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Abstract

We discuss the problem of estimating Radon–Nikodym derivatives. This problem appears
in various applications, such as covariate shift adaptation, likelihood-ratio testing, mutual
information estimation, and conditional probability estimation. However, in many of the
above applications one is interested in the pointwise evaluation of the Radon–Nikodym
derivatives rather than in their approximation as elements of some spaces of functions, and
this aspect has been left unexplored in the previous studies. To address the above problem,
we employ the general regularization scheme in reproducing kernel Hilbert spaces. The
convergence rate of the corresponding regularized algorithm is established by taking into
account both the smoothness of the derivative and the capacity of the space in which it is
estimated. This is done in terms of general source conditions and the regularized Christoffel
functions. We also find that the reconstruction of Radon–Nikodym derivatives at any
particular point can be done with higher order of accuracy as compared to the reported
work available so far. Our theoretical results are illustrated by numerical simulations.

Keywords: Density ratio, Reproducing kernel Hilbert space, Radon–Nikodym differen-
tiation

1. Introduction

This paper is focused on the use of regularized kernel methods in the context of estimating
the ratio of two probability density functions, which can also be called the Radon–Nikodym
derivative of the corresponding probability measures.

Recently the estimation of Radon–Nikodym derivatives has gained significant attention
due to its potential applications in such tasks as covariate shift adaptation, outlier detec-
tion, divergence estimation, and conditional probability estimation. Here we may refer to
(Sugiyama et al., 2012) and references therein. In order to address the above problem,
various kernel-based approaches are available. In particular, several regularization schemes
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in reproducing Kernel Hilbert space (RKHS) have been discussed in (Nguyen et al., 2010;
Kanamori et al., 2012; Que and Belkin, 2013; Schuster et al., 2020; Gizewski et al., 2022).

In these earlier works, it has been assumed that the estimated Radon–Nikodym deriva-
tive belongs to RKHS in which the regularization is performed. In tasks like inlier-based
outlier detection or covariate shift adaptation by importance weighting, the above realiz-
ability assumption is not just technical but also conceptual, because in the above mentioned
tasks one is only interested in the pointwise evaluation of the Radon–Nikodym derivatives,
and needs the assumption of belonging to RKHS to treat such evaluation as a continuous
functional.

Note that Tikhonov–Lavrentier regularization is one of the most studied techniques em-
ployed for the estimation of Radon–Nikodym derivatives in RKHS. It has given rise to a
method proposed in (Kanamori et al., 2012), where the authors have also argued that it
compares favorably with other approaches in terms of computational efficiency and numer-
ical stability. On the other hand, from the regularization theory (e.g., Lu and Pereverzyev,
2013) we know that a drawback of Tikhonov–Lavrentier regularization is its comparatively
low qualification resulting in an earlier saturation, which means that if the smoothness of
the estimated quantities exceeds a certain level, level of saturation, the order of the accuracy
of Tikhonov–Lavrentiev regularization is not improved.

One of the main findings of this work is that the smoothness of quantities estimated in
the pointwise evaluation of the Radon–Nikodym derivative can exceed the level of satura-
tion of Tikhonov–Lavrentier regularization even though the smoothness of the derivative,
considered by itself, is below that level (see Section 5 for the details); this observation goes
beyond previous studies (Gizewski et al., 2022; Que and Belkin, 2013; Kanamori et al.,
2012).

Then the use of Tikhonov–Lavrentier regularization in the tasks where only point val-
ues of the Radon–Nikodym derivatives are of interest, can lead to an unnecessary loss of
accuracy. In view of the study by (Kanamori et al., 2012), the above observation is an im-
portant and rather unexpected research finding, in our opinion. It comes from the analysis
presented below. At the same time, our analysis not only points out the above limitation of
the method proposed by in (Kanamori et al., 2012), but also indicates the way to overcome
it.

The analysis below is performed in terms of the so-called source conditions and the
regularized Christoffel function. The concept of source condition is widely used in the
regularization theory (e.g., Mathé and Hofmann, 2008) for measuring the smoothness of the
estimated quantities against the rate of decrease of their Fourier coefficients with respect to
orthonormal systems of the singular value decompositions of operators from the regularized
problems. In the context of learning theory, the source conditions are discussed at least
from the inspiring paper by (Smale and Zhou, 2007). In the present study, we consider
the source conditions generated by the kernel covariance operator formed using the kernel
K of the considered RKHS and the probability measure staying in the denominator of the
Radon–Nikodym derivative.

One more concept used in our work is the regularized Christoffel function, which is an
extension of the classical notion of the Christoffel function from the orthogonal polynomial
literature. The extension is done by replacing the polynomials of increasing degrees by
functions in the considered RKHS with increasing norms. Then it characterizes in some
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sense, the capacity of the employed approximating space and provides a bound for the
evaluation at a given point independently somehow of the function to be evaluated. Another
interesting observation of our study is that one can again use the concept of source conditions
to elucidate the relationship of the regularized Christoffel function with the chosen kernel
K as well as the probability measure with respect to which the Radon–Nikodym derivative
is to be taken.

