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Abstract

This paper considers the problem of minimizing the sum of a smooth function and the
Schatten-p norm of the matrix. Our contribution involves proposing accelerated iteratively
reweighted nuclear norm methods designed to solve the nonconvex low-rank minimization
problem. Two major novelties characterize our approach. First, the proposed method pos-
sesses an active manifold identification property, enabling the provable identification of the
correct rank of the stationary point within a finite number of iterations. Second, we intro-
duce an adaptive updating strategy for smoothing parameters. This strategy automatically
fixes parameters associated with zero singular values as constants upon detecting the cor-
rect rank while quickly driving the remaining parameters to zero. This adaptive behavior
transforms the algorithm into one that effectively solves smooth problems after a few it-
erations, setting our work apart from existing iteratively reweighted methods for low-rank
optimization. We prove the global convergence of the proposed algorithm, guaranteeing
that every limit point of the iterates is a critical point. Furthermore, a local convergence
rate analysis is provided under the Kurdyka-Łojasiewicz property. We conduct numerical
experiments using both synthetic and real data to showcase our algorithm’s efficiency and
superiority over existing methods.
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1. Introduction

We consider the following regularized nonconvex matrix optimization problem

min
X∈Rm×n

F (X) := f(X) + λ‖X‖pp, (P)

where the loss term f : Rm×n → R is twice continuously differentiable and the regularization

term ‖X‖p =
(∑min{m,n}

i=1 σi(X)p
)1/p

is commonly referred to as the nonconvex Schatten-p
norm1 with p ∈ (0, 1), and σi(X) is the ith element of the singular value vector of X. The
parameter λ > 0 is tunable, providing a proper trade-off between the loss and regularization
terms. Throughout our discussion, we assume without loss of generality that m ≤ n.

(P) is commonly employed to reduce the relaxation gap between the nuclear norm (or
the Schatten-1 norm) and the rank function. Specifically, to achieve an optimal low-rank
solution, it is reasonable to consider the following rank-regularized formulation

min
X∈Rm×n

f(X) + λ · Rank(X), (1.1)

where Rank(X) = ‖σ(X)‖0 :=
∑m

i=1 I(σi(X) 6= 0) with I(·) denoting the indicator function.
Problem (1.1) models many important problems that emerged in science and engineering
fields, including low-rank matrix recovery (Davenport and Romberg, 2016), recommendation
systems (Lee et al., 2016), machine learning (Indyk et al., 2019) and image processing
(Huang et al., 2014; Zhao et al., 2020). However, such a matrix rank minimization problem
is known to be NP-hard due to the combinatorial nature of the rank function (Hu et al.,
2021). To mitigate this computational challenge, many studies have proposed relaxing the
rank function to its tractable convex counterpart, the nuclear norm (Fazel et al., 2001),
resulting in the following convex optimization problem

min
X∈Rm×n

f(X) + λ‖X‖∗, (1.2)

where ‖X‖∗ = ‖σ(X)‖1 :=
∑m

i=1 σi(X). Over the past decade, the nuclear norm has
been crucial in algorithm design, theoretical analysis, and practical applications for achiev-
ing desired low-rank solutions (Candès and Recht, 2009; Recht et al., 2010). Recall that
‖X‖∗ = ‖σ(X)‖1, the nuclear norm regularization equally shrinks all singular values (Ne-
gahban and Wainwright, 2011), often over-penalizing large singular values and resulting in
a solution from a possibly biased solution space that may exclude ground-truth solutions
(Zhang, 2010). Given these considerations, problem (P) serves as an efficient alternative to
(1.1) for reducing the relaxation gap. The p-th power of Schatten-p norm of X approxi-
mates Rank(X) and recovers the nuclear norm in the sense that limp→0+ ‖X‖

p
p = Rank(X)

and limp→1− ‖X‖
p
p = ‖X‖∗, respectively. Thus, problem (P) incorporates an approximate

low-rank assumption for the desired solution (Hu et al., 2021). Empirical evidence demon-
strates that the Schatten-p norm outperforms the nuclear norm in terms of the bias-variance
trade-off for many problems (Lu et al., 2014; Nie et al., 2012; Marjanovic and Solo, 2012).
Moreover, Schatten-p norm minimization needs fewer observations than traditional nuclear
norm minimization (Zhang et al., 2013). Under certain restricted isometry property (RIP)

1. It is a matrix quasi-norm when 0 < p < 1. We call it a norm for convenience.
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conditions, it has been shown that the Schatten-p norm minimization over an affine matrix
manifold can uniquely recover a low-rank matrix from compressed affine measurements (Yue
and So, 2016; Malek-Mohammadi et al., 2015). In this context, problem (P) arises in an
incredibly wide range of settings throughout science and applied mathematics (Lee et al.,
2016; Chiang et al., 2018; Jun et al., 2019; Tong et al., 2021; Pal and Jain, 2022). In partic-
ular, this optimization model (P) is used in many modern machine learning tasks, including
low-rank features learning (Wang et al., 2019), multi-view learning (Liu et al., 2015), and
transfer learning (Lin et al., 2019), to name just a few.

A commonly used approach to address (P) is the Iteratively Re-Weighted Nuclear
(IRWN) norm-type algorithm, which falls under the majorization-minimization algorithmic
framework. The nonsmooth and non-Lipschitz properties of the Schatten-p norm typically
prompt researchers to initiate their exploration with a smoothed objective function:

Fε(X) := f(X) + λ
m∑
i=1

(σi(X) + εi)
p, (1.3)

where εi > 0,∀i ∈ [m] refers to the perturbation parameters. The modified function Fε(X)
adjusts F (X) by introducing a perturbation parameter to each singular value. During the
kth iteration with the iterate Xk, IRWN effectively generates the new update Xk+1 by
(approximately) solving

Xk+1 ←− arg min
X∈Rm×n

Fsurro(X;Xk), (1.4)

Fsurro(X;Xk) := 〈∇f(Xk),X −Xk〉+
β

2
‖X −Xk‖2F + λ‖X‖∗wk , (1.5)

where the positive number β is generally required to exceed the Lipschitz constant of the
smooth loss term f , and ‖X‖∗wk =

∑m
i=1w

k
i σi(X) serves as a locally surrogate for ‖X‖pp

at Xk. Here, wki ≥ 0,∀i ∈ [m] represents the weight assigned to σi(X), given by wki =
p(σi(X

k) + εki )
p−1.

The major difference between variants of IRWN may be the updating rule for the per-
turbation εk, since the values of εk are critically linked to the well-posedness and solvability
of the subproblem (1.4). As is proved in (Chen et al., 2013, Theorem 2.2), to guarantee
‖X‖∗w is indeed a convex matrix-norm, the weights should be in descending order. This
requirement proves impractical within the context of IRWN, since sufficiently small εk leads
to weights in ascending order. On the other hand, the subproblem is nonconvex, but boasts
an optimal closed-form solution (Lu et al., 2017) when the weights are arranged in ascending
order. One simple approach is to maintain ε as sufficiently small positive constants dur-
ing the iteration (Sun et al., 2017) to maintain the weights in ascending order. As such,
it does solve the relaxed problem (1.3) as its objective. It is generally believed that (1.3)
approximates the original problem (P) well only for sufficiently small ε. Fixing εk as suffi-
ciently small values (especially those associated with the zero singular values of the initial
points) may cause the algorithm to easily get stuck in unwanted local minimizers near the
initial point. A natural idea to remedy this strategy is to use the same perturbation value
for each singular value, i.e., εk = εke, and then decrease εk during the iteration. In this
way, the performance of the algorithm critically depends on the speed of driving εk to zero.
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It is conceivable that reducing εki associated with zero singular values of iterates too fast
may lead to undesired local minimizers, and reducing εki associated with positive singular
values of the iterates too slow may cause the algorithm to be sluggish. An ideal updating
strategy should be able to quickly detect those zero singular values in the found optimal
solution, and then automatically terminate the decrease for εki assigned to them and at the
same time keep driving other εki rapidly to zero. Another benefit of such a strategy is that
the εki associated with the zero singular value does not affect the objective value near the
optimal solution, and the algorithm’s behavior then only depends on the positive singular
value and the decreasing speed of the rest εki . However, such an updating strategy may be
sophisticated and challenging to design since the user typically lacks prior knowledge of the
rank of the final solution until the entire problem is resolved.

In this paper, we propose an Extrapolated Iteratively Reweighted Nuclear norm with Ac-
tive Manifold Identification (EIRNAMI) to solve (P). We first add perturbation parameters
εi to each singular value of the matrix to smooth the Schatten-p norm. Then we construct
the weighted nuclear “norm”1 subproblem of the approximated function combined with an
extrapolation technique. An adaptive updating strategy for ε is also designed, which au-
tomatically terminates the update for εi associated with zero singular values and rapidly
reduces those associated with positive singular values to zero. This update strategy keeps
the weights in ascending order so that the subproblem is nonconvex but has a closed-form
optimal solution (Lu et al., 2017, Theorem 3.1). Our algorithm is designed to automatically
identify zero singular values in the optimal solution after a finite number of iterations. This
allows the algorithm to effectively transform the problem into one that operates as a smooth
optimization on a fixed-rank manifold embedded in the space Rm×n. Based on this, the lo-
cal convergence rate can be easily derived. It should be mentioned that our work mainly
considers applying the proposed algorithm to solve the representative Schatten-p regularized
problem (P), however, it is important to note that the proposed algorithm can be extended
to other nonconvex regularization functions of the singular values quite straightforwardly,
including the Logarithm (Friedman, 2012), exponential-type penalty (Gao et al., 2011), Ge-
man (Geman and Yang, 1995), Laplace (Trzasko and Manduca, 2008), minimax concave
penalty (MCP) (Zhang, 2010) and smoothly clipped absolute deviation (SCAD) (Fan and
Li, 2001), and more.

1.1 Related Work

Over the last decade, significant attention has been directed toward low-rank optimization,
resulting in theoretically and practically efficient algorithms applicable to various problems
in signal processing and modern machine learning. Within the extensive body of work, we
specifically review the most relevant works.

IRWN-type algorithms. The work of (Sun et al., 2017) proposed a proximal iter-
atively reweighted nuclear norm (PIRNN) algorithm. Their algorithm adds a prescribed
positive perturbation parameter εi to each singular value σi(X) and fixed it during the it-
eration of the algorithm. Therefore, it indeed solves the relaxed problem (1.3) as its goal.
In stark contrast, our method is designed for the original problem (P) in the sense that the
perturbation parameter is automatically driven to 0 so that the iterations can successfully

1. It is indeed not a norm since it is not convex.
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recover the rank of the stationary first-order solution to (P). It should be stressed that
our updating strategy is designed such that ε is decreased to zero at an appropriate speed
to maintain the well-posedness of the subproblems and the convergence rate of the overall
algorithm.

The immediate predecessor of our work, to our knowledge, is the Iteratively Reweighted
Nuclear Norm (IRNN) algorithm proposed in (Lu et al., 2014) and its acceleration (AIRNN)
introduced in (Phan and Nguyen, 2021; Ge et al., 2022). IRNN considered a general concave
singular value function g(σi(X)) as the regularization term. It first calculates the so-called
supergradient of Schatten-p norm wki ∈ ∂g(σ(Xk)) and uses it as the weight to form the
subproblem. In contrast to our method, this method does not involve the perturbation
parameter ε; therefore, the weight may tend to extreme values as the associated singular
value is close to 0. (As for the zero singular value, this method uses an extremely large
constant as the weight). We suspect that this might be the reason for the observation that
“IRNN may decrease slowly since the upper bound surrogate may be quite loose” reported
in (Lu et al., 2015). Then AIRNN used the extrapolation technique and computed the SVD
of a smaller matrix at each iteration to accelerate IRNN. The biggest difference between our
algorithm with IRNN, AIRNN, and other contemporary reweighted nuclear norm methods
is the active manifold identification property possessed by our algorithm, which means that
the algorithm can identify the rank of the converged solution after finite iterations. We
elaborate on this in the next subsection.

Active manifold identification. The major novelty of our work is the property of
identification of the active manifold of the proposed method, which is an extension of the
model identification for vector optimization. In sparse optimization, such as the LASSO
or the support-vector machine, problems generally generate solutions onto a low-complexity
model, such as solutions of the same supports. For LASSO, a solution x∗ typically has only a
few nonzeros coefficients: it lies on the reduced space composed of the nonzeros components
(the support) of x∗. Model identification relates to answering the question of whether an
algorithm can identify the low-complexity active manifold in finite iterations. It has become
a useful tool in analyzing the behavior of algorithms and has attracted much attention in
the past decades in the research of machine learning algorithms in vector optimization. For
example, coordinate descent (Massias et al., 2018) for convex sparse regularization prob-
lems are proved to have model identification, and the convergence analysis is easily derived
under this property. In the last few years, proximal gradient algorithm (Hare, 2011; Liang
et al., 2014, 2017) have been shown the model identification for the `1 regularized problem.
Recently, it has also been shown that the iteratively reweighted `1 minimization for the `p
regularized problem has the model identification property (Wang et al., 2022, 2021a). This
property also belongs to the research line on active-manifold identification in nonsmooth
optimization (Lewis, 2002; Hare and Lewis, 2007).

Although IRWN-type algorithms have been extensively studied, their capability for ac-
tive manifold identification has received limited attention. A recent contribution by (pei Lee
et al., 2023) explored the use of the proximal gradient method to identify the correct rank
for a nuclear norm-regularized problem. In particular, its algorithm can serve as a suitable
subproblem solver for our approach. In a related vein, the work of (Zeng, 2023) extended
the lower bound theory of nonconvex `p minimization to Schatten-p norm minimization and
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incorporates it as a priori in algorithm design. However, the active manifold identification
property of their algorithm remains unverified.

