree-based models (Agrawal et al., 2013; Prabhu and Varma, 2014; Jain et al., 2016), sparse
linear models (Babbar and Schölkopf, 2017, 2019; Yen et al., 2017), and embedding-based
neural networks (Guo et al., 2019), are also promising model candidates for ANN search
since they are specifically tailored to multilabel classification problems with extremely large
label spaces.

The proposed multilabel formulation enables analyzing ANN search in the statistical
learning framework, thus opening up multiple theoretical research questions: (1) Can we
establish a sufficient condition for strong consistency? (2) Can we prove consistency of
more adaptive partitioning classifiers, such as PCA trees or classification trees? (3) Can we
establish faster than logarithmic convergence rates? The last question is especially inter-
esting, since prediction times of trees are logarithmic: a positive answer would theoretically
justify decreasing query times by increasing the training set size.
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Appendix A. Experimental setup

We have included the code used to produce the experimental results in the companion
repository of this article13. In this section, we describe the computing environment, data
sets, and hyperparameter tuning process used in the experiments.

A.1 Computing environment

The experiments were ran on a machine with two Xeon E5-2680 v4 2.4GHz processors,
256GB RAM and CentOS 7 as the operating system. All queries were ran using only a
single thread. The algorithms and test code were written in C++14 and compiled using
GCC 5.4.0 with the optimization flags -Ofast and -march=native.

A.2 Data sets

Table 3 contains the specifications of the data sets. We used four publicly available and
commonly used benchmark data sets (Fashion14, GIST15, STL-1016, and Trevi17) consisting
of raw or preprocessed images. We randomly divided the original data sets into the corpus,
the validation set (nvalidation = 1000), and the test set (ntest = 1000). The corpus {ci}mi=1

was used as a training set. Since in the previous benchmarks for ANN search (Aumüller
et al., 2019a; Li et al., 2019) the problem is not considered in the machine learning setting,
they do not use a distinct test set, but present the optimal results on the validation set.
To follow this standard practice, we also present the results on the validation set, but note
that the results were stable between the validation and test sets; there was some random
variability, but we observed no signs of overfitting to the validation set.

Table 3: Data sets used in the experiments

Data set corpus size m dimension d

Fashion 58000 784
GIST 100000 960
STL-10 98000 9216
Trevi 99120 4096

A.3 Hyperparameter settings

The exact hyperparameter grids used in the experiment can be found in the companion
repository18. Here we describe the hyperparameter tuning process.

According to our initial experiments, the performance of each type of a tree was robust
w.r.t. its sparsity/randomization parameter (the number of the uniformly at random chosen

13. https://github.com/vioshyvo/a-multilabel-classification-framework

14. https://github.com/zalandoresearch/fashion-mnist

15. http://corpus-texmex.irisa.fr

16. https://cs.stanford.edu/~acoates/stl10

17. http://phototour.cs.washington.edu/patches

18. https://github.com/vioshyvo/a-multilabel-classification-framework
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coordinate directions a ∈ {1, . . . , d} from which the optimal split direction was chosen for
multiclass classification trees; the dimensionality a of the random subspace in which first
principal component was approximated for PCA trees; the expected number a of the non-
zero components in the random vectors onto which the node points are projected in RP
trees; and the number o of the highest variance directions of the node points from which
the split direction was chosen uniformly at random in k-d trees). Therefore, we kept these
parameters fixed in the final experiments: for multiclass classification trees and the PCA
trees we used the value a = d

√
de; for the RP trees the value a = 1/

√
d; and for the k-d

trees the value o = 5. Further, we set the learning rate of the iterative PCA algorithm in
PCA trees to γ = 0.01 and the maximum number of iterations to t = 20.

For the recall levels on the range [0.5, 0.99] considered in the article, the optimal numbers
of trees T were generally on the range [5, 200], the optimal depths of the trees were on the
range [10, 15], and the optimal values of the threshold parameter τ were on the range
[1, 20] for PCA, RP, and k-d trees that use the raw counts as score function values. For
multiclass classification trees that use the probability estimates (7) to select the candidate
set, the optimal values of the threshold parameter τ were on the range [0.00001, 0.005]. We
observed that using a value k′ > k to learn the trees sometimes improved performance. We
tested values k′ ∈ {10, 50, 100} for learning the trees, with k′ = 10 or k′ = 50 usually being
the optimal parameter value when k = 10.

