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Abstract

Modern data sets commonly feature both substantial missingness and many variables of
mixed data types, which present significant challenges for estimation and inference. Com-
plete case analysis, which proceeds using only the observations with fully-observed variables,
is often severely biased, while model-based imputation of missing values is limited by the
ability of the model to capture complex dependencies among (possibly many) variables
of mixed data types. To address these challenges, we develop a novel Bayesian mixture
copula for joint and nonparametric modeling of multivariate count, continuous, ordinal,
and unordered categorical variables, and deploy this model for inference, prediction, and
imputation of missing data. Most uniquely, we introduce a new and computationally effi-
cient strategy for marginal distribution estimation that eliminates the need to specify any
marginal models yet delivers posterior consistency for each marginal distribution and the
copula parameters under missingness-at-random. Extensive simulation studies demonstrate
exceptional modeling and imputation capabilities relative to competing methods, especially
with mixed data types, complex missingness mechanisms, and nonlinear dependencies. We
conclude with a data analysis that highlights how improper treatment of missing data can
distort a statistical analysis, and how the proposed approach offers a resolution.

Keywords: Bayesian nonparametrics, Bayesian inference, Factor models, Imputation,
Mixture models

1. Introduction

Missing data are ever-present in modern statistics and data analysis. The sources of
missingness are vast and varied: participant non-response in surveys (Rubin, 1976), partici-
pant attrition in longitudinal studies (Gustavson et al., 2012), linking multiple data sources
(Reiter, 2012), or errors in the data collection process all contribute to missingness. Any
statistic meant to be computed on a fully-observed sample of data—including frequentist
estimators and Bayesian posterior distributions—must be modified carefully in the presence
of missing data. At the broadest level, the goal remains to infer an unknown population
quantity Q, and specifically to provide accurate point estimates and precise uncertainty
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quantification for Q; here, we focus on the additional challenges and implications of abun-
dant missingness among many variables of mixed data types.

When confronted with missing data, there are two options for analysis. The first is to
proceed using only observations for which all variables are observed. However, this complete
case (CC) analysis, while common in practice, is highly problematic in many settings.
CC analysis often substantially decreases the sample size, leading to imprecise and under-
powered analysis. More critically, CC analysis can introduce various and significant forms
of bias. Consider a sample of correlated bivariate data {(Yi1, Yi2)}ni=1, and suppose that the
missingness in Y1 is determined by the value of Y2, which is fully observed (missingness-at-
random; see below). Figure 1 shows the potential impacts of a CC analysis: the empirical
cumulative distribution function (ECDF) of Y1 is severely biased, which implicates inference
on Q(Y1) as well as popular Bayesian semiparametric copula models discussed subsequently
(Hoff, 2007; Murray et al., 2013; Cui et al., 2019; Feldman and Kowal, 2022).
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Figure 1: Bivariate data {(Yi1, Yi2)}ni=1 with missing-at-random missingness (left) and the corre-
sponding true and empirical cumulative distribution function (ECDF) for Y1 (right). The missing
data severely biases the ECDF, which impacts functionals of this term—including traditional statis-
tics as well as Bayesian semiparametric copula models.

The second option, which we pursue here, is imputation of missing values. Informally,
a statistical model is fit to the observed data and then used to repeatedly simulate the
missing values, thus forming many completed data sets. Then, estimates Q̂ are computed
on each completed data set, and combined to produce point estimates and uncertainty
quantification for Q. If the model adequately captures the features of the data, we can
expect the inference based on an imputation procedure to correct the shortcomings of a CC
analysis.

The specification of an imputation model is made precise by considering a joint model
for all data Y = (Yij) and binary missingness variables R = (Rij), where Rij = 1 indicates
that Yij is missing, and Rij = 0 means that Yij is observed. Let Y obs = (Yij : Rij = 0)
denote the observed data and Y mis = (Yij : Rij = 1) the missing values. We assume that
this model is indexed by distinct parameters θ for Y and φ for R, with joint likelihood

p(R,Y obs | θ,φ) =

∫
p(Y obs,Y mis | θ) p(R | Y obs,Y mis,φ)dY mis (1)
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We focus on missingness-at-random (MAR), which allows the missingness mechanism
to depend on the observed (but not missing) data: p(R | Y obs,Y mis,φ) = p(R | Y obs,φ)
(Rubin, 1976). In this case the missingness is ignorable, and the model specified on the
observed data p(Y obs | θ) =

∫
p(Y obs,Y mis | θ)dY mis may be used for imputation. A

stronger assumption is missing-completely-at-random (MCAR), p(R | Y obs,Y mis,φ) =
p(R | φ), which is a special case of MAR.

There are several important considerations for MAR. First, CC analysis is strongly
inadvisable (see Figure 1), and thus imputation is needed in general. Second, MAR is most
likely satisfied when Y obs contains many potentially informative variables (Little, 2021).
Thus, MAR demands a model capable of accommodating multiple variables, possibly of
mixed types. Finally, the suitability of MAR in practice depends on the adequacy of the
assumed model. In aggregate, MAR necessitates a model for multivariate and mixed data
that can adapt to complex marginal and joint distributional features.

Our motivating example comes from a collection of variables (see Table 1) in the Na-
tional Health and Nutrition Examination Survey (NHANES). These variables include count,
continuous, ordinal, and unordered categorical variables, with missingness as high as 43%
for some variables and missing values for each data type. Notably, these variables include
self-reported mental health—which displays complex and discrete marginal distributional
features (Figure 2)—along with demographic and socioeconomic variables, alcohol and drug
use variables, and health-related variables with intricate multivariate relationships. Most
importantly, CC analysis is unsatisfactory or misleading for these data (see Section 7).
Thus, an imputation model is required—and in particular one capable of accommodating
many variables of mixed types with intricate distributional features.
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Figure 2: The marginal distribution of days of self-reported poor mental health (DMHNG) from the
NHANES data, which is the response variable of interest in our real data analysis. Discreteness,
boundedness, heaping, and zero-inflation combine to make modeling difficult.

The literature on imputation models is extensive, yet limited in its ability to address
these critical challenges; see Murray (2018) for a thorough review. Broadly, there are
two main frameworks for imputation. The first, fully conditional specification (FCS), im-
putes missing values by (i) specifying a univariate regression model for each variable in the
data set conditional on all other variables and (ii) using each regression model to impute
(separately) the missing values for each variable (Raghunathan et al., 2001; Van Buuren,
2007). This approach offers several advantages: it is amenable to mixed data types, allows
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Variable Values % Missing

Response variable:
DaysMentHlthNotGood (DMHNG) {0, 1, . . . , 30} 14%

Demographic and socioeconomic variables:
Gender Male, Female 0
Age (years) {18, . . . , 80} 0

Race∗
White, Black,
Hispanic, Other

0

Education Level∗ < HS, = HS, > HS 5%
Family Income∗ (FI) Low, Middle, High 4%
Uninsured∗ Yes, No 0.2%

Alcohol and drug use variables:
HeavyDrinker Yes, No 29%
UseNicotine Yes, No 15%
UsedMarijuana Yes, No 43%
UsedHardDrug Yes, No 30%

Health-related variables:
Body Mass Index (BMI, kg/m2) [13.4, 81.2] 6%
HasHighBP (BPQ020 at link) Yes, No 0.1%
HasHighChol (BPQ080 at link) Yes, No 6%
HasDiabetes∗ Yes, No 0.08%

Table 1: Variables in the analysis data set with hyperlinks to the online NHANES descriptions.
Annotated variables (∗) include minor modifications (e.g., collapsed categories) from the original
NHANES variables.

customization of each univariate model to increase flexibility (Burgette and Reiter, 2010;
Tang and Ishwaran, 2017), and is implemented is freely available software (Van Buuren
and Groothuis-Oudshoorn, 2011). However, FCS does not guarantee a valid joint distribu-
tion for the data, which is especially problematic for Bayesian inference, and is difficult to
tune in high dimensions, since it requires a separate model fit for each variable. Perhaps
most important, FCS often cannot capture complex multivariate relationships in the data
(Murray and Reiter, 2016), which we confirm in Section 6.

The second main approach constructs a joint distribution for all variables in the data
set and then imputes missing values from the (posterior) predictive distribution. Bayesian
nonparametric models are particularly attractive, including for imputation of multiple cate-
gorical (Dunson and Xing, 2009; Manrique-Vallier and Reiter, 2014, 2017), ordinal (Kottas
et al., 2005; DeYoreo et al., 2017), or categorical and continuous variables (Murray and
Reiter, 2016; Roy et al., 2018). Related, Taddy and Kottas (2010) proposed a multivariate
mixture model with kernel components specific to each data type, but did not consider
imputation. These existing approaches have several limitations. First, they do not simul-
taneously accommodate categorical, continuous, count, and ordinal variables. Second, they
often require careful model specification for each variable, which is arduous in moderate to
high dimensions. Finally, the accompanying MCMC samplers are typically complex and
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computationally intensive. To our knowledge, there is no publicly available software for
imputation based on these methods, which limits their practical utility.

Copula models offer a potential avenue to estimate a joint model on mixed data types:
they combine arbitrary marginal distributions with a mechanism to model joint dependen-
cies (Joe, 2014). Zhao and Udell (2020a,b) deployed frequentist Gaussian copula models
for imputation of MCAR data with continuous and ordinal variables, but did not consider
MAR missingness or other data types. Pitt et al. (2006) specified parametric families for
count and continuous variables within a Bayesian Gaussian copula model which could be
extended for imputation. However, parametric specification of marginal distributions is
restrictive and time-consuming, especially when there are complex marginal distributions
(Figure 2) and many variables to consider (Table 1).

Hoff (2007) partially resolved this issue for count, continuous, and ordinal variables using
the extended rank-likelihood (RL) for Gaussian copula estimation, which was extended to
higher dimensions using factor models in Murray et al. (2013) and deployed for imputation
in Cui et al. (2019). The RL uses a rank-based approximation to the likelihood for semipara-
metric inference, whereby the Gaussian copula (correlation) parameters are inferred using
only the ranks of the observed data. Feldman and Kowal (2022) introduced the extended
rank-probit likelihood (RPL) to include count, continuous, ordinal, and now unordered cat-
egorical variables. Most uniquely, the R(P)L delivers inference for the copula parameters
without requiring any estimation or model specification of the marginal distributions, which
is a substantial simplification that facilitates high-dimensional imputation.

Despite these advantages, semiparametric Bayesian copula models have two glaring
shortcomings in the presence of missing data. First, these models do not estimate the
marginal distributions and thus do not provide a data generating process for prediction or
imputation. Instead, the default approach is to fix each margin at its ECDF and generate
posterior predictive variates by repeatedly (i) drawing a latent Gaussian variable under
the model and (ii) applying the inverse ECDF. However, the ECDF is significantly flawed
under MAR (see Figure 1), so the resulting posterior predictive imputations will produce
inaccurate estimation and uncertainty quantification for Q—even if the joint dependencies
are well-modeled by the Gaussian copula. We demonstrate this limitation in Section 6.2,
and conclude that clearly, these models cannot be relied upon for prediction or imputation
with MAR data.

Second, Gaussian copula models only specify linear associations on the latent scale.
As such, they cannot capture complex and nonlinear dependencies and interactions, which
we demonstrate empirically in Section 6.1. Gaussian mixture copulas (Tewari et al., 2011;
Rajan and Bhattacharya, 2016) offer some additional distributional flexibility, but are highly
parameterized, less robust than rank-based methods, and limited to certain data types.

To resolve these limitations, we develop a novel Bayesian mixture copula model for joint
and nonparametric modeling and imputation of count, continuous, ordinal, and unordered
categorical variables. The model features a rank-based likelihood paired with a latent
mixture of factor models that is designed to provide robust, parsimonious, and flexible
characterization of complex dependencies among mixed data types. A primary innovation
in this work is the introduction and theoretical justification for the margin adjustment, which
eliminates the reliance on the ECDF in the posterior predictive distribution of rank-based
copula models. The margin adjustment features several key properties:
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1. It requires no specification of any marginal models, no additional assumptions, and
no additional parameters;

2. It delivers posterior consistency and posterior uncertainty quantification for each
marginal distribution, even under MAR;

3. It is computationally scalable and empirically accurate for estimation and imputation.

The importance of these features is highlighted using both simulated and real data, which
decisively show that the proposed imputation strategy offers significant improvements over
competing methods, especially in the presence of data MAR and nonlinear dependencies.

This paper is organized as follows. Section 2 introduces Bayesian copula models for
mixed data types. In Section 3, we define and study the margin adjustment. Section 4
describes our novel Gaussian mixture copula, with extensions in Section 5 for unordered
categorical variables. We apply our proposed approach in Section 6 with two simulation
studies and a real data example in Section 7. We conclude in Section 8. Supplementary
material includes proofs of all results, details on the computations, additional simulation
results, and an R1 package that implements the proposed approach.