In this paper, we formalize the active manifold identification property as follows.

Definition 1 (Active manifold identification property) An algorithm is said to pos-
sess the active manifold identification property if and only if for a sequence (or at least a
subsequence) {Xk}k∈N+ generated by the algorithm converges to a solution X∗, then there
exists a finite K ∈ N+ such that for each k ≥ K, Xk ∈ M(X∗) := {X ∈ Rm×n |
Rank(X) = Rank(X∗)}.

Our algorithm is designed to possess this property, which means that the singular values
of the generated iterates satisfy σi(X

k) = 0, i ∈ Z(X∗) and σi(X
k) > 0, i ∈ I(X∗) for

all sufficiently large k, where Z(X∗) is the set of indices that correspond to the zero sin-
gular values in the optimal solution and I(X∗) corresponds to the nonzero singular values.
Based on this, an adaptive updating strategy of ε can be straightforwardly designed to drive
εi, i ∈ I(X∗) quickly to zero and automatically cease the updating for εi, i ∈ Z(X∗). In
essence, this implies that the algorithm behaves like solving a smooth problem in a low-
complexity manifold, facilitating a straightforward derivation of global convergence analysis
and application of acceleration techniques. To our knowledge, this idea of designing an al-
gorithm with model/active manifold identification property for the Schatten-p norm is novel
in the context of matrix optimization problems.

1.2 Contribution

We summarize our main contributions in the following.

(i) We propose an iteratively reweighted nuclear norm minimization method for the non-
convex regularized problem, and extrapolation techniques are also incorporated into
the algorithm to further enhance its performance.

(ii) The key novelty of the proposed method is the adaptively updating strategy for up-
dating the perturbation parameters, bringing two benefits: (i) automatic identification
of parameters associated with zero and nonzero singular values, enabling the use of
tailored update strategies for each. (ii) consistent maintenance of weights in ascend-
ing order, ensuring the explicit computation of a global minimizer for the nonconvex
subproblem.

(iii) We show that the algorithm possesses an active manifold identification property, which
can successfully identify the rank of the optimal solutions found by the algorithm
within finite number of iterations. This property, which is barely studied by the
existing related work, signifies a distinct contribution. It implies a transition of the
optimization problem to a smoother form in the vicinity of the optimal solution.

(iv) Global convergence and local convergence rate under the Kurdyka-Łojasiewicz (KL)
property are derived for the proposed algorithm.
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1.3 Notation and Preliminaries

Throughout the paper, we restrict our discussion to the Euclidean space of n-dimensional
real vectors, denoted Rn, and the Euclidean space of m × n real matrices denoted Rm×n,
where m,n ∈ N. Rn+ represents the nonnegative orthant in Rn and Rn++ denotes the interior
of Rn+. Rn↑ and Rn↓ are used to indicate the set of nondecreasingly ordered vectors and nonin-
creasingly ordered vectors, respectively. Furthermore, we use the notation [n] = {1, 2, · · · , n}
to denote the integer set from 1 to n, for any n ∈ N. For any x,y ∈ Rn, the element-wise
(Hadamard) product between x and y is given by (x ◦ y)i = xiyi for i ∈ [n]. By abuse
of notation, ◦ is also used to denote function composition. Define the `p-(quasi)-norm of
x ∈ Rn as ‖x‖p = (

∑n
i=1 |xi|p)1/p.

For any X,Y ∈ Rm×n (assuming m ≤ n for convenience), the Frobenius norm of X is

denoted as ‖X‖F , namely ‖X‖F =
(∑m

i=1

∑n
j=1 |Xij |2

)1/2
= tr

(
X>X

)1/2. The Frobenius
inner product is 〈X,Y 〉 = tr

(
X>Y

)
. Let diag(x) denote the diagonal matrix with vector

x on its main diagonal and zeros elsewhere. The full singular value decomposition (SVD)
(Van Loan, 1976) of X ∈ Rm×n is

X = Udiag (σ(X))V >,

where (U ,V ) ∈ M(X) with M(X) := {(U ,V ) ∈ Rm×m × Rn×n | U>U = Im,V
>V =

In,X = Udiag(σ(X))V >} and σ(X) ∈ Rm↓ ∩ Rm+ denotes the singular value vector of X.
Suppose Rank(X) = r ≤ m. The associated thin SVD of X is X = Urdiag(σr(X))V >r ,
where Ur and Vr are the first r columns of U and V , respectively, and σr(X) ∈ Rr↓ ∩ Rr+.

For analysis, we summarize the simultaneous ordered SVD of two matrices introduced
in (Lewis and Sendov, 2005).

Definition 2 (Simultaneous ordered SVD) We say that two real matrices X and Y of
size m×n have a simultaneous ordered singular value decomposition if there exist orthogonal
matrices U ∈ Rm×m and V ∈ Rn×n such that

X = Udiag(σ(X))V > and Y = Udiag(σ(Y ))V >.

In addition, we define two index sets as follows to track the singular values of the iterates
conveniently, which reads

I(X) := {i : σi(X) > 0} and Z(X) := {i : σi(X) = 0} .

For a lower semicontinuous function J : RN → (−∞,+∞], its domain is denoted by
dom(J) := {x ∈ RN : J(x) < +∞}. We first recall some concepts of subdifferentials that
are commonly used in variational analysis and subdifferential calculus, which is a useful tool
in developing optimality conditions of the concerned optimization problem in nonsmooth
analysis.

Definition 3 (Subdifferentials) Consider a proper lower semi-continuous function. ϕ :
RN → (−∞,+∞].

7
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1. The Fréchet subdifferential ∂̂ϕ of ϕ at an x ∈ dom ϕ is analytically defined as

∂̂ϕ(x) :=

{
v ∈ RN | lim

u→x
inf
u6=x

ϕ(u)− ϕ(x)− 〈v,u− x〉
‖u− x‖2

≥ 0

}
.

2. The (limiting) subdifferential of ∂ϕ of ϕ at an x ∈ dom ϕ is defined through the
following closure process, which reads,

∂ϕ(x) :=
{
v ∈ RN | ∃vk → v,xk

ϕ→ x with vk ∈ ∂̂ϕ(xk) for all k
}
.

where xk ϕ→ x refers to ϕ-attentive convergence in analysis, meaning xk → x with
ϕ(xk)→ ϕ(x).

We mention ∂̂ϕ(x) = ∂ϕ = ∅ for x /∈ dom ϕ.

We next collect the result on the limiting subdifferential of the singular value function
established in (Lewis and Sendov, 2005). Upon that, we present the limiting subdifferential
associated with the nonconvex Schatten-p norm.

Lemma 1 (Limiting subdifferential of singular value function) Let ϕ : Rm → R be
an absolutely symmetric function, meaning ϕ(x1, · · · , xm) = ϕ(|xπ(1)|, · · · , |xπ(m)|) holds for
any permutation π of [m], and let σ(X) be the singular values of a matrixX ∈ Rm×n(m ≤ n
is assumed for convenience). Then the limiting subdifferential of singular value function ϕ◦σ
at a matrix X is given by

∂[ϕ ◦ σ](X) = Udiag (∂ϕ[σ(X)])V >,

with Udiag(σ(X))V > being the SVD of X.

A direct consequence of Lemma 1 is the result of limiting subdifferential of ‖X‖pp.

Proposition 1 Let Rank(X) = r ≤ m ∈ N. The limiting subdifferential of ‖ · ‖pp : Rm×n →
R at a matrix X is given by

∂‖X‖pp = ∂

(
r∑
i=1

σi(X)p

)
= ∂

(
[‖ · ‖pp ◦ σ](X)

)
=
{
Udiag(Σ)V > | Σ ∈ (∂‖σ(X)‖pp ◦ ∂|σi(X)|)

}
,

(1.6)

where ∂‖σ(X)‖pp = {ϑ ∈ Rm | ϑj = pσj(X)p−1, j ∈ [r]} and (U ,V ) ∈M(X).

We use the following stationary principle based on subdifferentials to establish the first-
order necessary optimality conditions of (P).

Theorem 2 (Nonsmooth versions of Fermat’s rule) Consider (P). If F has a local
minimum at X̄, then 0 ∈ ∂̂F (X̄) = ∂F (X̄).

Using Proposition 1 and by Theorem 2, we define the critical point of (P) as follows.
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Definition 4 (Critical point) We say that an X ∈ Rm×n is a critical point of F in (P)
if it satisfies 0 ∈ ∂F (X). Moreover, the set of all critical points is denoted by

crit(F ) :=
{
X ∈ Rm×n | 0 ∈ ∇f(X) + λUdiag(∂‖σ(X)‖pp)V >,(U ,V ) ∈M(X)

}
. (1.7)

The Kurdyka-Łojasiewicz (KL) property plays an important role in our convergence analysis.
We next recall the essential components as follows. First, let Ω ⊂ Rm×n and X ∈ Rm×n,
the distance from X to Ω is defined by

dist(X,Ω) := inf{‖X − Y ‖F | Y ∈ Ω}.

In particular, we have dist(X,Ω) = +∞ for any X when Ω = ∅. Next, we define the
desingularizing function.

Definition 5 (Desingularizing function) (Garrigos, 2015, Section 3.1.2) Let η > 0. We
say that Φ : [0, η]→ R+ is a desingularizing function if

(i) Φ(0) = 0;

(ii) Φ is continuous on [0, η] and of class C1 on (0, η);

(iii) Φ′(s) > 0 for all s ∈ (0, η).

Typical examples of desingularizing functions are the functions of the form Φ(t) = cs1−θ,
for c > 0 and KL exponent θ ∈ [0, 1).

Now we define the Kurdyka-Łojasiewicz property.

Definition 6 (KL property) (Bolte et al., 2014, Definition 3) Let F : Rm×n → R∪{+∞}
be proper lower semicontinuous. We say that F satisfies the Kurdyka-Łojasiewicz property at
X̄ ∈ dom(∂F ) := {X ∈ Rm×n | ∂F (X) 6= ∅} if there exist η > 0, a neighborhood U(X̄, ρ)
of X̄, and a concave desingularizing function Φ : [0, η) → R+, such that the Kurdyka-
Łojasiewicz inequality

Φ′
(
F (X)− F (X̄)

)
dist

(
0, ∂F (X̄)

)
≥ 1 (1.8)

holds, for all X in the strict local upper level set

Levη(X̄, ρ) := {X ∈ U(X̄, ρ) | F (X̄) < F (X) < F (X̄) + η}.

If F satisfies the KL property at any X ∈ dom(∂F ), we then call F a KL function.
Moreover, we introduce the more general KL property as follows.

Lemma 3 (Uniform KL property) (Bolte et al., 2014, Lemma 6) Let Ω be a compact
set and let F : Rm×n → R∪{+∞} be a proper lower semicontinuous function. Assume that
F is constant in Ω and satisfies the KL property at each point in Ω. We say that F has
uniform KL property on Ω if there exist ε > 0, η > 0 and Φ defined in Definition 6 such
that the KL inequality (1.8) holds for any X̄ ∈ Ω and any X ∈ {X ∈ Rm×n | dist(X,Ω) <
ε} ∩ {X ∈ Rm×n | F (X̄) < F (X) < F (X̄) + η}.
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The KL property of the objective function is crucial in the convergence analysis of the
first-order algorithms for nonconvex and nonsmooth optimization problems, as discussed
in (Attouch et al., 2010, 2013). Many functions are known to satisfy the KL property, as
introduced in (Bolte et al., 2014, Section 5) and (Garrigos, 2015, Section 3.1). Typical
examples include the `0-(quasi)norm ‖x‖0, `p-(quasi)norm ‖x‖p with p > 0 (with some
technical conditions required when p is irrational) (Attouch et al., 2010; Bolte et al., 2014),
real polynomial functions, indicator functions of polyhedral sets and matrix rank function.
For the calculation of the KL exponent, we refer to the recent works by (Li and Pong, 2018;
Yu et al., 2022; Ouyang et al., 2024).

2. Proposed Extrapolated Iteratively Reweighed Nuclear Norm
Algorithm with Active Manifold Identification

In this section, we provide the details of the proposed EIRNN framework to solve (P) by
discussing the solution of the subproblem and a novel update strategy of the perturbation
parameter to enable the active manifold identification property.

Before presenting the proposed algorithm, we make the following assumptions on (P) as
follows throughout.

Assumption 1 The function f : Rm×n → R is Lf -smooth, i.e., ‖∇f(X) − ∇f(Y )‖F ≤
Lf‖X − Y ‖F , ∀X,Y ∈ Rm×n, where the modulus Lf ≥ 0 refers to the smoothness param-
eter.

Assumption 2 The function F is level-bounded (Rockafellar and Wets, 2009, Definition
1.8) and proper. This assumption about F corresponds to limX∈Rm×n:‖X‖→∞ F (X) = +∞
and further implies minX∈Rm×n F (X) = F > −∞ and {X | arg minX∈Rm×n F (X)} 6= ∅
regarding (P).

We state the proposed algorithm in Algorithm 1, which consists of solving a sequence of
weighted nuclear norm regularized subproblems, an extrapolation technique, and an adaptive
perturbation parameter updating strategy.