For the other algorithms, we used the same hyperparameters as in ANN-benchmarks19

as a starting point, and in many cases used even larger grids to ensure that the optimal
hyperparameter settings were found.

Appendix B. Data structures

In this section we review the types of trees considered in this article (see B.1–B.4 below).
Random projection, PCA, k-d trees and chronological k-d trees have been widely used for
ANN search (see, e.g., (Silpa-Anan and Hartley, 2008; Muja and Lowe, 2014; Dasgupta and
Sinha, 2015; Jääsaari et al., 2019)), whereas the multiclass classification tree is a standard
data structure for classification. For completeness, we include the full descriptions of the
algorithms20 here.

We begin by motivating the natural classifier (9) from the point of view of the multilabel
problem reductions (see Reddi et al. (2019); Menon et al. (2019)). First note that since
the label set L(X) is a deterministic function of the query point X—which means that
the conditional label probabilities η1(x), . . . , ηm(x) are all equal to either 0 or 1—the Bayes
classifier for 0-1 loss is obtained by thresholding these label probabilities by any τ ∈ [0, 1).
As a corollary, the same holds also for other less strict loss functions, such as precision,
recall, and Hamming loss. This justifies following the common practice of estimating the
conditional label probabilities by reducing the original multilabel classification problem into
a series of binary or multiclass classification problems (Menon et al., 2019).

In the pick-all-labels (PAL) (Reddi et al., 2019) reduction, a separate multiclass obser-
vation is created from each positive label, whereas in in the one-versus-all (OVA) reduction,
each of the m labels is modeled as an independent binary classification problem. Assume

19. https://github.com/erikbern/ann-benchmarks/blob/master/algos.yaml

20. The random projection tree is covered in the main article (see Sec. 7.3) and thus it is not discussed here.
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that the query distribution is continuous. Then, almost surely |L(x)| = k, and thus the max-
imum likelihood estimates for the label probabilities under the PAL and OVA reductions—
i.e., under the multinomial and binomial models, respectively—are θ̂PAL = 1

nk

∑n
i=1 yij and

θ̂OVA = 1
n

∑n
i=1 yij . The two estimates are proportional to each other, θ̂OVA = kθ̂PAL, and

hence, given the partition P, the parameter estimates of the natural classifier (9)—i.e.,
observed label proportions among the training set points in a given partition element—
minimise the log-likelihood under both reductions.

Motivated by the above, we use the natural classifier (9) for prediction in combination
with all tree types. When an ensemble of trees is used as a classifier, we compute the con-
ditional label probability estimates of the ensemble as in (8) by averaging the contributions
of the individual trees.

B.1 Chronological k-d tree

The chronological k-d tree (Bentley, 1975) was the first data structure proposed for speeding
up nearest neighbor search. It rotates the split directions and uses the same split direction
for all the nodes at one level of a tree. At the first level the training data is split at the
median of the first coordinates of the data points. At the second level both nodes are
split at the median of the second coordinates of the node points. At the (d + 1)th level,
the nodes are split again at the median of the first coordinates, and so on (see Algorithm
4). More adaptive version of the k-d tree that splits at the coordinate direction in which
the node points have the highest variance was proposed by Friedman et al. (1976); we
use a randomized version of this adaptive k-d tree (see Sec. B.3 and Algorithm 6) in the
experiments of this article.

Algorithm 4 Grow a chronological k-d tree (Bentley, 1975)

1: Input: a set of node points X, current level `′, maximum height `
2: Output: a node of a tree
3: procedure grow-kd(X, `′, `)
4: if `′ = ` then
5: return X node as a leaf node
6: r̂ ← (`′ modulo d) + 1
7: ŝ← median of the r̂th coordinates of the node points
8: left← grow-kd({xi ∈ X : xir̂ ≤ ŝ}, `′ + 1, `)
9: right← grow-kd({xi ∈ X : xir̂ > ŝ}, `′ + 1, `)

