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Abstract

We propose an adjusted Wasserstein distributionally robust estimator—based on a non-
linear transformation of the Wasserstein distributionally robust (WDRO) estimator in
statistical learning. The classic WDRO estimator is asymptotically biased, while our ad-
justed WDRO estimator is asymptotically unbiased, resulting in a smaller asymptotic mean
squared error. Further, under certain conditions, our proposed adjustment technique pro-
vides a general principle to de-bias asymptotically biased estimators. Specifically, we will
investigate how the adjusted WDRO estimator is developed in the generalized linear model,
including logistic regression, linear regression, and Poisson regression. Numerical experi-
ments demonstrate the favorable practical performance of the adjusted estimator over the
classic one.

Keywords: distributionally robust optimization; asymptotic normality; Wasserstein dis-
tance; unbiased estimator; generalized linear model

1. Introduction

Wasserstein distributionally robust optimization (WDRO) has appeared as a promising tool
to achieve “robust” decision-making (Mohajerin Esfahani and Kuhn, 2018; Blanchet and
Murthy, 2019; Gao and Kleywegt, 2022). WDRO has attracted intense research interest in
the past few years. It is well-known that WDRO admits tractable reformulations (Moha-
jerin Esfahani and Kuhn, 2018) and has a powerful out-of-sample performance guarantee
(Gao, 2022). People also have been actively exploring its applications in financial port-
folio selection (Blanchet et al., 2022a), statistical learning (Chen and Paschalidis, 2018;
Shafieezadeh-Abadeh et al., 2019), neural networks (Sinha et al., 2018), automatic control
(Yang, 2020), transportation (Carlsson et al., 2018), and energy systems (Wang et al., 2018),
among many others.

WDRO can be applied in statistical learning (Chen and Paschalidis, 2018; Kuhn et al.,
2019; Nguyen et al., 2022). In general, the statistical learning model can be written as the
following optimization problem:

min
β∈B

EP∗ [L(f(X, β), Y )] ,
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where X ∈ Ω ⊂ Rd denotes the feature variable, Ω is a convex set, Y denotes the response
variable, P∗ is the true data-generating distribution of (X, Y ), f(·, β) is the hypothesis
function parameterized by β ∈ B ⊂ Rd, B is a compact convex set, and L is the loss
function. Considering the true data-generating distribution P∗ is usually unknown, the
empirical risk minimization can be applied to estimate the ground-truth hypothesis function
f(·, β∗) parameterized by β∗ 6= 0. However, the empirical risk minimization estimators are
sensitive to perturbations and suffer from overfitting (Smith and Winkler, 2006; Shalev-
Shwartz and Ben-David, 2014). To obtain robust estimators with desirable generalization
abilities, distributionally robust optimization is proposed, which minimizes the worst-case
expected loss among an ambiguity set U of distributions. In this paper, we are interested in
the Wasserstein ambiguity set, and then the resulting problem is the so-called Wasserstein
distributionally robust optimization. The Wasserstein ambiguity is defined as the ball
centered at the empirical distribution Pn and contains all distributions close to Pn in the
sense of the Wasserstein distance. We denote the WDRO estimators—the solutions to the
WDRO problem—by βDROn . More details will be stated in Section 4.

The asymptotic distribution of the WDRO estimator βDROn can be obtained under
certain regularity conditions. However, the associated convergence results imply that the
WDRO estimator βDROn has an asymptotic bias. From the perspective of parameter estima-
tion, the asymptotic bias indicates an inaccurate estimation of the ground-truth parameter
β∗. Inspired by this phenomenon, we provide a general adjustment technique to de-bias the
asymptotically biased estimators. The asymptotic behavior of the asymptotically biased
estimator under different transformations is also discussed.

We obtain the adjusted WDRO estimator, denoted by βADROn , by applying the pro-
posed adjustment technique to the WDRO problem. It will be shown that the adjusted
WDRO estimator βADROn could be computed exactly simply using the given samples and
the value of the classic WDRO estimator βDROn , making it convenient to apply the proposed
technique. Also, the existence and the asymptotic unbiasedness of the adjusted WDRO es-
timator βADROn could be promised under mild conditions, enabling broad applications of
the proposed technique. In addition, since the proposed adjusted WDRO estimator βADROn

is transformed from the classic WDRO estimator βDROn , the out-of-sample guarantee of the
WDRO estimator βDROn could promise the generalization capacity of the proposed adjusted
WDRO estimator βADROn .

Since the generalized linear model includes multiple widely-used regression models and
is easy to interpret and implement, we will articulate how to apply the adjustment strategy
in the setting of the generalized linear model, including linear regression, logistic regression,
and Poisson regression. Then, we carry out the numerical experiments in the generalized
linear model. Our numerical experiments illustrate that the proposed estimator βADROn has
a superior performance even if the sample size is not very large.

1.1 Related Work

We review the existing work related to the proposed adjusted WDRO estimator. WDRO is
broadly applied to solve parameter-estimation problems (Kuhn et al., 2019; Shafieezadeh-
Abadeh et al., 2019; Aolaritei et al., 2022; Nguyen et al., 2022). Multiple algorithms have
been developed (Li et al., 2019; Luo and Mehrotra, 2019; Blanchet et al., 2022c) and can be
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applied to compute the estimators in the WDRO framework. While intense work focuses
on adapting WDRO to different machine learning problems, deriving the tractable reformu-
lations, and solving the WDRO problems efficiently, people have begun to investigate the
statistical properties of WDRO estimators in recent few years, e.g., Blanchet et al. (2021,
2022b); Xie and Huo (2024), evaluating the behavior of WDRO through the lens of statis-
tics. Notably, the asymptotic distribution of the WDRO estimator has been proven to be
normal and has an asymptotic bias (Blanchet et al., 2022b). In this paper, we propose a
nonlinear transformation to overcome this shortcoming. It will be shown that the estimator
obtained from the nonlinear transformation has an asymptotically smaller mean squared
error, indicating the proposed estimator is more accurate in the asymptotic sense. In the
literature of WDRO, the generalization bounds, i.e., the upper confidence bounds on the
out-of-sample loss, have been established to guarantee the out-of-sample performance of
the WDRO estimator (Mohajerin Esfahani and Kuhn, 2018; Shafieezadeh-Abadeh et al.,
2019; Gao, 2022). Since the proposed adjusted WDRO estimator is transformed from the
classic WDRO estimator, we can also develop the generalization bounds for the associated
adjusted WDRO estimator.

1.2 Organization of this Paper

The remainder of this paper is organized as follows. In Section 2, we introduce the ad-
justment technique that could de-bias the general asymptotically biased estimators under
certain conditions. In Section 3, we discuss the asymptotic behavior of the WDRO prob-
lem. In Section 4, we give the formulation of the adjusted WDRO estimator in statistical
learning. In Section 5, we show how to develop the adjusted WDRO estimators in the
generalized linear model. Numerical experiments are conducted and analyzed in Section 6.
The proofs are relegated to the appendix whenever possible.

2. Adjustment Technique

In this section, we first discuss the properties of transformations on the asymptotically bi-
ased estimators, based on which we provide a general strategy to de-bias the asymptotically
biased estimators under certain conditions. The proposed adjustment technique will be
further illustrated in detail in the WDRO setting in Section 4.

Suppose the estimator βn ∈ Rd is obtained by the following parameter-estimation pro-
cedure:

βn ∈ arg min
β
l(Pn, β),

where l is the loss and depends on the empirical distribution Pn and parameter β. Also,
suppose that the estimator βn has the following convergence in distribution:

√
n(βn − β∗)⇒ N (f(β∗), D), (1)

where ⇒ means “converge in distribution”, D ∈ Rd×d is the asymptotic covariance matrix,
f : Rd 7→ Rd and β∗ ∈ Rd is the ground-truth parameter. We focus on the scenario when
f 6= 0.

For the estimator βn with the limiting distribution in (1), our goal is to look for some
(deterministic) transformation φn to obtain a more accurate estimation of β∗ in the asymp-
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totic sense. The following proposition states that the “best” transformations have a unique
formulation.

Proposition 1 Suppose βn is an estimator of ground-truth parameter β∗ and has the fol-
lowing convergence in distribution:

√
n(βn − β∗)⇒ N (f(β∗), D),

where f is differentiable at some neighborhood B(β∗) of β∗. Assume the transformation
φn is differentiable at B(β∗) and satisfies φn(β) → φ(β) and φ′n(β) → φ′(β) for every β
in B(β∗), where φ is differentiable, and φ′n and φ′ are the gradients of φn and φ. Under
this assumption, the least asymptotic mean squared error of φn(βn) is tr(D), which can be
achieved if and only if the transformation φn has the following formulation

φn(β) = β − 1√
n
g(β) + o

(
1√
n

)
, (2)

where g is some differentiable function at B(β∗) satisfying g(β∗) = f(β∗), resulting in the
following convergence in distribution:

√
n(φn(βn)− β∗)⇒ N (0, D).

Proposition 1 demonstrates that for the asymptotically biased estimator βn, the trans-
formation φn should take the formulation (2) to achieve the least asymptotic mean squared
error tr(D). Meanwhile, the resulting estimator φn(βn) is asymptotically unbiased.

The transformation φn in the formulation (2) is desirable, and one can simply let g = f
to define the transformation φn in (2). However, the function f is usually unknown. For
example, in the limiting distribution of the WDRO estimator, f depends on the unknown
ground-truth data-generating distribution. In this regard, the function f should be approx-
imated accordingly.