2. Bayesian Copula Models for Mixed Data Types

2.1 The Gaussian Copula

Our first objective is to develop a Bayesian model for multivariate and mixed data. This
model will be used to generate posterior predictive draws of the missing data, thereby allow-
ing estimation and uncertainty quantification of arbitrary Q through imputation. Consider
the Gaussian copula, which models the p-dimensional vector y = (y1, . . . , yp) using

z ∼ Np(0,Cθ), z = (z1, . . . , zp)
T (2)

yj = F−1
j {Φ(zj)}, j = 1, . . . , p. (3)

The Gaussian copula links the univariate marginal distributions {Fj}pj=1 for each component
of y with a multivariate model for latent Gaussian data z governed by correlation matrix
Cθ, which is indexed by parameters θ. Thus, each Fj describes the marginal features of yj
while Cθ encodes the dependencies among y. Model (2)-(3) implies the joint CDF for y is
F (y1, . . . , yp) = Φp[Φ

−1{F1(y1)}, . . .Φ−1{Fp(yp)}], where Φp is the CDF of a p-dimensional
Gaussian random vector with mean zero and correlation matrix Cθ and Φ is the univariate
standard normal CDF.

Bayesian inference for the Gaussian copula requires prior distributions for the unknown
θ and {Fj}. Given posterior samples of θ and {Fj}, posterior predictive simulations for the
missing data are generated by drawing from (2)-(3), i.e., simulating zi ∼ Np(0,Cθ) and
setting ymisij = F−1

j {Φ(zmisij )} for each missing component j in observation i. This algorithm
highlights the mutual importance of the copula correlation Cθ and the margins {Fj}, which
we explore and generalize in subsequent sections.

1. An R package implementing the proposed approach is available on the author’s GitHub page, found at
https://github.com/jfeldman396/GMCImpute
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The Gaussian copula model has several critical limitations. First, the margins Fj must
be specified either parametrically (Pitt et al., 2006), which is restrictive and time-consuming
when p is moderate or large, or nonparametrically, which significantly increases the com-
putational burdens. Alternatively, fixing margins at their empirical estimates (Hoff, 2007;
Murray et al., 2013; Feldman and Kowal, 2022) may introduce significant bias into the pos-
terior predictive distribution in the presence of missing data (Figure 1) and fails to account
for the uncertainty about these parameters. Second, the correlation matrix Cθ captures
only latent linear dependencies, and thus may not be suitable for more complex relation-
ships. Lastly, the link (3) is not well-defined for unordered categorical variables (Feldman
and Kowal, 2022), and estimation of the Gaussian copula with discrete Yj is problematic
(Hoff, 2007). Thus, modifications are needed to provide valid joint models for mixed data
types, with particular focus on modeling flexibility and computational scalability.

2.2 Semiparametric Copula Models for Mixed Continuous, Count, and
Ordinal Data

One approach that bypasses the need to specify individual marginal models for contin-
uous, count, and ordinal variables is the extended rank-likelihood (RL; Hoff (2007)). Let
Y = {yi}ni=1 with yi = (yi1, . . . , yip)

T contain p numeric (continuous, count, or ordinal)
variables; modifications for unordered categorical variables are discussed in Section 5. The
non-decreasing link in (3) implies a partial ordering on the latent scale for (2): for variable j
and observations i and k we know that yij < ykj =⇒ zij < zkj . This ordering is preserved
for each variable in the data set when the event D(Y ) := {Z ∈ Rn×p : max{zkj : ykj <
yij} < zij < min{zkj : yij < ykj}} occurs.

The RL is derived by first expressing the Gaussian copula likelihood in terms of D(Y ):

p(Y | θ, {Fj}pj=1) = p{Y ,Z ∈ D(Y ) | θ, {Fj}pj=1} (4)

= p{Z ∈ D(Y ) | θ} p{Y | Z ∈ D(Y ),θ, {Fj}pj=1}. (5)

The decomposition (4)-(5) is made possible since the event Z ∈ D(Y ) does not depend
on the marginal distributions {Fj}pj=1 and must occur with observation of Y . Hoff (2007)
argued that the left term in (5) should contain most of the information about θ, and Murray
et al. (2013) showed that it is indeed sufficient for posterior consistency for θ. Thus, the
RL enables semiparametric inference on θ (and Cθ) by targeting the posterior

p{θ | Z ∈ D(Y )} ∝ p{Z ∈ D(Y ) | θ} p(θ). (6)

Notably, (6) does not include the marginal CDFs {Fj}. When priority lies in inference
for Cθ, which contains substantive information on multivariate relationships in the data,
this artifact is particularly convenient for model specification and computation (see Algo-
rithm 1). However, consideration of {Fj} is necessary for the posterior predictive distribution—
and thus for missing data imputation. We address this challenge in Section 3.

7



Feldman and Kowal

2.3 Estimating Semiparametric Copulas with Missing Data

With missing data, we only have access to the observed ranks. Thus, we modify the RL
posterior appropriately:

p{θ | Zobs ∈ D(Y obs)} ∝
∫
p{Zobs ∈ D(Y obs),Zmis | θ}dZmis p(θ) (7)

where Zobs = (Zij : Rij = 0) and Zmis = (Zij : Rij = 1). Though (7) non-standard, it is
relatively simple to construct a Gibbs sampling algorithm to sample from this distribution.
The sampler (Algorithm 1) alternates between drawing from [(Zobs,Zmis) | Y obs,θ] and
[θ | Y obs,Z]. The first step features univariate truncated normal draws for each Zobsij

based on (2) and the RL, while prediction of Zmisij is unrestricted by any observed ordering

constraints. Next, [θ | Y obs,Z] = [θ | Z] is drawn from a posterior which features a
multivariate Gaussian likelihood, and thus sampling is straightforward for many choices of
priors p(θ).

Algorithm 1 Bayesian RL Gaussian Copula Gibbs Sampler with Missing Data

Require: prior p(θ)

• Step 1: Sample (Zobs,Zmis) | θ

for Zij ∈ Zobs do
Compute z` = max{zobskj : yobskj < yobsij } and zu = min{zobskj : yobsij < yobskj }, k 6= i

Sample Zij ∼ Normal(µij , σ
2
j )1(z`, zu)

for Zij ∈ Zmis do
Sample Zij ∼ Normal(µij , σ

2
j )

where µij = (Cθ)j−j(C
−1
θ )−j−jZi−j , σ

2
j = (Cθ)jj − (Cθ)j−j(C

−1
θ )−j−j(Cθ)−jj

• Step 2: Sample θ ∼ p(θ | Zobs,Zmis,Y obs) = p(θ | Zobs,Zmis)

where p(θ | Zobs,Zmis) ∝ Np{(Zobs,Zmis); 0,Cθ}p(θ)

A remarkable feature of Algorithm 1 is the absence of any marginals {Fj}. While this is
advantageous for posterior inference on θ — it removes the need to specify or estimate any
marginal distributions — the margins are in fact necessary for prediction and imputation
as predictive samples of Zmis need be transformed to Y mis. The default semiparametric
procedure is to fix each {Fj} at the ECDF (Hoff, 2007; Murray et al., 2013; Cui et al., 2019;
Feldman and Kowal, 2022), and the accompanying imputation step would apply Algorithm
1 and compute F̂−1

j {Φ(zmisij )}. However, the ECDF does not account for the uncertainty
about each Fj . More critically, the ECDF is at risk for significant bias under MAR (see
Figure 1 and Sections 6-7), which will lead to inaccurate predictions and imputations —
even if θ is inferred correctly.

3. The Margin Adjustment

To eliminate reliance on the ECDFs for posterior predictive sampling and imputation—
while still maintaining the beneficial structure of the Bayesian RL copula model—we propose
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a new strategy called the margin adjustment. The margin adjustment does not require
any additional modeling assumptions or parameters, is fully automated (i.e., individual
specification of marginal models for each Fj is not needed), and provides computationally
efficient and consistent posterior inference for the margins {Fj}, even in the presence of
data MAR. The margin adjustment does not impact posterior inference for θ, and thus
Algorithm 1 is unchanged.

3.1 Derivation and Theory

The key insight of the margin adjustment is that the combination of the RL rank con-
straints (4)-(5) and the latent data model (2) are sufficient to infer the marginal distributions
{Fj}pj=1 with strong theoretical guarantees. Under the RL, Zj is a non-decreasing (and un-
known) transformation of Yj for each j. Thus, upon ordering both {Zij}ni=1 and {Yij}ni=1,
the position of max{Zij : Yij ≤ x} among {Zij}ni=1 will be identical to the position of
max{Yij : Yij ≤ x} among {Yij}ni=1 for any x greater than the minimum of {Yij}ni=1. For
any x below this value, the set {Yij ≤ x} will be empty with probability 1. Thus, we define

Znj (x) = max[{Zij : Yij ≤ x} ∪ {Zij : Yij = min({Yij}ni=1)}, i ∈ {1, . . . , n}]. (8)

Informally, if Fj(x) = τ , then Znj (x) will approximate the τth quantile under the marginal
latent data model. This motivates the following marginal distribution estimator:

F̃j(x) = Gj{Znj (x)}, (9)

where Gj is the marginal distribution for Zj induced by the latent data model under the
copula. Importantly, the margin adjustment is compatible with any rank-based copula
model. All that is required is the multivariate model for Z, which induces marginals Gj .
Under the Gaussian copula (2)-(3), Gj is the standard normal CDF Φ; modifications for
the Gaussian mixture copula are available in Section 4.

More formally, Theorem 1 provides a general setting in which a continuous random
variable Z may be used to infer the distribution function of Y = h(Z) with almost sure
convergence, where h is any monotone increasing function. Our primary example is the RL
posterior, where h ensures the necessary ordering across realizations of (Z, Y ).

Theorem 1 Suppose {Zi}ni=1
i.i.d∼ FZ and {Yi}ni=1 = {h(Zi)}ni=1 ∼ FY , where FZ is con-

tinuous and h is a monotone increasing function. Defining Zn(x) as (8), the margin ad-
justment satisfies F̃ (x) := FZ{Zn(x)} a.s.→ FY (x) for all x ∈ R.

The more challenging setting occurs when data are MAR. In the presence of missing
data, we modify (8) appropriately:

Znj (x) = max[{Zobsij : Y obs
i ≤ x} ∪ {Zobsij : Y obs

ij = min(Y obs
ij )}, i ∈ {1, . . . , n}]. (10)

Crucially, with this modification, the margin adjustment remains consistent under MAR.
For simplicity, we demonstrate our result for p = 2 variables, one of which is MAR.

Theorem 2 Suppose {Zi}ni=1 = {(Zi1, Zi2)}ni=1
i.i.d∼ G, where G is continuous with marginal

distributions G1, G2, and {Y i}ni=1 = {(Yi1, Yi2)}ni=1 = [(F−1
1 {G1(Zi1)}, F−1

2 {G2(Zi2)})]ni=1

9
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has joint distribution function F with marginal distributions F1, F2. Suppose Y2 is com-
pletely observed and Y1 is MAR. The margin adjustment satisfies F̃1(x) := G1{Zn1 (x)} a.s.→
F1(x) for all x ∈ R.

Generalizations beyond the bivariate case are straightforward. The theorem also applies
for discrete Yj , where F−1

j maps quantile intervals defined by the left and right limits of the
step function Fj to elements in the support of Yj . Notably, the consistency in Theorem 2
is not valid for the ECDF under MAR (see Figure 1), which undermines any methods that
rely on the ECDF for prediction and imputation (Hoff, 2007; Murray et al., 2013; Cui et al.,
2019; Feldman and Kowal, 2022).

3.2 Bayesian Estimation and Imputation

The margin adjustment (9) is a function of the latent data Z, and thus inherits a
posterior distribution under the Bayesian RL copula model. Under Algorithm 1, Zobs is
sampled from its joint posterior, and so the margin adjustment may be integrated in any
Bayesian RL copula model to provide margin estimation and uncertainty quantification.
For clarity, we outline the procedure to obtain posterior samples of the margin adjustment
for each j ∈ {1, . . . , p} under the RL Gaussian copula in Algorithm 2; modifications for the
Gaussian mixture copula are available in Section 4.

Algorithm 2 The Margin Adjustment Sampling under the Bayesian RL Gaussian Copula

Require: One posterior sample of Zobs from Algorithm 1
Return: One posterior sample of F̃j(x), j ∈ {1, . . . , p}
for j ∈ {1, . . . , p} and any x do

Compute Znj (x) as (10)

Compute F̃j(x) = Φ{Znj (x)}

We provide a visualization of Algorithm 2 for a single variable Yj in Figure 3. Notably,
posterior sampling for the margin adjustment is seamlessly incorporated into Algorithm 1
with minimal computational expense. The procedure is augmented with an efficient post-
processing of posterior samples of Zobs, which in turn provides posterior inference for each
marginal.

In practice, we compute the margin adjustment for each unique x ∈ {Y obs
ij }ni=1. Since

the resulting F̃j is a step function with jumps determined by these observed values, we then
fit a monotone interpolating spline to {x, F̃j(x)} with pre-specified upper and lower bounds.
These bounds may be available through domain knowledge (e.g., age cannot be negative and
is typically less than or equal to 110) or they can be fixed with reasonable heuristics. For
instance, when known bounds are not available, one solution is to add/subtract a constant
from the observed upper/lower bounds of each variable. The interpolating spline preserves
F̃j at the observed data values but expands the support of the data-generating process
beyond only those observed values, which is important for imputation.

