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Abstract

Modern datasets often exhibit high dimensionality, yet the data reside in low-dimensional
manifolds that can reveal underlying geometric structures critical for data analysis. A prime
example of such a dataset is a collection of cell cycle measurements, where the inherently
cyclical nature of the process can be represented as a circle or sphere. Motivated by
the need to analyze these types of datasets, we propose a nonlinear dimension reduction
method, Spherical Rotation Component Analysis (SRCA), that incorporates geometric
information to better approximate low-dimensional manifolds. SRCA is a versatile method
designed to work in both high-dimensional and small sample size settings. By employing
spheres or ellipsoids, SRCA provides a low-rank spherical representation of the data with
general theoretic guarantees, effectively retaining the geometric structure of the dataset
during dimensionality reduction. A comprehensive simulation study, along with a successful
application to human cell cycle data, further highlights the advantages of SRCA compared
to state-of-the-art alternatives, demonstrating its superior performance in approximating
the manifold while preserving inherent geometric structures.

Keywords: Principal component analysis, high-dimensional data, dimension reduction.

1. Introduction

Modern data analysis presents the challenge of high-dimensionality, where the dataset usu-
ally comes as high dimensional vectors in Rd, with a large d. Dimension reduction (DR)
methods seek low dimensional representation of high dimension data (Mukhopadhyay et al.,
2020; Zhang et al., 2021) to facilitate data visualization, subsequent data exploration, and
statistical modeling in machine learning (Jolliffe and Cadima, 2016). Along with the dif-
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ficulty in visualizations and computation, non-linearity obstructs conventional dimension
reduction methods.

1.1 Motivation: Human Cell Cycle

In traditional DR methods (e.g., Principal Component Analysis (PCA), Pearson (1901)),
it has been repeatedly pointed out that normalization preprocessing, including transla-
tions (by mean) and scalings (by standard deviation), is crucial in practicing DR (Jolliffe,
1995). However, rotation as a preprocessing step is less studied in the DR context. We are
motivated by preserving non-trivial geometrical structure in DR tasks, and observed that
rotations are as important as translations and scalings if we want to design DR methods
that respect the underlying structure.

A compelling example that illustrates the need for advanced dimension reduction meth-
ods respecting the underlying structure is the analysis of cell cycle data. The cell cycle is an
inherently cyclical process (Schafer, 1998) that consists of four proliferative phases: G1, S,
G2, and M. Fluctuations in cell cycle genes and proteins show periodic, non-linear trends,
that can be represented as a circle or sphere in a lower-dimensional space. Traditional
linear methods may not adequately capture these properties, leading to the loss of crucial
information.

Figure 1 presents a 2-dimensional representation of cell cycle data proposed in Stallaert
et al. (2022a), which included 40 single-cell features such as the expression or localization
of core cell cycle regulators and signaling proteins. These features combine to form a
multivariate cell cycle signature for each cell in the entire population, collected from 8,850
individual cells. Because individual cells are naturally asynchronous during data collection,
the cells are randomly sampled over the entire cyclical distribution of possible cell cycle
states. The phase of each cell (G1, S, G2, or M) was assigned using its unique molecular
profile. Based on the known sequence of cell cycle phases, we would expect consecutive
phases, such as G2 (red) and M (green) to be neighbors in the low dimensional projection.
However, existing methods such as PCA, t-distributed Stochastic Neighbor Embedding
(tSNE, Van der Maaten and Hinton (2008)), and Uniform Manifold Approximation and
Projection (UMAP, McInnes et al. (2018)) (selected from the best results among other
methods attempted) fail to preserve this structure in their representations.

This example motivates the development of a new DR method that utilizes spheres
to represent high-dimensional data in low-dimensional spaces, effectively preserving the
geometric structure and inherent cyclical nature of biological processes. In contrast to
other DR methods, our proposed method, provides a representation on a 2-dimensional
sphere, represented by longitude and latitude in the first panel (see Section 4.4 for more
details). This SRCA representation in the lower dimensional space clearly preserves the cell
cycle progression: G1 → S → G2 → M → G1, where the latitude (y-axis) is in the mod 2π
sense, meaning π = −π. This biological periodicity, or in other words sphericity, is of central
importance in analyzing cell data (Stallaert et al., 2022a). In general, disruption of these
low-dimensional structures in a high-dimensional dataset (Luo et al., 2023; Luo and Strait,
2022) diminishes the effectiveness of the subsequent analysis procedure like clustering and
classification.
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Figure 1: 2-dimensional representation of cell cycle data, colored by different cell phases.

Local Global

Manifold learning LLE, tSNE, UMAP MDS, Isomap, GPLVM

Manifold estimation PCurv, GMRA, LPE, SAME, Spherelets PCAs, SPCA, SRCA

Table 1: Conceptual categorization of selected dimension reduction methods

1.2 Related Literature

Sphericity induced by periodicity in the above data example requires the development of
sophisticated non-linear DR methods designed to preserve certain structures in the data.
The common assumption is that the observetaions x1, · · · , xn are near a manifold M em-
bedded in Rd. For instance, we can reformulate PCA as an optimization problem where the
goal is to minimize the sum of squared distances between the original data points xi and
their projections x̂i onto a dimensionally reduced d′-dimensional plane P . The objective
function for PCA can be expressed as:

min
x̂i∈P⊂Rd′

n∑
i=1

‖xi − x̂i‖22

The solution to this optimization problem seeks the best d′-dimensional linear subspace
P that approximates the data in the sense that P minimizes the overall point-to-plane
distance. Following the reformulation of PCA as a (non-linear) optimization problem above,
we can generalize to manifold families instead of the linear subspaces. In the context
of dimensionality reduction, this means finding a d′-dimensional manifold M within the
higher-dimensional space Rd that best captures the intrinsic geometry of the data within
this specific manifold family. The objective function becomes:

min
x̂i∈M⊂Rd′

n∑
i=1

d(xi, x̂i)
2
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where d(xi, x̂i) denotes the distance between xi and its projection x̂i on the manifold M .
We follow this generalization and consider the family of spheres in the current paper, which
preserves the periodicity in the data.

Table 1 provides a selected collection of dimension reductions methods loosely cate-
gorized in two ways. Algorithms in the first row are known as “manifold learning” (Lin
and Zha, 2008), which output some low dimensional features in a new Euclidean space of

dimension d′ instead of an estimate of M , denoted by M̂ . These methods include Locally
Linear Embedding (LLE, Roweis and Saul (2000)), tSNE, , UMAP, Multi-Dimensional Scal-
ing (MDS, Kruskal (1978)), Isomap (Tenenbaum et al., 2000), Gaussian Processes Latent
Variable Model (GPLVM, Titsias and Lawrence (2010)), etc.

In contrast, the other type of DR methods, known as “manifold estimation”, which
estimates M in Rd directly, has been attracting researchers’ attention (Genovese et al.,
2012). There is an immense literature in local methods including Principal Curves (PCurv,
Hastie and Stuetzle (1989)), Geometric Multi-Resolution Analysis (GMRA, Allard et al.
(2012)), Local Polynomial Estimator (Aamari and Levrard (2019)), Structure-Adaptive
Manifold Estimation (SAME, Puchkin and Spokoiny (2022)), Spherelets (Li et al., 2022),
etc. The common idea behind these methods is to partition the space into local regions,
and apply local, often linear, method to each small region. The intuition is that a manifold
can be locally approximated by its tangent spaces. However, these local, nonparametric,
complex methods are often computationally expensive and lack of interpretability.

A recent attempt to develop a spherical analogue of PCA is Li et al. (2022), which allows
us to conduct dimension reduction and learn the shape of spherically distributed datasets.
However, both PCA and SPCA fail when the sample size n < d′, the retained dimension
(i.e., the dimension of the reduced dataset, the formal definition is introduced below) and
are not easily applicable to high dimensional datasets. For instance, in the gene expression
data, d is the number of genes, often over 20, 000 and the retained dimension d′ is often
chosen to be a couple of hundreds with the largest variability (Townes et al., 2019). While
the sample size could be much smaller, for example, less than 20 for certain tissues in the
Genotype-Tissue Expression (GTEx) dataset (Consortium, 2020). In fact, most existing
dimension reduction methods cannot handle n < d′ without substantial modifications.

In this paper, we focus on parametric global methods and derive an DR method called
spherical rotation dimension reduction (SRCA), that preserves the sphericity constraints
of the dataset. Unlike some competitors, this method is applicable to high-dimensional
datasets regardless of retained dimensions and sample sizes. SRCA is scalable and inter-
pretable, and will not destroy not only the geometry but also the topology of the dataset.
(see Supplement A for synthetic examples).

Specifically, we focus on biological and genetic datasets, where dimension reduction is
adopted by biologist directly before clustering and subsequent tasks (Johnson et al., 2022;
Zhou and Sharpee, 2018). Our method also echoes and exemplifies a grander community
belief that any dimension reduction should be guided by the need of its subsequent analyses
and respect the structure in the original dataset.
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1.3 Main contributions

Our manuscript presents several significant contributions that set it apart from the existing
DR methods.

SRCA introduces a novel non-linear dimension reduction technique that prioritizes in-
terpretability in its low-dimensional representations. Notably, SRCA distinguishes itself
through the direct minimization of geometric loss, providing a more intuitive approach
compared to SPCA’s reliance on algebraic loss. This methodological innovation ensures
that SRCA’s bias remains lower or equal to that of SPCA, enhancing the accuracy of di-
mensional reduction. Furthermore, SRCA’s applicability extends to scenarios where the
sample size n < d′, showcasing its versatility and effectiveness in handling a wide range of
datasets.

On the application front, our approach not only offers fresh insights into the cyclic nature
inherent in such biological processes but also represents the first instance of applying spher-
ical DR methods in this context. The ability of SRCA to reveal biologically interpretable
structures within cell cycle data marks a significant departure from previous methods like
tSNE or UMAP, which, despite their utility, fall short in terms of biological interpretability
for cell cycle data. Moreover, the potential of SRCA extends beyond cell cycle analysis,
with implications for various biological phenomena characterized by cyclical data, such as
circadian rhythms (Hogenesch and Ueda, 2011) and hormonal oscillations Kubota et al.
(2012).

2. Methodology

In this section, we outline the proposed procedure that aims to minimize a geometric loss
function, specifically the mean squared errors between the original data points xi and
dimension-reduced data points x̂i.

We denote the intrinsic dimension of the support of the reduced dataset by d′ and refer
to it as the retained dimension. It is worth noting that some literature uses the embedded
dimension as d′. For example, if the reduced dataset lies in S1 embedded into R2, we
would consider the dimensionality of the reduced data to be d′ = 1 and not 2, as S1 is a
one-dimensional manifold.

2.1 PCA and SPCA Revisited

As discussed in Section 1.2, PCA identifies a low-rank linear subspace from observations
X = x1, · · · , xn ⊂ Rd by minimizing the sum of squared error loss function:

min
V ∈Rd×d′

n∑
i=1

‖xi − x̂i‖2 =

n∑
i=1

‖xi − x̄− V V T (xi − x̄)‖2, s.t. V TV = Id′ .

where x̄ = 1
n

∑n
i=1 xi is the sample mean calculated in Rd. The solution to this optimization

problem yields a rotation matrix V that defines a subspace, called the solution to PCA.
From an optimization perspective, PCA is a problem for a given (geometric) loss func-

tion (Journée et al., 2010), which quantifies the l2 errors between the observation and the
subspace. SPCA aims to find the optimal sphere S. Unlike PCA’s planar solution, the so-
lution of SPCA is a sphere with center c and radius r residing in the linear subspace V to fit
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the data. SPCA does not minimize the sum of squared distances between observations and
the sphere; instead, it employs a two-step algorithm to minimize the sum of point-to-plane
and projection-to-sphere distances.

The desired one-step algorithm was not explored in the original paper (Li et al., 2022)
since the problem is theoretically more complicated and lacks a closed-form solution (See
Supplement G). In contrast, our proposed SRCA can be shown to attain this one-step goal.

2.2 Geometric Loss Function

Given a sphere centered at c with radius r, we first assume that it lies in a subspace parallel
to a coordinate plane in Rd determined by I ⊂ {1, · · · , d} after a linear transformation
determined by a (non-singular) matrix W . We denote such low-dimensional “sub-sphere”
by SI(c, r) and use the notation II to denote an identity matrix with ones in (i, i)-th entries,
i ∈ I but zeros in the rest entries, then the point-to-sphere distance from a generic point
xi to this sphere can be expressed as

d(xi, SI(c, r))
2 = (xi − c)TWIIc(xi − c) +

(√
(xi − c)T

√
W

T
II
√
W (xi − c)− r

)2

= (xi − c)TW (xi − c) + r2 − 2r

√
(xi − c)T

√
W

T
II
√
W (xi − c).

Assume W = I, the Figure 2 illustrates a R3 space where a two-dimensional sphere S2 is
embedded, and we wish to reduce our data onto a one-dimensional (a circle S1 ) or zero-
dimensional (points S0) sphere. The S0 and S1 are defined by I and the sphere’s center c
and radius r. In Li et al. (2022), the distance from the point x to the sphere was decomposed
into two components: the Euclidean distance to the subspace (along the axis xi,3) and the
distance within this subspace (spanned by the axes xi,1 and xi,2) to the sphere , which were
optimized separately. In the current paper, we optimize this distance in one step and hence
obtain better solution than that from Li et al. (2022). Then, Equation (1) generalizes from
this observation by incorporating a weight matrix W .