Suppose we have a sequence of (stochastic) functions fn to approximate the function f .
Our adjustment transformation is defined in terms of fn and based on the formulation of
φn shown in (2). Certain conditions should be imposed to fn to promise that the estimator
obtained by our adjustment transformation is asymptotically unbiased and could have the
asymptotic mean squared error tr(D). More details are described in Assumption 2 and
Theorem 3.

Before introducing Theorem 3, we state our assumptions of functions fn.

Assumption 2 Given function f , fn and β∗, we assume that

• The function fn is differentiable at some neighborhood B(β∗) of β∗.

• The sequence supβ∈B(β∗) ‖f
′
n(β)‖ is bounded in probability.

• fn(β∗)→p f(β∗), where →p means “converge in probability”.

Equipped with Assumption 2, we give our main result in the following theorem.
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Theorem 3 (Adjustement Technique) Suppose βn is an estimator of ground-truth pa-
rameter β∗ and has the following convergence in distribution:

√
n(βn − β∗)⇒ N (f(β∗), D),

where f is differentiable at some neighborhood B(β∗) of β∗. If we have the function fn
satisfying Assumption 2 and the transformation An defined by

An(βn) = βn −
1√
n
fn(βn),

then we have that √
n (An(βn)− β∗)⇒ N (0, D). (3)

The convergence (3) in Theorem 3 demonstrates that the proposed adjusted estima-
tor An(βn) is asymptotically unbiased and the asymptotic covariance matrix remains un-
changed, resulting in a smaller asymptotic means square error tr(D), which is the least
asymptotic mean squared error stated in Proposition 1. In this regard, to de-bias the
asymptotically biased estimators, one only needs to have a sequence of functions fn satis-
fying Assumption 2.

2.1 Sequential Delta Method

Notice that the transformations φn discussed in Proposition 1 depend on n. In this way,
when we discuss the asymptotic distribution of φn(βn), the classic delta method is not
applicable. To resolve this issue, we have developed a sequential delta method based on
the extended continuous mapping theorem, seeing Theorem 1.11.1 in Van der Vaart and
Wellner (1996). The sequential delta method may have an independent research interest,
so we state it in the following theorem.

Theorem 4 (Sequential Delta Method) Let φn and φ : D ⊂ Rd 7→ Rd be functions
defined on a subset of Rd. Suppose φn and φ are differentiable at the neighborhood B(ϑ) ⊂ D
of ϑ ∈ D, and φn(θ) → φ(θ) and φ′n(θ) → φ′(θ) hold for every θ ∈ B(ϑ), where φ′ and φ′n
are gradients of the functions φ and φn. Let Tn be random vectors taking their values in D.
If rn(Tn − ϑ)⇒ N (µ,Σ) for numbers rn →∞, then we have that

rn(φn(Tn)− φn(ϑ))⇒ N (φ′(ϑ)µ, φ′(ϑ)Σφ′(ϑ)
>

).

3. WDRO Problem

This section discusses the problem formulation of WDRO and gives the asymptotic distri-
bution of the WDRO estimator.

3.1 Problem Formulation

The WDRO problem can be written as

βDROn ∈ arg min
β∈B

sup
P∈Uρn (Pn)

EP [L(f(X, β), Y )] , (4)
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where the feature variable X belongs to the convex set Ω ⊂ Rd, the response variable Y can
be continuous or discrete, f is the hypothesis function parametrized by β ∈ B ⊂ Rd, B is a
compact convex set, Uρn(Pn) is the Wasserstein uncertainty set, and L is the loss function.
The Wasserstein uncertainty set is defined by

Uρn(Pn) = {P : Wp(P,Pn) ≤ ρn}, (5)

where Pn is the empirical distribution of the samples {(X1, Y1), (X2, Y2), ..., (Xn, Yn)} gen-
erated by true data-generating distribution P∗,

Wp(P,Pn) =

(
inf

γ∈Γ(P,Pn)

{∫
Z2

dp(z, z′)dγ(z, z′)

})1/p

,

Γ(P,Pn) is the set of distributions with marginals P and Pn, d is some metric in space
Z = X× Y , and Wp(P1, P2) is the so-called p-Wasserstein distance.

3.2 Asymptotic Distribution of the WDRO Estimator

In this subsection, we study the asymptotic distribution of the WDRO estimator in the
supervised statistical learning.

Blanchet et al. (2022b) have derived the asymptotic distribution of the WDRO estimator
in the unsupervised learning setting. In our study, we first let the cost function be infinite
if the response variables are different and then adapt the asymptotic distribution of the
WDRO estimator to the supervised statistical learning setting.

To adapt the results, we should specify the hyperparameters of the Wasserstein un-
certainty set and clarify some regularity conditions, which should be satisfied for the loss
function L and the underlying data-generating distribution P∗ of (X, Y ).

Assumption 5 The hyperparameters of the Wasserstein uncertainty set Uρn(Pn) in (5)
are prescribed as follows,

• ρn = τ/
√
n, τ > 0,

• p = 2,

• d ((x1, y1), (x2, y2)) =

{
‖x1 − x2‖2 y1 = y2

∞ y1 6= y2

.

Remark 6 We justify the choices of hyperparameter in Assumption 5 as follows,

• We choose the radius to be of the square-root order O(1/
√
n) because the powerful

out-of-sample performance guarantee can be proved (Gao and Kleywegt, 2022), and
the confidence region can be constructed (Blanchet et al., 2022b) with the square-root
order.

• We choose the 2-Wasserstein distance since the 2-Wasserstein distance applies to
the quadratic loss, and the associated WDRO problem could be solved by iterative
algorithms (Blanchet et al., 2022c).
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• The distance function d is infinite when y1 6= y2, admitting distributional ambiguities
only with respect to the feature variable X. In the classification problem, the distance
function d can be applied to tasks where the samples are correctly labeled (Gao et al.,
2017). In the regression problem, the distance function d can help recover several pop-
ular regularized estimators, including square-root LASSO estimator (Blanchet et al.,
2019; Shafieezadeh-Abadeh et al., 2019).

Assumption 7 The loss function L(f(x, β), y) satisfies:

a. The loss function L(f(x, β), y) is twice continuously differentiable w.r.t. x and β.

b. For each variable x ∈ Ω and y, the loss function L(f(x, β), y) is convex w.r.t. β.

c. For each parameter β ∈ B and variable y, the function
∥∥∥∂2L(f(x,β),y)

∂x2

∥∥∥
2

is uniformly

continuous w.r.t. x and uniformly bounded by a continuous function M(β).

Assumption 8 The underlying data-generating distribution P∗ of (X, Y ) satisfies:

a. There exists β∗ ∈ B◦, where B◦ means the interior of B, satisfying

EP∗
[
∂L(f(X, β), Y )

∂β

] ∣∣∣∣∣
β=β∗

= 0,

and the inequalities

C(β∗) := EP∗
[
∂2L(f(X, β), Y )

∂β2

] ∣∣∣∣∣
β=β∗

� 0, (6)

EP∗

[∥∥∥∥∂L(f(X, β), Y )

∂β

∥∥∥∥2

2

] ∣∣∣∣∣
β=β∗

<∞

hold, where C(β∗) � 0 means the matrix C(β∗) is a positive definite matrix.

b. P∗ is non-degenerate in the sense that

P∗

(
∂L(f(X, β), Y )

∂X
6= 0

) ∣∣∣∣
β=β∗

> 0,

EP∗

[
∂2L(f(X, β), Y )

∂X∂β

(
∂2L(f(X, β), Y )

∂X∂β

)>] ∣∣∣∣∣
β=β∗

� 0,

where ∂2L
∂x∂β means taking the gradient first w.r.t. β and then w.r.t. x.

Next, we obtain the associated convergence of the WDRO estimator βDROn in problem
(4) under Assumption 5, 7, and 8, which is shown in the following theorem.
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Theorem 9 (Extension of Theorem 1 in Blanchet et al. (2022b)) Suppose that As-
sumption 5, 7 and 8 are satisfied, Ω = Rd and EP∗

[
‖X‖22

]
<∞, the WDRO estimator βDROn

in problem (4) has the following convergence in distribution:
√
n(βDRO

n − β∗)⇒ N
(
−C(β∗)

−1H (β∗) , D(β∗)
)
, (7)

where

H(β∗) = τ

∂

√
EP∗

[∥∥∥∂L(f(X,β),Y )
∂X

∥∥∥2

2

]
∂β

∣∣∣∣∣
β=β∗

, (8)

τ is the coefficient in the Wasserstein radius ρn = τ/
√
n,

D(β∗) = C(β∗)
−1Cov

(
∂L(f(X, β), Y )

∂β

) ∣∣∣∣
β=β∗

C(β∗)
−1, (9)

and C(β∗) is defined in (6).

Remark 10 The assumption Ω = Rd could be relaxed. If Ω is compact and could be
expressed as Ω = {x ∈ Rd : Ax ≤ b}, where A is an l × d matrix with linearly independent
rows and b ∈ Rl, and X has a probability density which is absolutely continuous w.r.t.
Lebesgue measure, then the convergence (7) still holds. This claim can be seen in Section 6
in Blanchet et al. (2022b).

Remark 11 (Finite Sample Size) We investigate the empirical distribution of βDROn

when n is not very large. The WDRO esitmator βDROn is computed in the logistic re-
gression model when n = 200, and we plot the histograms of

√
n(βDROn − β∗) in Figure 1.

Two dimensions of βDROn are plotted separately. We conclude from Figure 1 that βDROn

is approximately normally distributed with a nonzero mean, as asymptotic convergence (7)
suggested. We further apply the Shapiro–Wilk test and the test result supports our claim that
βDROn is approximately normally distributed even though the sample size is not very large,
indicating that the asymptotic behavior of βDROn “comes early”. Therefore, making the bias
in asymptotic convergence (7) disappear is meaningful in the sense of both asymptotic and
finite sample size.