10: return (left, right, r̂, ŝ) as an inner node

B.2 Multiclass classification tree

As discussed at the beginning of the section, the maximum likelihood estimates of the piece-
wise constant model under both the PAL and OVA reductions coincide in the special case
of ANN search. Thus, in principle it would make no difference which one of these reduc-
tions we employed to learn the classification trees. However, in practice computation of the
binomial likelihood requires keeping track of the contributions of the negative labels which
is inconvenient when the label space is large. Thus, we employ the PAL reduction where
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Algorithm 5 Grow a randomized multiclass classification tree

1: Input: a set of node points X, current depth, maximum depth `, sparsity parameter a
2: Output: a node of a tree
3: procedure grow(X, depth, `, a = d

√
de)

4: if depth = ` then
5: return X as a leaf node
6: D ← a random unique dimensions from {1, . . . , d}
7: (maxgain, r̂, ŝ)← (0, 0, 0)
8: N ← |X|
9: for r ∈ D do

10: let s1 ≤ s2 ≤ · · · ≤ sN be the rth coordinate of points x ∈ X sorted in ascending
order

11: for s ∈ {s1, . . . , sN} do
12: Xleft ← {xi ∈ X : xir ≤ s}; Nleft = |Xleft|
13: Xright ← {xi ∈ X : xir > s}; Nright = |Xright|
14: for j ∈ {1, . . . ,m} do

15: v
(left)
j ←

∑
xi∈Xleft

yij

16: v
(right)
j ←

∑
xi∈Xright

yij
17: vj ←

∑
xi∈X yij

18: α̂
(left)
j := v

(left)
j /(kNleft)

19: α̂
(right)
j := v

(right)
j /(kNright)

20: α̂j := vj/(kN)

21: gain←
∑m

j=1 v
(left)
j log α̂

(left)
j +

∑m
j=1 v

(right)
j log α̂

(right)
j −

∑m
j=1 vj log α̂j

22: if gain > maxgain then
23: (maxgain, r̂, ŝ)← (gain, r, s)

24: if maxgain ≤ 0 then
25: return X as a leaf node
26: left← grow({xi ∈ X : xir̂ ≤ ŝ}, depth + 1, `, a)
27: right← grow({xi ∈ X : xir̂ > ŝ}, depth + 1 `, a)
28: return (left, right, r̂, ŝ) as an inner node

each positive label is modeled by a separate multiclass observation, and learn the standard
multiclass classification trees by greedily maximising the multinomial log-likelihood (i.e.,
use the multiclass cross-entropy as a split criterion); see Algorithm 5 for details.

To grow a random forest, we randomize the multiclass classification trees by optimising
the split point only in randomly chosen a = d

√
de coordinate directions at each node of a

tree. We do not use bootstrap samples, but fit each tree to the original training data. To
decrease learning time, we subsample 100 training points at each node (if node size > 100),
and use only this subset to optimize the splits; we did not observe any negative impact on
prediction performance.
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Algorithm 6 Grow a randomized k-d tree (Silpa-Anan and Hartley, 2008)

1: Input: a set of node points X, current level, maximum height `, the number of highest
variances directions from which the split direction is sampled o

2: Output: a node of a tree
3: procedure grow-kd(X, level, `, o = 5)
4: if level = ` then
5: return X as a leaf node
6: D ← set of o coordinate directions in which the node points have the highest variance
7: r̂ ← uniformly at random sampled dimension from the set D
8: ŝ← median of r̂th coordinates of the node points
9: left← grow-kd({xi ∈ X : xir̂ ≤ ŝ}, level + 1, `, o)

10: right← grow-kd({xi ∈ X : xir̂ > ŝ}, level + 1 `, o)
11: return (left, right, r̂, ŝ) as an inner node

B.3 k-d tree

Algorithm 6 details the recursive algorithm for growing a randomized k-d tree. As in
multiclass classification trees, the splits are restricted to the directions of the coordinate
axes. In k-d trees (Friedman et al., 1976) the normal of the splitting hyperplane is chosen
as the coordinate direction r ∈ {1, . . . , d} along which the node points have the highest
variance. The split point ŝ is chosen as the median of the r̂th coordinate of the node points.
To grow an ensemble of randomized trees, we use the randomization scheme proposed by
Silpa-Anan and Hartley (2008): instead of splitting at the direction of the highest variance,
we draw uniformly at random one of the o highest variance directions and use it as a split
direction r̂. We use the default value o = 5 recommended by Muja and Lowe (2014) for this
hyperparameter.