Algorithm 1 Extrapolated Iteratively Reweighted Nuclear Norm with Active Manifold
Identification (EIRNAMI)

Input: X0 ∈ Rm×n, ε0 ∈ Rm++ ∩ Rm↓ , µ ∈ (0, 1), and α0 ∈ [0, ᾱ] by (2.3).
Initialize: k = 0 and X−1 = X0.
1: repeat
2: Compute weights wki = p

(
σi(X

k) + εki
)p−1

, ∀i ∈ [m].
3: Compute Y k+1 according to the extrapolation (2.2).
4: Compute the new iterate as the solution of (2.5).
5: Update εk by calling Algorithm 2.
6: Choose αk ∈ [0, ᾱ].
7: Set k ← k + 1.
8: until convergence

10
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2.1 A Weighted Nuclear Norm Surrogate with Extrapolation

Our presented approach to solving (P) is primarily motivated by the substantial literature on
proximal gradient-type methods employing acceleration techniques (Yu and Pong, 2019) and
iteratively reweighted techniques (Wang et al., 2021b). Specifically, we first add perturbation
parameters ε ∈ Rn++ to each singular value of the matrix to smooth the p-th power of the
Schatten-p norm,

F (X; ε) := f(X) + λ
m∑
i=1

(σi(X) + εi)
p. (2.1)

Obviously, F (X; 0) = F (X). Drawing upon the Nesterov’s acceleration technique (Nes-
terov, 1983; Phan and Nguyen, 2021), our approach begins by computing an extrapolated
Y k, using the current iterate Xk and the previous one Xk−1, i.e.,

Y k = Xk + αk(X
k −Xk−1), (2.2)

where αk ∈ [0, ᾱ) refers to the extrapolation parameter and is selected according to the
following rule (Wang et al., 2022){

ᾱ ∈ (0, 1), if f(x) is convex and Lf -smooth,

ᾱ ∈ (0,
√

β
β+3Lf

), if f(x) is Lf -smooth,
(2.3)

with β ≥ Lf . At Y k, it follows for any feasible X that the perturbed objective F (X; ε)
admits a useful upper bound presented below, i.e.,

F (X, ε) := f(X) + λ

m∑
i=1

(σi(X) + εi)
p

(a)

≤ f(Y k) + 〈∇f(Y k),X − Y k〉+
Lf
2
‖X − Y k‖2F

+ λ

m∑
i=1

p(σi(X
k) + εki )

p−1(σi(X)− σi(Xk))

(b)

≤ f(Y k) + 〈∇f(Y k),X − Y k〉+
Lf
2
‖X − Y k‖2F +

Lf
2
‖X −Xk‖2F

+ λ
m∑
i=1

p(σi(X
k) + εki )

p−1(σi(X)− σi(Xk)),

(2.4)

where (a) is a direct consequence of the Lf -smoothness of f under Assumption 1 and the
concavity of (·)p, and (b) naturally holds due to the nonnegativity of the proximal term
Lf
2 ‖X − X

k‖2F . Omitting the constants on the right-hand side of (2.4), we obtain the
following surrogate function L(X;Xk,Y k, εk) to approximate F (X; ε) at (Xk, εk), i.e.,

L(X;Xk,Y k, εk) := f(Y k)+〈X,∇f(Y k)〉+β

2
‖X−Y k‖2F +

β

2
‖X−Xk‖2F +λ

m∑
i=1

wki σi(X),

11
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where wki = w(σi(X
k), εki ) = p

(
σi(X

k) + εki
)p−1

,∀i ∈ [m] and β ≥ Lf > 0. The next
iterate Xk+1 is computed by minimizing L(Xk;Xk,Y k, εk), i.e.,

Xk+1 ∈ arg min
X∈Rm×n

L(X;Xk,Y k, εk)

= arg min
X∈Rm×n

{
β

2

∥∥∥∥X − (Xk + Y k

2
− ∇f(Y k)

2β

)∥∥∥∥2

F

+
λ

2

m∑
i=1

wki σi(X)

}
.

(2.5)

Remark 4 As demonstrated in (Chen et al., 2013), the subproblem (2.5) involving the adap-
tive nuclear norm is typically nonconvex, given the natural restriction that the weights de-
crease with the singular values. Despite this nonconvexity, the global optimal solution can
be achieved, as shown in our adapted Proposition 2. The authors have further demonstrated
the superior statistical properties of the adaptive nuclear norm, which include a continuous
solution path, better bias-variance trade-off compared to the nuclear norm, and rank consis-
tency. In addition, they have established prediction and estimation performance bounds for
the proposed estimator in the high-dimensional asymptotic regime. In this regard, the adap-
tive nuclear norm generally enhances the performance of the proposed algorithm. Moreover,
for p ∈ (0, 1), `p regularization is locally equivalent to a weighted `1 regularization for vector
variables (Wang et al., 2021a, Theorem 9). From this perspective, applying the Schatten-p
regularization seeks to determine relatively “optimal” weighting coefficients in terms of the
adaptive nuclear norm regularization.

2.2 Subproblem Solution

It should be mentioned that solving such a weighted nuclear norm minimization problem
(2.5) is not a direct extension of solving a weighted `1 norm minimization counterpart in
the vector case. In fact, problem (2.5) is nonconvex and hence generally poses challenges
to find the global minimizer. As shown in (Chen et al., 2013, Theorem 2.2), the weighted
nuclear norm of X ∈ Rm×n, ‖X‖∗w, is convex with respect to X if and only if both the
singular value σi(X) and its corresponding weights wi, ∀i ∈ [m] are in descending order.
However, it is unrealistic to design such a strategy, since w(σi(X), εi) = p(σi(X) + εi)

p−1 <
p(σj(X) + εj)

p−1 = w(σj(X), εj) for σi(X) > σj(X) as εi → 0 and εj → 0. However, a
closed-form global optimal solution to (2.5) is available by imposing the ascending order on
all weights wi,∀i ∈ [m] (Lu et al., 2017; Sun et al., 2017). We restate such a result for (2.5)
in the following proposition.

Proposition 2 Consider (2.5). Let wk ∈ Rm↑ ∩ Rm++, that is,

0 < wk1 ≤ wk2 ≤ . . . ≤ wkm. (2.6)

Then a global optimal solution to (2.5) reads

Xk+1 = Uk+1diag
([

Σk+1
i − λwki

2β

]
+

)
V k+1> (2.7)

with Uk+1diag(Σk+1)V k+1> being the SVD of the matrix Xk+Y k

2 − ∇f(Y k)
2β .

12
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Proof The proof follows the same argument of (Lu et al., 2017, Theorem 3.1).

With the help of Proposition 2 and Definition 2 of simultaneous ordered SVD, we es-
tablish the following result whose proof follows a similar argument of (Ge et al., 2022,
Proposition 2).

Proposition 3 Consider (2.5). Suppose wk ∈ Rm↑ ∩ Rm++. Then there exist ξk+1 ∈
∂|σ(Xk+1)| ⊂ Rm such that

Uk+1diag
(
λ

2β
wk ◦ ξk+1

)
V k+1> ∈ ∂

{
m∑
i=1

wki σi(X
k+1)

}
, (2.8)

where Xk+1 and Xk+Y k

2 − ∇f(Y k)
2β have a simultaneous ordered SVD.

Proof By Theorem 2 and Proposition 2, we have from (2.5) that

0 ∈ β
(
Xk+1 −

(
Xk + Y k

2
− ∇f(Y k)

2β

))
+
λ

2
∂

(
m∑
i=1

wki σi(X
k+1)

)
. (2.9)

Note also that matricesXk+1 and Xk+Y k

2 − 1
2β∇f(Y k) have the simultaneous ordered SVD.

From (2.9), we know there exists ξ̂k+1 ∈ ∂
(∑m

i=1w
k
i σi(X

k+1)
)
such that

ξ̂k+1 =
2β

λ

((
Xk + Y k

2
− ∇f(Y k)

2β

)
−Xk+1

)
=

2β

λ

(
Uk+1diag(Σk+1)V k+1> −Uk+1diag

((
Σk+1 − λwk

2β

)
+

)
V k+1>

)
=

2β

λ

(
Uk+1diag

(
Σk+1 −

(
Σk+1 − λwk

2β

)
+

)
V k+1>

)
.

(2.10)

If σi(Xk+1) =
(
Σk+1
i − λwki

2β

)
+
> 0 for i ∈ [m], we know ∂(σi(X

k+1)) = 1 and Σk+1 −(
Σk+1 − λwk

2β

)
+

= λwk

2β . Then, it follows for any i ∈ [m] such that ξk+1
i = 1 that

λwk

2β ◦ ξ
k+1 = λwk

2β ∈
λwk

2β ◦ ∂(σi(X
k+1)). If σi(Xk+1) =

(
Σk+1
i − λwki

2β

)
+

= 0 for i ∈ [m],

we know ∂(σi(X
k+1)) = [−1, 1] and Σk+1

i −
(
Σk+1
i − λwki

2β

)
+

= Σk+1
i ∈ [0,

λwki
2β ]. Then, it

follows for any i ∈ [m] such that ξk+1
i =

2βΣk+1
i

λwki
∈ [0, 1] ⊂ [−1, 1] that λwk

2β ◦ ξ
k+1 = Σk+1

i ∈
λwk

2β ∂(σi(X
k+1)). Therefore, the proof is completed.

Since Xk+1 is a global minimum for (2.5) by Proposition 2, it follows from Theorem 2
and Proposition 3 that there exists ξk+1 ∈ ∂|σ(Xk+1)| such that

0 = ∇f(Y k) + β(Xk+1 − Y k) + β(Xk+1 −Xk) + λUk+1diag
(
wk ◦ ξk+1

)
V k+1>. (2.11)
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Algorithm 2 Update perturbation ε.
Input: µ ∈ (0, 1).
1: if I(Xk+1) ⊂ I(Xk) then
2: εk+1

i = µεki , ∀i ∈ Ik+1.
3: Set τ1 = σk+1

|Ik+1| + εk+1
|Ik+1| and τ2 = εk|Ik+1|+1

.

4: εk+1
i =

{
εki , if τ1 ≥ τ2,

min(εki , µτ1), otherwise,
∀i ∈ I(Xk)\I(Xk+1).

5: Set τ3 = εk+1
|I(Xk)|

6: εk+1
i = min{εki , τ3}, ∀i ∈ Z(Xk).

7: end if
8: if I(Xk) ⊂ I(Xk+1) then
9: εk+1

i = µεki , i ∈ I(Xk).
10: Set τ3 = εk|I(Xk)|
11: εk+1

i = µmin{εki , τ3}, ∀i ∈ I(Xk+1)\I(Xk).
12: Set τ1 = σk+1

|I(Xk+1)| + εk+1
|I(Xk+1)| and τ2 = εk|I(Xk+1)|+1

.

13: εk+1
i =

{
εki , if τ1 ≥ τ2,

min(εki , µτ1), otherwise,
∀i ∈ Z(Xk+1).

14: end if
15: if I(Xk) = I(Xk+1) then
16: εk+1

i = µεki , ∀i ∈ I(Xk+1).
17: Set τ1 = σk+1

|I(Xk+1)| + εk+1
|I(Xk+1)| and τ2 = εk|I(Xk+1)|+1

.

18: εk+1
i =

{
εki , if τ1 ≥ τ2,

min(εki , µτ1), otherwise,
∀i ∈ Z(Xk+1).

19: end if

2.3 An Adaptive Updating Strategy for Perturbation ε

A key component of our proposed algorithmic framework is the updating strategy for the
perturbation ε, which controls how the perturbation evolves during optimization and is crit-
ical for analyzing the behavior of our proposed algorithm. The updating strategy should be
designed such that we can manipulate the values of εi, ∀i ∈ [m] to maintain the ascending
order of {w1, . . . , wm} during iteration. This ensures that a global optimal solution to sub-
problem (2.5) can be obtained according to Proposition 2. Our proposed updating strategy
is presented in Algorithm 2.

Assume the initial ε0i , i ∈ [m] are in descending order. Algorithm 2 includes three cases.
Our focus is mainly on providing detailed explanations for the first case, as other cases
follow similar arguments. Case 1: I(Xk+1) ⊂ I(Xk) holds true in Line 1. This case
corresponds to a situation in which Xk+1 have more zero singular values than Xk, meaning
|I(Xk+1)| < |I(Xk)|, or, equivalently, Rank(Xk+1) < Rank(Xk). Notice that all the
elements in σ(Xk+1) are naturally organized in descending order. Our goal is to maintain
the descending order of σk+1

i + εk+1
i , i ∈ [m] (or, equivalently, the ascending order of wk+1

i ,
i ∈ [m]). To achieve this, we first decrease εk+1

i , ∀i ∈ I(Xk+1) by a fraction (Line 2), so that
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σk+1
i + εk+1

i , i ∈ I(Xk+1) are descending after the update. Let τ1 be their smallest value.
Lines 3-4 handle the update of εk+1

i , ∀i ∈ I(Xk)\I(Xk+1). Let τ2 be the largest value of
εki ,∀i ∈ I(Xk)\I(Xk+1) (they are in descending order). If τ1 ≥ τ2, there is no need to reduce
εki ,∀i ∈ I(Xk)\I(Xk+1), since σk+1

i + εk+1
i , i ∈ I(Xk) = I(Xk+1)∪ (I(Xk)\I(Xk+1)) are

now descending. Otherwise, εki ,∀i ∈ I(Xk)\I(Xk+1) is set to be a fraction of τ1 to maintain
this order. As for i ∈ Z(Xk), letting τ3 be the smallest value of σk+1

i + εk+1
i , i ∈ I(Xk), we

then use threshold τ3 to trim i ∈ Z(Xk) (Line 6). After the update, σk+1
i + εk+1

i , i ∈ [m]
maintain the desired non-decreasing order.