Theorem 9 indicates that the term
√
n(βDROn − β∗) converges in distribution to a nor-

mal distribution with nonzero mean −C(β∗)
−1H(β∗). Recall that we perturb the sam-

ples to achieve robustification. As explained in Blanchet et al. (2021), the bias term
−C(β∗)

−1H(β∗) could be understood as pushing towards solutions with less variation result-
ing from data perturbation. However, this nonzero bias term may imply that the WDRO
estimator is not an accurate estimator for the ground-truth parameter β∗. We may consider
transforming the WDRO estimator βDROn to remove the bias term using the adjustment
technique mentioned in Section 2.

4. Proposed Adjusted WDRO Estimator

This section introduces the formal formulation of our adjusted WDRO estimator and in-
vestigates the relevant properties, including unbiasedness, possible simplification, and the
out-of-sample guarantee.
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Figure 1: Histogram of βDROn

4.1 Definition and Existence

The adjusted WDRO estimator is based on the asymptotic distribution obtained in Section
3.2 and the adjustment technique introduced in Section 2. Recall the WDRO estimator has
the following convergence:

√
n(βDRO

n − β∗)⇒ N
(
−C(β∗)

−1H (β∗) , D(β∗)
)
,

where

C(β∗) = EP∗
[
∂2L(f(X, β), Y )

∂β2

] ∣∣∣∣∣
β=β∗

, H(β∗) = τ

∂

√
EP∗

[∥∥∥∂L(f(X,β),Y )
∂X

∥∥∥2

2

]
∂β

∣∣∣∣∣
β=β∗

.

Notice that the asymptotic bias f(β∗) = −C(β∗)
−1H (β∗) depends on the unknown

underlying data-generating distribution P∗, but we can use the associated empirical dis-
tribution to approximate f . Applying the adjusted technique proposed in Theorem 3, we
define the adjusted WDRO estimator in the following.

Definition 12 (Adjusted WDRO Estimator) In the WDRO problem (4), under As-
sumption 5, 7, and 8, the adjusted WDRO estimator is defined by

βADROn = An(βDROn ), (10)

where

An(z) = z +
Cn(z)−1Hn(z)√

n
,

Hn(z) = τ

∂

√
EPn

[∥∥∥∂L(f(X,β),Y )
∂X

∥∥∥2

2

]
∂β

∣∣∣∣∣
β=z

, (11)

Cn(z) = EPn

[
∂2L(f(X, β), Y )

∂β2

] ∣∣∣∣∣
β=z

. (12)
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To promise the existence of the adjusted WDRO estimator, we need additional condi-
tions to let the matrix Cn(βDROn ) be invertible and the vector Hn(βDROn ) be well-defined.
The conditions are shown in the following proposition.

Proposition 13 (Existence of Adjusted WDRO Estimator I) In the WDRO prob-
lem (4), under Assumption 5, 7, and 8, for the empirical distribution Pn, the loss function
L(f(x, β), y) and the WDRO estimator βDROn , if

Pn

(∥∥∥∥∂L(f(X, β), Y )

∂X

∥∥∥∥2

2

6= 0

)∣∣∣∣∣
β=βDROn

> 0, EPn

[
∂2L(f(X, β), Y )

∂β2

] ∣∣∣∣∣
β=βDROn

� 0

hold, then the adjusted WDRO estimator βADROn defined in (10) exists.

If the hypothesis function is linear, i.e., f(x, β) = 〈x, β〉, the existence conditions demon-
strated in Proposition 13 could be further simplified as shown in the following proposition.

Proposition 14 (Existence of Adjusted WDRO Estimator II) In the WDRO prob-
lem (4), under Assumption 5, 7, and 8, for the empirical distribution Pn, the loss function
L(〈x, β〉, y) and the WDRO estimator βDROn , if

βDROn 6= 0,
∂2L(f, y)

∂f2
> 0, Pn

(
∂L(〈X, βDROn 〉, Y )

∂f
6= 0

)
> 0,

hold, where ∂L
∂f means taking the gradient of L w.r.t. the first argument, and there does not

exist nonzero vector α such that Pn(α>X = 0) = 1, then the adjusted WDRO estimator
βADROn defined in (10) exists.

The conditions in Proposition 13 and 14 are mild. For example, for the nonzero WDRO
estimator βDROn and non-degenerate loss L with positive second-order derivative, if the
feature variable X does not lie in any linear subspace of Rd, the conditions in Proposition
14 can hold. One may check that the existence conditions could be satisfied by multiple
statistical models, including linear regression and logistic regression, among many others.

4.2 Simplification of the Adjusted WDRO Estimator

In this subsection, we discuss under which conditions the expression of the adjusted WDRO
estimator βADROn could be further simplified.

Recall that, in the definition of the adjusted WDRO estimator, seeing Definition 12, the
term Hn(z) appears complicated at first glance. The following proposition shows that the
function Hn(z) can be simplified under certain conditions.

Proposition 15 (Simplification) If the hypothesis function in problem (4) is a linear
function, i.e., f(x, β) = 〈x, β〉, and the equation

EP∗
[
∂L(〈X, β〉, Y )

∂f

∂L2(〈X, β〉, Y )

∂f2
X

] ∣∣∣∣∣
β=β∗

= 0 (13)
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holds, then the function H(β∗) defined in (8) can be rewritten as

H(β∗) = τ

√√√√EP∗

[(
∂L(〈X, β〉, Y )

∂f

)2
]∣∣∣∣∣
β=β∗

β∗
‖β∗‖2

.

Proposition 15 implies that the linearity of the hypothesis function and the equation
(13) can promise that H(z) is a rescaling of z. The associated function Hn(z) is defined by

Hn(z) = τ

√√√√EPn

[(
∂L(〈X, β〉, Y )

∂f

)2
]∣∣∣∣∣
β=z

z

‖z‖2
.

In this way, the expression of the adjusted WDRO estimator could be simplified. In partic-
ular, the conditions in Proposition 15 can be satisfied by multiple statistical models, e.g.,
linear regression, logistic regression, and Poisson regression. The details can be found in
Section 5.

4.3 Asymptotically Unbiased

We establish the asymptotic distribution of the adjusted WDRO estimator βADROn .

Theorem 16 (Unbiasedness) Under Assumption 5, 7, and 8, if the adjusted WDRO

estimator βADROn defined in (10) exists, and ∂L(f(x,β),y)
∂x∂β , ∂2L(f(x,β),y)

∂β2 are continuously dif-

ferentiable w.r.t. β, then the adjusted WDRO estimator βADROn converges in distribution:

√
n(βADROn − β∗)⇒ N (0, D(β∗)),

where D(β∗) is defined in (9).

Theorem 16 indicates that our proposed estimator βADROn is asymptotically unbiased
and the asymptotic mean squared error is tr(D(β∗)). Recall the asymptotic distribution of
the classic WDRO estimator βDROn is

√
n(βDRO

n − β∗)⇒ N
(
−C(β∗)

−1H (β∗) , D(β∗)
)
,

indicating that the asymptotic mean squared error of the classic WDRO estimator βDROn

is tr(D(β∗)) + f(β∗)
>f(β∗), where f(β∗) = −C(β∗)

−1H(β∗) might not be zero. In this way,
our proposed estimator has a smaller asymptotic mean squared error.

4.4 Out-of-sample Performance Guarantee

This subsection discusses the out-of-sample performance guarantee for the adjusted WDRO
estimator βADROn .

Informally, the out-of-sample performance guarantee for the WDRO estimator βDROn

reads that, with a high probability, the following inequality holds:

EP∗
[
L(f(X, βDROn ), Y )

]
≤ sup

P∈Uρn (Pn)
EP
[
L(f(X, βDROn ), Y )

]
+ εn, (14)
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where the left-hand side is the generalization error of βDROn , and the first term on the
right-hand side is called Wasserstein robust loss of βDROn . Inequality (14) implies that the
ground-truth loss of βDROn is upper bounded by the Wasserstein robust loss up to a higher
order residual εn.

Recall that our proposed adjusted estimator βADROn is transformed from the WDRO
estimator βDROn . As the WDRO estimator βDROn enjoys the out-of-sample performance
guarantee (14), similar arguments can be established towards the adjusted WDRO estimator
βADROn .

Corollary 17 (Performance Guarantee) Suppose the generalization bound (14) holds
for the WDRO estimator βDROn for some residual term εn with probability 1−α. If the loss
function L(f(x, β), y) is h-Lipschitz continuous w.r.t. β, and the adjusted WDRO estimator
βADROn exists, then the following inequality:

EP∗
[
L(f(X, βADROn ), Y )

]
≤ sup

P∈Uρn (Pn)
EP
[
L(f(X, βADROn ), Y )

]
+

h√
n
Rn + εn,

where Rn = EP∗
[
‖Cn(βDROn )−1Hn(βDROn )‖2

]
+supP∈Uρn (Pn) EP

[
‖Cn(βDROn )−1Hn(βDROn )‖2

]
,

holds with probability 1− α.

Notably, Gao (2022) derives the generalization bound based on a novel variance-based
concentration inequality for the empirical loss for the radius of the order O(1/

√
n), where

εn = Õ(1/n) (Õ is used to suppress the logarithmic dependence). In this sense, Corollary
17 indicates that the generalization error of the adjusted WDRO estimator βADROn can be
upper bounded by the Wasserstein robust loss of the adjusted WDRO estimator βADROn up
to a new residual term, hRn/

√
n+ εn, which is of order O(1/

√
n). The new residual order

of the out-of-sample guarantee for the adjusted WDRO estimator may have a lower order
than that of the classic WDRO estimator shown in Gao (2022). To further improve the
residual order for the adjusted WDRO estimator could be considered as our future work.