B.4 PCA tree

In a PCA tree (Sproull, 1991), the projection direction at each node is the first principal
component, i.e. the direction the node points have the greatest variance when projected
onto. PCA trees are on the one hand slow to compute, as computing exact PCA is expensive,
and on the other hand they are deterministic and thus multiple trees cannot be grown to
boost accuracy.

To solve the first problem, McCartin-Lim et al. (2012) proposed an approximate PCA
tree, which uses gradient descent updates to approximate the first principal component of
the data at each node of the tree. To address the second problem, Jääsaari et al. (2019)
proposed a sparse approximate PCA tree, which draws at each node of the tree uniformly at
random only a =

√
d dimensions, and computes the approximate first principal component

in the subspace defined by these dimensions.

The gradient descent update for approximate PCA is

rt := rt−1 + γ Cov(Z)rt−1, rt := rt/ ‖rt‖2 ,
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where rt is the projection vector at time t, Z is a matrix containing the data, and γ is the
learning rate which we fix as 0.01. We did not observe further tuning of this hyperparameter
to be necessary.

Algorithm 7 details a recursive algorithm for growing a sparse approximate PCA tree.
Algorithm 8 details the actual approximate PCA algorithm used to find the split direction.
On line 7, the matrix Z is formed by taking the vectors of the current points X as columns
of a matrix and then slicing only the rows (dimensions) that were randomly selected into
the set D on line 6. The sample covariance matrix C is formed from Z on lines 8-9. Lines
10-11 initialize the projection vector from the unit sphere, while lines 12-17 implement the
gradient descent update described above. By default, we do t = 20 iterations of gradient
descent, unless the `1 norm of the projection vector changes by less than ε = 0.01 in a single
iteration.

Algorithm 7 Grow a randomized PCA tree (Jääsaari et al., 2019)

1: Input: a set of node points X, current depth, maximum depth `, sparsity parameter
a, maximum number of iterations t, learning rate γ, threshold parameter ε

2: Output: a node of a tree
3: procedure grow(X, depth, `, a = d

√
de, t = 20, γ = 0.01, ε = 0.01)

4: if depth = ` then
5: return X as a leaf node
6: direction ← pca-generate-split-direction(X, a, t, γ, ε)
7: proj ← project(X, direction)
8: ŝ← median(proj)
9: Xleft ← points in X for which proj ≤ ŝ

10: Xright ← points in X for which proj > ŝ
11: left ← grow(Xleft, depth + 1, `, a, t, γ, ε)
12: right ← grow(Xright, depth + 1, `, a, t, γ, ε)
13: return (left, right, direction, ŝ) as an inner node

Appendix C. Additional experimental results

C.1 Index construction times

The index construction times of the algorithms at the optimal parameters for the recall
levels R = 0.8, 0.9, 0.95 are shown in Table 4. The computation time for finding the nearest
neighbors (i.e., the labels) of the corpus points is not included in the index construction
times, since they are computed only once for each data set; they are found in Table 6 (in
the column ”exact”).

The ensembles of unsupervised trees are relatively fast to build, especially on the high-
dimensional data sets: on STL-10, PCA trees have the fastest query times, and are an order
of magnitude faster to train compared to the graph and quantization methods.

The multiclass classification trees (RF) are slower to train compared to the unsupervised
(PCA, KD, and RP) trees. We expect that their training times could be decreased by
standard techniques, such as using weighted quantile sketches (Greenwald and Khanna,
2001; Zhang and Wang, 2007; Chen and Guestrin, 2016) when optimizing the split points.
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Algorithm 8 Generate projection vector for a randomized PCA tree (Jääsaari et al., 2019)

1: Input: a set of node points X, sparsity parameter a, maximum number of iterations t,
learning rate γ, threshold parameter ε

2: Output: an approximate first principal component p in a-dimensional subspace; ob-
serve that p has only a nonzero components.