3. Convergence Analysis

We make heavy use of the following auxiliary function in our analysis, which is useful in
establishing the convergence properties of the proposed algorithm.

H(X,Y , ε) = f(X) +
β

2
‖X − Y ‖2F + λ

m∑
i=1

(σi(X) + εi)
p. (3.1)

The following lemma indicates that H(X,Y , ε) is monotonically nonincreasing.

Lemma 5 (Sufficient decrease property of EIRNAMI) Suppose Assumptions 1–2 are
satisfied. Let {Xk} and {Y k} be the sequences generated by Algorithm 1. Then the following
statements hold.

(i)
{
H(Xk,Xk−1, εk)

}
is monotonically nonincreasing and lim

k→+∞
H(Xk,Xk−1, εk) ex-

ists. Indeed, we have for each k ∈ N that

H(Xk,Xk−1, εk)−H(Xk+1,Xk, εk+1) ≥ C‖Xk −Xk−1‖2F (3.2)

with constant C = β
2 (1− 3Lf+β

β ᾱ2) > 0.

(ii)
∑+∞

k=0 ‖Xk+1 − Xk‖2F < +∞, implying lim
k→+∞

‖Xk+1 − Xk‖F = 0. In addition,

lim
k→+∞

max{‖Y k −Xk‖F , ‖Y k −Xk+1‖F } = 0.

(iii) The sequences {Xk} and {Y k} are bounded. As a result, there exists constant C1

such that for any i ∈ [m]

max
i

σi

(
Xk + Y k

2
− 1

2β
∇f(Y k)

)
≤ C1, ∀k ∈ N.

Proof (i) From (2.5), we know that Xk+1 ∈ arg minX∈Rm×n L(X;Xk,Y k, εk), and it
follows from L(Xk+1;Xk,Y k, εk) ≤ L(Xk;Xk,Y k, εk) that

〈Xk+1,∇f(Y k)〉+
β

2
‖Xk+1 − Y k‖+

β

2
‖Xk+1 −Xk‖2F + λ

m∑
i=1

wki σi(X
k+1)

≤ 〈Xk,∇f(Y k)〉+
β

2
‖Xk − Y k‖+ λ

m∑
i=1

wki σi(X
k).

(3.3)
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By rearranging (3.3) and adding a positive term on both sides, it holds that

〈Xk+1,∇f(Y k)〉+
β

2
‖Xk+1 − Y k‖+ λ

m∑
i=1

wki (σi(X
k+1)− σi(Xk)) + λ

m∑
i=1

(σi(X
k) + εki )

p

≤ 〈Xk,∇f(Y k)〉+
β

2
‖Xk − Y k‖ − β

2
‖Xk+1 −Xk‖2F + λ

m∑
i=1

(σi(X
k) + εki )

p.

(3.4)
Denote φ(X;Y ) = f(Y ) + 〈∇f(Y ),X − Y 〉 for notional convenience. It leads us to

F (Xk+1; εk+1)

(a)

≤ φ(Xk+1;Y k) +
Lf
2
‖Xk+1 − Y k‖2F + λ

m∑
i=1

(σi(X
k+1) + εki )

p

(b)

≤ φ(Xk+1;Y k) +
β

2
‖Xk+1 − Y k‖2F + λ

m∑
i=1

(σi(X
k) + εki )

p

+ λ

m∑
i=1

wki (σi(X
k+1)− σi(Xk))

(c)

≤ φ(Xk;Y k) +
β

2
‖Xk − Y k‖2F −

β

2
‖Xk+1 −Xk‖2F + λ

m∑
i=1

(σi(X
k) + εki )

p

(d)

≤ f(Xk) + 〈∇f(Y k)−∇f(Xk),Xk − Y k〉+
Lf + β

2
‖Xk − Y k‖2F

− β

2
‖Xk+1 −Xk‖2F + λ

m∑
i=1

(σi(X
k) + εki )

p

(e)

≤ F (Xk, εk) +
3Lf + β

2
‖Xk − Y k‖2F −

β

2
‖Xk+1 −Xk‖2F ,

(3.5)

where inequalities (a) follows from the result in (Nesterov, 2003, Lemma 1.2.3) under As-
sumption 1 and leverages the monotonicity of (·)p over R+ resulting from the nonincreasing
property of σi(Xk) + εki ,∀i ∈ [m], k ∈ N by Algorithm 2, (b) is true because β > Lf and the
concavity of (·)p over R+, (c) makes use of (3.4), (d) again follows from the result in (Nes-
terov, 2003, Lemma 1.2.3) under Assumption 1, and (e) is by the Cauchy-Schwarz inequality
and hence immediately a consequence of Assumption 1.

Rearranging (3.5), together with (2.2), yields

F (Xk; εk)− F (Xk+1; εk+1) ≥ β

2
‖Xk −Xk+1‖2F −

3Lf + β

2
α2
k‖Xk −Xk−1‖2F . (3.6)
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This further implies

H(Xk,Xk−1, εk)−H(Xk+1,Xk, εk+1)

= F (Xk; εk) +
β

2
‖Xk −Xk−1‖2F −

[
F (Xk+1; εk+1) +

β

2
‖Xk+1 −Xk‖2F

]
(a)

≥ β

2

(
1− α2

k

3Lf + β

β

)
‖Xk −Xk−1‖2F

(b)

≥ β

2

(
1− ᾱ2 3Lf + β

β

)
‖Xk −Xk−1‖2F ≥ 0,

(3.7)

where inequality (a) holds by (3.6) and (b) is true thanks to αk ∈ [0, ᾱ], ∀k ∈ N with
ᾱ ∈ (0,

√
β

3Lf+β ) imposed in (2.3). Consequently, {H(Xk,Xk−1, εk)} is monotonically
decreasing. Moreover, by Assumption 2, we know minX∈Rm×n F (X, ε) > F > −∞, implying
{H(Xk,Xk−1, εk)} is bounded from below, and hence, lim

k→+∞
H(Xk,Xk−1, εk) exists. This

proves Statement (i).
(ii) Summing both sides of (3.7) over k = 0, . . . , t, we obtain

β

2

(
1− ᾱ2 3Lf + β

β

) t∑
k=0

‖Xk −Xk−1‖2F ≤ H(X0,X−1, ε0)−H(Xt+1,Xt, εt+1)

≤ F (X0; ε0)− F (Xt+1; εt+1) < +∞,

(3.8)

Let t → +∞, and it follows from Assumption 2 and ᾱ ∈ (0,
√

β
3Lf+β ) that lim

k→+∞
‖Xk+1 −

Xk‖F = 0. Furthermore,

lim
k→+∞

‖Y k −Xk‖F = lim
k→+∞

αk‖(Xk −Xk−1)‖F = 0, and

lim
k→+∞

‖Y k −Xk+1‖F = lim
k→+∞

‖(Xk −Xk+1) + αk(X
k −Xk−1)‖F = 0,

(3.9)

as desired. The proof of Statement (ii) is completed.
(iii) For each k ∈ N, we derive that

F (Xk) ≤ F (Xk; εk) ≤ H(Xk,Xk−1, εk)
(a)

≤ H(X0,X−1, ε0) = F (X0; ε0)
(b)
< +∞, (3.10)

where inequality (a) holds by (3.7) and Theorem 7(i), and (b) is true due to Assumption 2.
We hence deduce from (3.10) that {Xk} is bounded. This, together with the boundedness of
αk,∀k ∈ N, shows the boundedness of {Y k}. Therefore, it follows from Assumptions 1–2 that
there exists C1 > 0 such that for any i ∈ [m], max

i
σi

(
Xk+Y k

2 − 1
2β∇f(Y k)

)
≤ C1, ∀k ∈ N.

This completes the proofs of all statements.

3.1 Local Properties: Stable Support and Adaptively Reweighting

The following proposition asserts that the support of the index set of singular vectors remains
unchanged after a finite number of iterations.
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Proposition 6 Let Assumptions 1–2 hold. Suppose that the sequence {Xk} is generated by
Algorithm 1. Then there exists a constant C1 > 0 defined in Lemmas 5 and k̂ ∈ N such that
the following statements hold.

(i) If w(σi(X
k̂), εk̂i ) >

2βC1

λ for k̂ ∈ N, then σi(Xk) ≡ 0 for all k > k̂.

(ii) The index sets I(Xk) and Z(Xk) remain unchanged for all k > k̂. Therefore, there
exists index sets I∗ and Z∗ such that I(Xk) = I∗ and Z(Xk) = Z∗ for sufficiently
large k.

(iii) For any k > k̂, σki is strictly bounded away from 0 for any i ∈ I(Xk). Indeed, it holds

that σki >
(

λp
2βC1

) 1
1−p −εki > 0,∀i ∈ I(Xk), implying lim inf

k→+∞
σki >

(
λp

2βC1

) 1
1−p

, ∀i ∈ I∗.

Proof Recall (2.5) and by Proposition 3, we know that matrices Xk+1 and Xk+Y k

2 −
1

2β∇f(Y k) have the simultaneous ordered SVD, and

0 ∈ β
(
Xk+1 −

(
Xk + Y k

2
− ∇f(Y k)

2β

))
+
λ

2
∂

(
m∑
i=1

wki σi(X
k+1)

)
,

which implies

0 = σ(Xk+1)− σ
(
Xk + Y k

2
− 1

2β
∇f(Y k)

)
+

λ

2β
wk ◦ ξk+1 (3.11)

with ξk+1
i ∈ [0, 1]. Then, we have for each i ∈ [m] that

σi(X
k+1) =

[
σi

(
Xk + Y k

2
− 1

2β
∇f(Y k)

)
− λ

2β
wki ξ

k+1
i

]
+

. (3.12)

(i) Suppose that there exists k̂ ∈ N such that wk̂i ≥
2βC1

λ for i ∈ [m]. By Proposition 3
and from (3.12), we know that σi(X k̂+1) = 0. Then, σi(X k̂+1) + εk̂+1

i ≤ σi(X
k̂) + εk̂i by

Algorithm 2 and monotonicity of (·)p−1 indicate wk̂+1
i ≥ wk̂i >

2βC1

λ . Therefore, we have
σk̂+2
i = 0. By induction, we know that σki ≡ 0 for any k > k̂. This completes the proof of

statement (i).
(ii) We prove this by contradiction. Suppose this statement is not true. Then there exist

i ∈ [m] and k ∈ N such that σi(Xk) takes a zero and nonzero value both infinitely. We
know that there are two subsequences S1 ∪ S2 = N such that |S1| = +∞, |S2| = +∞ and
that

σi(X
k) = 0, ∀k ∈ S1 and σi(Xk) > 0, ∀k ∈ S2.

Hence, there exists subsequence S3 ⊂ S2 such that |S3| = +∞ and i ∈ Z(Xk) ∩ I(Xk+1)
for any k ∈ S3. In other words, σi(Xk) = 0 and σi(X

k+1) 6= 0 for any k ∈ S3. Thus,
I(Xk) ⊂ I(Xk+1), ∀k ∈ S3. Then it follows from Algorithm 2 that lim

k→+∞
εki = 0 for k ∈ S3

due to |S3| = +∞. Hence there exists k̂ ∈ S1 such that

wk̂i = w(σk̂i , ε
k̂
i ) = p

(
σi(X

k̂) + εk̂i

)p−1
= p(εk̂i )

p−1 ≥ 2βC1

λ
.
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This indicates that σi(Xk) = 0 for any k > k̂ by statement (i), implying {k̂ + 1, k̂ + 2, k̂ +
3, · · · } ⊂ S1 and |S2| is finite. This contradicts |S2| = +∞. Consequently, statement (ii)
holds.

(iii) We know from statement (i) that if wki ≤
2βC1

λ , i ∈ I(Xk) occurs, it then follows

that σi(Xk) ≥
(

λp
2βC1

) 1
1−p − εki > 0, ∀i ∈ I(Xk). This completes proofs of all statements.

We shall further demonstrate the properties for the update strategy of ε. We specifically
show that after some k, εi,∀i ∈ I(Xk) diminish while εi,∀i ∈ Z(Xk) are fixed as constants.
Hence, our proposed Algorithm 1 locally behaves as minimizing a smooth problem in a
low-dimensional manifold.

Theorem 7 Suppose Assumption 1-2 hold true. Let {Xk} and {εk} be the sequences gen-
erated by Algorithm 1 and I∗ and Z∗ be defined in Proposition 6(ii). Then the following
assertions hold.

(i) The perturbations {εki , ∀i ∈ I(Xk)} and perturbed singular values {σi(Xk) + εki ,∀i ∈
[m]} are all in strictly descending order for k ∈ N, while {εki ,∀i ∈ Z(Xk)} are in
non-increasing order for k ∈ N. Consequently, for all k ∈ N, the nonstrictly ascending
order constraint on the nonnegative weights in (2.6) can be automatically satisfied.

(ii) There exist k̂ ∈ N such that for all k ≥ k̂, the update εk+1
i = µεki with µ ∈ (0, 1),

∀i ∈ I∗ will always be triggered. Consequently, the sequence {εki },∀i ∈ I∗ converges
monotonically to 0, i.e., εki → 0 as k → +∞ for all i ∈ I∗.

(iii) There exists k̂ ∈ N such that for all k ≥ k̂, the update of εki ,∀i ∈ Z(Xk) will never be
triggered. That is, εki ≡ εk̂i after some k̂, ∀i ∈ Z∗. Consequently, the sequence {εki },
∀i ∈ Z∗ converges to fixed positive constants for all sufficiently large k.