5. Adjusted WDRO in the Generalized Linear Model

In this section, the generalized linear model is considered since several well-known regres-
sion models can be covered, including logistic regression, Poisson regression, and linear
regression. We introduce how to develop the associated adjusted WDRO estimators in the
generalized linear model.

5.1 Formulation of the Generalized Linear Model

In the generalized linear model, the response variable Y is generated from a particular dis-
tribution from the exponential family, including the Bernoulli distribution on Y ∈ {−1, 1}
in the logistic regression, the Poisson distribution on Y ∈ {0, 1, 2, ...} in the Poisson regres-
sion, the normal distribution on Y ∈ R in the linear regression, etc. The expectation of the
response variable Y conditional on the feature variable X is determined by the link func-
tion. With a little abuse of notation, if we denote the nonzero ground-truth parameter by
β∗ and the link function by G, we have G(E[Y |X = x]) = 〈x, β∗〉, where the link functions
G is chosen as the logit function in the logistic regression, the log function in the Poisson
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regression, the identity function in the linear regression, etc. If we denote the logit function,
the log function, and the identity function by G1, G2, and G3, respectively, we have that

G1(t) = log

(
t

1− t

)
, G2(t) = et, G3(t) = t.

In the generalized linear model, the ground-truth parameter β∗ is estimated by the
maximum likelihood estimation method, and the associated loss function can be denoted
by L(f(x, β), y) = L(〈x, β〉, y). If we denote the loss function in the logistic regression, the
Poisson regression and the linear regression by L1, L2, and L3, respectively, we have that

L1 (〈x, β〉, y) = log(1 + e−y〈x,β〉),

L2 (〈x, β〉, y) = e〈x,β〉 − y〈x, β〉,

L3(〈x, β〉, y) =
1

2
(〈x, β〉 − y)2 ,

where β ∈ B, B is a compact convex subset of Rd, β∗ ∈ B◦, x ∈ Ω, and Ω is a convex
subset of Rd.

5.2 Asymptotic Convergence of the WDRO Estimator

This subsection derives the convergence of the WDRO estimator βDROn in the linear regres-
sion, logistic regression, and Poisson regression.

Suppose that our choice of hyperparameters follows Assumption 5. As demonstrated in
Section 3.2, we check Assumption 7 and Assumption 8 in the following lemmas.

Lemma 18 The loss function L1(〈x, β〉, y) satisfies the conditions in Assumption 7.

Lemma 19 If Ω is bounded, the loss function L2(〈x, β〉, y) satisfies the conditions Assump-
tion 7.

Lemma 20 The loss function L3(〈x, β〉, y) satisfies the conditions Assumption 7.

Lemma 21 In the logistic regression, if there does not exist nonzero vector α such that
P∗(α

>X = 0) = 1, and EP∗
[
‖X‖22

]
<∞, Assumption 8 is satisfied.

Lemma 22 In the Poisson regression, if there does not exist nonzero vector α such that
P∗(α

>X = 0) = 1, and EP∗ [e〈X,β∗〉‖X‖22] <∞, Assumption 8 is satisfied.

Lemma 23 In the linear regression, if there does not exist nonzero vector α such that
P∗(α

>X = 0) = 1, VarP∗(Y |X) <∞, and EP∗ [‖X‖22] <∞, Assumption 8 is satisfied.

Lemma 18-20 imply that the loss functions satisfy the conditions in Assumption 7 while
Lemma 21-23 show that Assumption 8 can be simplified in the logistic regression, Poisson
regression, and linear regression.

Equipped with Lemma 18-23, the convergence in distribution of the WDRO estimator
βDROn can be established due to Theorem 9. The following three propositions give the
explicit expression of the asymptotic distribution of the WDRO estimator for the logistic
regression, Poisson regression, and linear regression.

13
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Proposition 24 (Convergence of βDROn in the logistic regression) In the logistic re-
gression, under Assumption 5, if Ω = Rd and EP∗

[
‖X‖22

]
< ∞, and there does not exist

nonzero vector α such that P∗(α
>X = 0) = 1, the WDRO estimator βDROn converges in

distribution: √
n(βDROn − β∗)⇒ N (−C(β∗)

−1H(β∗), D(β∗)),

where

D(β∗) =

(
EP∗

[
e〈X,β∗〉XX>(
1 + e〈X,β∗〉

)2
])−1

, (15)

and

C(β∗) = EP∗

[
e〈X,β∗〉XX>(
1 + e〈X,β∗〉

)2
]
, H(β∗) = τ

√√√√EP∗

[
e〈X,β∗〉(

1 + e〈X,β∗〉
)2
]

β∗
‖β∗‖2

. (16)

Proposition 25 (Convergence of βDROn in the Poisson regression) In the Poission
regression, under Assumption 5, if Ω is compact and can be expressed as Ω = {x ∈
Rd : Ax ≤ b}, where A is an l × d matrix with linearly independent rows and b ∈ Rl,
EP∗ [‖X‖22e〈X,β∗〉] < ∞, there does not exist nonzero vector α such that P∗(α

>X = 0) = 1,
and X has a probability density which is absolutely continuous w.r.t. Lebesgue measure, the
WDRO estimator βDROn converges in distribution:

√
n(βDROn − β∗)⇒ N (−C(β∗)

−1H(β∗), D(β∗)),

where

D(β∗) =
(
EP∗

[
e〈X,β∗〉XX>

])−1
, (17)

and

C(β∗) = EP∗
[
e〈X,β∗〉XX>

]
, H(β∗) = τ

√
EP∗ [e〈X,β∗〉]

β∗
‖β∗‖2

. (18)

Proposition 26 (Convergence of βDROn in the linear regression) In the linear regres-
sion, under Assumption 5, if Ω = Rd, and EP∗ [‖X‖22] <∞, and there does not exist nonzero
vector α such that P∗(α

>X = 0) = 1, the WDRO estimator βDROn converges in distribution:
√
n(βDROn − β∗)⇒ N (−C−1H(β∗), D),

where

D = σ2
(
EP∗

[
XX>

])−1
, (19)

C = EP∗
[
XX>

]
, H(β∗) = τσ

β∗
‖β∗‖2

, (20)

and VarP∗(Y |X) = σ2, σ > 0

We could obtain the associated adjusted WDRO estimators based on the convergence
results derived in Proposition 24-26, and the details will be clarified in the next subsection.

Also, the proofs of Proposition 24-26 are relegated to Appendix A. The proofs show that
the conditions in Proposition 15 are satisfied, which enables us to simplify the function H,
seeing (16), (18) and (20).
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5.3 Adjusted WDRO Estimator in the Generalized Linear Model

This subsection gives the formulations of the adjusted WDRO estimator for logistic regres-
sion, Poisson regression, and linear regression by plugging the expressions of the function
C and H in (16), (18) and (20) into the definition of the adjusted WDRO estimator (10).

Definition 27 Under assumptions in Proposition 24-26, for the nonzero WDRO estimator
βDROn , we define the adjusted WDRO estimator βADROn as follows,

βADROn = βDROn +
τ√
n

√√√√EPn

[
e〈X,βDROn 〉(

1 + e〈X,βDROn 〉
)2
](

EPn

[
e〈X,β

DRO
n 〉XX>(

1 + e〈X,βDROn 〉
)2
])−1

βDROn

‖βDROn ‖2
,

(21)

βADROn = βDROn +
τ√
n

√
EPn [e〈X,βDROn 〉]

(
EPn

[
e〈X,β

DRO
n 〉XX>

])−1 βDROn

‖βDROn ‖2
,

βADROn = βDROn +
τσ√
n

(
EPn

[
XX>

])−1 βDROn

‖βDROn ‖2
, (22)

for the logistic regression, Poisson regression, and linear regression, respectively.

As we discussed in Proposition 14, one could check that the adjusted WDRO estimators
defined in Definition 27 are well-defined. Then, it is easy to check that the conditions in
Theorem 16, i.e., the smoothness of the loss function, hold for the logistic regression, Poisson
regression, and linear regression, indicating the proposed adjustment technique could de-bias
the associated adjusted WDRO estimators successfully in the logistic regression, Poisson
regression, and linear regression. We conclude this result in the following proposition.

Proposition 28 For the adjusted WDRO estimator βADROn defined in Definition 27, we
have the following √

n
(
βADROn − β∗

)
⇒ N (0, D(β∗)),

where D(β∗) is defined by (15), (17), and (19) in the logistic regression, Poisson regression,
and linear regression, respectively.

6. Numerical Experiments

In this section, we investigate the empirical performance of the adjusted WDRO estimator
βADROn , compared with the classic WDRO estimator βDROn .

6.1 Experiment Setting

The WDRO algorithmic framework of the logistic regression model and linear regression
model with quadratic loss has been established in Blanchet et al. (2022c). Therefore, the
adjusted WDRO estimators in the logistic regression model and the linear regression model
are implemented as examples to evaluate the practical performance of our adjustment tech-
nique.
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6.1.1 Logistic Regression

Suppose X follows 2-dimensional standard normal distribution, and the response variable
Y follows the Bernoulli distribution, where P∗(Y = 1|X = x) = 1/(1 + e−〈x,β∗〉) and β∗ =
(1/
√

17, 4/
√

17). Data is generated 5 times for each sample size n ∈ {500, 700, 1000, 1500,
1800, 2000}. The WDRO estimator βDROn is computed by the iterative algorithm in Blanchet
et al. (2022c). The adjusted WDRO estimator βADROn is computed via equation (21). Per
the iterative algorithm, we set the learning rate as 0.3 and the maximum number of itera-
tions as 50000, respectively. Moreover, since the value of τ , which is the coefficient in the
Wasserstein radius ρn = τ/

√
n, should be determined, we let τ ∈ {1.5, 2, 2.5, 3}.