When W 6= I, the interpretation of the distance measure would change. It would no
longer represent the point-to-sphere distance but rather a weighted distance where the con-
tribution of each dimension is scaled according to W . In such a case, the optimization
problem would aim to find the best-fitting sphere in this anisotropic space defined by W .
The matrix W in PCA-like DR (See Section 1.2) can prioritize features through weight
assignment, inversely proportional to their variance, akin to PCA normalization. Positive
definiteness of W leads to Mahalanobis distances, aligning data scaling and inter-feature cor-
relations, mirroring PCA’s covariance adjustment (Scheffler et al., 2020). In this situation,
the matrix W transforms the sphere to lies in a coordinate plane so that the point-to-
sphere distance admits a closed form. With this point-to-sphere distance, the (geometric
loss) function can be written as

L (c, r, I | X ,W ) =
n∑
i=1

(
(xi − c)TW (xi − c) + r2 − 2r

√
(xi − c)T

√
W

T
II
√
W (xi − c)

)

=:
n∑
i=1

ρ(xi; θ),
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where we use the notation θ = (c, r) with a given I, and the notation ρ(xi; θ) is adopted to
emphasize its additive form and to facilitate the later theoretic discussions. Our dimension
reduction procedure can be described as solving the optimization problem below:

min
I⊂{1,··· ,d},c∈Rd,r∈R+

L (c, r, I | X ,W ) = min
I⊂{1,··· ,d},c∈Rd,r∈R+

n∑
i=1

(
(xi − c)TW (xi − c) + r2

−2r

√
(xi − c)T

√
W

T
II
√
W (xi − c)

)
, s.t.|I| = d′ + 1 (1)

Using the loss function defined in (1), we can simultaneously estimate the center c, radius
r and I by solving the optimization problem. Since there are at most 2d possible choices
of I, it is straightforward to verify that this one-step optimization problem (1) can be
equivalently solved in a two-step procedure: First, select a subset of indices I ⊂ {1, · · · , d},
and then estimate the center c and radius r of the dataset X . This optimization problem
can also be solved iteratively on variables I, r, c. The binary search can be the first step,
followed by esimating the center c and radius r:

1. Given c and r, perform an exhaustive binary search among all possible I.

2. Given I and c, take the derivative of ∂L
∂r = 0 to obtain:

r =
1

n

n∑
i=1

√
(xi − c)T

√
W

T
II
√
W (xi − c).

3. Given I and r, take the derivative of ∂L
∂c = 0 to obtain:

∂L

∂c
=

n∑
i=1

−2W (xi − c) + 2r
II
√
W (xi − c)√

(xi − c)T
√
W

T
II
√
W (xi − c)

 = 0.

Observe that if j ∈ I, the j-th coordinate of the second term is zero, so we have
cj = 1

n

∑n
i=1 xi,j for any j ∈ Ic. For j ∈ I, an analytic solution is difficult to find, but

gradient descent can provide a numerical solution.

So far, we have assumed that the underlying support SI has coordinate axes that are
parallel to the coordinate axes. To make this assumption more realistic, we propose to
rotate the dataset X so that it can be viewed in a position such that its axes are parallel to
the coordinate axes. Then, we solve the optimization problem (1) for the rotated dataset
and rotate it back to obtain reduced dataset. The rotation can be chosen according to the
types of datasets as appropriate in the procedure, as is discussed in Sec.4.5.

The exhaustive binary search over 2d possible subsets is computationally expensive. We
observe that the core of the optimization problem lies in the subset selection of index set
{1, · · · , d}. We can rephrase the optimization problem (1) as follows:

min
c∈Rd,r∈R+

n∑
i=1

(
(xi − c)TW (xi − c) + r2

−2r

√
(xi − c)T

√
W

T
vT Iv

√
W (xi − c)

)
, s.t. ‖v‖l0 = d′ + 1, (2)
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Figure 2: Illustration of dimension reduction via a sphere. The black point x is projected
onto the one-dimensional (red circle, S1) or zero-dimensional (blue points, S0) in the am-
bient space R3. The transparent line segments shows the corresponding point-to-sphere
distances.

Since l0-norm is not convex, solving this problem requires a brute-force step in finding
optimal v whose entries are either 0 or 1 (and hence I since vT Iv = II), as detailed in
Algorithm 2. Instead of using l0 directly in the original problem, we consider the following
computationally cheaper alternative:

min
c∈Rd,r∈R+

n∑
i=1

(
(xi − c)TW (xi − c) + r2 − 2r

√
(xi − c)T

√
W

T
vT Iv

√
W (xi − c)

)
, (3)

s.t. ‖v‖l1 ≤ d′ + 1,

where l1 norm is used as a convex surrogate norm. This kind of relaxation is proposed
in optimization (Boyd et al., 2004). As a practical suggestion, when there are more than
500 combinations of binary indices to search exhaustively, we recommend l1 relaxation as
a more scalable solution in (3), otherwise we perform an exhaustively search. For very
high-dimensional dataset, the empirical performances for l0 and l1 penalties are similar.

2.3 SRCA Method

The method discussed above is refereed to as the spherical rotation dimension reduction
(SRCA) method and presented in Algorithm 1, which employs geometric loss functions
designed for spherical datasets. The key steps of our proposed SRCA dimension reduction
method can be summarized into a “Rotate-Optimize-Project” scheme as follows, with l1
algorithms detailed in Supplement C and branch-and-bound implementation in Supplement
J.

Rotate: Conduct the rotation. With the chosen rotation method, we construct a
rotation matrix R based on the dataset X . We translate and rotate the dataset X to a
standard position (X −X̄ )R, so that we can reasonably assume that the axes of the ellipsoid
are parallel to the coordinate axes (Jolliffe, 1995).
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Algorithm 1: SRCA dimension reduction algorithm

Data: X (data matrix consisting of n samples in Rd)
Input: d′ (the dimension of the sphere), W (the covariance weight matrix, by default

W = Id), ξ (optional, the sparse penalty parameter), rotationMethod (the method
we use to construct the rotation matrix).

Result: ĉ (The estimated center of SI in Rd), r̂ (The estimated radius of SI), Iopt (The
optimal index subset)

GetRotation (X,rotationMethod) obtains a d× d rotation matrix based on the data matrix
X. The rotationMethod option specifies what method we use to construct the rotation
matrix, by default, we use PCA to obtain a rotation matrix.

ProjectToSphere (X,c,r,k) is a projection that projects the point set X onto an lk-sphere
(k = 1 or 2) of center c and radius r via X 7→ c+ X−c

‖X−c‖lk
· r.

begin
Standardize the dataset by subtracting its empirical mean X = X − X̄
Construct a rotate matrix R = GetRotation (X,rotationMethod)
Xrotated = X ∗R, Lopt =∞
while I ⊂ 1, · · · , p do

Solve the optimization problem (2) with respect to c, r with a fixed I
Denote the solution as ccur, rcur, Icur
if L (c, r, I | X ) ≤ Lopt then

Lopt ← L (c, r, I | X )
copt ← ccur, ropt ← rcur, Iopt ← Icur

end
Construct the binary index vector η = (ηi), ηi = 1 iff i ∈ I and ηi = 0 otherwise.
ĉ = copt · η ∗R−1 + X̄, r̂ = ropt
Xrotated(:, I)← 0
Xrotated ← ProjectToSphere (X,ĉ,r̂,k)
Xoutput ← Xrotated ∗R−1 + X̄

end

Optimize: Solve the optimization for the best d′+1 axes. We perform dimension
reduction based on the geometric loss function discussed above. As stated in (2), we conduct
dimension reduction by minimizing the loss function based on the point-to-sphere distance
to the estimated sphere SI , to obtain the optimal vopt and the optimal index set Iopt.

(vopt, copt, ropt) = arg min
c∈Rd,r∈R+

n∑
i=1

(
(xi − c)TW (xi − c) + r2

−2r

√
(xi − c)T

√
W

T
vT Iv

√
W (xi − c)

)
s.t. ‖v‖l0 = d′ + 1, (4)

where the constraint can be relaxed by ‖v‖l1 ≤ d′ + 1.
Project: project onto the optimal sphere. Now we project the datapoints back into

full space with the chosen dimension and axes, placing xi back onto the sphere S(copt, ropt)
with the estimated center copt and radius ropt, the SRCA projection is given by:

x̂i = copt · vopt + ropt

(xi − copt)v
T
optIvopt

‖(xi − copt)vToptIvopt‖
. (5)
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A natural extension of SRCA is to incorporate the rotation matrix R as a parameter to
be optimized, which may further enhance model adaptability. However, this will introduce
a challenging high-dimensional optimization problem. Unlike optimizing for center c and
radius r, which is a lower-dimensional optimization problem completed by binary search,
optimizing a d′-dimensional symmetric matrix, especially without sparsity constraints, be-
comes more complex and computationally intensive.

3. Theoretical Results

We have established the procedure for our propose method, SRCA, in an algorithmic way.
Next, we discuss and provide some theoretical results that guarantee the performance of
SRCA in applications. Proofs are deferred to supplementary materials, but we want to
emphasize that the techniques of ρ-loss (Huber et al., 1967) and Γ-convergence (Braides
et al., 2002) are introduced to tackle probabilistic properties for DR methods.

3.1 Convergence

Unlike SPCA, SRCA does not have a closed form solution (i.e., analytic expression of center
and radius estimates in terms of dataset X ) but relies on the solution to an optimization
problem. Therefore, the convergence of this optimization becomes central in our theory
development. We briefly discuss the convergence guarantee for the algorithm we designed.
In the binary search situation, for each fixed choice of indices, we compute the gradient of
loss function. With mild assumptions, gradient descent provides linear convergence. If the
optimization problem (4) has solutions, then the solution is clearly unique. This is because
there are only finitely many v such that ‖v‖l0 = d′+1, and the binary search in the standard
algorithm would exhaustively search all possible values of v.

To these ends, we provide a basic convergence for a sub-problem in our Algorithm 1
(without l1 penalty) via the gradient descent algorithm of positive constant step size. The
sub-problem is defined by the following loss function:

Lv(c, r|X ,W ) = Lv(c, r) :=
∑

n
i=1

(
(xi − c)TW (xi − c) + r2 (6)

−2r

√
(xi − c)T

√
W

T
vT Iv

√
W (xi − c)

)
(7)

The following theorem guarantees the convergence of SRCA.

Theorem 1 For a fixed vector v (or equivalently II), if we assume that ‖xi−c‖ ≤ R1, ∀i =
1 · · · , n, r ≤ R2 and |λmax(W )| ≤ R3 for positive constants R1, R2, R3, where λmax(·)
denotes the largest eigenvalue, then for a positive finite constant step size independent of
the iteration number k, the gradient descent algorithm (c.f., the setting in Boyd et al. (2003,
2004)) converges to the optimal value in the following sense,

lim
k→∞

Lv,k → L ∗
v

where Lv,k = Lv (ck, rk), (ck, rk) is the value in the k-th iterative step in the gradient
descent algorithm, and L ∗

v denotes the minimum of the loss function for this fixed v.
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These results justify that for a fixed v (or equivalently I) we can solve the sub-problem
defined by the above function, and since we conduct an exhaustive search for the index
vector v, we can find the solution to the original problem (4) as well.

3.2 Consistency

In this section, we assume the observed data are from a “true” but unknown sphere
SI0(c0, r0) and show that the solution of SRCA is consistent, that it, we can find the true
sphere as long as we have enough samples.

Theorem 2 Assume xi ∈ SI0(c0, r0), ∀i = 1, · · · , n and n > d′ + 1. Let Îk, ĉk, r̂k be the
solution of SRCA after k iteration in the solution of the corresponding optimization problem,
then

(Îk, ĉk, r̂k)
k→∞−−−→ (I0, c0, r0).

However, the assumption that are observations are exactly on a sphere is unrealistic
in practice, as the data often come with measurement errors. Instead, we adopt following
(common) assumption in manifold estimation: xi = yi + εi, where the unobserved yi’s are
exactly from a sphere S(c0, r0) and εi represents the measurement error. The next theorem
fills in the gap using the Γ-convergence (Braides et al., 2002), which is first applied in DR
problems.

Theorem 3 Under the following assumptions:

(A0) The index vector I is fixed and the parameter θ = (c, r) ∈ Θ := [−C,C]d×[R0, R] ⊂
Rd × R+ for some C,R0, R > 0.

(A1) xi’s are compactly supported.

(A2) limn→∞
1
n

∑n
i=1 ‖εi‖ = 0

the SRCA solution θ̂n → θ0 as n→∞.

In other words, the SRCA estimator based on noisy samples is consistent, that is, converges
to the true parameter θ0, as low as the noise decays to zero with sample size. In fact,
this assumption is even weaker than those in existing literature, see Maggioni et al. (2016);
Fefferman et al. (2018); Aamari and Levrard (2019) for more details. For example, in
Aamari and Levrard (2019) the amplitude of the noise is assume to be ‖ε‖ ∼ n−

α
d for

α > 1. In contrast, we only require ‖ε‖ → 0, so ‖ε‖ ∼ n−α for any α > 0 or even ‖ε‖ ∼ 1
logn

is good enough.

3.3 Asymptotics

In this section, we consider the asymptotic behavior of SRCA optimization result when
the underlying dataset is assumed to be drawn from a probabilistic distribution, regardless
whether it is supported on a sphere or not.

To yield the asymptotic results, we need to take the perspective of robust statistics as
mentioned in the end of Section F. The asymptotic theory here is a specific case of empirical
risk minimization. With a mild technical assumption that the parameter θ = (c, r) ∈ Θ :=
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[−C,C]d× [R0, R] ⊂ Rd×R+ for some C,R0, R ∈ (0,∞), our loss function and optimization
problem can be expressed as

min
I⊂{1,··· ,d},c∈[−C,C]d⊂Rd,r∈[R0,R]⊂R+

L (c, r, I | X ,W ) (8)

= min
I⊂{1,··· ,d},c∈[−C,C]d⊂Rd,r∈[R0,R]⊂R+

n∑
i=1

(
(xi − c)TW (xi − c) + r2 (9)

−2r

√
(xi − c)T

√
W

T
II
√
W (xi − c)

)
s.t. |I| = d′ + 1

For a fixed I, (9) can be written in the form of (3.1) in Huber (2004), i.e.,

ρ(x; θ) =

(
(xi − c)TW (xi − c) + r2 − 2r

√
(x− c)T

√
W

T
II
√
W (x− c)

)
Correspondingly, we can write Huber’s ψ-type function of ρ as ψ(θ) = ∂ρ(θ)

∂θ .
Classical style asymptotic results are presented below in Theorem 4, which states that,

with mild assumptions, the estimates Tn obtained by solving SRCA would estimate the cen-
ter and radius of the spherical space consistently, corresponding to Huber’s ρ-type estimator
consistency (Huber et al., 1967); Theorem 5 states that with more stringent conditions on
continuity of Tn, asymptotic normality of these estimators can also be formulated into
Huber’s ψ-type normality.