Proof (i) We prove this statement by induction. Indeed, by the setting of ε0 in Algorithm 1
and the property that the singular values are naturally sorted in descending order, the
statement is vacuously true at k = 0. Suppose now this is also true at the kth iteration.
Without loss of generality, we only have to prove the statement (i) in which I(Xk+1) ⊂
I(Xk) holds in Algorithm 2, and the proof of other cases follows the similar spirits and
arguments.

Consider Algorithm 2. Line 2 and Line 4 indicate that {εk+1
i ,∀i ∈ I(Xk)} is in descend-

ing order by the descending nature of {εki ,∀i ∈ I(Xk)} and µ ∈ (0, 1). Line 11 guarantees
{εk+1
i , i ∈ Z(Xk)} is non-increasing, since {εki , ∀i ∈ Z(Xk)} are in non-increasing order.

This, together with the monotonicity of (·)p−1, ensures the satisfaction of (2.6). This finishes
the proof of statement (i).

(ii) This statement holds true by Proposition 6(ii) and Line 16 of Algorithm 2.
(iii) In search of a contradiction, suppose that the update of εki , ∀i ∈ Z(Xk) for k > k̂ is

triggered infinitely many times. By Proposition 6(ii), we note that εk+1
i ≤ µτ1, i ∈ Z(Xk+1)

whenever it is reduced by Line 18 in Algorithm 2. If the update is triggered for infinite
times, then τ2 ≤ τ1 is always satisfied for any k > k̂, which contradicts that τ1 is strictly
bounded below from 0 after some k > k̂ by Proposition 6(iii). Therefore, εki , i ∈ Z(Xk) is
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never reduced after finite iterations. This contradiction completes the proof.

3.2 Active Manifold Identification

The following theorem establishes the active manifold identification property of Algorithm 1,
which is a straightforward result from Proposition 6 and Theorem 7. It asserts the rank
of the iterates generated by Algorithm 1 will eventually remain fixed, and is equivalent
to the rank of the cluster point X∗. In addition, all cluster points have the same rank.
Consequently, the iterates {Xk} will eventually reside in a low-dimensional active manifold
M(X∗) := {X ∈ Rm×n | Rank(X) = Rank(X∗)}, implying that the original problem
eventually reverts to a smooth problem after identifying an active manifoldM(X∗).

Theorem 8 Suppose Assumptions 1–2 hold. Let {Xk} be the sequence generated by Algo-
rithm 1. Then Rank(Xk) = r∗ := |I∗| for sufficiently large k. Moreover, for any limit point

X∗ of {Xk}, Rank(X∗) = |I(X∗)| = r∗, and σi(X∗) ≥
(

λp
2βC1

) 1
1−p

> 0, i ∈ I(X∗).

Remark 9 Theorem 8 suggests that the proposed Algorithm 1 identifies the rank of the
optimal solution after finite iterations. That is, all subsequent iterates Xk satisfy Xk ∈
M(X∗). Moreover, all limit points of iterates will be confined to a low-dimensional manifold.
This feature of the proposed algorithm represents a stark contrast to the results established in
(pei Lee et al., 2023, Theorem 6), where the active manifold identification property merely
holds for any convergent subsequence.

We illustrate the active manifold identification property of Algorithm 1 using a simple
example.

Example 1 Consider

min
X∈R15×15

1

2
‖PΩ(X)− PΩ(X̂)‖+ λ‖X‖pp, (3.13)

where X̂ ∈ R15×15 with Rank(X̂) = 3 is the ground-truth matrix to be found, Ω denotes the
random sample set with sampling ratio (SR) 0.5 and |Ω| satisfies |Ω| = d152 ∗ SRe, PΩ is
the projection onto the subspace of sparse matrices with nonzeros restricted to the index set
Ω, λ = 0.1, and p = 0.5.

The y-axis on the left represents the rank and the one on the right represents the relative
residual. We use solid lines and dashed lines to show the rank of the iterates and the relative
residual ‖Xk − X̂‖2F /‖X0− X̂‖2F of our method, respectively. The gray line represents the
rank at the optimum X̂. As observed in Figure 1, when the rank of the iterate reaches
Rank(X̂), the relative distance also decreases significantly. This indicates the algorithm
finds a high-precision solution on the smooth fixed-rank manifold.
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Figure 1: A sample example to show the active manifold identification property.

3.3 Global Convergence

By Proposition 1, the necessary optimality condition of (P) is given by:

∇f(X∗) + λU∗diag(w∗ ◦ ξ∗)V ∗> = 0, (3.14)

where w̄∗ ∈ ∂‖σ(X∗)‖pp, ξ∗ ∈ ∂|σ(X∗)|, and (U∗,V ∗) ∈M(X∗)

To show the global convergence properties of Algorithm 1, we investigate the optimality
error at Xk+1.

Theorem 10 (Bounded subgradients) Suppose Assumptions 1–2 hold. Let {Xk} be the
sequence generated by Algorithm 1. For each k ∈ N, define the optimality error associated
with (P) as

Ek+1 = ∇f(Xk+1) + λUk+1diag(w̄k+1 ◦ ξk+1)V k+1>, (3.15)

where w̄k+1
i = p(σi(X

k+1))p−1, i ∈ I(Xk+1), w̄k+1
i = wki , i ∈ Z(Xk+1) and ξk+1 ∈

∂|σ(Xk+1)|. Then it holds that Ek+1 ∈ ∂F (Xk+1) and there exists C2 > 0 such that

‖Ek+1‖F ≤ (Lf + 2β + C2)‖Xk+1 −Xk‖F + (Lf + β)ᾱ‖Xk −Xk−1‖F + C2ε
0
1 (3.16)

with C2 = mp(1− p)
(

2βC1

λp

) 2−p
1−p .

Proof By Proposition 1, we know that w̄k+1 ∈ ∂‖σ(Xk+1)‖pp. This, together with dif-
ferentiability of f (Rockafellar and Wets, 2009)[10.10 Exercise], leads to the desired result
Ek+1 ∈ ∂F (Xk+1). On the other hand, by subtracting (2.11) from both sides of (3.15), we
have

Ek+1 = [∇f(Xk+1)−∇f(Y k)]− β[(Xk+1 − Y k) + (Xk+1 −Xk)]

+ λUk+1diag((w̄k+1 −wk) ◦ ξk+1)V k+1>.
(3.17)
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It follows from Assumption 1 and (2.2) that the first term in (3.17)

‖∇f(Xk+1)−∇f(Y k)‖F ≤ Lf‖Xk+1 − Y k‖F
(a)

≤ Lf‖Xk+1 −Xk‖F + Lf ᾱ‖Xk −Xk−1‖F ,
(3.18)

where (a) holds due to the triangle inequality and (2.3). Similarly, we have from the second
term in (3.17) that

‖β[(Xk+1 − Y k) + (Xk+1 −Xk)]‖F ≤ 2β‖Xk+1 −Xk‖F + βᾱ‖Xk −Xk−1‖F . (3.19)

As for the third term in (3.17), we have

‖Uk+1diag((w̄k+1 −wk) ◦ ξk+1)V k+1>‖F = ‖diag((w̄k+1 −wk) ◦ ξk+1)‖F
(a)

≤ ‖w̄k+1 −wk‖2 ≤ ‖w̄k+1 −wk‖1

(b)
=

|I(Xk+1)|∑
i=1

p(1− p)
(
σ̂i(X

k)
)p−2 (

σi(X
k+1)− (σi(X

k) + εki )
)

(c)

≤
|I(Xk+1)|∑

i=1

p(1− p)
(

2βC1

λp

) 2−p
1−p (∣∣∣σi(Xk)− σi(Xk+1)

∣∣∣+ |εki |
)

(d)

≤
|I(Xk+1)|∑

i=1

p(1− p)
(

2βC1

λp

) 2−p
1−p (

‖Xk −Xk+1‖F + εki

)
,

(3.20)

where (a) holds due to ξk+1
i ∈ [−1, 1],∀i ∈ [m], equality (b) makes use of the mean value

theorem with σ̂i(Xk) lying between σi(X
k) + εki and σi(Xk+1) for each i ∈ [m], inequality

(c) makes the uses of Proposition 6(iii), the monotonicity of (·)p−2 over R++ and triangle
inequality, and inequality (d) is true because of the conclusion drawn by (Horn and Johnson,
2012, Corollary 7.3.5).

Therefore, combining (3.18), (3.19) with (3.20) leads to

‖Ek+1‖F ≤ ‖∇f(Xk+1)−∇f(Y k)‖F + ‖β[(Xk+1 − Y k) + (Xk+1 −Xk)]‖F

+ ‖Uk+1diag((w̄k+1 −wk) ◦ ξk+1)V k+1>‖F
≤ (Lf + 2β)‖Xk+1 −Xk‖F + (Lf + β)ᾱ‖Xk −Xk−1‖F

+

|I(Xk+1)|∑
i=1

p(1− p)
(

2βC1

λp

) 2−p
1−p (

‖Xk −Xk+1‖F + εki

)
(a)

≤

(
Lf + 2β +mp(1− p)

(
2βC1

λp

) 2−p
1−p
)
‖Xk+1 −Xk‖F

+ (Lf + β)ᾱ‖Xk −Xk−1‖F +mp(1− p)
(

2βC1

λp

) 2−p
1−p

ε01,

(3.21)

where the inequality (a) is true because |I(Xk+1)| ≤ m,∀k ∈ N and ε0 ∈ Rm↓ ∩ Rm++. This
completes the proof.
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Based on the previous analysis, we now demonstrate the global convergence properties
of the EIRNAMI algorithm. Before proceeding, we use χ∞ to denote the cluster point of
{Xk} generated by Algorithm 1.

Theorem 11 Suppose Assumptions 1–2 hold. Let {Xk} be the sequence generated by Al-
gorithm 1. Then the following assertions hold.

(i) The set of cluster points χ∞ is nonempty, compact, and connected.

(ii) {F (Xk)} is convergent. Moreover, the objective function F is constant on χ∞.

(iii) lim
k→+∞

‖Ek+1‖F = 0. Therefore, any cluster point X∗ ∈ χ∞ is a critical point of F ,

meaning χ∞ ⊂ crit(F ).

Proof (i) Lemma 5(iii) implies χ∞ is nonempty. On the other hand, Lemma 5(ii)-(iii),
combined with the classical Ostrowski result (Ostrowski, 1973, Theorem 26.1), leads to the
desired results. This proves Statement (i).

(ii) The convergence of {F (Xk)} is a direct consequence of (3.1) by invoking Theo-
rem 7(ii) and Lemma 5(ii). On the other hand, it holds from Theorem 8 and Lemma
5(i)-(iii) that for each X∗ ∈ χ∞ with Rank(X∗) = r∗,

F (X∗) = f(X∗) + λ

r∗∑
i=1

(σi(X
∗))p

(a)
= lim

k→+∞

[
f(Xk+1) + λ

m∑
i=1

(σi(X
k+1) + εk+1

i )p + β‖Xk+1 −Xk‖2F

]
− λ

m∑
i=r∗+1

(εk̂i )
p

= lim
k→+∞

H(Xk+1,Xk, εk+1)− λ
m∑

i=r∗+1

(εk̂i )
p

(b)
= H∗ − λ

m∑
i=r∗+1

(εk̂i )
p,

where (a) is true because Theorem 7 guarantees that there exists k̂ ∈ N such that εk →
ε∗ = [0, · · · , 0, εk̂r∗+1, · · · , εk̂m]> as k → +∞, and also by Lemma 5(ii), and (c) holds simply
by Lemma 5(i).

(iii) Recall (3.18) and (3.19), we can deduce from Lemma 5(iii) that

lim
k→+∞

‖∇f(Xk+1)−∇f(Y k)‖F = 0 (3.22)

and

lim
k→+∞

‖β[(Xk+1 − Y k) + (Xk+1 −Xk)]‖F = 0. (3.23)
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On the other hand, by Proposition 6(iii) and monotonicity of (·)p−2 over R++, we have from
(3.20) that for sufficiently large k ∈ N

‖Uk+1diag((w̄k+1 −wk) ◦ ξk+1)V k+1>‖2F

≤
|I(Xk+1)|∑

i=1

p(1− p)
(
σ̂|I(Xk+1)|(X

k)
)p−2 (

‖Xk −Xk+1‖F + εki

)

<

|I(Xk+1)|∑
i=1

p(1− p)

((
λp

2βC1

)1/(1−p)
− εki

)p−2 (
‖Xk −Xk+1‖F + εki

)
.

(3.24)

By Theorem 7(ii) and Lemma 5(iii), we know from (3.24) that

lim
k→+∞

‖Uk+1diag((w̄k+1 −wk) ◦ ξk+1)V k+1>‖2F = 0. (3.25)

Combining (3.22), (3.23) and (3.25) yields lim
k→+∞

‖Ek+1‖F = 0, meaning 0 ∈ ∂F (X∗) for

any X∗ ∈ χ∞, as desired. This completes the proof.

4. Convergence Analysis Under KL Property

In this section, we analyze the convergence properties of the sequence {(Xk,Y k, εk)} gen-
erated by Algorithm 1 under the KL property of F for sufficiently large k. We first define
a reduced form of (3.1) as

Ĥ(X,Y , δ) = f(X) +

r∗∑
i=1

(
σi(X) + (δi)

2
)p

+
β

2
‖X − Y ‖2F , (4.1)

where εi = δ2
i with δi ≥ 0 since εi is restricted to be non-negative. Notice that by Theorem 7,

δki ≡ δk̂i , i ∈ Z∗ and δk+1
i =

√
µδki , i ∈ I∗ for all sufficiently large k. We consider the

Cartesian product of triplets (X,Y , z) ∈ Rm×n × Rm×n × Rr∗ .