6.1.2 Linear regression

Assume the feature variable X follows the 2-dimensional standard normal distribution, and
the response variable Y follows the normal distribution, where Y |X = x ∼ N (〈x, β∗〉, σ),
β∗ = (3/

√
10,−1/

√
10). We set σ = 0.1. Data is generated 5 times for each sample size

n ∈ {500, 700, 1000, 1500, 1800, 2000}. The WDRO estimator βDROn is computed by the
iterative algorithm in Blanchet et al. (2022c). The adjusted WDRO estimator βADROn is
computed via equation (22). Per the iterative algorithm, we set the learning rate as 0.01
and the maximum number of iterations as 50000, respectively. Then, we set the value of τ
as τ ∈ {1.5, 2, 2.5, 3}.

6.2 Experiment Results

The experimental results of the logistic regression are reported in Figure 2-5, and the results
of the linear regression are reported in Figure 6-9.

The estimation accuracy of the estimators is evaluated by the squared error. The squared
error of the estimator β̂ is defined by ‖β̂−β∗‖22. We plot the mean squared error of βDROn and
βADROn versus the logarithm of the sample size n, respectively. From the figures, we observe
that the line of mean squared error of βDROn is always above that of βADROn , illustrating
that the proposed adjusted estimator has a smaller mean squared error. Recall that the
adjusted WDRO estimator has a better asymptotic mean squared error in theory, while
our empirical results show that the proposed estimator outperforms even when the sample
size is finite. Moreover, we compute the difference of the squared error between βDROn

and βADROn for each run. This quantity helps evaluate the improvement achieved by the
adjustment technique for each run. To visualize the improvement, we plot the boxplots for
each sample size and each value of τ . The figures show that most parts of the boxplots
are located above y = 0 in the logistic regression, and all of the boxplots are located above
y = 0 in the linear regression. These observations indicate that the adjustment technique
can generate a more accurate estimator for the ground-truth parameter β∗.

In addition to the squared error, we investigate the loss, i.e., the log-likelihood, of the
estimators in the linear regression and the logistic regression. Similar to how we analyze
the squared error, we plot the mean loss and the case-wise loss improvement. The figures
show that the adjustment technique could help reduce the loss.

Overall, the adjusted WDRO estimator has better empirical performance than the classic
WDRO estimator. When people plan to estimate parameters in statistical learning under
the WDRO framework, the proposed adjusted estimator can be considered.
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Figure 2: Squared error and log loss plots of the logistic regression, τ = 1.5.
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Figure 3: Squared error and log loss plots of the logistic regression, τ = 2.
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Figure 4: Squared error and log loss plots of the logistic regression, τ = 2.5.
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Figure 5: Squared error and log loss plots of the logistic regression, τ = 3.
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Figure 6: Squared error and squared loss plots of the linear regression, τ = 1.5.
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Figure 7: Squared error and squared loss plots of the linear regression, τ = 2.
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Figure 8: Squared error and squared loss plots of the linear regression, τ = 2.5.
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Figure 9: Squared error and squared loss plots of the linear regression, τ = 3.
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7. Discussion

This paper improves the performance of the WDRO estimator through the lens of the
statistical asymptotics of the WDRO estimator. To the best of our knowledge, we are
the first to propose transformations to de-bias the WDRO estimator asymptotically. The
proposed adjusted WDRO estimator is asymptotically unbiased with a smaller asymptotic
mean squared error. In addition, the adjusted WDRO estimator is easy to compute as
long as the classic WDRO estimator is known. Also, we observe the superior empirical
performance of the adjusted WDRO estimator over the classic WDRO estimator.

Notably, we carefully clarify and check the corresponding assumptions in the develop-
ment of our theory and methodology, providing a rigorous scheme for applying and gener-
alizing our adjustment technique.
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Appendix A. Proof

A.1 Proof of Proposition 1

Proof Due to the sequential delta method, seeing Theorem 4, we have that

√
n (φn(βn)− φn(β∗))⇒ N (φ′(β∗)f(β∗), φ

′(β∗)Dφ
′(β∗)

>),

which is equivalent to

√
n (φn(βn)− β∗) +

√
n (β∗ − φn(β∗))⇒ N (φ′(β∗)f(β∗), φ

′(β∗)Dφ
′(β∗)

>). (23)

To make the distribution of
√
n (φn(βn)− β∗), i.e., the first term in the left-hand side of

(23), converge, we should require
√
n (β∗ − φn(β∗)), i.e., the second term in the left-hand

side of (23), has a finite limit. That is to say, the following holds:

φn(β∗) = β∗ +O
(

1√
n

)
. (24)

Since (24) holds and φn is differentiable at B(β∗), we can rewrite φn(β∗) as follows:

φn(β∗) = β∗ −
1√
n
g(β∗) + o

(
1√
n

)
,

where g(β) is differentiable at B(β∗).
In this way, we have that

√
n (φn(β∗)− β∗) = −g(β∗) + o(1) (25)

In addition, (24) indicates φ′n(β∗) → I, resulting in the following equivalent reformula-
tion of (23): √

n (φn(βn)− β∗) +
√
n (β∗ − φn(β∗))⇒ N (f(β∗), D). (26)

It follows from (25), (26) and Slutsky’s lemma that

√
n (φn(βn)− β∗)⇒ N (f(β∗)− g(β∗), D) .

In this way, the associated asymptotic mean squared error is

tr(D) + (f(β∗)− g(β∗))
> (f(β∗)− g(β∗)) ,

implying that the least asymptotic mean squared error is tr(D) if and only f(β∗) = g(β∗).

A.2 Proof of Theorem 3

Proof To prove (3), due to Slutsky’s lemma, it suffices to show that

fn(βn)− f(β∗)→p 0,

which could be guaranteed if
fn(β∗)− f(β∗)→p 0, (27)
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fn(βn)− fn(β∗)→p 0,

where (27) is our assumption. Thus, it suffices to show fn(βn)− fn(β∗)→p 0 holds.
Since

√
n(βn − β∗) converges to some distribution, βn converges to β∗ in probability.

Since fn is differentiable at B(β∗), it follows from the mean value theorem (or Taylor’s
expansion) that

‖fn(βn)− fn(β∗)‖ ≤ sup
β∈B(β∗)

‖f ′n(β)‖‖βn − β∗‖,

It follows from βn−β∗ →p 0 and supβ∈B(β∗) ‖f
′
n(β)‖ is bounded in probability that fn(βn)−

fn(β∗)→p 0.

A.3 Proof of Theorem 4

Proof The proof of the sequential delta method is based on the proof of the classic delta
method, seeing Theorem 3.1 in van der Vaart (2000).

By the differentiablity of φ and φn, we have the following Taylor’s expansions of φn and
φ at ϑ:

φn(θ)− φn(ϑ) = φ′n(ϑ)(θ − ϑ) +Rn,

φ(θ)− φ(ϑ) = φ′(ϑ)(θ − ϑ) +R,

where θ ∈ B(ϑ), and Rn, R are associated remainders. Note that it follows from the stated
conditions that φn(θ)→ φ(θ), φn(ϑ)→ φ(ϑ) and φ′n(ϑ)→ φ′(ϑ). In this way, we have that
Rn → R, indicating that there exist N such that |Rn| ≤ 2|R| holds for ∀n ≥ N . Since we
have that R = o(‖θ − ϑ‖), then Rn = o(‖θ − ϑ‖) holds uniformly for n ≥ N .

Since the sequence rn(Tn − ϑ) converges in distribution, we have that Tn − ϑ converges
to 0 in probability and rn(Tn−ϑ) is uniformly tight. Then, according to the aforementioned
Taylor’s expansion, we have that

φn(Tn)− φn(ϑ) = φ′n(ϑ)(Tn − ϑ) + op(‖Tn − ϑ‖)

holds uniformly for n ≥ N , where op(1) means “converge to 0 in probability”. Then, it
follows from the uniform tightness of rn(Tn − ϑ) that op(rn‖Tn − ϑ‖) = op(1). That is to
say,

rn (φn(Tn)− φn(ϑ)) = rnφ
′
n(ϑ)(Tn − ϑ) + op(1), (28)

holds uniformly for n ≥ N .
Because matrix multiplication is continuous and we have φ′n(ϑ)→ φ′(ϑ), taking advan-

tage of the extended continuous-mapping theorem, seeing Theorem 1.11.1 in Van der Vaart
and Wellner (1996), we could obtain that

rnφ
′
n(ϑ)(Tn − ϑ)⇒ N (φ′(ϑ)µ, φ′(ϑ)Σφ′(ϑ)

>
). (29)

Further, it follows from (28), (29) and Slutsky’s lemma that

rn (φn(Tn)− φn(ϑ))⇒ N (φ′(ϑ)µ, φ′(ϑ)Σφ′(ϑ)
>

).
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A.4 Proof of Theorem 9

Proof We denote the inner maximization of the WDRO problem (4), i.e.,

max
P∈Uρn (Pn)

EP [L(f(X, β), Y )],

by Ψn(β).