To apply these two asymptotic results, we need to make mild assumptions on the pa-
rameter space and assume that we already know the retained dimension d′ + 1.

Theorem 4 Suppose (A0) in Theorem 3 holds and the samples x1, · · · , xn ∈ X = Rd of
size n are i.i.d. drawn from the common distribution P . P has finite second moments
on the probability space (X,A, ν) with Borel algebra A and Lebesgue measure ν. Then the
consistent estimator Tn for parameter θ = (c, r) defined by

1

n

n∑
i=1

ρ(xi;Tn)− inf
θ∈Θ

1

n

n∑
i=1

ρ(xi; θ)
n→∞−−−→ 0, a.s. P

would converge in probability and almost surely to θ0 w.r.t. P (for the true parameter values
θ0 defined on page 46). Particularly, Tn can be realized as a solution to our optimization
problem (8) above.

Unlike Theorem 1, which concerns the convergence of the algorithm, we assume that the
fixed i.i.d. samples X are drawn from a probability distribution. Similarly, we have a
distributional result as follows.

Theorem 5 In addition to the assumption in Theorem 4, we assume P (|Tn − θ0| ≤ η)→ 1
as n→∞, then the estimator Tn defined by

1√
n

n∑
i=1

ψ(xi;Tn)
n→∞−−−→ 0, a.s. P

12
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would satisfy 1√
n

∑n
i=1 ψ(xi;Tn) +

√
nλ(Tn)

n→∞−−−→ 0, a.s. P. (where λ(·) is defined in the

(N-1) in Section H) Particularly, our loss function would satisfy differentiability at θ0 and√
n (Tn − θ0) is asymptotically normal with mean zero and covariance matrix(

∇θ0λ−1
)
·
(

[ψ(xi; θ0)− EPψ(xi; θ0)]T [ψ(xi; θ0)− EPψ(xi; θ0)]
)
·
(
∇θ0λ−1

)T
.

Defined by the geometric loss function L , SRCA does not have an analytic solution, but
this loss benefits from the theoretic results above and can be replaced by other types of loss
functions, enabling SRCA to be applied more widely.

Note that we also assumed that the index set I is fixed for our statements of theorems.
In the exhaustive search, these results above can be applied individually to fixed I; but in
the l1-relaxed problem (4), since the optimization is a joint optimization our asymptotic
results Theorem 4 and 5 in this section do not apply.

3.4 Loss Function Minimization

Next, we consider the theoretic behavior of SRCA in terms of approximating a general
manifold. The following theorem compares the MSE of PCA, SRCA (when the rotation is
chosen by PCA) and SPCA:

Theorem 6 Given data x1, · · · , xn in a bounded subset of Rd, let H be the best subspace
obtained by PCA, S1 be the sphere obtained by SPCA and S2 be the sphere obtained by
SRCA with rotation provided by PCA, then

n∑
i=1

d2(xi, S2) ≤ min

{
n∑
i=1

d2(xi, H),
n∑
i=1

d2(xi, S1)

}
.

That is, SRCA has the best approximation performance in terms of MSE among PCA,
SPCA and SRCA, regardless of the true support of the observations.

To summarize and interpret our theoretical results briefly, Theorem 1 ensures that a
gradient-descent algorithm can be used for solving the loss function minimization problem
(1) for any finite samples with convergence guarantees; Theorem 2 and 3 show that SRCA
can recover the true sphere, if it exists, when the data are clean or with measurement
error. For general case where the observations are not necessarily supported by a sphere,
Theorems 4 and 5 ensure that the sequence of finite-sample minimizers of our loss function
asymptotically converges to minimizer θ0; Theorem 6 points out that SRCA can better
approximate the unknown support in terms of MSE than PCA and SPCA.

4. Numerical Experiments

With theoretical results above on MSE, we also wish to examine the practical performance of
SRCA against the state-of-the-art dimension reduction methods on real datasets. We focus
on the empirical structure-preserving and coranking measurements below, an application
to the motivating dataset about cell cycle, and discuss the choice of parameters in SRCA
in the end. Details of selected datasets are in Supplement D.
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4.1 MSE

As a dimension reduction method, the most common and natural measurement of per-
formance is based on the mean squared error (MSE) between the original and reduced
datasets, which measures how close the manifold is to the original observations. However,
most dimension reduction methods only output low dimension features, like LLE, Isomap,
tSNE, UMAP, GPLVM, etc, where the MSE is not well-defined because the low dimensional
features cannot be trivially embedded into original data space Rd. Algorithms that output
projected data in the original space Rd include SPCA, PCA, and our proposed SRCA.

Table 2 presents the MSEs of three competing algorithms on these datasets with d′ =
min{d − 1, 4}. The out-sample MSEs show a similar patterns and is postponed to the
Supplement I. It is evident that SRCA has the property of MSE minimization for most
datasets and most d′, as predicted by the theory in Theorem 6.

4.2 Cluster Preserving

Cluster structure properties of different dimension reduction algorithms varies, however, we
hope that the data points belonging to the same group in the original dataset, are close
together in the dimension-reduced dataset.

For visualization purposes, we fix retained dimension to be d′ = 2 and compare the
following six algorithms: SRCA, SPCA, PCA, LLE, tSNE, UMAP. We choose these state-
of-the-art competitors to visualize in 2-dimensional figures. For PCA, we present the first
two PCs; the coordinates in LLE, tSNE and UMAP are not interpretable. For SRCA and
SPCA, since the projected data are on a 2-dimensional spheres, we present the polar angle
and azimuthal angle, which are within [−π, π].

To further quantify the how well the clustering structures are preserved, the Silhouette
Score (SC, (Rousseeuw, 1987)), Calinski-Harabasz Index (CHI, (Caliński and Harabasz,
1974)) and Davis-Bouldin index (DBI, (Davies and Bouldin, 1979)) are considered. Higher
SC and CHI, lower DBI imply better separation between clusters in the dataset. We provide
these measures on the original labeled dataset (without any DR) as baselines.

Figure 3 and Table 3 show that SRCA outperforms SPCA, PCA and LLE in terms
of all three metrics and comparable to tSNE and UMAP. SRCA also has advantage over
its predecessor SPCA and simpler linear method like PCA. With these experiments and
Supplement B, we conclude that if the dataset has strong spatial sphericity, we usually have
good cluster preserving properties from SRCA. If the dataset is highly non-linear, tSNE and
UMAP are usually better at the cost of creating fake clusters if tuning parameters are not
well-chosen (Wattenberg et al., 2016; Wilkinson and Luo, 2022).

4.3 Coranking Matrix

Another type of quantitative measures is based on the coranking matrix (Lee and Verleysen,
2009; Lueks et al., 2011). The coranking matrix can be viewed as the joint histogram of
the ranks of original samples and the dimension-reduced samples. The coranking matrix
can be used to assess results of dimension reduction methods. Entry qkl in the coranking
matrix is defined as qkl := {(i, j) | ρij = k and rij = l}, where ρij := {k : d(xi, xk) <
d(xi, xj) or d(xi, xk) = d(xi, xj), k < j} stores the rank of the pair xi, xj in the original

14



Spherical Rotation Dimension Reduction

Dataset Method/d′ = 1 2 3 4

Banknote
PCA 15.6261 6.3356 1.9479

SPCA 16.3717 8.1004 1.7348

SRCA 13.439 5.5088 1.0743

Power PCA 222.2971 55.4460 23.5173 2.9957

Plant SPCA 162.8865 102.1006 45.5793 41.5251

SRCA 150.8041 52.1439 19.8839 3.279

User PCA 0.1921 0.1253 0.0718 0.0311

Knowledge SPCA 0.1465 0.0893 0.0477 0.0148

SRCA 0.1458 0.0887 0.0471 0.0142

Ecoli
PCA 0.076693 0.035222 0.020522 0.00756

SPCA 0.047776 0.032948 0.019648 0.01136

SRCA 0.076660 0.032799 0.018332 0.00756

Concrete
PCA 6.4469 4.4035 2.9539 1.7177

SPCA 5.2285 3.4857 2.1825 0.9975

SRCA 5.2190 3.4745 2.1726 0.9862

Leaf
PCA 8.2929 4.1102 2.0144 1.2810

SPCA 5.2445 3.1907 2.4377 1.2608

SRCA 5.2223 3.1599 1.8433 1.1025

Climate
PCA 1.4100 1.3204 1.2323 1.1450

SPCA 1.3563 1.2648 1.1781 1.0907

SRCA 1.3554 1.2646 1.1780 1.0905

Table 2: MSE for different experiments.

Index Baseline SRCA SPCA PCA LLE tSNE UMAP

SC 0.257 0.267 0.260 0.200 0.209 0.293 0.290

CHI 133 192 190 215 46.6 376 376

DBI 1.49 1.59 1.58 2.56 2.40 1.37 1.32

Table 3: Clustering performance measures for Ecoli

dataset; rij := {k : d(x̂i, x̂k) < d(x̂i, x̂j) or d(x̂i, x̂k) = d(x̂i, x̂j), k < j} stores the rank of the
pair x̂i, x̂j in the dimension-reduced dataset, where the rank pair reversed in the dimension-
reduced dataset. An ideal dimension reduction method should preserve all the ranks of
these pairwise distances between original and reduced datasets. That is, we have identical
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Figure 3: Cluster structures for Ecoli, d′ = 2, there are five different clusters represented
by different colors in the reduced dataset.

ordering of these pairwise distances in the original space and the dimension-reduced space.
Coranking matrix is a finer summary but is related to ijk rank test (See, e.g., Solomon
et al. (2021)).

We provide three scores (the higher the better) related to coranking matrices of the
dimension-reduced results: CC (cophenetic correlation, measuring correlation between dis-
tance matrices), AUC (area under curve for the RNX score), WAUC (weighted AUC) com-
puted from coRanking R-package (Kraemer et al., 2018).

To understand our subsequent analyses better, we referred our readers to the analysis
of the dimension reduction result of simple examples like S2, T2 and a plane diffeomorphic
to R2, evaluated by these coranking matrix related scores in Supplement B, where SRCA
is the only DR method that consistently behaves almost the best in plane, spheres and
topologically non-trivial examples like torus when measured by coranking scores. Another
advantage of SRCA over existing DR methods is that it allows n < d′, which happens to
a variety of real datasets, specially for biomedical data where both d and d′ are large. For
example, in Genotype-Tissue Expression(GTEx) dataset (Consortium, 2020), some tissues
are hard to collect so the sample sizes are small but the dimension is very high, like Kidney
Medulla (n = 4), Fallopian Tube (n = 9) and Cervix Endocervix (n = 10). However,
there are thousands of genes so we expect that the intrinsic dimension d′ > n. Following
the common practice of feature selection in this database, we subsetted the data to the
most variable 500 genes (Townes et al., 2019). Most competitors mentioned before are not
directly applicable anymore when d′ > n, including tSNE, UMAP, Isomap, MDS, etc. For
illustration purpose, we retain the first n dimensions. As a result, we present the three
coranking based measurements on three tissues obtained from SRCA, SPCA, PCA and
LLE for different d′ in Figure 4.
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Figure 4: Coranking measurements of three GTEx tissues for different retained dimension,
the horizontal axes are retained dimension d′, the vertical axes are score values.

4.4 Application: Human Cell Cycle

The human cell cycle consists of four growth phases: G1, S, G2, and M. In a recent study,
non-transformed human retinal pigmented epithelial (RPE) cells were genetically engineered
to express a fluorescent cell cycle reporter that enables accurate identification of each cell’s
phase (i.e., G1, S, G2, or M) through time-lapse imaging (Stallaert et al., 2022a). Subse-
quently, the cells were fixed and subjected to iterative indirect immunofluorescence imaging
(4i) to measure 48 key cell cycle effectors in 8,850 individual cells. A total of 246 single-cell
features were derived from this imaging dataset, including protein expression and localiza-
tion (e.g., nucleus, cytosol, perinuclear region, and plasma membrane), cell morphological
attributes (such as nucleus and cell size and shape), and microenvironment characteristics
(like local cell density), ultimately generating a comprehensive cell cycle signature for each
cell within the population.

In their study, Stallaert et al. (2022a) narrowed the features to a set of 40 that most
accurately predicted cell cycle phase (refer to Figure S1 panel A in Stallaert et al. (2022a)).
Thus, the reduced dataset has a sample size of n = 8, 850 and an ambient dimension of
d = 40. Our goal is to decrease the dimension to d′ = 2 for visualization purposes, while
maintaining the four clusters that correspond to the four phases (G1, S, G2, M) and the
cyclic structure: G1 → S → G2 → M → G1. To account for the diverse units of the 40
selected features, we applied z-score normalization to the data.

Figure 5 displays the visualization of cell cycle data, with colors representing different
cell cycle phases. While all algorithms can distinguish the four phases, PCA, tSNE, LLE,
and UMAP fail to capture the cyclical structure. For example, the green points (M) should
be located between the blue points (G1) and red points (G2); and magenta points (S) should
be opposite to green points. In contrast, both SRCA and SPCA successfully recover the
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Figure 5: Cluster structures for human cell cycle, d′ = 2, colored by phase.

cyclical structure on 2-dimensional spheres. To compare SRCA and SPCA, we assess the
MSE, as shown in the first column of Table 4.