Definition 7 Consider a set S = {(X,Y , z) | (X,Y , z) ∈ Rm×n × Rm×n × Rr∗}. Define
the Cartesian product of any X = (X1, X2,x3) ∈ S and Y = (Y1, Y2,y3) ∈ S as

X × Y = 〈X1, Y1〉+ 〈X2, Y2〉+ 〈x3,y3〉.

The norm of any X ∈ S is defined as

‖X‖ = (‖X1‖2F + ‖X2‖2F + ‖x3‖22)1/2,

and thus the distance between X ∈ S and Y ∈ S is

dist (X,Y ) =

√
‖X1 − Y1‖2F + ‖X2 − Y2‖2F + ‖x3 − y3‖22.

We assume that the uniform KL property holds for Ĥ in this Cartesian product space.

24



Low-rank Optimization with Active Manifold Identification

Assumption 3 Suppose Ĥ : S→ R satisfies the uniform KL property on Ω := {(X∗,X∗,0r∗) |
X∗ ∈ crit(F )}.

Remark 12 The assumption that Ĥ satisfies the uniform KL property at any point of Ω is
generally not stronger than the assumption that it satisfies the KL property. The difference
between the uniform KL and the original KL property is whether the cluster points share
the same parameters c and θ in the desingularizing function Φ = cs1−θ with c > 0 and
θ ∈ [0, 1). It should be noted that Theorem 11(i) shows the set of cluster points χ∞ is
nonempty, compact, and connected. If there are different c and θ for each X∗ ∈ χ∞, we
can choose the smallest c and the largest θ among them. This ensures that the KL inequality
holds uniformly dist(0, ∂Ĥ(X)) ≥ c(Ĥ(X) − Ĥ(X∗))θ for any X∗ ∈ χ∞ whenever X is
sufficiently close to X∗. Additionally, the equivalence of the KL exponents of the potential
function Ĥ and the objective function F is studied in (Li and Pong, 2018, Theorem 3.6).
The equivalence of the KL exponents of F on the entire space and F on an active manifold
is studied in (Li and Pong, 2018, Theorem 3.7). Therefore, Assumption 3 can be considered
reasonable and mild.

Now we prove the convergence properties of {(Xk,Y k, δk)} using KL property.

Lemma 13 (Uniqueness of convergence properties under KL condition) Suppose As-
sumptions 1-3 hold. Let {Xk} be the sequence generated by Algorithm 1. Then there exists
k̂ ∈ N such that the following statements hold.

(i) There exists D > 0 such that for all k ≥ k̂∥∥∥∇Ĥ(Xk+1,Xk, δk+1)
∥∥∥
F
≤ D

(∥∥∥Xk −Xk+1
∥∥∥
F

+
∥∥∥Xk−1 −Xk

∥∥∥
F

+ ‖δk‖1 − ‖δk+1‖1
)
.

Moreover, lim
k→+∞

‖∇Ĥ(Xk+1,Xk, δk+1)‖F = 0.

(ii) {Ĥ(Xk,Y k−1, δk)} is monotonically decreasing and there exists C such that

Ĥ(Xk,Y k−1, δk)− Ĥ(Xk+1,Y k, δk+1) ≥ C‖Xk −Xk−1‖2F .

(iii) Ĥ(X∗,X∗,0r∗) = ζ := lim
k→+∞

Ĥ(Xk,Y k−1, δk), where (X∗,X∗,0) ∈ Γ with Γ being

the set of cluster points of {(Xk,Y k−1, δk)}, that is, Γ := {(X∗,X∗,0r∗) : X∗ ∈ χ∞}.

(iv) For any t > 0, T t :=
+∞∑
k=t

‖Xk−1 −Xk‖F < +∞. Therefore, lim
k→+∞

Xk = X∗.

Proof Since Ĥ is differentiable with respect to its all input variables (X,Y , δ) separately,
we have

∇XĤ(X,Y , δ) = ∇f(X) + β(X − Y ) + λUdiag(ŵ)V >,

∇Y Ĥ(X,Y , δ) = β(X − Y ),

∇δiĤ(X,Y , δ) = 2λpδi(σi(X) + δ2
i )
p−1, ∀i ∈ [r∗],

(4.2)
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where ŵ = (p(σ1(X) + (δ1)2)p−1, · · · , p(σr∗(X) + (δr∗)
2)p−1, 0, · · · , 0)> ∈ Rm by Proposi-

tion 1.
For each k > k̂, we have from (2.11) and Proposition 6(ii)-(iii) that

0 = ∇f(Y k) + β(Xk+1 − Y k) + β(Xk+1 −Xk) + λUk+1diag
(
ŵk
)
V k+1>, (4.3)

where ŵk = (p(σ1(Xk) + (δk1 )2)p−1, · · · , p(σr∗(Xk) + (δkr∗)
2)p−1, 0, · · · , 0)>.

(i) Combining the first expression in (4.2) and (4.3), we have

∇XĤ(Xk+1,Xk, δk+1)

=∇f(Xk+1)−∇f(Y k)− β(Xk+1 − Y k) + λUk+1diag
(
ŵk+1 − ŵk

)
V k+1>.

(4.4)

It follows from (2.2) that

‖β(Xk − Y k)‖F ≤ βᾱ‖Xk −Xk−1‖F . (4.5)

For any k ≥ k̂, we then have

‖Uk+1diag(ŵk+1 − ŵk)V k+1>‖F
≤ ‖diag(ŵk+1 − ŵk)‖F = ‖ŵk+1 − ŵk‖2 ≤ ‖ŵk+1 − ŵk‖1

≤
r∗∑
i=1

p(1− p)(σi(Xk))p−2(|σi(Xk)− σi(Xk+1)|+ |(δki )2 − (δk+1
i )2|)

(a)

≤
r∗∑
i=1

p(1− p)
(

2βC1

λp

) 2−p
1−p (

‖Xk −Xk+1‖F + |(δki )2 − (δk+1
i )2|

)
,

≤ Dp

(
‖Xk −Xk+1‖F + max

i
(δki + δk+1

i )‖δk − δk+1‖1
)

≤ Dp

[
‖Xk −Xk+1‖F + 2‖δ0‖∞(‖δk‖1 − ‖δk+1‖1)

]
,

(4.6)

where Dp = p(1− p)
(

2βC1

λp

) 2−p
1−p , and inequality (a) holds by Proposition 6(iii) and conclu-

sions drawn by (Horn and Johnson, 2012, Corollary 7.3.5). This, together with (4.4), (3.18),
(4.5) and (4.6), yields

‖ ∇XĤ(Xk+1,Xk, δk+1)‖F

≤ ‖∇f(Xk+1)− f(Y k)‖F + β‖Xk − Y k‖F + λ‖Uk+1diag(ŵk+1 − ŵk)V k+1>‖F
≤ (λDp + Lf )‖Xk+1 −Xk‖F + (Lf + β)ᾱ‖Xk −Xk−1‖F

+ 2λDp‖δ0‖∞(‖δk‖1 − ‖δk+1‖1).

(4.7)

Similarly, we have

‖∇Y Ĥ(Xk+1,Xk, δk+1)‖F = ‖β(Xk+1 −Xk)‖F ≤ β‖Xk+1 −Xk‖F , (4.8)

and note that
∇δĤ(Xk+1,Xk, δk+1) = 2λŵk+1 ◦ δk+1.
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It then follows that

‖∇δĤ(Xk+1,Xk, δk+1)‖2 ≤ ‖∇δĤ(Xk+1,Xk, δk+1)‖1 =
r∗∑
i=1

2λŵk+1
i δk+1

i

(a)

≤
r∗∑
i=1

2λ(2βC1

λ )
√
µ

1−√µ

(
δki − δk+1

i

)
≤ 4βC1

√
µ

1−√µ

(
‖δk‖1 − ‖δk+1‖1

)
,

(4.9)

where inequality (a) is due to Proposition 6 (i) and δk+1
i ≤ √µδki , i ∈ [r∗].

Therefore, combining (4.7), (4.8) and (4.9) gives

‖∇Ĥ(Xk+1,Xk, δk+1)‖F ≤ D
(∥∥∥Xk −Xk+1

∥∥∥
F

+
∥∥∥Xk−1 −Xk

∥∥∥
F

+ ‖δk‖1 − ‖δk+1‖1
)

with D = max
(
λDp + Lf + β, (Lf + β)ᾱ, 2Dpλ‖δ0‖∞ +

4βC1
√
µ

1−√µ

)
< +∞. Furthermore,

by Lemma 5 and Theorem 7, we know that lim
k→+∞

‖∇Ĥ(Xk+1,Xk, δk+1)‖F = 0. This

completes the proof of statement (i).

(ii) It is straightforward from C = β
2

(
1− 3Lf+β

β ᾱ2
)
> 0 by Lemma 5(i).

(iii) Theorem 11(ii) shows H(Xk+1,Xk, δk+1) → ζ as k → +∞ and it follows from
Lemma 5(iii) and Theorem 11(i)-(ii) that {Ĥ(Xk+1,Y k, δk+1)} uniquely converges.

(iv) By statement (iii), we know that

lim
k→+∞

Ĥ(Xk+1,Xk, δk+1) = Ĥ(X∗,X∗,0) ≡ ζ.

If Ĥ(Xk+1,Xk, δk+1) = ζ for each k > k̂, then we knowXk+1 = Xk by statement (ii) after
k̂, indicating Xk = X k̂ ∈ χ∞. The proof is then complete. We otherwise have to consider
the case in which Ĥ(Xk+1,Xk, δk+1) > ζ after k̂.

By Theorem 3 and Assumption 3, we know that there exists a desingularizing function
Φ, η > 0 and ρ > 0 such that

Φ′
(
Ĥ(X,Y , δ)− ζ

)
‖∇Ĥ(X,Y , δ)‖ ≥ 1, (4.10)

for all (X,Y , δ) ∈ U((X∗,X∗,0); ρ) ∩
{

(X,Y , δ) ∈ S : ζ < Ĥ(Xk+1,Xk, δk+1) < ζ + η
}
.

Note that X∗ ∈ χ∞, we have lim
k→+∞

dist((Xk,Xk−1, δk),Γ) = 0, meaning ∀ρ > 0, there ex-

ists k1 ∈ N such that dist((Xk,Xk−1, δk),Γ) < ρ for all k > k1. Since {Ĥ(Xk+1,Xk, δk+1)} →
ζ as k → +∞, we know that there exists k2 ∈ N such that ζ < Ĥ(Xk+1,Xk, δk+1) < ζ + η
for all k > k2. Thus, we see from the smoothness of Ĥ that for any k > max (k1, k2),

Φ′
(
Ĥ(Xk+1,Xk, δk+1)− ζ

)
‖∇Ĥ(Xk+1,Xk, δk+1)‖ ≥ 1. (4.11)
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Then, we have for any k > k̂ that[
Φ
(
Ĥ(Xk,Xk−1, δk)− ζ

)
− Φ

(
Ĥ(Xk+1,Xk, δk+1)− ζ

)]
×D

(
‖Xk−2 −Xk−1‖F + ‖Xk−1 −Xk‖F + ‖δk−1‖1 − ‖δk‖1

)
(a)

≥
[
Φ
(
Ĥ(Xk,Xk−1, δk)− ζ

)
− Φ

(
Ĥ(Xk+1,Xk, δk+1)− ζ

)]
× ‖∇Ĥ(Xk,Xk−1, δk)‖

(b)

≥
[
Ĥ(Xk,Xk−1, δk)− Ĥ(Xk+1,Xk, δk+1)

]
Φ′
(
Ĥ(Xk,Xk−1, δk)− ζ

)
× ‖∇Ĥ(Xk,Xk−1, δk)‖

(c)

≥ C‖Xk −Xk−1‖2F ,

(4.12)

where the inequality (a) holds by Lemma 13(i), the inequality (b) makes use of the concavity
of Φ and inequality (c) follows from (4.10) and Lemma 13(ii). Therefore,

‖Xk −Xk−1‖F
(a)

≤
√

2D

C

[
Φ
(
Ĥ(Xk,Xk−1, δk)− ζ

)
− Φ

(
Ĥ(Xk+1,Xk, δk+1)− ζ

)]
×
√

1

2
(‖Xk−2 −Xk−1‖F + ‖Xk−1 −Xk‖F + ‖δk−1‖1 − ‖δk‖1)

(b)

≤ D

C

[
Φ
(
Ĥ(Xk,Xk−1, δk)− ζ

)
− Φ

(
Ĥ(Xk+1,Xk, δk+1)− ζ

)]
+

1

4

(∥∥∥Xk−2 −Xk−1
∥∥∥
F

+
∥∥∥Xk−1 −Xk

∥∥∥
F

+ ‖δk−1‖1 − ‖δk‖1
)
,

(4.13)

where the inequality (a) holds by (4.12) and the inequality (b) is true because of the AM-GM
inequality. Then, subtracting 1

2‖X
k −Xk−1‖F from both sides of (4.13), we obtain

1

2
‖Xk −Xk−1‖F ≤

D

C

[
Φ
(
Ĥ(Xk,Xk−1, δk)− ζ

)
− Φ

(
Ĥ(Xk+1,Xk, δk+1)− ζ

)]
+

1

4

(
‖Xk−2 −Xk−1‖F−‖Xk−1 −Xk‖F + ‖δk−1‖1 − ‖δk‖1

)
.