Then, we have

Ψn(β) = inf
λ≥0

[
λρ2

n + E(X,Y )∼Pn

[
sup
x∈Rd

[
L(f(x, β), Y )− λ‖x−X‖22

]]]
. (30)

Note that Assumption 5, 7, and 8 are extracted from Assumption 1 and 2 in Blanchet
et al. (2022b), and problem (30) can be reduced to the problem in Lemma A.1 in Blanchet
et al. (2022b). Following the same technique, one could derive the convergence in distribu-
tion of βDROn : √

n(βDROn − β∗)⇒ C(β∗)
−1E − C(β∗)

−1H(β∗),

where

E ∼ N

(
0,Cov

(
∂L(f(X, β), Y )

∂β

) ∣∣∣∣
β=β∗

)
,

H(β∗) = τ

∂

√
EP∗

[∥∥∥∂L(f(X,β),Y )
∂X

∥∥∥2

2

]
∂β

∣∣∣∣∣
β=β∗

.

It follows from the matrix C(β∗) is positive definite that

√
n(βDROn − β∗)⇒ N

(
−C(β∗)

−1H(β∗), C(β∗)
−1Cov

(
∂L(f(X, β), Y )

∂β

) ∣∣∣∣
β=β∗

C(β∗)
−1

)
.

A.5 Proof of Proposition 14

Proof Notice we have that

∂2L(〈x, β〉, y)

∂β2
=
∂2L(〈x, β〉, y)

∂f2
xx>.

Since ∂2L(f,y)
∂f2

> 0 and there does not exit nonzero α such that Pn(α>X = 0) = 1, we
have that

EPn

[
∂2L(f(X, β), Y )

∂β2

] ∣∣∣∣∣
β=βDROn

� 0.
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Notice that ∥∥∥∥∂L(f(X, β), Y )

∂X

∥∥∥∥2

2

∣∣∣∣∣
β=βDROn

=

∥∥∥∥∂L(〈X, β〉, Y )

∂X

∥∥∥∥2

2

∣∣∣∣∣
β=βDROn

=

(
∂L(〈X, βDROn 〉, Y )

∂f

)2

‖βDROn ‖22.

Since we have βDROn 6= 0 and Pn
(
∂L(〈X,βDROn 〉,Y )

∂f 6= 0
)
> 0, we have that

Pn

(∥∥∥∥∂L(f(X, β), Y )

∂X

∥∥∥∥2

2

6= 0

)∣∣∣∣∣
β=βDROn

> 0.

A.6 Proof of Proposition 15

Proof Since f(x, β) = 〈x, β〉 holds, we have that

H(β∗) = τ

∂

√
EP∗

[∥∥∥∂L(〈X,β〉,Y )
∂X

∥∥∥2

2

]
∂β

∣∣∣∣∣
β=β∗

= τ

∂

(
‖β‖2

√
EP∗

[(
∂L(〈X,β〉,Y )

∂f

)2
])

∂β

∣∣∣∣∣
β=β∗

= τ


√√√√EP∗

[(
∂L(〈X, β∗〉, Y )

∂f

)2
]

β∗
‖β∗‖2

+ ‖β∗‖2
EP∗

[
∂L(〈X,β∗〉,Y )

∂f
∂2L(〈X,β∗〉,Y )

∂f2
X
]

√
EP∗

[(
∂L(〈X,β∗〉,Y )

∂f

)2
]

 .

(31)
Further, if

EP∗
[
∂L(〈X, β∗〉, Y )

∂f

∂2L(〈X, β∗〉, Y )

∂f2
X

]
= 0

holds, the second term in the equation (31) equals to 0.
Then, we have

H(β∗) = τ

√√√√EP∗

[(
∂L(〈X, β〉, Y )

∂f

)2
]∣∣∣∣∣
β=β∗

β∗
‖β∗‖2

.
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A.7 Proof of Theorem 16

Proof Note we have that

∂

√
E
[∥∥∥∂L(f(X,β),Y )

∂X

∥∥∥2

2

]
∂β

=
E
[
∂L(f(X,β),Y )

∂X∂β
∂L(f(X,β),Y )

∂X

]
√
E
[∥∥∥∂L(f(X,β),Y )

∂X

∥∥∥2

2

] .

In this way, we have that

f(z) = −C(z)−1H(z)

fn(z) = −Cn(z)−1Hn(z),

where

C(z) = EP∗
[
∂2L(f(X, β), Y )

∂β2

] ∣∣∣∣∣
β=z

, H(z) = τ
EP∗

[
∂L(f(X,β),Y )

∂X∂β
∂L(f(X,β),Y )

∂X

]
√
EP∗

[∥∥∥∂L(f(X,β),Y )
∂X

∥∥∥2

2

]
∣∣∣∣∣
β=z

,

Cn(z) = EPn

[
∂2L(f(X, β), Y )

∂β2

] ∣∣∣∣∣
β=z

, Hn(z) = τ
EPn

[
∂L(f(X,β),Y )

∂X∂β
∂L(f(X,β),Y )

∂X

]
√
EPn

[∥∥∥∂L(f(X,β),Y )
∂X

∥∥∥2

2

]
∣∣∣∣∣
β=z

.

It follows from Theorem 3 that it suffices to show fn satisfies Assumption 2.

It follows from Assumption 7 that L(f(x, β), y) is twice differentiable, ∂L(f(x,β),y)
∂x∂β and

∂2L(f(x,β),y)
∂β2 are differentiable w.r.t. β, indicating that both fn(z) = −Cn(z)−1Hn(z) and

f(z) = −C(z)−1H(z) are differentiable at B(β∗). The first item in Assumption 2 is satisfied.

Notably, since L(f(x, β), y) is twice continuously differentiable, and ∂L(f(x,β),y)
∂x∂β , ∂

2L(f(x,β),y)
∂β2

are continuously differentiable w.r.t β, then the the gradient of f(z) = −C(z)−1H(z), i.e.,
f ′(z), is continuous at B(β∗). In this way, we have that supβ∈B(β∗) ‖f

′(β)‖ is bounded. In
addition, the law of large numbers implies f ′n(z)→p f

′(z) holds for every z at B(β∗). This
convergence promises that supβ∈B(β∗) ‖f

′
n(β)‖ is bounded in probability. The second item

in Assumption 2 is satisfied.

Since Cn(z) and Hn(z) are defined in terms of the empirical distribution, fn(β∗) →p

f(β∗) holds due to the law of large numbers. The third item in Assumption 2 is satisfied.

A.8 Proof of Corollary 17

Since the loss function L(f(x, β), y) is h-Lipschitz continuous w.r.t. β, we have that

|L(f(x, βDROn ), y)− L(f(x, βADROn ), y)| ≤ h‖βDROn − βADROn ‖2,
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indicating

EP∗
[
L(f(X, βADROn ), Y )

]
− hEP∗

[
‖βDROn − βADROn ‖2

]
≤ EP∗

[
L(f(X, βDROn ), Y )

]
,

and

sup
P∈Uρn (Pn)

EP
[
L(f(X, βDROn ), Y )

]
≤ sup

P∈Uρn (Pn)
EP
[
L(f(X, βADROn ), Y )

]
+ h sup

P∈Uρn (Pn)
EP
[
‖βDROn − βADROn ‖2

]
.

Since we have the following definition of βADROn :

βADROn = βDROn +
Cn(βDROn )−1Hn(βDROn )√

n
,

together with (14), we have that

EP∗
[
L(f(X, βADROn ), Y )

]
≤ sup

P∈Uρn (Pn)
EP
[
L(f(X, βADROn ), Y )

]
+

h√
n

(
EP∗

[
‖Cn(βDROn )−1Hn(βDROn )‖2

]
+ sup
P∈Uρn (Pn)

EP
[
‖Cn(βDROn )−1Hn(βDROn )‖2

])
+ εn,

holds with probability 1− α.

A.9 Proof of Lemma 18

Proof a. The loss function L1 (〈x, β〉, y) = log(1 + e−y〈x,β〉) is twice continuously differen-
tiable w.r.t. x and β.

b. Since we have that

∂2L1 (〈x, β〉, y)

∂β2
=

ey〈x,β〉xx>(
1 + ey〈x,β〉

)2 � 0,

where � means the matrix is positive semidefinite, the function L1 (〈x, β〉, y) is convex w.r.t.
β.

c. Note we have that∥∥∥∥∂2L1 (〈x, β〉, y)

∂x2

∥∥∥∥
2

=

∥∥∥∥∥ ββ>ey〈x,β〉(
1 + ey〈x,β〉

)2
∥∥∥∥∥

2

= ‖β‖22
ey〈x,β〉(

1 + ey〈x,β〉
)2 < M(β) = ‖β‖22.

Further, we have that

∂
∥∥∥∂2L1(〈x,β〉,y)

∂x2

∥∥∥
2

∂x
= ‖β‖22

yey〈x,β〉
(
1− ey〈x,β〉

)(
1 + ey〈x,β〉

)3 β.
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We know that
ey〈x,β〉(1−ey〈x,β〉)

(1+ey〈x,β〉)
3 is bounded. Since β ∈ B and B is bounded, we have that

∂

∥∥∥∥ ∂2L1(〈x,β〉,y)
∂x2

∥∥∥∥
2

∂x is bounded, implying
∥∥∥∂2L1(〈x,β〉,y)

∂x2

∥∥∥
2

is uniformly continuous w.r.t. x.

A.10 Proof of Lemma 19

Proof a. The loss function L2 (〈x, β〉, y) = e〈x,β〉 − y〈x, β〉 is twice continuously differen-
tiable w.r.t. x and β.

b. Because we have
∂2L2(〈x, β〉, y)

∂β2
= e〈x,β〉xx> � 0,

the function L2 (〈x, β〉, y) is convex w.r.t. β.
c. We have ∥∥∥∥∂2L2(〈x, β〉, y)

∂x2

∥∥∥∥
2

=
∥∥∥ββ>∥∥∥

2
e〈x,β〉 = ‖β‖22e〈x,β〉.