Most important, we apply the margin adjustment to deliver model-based imputation.
We demonstrate this using the RL Gaussian copula in Algorithm 3, but once again this
algorithm may be generalized to any RL copula model. Thus, the margin adjustment
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Algorithm 3 Bayesian RL Gaussian Copula Imputation using the Margin Adjustment

Require: One posterior sample of Zmis from Algorithm 1 and {F̃j}pj=1 from Algorithm 2

Return: One completed data set Y = (Y obs,Y mis)
for zmisij ∈ Zmis do

Set ymisij = F̃−1
j {Φ(zmisij )}

replaces the default ECDF for imputation with an estimator that remains consistent in the
presence of MAR. This benefit is explored empirically in Sections 6-7, and yields substantial
improvements in prediction and imputation inference.

3.3 Strong Posterior Consistency under MAR

We now establish the asymptotic properties of the posterior distribution of the Gaussian
copula correlation parameter Cθ under the RL with ignorable missing data, and demon-
strate how this posterior consistency extends to the margin adjustment (9). First, we adapt
the result in Murray et al. (2013), which established posterior consistency of Cθ under the
RL without missingness for mixed continuous, count, and ordinal data types. However,
their proof relied upon the almost sure convergence of the ECDF F̂j to Fj , which is not
maintained under MAR.

Theorem 3 Suppose {Y i}ni=1
i.i.d∼ G∞C0,F1,...,Fp

, where G∞C0,F1,...,Fp
is the Gaussian copula

for the joint distribution of p-dimensional Y with true copula parameters C0 and true
marginal CDFs F1, . . . , Fp. Let Π be a prior distribution on the space of all p × p positive
semi-definite correlation matrices Cθ with corresponding density π(Cθ) with respect to a
measure ν. Suppose π(Cθ) > 0 almost everywhere with respect to ν and assume that the
missingness is ignorable. Then, for C0 a.e. [ν] and any neighborhood A of C0, we have
that limn→∞Π{Cθ ∈ A | Zobs

n ∈ D(Y obs
n )} = 1 a.s. [G∞C0,F1,...,Fp

].

In conjunction with Theorems 1–3, the strong posterior consistency of Cθ also yields
posterior consistency for the margin adjustment.

Corollary 4 Under the conditions of Theorem 3, define F̃j as in (9) with Znj (x) as (10)
and Gj = Φ for each j ∈ {1, . . . , p}. Then for any x ∈ R and any neighborhood A of Fj(x)
limn→∞Π{F̃j(x) ∈ A | Zobs

n ∈ D(Y obs
n )} = 1 a.s [G∞C0,F1,...,Fp

].

These results are powerful: the RL Gaussian copula with the margin adjustment delivers
fully Bayesian inference with strong posterior consistency for both the marginal distributions
and the copula parameters. Notably, these results apply for mixed continuous, count, and
ordinal variables with MAR data.

4. Gaussian Mixture Copulas via Latent Factors

Although we have established theoretical guarantees for the RL and the margin ad-
justment under a Gaussian copula model—including for mixed (count, continuous, ordinal)
variables and missing data—the Gaussian copula only captures linear associations on the
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Figure 3: Visualizing the margin adjustment for a single variable Yj under the RL Gaussian
copula. In the top-left panel, we show the monotone relationship between Y obs

j and Zobsj

for one realization of Zobs from Algorithm 1. We highlight Znj (1) (orange cross) which is
computed as (10) with x = 1. In the top-right panel, we plot additional posterior realizations
of Zobsj (gray curves), which yield multiple posterior samples of Znj (1) (blue crosses). The
bottom-left panel plots the posterior distribution of the margin adjustment (9) applied to
posterior samples of Znj (1) accumulated across iterations of Algorithm 1. In the bottom-
right panel, we show the margin adjustment along an evenly spaced grid of x ∈ [−2, 2] for
each realization of Zobsj directly above, which provides posterior inference for Fj .

latent scale through latent correlation matrix Cθ. As such, it may not be sufficiently pow-
erful to capture nonlinearities and interactions on the observed scale (see Section 6), which
is vital to justify MAR and for imputation under complex dependencies. However, gener-
alizations of the Gaussian copula must carefully consider computational scalability, model
parsimony, and suitable adaptations of the margin adjustment.
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To build an imputation model capable of adapting to unanticipated features in data, we
develop a novel Gaussian mixture copula (GMC). When paired with the RL and margin
adjustment, the resulting copula model is fully nonparametric, and may be used to impute
variables of arbitrary type. The GMC extends the Gaussian copula by replacing the latent
data model (2) with a finite mixture:

z ∼
H∑
h=1

πhNp(αh,Ch) (11)

where the marginal distribution of the jth component is zj ∼
∑H

h=1 πhN({αh}j , {Ch}jj).
The multivariate mixture on the latent data can be combined with the observed data
marginals to define the GMC. For completeness, we show that is indeed a valid copula.

Theorem 5 Let CGMC(u) = Ψ(ψ−1
1 {F1(y1)}, . . . , ψ−1

p {Fp(yp)}), where Ψ =
∑H

h=1 πhΦp(αh,Ch),

ψj =
∑H

h=1 πhΦ({αh}j , {Ch}jj), and {Fj}pj=1 are the marginals of {Yj}pj=1. Then CGMC

defines a valid copula.

The data generating representation of CGMC simulates z from (11) and links the realization
to the observed scale via yj = F−1

j {ψj(zj)}.
Although the GMC latent data model (11) provides greater representational ability than

the Gaussian copula (2), especially for nonlinearities and interactions, the GMC modeling
and computational capabilities are limited in higher dimensions. In particular, the GMC is
parameterized by θ = {πh,αh,Ch}Hh=1, which contains many parameters when p is moder-
ate or large. Further, Gaussian mixture models tend to over-cluster when p is large, which
results in more clusters—and thus more parameters—than necessary.

Instead, we apply our mixture on lower-dimensional latent factors η ∈ Rk with k � p:

ηi ∼
H∑
h=1

πhNk(µh,∆h), zi | ηi ∼ Np(Ληi,Σ) (12)

where Σ = diag(σ2
1, . . . , σ

2
p), Λ is a p × k dimensional matrix of factor loadings, and ηi is

a k-dimensional vector of latent factors. The latent factor mixture model (12) induces a
mixture model (11) for Z through marginalization over η, and specifically with αh = Λµh
and Ch = Λ∆hΛ

T + Σ for h = 1, . . . ,H. Thus, the latent data Z are still endowed
with a flexible mixture model, but the clustering is directed to a lower-dimensional space.
This feature offers important benefits relative to existing GMCs (Tewari et al., 2011; Rajan
and Bhattacharya, 2016), namely, that it affords parsimonious estimation of the dependence
structure among moderate to high-dimensional data. Chandra et al. (2023) recently applied
this strategy for clustering of continuous data and demonstrated how it alleviates the curse of
dimensionality in model-based clustering—i.e., as p grows, the number of nonempty clusters
trivially tends toward n—but this approach has not been deployed for copula models or
mixed data types.

The remaining challenge lies in Bayesian modeling of the finite mixture on η. In practice,
the number of latent clusters H will be unknown and should be determined based on the
data. Thus, we propose a Dirichlet process (DP) to allow H →∞, and use a stick-breaking
process for the mixing weights {πh} (Ishwaran and James, 2001): πh = Vh

∏
l<h(1 − Vl)
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with V`
i.i.d∼ Beta(1, απ) and απ ∼ Gamma(aα, bα). For computational convenience, we

implement a truncated DP (Ishwaran and James, 2002) that resembles (12), where now
H is a conservative upper bound. The component-wise mean and covariance are assigned
a Normal-Inverse Wishart prior, (µh,∆h) ∼ NIW(µ0, δ

2Ik, κ0, ν0), while the diagonal ele-
ments of Σ are assigned σ−2

j ∼ Gamma(aσ, bσ). Lastly, we apply a global-local shrinkage
prior for the loadings matrix Λ = {λjt} that encourages columnwise shrinkage for rank
selection, which reduces sensitivity to the choice of k (Bhattacharya and Dunson, 2011).

Our approach for Bayesian inference, prediction and imputation combines the GMC
with the RL and margin adjustment (GMC-MA). Despite the complexity of the GMC-MA,
only minor modifications are needed for Algorithms 1-3. A particular convenience comes
from (12): conditional on θ under the mixture of factor models, Zij ∼ N(

∑k
t=1 λjtηit, σ

2
j ),

which implies the components of Zi are independent univariate Gaussian. Therefore, even
in the presence of missing data, the core elements of Algorithm 1 are the same: each Zobsij

is sampled from a truncated Gaussian, the posterior of Zmisij is once again unrestricted,
and sampling of θ involves standard steps for Gaussian factor and mixture models; details
are provided in the supplementary material. For the margin adjustment, we simply modify
Algorithm 2 to use Gj = ψj . Finally, imputations are similarly generated by modifying
Algorithm 3 to use ψj in place of Φ.

5. Extensions for Unordered Categorical Variables

We incorporate unordered categorical variables via the extended rank-probit likelihood
(RPL) (Feldman and Kowal, 2022), which generalizes the RL. Suppose Y = Y r ∪ Y q,
where r indexes the numeric variables, q indexes the unordered categorical variables and
p = r + q. For each categorical variable Y c with kc levels, when yic = m, the RPL
encodes a vector of kc binary variables γc with the corresponding latent data restriction
{γicm = 1 ∩ γicl = 0, l 6= m} =⇒ {zicm > 0 ∩ zicl < 0, l 6= m} , i.e., yic = m implies that
only the mth component is positive and the others are all negative. This representation
avoids the need to select reference groups. Aggregating this representation across all q
unordered categorical variables, the observed categorical memberships must satisfy the event
D′(Y q) := ∪qc=1{Z

n×kc : γij = 1 =⇒ zij > 0 ∩ {zi` < 0}`6=j}. This representation is also
recommended for ordinal variables with few levels (Feldman and Kowal, 2022).

The RPL joins the rank event on the r numeric variables with the probit-style represen-
tation of the q categorical variables to define E(Y ) = D(Y r) ∪ D′(Y q), which substitutes
for D(Y ) in (4)-(5) for joint modeling of continuous, count, ordinal and now unordered
categorical variables. Imputation for unordered categorical variables is carried out by es-
timating the multinomial probabilities of each level. These quantities are easily computed
with posterior samples of θ and the latent data model, as the probability that an observation
assumes a particular level is given by the probability that the corresponding latent compo-
nent is positive and all others are negative; the supplement provides the Gibbs sampling
and imputation algorithm for the GMC-MA under the RPL.
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6. Simulation Studies

6.1 Mixed Data, Nonlinearity, and MAR

In the first simulation study, we evaluate (i) the impact of MAR on marginal distribution
estimation via the ECDF—and show how the margin adjustment corrects the resulting
biases—and (ii) assess whether the proposed GMC-MA is capable of accurate imputation
under nonlinear dependencies. The latter objective aims to highlight the benefit of the
latent mixture model (11) over the single component Gaussian copula (H = 1).

We generate mixed data sets with nonlinear dependencies by simulating

Y1 ∼ N(0, 1)

Y2 | Y1 = y1 ∼ Poisson(5|y1|)
Y3 | Y2 = y2, Y1 = y1 ∼ Bernoulli{Φ(−0.5 + y2scale)

for n ∈ {500, 1000, 2000}, where y2scale is the centered and scaled version of y2. Next, we
introduce missingness using the MAR mechanism

Rj | Y1 = y1 ∼ Bernoulli{Φ(−0.5 + β|y1|)}

for j = 2, 3, which links the missingness in both Y2 and Y3 with the observed value of Y1.
The parameter β determines both the amount of missingness and the impact of Y1 on the
missingness for each of Y2 and Y3. We consider β ∈ {0.5, 1}, with the lower value resulting
in approximately 30% complete cases and 50% of each variable missing, and the higher
value yielding approximately 20% complete cases with 60% marginal missingness.

Figure 4: Simulated data sets without missingness (left column) and the complete cases after
applying the MAR mechanism (left-middle) with n = 1000, β = 0.5. The proposed approach (right-
middle) is significantly better than the Gaussian copula (right) at capturing the challenging nonlinear
relationship between Y1 and Y2 and correctly imputing additional Y3 = 1 values (blue) when |Y1| is
large.

We highlight the challenging nonlinearities and missingness under this data-generating
mechanism (n = 1000, β = 0.5) with example simulated data in Figure 4. Compared to
the full data set, the complete cases omit larger values of Y2 and many instances of Y3 = 1.
To visualize the comparative imputation methods, we provide a single imputed data set
from the proposed GMC-MA and compare it to Hoff (2007) using the sbgcop package in
R, which uses a single component Gaussian copula with the ECDF for posterior predictive
simulations (similar results are obtained for additional realizations and simulation settings
in the supplement).
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Across the simulation settings, the GMC-MA tends to discover two clusters in the data.
Clearly, this leads to significant improvements in detecting non-linearity: it is capable of
capturing the complex relationship between Y1 and Y2 and correctly imputing additional
Y3 = 1 values when |Y1| is large. We emphasize that GMC-MA does not leverage any aspect
of the true data-generating process beyond the variable data type.