MSE Var(G1) Var(S) Var(G2) Var(M)

PCA 22.934 575 81 1297 3631

SPCA 22.252 566 110 276 763

SRCA 22.098 633 117 434 475

Table 4: Quantitative metrics of SRCA and SPCA for cell cycle data

Given that the true structure is cyclical, clustering metrics that depend on linear struc-
tures, such as the Silhouette score, are not suitable for this example. Instead, we use
external biological information to validate our findings. Among the four phases, G1 cells
are known to possess greater degrees of freedom (Chao et al., 2019; Stallaert et al., 2022b),
leading us to anticipate that the variance of samples within G1 will be the largest among
the four phases, with variances for G2 and M being similar and variance for S being the
smallest. The variance is defined as the distance between each sample and the cluster mean,
so a larger variance indicates a more dispersed distribution of points within that cluster.
The final four columns in Table 4 demonstrate that SRCA more accurately captures the
heterogeneity of cell activities across different phases.

In addition to the spherical structural preservation property of SRCA, another benefit
of applying SRCA to cell cycle data is its interpretability. Previous attempts to model cell
cycle data have relied on manifold estimation methods such as tSNE and UMAP (McInnes
et al., 2018), where the low dimension representations are not biologically interpretable. In
contrast, SRCA approximate the spherical structure within the original high dimensional
space, so that the low dimension representations can be linked back to biolgically meaningful
features. Moreover, given the widespread occurrence of cyclical data in biology (circadiam
rhythms, hormonal oscillations, (Hogenesch and Ueda, 2011; Kubota et al., 2012)) , we
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believe that our method could have widespread application and impact when the underlying
data are spherical in nature.

4.5 Parameter Selection

It is a separate but important problem to select (or tune) the parameter of both classical
and modern DR methods. For classical DR methods, like PCA or MDS, the parameter
usually has a explicit geometric interpretation. For modern non-linear DR methods, like
tSNE and UMAP, the parameters affect both reproducibility and interpretability of the
resulting dimension-reduced dataset.

The first parameter that dictates the behavior of most DR methods is the retained
dimension d′, which can be determined by subsequent purpose (e.g., the tSNE and UMAP
usually take d′ = 2, 3 for visualizations).

The second parameter is the choice of rotation methods, which is highly data dependent
and affects the clustering and visualization most. Regarding the MSE performance, Table 5
investigates the performance of SRCA with different kinds of rotations. We can see that the
PCA rotation usually gives a reasonable result in terms of MSE performance. Both PCA
and quartimax rotations used along with SRCA method outperforms dimension reduction
of PCA and SPCA separately. We have similar observations for some other datasets with
n > d (e.g., Leaf, PowerPlant, etc., see Supplement D).

The choice of rotation methods could also be made to accommodate the type of noise in
observations. In the situation where the tail behavior of the noise is close to Gaussian and
the W is known (or, by default I), PCA is our default choice; but in the situation where the
noise is non-Gaussian and we do not have much knowledge for W , then ICA (Hyvärinen
and Oja, 2000) is a better alternative.

Based on the empirical evidence obtained from real datasets (e.g., Table 5), we recom-
mend using PCA rotation as a default, but other types of rotations can be useful for specific
datasets, if desired (Jolliffe, 1995).

PCA SPCA SRCA

d′ PCA varimax orthomax quartimax equamax parsimax ICA

1 15.6 16.4 13.4 18.4 18.5 14.9 27.5 26.6 14.5

2 6.34 8.10 5.51 6.19 6.19 5.79 13.2 13.4 5.36

3 1.95 1.73 1.07 1.07 1.07 1.07 1.07 1.07 1.14

Table 5: MSE of Banknote (see Supplement D) for different rotation methods in the SRCA
procedure. We also include two other DR methods PCA and SPCA to compare against
SRCA. The first row records the DR methods (PCA, SPCA and SRCA); the second row
records the optimal rotation method used by SRCA.

We summarize the observations from above experiments in sections 4.1 to 4.5. Although
SRCA is the slowest in terms of computational time among SRCA, SPCA and PCA, it is
rather fast compared to some non–linear methods like Isomap.

When the retained dimensions d′ < min{d, n}, SRCA behaves very similarly to SPCA in
terms of the MSE, both outperform PCA alone across different real datasets. The interesting
observation is that SRCA out-competes both of them in some simple but geometrically
nontrivial examples like the ones in Supplement B, especially in clustering tasks. In most
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cases, PCA rotation is satisfactory, although considering other rotation methods may further
improve the performance of SRCA.

When d > d′ ≥ n, SRCA outperforms PCA, SPCA and other non-linear DR methods in
terms of the coranking scores across different real datasets. Only SRCA yields consistently
better dimension reduction results when d′ < n and d′ ≥ n.

5. Discussion

In this paper, we propose a novel DR method by proposing a rotation-based method with
a geometric-induced loss function that minimizes the point-to-sphere distance from original
to target spaces. Our motivation is to get the dimension reduction for spherical datasets
(or datasets with spherical and elliptical structures) to respect the geometry in the original
space. Its variant also works with a general weight matrix W and a sparsity penalty ξ. The
proposed method is statistically principled, and is theoretically guaranteed to perform well
asymptotically.

Unlike traditional DR methods like PCA and MDS, SRCA works smoothly with a stable
performance even when d ≥ d′ + 1 > n which is extremely important in biomedical data
DR, especially in gene expression data (e.g.,GTEx). Accompanying generalized algorithms
for SRCA are also developed, with detailed convergence and a straightforward parallel
potentiality for real-world practice. SRCA is related to PCA and SPCA but also generalizes
the former into a spherical setting and the latter one into a one-step procedure. Most
importantly, SRCA removes the d′ < n requirements in these predecessors in a unified
framework using novel loss functions.

Compared to non-linear methods, SRCA has geometrical interpretation and practi-
cal convenience. Its unique binary search also allows parallelizations when applied to big
datasets. A comprehensive experimental study of SRCA against a collection of state-of-art
DR methods has been done with detailed qualitative and quantitative measures, revealing
the superiority of SRCA.

SRCA stands out for applying spherical dimension reduction to cell cycle data for the
first time, revealing new biological insights by utilizing the data’s spherical characteristics.
Considering the commonality of cyclical biological data (e.g., circadian rhythms, hormonal
cycles), our method has the potential for broad use and significant impact in cases where
the data is inherently spherical.

There are several directions of future work that we wish to pursue. For example, it
is of great interest to see how geometric or topological loss function DR methods perform
in data visualization (Sigmund, 2001; Nigmetov and Morozov, 2022). Another possible
future work of estimating better rotation matrix as mentioned in Section 2.3 may inspire
advanced optimization methods for non-convex problems. Novel regularization strategies
may be necessary to maintain computational feasibility and ensure meaningful solutions.
On the theoretical end, we would like to explore the convergence of our algorithm with the
l1 penalty, estimating the sparsity, and establish a non-asymptotic bound for our estimates.
Our current technique focuses on but is not limited to spherical datasets. Similar designs
of loss functions can be generalized to a wider variety of spaces like symmetric spaces (Li
et al., 2020) using Lie group theory.
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Appendix A. Orthogonal Loop Examples

Figure 6 shows orthogonal circles parallel to xz and xy planes respectively in R3. The
projection of these two circles to the principal axes given by PCA is shown in Figure 7,
where only one circular structure is retained in the reduced dataset while the other circular
structure is completely destroyed

In Figure 8, we have the same but each coordinates is perturbed by a Gaussian noise
with mean zero and different noise variances. As the noise variance increases, we observe
that the topological structure of this example of two orthogonal loops becomes less and less
obvious. We can see that SRCA is consistently achieving the lowest matched MSE defined
in Section 4.1, while both SPCA and SRCA preserves the topological structure relatively
well. It becomes evident that that SPCA and SRCA method better respect the topology
of the original dataset under the same d′. PCA does not retain the circular structure, but
SRCA puts both circles onto a larger 1-sphere congruent to S1.

In Table 6, we provide MSE for more settings of noise variances to show the MSE from
each different DR methods. It can be observed that PCA becomes worse quickly in terms
of MSE.

Figure 6: An example where PCA fails, adapted from Luo et al. (2021). Note that the two
orthogonal circles only intersect at one point. The DR results are summarized in Figure 7

Noise Var. 0 0.01 0.05 0.10 0.20 0.40 1.00

PCA 0.24750 0.24889 0.25634 0.26990 0.31126 0.45045 1.2653

SRCA 0.10408 0.10421 0.10623 0.11237 0.13668 0.21834 0.64711

SPCA 0.12758 0.12764 0.12925 0.13448 0.15585 0.22861 0.65268

Table 6: MSE for different DR methods performed on the same orthogonal loop dataset
but with different noise variances in the Gaussian perturbation.
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Figure 7: The dimension-reduced dataset from the example shown in Figure 6. The green
dot represents the origin (0, 0, 0). The original dataset is represented by blue points. On
the left panel, the PCA dimension-reduced dataset is represented by red stars. On the
middle and right panels the dimension-reduced dataset processed by SPCA and SRCA, is
represented by magenta and black stars, respectively.
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PCA SPCA SRCA

Figure 8: On the left columns we show the original dataset in blue points, and the PCA
dimension-reduced dataset in red stars. On the middle column we show the original dataset
in blue points, and the SPCA dimension-reduced dataset in magenta stars. On the right
column we show the original dataset in blue points, and the SRCA dimension-reduced
dataset in black stars.
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Appendix B. Other Synthetic Examples

(a) Plane (b) Torus

(c) Sphere (d) GEM

Figure 9: The datasets for the basic example. In these examples the datasets are observed
in R3 (d = 3) and we want to reduce the dataset by one dimension (d′ = 2). In each of the
above panels, the red solid dots are the original datasets sampled from a uniform distribution
lying on (a) plane (b) torus (c) sphere (d) triple torus without interior intersection (GEM).
The blue circles are the points in reduced dataset obtained by SPCA. The black stars are
the points in reduced dataset obtained by SRCA. We do not display the result of PCA in
these figures.

In this appendix, we consider several basic examples we use to illustrate the difference
between PCA, SRCA, and SPCA. Below, we provide the quantitative measures for each
of these examples and the coranking summaries. In (a) plane, we uniformly sample points
(x1, x2, 0) from [−3, 3]× [−3, 3]× {0}. In (b) torus, we take the parameterization

((R1 +R2 cos θ) cosφ, (R1 +R2 cos θ) sinφ,R2 sin θ)

where R1 = 1/2 and R2 = 1/3. The parameters (θ, φ) are uniformly sampled from [0, 2π)×
[0, 2π). In (c) sphere, we take the canonical parameterization and uniform sampling on the
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parameter space [0, 2π)× [0, 2π), which is equivalent to von-Mises Fisher distribution with
concentration κ = 0. In (d) triple torus, we independently sampled 3 batches of points with
equal sample sizes. Then we multiply each of these 3 batches with the following rotation
matrices and add a translation vector:

R1 =

 1 0 0
0 cos π2 − sin π

2
0 sin π

2 cos π2

 ,τ1 =

 0
0
3

 .

R2 =

 cos π4 0 sin π
4

0 1 0
− sin π

4 0 cos π4

 ,τ2 =

 0
3
3

 .

R3 =

 cos 0 − sin 0 0
sin 0 cos 0 0

0 0 1

 ,τ3 =

 3
3
3

 .

The resulting dataset contains three tori, and it is not difficult to verify that these three
tori do not have interior intersections. We scale the dataset by subtracting (1, 1, 1)T from
each point and multiply 1/2 entry-wisely.

SRCA SPCA PCA LLE tSNE UMAP

CC 0.9999998 0.9998008 1.0000000 0.9983610 0.9774094 0.9906862

AUC 0.9995782 0.9898617 0.9998370 0.9604653 0.8670743 0.9094597

WAUC 0.9990011 0.9913487 0.9991016 0.9725947 0.8460439 0.8320849

Table 7: Performance scores and the coranking of plane.

SRCA SPCA PCA LLE tSNE UMAP

CC 0.8222110 0.8208433 0.9777033 0.9751233 0.8523848 0.9072153

AUC 0.6217176 0.6194763 0.8317488 0.8251250 0.6344541 0.7257927

WAUC 0.6025524 0.6033849 0.6104916 0.6092178 0.7430941 0.6707993

Table 8: Performance scores and the coranking of torus.

SRCA SPCA PCA LLE tSNE UMAP

CC 1.0000000 1.0000000 0.8026803 0.7262926 0.6762080 0.6810310

AUC 0.9999992 1.0000000 0.5585561 0.4876606 0.5171233 0.5696564

WAUC 0.9999998 1.0000000 0.4953096 0.4792300 0.7312668 0.7270227

Table 9: Performance scores and the coranking of sphere.
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SRCA SPCA PCA LLE tSNE UMAP

CC 0.9986899 0.7407685 0.9987456 0.9963411 0.5697951 0.9438497

AUC 0.9509051 0.5618742 0.9518870 0.9205247 0.4646542 0.8042776

WAUC 0.7067388 0.5204686 0.7057702 0.6973970 0.7077429 0.6735852

Table 10: Performance scores and the coranking of GEM.

From the performance evaluation table above, we can see that:

1. In the plane example, all linear and non-linear DR methods performs well in terms of
performance evaluation measures and coranking summaries.

2. In the torus example, neither SPCA nor SRCA perform as good as other DR methods
in terms of scores. However, in the visualization of the reduced dataset, we can see
that both SPCA and SRCA preserve the structure of torus pretty well.

3. In the sphere example, both SPCA and SRCA give almost identical results, outper-
forming both the simplest PCA and the more sophisticated non-linear DR methods
like tSNE and UMAP. In the visualization of the reduced dataset, we can see that
both SPCA and SRCA reduce the data points on the sphere (d = 3) to points on a
geodesic circle (d′ = 2). This preserves the spherical nature of the dataset and yield
a better result.

4. In the GEM example, the SRCA is the best in terms of almost all performance scores.
A visual verification also reveals that the resulting reduced dataset preserves all three
holes in the tori.