(4.14)

Summing up both sides of (4.14) from l = t to k, we have

1

2

k∑
l=t

‖X l −X l−1‖F ≤
D

C

[
Φ
(
Ĥ(Xt,Xt−1, δt)− ζ

)
− Φ

(
Ĥ(Xk+1,Xk, δk+1)− ζ

)]
+

1

4

(
‖Xt−2 −Xt−1‖F − ‖Xk−1 −Xk‖F + ‖δt−1‖1 − ‖δk‖1

)
.

We then have δk → 0 and ‖Xk−Xk−1‖F → 0 by taking k → +∞ according to Lemma 5 and
Theorem 7(ii), respectively. Furthermore, we find, by taking k → +∞ and the continuity of
Φ that Φ

(
Ĥ(Xk+1,Xk, δk+1)− ζ

)
→ Φ(ζ − ζ) = Φ(0) = 0 by Definition 5(i). Therefore,
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for any t > 0, it holds that

T t =

+∞∑
l=t

‖X l −X l−1‖F

≤ 2D

C
Φ
(
Ĥ(Xt,Xt−1, δt)− ζ

)
+

1

2

(
‖Xt−2 −Xt−1‖F + ‖δt−1‖1

)
< +∞.

(4.15)

On the other hand, ∀i > j > l, we know that Xi −Xj =
∑i−1

k=j(X
k+1 −Xk). Then

‖Xi −Xj‖F =

∥∥∥∥∥∥
i−1∑
k=j

(Xk+1 −Xk)

∥∥∥∥∥∥
F

(a)

≤
i−1∑
k=j

‖Xk+1 −Xk‖F , (4.16)

where the inequality (a) holds by the Triangle inequality. This, together with (4.15), implies
that {Xk} is a Cauchy sequence and hence converges uniquely. The proof is complete.

Now we are ready to prove the convergence rate under the KL property. We mention
that the ideas for the proof much follow those presented in (Attouch and Bolte, 2009; Wen
et al., 2018).

Theorem 14 (Local convergence rate) Let Assumptions 1-3 hold. Let {Xk} be gener-
ated by Algorithm 1 and converge to a critical pointX∗ ∈ crit(F ). Consider a desingularizing
function of the form Φ(s) = cs1−θ where c > 0 and Łojasiewicz exponent θ ∈ [0, 1). Then
the following statements hold.

(i) If θ = 0, then there exists k̂ ∈ N such that Xk ≡X∗ for all k > k̂.

(ii) If θ ∈ (0, 1
2 ], there exist γ ∈ (0, 1) and c0, c1 > 0 such that

‖Xk −X∗‖F ≤ c0γ
k − c1‖δkI∗‖1 (4.17)

for all sufficiently large k, where c0 =
T k̂+

√
µ

1−µ‖δ
k̂‖1

γk̂+1
and c1 =

√
µ

1−µ with

γ =

√
ν1 + ν2

ν1 + ν2 + 1
, ν1 =

2cD

C
[cD(1− θ)]

1−θ
θ > 0, ν2 =

1

2
+

µ

1− µ
> 0,

D = max
(
λDp + Lf + β, (Lf + β)ᾱ, 2Dpλ‖δ0‖∞ +

4βC1
√
µ

1−√µ

)
< +∞ and Dp = p(1−

p)
(

2βC1

λp

) 2−p
1−p .

(iii) If θ ∈ (1
2 , 1), there exist d0, c1 > 0 such that

‖Xk −X∗‖F ≤ d0k
− 1−θ

2θ−1 − c1‖δkI∗‖1 (4.18)

for all sufficiently large k, where d0 = 2
1−θ
2θ−1d2 max

(
1, 2

1−θ
2θ−1

)
for some finite positive

scalar d2.
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Proof Since Xk →X∗ as k → +∞, we have from Lemma 13(iv) and (4.15) that

‖Xk −X∗‖F = ‖Xk − lim
t→+∞

Xt‖F = ‖ lim
t→+∞

t∑
l=k

(X l −X l+1)‖F ≤ T k, (4.19)

and

T k ≤ 2D

C
Φ
(
Ĥ(Xk,Xk−1, δk)− ζ

)
+

1

2
(T k−2 − T k−1) +

1

2
‖δk−1‖1. (4.20)

(i) If θ = 0, then Φ(s) = cs and Φ′(s) = c. we claim that there exists k̂ ∈ N
such that Ĥ(X k̂,X k̂−1, δk̂) = ζ. Seeking a contradiction, suppose this is not true, so
Ĥ(Xk,Xk−1, δk) > ζ for all k ∈ N. Since limk→+∞X

k = X∗ and {Ĥ(Xk,Xk−1, δk)}
monotonically decrease to ζ by Lemma 13(ii). We have from the KL inequality that for all
sufficiently large k

‖∇Ĥ(Xk,Xk−1, δk)‖F ≥
1

c
> 0 (4.21)

with Φ′(s) = c. This is a contradiction with ‖∇Ĥ(Xk,Xk−1, δk)‖ → 0 by Lemma 13(i).
Thus, there exists k̂ ∈ N such that Ĥ(Xk,Xk−1, δk) = Ĥ(X k̂,X k̂−1, δk̂) ≡ ζ for all k ≥ k̂.
Hence, we conclude from Lemma 13(ii) thatXk = X∗ = X k̂ for all k > k̂, i.e., the sequence
converges in a finite number of iterations. This proves statement (i).

(ii)-(iii) If θ ∈ (0, 1), then Φ′(s) = c(1 − θ)s−θ. If there exists k̂ ∈ N such that
Ĥ(X k̂,X k̂−1, δk̂) = ζ, then we know from Lemma 13(ii) that Xk+1 = Xk for all k > k̂,
indicating Xk ≡ X k̂ ∈ χ∞. Therefore, we need only to consider the case in which
Ĥ(Xk,Xk−1, δk) > ζ for all k ∈ N.

Note that Assumption 3 implies that

c(1− θ)(Ĥ(Xk,Xk−1, δk)− ζ)−θ‖∇Ĥ(Xk,Xk−1, δk)‖F ≥ 1, (4.22)

for all k > k̂ from Lemma 13(iv). On the other hand, we obtain from Lemma 13(i) that

‖∇Ĥ(Xk,Xk−1, δk)‖F ≤ D
(
T k−2 − T k + ‖δk−1‖1 − ‖δk‖1

)
. (4.23)

This, together with (4.22), yields

(Ĥ(Xk,Xk−1, δk)− ζ)θ ≤ cD(1− θ)
(
T k−2 − T k + ‖δk−1‖1 − ‖δk‖1

)
. (4.24)

Taking a power of 1−θ
θ to both sides of (4.24), we have for all k ≥ k̂ that

Φ(Ĥ(Xk,Xk−1, δk)− ζ) = c(Ĥ(Xk,Xk−1, δk)− ζ)1−θ

≤ c
[
cD(1− θ)

(
T k−2 − T k + ‖δk−1‖1 − ‖δk‖1

)] 1−θ
θ

≤ c
[
cD(1− θ)

(
T k−2 − T k + ‖δk−1‖1

)] 1−θ
θ
.

(4.25)

This, together with (4.20), yields

T k ≤ν1

(
T k−2 − T k + ‖δk−1‖1

) 1−θ
θ

+
1

2

(
T k−2 − T k + ‖δk−1‖1

)
(4.26)
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with ν1 = 2cD
C [cD(1− θ)]

1−θ
θ > 0.

It then follows from (4.26) that

T k +

√
µ

1− µ
‖δk‖1

≤ ν1

(
T k−2 − T k + ‖δk−1‖1

) 1−θ
θ

+
1

2

(
T k−2 − T k + ‖δk−1‖1

)
+

√
µ

1− µ
‖δk‖1

(a)

≤ ν1

(
T k−2 − T k + ‖δk−1‖1

) 1−θ
θ

+
1

2

(
T k−2 − T k + ‖δk−1‖1

)
+

µ

1− µ
‖δk−1‖1

(b)

≤ ν1

(
T k−2 − T k + ‖δk−1‖1

) 1−θ
θ

+ ν2

(
T k−2 − T k + ‖δk−1‖1

)
,

(4.27)

where inequality (a) holds simply due to δki ≤
√
µδk−1

i , i ∈ [r∗] and inequality (b) with
ν2 = 1

2 + µ
1−µ > 0 is true because T k−2 − T k ≥ 0 and µ ∈ (0, 1).

Now consider θ ∈ (0, 1
2 ]. It follows from Lemma 5(ii) and Theorem 7(ii) that lim

k→+∞
T k−2−

T k + ‖δk−1‖1 = 0. Since 1−θ
θ ≥ 1, we thus know for sufficiently large k that(

T k−2 − T k + ‖δk−1‖1
) 1−θ

θ ≤
(
T k−2 − T k + ‖δk−1‖1

)
.

This, together with (4.27), yields

T k +

√
µ

1− µ
‖δk‖1 ≤ (ν1 + ν2)

(
T k−2 − T k + ‖δk−1‖1

)
(4.28)

for sufficiently large k.
On the other hand, by Theorem 7(ii), we have δki ≤

√
µδk−1

i and δk−1
i ≤ √µδk−2

i , i ∈ [r∗],
which implies that

δk−1
i ≤

√
µ

1− µ
(δk−2
i − δki ), i ∈ [r∗], (4.29)

leading to

‖δk−1‖1 ≤
√
µ

1− µ
(‖δk−2‖1 − ‖δk‖1). (4.30)

Therefore, we have from (4.28) that for any k ≥ k̂

T k +

√
µ

1− µ
‖δk‖1

(a)

≤ (ν1 + ν2)

(
T k−2 +

√
µ

1− µ
‖δk−2‖1 −

(
T k +

√
µ

1− µ
‖δk‖1

))
(4.31)

where inequality (a) holds by (4.30). This implies

T k +

√
µ

1− µ
‖δk‖1 ≤

(
ν1 + ν2

1 + ν1 + ν2

)(
T k−2 +

√
µ

1− µ
‖δk−2‖1

)

≤
(

ν1 + ν2

1 + ν1 + ν2

)b k−k̂
2
c(
T [(k−k̂) mod 2]+k̂ +

√
µ

1− µ
‖δ[(k−k̂) mod 2]+k̂‖1

)

≤
(

ν1 + ν2

1 + ν1 + ν2

) k−k̂−1
2
(
T k̂ +

√
µ

1− µ
‖δk̂‖1

)
.
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We hence have for any k ≥ k̂ that

‖Xk −X∗‖F ≤ T k ≤ c0γ
k − c1‖δk‖1 (4.32)

with

γ =

√
ν1 + ν2

ν1 + ν2 + 1
, c0 =

T k̂ +
√
µ

1−µ‖δ
k̂‖1

γk̂+1
and c1 =

√
µ

1− µ
.

This completes the proof of statement (ii).
Consider now θ ∈ (1

2 , 1). We have from 1−θ
θ < 1 and lim

k→+∞
T k−2− T k + ‖δk−1‖1 = 0 for

sufficiently large k that(
T k−2 − T k + ‖δk−1‖1

)
≤
(
T k−2 − T k + ‖δk−1‖1

) 1−θ
θ
. (4.33)

This, together with (4.27), gives

T k +

√
µ

1− µ
‖δk‖1 ≤ (ν1 + ν2)

(
T k−2 − T k + ‖δk−1‖1

) 1−θ
θ
. (4.34)

Raising a power of θ
1−θ to the both sides of (4.34) and considering (4.30) gives(

T k +

√
µ

1− µ
‖δk‖1

) θ
1−θ
≤ ν3

[
(T k−2 +

√
µ

1− µ
‖δk−2‖1)− (T k + ‖δk‖1)

]
, (4.35)

where ν3 = (ν1 + v2)
θ

1−θ .
Split the sequence {k2, k2 + 1, · · · } into even and odd subsequences. For the even sub-

sequnce, define ∆t := T 2t +
√
µ

1−µ‖δ
2t‖1 for t ≥ d k̂2e := N1. Following from the techniques

presented in the proofs of (Wang et al., 2022, Theorem 4) and (Attouch and Bolte, 2009,
Theorem 2), we have

∆k ≤
(

∆
1−2θ
1−θ
N1−1 + ν(k −N1)

)− 1−θ
2θ−1

≤ d2k
− 1−θ

2θ−1 , (4.36)

for some d2 > 0. As for the odd subsequence of {k2, k2 + 1, · · · }, define ∆t := T 2t+1 +√
µ

1−µ‖δ
2t+1‖1. We know that (4.36) still holds. Therefore, for all sufficiently large and even

number k, it holds that

‖Xk −X∗‖F ≤ T k = ∆ k
2
−
√
µ

1− µ
‖δk‖1 ≤ 2

1−θ
2θ−1d2k

− 1−θ
2θ−1 −

√
µ

1− µ
‖δk‖1. (4.37)

For all sufficiently large and odd numbers k,

‖Xk −X∗‖F ≤ T k = ∆ k−1
2
−
√
µ

1− µ
‖δk‖1 ≤ 2

1−θ
2θ−1d2(k − 1)−

1−θ
2θ−1 −

√
µ

1− µ
‖δk‖1. (4.38)

Overall, we thus have for any sufficiently large k that

‖Xk −X∗‖F ≤ d0k
− 1−θ

2θ−1 − c1‖δk‖1, (4.39)

where d0 = 2
1−θ
2θ−1d2 max

(
1, 2

1−θ
2θ−1

)
and c1 =

√
µ

1−µ . The proof is complete.
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5. Numerical Experiments

In this section, we conduct low-rank matrix completion tasks using synthetic data and nat-
ural color images to demonstrate the effectiveness and efficiency of the proposed EIRNAMI
algorithm. Specifically, numerical experiments address the low-rank matrix completion prob-
lem, applied with f(X) = 1