Since x ∈ Ω, β ∈ B, where both Ω and B are bounded, ‖∂
2L2(〈x,β〉,y)

∂x2 ‖2 is bounded by a
function of β and uniformly continuous w.r.t. x.

A.11 Proof of Lemma 20

Proof a. The loss function L3(〈x, β〉, y) = 1
2 (〈x, β〉 − y)2 is twice continuously differen-

tiable w.r.t. x and β.
b. The loss function L3(〈x, β〉, y) = 1

2 (〈x, β〉 − y)2 is convex w.r.t. β.
c. We have ∥∥∥∥∂2L(f(x, β), y)

∂x2

∥∥∥∥
2

= ‖2ββ>‖2 = 2‖β‖22.

Since β ∈ B and B is bounded, ‖∂
2L(f(x,β),y)

∂x2 ‖2 is bounded by function of 2‖β‖22 and
uniformly continuous w.r.t. x.

A.12 Proof of Lemma 21

Proof a. From the equation

∂L1 (〈x, β〉, y)

∂β
=

−yx
1 + ey〈x,β〉

,

and the assumption EP∗
[
‖X‖22

]
<∞, we have that

EP∗

[∥∥∥∥∂L1(〈X, β〉, Y )

∂β

∥∥∥∥2

2

] ∣∣∣∣∣
β=β∗

= EP∗
[

‖X‖22
(1 + eY 〈X,β∗〉)2

]
< EP∗

[
‖X‖22

]
<∞.
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Since we have that
∂2L1(〈x, β〉, y)

∂β2
=

ey〈x,β〉xx>(
1 + ey〈x,β〉

)2 ,
where

ey〈x,β〉/(1 + ey〈x,β〉)2 > 0,

and there does not exist nonzero α such that P∗(α
>X = 0) = 1, then we could conclude

EP∗
[
∂2L1(〈X, β〉, Y )

∂β2

] ∣∣∣∣∣
β=β∗

� 0.

In addition, we have that

EP∗
[
∂L1(〈X, β〉, Y )

∂β

] ∣∣∣∣∣
β=β∗

=EP∗
[

−YX

1 + eY 〈X,β∗〉

]
=

∫
P∗(Y = 1|X = x)

x

1 + e〈x,β∗〉
dF∗(x) +

∫
P∗(Y = −1|X = x)

x

1 + e−〈x,β∗〉
dF∗(x)

=

∫
x

1 + e−〈x,β∗〉
−1

1 + e〈x,β∗〉
dF∗(x) +

∫
x

1 + e〈x,β∗〉
1

1 + e−〈x,β∗〉
dF∗(x)

=0,

where F∗ is the distribution function of P∗.
b. Notice we have that

∂L1(〈x, β〉, y)

∂x

∣∣∣∣∣
β=β∗

=
−yβ∗

1 + ey〈x,β∗〉
,

where
β∗ 6= 0, y 6= 0, 1 + ey〈x,β∗〉 > 0,

then we can conclude that

P∗

(
∂L1(〈X, β〉, Y )

∂X
6= 0

) ∣∣∣∣
β=β∗

> 0.

Then, we have that

∂2L1(〈x, β〉, Y )

∂x∂β

∣∣∣∣∣
β=β∗

=
−yId

1 + ey〈x,β∗〉
+

ey〈x,β∗〉β∗x
>(

1 + ey〈x,β∗〉
)2 .

Since the kernel space of the matrix ∂2L1(〈x,β〉,Y )
∂x∂β

∣∣
β=β∗

is different for different x, y, we
can conclude that

EP∗

[
∂2L1(〈X, β〉, Y )

∂X∂β

(
∂2L1(〈X, β〉, Y )

∂X∂β

)>] ∣∣∣∣∣
β=β∗

� 0.
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A.13 Proof of Lemma 22

Proof a. From the equation

∂L2 (〈x, β〉, y)

∂β
= xe〈x,β〉 − yx,

we have that

EP∗

[∥∥∥∥∂L2(〈X, β〉, Y )

∂β

∥∥∥∥2

2

] ∣∣∣∣∣
β=β∗

=EP∗
[
‖X‖22

(
e〈X,β∗〉 − Y

)2
]

=EP∗
[
‖X‖22EP∗

[(
e〈X,β∗〉 − Y

)2 ∣∣∣X]]
Since Y |X = x follows the Poisson distribution with parameter e〈x,β∗〉, we have that

EP∗

[∥∥∥∥∂L2(〈X, β〉, Y )

∂β

∥∥∥∥2

2

] ∣∣∣∣∣
β=β∗

= EP∗
[
‖X‖22VarP∗(Y |X)

]
= EP∗

[
‖X‖22e〈X,β∗〉

]
<∞.

Since we have that
∂2L2(〈x, β〉, y)

∂β2
= e〈x,β〉xx>,

where e〈x,β〉 > 0, and there does not exist nonzero α such that P∗(α
>X = 0) = 1, we could

conclude that

EP∗
[
∂2L2(〈X, β〉, Y )

∂β2

] ∣∣∣∣∣
β=β∗

� 0.

In addition, we have that

EP∗
[
∂L2(〈X, β〉, Y )

∂β

] ∣∣∣∣∣
β=β∗

=EP∗
[
Xe〈X,β∗〉 − YX

]
=EP∗

[
e〈X,β∗〉X− EP∗ [Y |X] X

]
=0.

b. Notice we have that

∂L2(〈x, β〉, y)

∂x

∣∣∣∣∣
β=β∗

= (e〈x,β∗〉 − y)β∗,

where β∗ 6= 0,

P∗

(
e〈X,β∗〉 − Y 6= 0

)
> 0,
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then we can conclude that

P∗

(
∂L2(〈X, β〉, Y )

∂X
6= 0

) ∣∣∣∣
β=β∗

> 0.

Then, we have that

∂2L2(〈x, β〉, Y )

∂x∂β

∣∣∣∣∣
β=β∗

= (e〈x,β∗〉 − y)Id + e〈x,β∗〉β∗x
>.

Since the kernel space of the matrix ∂2L2(〈x,β〉,Y )
∂x∂β

∣∣
β=β∗

is different for different x, y, then
we can conclude that

EP∗

[
∂2L2(〈X, β〉, Y )

∂X∂β

(
∂2L2(〈X, β〉, Y )

∂X∂β

)>] ∣∣∣∣∣
β=β∗

� 0.

A.14 Proof of Lemma 23

Proof a. From the equation

∂L3 (〈x, β〉, y)

∂β
= (〈x, β〉 − y)x,

we have that

EP∗

[∥∥∥∥∂L3(〈X, β〉, Y )

∂β

∥∥∥∥2

2

] ∣∣∣∣∣
β=β∗

=EP∗
[
‖X‖22 (〈X, β∗〉 − Y )2

]
=EP∗

[
‖X‖22EP∗

[
(〈X, β∗〉 − Y )2

∣∣∣X]]
Notice that Y |X = x follows the normal distribution with a mean value of 〈x, β∗〉. Thus,

we have that

EP∗

[∥∥∥∥∂L3(〈X, β〉, Y )

∂β

∥∥∥∥2

2

] ∣∣∣∣∣
β=β∗

= EP∗
[
‖X‖22VarP∗(Y |X)

]
<∞. (32)

Since we have that
∂2L3(〈x, β〉, y)

∂β2
= xx>,

and there does not exist nonzero α such that P∗(α
>X = 0) = 1, we could conclude that

EP∗
[
∂2L3(〈X, β〉, Y )

∂β2

] ∣∣∣∣∣
β=β∗

� 0.
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In addition, we have that

EP∗
[
∂L3(〈X, β〉, Y )

∂β

] ∣∣∣∣∣
β=β∗

=EP∗ [〈X, β∗〉X− YX]

=EP∗ [〈X, β∗〉X− EP∗ [Y |X] X]

=0.

b. Notice that,

∂L3(〈x, β〉, y)

∂x

∣∣∣∣∣
β=β∗

= (〈x, β∗〉 − y)β∗,

where β∗ 6= 0,

P∗ (〈X, β∗〉 − Y 6= 0) > 0,

then we can conclude that

P∗

(
∂L3(〈X, β〉, Y )

∂X
6= 0

) ∣∣∣∣
β=β∗

> 0.

Then, we have that

∂2L3(〈x, β〉, Y )

∂x∂β

∣∣∣∣∣
β=β∗

= (〈x, β∗〉 − y) Id + β∗x
>.