Appendix C. SRCA Algorithms

In this section, we present the algorithm that solves our optimization problem (2) and (3).
Algorithm 1 delineates the binary search strategy which exhausts 2d possible subsets of
{1, · · · , d} to find an optimal subspace. Algorithm 2 delineates the l1-relaxation strategy
which formulates the original problem (2) into an optimization problem (3) to find an
optimal subspace.

Detailed explanation of algorithms in this section is as follows.

1. (Step 1: Get the empirical mean for X .) Estimate the empirical mean X̄ for the
dataset X in Rd, and subtract the mean X̄ to make sure that the assumption of PCA
is satisfied.

zi = xi −
1

n

n∑
i=1

xi = xi − x̄

2. (Step 2: Conduct the rotation.) We choose a rotation method to construct rotation
matrix R based on the datset X . Then we rotate the dataset X to standard position
(X − X̄ )R. Here we use a chosen rotation matrix R (PCA, ICA or other kinds of
optimal rotation) to rotate the sphere so that all its axes are parallel to the coordinate
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axes.
For PCA rotation, let the covariance matrix cov(zi) = RΛRT where Λ is diagonal and
the rotation matrix R is orthogonal.

yi = Rzi

3. (Step 3: Binary search for the best d′ + 1 axes.) In this step we perform dimension
reduction. Now that we can assume that the axes of the sphere (or ellipsoid) are
parallel to the coordinate axes. We solve the binary optimization problem (2) with
W = I (or other W if extremely skewed dataset is observed) to choose the optimal
directions to retain. In this step we would find the optimal vopt and hence the optimal
index set Iopt.
In this optimization problem, as we stated in (2) above, we conduct dimension reduc-
tion by minimizing the loss function based on the point-to-ellipsoid distance to the
estimated sphere SI .

The optimization problem is spelled out as (4).

4. (Step 4: Eliminate the un-chosen dimensions.) This simply sets drop the un-selected
dimension not in Iopt, equivalently, we find the vopt in the notation of problems (2)
and (3).

(a) In the standard form (2), we may let η = vopt be the binary vector such that
‖vopt‖l0 = d′ + 1.

(b) In the l1-relaxed form (3), the vopt would have l1-norm less or equal than d′ + 1
but not binary entries. We construct a binary vector η such that only the first
leading d′ + 1 entries with the largest absolute values in vopt are 1; and the rest
entries are 0.

5. (Step 5: Re-estimate the center and radius.) Only in the problem (3), we re-estimate
the center copt and radius ropt using the same loss function but a fixed vopt. In
standard problem (2), we use the center copt and radius ropt from step 3.

6. (Step 6: Project and rotate the sphere back into full space.) After we choose the
dimension and axes, we project the dataset onto a sphere with the center copt and
radius ropt and add back the empirical mean X̄ . More specifically, we project the
datapoints xi to the sphere S(c, r) as in (5) and then we simply we rotate the resulting
dimension-reduced dataset back, using the inverse of the same rotation matrix R.
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Algorithm 2: SRCA dimension reduction algorithm with l1 relaxation

Data: X (data matrix consisting of n samples in Rd)
Input: d′ (the dimension of the sphere), W (the covariance weight matrix, by default

W = Id), ξ (optional, the sparse penalty parameter), rotationMethod (the method
we use to construct the rotation matrix).

Result: ĉ (The estimated center of SI in Rd), r̂ (The estimated radius of SI), Iopt (The
optimal index subset)

GetRotation (X,rotationMethod) and ProjectToSphere (X,c,r,k) are identically defined
in Algorithm 1.

begin
Standardize the dataset by subtracting its empirical mean X = X − X̄
Construct a rotate matrix R = GetRotation (X,rotationMethod)
Xrotated = X ∗R
Solve the optimization problem (3) with respect to c, r and v
Denote the solution as c0, r0, vopt
Construct I that contains the largest/leading d′ + 1 coordinates of vopt.
Solve the optimization problem (2) with respect to c, r with a fixed I
Denote the solution as copt, ropt
ĉ = copt · η ∗R−1 + X̄
r̂ = ropt
Xrotated(:, I)← 0
Xrotated ← ProjectToSphere (X,ĉ,r̂,k)
Xoutput ← Xrotated ∗R−1 + X̄

end

Appendix D. Dataset Selection

We select datasets for high- and low-dimensional scenarios, covering both n ≥ d and n < d
as detailed below. Thanks to the binary search scheme we designed in our SRCA algorithm,
SRCA can be parallelized when an even larger n (e.g., n = 100, 000) presents. Neither PCA
nor non-linear methods we consider below can be generalized to a quite large n in an obvious
way.

The tSNE (Van der Maaten and Hinton, 2008) has known problems of not distance-
preserving and creating false clusters in the dimension-reduced dataset (Schubert and Gertz,
2017). The UMAP (McInnes et al., 2018) has known problems of being sensitive to outliers
and require the user to have a good understanding of their distance metrics to interpret
the dimension-reduced dataset. To highlight the advantage of our method with a geometric
loss function, we also choose labeled datasets to study the structure-preserving properties
and datasets that require careful normalization.

We use several public datasets for our numerical experiments, but consider only datasets
with continuous variables as its features, as we recognized that dimension reduction for
datasets with discrete (categorical and integer) or mixed type variables as their attributes
is a different problem (Schölkopf et al., 1997, 1998).

Before the analysis of our experiments, we shall briefly introduce our datasets:

• Source

33



Luo, Purvis and Li

– UCI repository (https://archive.ics.uci.edu/ml): Banknote, Climate, Con-
crete, Ecoli1, Leaf, PowerPlant, UserKnowledge.

– Microarray: Alon (Alon et al., 1999).

– GTEx (https://gtexportal.org/home/).

• Sample size
We understand that a valid dimension reduction method should have reasonable per-
formance regardless of the size of the underlying datasets. We choose a wide range of
datasets with sample sizes varying from 100 to 10,000. In the table below, we show
the code for each dataset with its sample size and dimension (n× d).

n > d n ≤ d

Banknote (1372× 4), UserKnowledge (403× 5), Kidney Medulla (4× 500),
Ecoli (336× 7), Concrete (1030× 8), Fallopian Tube (9× 500),
Climate (540× 18), Leaf (340× 14), Cervix Endocervix (10× 500),.

PowerPlant (9568× 5), Alon (62× 2000), .

• Dimensionality
It is of central importance to recognize that the relation between the sample size n
and the original dimension d would affect dimension reduction methods. In fact, the
sparse PCA (Erichson et al., 2020) were developed to take the sparsity (i.e., n < d) of
the dataset into consideration. SRCA has a natural sparsity penalty parameter in the
loss function L we designed. To see the performance of different methods on dense
(n > d) and sparse (n ≤ d) data, we also include both kinds of datasets in the above
selection.

• Normalization
When the attributes or features of the dataset have high mutual correlation or re-
lationships with one another (e.g., total expenditure cannot exceed total income of
an individual), normalization would introduce problems like distortion of correlation
and violation of relationships. When the attributes or features of the dataset are
uncorrelated or independent, normalization would convert all features to (relatively)
the same scale. We include datasets that require normalization and those that do not
require normalization.

– Not normalized: Banknote, Ecoli, PowerPlant, UserKnowledge, Climate.

– Normalized: Alon, Concrete, Leaf, GTEx.

Finally, we shall point out that we have not covered any dataset with a high d and large
n. Our exploratory experiments found that the performance of existing dimension methods,
including modern methods, has suffered from a very high computational cost. It is a separate
problem to study how to perform dimension reduction on a large high-dimensional dataset.

1. Three groups among them with sample size smaller than 5 are removed for visual convenience. The
five groups left are cytoplasmic proteins (cp), inner membrane proteins without a signal sequence (im),
inner brane proteins with an uncleavable signal sequence (imU), other outer membrane proteins (om)
and periplasmic proteins (pp).
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Decomposition-based methods like PCA, multi-dimensional scaling (MDS) and trun-
cated singular value decomposition (SVD) become exceedingly slow for a dataset with large
n and d. Manifold learning based methods like tSNE, UMAP and IsoMap (Tenenbaum
et al., 2000) have some variation in computational time due to their stochastic nature,
but they are all rather slow. Therefore, we would leave this type of dataset as a separate
problem that we do not experiment in the current paper.

Appendix E. Coranking Performance Comparison for Section 4.3

SRCA SPCA PCA LLE tSNE UMAP

CC 0.987 0.925 0.988 0.833 0.640 0.635

AUC 0.869 0.774 0.860 0.598 0.469 0.459

WAUC 0.644 0.582 0.626 0.503 0.694 0.600

Table 11: Coranking performance scores of Banknote

SRCA SPCA PCA LLE tSNE UMAP

CC 0.270 0.270 0.262 0.464 0.215 0.124

AUC 0.152 0.152 0.148 0.225 0.147 0.102

WAUC 0.134 0.132 0.0864 0.105 0.141 0.118

Table 12: Coranking performance scores of Ecoli

SRCA SPCA PCA LLE tSNE UMAP

CC 0.987 0.815 0.987 0.928 0.620 0.847

AUC 0.886 0.605 0.886 0.731 0.446 0.651

WAUC 0.485 0.416 0.485 0.447 0.611 0.528

Table 13: Coranking performance scores of PowerPlant

SRCA SPCA PCA LLE tSNE UMAP

CC 0.219 0.211 0.219 0.183 0.134 0.180

AUC 0.0780 0.0853 0.0785 0.0700 0.0707 0.0635

WAUC 0.0935 0.0952 0.0948 0.0762 0.106 0.100

Table 14: Coranking performance scores of Leaf
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SRCA SPCA PCA LLE tSNE UMAP

CC 0.730 0.798 0.693 0.585 0.483 0.592

AUC 0.416 0.456 0.379 0.338 0.231 0.384

WAUC 0.256 0.3233 0.251 0.212 0.214 0.328

Table 15: Coranking performance scores of Alon.

Appendix F. Sparse Penalty

ξ 10−1 10−2 10−3 10−4 10−5 0

CC 0.704 0.727 0.730 0.730 0.730 0.730

AUC 0.408 0.416 0.416 0.416 0.416 0.416

WAUC 0.261 0.256 0.256 0.256 0.256 0.256

Table 16: Coranking performance scores for different ξ’s on the Alon dataset, d′ = 2.

Here, we provide a new version of SRCA with sparse penalty, which only involves an
additional penalty term in the loss function we designed. Recall that the objective loss
function with a weighted matrix W in our method is

d(xi, SI(c, r))
2 = (xi − c)TW (xi − c) + r2 − 2r

√
(xi − c)T

√
W

T
II
√
W (xi − c)

which involves only the point-to-sphere distance from xi to the estimated sphere surface
SI (based on dataset X = {x1, x2, · · · , xn}). One problem we wish to address when there
exists sparsity in the dataset in the procedure of dimension reduction, is that we want the
sparsity being preserved.

To be more precise, if xi’s have most coordinates zeros except for a few, then we want
the reduced dataset x̂i to have a similar property. This can be achieved by penalizing
‖II(xi − c)‖1 in the optimization problem, which encourages the estimated sphere so that
the data are in the affine subspace centered at c while parallel to the coordinate planes. This
is different from the l1 relaxation we propose above. The l1 relaxation we proposed above is
an approximation to the constraints we imposed on the binary optimization problem. Here,
we directly penalize the reduced coordinates. The corresponding optimization problem is:

min
c∈Rd,r∈R+

n∑
i=1

(
(xi − c)TW (xi − c) + r2

−2r

√
(xi − c)T

√
W

T
vT Iv

√
W (xi − c)

)
+ ξ‖II(xi − c)‖l1 , (10)

s.t. ‖v‖l1 ≤ d′ + 1, ξ > 0, (11)

with a tuning parameter ξ > 0. ‖v‖l1 ≤ d′ + 1 can be ‖v‖l1 = d′ + 1. This feature of l1
constraint allows us to perform dimension reduction in a high-dimensional input space with
SRCA. We want to consider the penalty parameter ξ that controls the retained dimension
d′ when l1 approximation is in place as defined in (10). When a strict binary search like
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l0 optimization in (4) is used, the penalty is usually not needed. However, the caution we
shall take here is that the selection of sparsity penalty parameter ξ should roughly be at
the same magnitude as the loss function in order to function properly.

The tuning parameter ξ > 0 is part of the objective function, instead of the constraints.
In some applications, the penalty term can also be replaced with ξ

∑n
i=1 ‖IIxi‖1. In exper-

iments, we found that SRCA is not sensitive to ξ. In very high-dimensional datasets (e.g.,
Alon (see Supplement D), GTEx), the choice of this parameter also affects the convergence
speed in the execution of the optimization algorithm, a larger penalty parameter forces the
numerical algorithm to converge slightly faster. Alternatively, we can also treat the choice
of this parameter as a apriori tuning parameter of the loss function, whose values can be
selected for different datasets using cross-validation.

Appendix G. Spherical Estimation

The essence of SPCA (Li et al., 2022) can be summarized as a two-step procedure:

1. First, we utilize the principal component analysis (PCA) to find a subspace V ⊂ Rd′+1

of retained dimension based on X and project X to X̂ in V .

2. Second, we perform a circular (or d′-dimensional spherical) regression2 with the pro-
jected image X̂ onto V .

By selecting the principal components given by PCA, we find a subspace V and determine
the dimension of the S. By fitting a circular regression on a d′-dimensional sphere with the
projected dataset X̂ , we determine the center c and radius r of the spherical support.

Suppose the assumed sphere SV (c, r) is d2(x, c) = r2, whose dimensionality is determined
by the PCA estimated linear subspace V . Two typical loss functions for the estimation of
c, r are:

L (V, c, r) =

n∑
i=1

d2(xi, SV (c, r))

where d2 can be chosen as geometric or algebraic loss

geometric loss =
n∑
i=1

(√
(xi − c)T (xi − c)− r

)2

algebraic loss =
n∑
i=1

(
(xi − c)T (xi − c)− r2

)2

Following Li et al. (2022), we first assume that V is determined (through PCA) and attempt
to estimate the center c and radius r via a two-step gradient descent with both geometric
and algebraic loss functions. Through the procedure of taking derivation, we observe and
explain why an analytic solution for c and r is impossible in this SPCA setup in the end
and how SRCA handles this problem.