Next, we evaluate the margin adjustment, and specifically seek to assess whether it
corrects the biases of the ECDF in the presence of data MAR. In Figure 5, we focus on
the marginal distribution for Y2, which is a count variable subject to MAR. We compute
the ECDF of Y2 prior to removing missingness, which we treat as the ground truth (black
points); the ECDF computed on the observed data Y obs

2 (red points); and posterior draws
(gray lines) and the posterior expectation (triangles) of F̃2 under the GMC-MA. Posterior
inference uses the estimators described in Section 4 and the Gibbs sampler from the supple-
ment, which we run for 5,000 iterations. Trace plots of the draws of the marginal distribution
function F̃2 indicate that the MCMC algorithm converges after about 1,500 samples, which
we discard as a burn-in. We display the results for both missingness settings (β = 0.5, 1).

Figure 5: Estimation and inference for the marginal distribution of Y2 using the margin adjustment
under MAR with varying n. The ECDF of Y obs

2 (red points) deviates significantly from the ECDF
of Y2 prior to removing missingness (black points). The posterior draws (gray lines) and posterior
mean (triangles) from the margin adjustment show that the proposed approach is highly accurate,
even under severe MAR which is present with β = 1 (bottom row).

Most notably, the ECDF on the observed data is badly biased, and this flawed estimator
would be used for imputation under default semiparametric (rank-based) copula models
(Hoff, 2007; Murray et al., 2013; Cui et al., 2019; Feldman and Kowal, 2022). By comparison,
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the posterior distribution for the margin adjustment concentrates quickly around the ground
truth as n grows, while the point estimates of the marginal distribution are highly accurate.
These results suggest that Corollary 4 may be applicable more broadly, including for GMCs.
In addition, the contraction of the margin adjustment around the ground truth is minimally
affected by the proportion of missing data. Finally, we note that the interpolation strategy
for the marginal distribution is effective: several values in the support of Y2 are unobserved
in Y obs

2 , yet the margin adjustment remains accurate for these cumulative probabilities.
Analogous results for binary Y3 are presented in the supplement, and demonstrate the
exceptional performance of the GMC-MA for modeling MAR and mixed data.

6.2 Imputation for Regression Analysis

In the second simulation study, we study the impacts of imputation within the broader
context of a regression analysis, and include comparisons with Bayesian nonparametric
models and popular non-Bayesian alternatives for multiple imputation. To incorporate
the challenges of real-world data analysis while maintaining partial control over the data-
generating process, we use hybrid synthetic data. First, we select three variables from the
2011-2012 NHANES data (Table 1): a categorical variable (Family Income (FI)), a count
variable (Age), and a continuous variable (BMI). Both Age and BMI are centered and scaled,
while FI has three levels: Low, Middle, and High. Next, for each of the n = 2434 complete
NHANES observations, we generate a continuous response variable New using a Gaussian
linear model with an FI:BMI interaction,

Newi | − ∼ N(xTi βtrue, σ
2)

where βtrue is defined in Table 2 , and set σ2 via the signal-to-noise-ratio SNR = var(Xβtrue)/σ
2 ∈

{1, 3}. Finally, we introduce MAR for each variable j with the exception of BMI,

Rij | − ∼ Bernoulli{Φ(−0.7 + BMIi + ωij)}

where ωij are Gaussian with Corr(ωij , ωij′) = 0.3 and mean −0.2. Thus, R introduces
correlated and data-dependent (via BMI) patterns of missingness across both the response
variable and the covariates. The missingness mechanism R is applied to all but 300 obser-
vations, and yields on average 49% complete cases. We repeat this data-generating process
to create 100 hybrid synthetic data sets.

Since the missingness in New, Age, and FI is linked to BMI, CC analysis is at risk of
significant bias. We illustrate this point in Table 2, where we compute ordinary least squares
estimators (β̂CC) and standard confidence bounds (1.96σ̂CC) for the regression coefficients
using only the completely-observed data. For all variables besides Age, CC analysis yields
estimates and inference that depart significantly from the ground truth. Thus, alternative
estimation and inference techniques are required, and specifically ones that can properly
account for the MAR missingness.

For evaluations and comparisons among imputation methods, we generate m = 20 mul-
tiple imputations for each hybrid synthetic data set using several distinct approaches. First,
we use the proposed GMC-MA approach to generate posterior samples and imputations.
We employ the margin adjustment for Age, New, and BMI. Following the suggestions of
Feldman and Kowal (2022), we treat FI as an unordered categorical variable. Next, we use
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Intercept Middle High BMI Age Middle:BMI High:BMI

βtrue 1 1 2 -2 0.5 2 4

β̂CC 1.77 0.19 0.39 -1.50 0.51 1.50 3.01
(1.96σ̂CC) (0.10) (0.12) (0.16) (0.09) (0.05) (0.11) (0.17)

Table 2: Complete case coefficient estimates and standard confidence bounds averaged across sim-
ulations. The CC analysis is severely biased for all variables except Age.

the same model and posterior draws, but replace the margin adjustment with the ECDF
(GMC-ECDF). This comparison isolates the downstream impact of biased margin estimates
for prediction under copula models. Specifically, improvements in imputation accuracy un-
der the proposed approach demonstrate that the benefits of the margin adjustment extend
more broadly to multivariate inference, and also the accumulating risk of using the ECDF
for imputation with MAR data. These imputations are based on the Gibbs sampler (see
the supplementary material) run for 10,000 iterations, with the first 5,000 discarded as a
burn-in and the imputations computed every 50th sample to achieve m = 20.

To compare our approach to a Bayesian nonparametric alternative, we estimate the
Gaussian mixture of factor models (12) on Y obs (instead of Zobs), using the same priors
and hyperpriors discussed in Section 4. This model is closely related to Chandra et al.
(2023), and provides a flexible model for multivariate data. This model treats each variable
as continuous, and offers an opportunity to evaluate the gains of employing a rank-based
copula model for mixed variable types. To convert FI to a numeric variable, its levels
are relabeled (low, middle, high) = (1, 2, 3) which captures the ordinal properties of the
variable, and we center and scale the observed values of BMI, Age, and New. Imputations of
Age and FI under the Gaussian mixture model are rounded (GM-RND) to preserve these
variables’ discreteness in the completed data sets.

Among FCS (and non-Bayesian) methods, we create multiple imputations from the
popular algorithm MICE (multiple imputation using chained equations; Van Buuren and
Groothuis-Oudshoorn, 2011) under default settings in the R package mice. In addition
to the default MICE algorithm, which employs linear models with main effects for each
variable, we include a modified version that features classification and regression trees for
each variable (MICE-CART), which is better suited to capture interactions (Burgette and
Reiter, 2010).

For each completed data set, we fit a linear regression model for New (using the correct
covariates and interactions) and use the combining rules from Rubin (2004) to create point
estimates and 99% confidence intervals. The results are summarized in Figure 6 for SNR = 1
via the absolute bias for each point estimate, and the coverage rates and widths for each
interval estimate, averaged across 100 simulations. In this highly challenging scenario, the
proposed GMC-MA imputations consistently provide the most accurate point estimates
(smallest absolute bias), the most well-calibrated intervals (largest coverage rates), and
among the most precise inference (smallest interval widths). The results are similar for
SNR = 3, and available in the supplement.

Clearly, the margin adjustment is crucial: the GMC-ECDF intervals do not provide
close to the nominal coverage for several coefficients—despite using the same underlying
model as the GMC-MA—due to the bias in the ECDF under MAR. As expected, the
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Figure 6: Absolute bias (left), interval coverage rates (right), and interval widths (center) for point
and 99% interval estimates computed under each imputation method. The GMC-MA approach con-
sistently provides the most accurate point estimates (small absolute bias), the most well-calibrated
intervals (large coverage rates), and highly precise inference (small interval widths). Similar results
for SNR = 3 are presented in the supplement.

GMC-MA intervals are slightly wider than the GMC-ECDF intervals: the former account
for the uncertainty in the marginal distributions via the posterior distribution, while the
latter treat the marginal distributions as fixed (at the ECDFs).

GM-RND provides mostly unsatisfactory results, evidenced by high average interval
widths and poor coverage rates. The Gaussian mixture fit to the observed data clearly
does not have the distributional flexibility to model mixed data types, even with a helpful
rounding step. The RPL is specifically designed for this purpose, which yields significant
improvement in modeling and imputation.

The default MICE approach also performs quite poorly: the point estimates are the least
accurate and the interval estimates provide less than 5% coverage for all variables except
Age. MICE-CART offers some improvements, but still lags in estimation accuracy and the
intervals are not close to the nominal coverage while substantially wider. Further, significant
coverage gaps remain in both SNR settings for the interaction terms. As Burgette and Reiter
(2010) note, one potential disadvantage of MICE-CART is the decreased efficiency when a
parametric imputation model is suitable. In the supplement, we highlight instances of this
inefficiency across multiple imputations; the CART imputations often misclassify FI, which
creates significant problems for estimating the interaction effects.
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7. Real Data Application

7.1 Setting and Goals

The 2011-2012 National Health and Nutrition Experimentation Survey (NHANES) asks
the question, “For how many days during the past 30 days was your mental health not
good?” The responses can be linked to other demographic and behavioral variables in-
cluded in the questionnaire, enabling important insights into self-reported mental health.
Of particular importance is the identification of key associative behaviors for at-risk indi-
viduals, as more broadly, mental health indicators are proxies for quality of life, depression,
and risk for self-harm (Horwitz and Scheid, 1999).

We study the association between self-reported marijuana use (UsedMarijuana), gender,
race, and high levels of self-reported poor mental health (DMHNG). However, there are several
significant challenges for this analysis. First, the data are subject to substantial missingness
(Table 1), especially for the variables of interest. In particular, UsedMarijuana is not
asked of any individual older than 59, and is over 40% missing. Thus, CC analysis of the
association between UsedMarijuana and DMHNG—among other variables—would omit all
individuals older than 59, and potentially bias the results. Fortunately, Age is recorded,
which suggests that MAR may be reasonable for these missing values. To strengthen this
assumption, we include all variables in Table 1 in our GMC-MA model.

Second, the data set contains many variables of mixed data types, with n = 5856
observations of p = 15 variables (Table 1). The marginal distributions are nontrivial:
DMHNG exhibits discreteness, zero-inflation, boundedness, and heaping (Figure 2), which are
challenging for regression analysis (Kowal and Wu, 2023). To focus on at-risk individuals
with high DMHNG values, we study the upper quantiles of DMHNG and the association with
key variables of interest. However, the sample quantiles of this discrete variable do not
satisfy asymptotic normality, and thus are ill-suited for traditional multiple imputation
(Rubin, 2004). Instead, we propose an alternative and general strategy for uncertainty
quantification based on the posterior predictive distribution. Specifically, we generate 500
posterior predictive data sets {Ỹij} of size n× p and compute our summary statistics Q̂(Ỹ )
on each of these predictive data sets, which delivers posterior predictive inference for Q.
This observation-driven inference leverages the GMC-MA model to capture challenging
marginal and joint distributions across mixed data types in the presence of missingness,
and simultaneously accounts for the joint uncertainty arising from (i) model parameters, (ii)
missing data, and (iii) the replicability for a new data set of the same size. By comparison,
statistics computed on the imputed data (Y obs,Y mis) only incorporate uncertainty from θ
and Y mis, which limits the generalizability of the inference and conclusions.

Lastly, we consider the sampling design in the NHANES survey. The NHANES sampling
design includes certain over-sampled subgroups, most notably stratified by race. We stratify
our analysis by race (and gender) and compute these quantities for each subgroup, which
avoids the need to re-weight for population-level inference that aggregates across all strata.

7.2 Checking Calibration

Our aim is to quantify the extent to which model-based inferences change between CC
analysis and a full data analysis that accounts for the missing values. To this end, we fit
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the GMC-MA model on both the CC data and the full data. The CC data is created by
dropping any observation with missing values, yielding a data set of size nCC = 2434.

To understand the impact of the missingness, we rely on posterior predictive diagnostics.
Posterior predictive diagnostics compare the posterior predictive distribution of a statistic
Q̂(Ỹ ) to the observed value Q̂(Y ). However, Q̂(Y ) is unavailable for the full data set due
to abundant missingness. Thus, the CC diagnostics are the best available option. Next, by
comparing the GMC-MA model output from the CC and full data sets, we can assess the
impact of missingness on the analysis, and in particular whether the CC analysis is biased
or misleading.

Using the GMC-MA fits to both the CC and the full data sets, we generate predictive
data sets of size nCC × p and n × p, respectively. For our statistics Q̂, we compute three
quantities stratified by race, gender, and marijuana use: the empirical distribution of DMHNG,
which is useful for posterior predictive diagnostics, and the 75th and 90th sample quantiles
of DMHNG, which target the at-risk individuals within each stratum. The GMC-MA fit to the
full data set must account for the additional uncertainty due to the missing observations,
but also benefits from a much larger sample size. Differences in location for these posterior
(predictive) distributions, however, would suggest bias due to missing data. Such discrep-
ancies may be expected, as GMC-MA fit to the full and CC data sets discover distinct
clusters—the former yields six versus five in the latter.