Since the kernel space of the matrix ∂2L3(〈x,β〉,Y )
∂x∂β

∣∣
β=β∗

is different for different x, y, we
can conclude that

EP∗

[
∂2L3(〈X, β〉, Y )

∂X∂β

(
∂2L3(〈X, β〉, Y )

∂X∂β

)>] ∣∣∣∣∣
β=β∗

� 0.
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A.15 Proof of Proposition 24

Proof Regarding the asymptotic covariance matrix, since we have that

CovP∗

(
∂L1(〈X, β〉, Y )

∂β

) ∣∣∣∣
β=β∗

= EP∗

[
∂L1(〈X, β〉, Y )

∂β

(
∂L1(〈X, β〉, Y )

∂β

)>]

= EP∗

[
XX>(

1 + eY 〈X,β∗〉
)2
]

=

∫
P∗(Y = 1|X = x)

xx>(
1 + e〈x,β∗〉

)2dF∗(x) +

∫
P∗(Y = −1|X = x)

xx>(
1 + e−〈x,β∗〉

)2dF∗(x)

=

∫
1

1 + e−〈x,β∗〉
xx>(

1 + e〈x,β∗〉
)2dF∗(x) +

∫
1

1 + e〈x,β∗〉
xx>(

1 + e−〈x,β∗〉
)2dF∗(x)

=

∫
e〈x,β∗〉xx>(
1 + e〈x,β∗〉

)3dF∗(x) +

∫
e2〈x,β∗〉xx>(
1 + e〈x,β∗〉

)3dF∗(x)

=

∫
e〈x,β∗〉xx>(
1 + e〈x,β∗〉

)2dF∗(x)

= EP∗

[
e〈X,β∗〉XX>(
1 + e〈X,β∗〉

)2
]
,

and

C(β∗) = EP∗
[
∂2L1(〈X, β〉, Y )

∂β2

]
= EP∗

[
XX>eY 〈X,β∗〉(
1 + eY 〈X,β∗〉

)2
]

=

∫
P (Y = 1|X = x)

e〈x,β∗〉xx>(
1 + e〈x,β∗〉

)2dF∗(x) +

∫
P (Y = −1|X = x)

e−〈x,β∗〉xx>(
1 + e−〈x,β∗〉

)2dF∗(x)

=

∫
1

1 + e−〈x,β∗〉
e〈x,β∗〉xx>(
1 + e〈x,β∗〉

)2dF∗(x) +

∫
1

1 + e〈x,β∗〉
e−〈x,β∗〉xx>(
1 + e−〈x,β∗〉

)2dF∗(x)

=

∫
e2〈x,β∗〉xx>(
1 + e〈x,β∗〉

)3dF∗(x) +

∫
e〈x,β∗〉xx>(
1 + e〈x,β∗〉

)3dF∗(x)

=

∫
e〈x,β∗〉xx>(
1 + e〈x,β∗〉

)2dF∗(x)

= EP∗

[
e〈X,β∗〉XX>(
1 + e〈X,β∗〉

)2
]
,
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then we could derive that

D(β∗) = C(β∗)
−1CovP∗

(
∂L1(〈X, β〉, Y )

∂β

) ∣∣∣∣
β=β∗

C(β∗)
−1

=

(
EP∗

[
e〈X,β∗〉XX>(
1 + e〈X,β∗〉

)2
])−1

.

(33)

Regarding the asymptotic mean of βADROn , we have that

H(β∗) = τ


√√√√EP∗

[
1(

1 + eY 〈X,β∗〉
)2
]

β∗
‖β∗‖2

−
‖β∗‖2EP∗

[
Y eY 〈X,β∗〉X

(1+eY 〈X,β∗〉)
3

]
√
EP∗

[
1

(1+eY 〈X,β∗〉)
2

]
 . (34)

Notice we have that

EP∗

[
Y eY 〈X,β∗〉X(
1 + eY 〈X,β∗〉

)3
]

=

∫
P∗(Y = 1|X = x)

e〈x,β∗〉x(
1 + e〈x,β∗〉

)3dF∗(x)−
∫
P∗(Y = −1|X = x)

e−〈x,β∗〉x(
1 + e〈x,β∗〉

)3dF∗(x)

=

∫
1

1 + e−〈x,β∗〉
e〈x,β∗〉x(

1 + e〈x,β∗〉
)3dF∗(x)−

∫
1

1 + e〈x,β∗〉
e−〈x,β∗〉x(

1 + e−〈x,β∗〉
)3dF∗(x)

=

∫
1

1 + e〈x,β∗〉
e2〈x,β∗〉x(

1 + e〈x,β∗〉
)3dF∗(x)−

∫
1

1 + e〈x,β∗〉
e2〈x,β∗〉x(

1 + e〈x,β∗〉
)3dF∗(x)

=0,

which indicates that the equation (13) holds and the second term in (34) equals to 0.

Then, we obtain that

H(β∗) = τ

√√√√EP∗

[
1(

1 + eY 〈X,β∗〉
)2
]

β∗
‖β∗‖2

.
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Notice we have that

EP∗

[
1(

1 + eY 〈X,β∗〉
)2
]

=

∫
P∗(Y = 1|X = x)

1(
1 + e〈x,β∗〉

)2dF∗(x) +

∫
P∗(Y = −1|X = x)

1(
1 + e−〈x,β∗〉

)2dF∗(x)

=

∫
1

1 + e−〈x,β∗〉
1(

1 + e〈x,β∗〉
)2dF∗(x) +

∫
1

1 + e〈x,β∗〉
1(

1 + e−〈x,β∗〉
)2dF∗(x)

=

∫
1

1 + e〈x,β∗〉
e〈x,β∗〉(

1 + e〈x,β∗〉
)2dF∗(x) +

∫
1

1 + e〈x,β∗〉
e2〈x,β∗〉(

1 + e〈x,β∗〉
)2dF∗(x)

=

∫
1

1 + e〈x,β∗〉
e〈x,β∗〉 + e2〈x,β∗〉(

1 + e〈x,β∗〉
)2 dF∗(x)

=EP∗

[
e〈X,β∗〉(

1 + e〈X,β∗〉
)2
]
.

Then, H(β∗) can be simplified as

H(β∗) = τ

√√√√EP∗

[
e〈X,β∗〉(

1 + e〈X,β∗〉
)2
]

β∗
‖β∗‖2

.

A.16 Proof of Proposition 25

Proof Regarding the asymptotic covariance matrix, since we have that

CovP∗

(
∂L2(〈X, β〉, Y )

∂β

) ∣∣∣∣
β=β∗

=EP∗

[
∂L2(〈X, β〉, Y )

∂β

(
∂L2(〈X, β〉, Y )

∂β

)>] ∣∣∣∣∣
β=β∗

=EP∗
[
(e〈X,β∗〉 − Y )2XX>

]
,

=EP∗
[
EP∗

[(
e〈X,β∗〉 − Y

)2 ∣∣∣X]XX>
]

=EP∗
[
VarP∗(Y |X)XX>

]
=EP∗

[
e〈X,β∗〉XX>

]
,

(35)

and

C(β∗) = EP∗
[
∂2L2(〈X, β〉, Y )

∂β2

] ∣∣∣∣
β=β∗

= EP∗
[
e〈X,β∗〉XX>

]
,
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then we could derive that

D(β∗) = C(β∗)
−1CovP∗

(
∂L2(〈X, β〉, Y )

∂β

) ∣∣∣∣
β=β∗

C(β∗)
−1

=
(
EP∗

[
e〈X,β∗〉XX>

])−1
.

(36)

Regarding the asymptotic mean of βADROn , we have that

H(β∗) = τ


√
EP∗

[(
e〈X,β∗〉 − Y

)2] β∗
‖β∗‖2

− ‖β∗‖2
EP∗

[(
e〈X,β∗〉 − Y

)
e〈X,β∗〉X

]√
EP∗

[(
e〈X,β∗〉 − Y

)2]
 , (37)

For the second term, we have that

EP∗
[(
e〈X,β∗〉 − Y

)
e〈X,β∗〉X

]
=EP∗

[
e〈X,β∗〉EP∗

[
e〈X,β∗〉 − Y

∣∣X]X
]

=0,

which indicates that the equation (13) holds and the second term in (37) equals to 0.

Further, we have that

EP∗
[(
e〈X,β∗〉 − Y

)2
]

=EP∗
[
EP∗

[(
e〈X,β∗〉 − Y

)2 ∣∣∣X]]
=EP∗ [VarP∗(Y |X)]

=EP∗
[
e〈X,β∗〉

]
.

Hence, we have that

H(β∗) = τ
√

EP∗ [e〈X,β∗〉]
β∗
‖β∗‖2

.
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A.17 Proof of Proposition 26

Proof Regarding the asymptotic covariance matrix, since we have that

CovP∗

(
∂L3(〈X, β〉, Y )

∂β

) ∣∣∣∣
β=β∗

= EP∗

[
∂L3(〈X, β〉, Y )

∂β

(
∂L3(〈X, β〉, Y )

∂β

)>] ∣∣∣∣∣
β=β∗

= EP∗
[
(〈X, β∗〉 − Y )2XX>

]
= EP∗

[
EP∗

[
(〈X, β∗〉 − Y )2|X

]
XX>

]
= EP∗

[
VarP∗(Y |X)XX>

]
= σ2EP∗

[
XX>

]
,

and

C = EP∗
[
∂2L3(〈X, β〉, Y )

∂β2

]
= EP∗

[
XX>

]
,

then we could derive that

D = C−1CovP∗

(
∂L1(〈X, β〉, Y )

∂β

) ∣∣∣∣∣
β=β∗

C−1

= σ2
(
EP∗

[
XX>

])−1
.

Regarding the asymptotic mean of βADROn , it follows from (31) that

H(β∗) = τ

(√
EP∗ [(〈X, β∗〉 − Y )2]

β∗
‖β∗‖2

− ‖β∗‖2EP∗ [(〈X, β∗〉 − Y )X]√
EP∗ [(〈X, β∗〉 − Y )2]

)
. (38)

For the second term, we have that

EP∗ [(〈X, β∗〉 − Y )X]

=EP∗ [〈X, β∗〉X− EP∗ [Y |X] X]

=0,

indicating that the equation (13) holds and the second term in (38) equals to 0.
Then, we obtain that

H(β∗) = τ
√
EP∗ [(〈X, β∗〉 − Y )2]

β∗
‖β∗‖2

.

Notice we also have that

EP∗
[
(〈X, β∗〉 − Y )2

]
=EP∗

[
EP∗

[
(〈X, β∗〉 − Y )2 |X

]]
=EP∗ [VarP∗(Y |X)]

=σ2.
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Thus, we have that

H(β∗) = τσ
β∗
‖β∗‖2

.
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