2. Unfortunately, although methods in circular regression could be extended to spheres of intrinsic dimen-
sions greater than 1, the term “circular regression” instead of “spherical regression” is adopted.

37



Luo, Purvis and Li

G.1 Geometric Loss

Let us calculate the geometric loss first, the algebraic loss is calculated at the end. This
function is a quadratic polynomial of radius parameter r > 0, L has a unique global
(conditional) minimum in r if r̂ > 0. When the c is assumed fixed.

We calculate its gradient

∂L (c, r)

∂r
=

n∑
i=1

∂

∂r
d2(xi, S(c, r))

=

n∑
i=1

∂

∂r

(√
(xi − c)T (xi − c)− r

)2

=

n∑
i=1

−2

(√
(xi − c)T (xi − c)− r

)
Setting this equation to zero, we have

r̂ =
1

n

n∑
j=1

√
(xj − c)T (xj − c) ≥ 0.

Plug this back into the L (c, r) we have

L (c, r̂) =
n∑
i=1

d2(xi, S(c, r̂))

=
n∑
i=1

(√
(xi − c)T (xi − c)− r̂

)2

=
n∑
i=1

√(xi − c)T (xi − c)−
1

n

n∑
j=1

√
(xj − c)T (xj − c)

2

Although this cannot be simplified further (due to the fact that it is fourth power in c), we
can still attempt to take its gradient

∂L (c, r̂)

∂c
=

n∑
i=1

∂

∂c

√(xi − c)T (xi − c)−
1

n

n∑
j=1

√
(xj − c)T (xj − c)

2

,

where r̂ =
1

n

n∑
j=1

√
(xj − c)T (xj − c)

=

n∑
i=1

2

(√
(xi − c)T (xi − c)− r̂

)
· ∂

∂c

√
(xi − c)T (xi − c)−

1

n

n∑
j=1

∂

∂c

√
(xj − c)T (xj − c)
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The equation ∂L (c,r̂)
∂c = 0 would not have an analytic solution in general. However, with

an appropriate gradient-based optimization method, for example, Gauss-Newton method
with Levenberg-Marquardt correction (Chernov, 2010), the sequence of estimates of c, r
can be proven to converge to global minimum under the regularity condition. It is also not

hard to observe why the insertion of W into the

√
(xi − c)T W (xi − c) makes the gradient

calculation even more intractable for the geometric loss function.

G.2 Algebraic Loss

However, analytic solutions for a sphere estimation can be derived for algebraic loss. It can
also generalize to ellipsoid (i.e., an algebraic loss can be solved analytically for the ellipsoid
xTWx = r)

∂L (c, r)

∂r
=

n∑
i=1

∂

∂r
d2(xi, S(c, r)), algebraically

=

n∑
i=1

∂

∂r

(
(xi − c)T (xi − c)− r2

)2

=

n∑
i=1

2
(

(xi − c)T (xi − c)− r2
)
· (−2r)

which is a cubic polynomial. ∂L (c,r)
∂r = 0 is analytically solvable in r, via Cardano-Viete’s

formula:

0 =
n∑
i=1

−2
(

(xi − c)T (xi − c)− r2
)
· 2r

0 =
n∑
i=1

((
xTi xi − 2cTxi + cT c

)
− r2

)
· r

0 =
n∑
i=1

((
xTi xi − 2cTxi + cT c

)
r − r3

)
0 = −n · r3 +

[
n∑
i=1

(
xTi xi − 2cTxi + cT c

)]
· r.

Write it into x3 + px+ q = 0 form:

r3 +

[
− 1

n

n∑
i=1

(
xTi xi − 2cTxi + cT c

)]
· r + 0 = 0

p = − 1

n

n∑
i=1

(
xTi xi − 2cTxi + cT c

)
, q = 0

39

https://en.wikipedia.org/wiki/Cubic_equation
https://en.wikipedia.org/wiki/Cubic_equation


Luo, Purvis and Li

The determinant 4p3 + 27q2 < 0 obviously, the solution is

r̂k = 2

√
−p

3
· cos

[
1

3
arccos

(
3q

2p

√
−3

p

)
− 2πk

3

]
for k = 0, 1, 2.

= 2

√√√√ 1

3n

n∑
i=1

(
xTi xi − 2cTxi + cT c

)
· cos

[
1

3
· π

2
− 2πk

3

]

For the gradient with respect to the center c,

∂L (c, r̂)

∂c
=

n∑
i=1

∂

∂c
d2(xi, S(c, r̂)), algebraically

=
n∑
i=1

∂

∂c

(
(xi − c)T (xi − c)− r̂2

)2

=
n∑
i=1

2

 ∂

∂c

(xi − c)T (xi − c)−
1

n

n∑
j=1

(xj − c)T (xj − c)


=

n∑
i=1

2

 ∂

∂c

(xTi xi − 2cTxi + cT c
)
− 1

n

n∑
j=1

(
xTj xj − 2cTxj + cT c

) ,

and the equation ∂L (c,r̂)
∂c = 0 solves

ĉ =
1

2

 n∑
i=1

(xi −
1

n

n∑
j=1

xj)
T (xi −

1

n

n∑
j=1

xj)

−1
n∑
i=1

xTi xi − 1

n

n∑
j=1

xTj xj

 (xi −
1

n

n∑
j=1

xj).

Therefore, an algebraic loss would provide us a closed form solution to the estimate of both
center c and radius r.

G.3 SPCA and SRCA Solution

Following the thought of the simultaneous estimation of c, r and the dimension of the sphere
(or equivalently, the linear subspace V ∈ Rd×(d′+1) where S lives in), we can instead consider
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the following geometric loss in one step

L (V, c, r) =
n∑
i=1

d2(xi, SV (c, r))

=
n∑
i=1

d2(xi, c+ V ) +
n∑
i=1

d2(PrV (xi), SV (c, r))

=
n∑
i=1

‖xi − c− V V T (xi − c)‖2 +
n∑
i=1

(‖Prc+V (xi)− c‖ − r)2

=
n∑
i=1

‖xi − c− V V T (xi − c)‖2 +
n∑
i=1

(‖c+ V V T (xi − c)− c‖ − r)2

=
n∑
i=1

‖xi − c− V V T (xi − c)‖2 +
n∑
i=1

(‖V V T (xi − c)‖ − r)2

The second identity comes from the Pythagorean theorem and Prc+V (xi) is the linear
projection of xi to the affine subspace c+ V .

The first sum corresponds to PCA loss function and the second term is the loss of
SRCA if V = I. For the SRCA and the SPCA, we minimize the first sum so V is the top
eigenvectors of sample covariance matrices and then plug this V to the second sum, and
change the geometric sum to the algebraic loss function, since only the latter loss allows a
closed form analytic solution. This minimizer from a two-step procedure obtained by SPCA
is not necessarily the same as the true minimizer of the above geometric loss L (V, c, r).
However, these two minimizers coincide when all xi are from a sphere, otherwise SPCA
solution is sub-optimal (Li et al., 2022). We adopt the two-step SPCA algorithm only
because we cannot derive a closed form minimizer for L = L (V, c, r). Moreover, this loss
function is difficult to generalize to the ellipsoid situation.

When the axes of an ellipsoid are parallel to the coordinate axes, it simplifies the problem
of finding the distance from any external point to the surface of the ellipsoid. The ellipsoid
in Rd can be represented by the equation:

(x− h)2

a2
+

(y − k)2

b2
+

(z − l)2

c2
= 1

where (h, k, l) is the center of the ellipsoid, and a, b, c are the lengths of its semi-axes along
the x, y, z−axes, respectively.

The closed-form solution for the distance from a point (x0, y0, z0) to the surface of such
an ellipsoid is not straightforward and involves solving a system of nonlinear equations.
Specifically we can formulate the Lagrangian for the problem, incorporating the constraint
(the ellipsoid equation) and the distance function (the Euclidean distance from the point
to a variable point on the ellipsoid). In mathematical terms, the Lagrangian L is:

L(x, y, z, η) =
√

(x− x0)2 + (y − y0)2 + (z − z0)2+η

(
(x− h)2

a2
+

(y − k)2

b2
+

(z − l)2

c2
− 1

)
where η is a Lagrange multiplier. The solution involves finding the values of x, y, z and η
that satisfy the following system of equations derived from the Lagrangian:
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∂L
∂x

= 0,
∂L
∂y

= 0,
∂L
∂z

= 0,
∂L
∂η

= 0.

Solving these equations yields the closest point on the ellipsoid to the given point, and
the distance is the Euclidean distance between these two points. Note that solving this
system of equations can be quite complex and may not always lead to a simple closed-form
expression, especially for higher-dimensional ellipsoids. In many cases, numerical methods
are used to find an approximate solution.

Appendix H. Related Proofs

H.1 Proof of Theorem 1

For each fixed ‖v‖l0 = d′ + 1, it suffices to optimize the following sub-problem of (4):

min
c∈Rd,r∈R+

∑
n
i=1

(
(xi − c)TW (xi − c) + r2 − 2r

√
(xi − c)T

√
W

T
vT Iv

√
W (xi − c)

)
(12)

= min
c∈Rd,r∈R+

Lv(c, r;x1, x2, · · · , xn),

= min
c∈Rd,r∈R+

∑
n
i=1Lv(c, r;xi), (13)

which has gradients with respect to c and r as

∂Lv

∂c
=
∑

n
i=1

∂Lv

∂c
(c, r;xi)

=
∑

n
i=1

(
−2(xi − c)TW − 2r · 1

2

[
(xi − c)T

√
W

T
vT Iv

√
W (xi − c)

]− 1
2

[
−2 (xi − c)T

√
W

T
vT Iv

√
W
])

=
∑

n
i=1 − 2(xi − c)T

(
W + r

[
(xi − c)T

√
W

T
vT Iv

√
W (xi − c)

]− 1
2
[√

W
T
vT Iv

√
W
])

,

and,

∂Lv

∂r
=
∑

n
i=1

∂Lv

∂r
(c, r;xi) =

∑
n
i=1

(
2r − 2

[
(xi − c)T

√
W

T
vT Iv

√
W (xi − c)

] 1
2

)
.

Therefore, we can assume that the mild assumptions ‖xi − c‖ ≤ R1, r ≤ R2 and
|λmax(W )| ≤ R3. We can compute the bounds of these gradients, using Cauchy-Schwartz
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inequality in the first inequality:

‖∇(c,r)Lv(c, r)‖ =

∥∥∥∥∂Lv

∂c
(c, r)

∥∥∥∥+

∥∥∥∥∂Lv

∂r
(c, r)

∥∥∥∥
≤ 4

n∑
i=1

(xi − c)TW TW (xi − c)

×
n∑
i=1

∥∥∥∥(W + r
[
(xi − c)T

√
W

T
vT Iv

√
W (xi − c)

]− 1
2
[√

W
T
vT Iv

√
W
])∥∥∥∥2

+
∑

n
i=1

(
2r − 2

[
(xi − c)T

√
W

T
vT Iv

√
W (xi − c)

] 1
2

)
.

≤ 4× 2nR2
3 × nR2

1 × n

(
R3 +R2

√
R2

3√
R2

1

)
+ n

(
2R2 +

√
R2

1R
2
3

)
<∞

For a finite n, we can conclude that L is Lipschitz with a finite Lipschitz constant as
bounded above. Then the gradient descent algorithm would give us a solution to the sub-
problem (13) with linear convergence from classical results (Boyd et al., 2004). Since for
fixed v, each sub-problem converges to the solution, the exhaustive search on v solves the
original problem (4). In parallel to Boyd et al. (2003), we have proved the Theorem 1.

H.2 Proof of Theorem 2

It is clear that L (c0, r0, I0) = 0 and Îk, ĉk, r̂k → arg min L by Theorem 1, it suffices to
show (c0, r0, I0) is the unique zero of L. Recall that L (c, r, I) = 0 if and only if all all xi’s
are exactly on sphere S(c, r, I), and that d′ + 2 points uniquely determine a d′ dimensional
sphere, then the uniqueness follows from the assumption n > d′ + 1.

H.3 Proof of Theorem 3

We consider the closed set Θ1 on the parameter space defined by ‖xi − c‖ ≤ R1, ∀i =
1 · · · , n, r ≤ R2 and |λmax(W )| ≤ R3 as we did in the proof of Theorem 4 and 5.

Again, let us assume I to be fixed index set and the

f∞(c, r) = lim
n→∞

1

n

n∑
i=1

(
(yi − c)TW (yi − c)− r − 2r

√
(yi − c)T

√
W

T
II
√
W (yi − c)

)2

be the limiting form of our geometric loss function,

L(c, r, I | Y) = fj(c, r) =
1

j

j∑
i=1

(
(yi − c)TW (yi − c)− r − 2r

√
(yi − c)T

√
W

T
II
√
W (yi − c)

)2

with the dataset Y = {y1, · · · , yj} and

L(c, r, I | X ) = gj(c, r) =
1

j

j∑
i=1

(
(xi − c)TW (xi − c)− r − 2r

√
(xi − c)T

√
W

T
II
√
W (xi − c)

)2
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with the dataset X = {x1, · · · , xj}. Recall that xi = yi + εi and yi ∈ SW (c0, r0) lying on an
ellipsoid with center c0, radius r0 and known covariance W .

Therefore, arg min f∞= arg min fj = (c0, r0) since if we plug in c0 and r0 the f∞(c0, r0) =
fj(c0, r0) = 0. By the definition of f∞, fj converges to f∞ point-wise. In addition, by the
compact assumptions, the convergence is also uniform, that is, supθ∈Θ1

|fj(θ)−f∞(θ)| → 0.
The rest of our roadmap of proof is as follows. According to the Remark 1.10 of Braides

et al. (2002): if a sequence of functions gj point-wisely converges to its limit f∞ uniformly.
and f∞ is lower semi-continous, then the same sequence of functions also converges in a
Γ-convergence sense, and its Γ-limit is identical to its point-wise limit f∞ = limj→∞ fj .
Furthermore, as we showed above, the following minimizer exists

θ∗ := arg min
θ∈Θ1

f∞(θ).