2‖M − PΩ(X)‖2F , defined as

min
X∈Rm×n

F (X) =
1

2
‖M − PΩ(X)‖2F + λ‖X‖pp, (5.1)

where M = PΩ(X̂) is the given incomplete observation and X̂ ∈ Rm×n is the original
matrix, The set Ω ⊆ [m]× [n] is an index set of observed entries, and PΩ : Rm×n → Rm×n is
a linear operator that retains the entries of X̂ in Ω unchanged and sets the entries outside
Ω to zero. Here, λ > 0. The goal of problem (5.1) is to reconstruct the missing entries of a
partially observed low-rank matrix M ∈ Rm×n from the known entries {Mij | (i, j) ∈ Ω}.
The Lipschitz constant of f is Lf = 1. All methods tested in this section were implemented
in MATLAB on a desktop equipped with an Intel(R) Xeon(R) CPU E5-2620 v2 (2.10 GHz)
and 64GB RAM, running 64-bit Windows 10 Enterprise.1

To evaluate the numerical performance of the algorithms concerned, we follow (Sun
et al., 2017) to define the relative error of the original matrix X̂ ∈ Rm×n and the recovered
matrix X∗ ∈ Rm×n as RelErr(X∗) = ‖X∗−X̂‖F

‖X̂‖F
. Moreover, to verify whether a given point

X ∈ crit(F ) regarding problem (5.1), we adopt the following relative distance error:

RelDist(X) =
dist(0, ∂F (X))

‖X‖F
,

where dist(0, ∂F (X)) = ‖PΩ(M −X) + λUdiag(∂‖σ(X)‖pp)V >‖F with (U ,V ) ∈ M(X)

according to Definition 4 and Proposition 1. We consider a matrix X̂ is successfully recovered
byX∗ if the corresponding relative error RelErr(X∗) or the relative distance RelDist(X∗) is
less than the prespecified tolerance 10−5, similar to the criterion used in (Sun et al., 2017).
We define the sampling ratio so that |Ω| = dSR × (mn)e, where d·e denotes the ceiling
function.

For synthetic data, we adopt λ = 10−1‖M‖∞. For natural color images, we begin by
testing the regularization parameter λ with an initial large value λ0 = 28. Specifically, we
determine a candidate by λ = (2−4)kλ0, where k ranges from 0 to 6. After identifying the
candidate λ, we further refine the selection by exploring a finer range of λ values around the
chosen λ.

In all experiments, we terminate the proposed algorithm if RelErr ≤ tol1 or RelDist ≤
tol1 or the number of iterations exceeds the prespecified maximum number of iterations
IterMax = 3×103. In addition, we also use another termination condition ‖Xk+1−Xk‖∞ ≤
tol2 according to the criterion (3.16).

1. We have made the source code publicly available at the GitHub repository https://github.com/
Optimizater/Low-rank-optimization-with-active-manifold-identification.
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5.1 Synthetic Data

In this experiment, we compare the proposed EIRNAMI with the state-of-the-art method
PIRNN (Sun et al., 2017) using synthetic data. Furthermore, we include the IRNAMI
algorithm that does not use the extrapolation technique presented in (2.2). To empirically
evaluate the ability of EIRNAMI to recover the correct rank of the solution, we call a correct
low-rank detection (CLD) holds for an algorithm when the rank of the recovered solution
matches the rank of the original matrix X̂.

We now specify the experimental setup for data generation. We generate a low-rank
matrix X̂ with Rank(X̂) = r∗, where X̂ = BC. Here, B ∈ Rm×r∗ and C ∈ Rr∗×n are
generated randomly with i.i.d. standard Gaussian entries. We consider r∗ ∈ {5, 10, 15} for
the original matrix X̂ in our tests. We then uniformly sample a subset Ω with SR = 0.5,
and then form the observed matrix M = PΩ(X̂). In this test, we set m = n = 150.

All algorithms compared in this section are initialized with a random Gaussian matrix
X0. For IRNAMI and EIRNAMI, we set the parameters as follows: p = 0.5, β = 1.1 > Lf ,
µ = 0.1, tol1 = 10−5 and tol2 = 10−7. In addition, we initialize ε0 = 10−3e. For the
extrapolation parameter α, we consider values in the range α ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9}.
We then select the values that yield the best performance in most cases. Our experimental
results shown in Figure 2 indicate that α = 0.7 is a reasonable choice.

(a) r∗ = 5 (b) r∗ = 10 (c) r∗ = 15

Figure 2: The performance of EIRNAMI with different values of extrapolation parameter
α for various ranks r∗.

Next, we initialize X0 with Rank(X0) = r ∈ {1, 2, 3, . . . , 20}. For each r, we solve 100
independent realizations with the initialized data. For PIRNN, the perturbation parameter
is fixed as εi = 10−3, i ∈ [m], while other parameters follow the default settings suggested
in their paper. From a total of 2,000 problems, Figure 3 shows the number of problems
converging to a solution X∗ with the correct rank, r∗ = Rank(X̂) = Rank(X∗), for three
considered algorithms. We can observe from Figure 3 that PIRNN does not find the correct
rank in some cases, mainly due to the fixed perturbation strategy, as discussed in §1. In
addition, we present the average relative errors of these two algorithms for different values
of r∗ in Table 1. The average is calculated as the arithmetic mean of the total relative errors
across 2000 problems for each r.
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(a) The number of CLD with r∗ =
5.

(b) The number of CLD with r∗ =
10.

(c) The number of CLD with r∗ =
15.

Figure 3: The number of problems that achieve r∗.

r∗ = 5 r∗ = 10 r∗ = 15

PIRNN 5.13× 10−6 3.00× 10−4 1.10× 10−2

EIRNAMI 6.42× 10−7 2.67× 10−5 9.15× 10−4

Table 1: The average of the relative errors.

We also plot the evolution of the relative distance for different values of r∗ in Figure 4.
We can see that the proposed EIRNAMI significantly outperforms PIRNN in terms of the
convergence speed.

(a) r∗ = 5 (b) r∗ = 10 (c) r∗ = 15

Figure 4: The performance comparison between PIRNN and EIRNAMI with initialization
X0 satisfying Rank(X0) = r∗.

5.2 Natural Color Images

The second experiment is conducted using natural color images. In this section, we compare
the proposed method with some state-of-the-art methods, including PIRNN (Sun et al.,
2017), AIRNN (Phan and Nguyen, 2021)1, SCp (Li et al., 2020)2, and FGSRp (Fan et al.,

1. The code is available at https://github.com/ngocntkt/AIRNN
2. The code is available at https://github.com/liguorui77/scpnorm
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2019)1. While not all natural color images are inherently low-rank, the primary information
is captured by the top singular values (Sun et al., 2017). Hence, a natural color image can
be well recovered by the low-rank approximation. The considered natural images are sized
300× 300× 3. We apply matrix recovery for each channel independently.

We first conduct a set of random mask experiments similar to those described in (Li
et al., 2020). In these experiments, the row and column indices of the missing entries in
each image channel are randomly selected and the corresponding pixel values are set to zero,
resulting in a missing rate of 50%. Additionally, we perform block mask experiments using
a block column mask, where four increasingly sized blocks are arranged diagonally across
the image. In this test, we set p = 0.5.

The performance of all algorithms evaluated is evaluated using two metrics: (i) the
difference in rank between the recovered X∗ and the low-rank ground truth X̂, and (ii) the

peak signal-to-noise ratio (PSNR), defined as PSNR(X̂,X∗) = 10 log10

(
mn 2552

‖X̂−X∗‖2F

)
. We

mention that higher PSNR values indicate greater accuracy of the recovered result.

(a) Original image (b) Low-rank image (c) Random mask (d) PIRNN

(e) AIRNN (f) EIRNAMI (g) SCp (h) FGSRp

Figure 5: The performance of considered algorithms with a random mask and SR= 0.5.
(a) Original image: Rank(X) = 300; (b) Low-rank image: Rank(X̂) = 30; (c) Noisy
image; (d) PIRNN: Rank(X∗) = 30, PSNR=34.47; (e) AIRNN: Rank(X∗) = 3,
PSNR=22.68; (f) EIRNAMI: Rank(X∗) = 30, PSNR=34.47; (g) SCp: Rank(X∗) = 300,
PSNR=33.20; (h) FGSRp: Rank(X∗) = 300, PSNR=20.68.

1. The code is available at https://github.com/udellgroup/Codes-of-FGSR-for-effecient-low-rank-matrix-
recovery
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(a) Original image (b) Low-rank image (c) Block mask (d) PIRNN

(e) AIRNN (f) EIRNAMI (g) SCp (h) FGSRp

Figure 6: The performance of considered algorithms with the block mask. (a) Original
image: Rank(X) = 300; (b) Low-rank image: Rank(X∗) = 30; (c) Noised picture; (d)
PIRNN: Rank(X) = 25, PSNR=31.00; (e) AIRNN: Rank(X) = 4, PSNR=24.24; (f)
EIRNAMI: Rank(X) = 30, PSNR=34.74; (g) SCp: Rank(X) = 126, PSNR=31.76; (h)
FGSRp: Rank(X) = 126, PSNR=26.41.

PIRNN AIRNN EIRNAMI SCp FGSRp
PSNR Rank PSNR Rank PSNR Rank PSNR Rank PSNR Rank

r∗ = 15 30.67 15 22.69 3 30.67 15 30.39 300 20.53 300
r∗ = 20 32.19 20 22.69 3 32.19 20 31.64 300 20.60 300
r∗ = 25 33.39 25 22.69 3 33.39 25 32.54 300 20.63 300
r∗ = 30 34.47 30 22.68 3 34.47 30 33.20 300 20.66 300
r∗ = 35 35.46 35 22.68 3 35.46 35 33.64 300 20.68 300
r∗ = 40 36.37 40 22.68 3 36.37 40 33.87 300 20.69 300

Table 2: The performance of the considered algorithms with the random mask is evaluated.
Bold values indicate the best results for each task.
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PIRNN AIRNN EIRNAMI SCp FGSRp
PSNR Rank PSNR Rank PSNR Rank PSNR Rank PSNR Rank

r∗ = 15 30.46 15 24.24 4 31.22 15 30.75 75 25.70 75
r∗ = 20 31.24 20 24.24 4 32.66 20 31.73 100 26.03 100
r∗ = 25 31.34 24 24.24 4 33.83 25 31.93 121 26.25 121
r∗ = 30 31.00 25 24.24 4 34.74 30 31.76 126 26.41 126
r∗ = 35 30.97 26 24.24 4 35.45 35 31.65 131 26.53 131
r∗ = 40 30.93 27 24.24 4 35.89 40 31.81 136 26.62 136

Table 3: The performance of the considered algorithms with the block mask is evaluated.
Bold values indicate the best results for each task.

For the presented results, we use the default rank function in MATLAB without speci-
fying any tolerance to calculate the rank of the recovered results. Figure 5 displays the re-
covered images with the random mask. Most of the considered algorithms achieve relatively
high-quality visual recovery. Table 2 records the results for different r∗ across considered
algorithms. Notably, the recovered results by EIRNAMI and PIRNN match the rank of the
ground-truth solution. However, this is not the case for PIRNN with the block mask, as
illustrated in Figure 6 and Table 3.

6. Conclusion and Discussion

In this paper, we have proposed, analyzed, and implemented iteratively reweighted Nuclear
norm methods for solving the Schatten-p norm regularized low-rank optimization. Our work
features two main novelties. The first is the exhibition of an active manifold identification
property, enabling the algorithm to identify the rank of stationary points of the concerned
problems in finite iterations. Leveraging this property, we have designed a novel updating
strategy for εi, so that εi associated with the positive singular values can be driven to
zero rapidly and those associated with zero singular values can be automatically fixed as
constants after a finite number of iterations. The crucial role of this strategy is that the
algorithm eventually behaves like a truncated weighted Nuclear norm method so that the
techniques for smooth algorithms can be directly applied including acceleration techniques
and convergence analysis.

The convergence properties established for our algorithm are illustrated empirically on
test sets comprising both synthetic and real data sets. We remark, however, that sev-
eral practical considerations remain to be addressed for enhancing the performance of the
proposed method. One potential avenue for improvement involves integrating the active
manifold identification property into the implementation. Once the correct rank has been
identified within a finite number of iterations, the algorithm can be terminated and subse-
quently switched to a traditional Frobenius recovery with a fixed rank to further enhance the
quality of the recovered solution. We defer the exploration of this aspect to future research
efforts. On the other hand, as suggested by a referee and motivated by (Yukawa and Amari,
2015), we believe that it is worthwhile to discuss the selection of the regularization param-
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eter λ. Inspired by (Yukawa and Amari, 2015), we can consider a critical path, where a
curve consists of critical points of the problem for different values of λ. This is realistic since
the (local) optimal solution changes continuously to form a path of the critical points as λ
varies continuously. A path-following algorithm could be developed by iteratively solving
the regularization problem for a series of increasing values of λ1 < · · · < λN . The opti-
mal solution X∗(λj) for λj would be used to warm start the solution X∗(λj+1) for λj+1,
ensuring that X∗(λj+1) lies in a neighborhood of X∗(λj). We are well aware that there
may be multiple paths of (local) solutions as λ varies. Generally, it is not an easy task to
obtain the global solution path due to the highly nonconvex nature of both loss term f(X)
and the regularizer ‖X‖pp. Moreover, the global solution path may be discontinuous. This
phenomenon is studied in (Yukawa and Amari, 2015) for the `p-regularized least squares
problem for vector variables.
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