We compare the posterior predictive samples of the empirical distribution of DMHNG from
the CC and full data set fits in Figure 7, and overlay the ECDF computed on all available
cases in each strata. Specifically, we compute the ECDF on each posterior predictive data
set {Ỹij}—stratified by race, gender, and marijuana use—for the CC and full data sets, and
report the pointwise 95% highest posterior density (HPD) intervals.

The ECDF on the CC data falls within the 95% HPD intervals from the GMC-MA
(CC) fit. Thus, the model accurately describes the challenging features of DMHNG: zero-
inflation, heaping (the large jumps around DMHNG ∈ {7, 10, 14, 15, 20}), and boundedness at
30 (the lower interval converges to one at DMHNG = 30). These results are stratified by race,
gender, and marijuana use, and thus evaluate the joint distribution. Similar results for the
male-race-marijuana use strata are presented in the supplementary material.

Next, we compare the fitted GMC-MA models on the CC and full data sets. Most
notably, the GMC-MA fit to the full data set has substantially narrower 95% HPD intervals,
and often shifts the predictive intervals. For some strata, the predictive ECDF from the
GMC-MA actually excludes the ECDF fit to the CC data (i.e. for white females) while the
GMC-MA and the GMC-MA (CC) intervals do not fully overlap. Because the GMC-MA
(CC) output broadly agrees with the empirical version, we argue that these discrepancies
are not due to model misspecification, but rather due to the significant impacts of missing
data. These results confirm our expectations based on the simulation results (Section 6)
and suggest that a CC analysis of these data is unreliable.

7.3 Associating Marijuana Use with Self-Reported Mental Health

To investigate the associations between at-risk self-reported mental health and race,
gender, and marijuana use, we compute the posterior predictive statistics Q̂(Ỹ ) for the
75th (see the supplement) and 90th quantile of DMHNG, stratified by gender-race-marijuana
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Figure 7: Posterior predictive summaries for models fit to the CC data set (GMC-MA (CC)) and
the full data set (GMC-MA). Among women, for each race-marijuana use stratum, we compare the
95% HPD intervals for the posterior predictive ECDFs, and include the ECDF on the CC data for
reference. As such, each panel is to be evaluated individually for model calibration and the impact
of missingness. The GMC-MA (CC) output is well-calibrated to the observed data. By comparison,
the GMC-MA fit to the full data set produces intervals that are narrower and shifted, which provides
evidence of MAR—and that CC analysis is unreliable.

use. These quantities are computed for both GMC-MA on the full data set and GMC-MA
(CC), and provide posterior predictive uncertainty quantification, which is summarized
using the posterior median and 95% HPD intervals.

Figure 8 summarizes these point and interval estimates for the 90th quantile of DMHNG
for each stratum. Across all strata, there are several intervals from the GMC-MA (CC)
fit with substantial overlap between marijuana users and non-users; yet many of these
intervals become well-separated under the full data set analysis with GMC-MA. The point
estimates (posterior predictive medians) are similarly attenuated for the CC analysis, which
is evident in Figure 9. Specifically, consider the difference in predictive medians between
marijuana users and non-users in Figure 8. The estimated differences are positive for all
strata: the 90th quantile of DMHNG is greater for marijuana users than non-users. However,
these estimated differences are consistently larger for the GMC-MA on the full data set
compared to GMC-MA (CC). For example, the estimated difference in the 90th quantile of
DMHNG between marijuana users and non-users for white males is 10 for the GMC-MA on the
full data set, but only 5 for GMC-MA (CC), which is highlighted in Figure 9. Similar trends
are observed for the 75th quantile, although the discrepancies are less pronounced (see the
supplementary material). Thus, CC analysis fails to identify certain strong, significant, and
adverse associations between marijuana use and larger values of DMHNG, which are detected
clearly under the full data set analysis.

These results emphasize the serious risks posed by CC analysis, which can produce
biased or misleading conclusions. The implications are important for mental health studies:
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Figure 8: 95% HPD intervals for the predictive 90th quantiles of DMHNG by race-gender-marijuana use
and comparing models fit to the complete case (CC) data set (GMC-MA (CC)) and the full data set
(GMC-MA). The CC analysis produces wider intervals with more overlap between marijuana users
and non-users across all strata, which dilutes the strong, significant, and adverse effects detected by
GMC-MA fit to the full data set.

Figure 9: Difference in posterior predictive medians for the predictive 90th quantiles of
DMHNG between marijuana users and non-users and comparing models fit to the complete case
(CC) dataset (GMC-MA (CC)) and the full dataset (GMC-MA). The CC point estimates
attenuate the differences between marijuana users and non-users across all strata, which
dilutes the strong, significant, and adverse effects detected by GMC-MA fit to the full
dataset.

accurate estimation of the relationship between specific behaviors or attributes and proxies
for at-risk individuals is vital. By using the GMC-MA, we were able to perform full data
set analysis—despite abundant missingness, mixed data types, and complex marginal and
joint distributions—and highlight the specific limitations of CC analysis.
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8. Conclusion

We proposed a nonparametric copula model for mixed (count, continuous, ordinal, and
unordered categorical) data types subject to values missing-at-random. The model featured
a latent mixture of factor models to induce a nonlinear and scalable Gaussian mixture copula
model. We employed the rank-probit likelihood for posterior inference, which circumvents
the need to specify marginal distributions yet maintains strong posterior consistency for
the parameters of the underlying copula model. We applied our model and imputation
strategies to self-reported mental health data and demonstrated the pitfalls of complete
case analysis—and showed how the proposed approach may resolve these issues.

A central innovation was the introduction and theoretical analysis of the margin adjust-
ment, which delivers consistent inference for each marginal distribution under rank-based
copula models with no further modeling assumptions and minimal additional computing
cost. The margin adjustment eliminates any reliance on the ECDF for prediction and im-
putation, which is the default approach in rank-based copula models yet can be severely
biased under MAR. Carefully-designed simulation studies showed significant improvements
in imputation and marginal distribution estimation for the proposed approach relative to
state-of-the-art alternatives, especially in the presence of nonlinear dependencies, mixed
data types, and MAR missingness. With its computational simplicity and desirable theo-
retical properties, we recommend integrating the margin adjustment in place of the ECDF
for prediction and imputation under rank-based copula models.

There are numerous interesting directions for future work. First, the proposed Gaussian
mixture copula model and the margin adjustment apply not only to imputation, but also to
prediction. Our strong theoretical results suggest that the proposed framework may prove
useful for posterior prediction of multivariate and mixed data, especially in the presence of
missingness. Therefore, understanding the contraction rates of rank-likelihood posteriors,
including as a function of the proportion of missing observations, is an important open
question to provide implementation guidelines under increasing amounts of missingness.
Similarly, our analyses suggest that rank-likelihoods and the margin adjustment may be
applied more broadly for imputation using non-Gaussian copula models such as the rank-
likelihood vine copula of Tekumalla et al. (2017). Such developments would broaden the
applicability of Bayesian inference for copula models in the presence of missing data, while
simultaneously eliminating the need to specify models for each marginal distribution and
potentially delivering consistent inference for these margins. Finally, an important and
challenging extension is to adapt the proposed framework for missingness-not-at-random.
The latent factor mixture (12) is an attractive option for parsimonious joint modeling of
the missingness mechanism and the observed data in a low-rank, shared parameter model
(e.g., Creemers et al., 2010).
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Appendix A. Proofs

Theorem 1 Suppose {Zi}ni=1
i.i.d∼ FZ and {Yi}ni=1 = {h(Zi)}ni=1 ∼ FY , where FZ is continu-

ous and h is a monotone increasing function. Defining Zn(x) as (8), the margin adjustment
satisfies F̃ (x) := FZ{Zn(x)} a.s.→ FY (x) for all x ∈ R.

Proof. Fix τ = FY (x) ∈ (0, 1] for a given x and let S denote the position of Zn(x),
which is also the position of max{Yi : Yi ≤ x} due to the consistent orderings of {Zi}ni=1

and {Yi}ni=1 since Yi is a monotone transformation of Zi. By the Glivenko-Cantelli Theo-

rem, S/n = n−1
∑n

i=1 I{Yi ≤ x} a.s.→ τ . Now, consider the random variable Ui = FZ(Zi),
which is uniform on (0, 1) with {Ui}ni=1. Therefore, the Sth order statistic of {Ui}ni=1

satisfies Un(S) = FZ{Zn(x)}. It is well known that Un(S) ∼ Beta(S, n − S + 1), with
E[Un(S)] = S/(n+1) and V [Un(S)] = Sn/{(S+n)2(S+n+1)} < n−1. As such, V [Un(S)]→ 0
as n → ∞, so Un(S) converges in distribution to a degenerate random variable with point
mass at the limit of its expectation: S/(n + 1)

a.s.→ τ . Since τ is fixed, this also implies

that Un(S) p→ τ . Finally, observe that the sequence Zn(x) is monotone in n, which implies
that the sequence Un(S) is also monotone in n. Coupling monotonicity and convergence in
probability, we have that Un(S) = FZ{Zn(x)} a.s.→ τ = FY (x).

For any x such that τ = FY (x) = 0, S = 1 since the position of Zn(x) is now the same
as min(Yi). Applying the same argument above, the sequence of first order statistics of a
uniform random variable will converge in probability to a degenerate random variable with
point mass at 0. In addition, the sequence is monotone decreasing, which maintains the
almost sure convergence. Thus, the almost sure convergence holds for any x ∈ R. �

Theorem 2 Suppose {Zi}ni=1 = {(Zi1, Zi2)}ni=1
i.i.d∼ G, where G is continuous with marginal

distributions G1, G2, and {Y i}ni=1 = {(Yi1, Yi2)}ni=1 = [(F−1
1 {G1(Zi1)}, F−1

2 {G2(Zi2)})]ni=1

has joint distribution function F with marginal distributions F1, F2. Suppose Y2 is com-
pletely observed and Y1 is MAR. The margin adjustment satisfies F̃1(x) := G1{Zn1 (x)} a.s.→
F1(x) for all x ∈ R

Proof. For this proof, we will use upper case letters to denote random variables, lower
case letters for observed data, and bold face for vectors. Probabilities are given by P·(x),
where the subscript refers to the respective (marginal, conditional, or joint) distribution.
The proof will show that Zn1 (x)

a.s.→ G−1
1 {F1(x)} as n → ∞, which yields the stated result

via the continuous mapping theorem.

Note that because G1, G2, F1, F2 are non-decreasing, we have that yobsij < yobslj =⇒
zobsij < zobslj , j = 1, 2, ∀l 6= i – i.e. the orderings between Y obs

j and Zobsj are consistent. Next,
suppose that Y1 and Y2 are continuous; the discrete case is addressed subsequently. Given
that Y is a component-wise monotone transformation of Z, the joint distribution F may
be expressed in terms of G:

F (y1, y2) = G[G−1
1 {F1(y1)}, G−1

2 {F2(y2)}]. (13)
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Similarly, the conditional probability P (Y1 ≤ x | Y2 = y) can be expressed in terms of Z:

P (Y1 ≤ x | Y2 = y) = P [Z1 ≤ G−1
1 {F1(x)} | Z2 = G−1

2 {F2(y)}]

=

∫ G−1
1 {F1(x)}

−∞

g[z,G−1
2 {F2(y)}]

g2[G−1
2 {F2(y)}]

dz (14)

where g and g2 are the density functions of G and G2, respectively.

Now, consider the sequence of probabilities PZ1|R1=0{Z1 ≤ Zn1 (x)}, i.e., the marginal
probability that Z1 is less than Zn1 (x) given that Y1 is observed (R1 = 0). This sequence is
monotone increasing because Zn1 (x) is monotone increasing, and clearly bounded above by
one. Thus, it converges almost surely to its limit by the monotone convergence theorem.
Therefore, Zn1 (x) must also converge almost surely to a limit, which we will label Z∞1 (x).