Then since the specific form of our geometric loss function (1) is coercive, by Theorem 1.21
and Remark 1.22 in Braides et al. (2002), the minimizer sequence {θj} = {arg minθ∈Θ1 fj(θ)}
converges to a minimum point θ∗ of f∞. Note that our assumption (A1) stating that each
of θj := arg minθ∈Θ1 gj(θ) exist is essential here. Otherwise the sequence will not exist.

It’s it clear that fj uniformly converges to f∞ on compact set Θ1. We focus on proving
gj also converges to fj uniformly, then through a middle-man argument, limj→∞ gj = f∞
holds. The difference between two sequences fj and gj can be bounded as below:

|gj(c, r)− fj(c, r)| (14)

=

∣∣∣∣∣1j
j∑
i=1

(yi − c)TW (yi − c)− (xi − c)TW (xi − c)+

2r

√
(xi − c)T

√
W

T
II
√
W (xi − c)− 2r

√
(yi − c)T

√
W

T
II
√
W (yi − c)

∣∣∣∣ (15)

≤
(
4R2

3 +R1R3

) ∣∣∣∣∣1j
j∑
i=1

(‖xi − c‖+ ‖yi − c‖ − 2r)(‖xi − c‖ − ‖yi − c‖)

∣∣∣∣∣ (16)

=
(
4R2

3 +R1R3

) ∣∣∣∣∣1j
j∑
i=1

(‖xi − c‖+ ‖yi − c‖ − 2r)(‖yi − c+ εi‖ − ‖yi − c‖)

∣∣∣∣∣
≤
(
4R2

3 +R1R3

) 1

j

j∑
i=1

|(‖xi − c‖+ ‖yi − c‖ − 2r)|(‖εi‖+ 2‖εi‖‖yi − c‖) (17)

=
(
4R2

3 +R1R3

) 1

j

j∑
i=1

|(‖xi − c‖+ ‖yi − c‖ − 2r)|(‖εi‖+ 2‖yi − c‖) · ‖εi‖

≤
(
4R2

3 +R1R3

)
· (2R1 + 2R2) · (1 + 2R1) · 1

j

j∑
i=1

‖εj‖, (18)

where we need the assumption (A2) stating that xi, yi and c, r are all in the closed bounded
(hence compact) set B ×Θ1. We want to show that as j →∞,

sup
θ=(c,r)∈Θ1

‖gj − fj‖ → 0,
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to ensure uniform convergence. But this follows from (18) and our assumption (A3) stating
that limn→∞

1
n

∑n
i=1 ‖εi‖ = 0. Such an assumption is common, see, Maggioni et al. (2016);

Fefferman et al. (2018); Aamari and Levrard (2019) for instances. In fact, the assumption is
even weaker than those in the above references, for example, in Aamari and Levrard (2019)
the amplitude of the noise is assume to be ‖ε‖ ∼ n−

α
d for α > 1. In contrast, we only

require ‖ε‖ → 0, so ‖ε‖ ∼ n−α for any α > 0 or even ‖ε‖ ∼ 1
logn is good enough.

H.4 Proof of Theorem 4

References we mainly need for our proof below are the formulation in Huber (2004); Huber
et al. (1967) and the technical separation lemma in Doob (1953).

We fix the index set I in the following discussions, and we assume that the parameters
to be estimated can be written as a vector θ = (c, r) ∈ Θ := [−C,C]d × [R0, R] ⊂ Rd ×R+,
which lies in a (locally) compact space with a countable base Θ′ =

{
[−C,C]d ∩Qd

}
×

{[R0, R] ∩Q}, the inclusion of r = R0 is needed below for compactness. We denote that
estimate for θ based on n samples (by minimization of the L ) by Tn = Tn(X ).

The real-valued ρ function, based on the samples x1, · · · , xn ∈ X = Rd drawn from the
common distribution P defined on the probability space (X,A, ν) with Borel algebra A and
Lebesgue measure ν, is

ρ(x; θ) =

(
(x− c)TW (x− c) + r2 − 2r

√
(x− c)T

√
W

T
II
√
W (x− c)

)
and the ψ(x; θ) = ∂

∂θρ(x; θ) is again differentiable. We show below that the assumptions in
Huber et al. (1967) are satisfied, we define our estimator Tn for parameter θ = (c, r) such
that

1

n

n∑
i=1

ρ(xi;Tn)− inf
θ∈Θ

1

n

n∑
i=1

ρ(xi; θ)→ 0, a.s. P when n→∞,

corresponding to case A in Huber et al. (1967). Since ρ is differentiable in both x, θ, this
minimizer could also be expressed in form of Tn satisfying

1√
n

n∑
i=1

ψ(xi;Tn)→ 0, a.s. P when n→∞,

• (A-1) For Θ = Rd × R+, there exists a countable basis Θ′ =
{

[−C,C]d ∩Qd
}
×

{[R0, R] ∩Q} such that for every open set U ⊂ Θ and every closed interval A ⊂ R,
two sets

{x | ρ(x; θ) ∈ A ∈ A, ∀θ ∈ U}
{x | ρ(x; θ) ∈ A ∈ A, ∀θ ∈ U ∩Θ′}

would only differ on the set of zero probability measure P . Since the measure P is
fixed, by Lemma 2.1 on page 56 of Doob (1953), for each θ ∈ Θ we can find θ′ ∈ Θ′

such that
P
{
ω ∈ X | ρ(x(ω); θ) 6= ρ(x(ω); θ′), x(ω) ∼ P

}
= 0.
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Therefore, denote the map τP : θ 7→ θ′ we can redefine our ρ by ρ̃ := ρ ◦ τP so that it
only differs from ρ on a zero measure set of the fixed P . Note that the mapping τP
depends on the measure P and we assume P is fixed throughout our discussion. This
ensures the measurability of infθ′∈U ρ̃(x; θ′) and the measurability of its limit when an
(open) neighbor hood U of θ shrinks to one-point set {θ}. For ease of notation, we
still use ρ below as assume (A-1) holds.

• (A-2) The function ρ is continuous and differentiable, therefore clearly lower semi-
continuous in θ = (c, r). And this ensures that infθ′∈U ρ(x; θ′)→ ρ(x; θ).

• (A-3) There exists a measurable function a(x) such that

EP (ρ(x; θ)− a(x))− <∞
EP (ρ(x; θ)− a(x))+ <∞

and hence γ(θ) = E (ρ(x, θ)− a(x)) is well-defined for all θ ∈ Θ. For our purpose, we
choose θ1 = (c1, r1) for some ‖c1‖ <∞ and r1 <∞. We define a function on X

a(x) = aθ1(x) =

(
(x− c1)TW (x− c1) + r2

1 − 2 · r1

√
(x− c1)T

√
W

T
II
√
W (x− c1)

)
ρ(x; θ)− a(x) =

(
(x− c)TW (x− c)− (x− c1)TW (x− c1)

)
+
(
r2 − r2

1

)
− 2r

√
(x− c)T

√
W

T
II
√
W (x− c)

+ 2r1

√
(x− c1)T

√
W

T
II
√
W (x− c1)

≤ |λmax(W )|
(
‖x− c‖2 − ‖x− c1‖2

)
+
(
r2 − r2

1

)
+ 4 max(r, r1) ·max(‖c‖, ‖c1‖) · |λmax(W )| · ‖x‖

If we take EP on both sides of inequality above and with the assumption that |λmax(W )| <
R3, then the mild assumption that P has finite second moments (hence finite first mo-
ment) ensures the finiteness. It is not hard to see that the choice of θ1 is not essential
in verifying this assumption. For simplicity, we assume θ1 = (c1, r1) = (0, 1) hereafter.

a(x) =

(
|λmax(W )|‖x‖2 + 1− 2

√
xT
√
W

T
II
√
Wx

)

• (A-4) There is a θ0 ∈ Θ such that γ(θ) > γ(θ0) for all θ 6= θ0. To see this, we use
the Fubini theorem to take differentiation inside the EP (note that this is taken with
respect to x) to conclude unique minima of γ(θ) (notice that we assume I fixed and
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therefore the index vector v is a fixed constant vector)

γ(θ) = EPρ(x; θ)− a(x)

= EP
(

(x− c)TW (x− c) + r2 − 2r

√
(x− c)T

√
W

T
II
√
W (x− c)

)
− a(x)

∂

∂θ
γ(θ) = EP

(
∂
∂cρ(x; θ)
∂
∂rρ(x; θ)

)

=

 −EP 2(x− c)T
(
W + r

[
(x− c)T

√
W

T
vT Ipv

√
W (x− c)

]− 1
2
[√

W
T
vT Ipv

√
W
])

EP 2r − 2
[
(x− c)T

√
W

T
vT Ipv

√
W (x− c)

] 1
2


= 0

By letting ∂
∂θγ(θ) = 0 and for x ∼ P , we derive from the second equation that

r0(c) = EP
[
(x− c)T

√
W

T
vT Ipv

√
W (x− c)

] 1
2 ∈ [0,min(R, 2C

√
|λmax(W )|)],

and from the first equation

EP 2 (x− c)T
(
W + r0(c)

[
(x− c)T

√
W

T
vT Ipv

√
W (x− c)

]− 1
2
[√

W
T
vT Ipv

√
W
])

= 0

Consider the following function

F (c) := EP 2 (x− c)T
(
W + r0(c)

[
(x− c)T

√
W

T
vT Ipv

√
W (x− c)

]− 1
2

[√
W

T
vT Ipv

√
W
])

(19)

as a function of c and the above equation becomes F (c) = 0. Taking a sandwiching-
style argument, we first note that the second term in the second bracket is always
non-negative, then we construct uniform bounding functions:

F1(c) := EP 2 (x− c)T W
� EP (x− c)T W,

F2(c) := EP 2 (x− c)T
(
W + min(R, 2C

√
|λmax(W )|)·

|λmax(W )|
[
(x− c)T

√
W

T
vT Ipv

√
W (x− c)

]− 1
2

)
W

� EP (x− c)T
(

1 +
K(R,C, v, |λmax(W )|)

‖x− c‖2

)
W,

(where K(R,C, v, |λmax(W )|) is a non-negative constant) such that the following
bound F1(c) ≤ F (c) ≤ F2(c) holds (for each component of the vector-valued F1, F2)
uniformly in c. However, it is clear that there exists c+

1 , c
−
2 ∈ [−C,C]d ⊂ Rd

F (c+
1 ) ≥ F1(c+

1 ) > 0,

F (c−2 ) ≤ F2(c−2 ) < 0.
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Note that F is continuous in c (we can take derivative under EP since P is assumed to
possess finite second moment) and [−C,C]d is connected, we apply the multivariate
intermediate value theorem to assert the existence of a solution c0 for F (c) = 0.
Therefore, we can keep this solution c0, which we know its existence but do not know
its expression. Back substitution of this solution of c0 into the expression of r0 yields

r0 =EP
[
(x− c0)T

√
W

T
vT Ipv

√
W (x− c0)

] 1
2
,

where θ0 = (c0, r0) is well-defined for P with finite second moment. This verifies the
assumption (A-4).

• (A-5) With the notations in (A-3), since Θ := [−C,C]d × [R0, R] ⊂ Rd × R+ is a
compact space, it suffices to verify only (i) of (A-5). There is a continuous function
b(θ) > 0 such that

b(θ) =

(
cTWc+ r2 − 2r

√
cT
√
W

T
II
√
Wc

)
+ 1 ∈ [1, 1 + C2|λmax(W )|+R2]

For a fixed x ∈ X, the function gx(θ) = 2r

√
(x− c)T

√
W

T
II
√
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∂

∂θ
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(
∂
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∂
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)

=

 r
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II
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√
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T
II
√
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which is bounded from above in matrix norm by 2R

√
|λmax(W )| ·4RC

√
|λmax(W )| ≤

16 max(R2, 1) · C|λmax(W )| =: Lg < ∞. Therefore, the function gx(c, r) is a Lg-
Lipschitz function. We have

inf
θ∈Θ

ρ(x; θ)− a(x)

b(θ)
= inf

θ∈Θ

{(
(x− c)TW (x− c)− xTWx

)
+
(
r2 − 1

)
− 2r

√
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T
II
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}
(
cTWc+ r2 − 2r

√
cT
√
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T
II
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)−1

≥ inf
θ=(c,r)∈Θ

{(
(x− c)TW (x− c)− xTWx

)
+
(
r2 − 1

)
− 2r
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T
II
√
W (x− c) +2
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xT
√
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T
II
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}
(1 + C2|λmax(W )|+R2)−1 =: h(x)

and ρ(x,θ)−a(x)
b(θ) ≥ h(x) by the infimum in the definition while h(x) is integrable with

respect to P due to the fact that gx(c, r) is Lipschitz.
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Now we verify all assumptions (A-1) to (A-5) in Huber et al. (1967), Theorem 1 in the
same paper ensures that Theorem A holds. The mild assumptions that θ lies in a compact
subspace of Rd × R+ can be relaxed by verifying a more stringent set of conditions (A-5)
as pointed out by Huber et al. (1967). Since we actually verify assuming that the index set
I is fixed, we need to point out that in the l0 optimization for each fixed I the consistency
result holds. But for the l1 relaxed problem, we cannot guarantee consistency even with
stronger assumptions, only algorithmic convergence is guaranteed.