3: procedure pca-generate-split-direction(X, a, t, γ, ε)
4: N ← |X|
5: initialize d-dimensional vector p with zeros
6: D ← a random unique dimensions from 1, . . . , d
7: Z ← points in X with all components but those in D removed
8: M ← Z(IN − 1

N 11T)ZT

9: C ← 1
N−1MMT

10: r ← Xa(0, I)
11: r ← r/‖r‖2
12: for i ∈ {1, . . . , t} do
13: r′ ← r
14: r ← r + γCr
15: r ← r/‖r‖2
16: if ‖r − r′‖1 < ε then
17: break
18: j ← 1
19: for i ∈ D do
20: p[i]← r[j]
21: j ← j + 1

22: return p

Table 4: Index building time (seconds) at optimal parameters. The fastest time for each
recall level is typeset in bold.

data set R (%) PCA KD RP RF ANNOY HNSW IVF-PQ

80 2.014 0.929 1.298 14.422 1.244 1.518 5.867
Fashion 90 1.621 1.500 1.284 25.591 11.564 1.690 5.867

95 1.847 2.208 1.925 45.683 11.564 1.518 5.867

80 27.732 27.162 30.520 131.430 16.349 19.114 13.031
GIST 90 30.313 36.664 56.624 300.340 62.931 21.560 13.031

95 30.313 49.707 48.056 300.340 8.319 26.456 13.031

80 4.497 25.426 12.204 316.790 32.036 93.393 92.577
STL-10 90 8.891 30.814 12.145 647.320 489.482 132.500 92.577

95 7.918 28.286 12.145 466.520 489.480 201.070 92.577

80 4.900 11.158 10.185 420.250 141.794 60.044 43.520
Trevi 90 18.937 13.886 10.169 420.250 141.790 60.044 43.520

95 18.937 12.432 11.261 420.250 141.790 60.044 43.520
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C.2 Comparison to graph and quantization methods

To empirically justify studying partition-based ANN algorithms, we also include in the
comparison Hierarchical Navigable Small World (HNSW) (Malkov and Yashunin, 2018)
graphs and Inverted File Product Quantization (IVF-PQ) Jegou et al. (2010), that were
the fastest graph-based and the fastest quantization-based algorithm, respectively, according
to ANN-benchmarks (Aumüller et al., 2019a) project at the time of its publication21. For
completeness, we also include the commonly-used tree-based method ANNOY22 in the
comparison. See Table 2 for the results. We emphasize that this is not a benchmark article
with the goal of proposing a single ANN algorithm and demonstrating its superiority over
the competition—rather, we aim to establish a widely applicable theoretical framework for
partition-based ANN search.

Table 5: Query times (seconds / 1000 queries) at different recall levels for the different tree
types. The fastest method in each case is typeset in boldface.

data set R (%) PCA KD RP RF ANNOY HNSW IVF-PQ

80 0.075 0.076 0.099 0.063 0.193 0.064 0.266
Fashion 90 0.111 0.126 0.172 0.095 0.296 0.089 0.291

95 0.163 0.171 0.261 0.146 0.419 0.097 0.340

80 1.330 0.958 1.009 0.705 2.525 0.524 0.872
GIST 90 2.942 2.286 2.226 1.530 5.973 0.819 2.037

95 5.641 4.451 4.598 3.253 7.477 1.212 2.657

80 0.382 0.872 1.211 0.756 21.110 1.473 6.140
STL-10 90 0.756 2.126 3.248 1.774 24.826 2.717 6.860

95 1.315 4.376 7.330 3.654 35.459 3.963 6.860

80 0.330 0.543 0.591 0.582 5.259 0.705 1.677
Trevi 90 0.684 1.464 1.468 1.234 9.921 1.202 1.892

95 1.212 3.244 3.289 2.350 17.172 1.896 2.655

C.3 Training classifiers with noisy labels

The disadvantage of the supervised ANN search algorithms compared to the purely unsu-
pervised algorithms is that they require computing the true nearest neighbors {yi}ni=1 of
the training set points {xi}ni=1, which is an O(nmd) operation. This is not a problem for
the benchmark data sets used in this article—for the largest data set (STL-10, n = 98000,
m = 98000, d = 9216), computing the ground truth took 50 minutes on a single machine—
but in the typical applications of ANN search the corpus size may be hundreds of millions
or even billions.

21. As of May 2022, the fastest graph-based method is NGTQG (https://github.com/yahoojapan/NGT/
blob/master/bin/ngtqg/README.md), the fastest quantization-based algorithm is SCANN (Guo et al.,
2020) (see http://ann-benchmarks.com/index.html for updated results).