The conditional probability PZ1|R1=0{Z1 ≤ Zn1 (x)} is equivalently

PZ1|R1=0{Z1 ≤ Zn1 (x)} = EZ2|R1=0[PZ1|Z2,R1=0{Z1 ≤ Zn1 (x)}] (15)

where the expectation is taken with respect to the distribution of Z2 given that Y1 is observed
(i.e., not missing). Because R is missing-at-random, Z1 is conditionally independent of R1

given Z2, so

PZ1|Z2,R1=0{Z1 ≤ Zn1 (x)} = PZ1|Z2
{Z1 ≤ Zn1 (x)} =

∫ Zn
1 (x)

−∞

g(z, Z2)

g2(Z2)
dz (16)

and thus

PZ1|R1=0{Z1 ≤ Zn1 (x)} = EZ2|R1=0[PZ1|Z2
{Z1 ≤ Zn1 (x)}]. (17)

Denoting (17) by h{Zn1 (x)}, note that (16)–(17) imply that h is a continuous function.
Consequently, we can write the limit of PZ1|R1=1{Z1 ≤ Zn1 (x)} explicitly, yielding that

PZ1|R1=0{Z1 ≤ Zn1 (x)} = h{Zn1 (x)} a.s.→ h{Z∞1 (x)}. (18)

Next, consider an application of Theorem 1 to the observed data. By construction,
Zn1 (x) and the maximum position of Y1 ≤ x will have the same position because Y1 is a
monotone transformation of Z1. By Theorem 1, this implies that if x is the τth quantile
under the distribution of observed [Y1 | R1 = 0], then Zn1 (x) will converge to the τth quantile
under the distribution of Z1 corresponding to observed [Y1 | R1 = 0]:

PZ1|R1=0{Z1 ≤ Zn1 (x)} a.s.→ PY1|R1=1(Y1 ≤ x). (19)

We can also re-write PY1|R1=0(Y1 ≤ x) in terms of Z1 and Z2 by (14) and (17):

PY1|R1=0(Y1 ≤ x) = PZ1|R1=0[Z1 ≤ G−1
1 {F1(x)}] (20)

= EZ2|R1=0(PZ1|Z2,R1=0[Z1 ≤ G−1
1 {F1(x)}]) (21)

= EZ2|R1=0(PZ1|Z2
[Z1 ≤ G−1

1 {F1(x)}]) (22)

= h[G−1
1 {F1(x)}]. (23)
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Finally, we see the equivalence between (18) and (23) holds if and only if Z∞1 (x) =

G−1
1 {F1(x)}, which implies that Zn1 (x)

a.s.→ G−1
1 {F1(x)}. Once again, an application of

the continuous mapping theorem demonstrates the consistency of the MA estimator at x.
When Y1 or Y2 is discrete, the proof requires only minor modifications. First, the

conditional probability P (Y1 ≤ x | Y2 = y) can still be written in terms of Z. Specifically,
G−1

2 {F2(y)} maps y to the interval (G−1
2 {F

−
2 (y)}, G−1

2 {F2(y)}] where F−2 (y) is the left limit
of F2 at y (Zhao and Udell, 2020b). Therefore, for discrete Y2, P (Y1 ≤ x | Y2 = y) is now

P (Y1 ≤ x | Y2 = y) = P [Z1 ≤ G−1
1 {F1(x)} | Z2 ∈ (G−1

2 {F
−
2 (y)}, G−1

2 {F2(y)}]]

=

∫ G−1
1 {F1(x)}

−∞

∫ G−1
2 {F2(y)}

G−1
2 {F

−
2 (y)}

g(z1, z2)

g2(z2)
dz2 dz1

If Y1 is discrete, the event Y1 ≤ x is equivalent to Z1 ≤ G−1{F1(x)}, where F1(x) is the
right limit of F1 at x. Therefore, the argument does not change, and the rest of the proof
follows identically.

To extend this result to p-dimensions, we first extend the structure of the joint distribu-
tions for Z and Y into p dimensions, where G,F are p-dimensional distribution functions
with marginals {Gj}pj=1 and {Yj}pj=1. As in (13)-(14), joint and conditional distributions
for Y can similarly be expressed in terms of Z.

We then partition Y into (Y comp,Y part), where Yj ∈ Y part =⇒
∑n

i=1Rij > 0 i.e. a
variable is partially observed if it has at least one missing value in the sample. Y comp is com-
prised of all variables which are completely observed, i.e. Yj ∈ Y comp =⇒

∑n
i=1Rij = 0.

We assume that all variables in Y part are MAR, which implies that Y comp is non-empty.
Then, for any Yj ∈ Y part and x, we define Znj (x) as in (10) and consider the sequence of
probabilities PZj |Rj=0{Zj ≤ Znj (x)}. Defining Z−j to be Z \Zj , the rest of the proof follows
identically by noticing that PZj |Rj=0{Zj ≤ Znj (x)} = EZ−j |Rj=0[PZj |Z−j ,Rj=0{Zj ≤ Znj (x)}]
converges almost surely to a limit since Znj (x) is monotone and bounded, while Theorem 1

implies that PZj |Rj=0{Zj ≤ Znj (x)} a.s.→ PYj |Rj=0(Yj ≤ x) = h[G−1
j {Fj(x)}]. �

Theorem 3 Suppose {Y i}ni=1
i.i.d∼ G∞C0,F1,...,Fp

, where G∞C0,F1,...,Fp
is the Gaussian cop-

ula for the joint distribution of p-dimensional Y with true copula parameters C0 and true
marginal CDFs F1, . . . , Fp. Let Π be a prior distribution on the space of all p × p positive
semi-definite correlation matrices Cθ with corresponding density π(Cθ) with respect to a
measure ν. Suppose π(Cθ) > 0 almost everywhere with respect to ν and assume that the
missingness is ignorable. Then, for C0 a.e. [ν] and any neighborhood A of C0, we have
that limn→∞Π{Cθ ∈ A | Zobs

n ∈ D(Y obs
n )} = 1 a.s [G∞C0,F1,...,Fp

].

Proof. Because the missingness mechanism is ignorable, the priors for the parameters
governing the data generating process for Y and the missingness mechanism R are inde-
pendent (Rubin, 1976). Therefore, we can utilize the following variant of Doob’s theorem
to prove the result, as was done in Murray et al. (2013).

Doob’s Theorem (Gu and Ghosal, 2009) Let Xi be observations whose distributions de-
pend on a parameter θ, both taking values in Polish spaces. Assume θ ∼ Π and Xi | θ ∼ Pθ.
Let XN be the σ-field generated by X1, . . . , XN , and X∞ = σ(

⋃∞
i Xi). If there exists a X∞
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measureable function f such that for (ω,θ) ∈ Ω∞ × Θ, θ = f(ω) a.e. [P∞θ × Π] then the
posterior is strongly consistent at θ for almost every θ [Π].

To adopt Doobs Theorem to this setting, note the data generating process for Y n

zi
i.i.d∼ Np(0,C0) (24)

yij = F−1
j {Φ(zij)} (25)

implies each Zobs
n , generated i.i.d by a probability distribution indexed by C0, must satisfy

the event D(Y obs
n ) where n indexes the sample size. Therefore, it suffices to establish

the existence of a consistent estimator Cθ of C0, the data generating Gaussian copula
correlation matrix, that is measureable with respect to the sigma-field generated by the
sequence {Zobs

n ∈ D(Y obs
n )}∞n=1, where n indexes the sample size.

Suppose Y n is comprised of n1 > 1 complete cases without any missing values (Y CC)
and n2 cases with missing values for at least one variable (Y inc) such that n1 +n2 = n. For
each observation i in Y CC , for each variable j ∈ {1, . . . , p} with yij = x, consider Znj (x) as in

(10). Let Tnij =
∑n

i=1 1{zij ≤ Znj (x)}, with T ni(Y
obs
i ) = (Tni1, . . . , Tnip) and T n(Y obs

n ) =

{T ni(Y obs
i )}ni=1. As noted in Murray et al. (2013), the information contained T n(Y obs

n ) is
also contained in Zobs

n . Namely, T n(Y obs
n ) may be extracted from the boundary conditions of

Zobs
n ∈ D(Y obs

n ). Therefore, any function measureable with respect to Tn, the sigma-algebra
generated by the sequence {T n(Y obs

m )}nm=1 is also measureable with respect to the sigma
algebra generated by the corresponding sequence {Zobs

m ∈ D(Y obs
m )}nm=1. Consequently, as

in Murray et al. (2013), we exclusively work with Tn.

Now, Znj (x) is a random variable, and hence Tnij is a random variable. We work with

its expectation under the true data generating model. Define Ûnij = E[Tnij ]/(n + 1) and
Ûni = (Ûni1, . . . , Ûnip). Then,

Ûnij =
1

n+ 1
E

n∑
l=1

1{zlj ≤ Znj (x)} (26)

=
1

n+ 1

n∑
l=1

P{zlj ≤ Znj (x)} (27)

By the strong law of large numbers and Theorem 2, (27) converges almost surely to

P
[
zj ≤ Φ−1{Fj(x)}

]
= Fj(x) (28)

since Φ{Znj (x)} a.s.→ Fj(x). Therefore, we have that Ûnij
a.s.→ Uij , where Uij = Fj(x),

the cumulative marginal probability of x for variable j under the true distribution Fj .

Consequently, Ûni
a.s.→ U i = (U1, . . . , Up), and U i is T∞ measureable.

Therefore, U i is a sample from a Gaussian copula with correlation matrix C0 where the
continuous margins are Uniform[0, 1] while the discrete margins are merely re-labeled with
their ground-truth cumulative probabilities. We then may apply the argument of Murray
et al. (2013) which establishes the existence of a consistent estimator of C0 which is a
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function of U i and thus T∞ measureable. Specifically, the problem reduces to estimating
polychoric/polyserial correlations with fixed margins, where U i is a regular parametric fam-
ily admitting a sequence of consistent estimators of C0, for instance using the estimators
of Olsson (1979) and Olsson et al. (1982). �

Corollary 4 Under the conditions of Theorem 3, define F̃j as in (9) with Znj (x) as (10)
and Gj = Φ for each j ∈ {1, . . . , p}. Then for any x ∈ R and any neighborhood A of Fj(x)
limn→∞Π{F̃j(x) ∈ A | Zobs

n ∈ D(Y obs
n )} = 1 a.s [G∞C0,F1,...,Fp

].

Proof. This result follows from an application of Doob’s Theorem presented above and
Theorem 2. To apply Doob’s theorem, consider the marginal distributions of {Zj}pj=1 un-

der the data generating copula model. Specifically, for any j ∈ {1, . . . , p}, each Zobsij is
standard normal, but restricted to fall in the subset of the real line determined by the right
and left limits of the true marginal distribution Fj evaluated at the realized value of Y obs

ij .

Then, defining the marginal event D(Y obs
jn

) := {Zn×1 : yobslj < yobskj =⇒ zobslj > zobskj , k 6= l}
and Zobsjn

the latent vector corresponding to Y obs
jn

, it must be the case that Zobsjn
∈ D(Y obs

jn
).

In addition, the sigma-field generated by the sequence {Zjm ∈ D(Y obs
jm

)}nm=1 is a sub sigma-

field of the sigma-field generated by the sequence {Zobs
m ∈ D(Y obs

m )}nm=1, and hence any
function measureable with respect to the former is also measureable with respect to the
latter.

Therefore, it suffices to demonstrate the existence of a strongly consistent estimator
of Fj(x) that is measureable with respect to the sigma-field generated by the sequence of
{Zjn ∈ D(Y obs

jn
)}∞n=1. For any n, Znj (x) is clearly an element of Zobsjn

∈ D(Y obs
jn

). As such,

F̃j(x) = Φ{Znj (x)} is measureable with respect to sigma-field generated by the sequence

{Zjm ∈ D(Y obs
jm

)}nm=1. By Theorem 2 and because the data are generated from a Gaussian

copula under the conditions in Theorem 3 with true marginals {Fj}pj=1, it follows that F̃j(x)
is a strongly consistent estimator of Fj(x) and hence Fj(x) is measureable with respect to
the sigma-field generated by the sequence of {Zjn ∈ D(Y obs

jn
)}∞n=1. Thus, the posterior of

F̃j(x) is strongly consistent at Fj(x). This applies for each continuous and count variable
j = 1, . . . , p. �

Theorem 5 Let CGMC(u) = Ψ(ψ−1
1 {F1(y1)}, . . . , ψ−1

p {Fp(yp)}), where Ψ =
∑H

h=1 πhΦp(αh,Ch),

ψj =
∑H

h=1 πhΦ({αh}j , {Ch}jj), and {Fj}pj=1 are the marginals of {Yj}pj=1. Then, CGMC

defines a valid copula.

Proof. To prove that CGMC defines a valid copula, we verify that it satisfies the following
three properties:

1. CGMC(u1, . . . , up) is non-decreasing in each component j ∈ {1, . . . , p}

Let j ∈ {1, . . . , p} be arbitrary and consider uj1 < uj2. Define zj1 = ψ−1
j (uj1) and

zj2 = ψ−1
j (uj2). Because ψj is a valid continuous distribution function, it is monotone,

and therefore zj1 < zj2.
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Consider the ratio

CGMC(u1, . . . , uj1 . . . , up)

CGMC(u1, . . . , uj2 . . . , up)
=

Ψ{ψ−1
1 (u1), . . . , zi1 . . . , ψ

−1
p (up)}

Ψ{ψ−1
1 (u1), . . . , zj2 . . . , ψ

−1
p (up)}

=
H∑
h=1

πh
Φ
[
{ψ−1

1 (u1), . . . , zj1, . . . , ψ
−1
p (up)};αh,Ch

]
Φ
[
{ψ−1

1 (u1), . . . , zj2, . . . , ψ
−1
p (up)};αh,Ch

]
By the properties of multivariate Gaussian random vectors, the sum simplifies to

H∑
h=1

πh
Φ
[
zj1; {ψ−1

l (ul)}l 6=j , α∗h, σ2∗
h

]
Φ
[
zj2; {ψ−1

l (ul)}l 6=ij , α∗h, σ2∗
h

] < H∑
h=1

πh = 1 (29)

=⇒ CGMC(u1, . . . , ui1 . . . , up) < CGMC(u1, . . . , ui2 . . . , up) (30)

where α∗h, σ
2∗
h are the conditional mean and variance of the Gaussian random variable

obtained by conditioning on {ψ−1
l (u;)}l 6=j for cluster h. The inequality is due to the

fact univariate Gaussian distribution functions are strictly monotone, implying that
the ratio inside the sum in (29) is strictly less than 1 for each component h.