H.5 Proof of Theorem 5

The key idea of our proof is that we can treat our estimators Tn as the solution of a robust
estimation problem for the parameters (c, r) if the index I is fixed. Now we take the second
view that the estimator sequence Tn for parameter θ = (c, r) and assume a fixed index set
I such that

1

n

n∑
i=1

ψ(xi;Tn)→ 0, a.s. P

n→∞,

• (N-1) For each fixed θ ∈ Θ, ψ(x; θ) is A-measurable and separable. Like the con-
struction in (A-1), we can modify the ψ into a separable version ψ̃ if necessary and
verify this assumption. Then following functions are well-defined (with finite second
moment assumption on P and the Fubini theorem)

λ(θ) = λ(c, r) := EPψ(x; θ)

= EP
∂

∂θ
ρ(x; θ)

=
∂

∂θ
EPρ(x; θ)

u(x, θ,D) = sup
‖τ−θ‖≤D

|ψ(x; τ)− ψ(x; θ)| .

• (N-2) The same θ0 as computed above would satisfy λ(θ0) = 0.

• (N-3) There are strictly positive numbers α, β, γ, η such that

– (i) |λ(θ)| ≥ α|θ − θ0| for some α > 0 and |θ − θ0| ≤ η is clear since

λ(θ) =
∂

∂θ
EP
(

(x− c)TW (x− c) + r2 − 2r

√
(x− c)T

√
W

T
II
√
W (x− c)

)
is quadratic in both c and r, and it is bounded from below by linear part due to
Taylor expansion at θ0.

– (ii) EPu(x, θ,D) = EP sup‖τ−θ‖≤D |ψ(x; τ)− ψ(x; θ)| ≤ EPβ‖τ−θ‖ since ∂
∂rψ(x; θ) =

2 and
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∂
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1
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+ 4C
(
R · (4C2|λmax(W )|)−

3
2 · 2C|λmax(W )|2

)
≤ 16CR(4C2|λmax(W )|−

1
2 max(|λmax(W )|, 1)4 + |λmax(W )| <∞.

And ψ(x; θ) is Lipschitz with coefficient

β := 32CR(4C2|λmax(W )|−
1
2 max(|λmax(W )|, 1)4 + |λmax(W )|.

– (iii) EPu(x, θ,D)2 = EP
(

sup‖τ−θ‖≤D |ψ(x; τ)− ψ(x; θ)|
)2
≤

max
{
EP (β‖τ − θ‖)2 , (EPβ‖τ − θ‖)2

}
and for γ = β we can replace ‖τ − θ‖ ≤

η −D with η −D.

• (N-4) EP
[
|ψ(x; θ0)|2

]
< ∞ is clear from the analytic expression of ψ(x; θ), which

involves at most quadratic entries in x, and the fact that we assume P has finite
second moments.

Assumptions (N-1) through (N-4) allow us to apply Theorem 3 and its corollary in Huber
et al. (1967) and claim Theorem B.

The asymptotic normality result allows us to claim a Wald-type hypothesis testing for
the estimated center and radius for the sphere for a fixed index set I. that aspect in the
current paper but point out that this is one of the few non-bootstrap hypothesis testing
methods in manifold learning literature.

H.6 Proof of Theorem 6

First we compare SRCA with PCA. Assume ‖xi‖ ≤ α for any i, then for any ε > 0,
there exists a sphere Sε such that d(y, Sε) ≤ ε for any y ∈ H with ‖y‖ ≤ α (Li et al.,
2022). Intuitively, a plane can be approximated by a sphere with infinite radius. Let
x̂i = arg miny∈H d(xi, y) be the linear projection of xi to plane H, then by the triangle
inequality,

d(xi, Sε) ≤ d(xi, x̂i) + d(x̂i, Sε).

Since the linear projection of a bounded set is still bounded, d(x̂i, Sε) ≤ ε. By the definition
of SRCA,

n∑
i=1

d2(xi, S2) ≤
n∑
i=1

d2(xi, Sε) ≤
n∑
i=1

d2(xi, H) + 2ε

n∑
i=1

d(xi, H) + nε2.
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Let ε→ 0, we conclude that

n∑
i=1

d2(xi, S2) ≤
n∑
i=1

d2(xi, H).

Then we compare SRCA with SPCA. Since the objective function L , which defines SRCA,
is minS

∑n
i=1 d

2(xi, S), it follows from S1 ⊂ H that

n∑
i=1

d2(xi, S2) ≤
n∑
i=1

d2(xi, S1).

Note that SPCA is a restricted version of SRCA, where I = {1, · · · , d′ + 1}.

Appendix I. Mean Square Errors for Out-of-sample Data

This section provides the out-of-sample mean square errors of PCA, SPCA and SRCA on
the same datasets in Table 2. We provide this to show that performance evaluation measures
are not really affected by the choice of testing samples.

Appendix J. Branch-and-bound

We provided a supplementary algorithm, namely the branch-and-bound (BnB) implemen-
tation for solving the binary search problem originally treated in Algorithm 1. The branch-
and-bound algorithm (Lawler and Wood, 1966; Morrison et al., 2016) introduces the branch-
ing structure for searching space, and takes an additional tolerance parameter τ to trade
the loss of precision with reduced complexity for mixed integer problems. However, to avoid
introducing more parameters, we can use the following slightly different implementation of
branch-and-bound for a fixed target reduced dimension d′ to reduce the number of function
evaluations in solving the SRCA problem (See Algorithm 3). This algorithms searches for
an exact, rather than approximate, solution to the optimization problem. It will continue
branching and evaluating until it either finds the optimal solution or has considered all
possibilities.
Branching: The algorithm generates branches in the solution space by including or excluding
dimensions (features) from the current subset Icur. This is done by maintaining a queue of
selections to explore. For each selection, the algorithm determines the next dimension to
consider and creates a new branch by including that dimension. This branch is then added
to the queue to be explored later.
Bounding: At each step, the algorithm calculates a loss value L based on a loss function
that measures the quality of the current selection of features. If this value is lower than
the best found so far, the algorithm updates the best solution. This step acts as a bound,
because it allows the algorithm to discard branches that cannot possibly be better than the
current best solution based on the loss function’s value. In other words, if a partial solution
has a worse loss than the current best, further exploration of that branch can be stopped.
Pruning: The condition that the number of selected dimensions must match target dimen-
sion d′ ensures that only feasible solutions are evaluated. This prunes the search space by
avoiding the evaluation of incomplete or oversized feature sets.
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Dataset Method/d′ = 1 2 3 4

Banknote
PCA 15.6094 6.2737 1.9278

SPCA 15.0516 7.3182 1.5511

SRCA 13.2273 5.4120 1.1257

Power PCA 227.6291 56.0524 23.4302 3.0244

Plant SPCA 151.7555 102.3262 44.3802 41.0081

SRCA 151.3426 52.9769 20.0871 4.0775

User PCA 0.1952 0.1281 0.0749 0.0306

Knowledge SPCA 0.1478 0.0898 0.0465 0.0145

SRCA 0.1479 0.0904 0.0462 0.0144

Ecoli
PCA 0.0761 0.0334 0.0219 0.0057

SPCA 0.0462 0.0351 0.0187 0.0122

SRCA 0.0758 0.0337 0.0168 0.0058

Concrete
PCA 6.8783 4.8345 3.5462 2.5046

SPCA 5.5565 4.2051 3.1664 2.0173

SRCA 5.5573 4.2173 3.1842 2.0389

Leaf
PCA 0.0245 0.0126 0.0062 0.0040

SPCA 0.0163 0.0100 0.0073 0.0047

SRCA 0.0164 0.0101 0.0062 0.0037

Climate
PCA 1.4486 1.3846 1.3167 1.2447

SPCA 1.4265 1.3637 1.2921 1.2224

SRCA 1.3863 1.3081 1.2278 1.1525

Table 17: Out-of-sample mean square error (MSE) table for different experiments.

The algorithm proceeds by exploring the search space in a breadth-first manner (though
it could be adapted to depth-first or best-first), evaluating potential solutions, and pruning
the search tree based on the loss function’s values. The combination of these branching,
bounding, and pruning strategies defines the branch-and-bound nature of the algorithm.

From Tabel 18, Binary search (BS) demonstrates a superior ability to minimize Mean
Squared Error (MSE). For the Banknote dataset, characterized by its lower-dimensional
space, BS excels, improving as more dimensions are considered. This trend suggests that
BS is particularly effective in straightforward scenarios where precision is essential.

In the context of User Knowledge datasets, which present more complexity and ben-
efit from a higher-dimensional feature space, BS continues to outperform other methods.
Despite an initial increase in MSE observed with l1 relaxation in the Power Plant dataset,
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BS maintains the smallest MSE across all dimensions, showcasing its adept handling of
multifaceted structures.

With the Ecoli dataset, where the differences in performance between methods are less
pronounced, BS still manages to achieve a marginally lower MSE, further reinforcing its
applicability even in subtle and nuanced datasets.

In the Power Plant dataset, BS shows a significantly higher count of evaluations com-
pared to l1 and Branch-and-Bound (BnB), which may indicate a trade-off between its pre-
cision in MSE and computational efficiency. With BS requiring more evaluations as di-
mensionality grows, underscoring its comprehensive search at the expense of computational
simplicity.

Conversely, BnB and l1 consistently require fewer evaluations across most datasets and
dimensions, signaling their efficiency. Notably, in the Ecoli dataset, the number of eval-
uations across all methods does not significantly diverge, suggesting that in certain data
contexts, the choice of method may be less consequential to computational load.

Overall, while BS stands as a methodological pillar for accuracy in terms of MSE, it
comes at the cost of higher computational complexity. In contrast, BnB and l1 demonstrate
a more efficient approach, requiring fewer evaluations to achieve their results, which could
be preferable in resource-constrained scenarios or when a balance between precision and
efficiency is desired. For BnB, it requires careful choice of tolerance parameter, which may
serve as a supplement to the l1 approach for very high-dimensional datasets.
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Algorithm 3: SRCA dimension reduction algorithm with branch-and-bound

Data: X (data matrix consisting of n samples in Rd)
Input: d′ (the dimension of the sphere), W (the covariance weight matrix, by default

W = Id), rotationMethod (the method we use to construct the rotation matrix).
Result: ĉ (The estimated center of SI in Rd), r̂ (The estimated radius of SI), Iopt (The

optimal index subset)
GetRotation (X,rotationMethod) and ProjectToSphere (X,c,r,k) are identically defined
in Algorithm 1.

begin
Standardize the dataset by subtracting its empirical mean X = X − X̄
Construct a rotate matrix R = GetRotation (X,rotationMethod)
Xrotated = X ∗R, Lopt =∞
queue ={zeros(1, d)}.
while queue is not empty do
I = Icur popped from queue.
if |Icur|==d’ then

Solve the optimization problem (2) with respect to c, r with a fixed Icur.
Denote the solution as ccur, rcur, Icur
if L (c, r, I | X ) ≤ Lopt then

Lopt ← L (c, r, I | X )
copt ← ccur, ropt ← rcur, Iopt ← Icur

else
next dim = find(Icur == 0, 1);
/* find the index of the first occurrence where current selection

vector equals 0 */

include branch = Icur
include branch(next dim) = 1;
queue{end + 1} = include branch;

end

end
Construct the binary index vector η = (ηi), ηi = 1 iff i ∈ I and ηi = 0 otherwise.
ĉ = copt · η ∗R−1 + X̄, r̂ = ropt
Xrotated(:, I)← 0
Xrotated ← ProjectToSphere (X,ĉ,r̂,k)
Xoutput ← Xrotated ∗R−1 + X̄

end
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Dataset Method Metrics d′ = 1 d′ = 2 d′ = 3 d′ = 4

Banknote

BS
# Evaluations 1254 1426 409
MSE 13.439 5.5088 1.0743

l1
# Evaluations 793 837 1097
MSE 13.439 5.5088 1.0743

BnB
# Evaluations 168 336 817
MSE 13.439 5.5088 1.0743

Power Plant

BS
# Evaluations 4581 8886 3855 1009
MSE 150.8041 52.1439 19.8839 3.3868

l1
# Evaluations 900 1779 1654 4141
MSE 150.8041 53.7488 19.8839 3.3868

BnB
# Evaluations 217 588 581 2017
MSE 150.8041 53.7488 19.8839 3.3868

User Knowledge

BS
# Evaluations 4049 5463 3134 778
MSE 0.14584 0.088711 0.047064 0.014162

l1
# Evaluations 1692 2079 2285 2927
MSE 0.14584 0.088711 0.047064 0.014162

BnB
# Evaluations 378 560 581 1555
MSE 0.14584 0.088711 0.047064 0.014162

Ecoli

BS
# Evaluations 11694 27107 35009 27408
MSE 0.076661 0.032799 0.018332 0.0075651

l1
# Evaluations 2518 3000 4702 3945
MSE 0.076817 0.032799 0.018332 0.0076073

BnB
# Evaluations 540 720 1008 1044
MSE 0.076817 0.032799 0.018332 0.0076073

Concrete

BS
# Evaluations 15942 50519 97025 104791
MSE 5.219 3.4745 2.1726 0.98616

l1
# Evaluations 3054 3377 2804 2747
MSE 5.219 3.4745 2.1726 0.98616

BnB
# Evaluations 297 407 407 616
MSE 5.219 3.4745 2.1726 0.98616

Leaf

BS
# Evaluations 75883 411340 1334281 2951906
MSE 5.2223 3.1599 1.8433 1.1025

l1
# Evaluations 7250 6655 12812 6792
MSE 5.2223 3.1599 1.9634 1.1025

BnB
# Evaluations 464 464 768 912
MSE 5.2223 3.1599 1.9634 1.1025

Climate

BS
# Evaluations 146873 845856 3464180 10939128
MSE 1.3554 1.2646 1.178 1.0905

l1
# Evaluations 17495 16748 16541 15065
MSE 1.3557 1.2646 1.178 1.0905

BnB
# Evaluations 720 960 1160 1260
MSE 1.3557 1.2646 1.178 1.0905

Table 18: Comparison of different methods of SRCA (BS: binary search in Algorithm 1; l1:
l1 relaxation in Algorithm 2; BnB: Branch-and-bound in Algorithm 3 ) across datasets55
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