22. https://github.com/spotify/annoy
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Figure 6: Recall vs. query time (log scale) of a random forest trained with different amounts
of label noise on the Fashion data set. RF-100% is the random forest trained using
the exact k-nn matrix, RF-90% is the random forest trained using approximate
k-nn matrix with that contains on average 90% of the correct neighbors, etc. Al-
lowing 10% noise in labels has no visible effect on performance, and even allowing
50% noise has very little effect.

The labels used to train the classifier do not have to be exact. We can also compute the
approximate nearest neighbors of the training set {xi}mi=1 and use them as labels {yi}mi=1 to
train the classifier. For instance, using approximate nearest neighbors computed at average
recall level of 90% amounts to using noisy labels with 10% noise.

To test how the noisy labels affect the performance, we fit the random forest to training
sets with 10%, 20%, 30%, 40%, and 50% label noise. The noisy labels are obtained by
running the MRPT algorithm (Hyvönen et al., 2016) (i.e., an ensemble of RP trees where
the candidate set is selected by voting) in combination with the automatic hyperparameter
tuning algorithm (Jääsaari et al., 2019) to find the approximate nearest neighbors of the
training set points with recall levels 90%, 80%, 70%, 60%, and 50%, respectively.

The results (c.f. Fig 6) indicate that tree-based classifiers are robust with respect to
label noise: training the random forest with 10% label noise has no visible effect on the
performance of the algorithm, and even training on labels with 50% noise has very little
effect.

Computing times for exact and approximate nearest neighbors for the training set are
found on Table 6 for all the four data sets. The results indicate that significant savings in
preprocessing time can be obtained by using noisy labels: for instance, on STL-10 computing
the exact computation took 50 minutes, whereas the approximate computation took only
1-10 minutes depending on the recall level.
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Table 6: Computation times for exact (brute force) and noisy (MRPT algorithm) labels in
seconds. The percentage is the average number of correct approximate nearest
neighbors.

data set exact 95% 90% 70% 50%

Fashion 105.8 5.6 3.1 1.8 1.0
GIST 371.7 92.7 61.9 20.2 10.0
Trevi 1450.2 118.6 104.4 31.4 24.1
STL-10 2992.7 596.3 409.0 97.2 66.5
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Figure 7: Recall vs. query time (log scale) and two-dimensional projections of the corpus
and query points. The blue points are corpus points drawn from U(−10, 10)
and the orange points are query points that are drawn from N(0, σ2I), where
σ ∈ {1, 2.5, 5}. The performance difference between the random forest fit to the
sample from the query distribution (RF-CLASS) compared to the random forest
fit to the corpus (RF-CLASS corpus) is greater for the more concentrated query
distributions.

C.4 Mismatch between the query distribution and the corpus distribution

An additional strength of the proposed framework is that it directly handles a situation
where the query distribution differs from the corpus distribution. We explore the effect
of the difference between the corpus distribution and the query distribution by generating
three synthetic data sets with varying degrees of concentration of the query distribution.
The corpus {cj}mj=1 is always a set of 100 000 points is drawn from the 500-dimensional
uniform distribution on the interval (−10, 10). The training set of {xi}ni=1 of 100 000 points
and a test set of 100 query points are drawn from the 500-dimensional normal distribution
N(0, σ2I), with standard deviations σ = 1, 2.5, 5, respectively.

In all three cases, we fit a multilabel random forest by both using the corpus {cj}mj=1 as
a training set, and by using {xi}ni=1—i.e., a sample from the actual query distribution—as
a training set. We use the natural classifier (Algorithm 2) to select the candidate set in
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both cases, and test the performance on the test set that is drawn from the actual query
distribution.

The results and the two-dimensional projections of samples from the corpus distribution
and the query distribution can be found in Figure 7. The more concentrated the query
distribution, the greater the performance difference between the model trained using a
training set from the query distribution (RF-CLASS), and the model trained using the
corpus as a training set (RF-CLASS (corpus)). When the query distribution is close to the
corpus distribution (σ = 5), their performance is almost equal. This demonstrates that the
proposed framework enables adapting an index structure to the actual query distribution,
assuming that a training set from the query distribution is available.
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