2. For any j ∈ {1, . . . , p}, CGMC(u1 = 1, . . . , uj = u, . . . , up = 1) = u

Note that ∀j ∈ {1, . . . , p}, ψ−1
j (1) =

∑H
h=1 πhΦ−1{1; (αh)j , (Ch)jj} =∞.

Using the above result, it is simple to see that

CGMC(u1 = 1, . . . , uj = u, . . . , up = 1) = Ψ{∞, . . . , ψ−1
j (u), . . . ,∞}

= ψj{ψ−1
j (u)}

= u

3. For aj < bj , aj , bj ∈ [0, 1], j = 1, . . . , p, CGMC(u1 ∈ [a1, b1], . . . , up ∈ [ap, bp]) ≥ 0

CGMC(u1 ∈ [a1, b1], . . . , up ∈ [ap, bp]) = CGMC(u1 ≤ b1, . . . , up ≤ bp)− CGMC(u1 ≤ a1, . . . , up ≤ ap)
= Ψ{ψ−1

1 (b1), . . . , ψ−1
p (bp)} −Ψ{ψ−1

1 (a1), . . . , ψ−1
p (ap)}

≥ 0 (By 1.)

�

Appendix B. Bayesian RPL Gaussian Copula Sampling with Unordered
Categorical Variables

Section 2.3 outlines the sampling algorithm for the Bayesian RL Gaussian copula with
missing data for Y comprised of numeric variables. To incorporate unordered categorical
in to model, one simple modification is required to Step 1 of Algorithm 1. To see this, the
probit event D′(Y q) dictates that for any categorical variable Yc with kc levels, if yic = m,
the kc dimensional latent data vector must satisfy the event zikm > 0 ∩ zik` < 0, ` 6= m.

Therefore, the upper bounds for each Zobs
ij are pre-specified at either 0 or ∞, while the
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lower bounds are similarly pre-specified at −∞ or 0 for any j corresponding to a categorical
level. If the indicator γij = 1, then zu = ∞, z` = 0. On the other hand, for γij = 0 then
zu = 0, z` = −∞. The sampling step for Zmisij first calculates the predictive probability

that Y mis
ic = m, and then samples the corresponding latent vector with identical upper

and lower truncation bounds as the observed case depending on the predictive level. This
sampling augments the latent data matrix to p∗ = r +

∑q
c=1 kc columns. Step 3 in Section

C.2 contains details on this computation under the GMC-MA.

Appendix C. Model Specification, Gibbs Sampling, and Scalability

C.1 Global-local shrinkage priors

In the main paper, we mention the use of global-local shrinkage priors for the param-
eters of the factor-loading matrix Λ = {λjt}. The following prior encourages columnwise
shrinkage for rank selection (Bhattacharya and Dunson, 2011): λjt ∼ N(0, φ−1

jt τ
−1
t ) with lo-

cal scale parameters φjt ∼ Gamma(νφ/2, νφ/2) and global scale parameters τt =
∏t
w=1 δw,

with δ1 ∼ Gamma(a1, 1) and δt ∼ Gamma(a2, 1), t ≥ 2, a2 ≥ 1. By design, this or-
dered shrinkage prior reduces sensitivity to the choice of k, provided k is sufficiently large.
Throughout our simulation studies and real data analysis, we set a1 = 2, a2 = 3, νφ = 3.

C.2 Gibbs Sampling for the RPL GMC-MA

Bayesian estimation of the GMC-MA under the RPL in the presence of missing data al-
ternates sampling model parameters from their marginal posteriors conditional on complete
latent data, and then sampling latent data corresponding to Y mis given Zobs and model
parameters. Two aspects of our model simplify this task. First, the margin adjustments
{F̃j}rj=1 are functionals of posterior samples of GMC parameters, and second, GMC param-

eters depend only latent Z = (Zmis,Zobs) through the RPL. Conjugate priors for GMC
parameters allow for simple Gibb’s sampling steps, while the factor model 12 allows for
independence among the components of Zi conditional on ηi. Consequently, the sampling
of Zmis is quite efficient, as the predictive distribution for each component is conditionally
univariate normal.

The algorithm is broken down into five blocks for simplicity. In each, zi is assumed
complete, meaning that components corresponding to missing values in yi (zmisi ) have been
sampled.

1. Sample Cluster-Specific Parameters For each cluster 1, . . . ,H

• ci | − ∼ Multinomial(p), where p = (p1, . . . , pH) and ph ∝ πhψk(ηi;µh,∆h)

• Vh | − ∼ Beta (1 + nh, απ +
∑H

v=h+1 nv), h = 1, . . . ,H − 1, nh =
∑N

i=1 I(ci = h)

• ∆h | − ∼ IW(νpost,Ψpost), νpost = ν0 + nh, Ψpost = Ik + Sh + κ0nh
κ0+nh

T h,

Sh =
∑

i:ci=h
(ηi−η̄h)(ηi−η̄h)T ,T h = (µ0−η̄h)(µ0−η̄h)T , η̄h = n−1

h

∑
i:ci=h

ηi

• µh | − ∼ Nk(µpost, κ
−1
post∆h), µpost = κ0µ0+nhη̄h

κ0+nh
, κpost = nh + κ0

• απ | − ∼ Gamma(aα +H − 1, bα −
∑H−1

h=1 log(Vh))

2. Sample Factor Model Parameters
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• ηi | ci = h,− ∼ Nk((∆
−1
h + (ΛTΣ−1Λ)−1)−1(ΛTΣ−1zi + ∆−1

h µh), (∆−1
h +

(ΛTΣ−1Λ)−1)−1)

• λj,− | − ∼ Nk((D
−1
j + σ−2

j η
Tη)−1ηTσ−2

j zj , (D
−1
j + σ−2

j η
Tη)−1), where D−1

j =

diag(φj1τ1, . . . , φjkτjk), zj = (z1j , . . . znj)
T , and η = (η1, . . .ηn)T , for j =

1, . . . , p

• σ−2
j | − ∼ Gamma(aσ + n

2 , bσ + 1
2

∑n
i=1

∑k
t=1{zij − (λjtηit)}2, for j = 1, . . . , p

• φjt | − ∼ Gamma(ν+1
2 ,

ν+τhλ
2
jt

2 ), for j = 1, . . . , p, t = 1, . . . , k

• δ1 | − ∼ Gamma(a1 + pk
2 , 1 + 1

2

∑k
t=1 τ

(1)
t

∑p
j=1 φjtλ

2
jt), and for v ≥ 2

δt | − ∼ Gamma(a1 + p(k−t+1)
2 , 1 + 1

2

∑k
t=v τ

(v)
t

∑p
j=1 φjtλ

2
jt), where τ

(v)
t =∏t

w=1,w 6=v δw, for v = 1, . . . , k

3. Re-sample Zobsij , Z
mis
ij

Given the conditional independence among the components of Zi given ηi, compo-
nents of Z corresponding to observed data points are sampled column-by-column,
consistent with the ordering induced by the RPL. For components of Zi associated
with missing values, no ordering is imposed, and only the diagonal orthant restriction
for categorical variables is enforced.

• Missing categorical/binary data: If j corresponds to one of the levels of categor-
ical variable q with kq levels, Zmisij and the other associated levels of q must be
sampled consistently with the diagonal orthant set restriction of the RPL. That
is, one component of the vector Zkq must be positive while the others negative.
To ensure this condition is met, we first calculate the predictive probability that
Y mis
iq assumes the jth level for each j among the kq levels, which is equivalent to

P (Zmisij > 0 ∩ {Zmisi` }`∈{c1,...,ckq}, ` 6=j < 0 | −) ∝ (31)

1− Φ(0;

k∑
t=1

λjtηit, σ
2
j )

∏
`∈{c1,...,ckq},`6=j

Φ(0;

k∑
t=1

λ`tηit, σ
2
` ), j ∈ {c1, . . . , ckq}

Then, we sample the level of Y mis
ij using these probabilities, with the resulting

classification used in the re-sampling of Zmisij under the RPL. Let TN(µ, σ2, a, b)

denote a truncated univariate normal with mean µ, variance σ2, lower truncation
a, and upper truncation b. The re-sampling step for Zmisij is given by

zmisij ∼

{
TN(

∑k
t=1 λjtηit, σ

2
j , 0,∞), ymisij = 1

TN(
∑k

t=1 λjtηit, σ
2
j ,−∞, 0), ymisij = 0

(32)

If j is binary, the probability of one level versus the other is instead given by
P (zmisij > 0 | ci = h,−) = 1 − Φ(0;

∑k
t=1 λjtηit, σ

2
j ), but the re-sampling step 32

remains the same

• Missing numeric data: In this case, latent Zmisij is sampled from the unrestricted
univariate Gaussian

Zmisij | − ∼ N(

k∑
t=1

λjtηit, σ
2
j ) (33)
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• Observed data: for each column, sample Zobsij from a truncated normal, with
lower and upper bounds for each observation specified by the RPL:

Zobsij | − ∼ TN(
k∑
t=1

λjtηit, σj , z
`
ij , z

u
ij) (34)

For ordinal, count, and continuous variables, the truncation limits are z`ij =

max{zobskj : ykj < yobsij , k = 1, . . . , n, k 6= i}, and zuij = min{zobskj : yobskj > yobsij , k =
1, . . . , n, k 6= i}. For columns corresponding to categorical levels, the upper and
lower truncation limits are

z`ij =

{
0, Y obs

ij = 1

−∞, Y obs
ij = 0

, zuij =

{
∞, Y obs

ij = 1

0, Y obs
ij = 0

(35)

4. Sample F̃j
For each unique x ∈ Y obs

j , we first find Znj (x) = max{Zobsij : Y obs
ij ≤ x}, and compute

F̃j(x) = ψj{Znj (x)}

Where ψj is a function of the current draw of GMC parameters. To estimate F̃j across
unobserved values, we then fit a monotone interpolating spline to {x, F̃j(x)}x∈Y obs

j
as

described in Section 4, and use this estimate to approximate F̃j(x
′) for x′ /∈ Y obs

j .

The smoothing step in the sampling of F̃j is crucial in multiple imputation, as the transfor-
mation Y mis

ij = F̃−1
j (Zmisij ) provides realizations that may assume values across the entire

support of variable j, instead of only values that were observed.

C.3 Run Time Considerations

The run time of the Gibbs sampling algorithm depends on both the number of obser-
vations in the data set as well as the number of variables for which the margin adjustment
is computed. The bulk of computational expense in the detailed Algorithm presented in
Section C.2 is in Steps 3 and 4: in the former, each component of the latent data matrix
is sampled from its conditional posterior, truncated to upper and lower bounds consistent
with rank restrictions on the observed scale. In Step 4, the margin adjustment requires
computing the cut-point Znj (x) for each observed x in column j.

In the NHANES example, the augemented data set has p = 22 and n = 5856 in the full
data case. We ran the Gibbs sampler in Appendix C.2 for 20,000 iterations, and applied the
margin adjustment for each unique value among the numeric columns. The total run time
for this process was just over an hour. For our simulation examples in Section 6, there were
generally many fewer variables. As such, run times were generally much quicker – between
1 and 3 minutes with p = 3 and n ∈ {500, 1000, 2000} in the first exercise, and around 5
minutes when increasing p in the second example. All experiments were run locally on a
2023 Macbook Pro with 32 GB of memory.

As a general guideline, the GMC-MA may be estimated on thousands of observations
and dozens of variables. To provide further scalability, we note that Step 3 (and Step 4)
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of the Gibbs sampling algorithm may utilize parallel computing across p: the factor model
implies conditional independence between the columns of the latent data matrix, and so
each column may be sampled in parallel. This technique may also be extended to the margin
adjustment, since it is merely a post-processing step given posterior samples of Z. Though
we do not pursue this strategy in the main paper, we anticipate significant computational
gains applying these modifications, enabling estimation on higher dimensional data sets.
We leave this to further research.

C.4 Monitoring Convergence

The GMC-MA is a highly parameterized model due to the latent mixture. However, we
find it simple to monitor convergence of the Gibbs sampler C.2 through examination of the
margin adjustment for each variable, since it is computed as a posterior functional of the
mixture copula parameters. In general, this is done by examining trace plots of ψj{Znj (x)}
across j and unique values x of Yj . The mixing of these quantities may be sensitive to n, p,
and the proportion of missing data. In all of our simulated and real data examples, trace
plots of usually indicated convergence within 1,000 iterations of the sampler, although much
more conservative burn-in periods were used for imputation.

Appendix D. Hyperparameter Tuning

Throughout our simulated and real data studies, we find that the default model speci-
fication given in Section 4 requires little hyperparameter tuning.

Specifically, there are three parameters that we vary to bolster model performance.
The first is the dimension of latent η. For all of our studies, we use a default value of
d0.7p∗e, where p∗ is the dimension of the augmented data matrix under the RPL. Next,
we modify the scaling constant, δ, from the normal-inverse Wishart prior specified for the
cluster specific components from the mixture model on ηi. Recall the following hierarchical
model structure

zi ∼ Np(Ληi,Σ)

ηi ∼
H∑
h=1

πhNk(µh,∆h)

(µh,∆h) ∼ NIW(µ0, δ
2Ik, κ0 = 0.001, ν0 = k + 2)

In the simulation studies and real data analysis, we found that δ impacts model fit
through the number of clusters that are discovered. Though we recommend a default value
of δ = 10, we find that generally, decreasing δ has the effect of increasing the number
of clusters discovered. As such, we use δ = 5 in the second simulation study as a lack
of separability in the hybrid data reduces the stability of the repeated model fits with
δ = 10. Posterior predictive diagnostics— for instance checking marginal and multivariate
properties of posterior predictive data sets created via the sampling algorithm in Section E
—may be used to tune this parameter.

The other parameter tuned is the number of unique values present among each numeric
variable for re-sampling to occur under the RPL data augmentation mentioned in Section C.
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For continuous variables, the number of unique levels observed in the data will be n. As such,
re-sampling columns of Z associated with such variables above could be computationally
intensive, as it would necessitate looping through all unique values of the continuous variable
at each iteration of the MCMC.

Instead of enduring this expense, we instead choose an upper bound for the number of
unique levels that a particular variable may have to engage in the re-sampling in step 3 of
our MCMC algorithm for copula estimation. Any variables having more than this number
of unique levels are not re-sampled within the MCMC. Instead, corresponding Zobs is fixed
by scaling the column to have mean zero and unit variance, which maintains consistent
orderings with Y obs. In our applications, we choose this threshold to be 350. We emphasize
that this is carried out for computational efficiency and did not affect the performance of
the GMC-MA in any of the simulations or real data analysis.

Appendix E. Posterior Predictive Sampling Algorithm

Section 7 utilizes posterior predictive inference to highlight discrepancies between a
complete case analysis and one that accounts for potentially MAR missing data. We include
Algorithm 4 developed to produce the posterior predictive data sets used for this analysis.

The procedure is facilitated by the conditional independence implied by the factor model
developed in Section 4. The algorithm begins with ordinary Gaussian mixture sampling
steps for sampling of predictive η̃i, which in turn enables sampling of predictive z̃i. We then
link each component of z̃i with F̃−1

j {ψj(z̃ij)} for numeric variables, or with the categorical
link mentioned in Section C.

Appendix F. Further Simulation Results

F.1 Mixed Data Types, Nonlinearity, and MAR

As mentioned in Section 6.1, we also estimate the posterior distribution of the probability
of a positive indicator for binary variable X3. Under Model (12) and the RPL, this is
simply the probability that latent Z3 is greater than zero. This quantity is computed as
1 −

∑H
h=1 π

s
hΦ{0; (Λsµsh)3, (Λ

s∆s
hΛ

Ts + Σs)33}, where the superscript s denotes the sth
posterior sample of model parameters.

To evaluate the proposed model, we compare the posterior probability ofX3 to a “ground
truth” value of 0.335, which is the empirical probability of a positive indicator upon simu-
lating 10,000,000 observations under the data generating model. In Figure 10, we plot the
posterior probability of a positive indicator for each (n, β) combination. In both plots, we
use 5,000 posterior samples for inference and discard the first 1,500 as burn-in. It is evi-
dent that the posterior distributions contract around the ground truth value of 0.335 as the
sample size increases, with expected precision loss due the amount of missing data caused
by varying β. For both β settings, the missingness mechanism badly biases the empirical
estimate of the probability of a positive X3; for β = 0.5, this probability is on average 0.26,
while for β = 1, this probability is 0.23. Like numeric margins, we see posterior inference
for binary proportions under the proposed approach correcting the bias caused by missing
data.
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Algorithm 4 Simulation of a posterior predictive data set of size n under the GMC-MA

Input: One sample of GMC posterior parameters θ =
({πh}Hh=1,Λ,Σ, {αh}Hh=1, {∆h}Hh=1, {F̃j}rj=1)
Output: One posterior predictive data set of size n, {ỹi}ni=1

for i in 1, . . . , n do
Sample cluster membership c̃i ∼ multinomial({πh}Hh=1)
Sample latent factor η̃i | c̃i = h ∼ Nk(αh,∆h)
for j in 1, . . . , p∗ do

if j corresponds to a binary variable then
Sample z̃ij ∼ N(

∑k
t=1 λjtη̃it, σ

2
j )

Set ỹij =

{
1 z̃ij > 0

0 z̃ij ≤ 0

if j corresponds to a categorical variable with q levels indexed by {c1, . . . , ckq}
then

Sample the predictive categorical level from the associated q-dimensional multi-
nomial, where:

P (Ỹij = 1 | −) = P (Z̃ij > 0 ∩ {Z̃i`}`∈{c1,...,ckq}, ` 6=j < 0 | −) (36)

∝ 1− Φ(0;

k∑
t=1

λjtη̃it, σ
2
j )

∏
`∈{c1,...,ckq},`6=j

Φ(0;

k∑
t=1

λ`tη̃it, σ
2
` ) (37)

if j corresponds to a numeric variable then
Sample z̃ij ∼ N(

∑k
t=1 λjtη̃it, σ

2
j )

Transform ỹij = F̃−1
j {ψj(z̃ij)}

Next, we include analogous plots to Figure 4 in the main paper for each additional (n, β)
combination in Figures 13-15. In each imputation procedure, the proposed approach is able
to model non-linearity in the data, whereas the Gaussian copula (Hoff, 2007) is ineffective.
Notice the consistency with which GMC-MA imputations capture specific features in the
data, from the curvature in the relationship between Y1 and Y2 to the enhanced probability
that Y3 = 1 for large values of both Y1 and Y2, regardless of sample size and the amount of
missingness. In addition, the margin adjustment relieves reliance on the ECDF for multiple
imputation, yielding much more broad support in realized values of missing Y2.

F.2 Imputation for Regression Analysis

For completeness, we include in Figure 16 simulation results for SNR = 3, noting simi-
larly exceptional performance of the GMC-MA in terms of point estimation, interval width,
and interval calibration. In addition, the shortcomings of the competitors are once again
apparent

Also highlighted in Section 6.2, MICE-CART yields substantial coverage gaps in estima-
tion of the interaction terms in the regression model of interest. We hypothesize that this is
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Figure 10: Posterior probabilities of a positive indicator for X3: As n increases the uncer-
tainty decreases and the distribution concentrates around the ground truth (dotted line)

due to model inefficiency of CART when a parametric model is suitable. To visualize this,
we plot the interaction between BMI, FI and New using the 10th completed data set under
MICE with CART from several iterations of the repeated simulation study in Figure 17.
We include corresponding ground truth data sets without missing values for comparison in
the top row of the figure.

The first-order linear interaction model is clear, but MICE-CART is unable to model
the differing linear slopes by family income. For instance, in the bottom-left panel, a group
of individuals with high BMI and low values for New are classified as having high family
income. However, in the ground truth data sets, there is a strong positive association
between New and BMI for individuals with high family income. Clearly, MICE-CART is
producing implausible imputed values, demonstrating the inadequacy of this method when
simpler models suffice.

Finally, we also present imputations under GM-RND, the Bayesian nonparametric com-
petitor. As mentioned in the main text, the continuous treatment of ordinal variable FI

clearly results in poor imputations, which affect the downstream regression analysis.

Appendix G. Real Data Application

In Section 7 of the main paper, we check model calibration of the GMC-MA among
females. We complete the information presented in Figure 7 and include the same visual
checks highlighted in Figure 18 for complete case males with similar conclusions. In each
stratum, there is substantial overlap with the posterior predictive inference under the GMC-
MA (CC) fit and ECDF estimates, which subsequently fails in certain cases for the full data
fit. This result is consistent with what is presented in Section 7, which supports the notion
that missing data may yield a biased complete case analysis.
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Figure 11: The same plot as Figure 4 in the main text, but for the simulation setting
n = 500, β = 0.5. Here, the simulated data set without missingness is in the top-left, while
complete cases are in the top-right. The proposed approach (bottom-left) is significantly
better than the Gaussian copula (bottom-right) at capturing the challenging nonlinear re-
lationship between Y1 and Y2 and correctly imputing additional Y3 = 1 values (blue) when
|Y1| is large.

In addition, we also include point estimates and uncertainty using the posterior predic-
tive distribution of the 75th sample quantile in Figures 19-20, as was done in Figures 8-9
in the main paper. As expected, the differences between the full and complete case fits are
not as pronounced, owing to fact that for most strata, between 70 and 90% of individuals
have ≤ 10 DMHNG. However, several discrepancies still do arise, and some intervals that
substantially overlap in the CC fit are much more clearly separated on the full data set.
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Figure 12: The same plot as Figure 4 in the main text, but for the simulation setting
n = 2000, β = 0.5. Here, the simulated data set without missingness is in the top-left, while
complete cases are in the top-right. The proposed approach (bottom-left) is significantly
better than the Gaussian copula (bottom-right) at capturing the challenging nonlinear re-
lationship between Y1 and Y2 and correctly imputing additional Y3 = 1 values (blue) when
|Y1| is large.
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Figure 13: The same plot as Figure 4 in the main text, but for the simulation setting
n = 500, β = 1. Here, the simulated data set without missingness is in the top-left, while
complete cases are in the top-right. The proposed approach (bottom-left) is significantly
better than the Gaussian copula (bottom-right) at capturing the challenging nonlinear re-
lationship between Y1 and Y2 and correctly imputing additional Y3 = 1 values (blue) when
|Y1| is large.
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Figure 14: The same plot as Figure 4 in the main text, but for the simulation setting
n = 1000, β = 1. Here, the simulated data set without missingness is in the top-left, while
complete cases are in the top-right. The proposed approach (bottom-left) is significantly
better than the Gaussian copula (bottom-right) at capturing the challenging nonlinear re-
lationship between Y1 and Y2 and correctly imputing additional Y3 = 1 values (blue) when
|Y1| is large.
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Figure 15: The same plot as Figure 4 in the main text, but for the simulation setting
n = 2000, β = 1. Here, the simulated data set without missingness is in the top-left, while
complete cases are in the top-right. The proposed approach (bottom-left) is significantly
better than the Gaussian copula (bottom-right) at capturing the challenging nonlinear re-
lationship between Y1 and Y2 and correctly imputing additional Y3 = 1 values (blue) when
|Y1| is large.
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Figure 16: SNR = 3 absolute bias (top left), interval coverage rates (top right), and interval widths
(center) for point and 99% interval estimates computed under each imputation method. The GMC-
MA approach consistently provides the most accurate point estimates (small absolute bias), the most
well-calibrated intervals (large coverage rates), and highly precise inference (small interval widths).
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Figure 17: MICE-CART completed data sets compared to ground truth from the 1st (left
panel), 50th (middle panel) and 100th (right panel) iterations of the repeated simulation
study from Section 6.2. MICE with CART is unable to capture the interactive relationship
between New, Age, and BMI, as demonstrated by misclassified FI at the tails of New and
BMI. These classifications leverage the regression fit, yielding inaccurate estimates and
uncertainty quantification for the regression model of interest. For GM-RND, the continuous
relaxation of FI clearly leads to many erroneous imputations, which greatly biases the
regression inference.
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Figure 18: Posterior predictive summaries for models fit to the complete case (CC) dataset
(GMC-MA (CC)) and the full dataset (GMC-MA). Among males, for each male race-
gender-marijuana use stratum, we compare the 95% HPD intervals for the posterior pre-
dictive ECDFs, and include the ECDF on the CC data for reference. The GMC-MA (CC)
output is well-calibrated to the observed data. By comparison, the GMC-MA fit to the full
dataset produces intervals that are narrower and shifted, which suggests that the missing-
ness mechanism is MAR—and that CC analysis is unreliable.

Figure 19: Posterior predictive medians and 95% HPD intervals for the predictive 75th
quantiles of DMHNG by race-gender-marijuana use and comparing models fit to the complete
case (CC) dataset (GMC-MA (CC)) and the full dataset (GMC-MA). The CC analysis
produces wider intervals with more overlap between marijuana users and non-users across
all strata, which dilutes the strong, significant, and adverse effects detected by GMC-MA
fit to the full dataset.
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Figure 20: Difference in posterior predictive medians for the predictive 75th quantiles of
DMHNG between marijuana users and non-users and comparing models fit to the complete case
(CC) dataset (GMC-MA (CC)) and the full dataset (GMC-MA). The CC point estimates
attenuate the differences between marijuana users and non-users across nearly all strata,
which dilutes the strong, significant, and adverse effects detected by GMC-MA fit to the
full dataset.
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