From the previous studies, one knows that the convergence of algorithms for Radon–
Nikodym differentiation is influenced not only by the smoothness of the approximated func-
tion but also by the capacity of the approximating space. Though there are several studies
that employed a particular regularization technique, such as Tikhonov–Lavrentiev regular-
ization, to the best of our knowledge there is no study considering more general regular-
ization schemes and taking into account both the above-mentioned factors, i.e.smoothness
and capacity. For example, in (Kanamori et al., 2012) and (Que and Belkin, 2013) (see
Type I setting there) only the capacity of the approximating space has been incorporated
into error estimations, and in (Gizewski et al., 2022) and (Schuster et al., 2020) only the
smoothness has been considered.

Besides, since in some applications the point values of the Radon–Nikodym derivatives
are of interest, it seems natural to study their approximation in spaces, where pointwise
evaluations are well-defined. However, in (Kanamori et al., 2012) and (Que and Belkin,
2013) the approximation has been analyzed in the space of integrable functions, where this
is not the case.

In the present paper, we aim to overcome the above limitations. More precisely, we
study general regularization schemes and analyze their accuracy with respect to both the
smoothness of the Radon–Nikodym derivative and the capacity of the RKHS in which it
is estimated. This is done in terms of general source conditions and regularized Christoffel
functions. We then establish accuracy bounds of the corresponding regularized algorithm
in the norm of RKHS and pointwise. Finally, we present some numerical illustrations
supporting our theoretical results.

2. Assumptions and Auxiliaries

In the problem of estimation of Radon–Nikodym derivatives, we consider two probability
measures p and q on a space X ⊂ Rd. The information about the measures is only provided
in the form of samples Xp = {x1, x2, . . . , xn} and Xq = {x′1, x′2, . . . , x′m} drawn indepen-
dently and identically (i.i.d) from p and q respectively. Moreover, we assume that there
is a function β : X → [0,∞), which can be viewed as the Radon–Nikodym derivative dq

dp
of the probability measure q(x) with respect to the probability measure p(x), and for any
measurable set A ⊂ X it holds ∫

A
dq(x) =

∫
A
β(x)dp(x).

Our goal is to approximate the Radon–Nikodym derivative β(x) = dq
dp by some function

β̂(x) based on the observed samples. As it has been already explained in Introduction, we
in fact need a strategy that ensures a good pointwise approximation to the derivatives β(x).

3



Nguyen, Zellinger and Pereverzyev

Then it seems to be logical to estimate β(x) in the norm of some RKHS, in which pointwise
evaluations are well-defined.

Let HK be a reproducing Kernel Hilbert space with a positive-definite function K :
X × X → R as reproducing kernel. We assume that K is a continuous and bounded
function, such that for any x ∈ X

‖K(·, x)‖HK = 〈K(·, x),K(·, x)〉
1
2
HK = [K(x, x)]

1
2 ≤ κ0 <∞.

Let L2,ρ be the space of square-integrable functions f : X → R with respect to the proba-
bility measure ρ. We define Jq : HK ↪→ L2,q and Jp : HK ↪→ L2,p as the inclusion operators,
such that for instance, Jq assigns to a function g ∈ HK the same function seen as an element
of L2,q. In the sequel, we distinguish two sample operators

SXqf = (f(x′1), f(x′2), . . . , f(x′m)) ∈ Rm,
SXpf = (f(x1), f(x2), . . . , f(xn)) ∈ Rn,

acting from HK to Rm and Rn, where the norms in later spaces are generated by m−1-
times and n−1-times the standard Euclidean inner products, such that, for example, for
u = (u1, u2, . . . , um), w = (w1, w2, . . . , wm) ∈ Rm,

〈u,w〉Rm =
1

m

m∑
j=1

ujwj , ‖u‖Rm = 〈u, u〉
1
2
Rm =

 1

m

m∑
j=1

u2j

 1
2

.

Then the adjoint operators S∗Xq : Rm → HK and S∗Xp : Rn → HK are given as

S∗Xqu(·) =
1

m

m∑
j=1

K(·, x′j)uj , u = (u1, u2, . . . , um) ∈ Rm,

S∗Xpv(·) =
1

n

n∑
i=1

K(·, xi)vi, v = (v1, v2, . . . , vn) ∈ Rn.

In the literature, various RKHS-based approaches are available for a Radon–Nikodym
derivative estimation. Here we may refer to (Kanamori et al., 2012) and to references
therein. As it can be seen from (Que and Belkin, 2013), and also from (Gizewski et al.,
2022), conceptually, under the assumption that β ∈ HK , several of the above approaches
can be derived from a regularization of an operator equation, which can be written in our
terms as

J∗pJpβ = J∗q Jq1. (1)

Because of the compactness of the operator J∗pJp, its inverse (J∗pJp)
−1 cannot be a bounded

operator in HK , which makes the Eq. 1 ill-posed. Here, 1 is the constant function that
takes the value 1 everywhere, and almost without loss of generality, we assume that 1 ∈ HK ,
because otherwise the kernel K1(x, x

′) = 1 +K(x, x′) will, for example, be used to generate
a suitable RKHS containing all constant functions.
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Since there is no direct access to the measures p and q, the Eq. 1 is inaccessible as well,
but the samples Xp and Xq allow us to access its empirical version

S∗XpSXpβ = S∗XqSXq1. (2)

A regularization of Eq. 2 may serve as a starting point for several approaches of estimating
the Radon–Nikodym derivative β. For example, as it has been observed in (Kanamori et al.,
2012; Gizewski et al., 2022), the known kernel mean matching (KMM) method (Huang
et al., 2006) can be viewed as the regularization of Eq. 1 by the method of quasi (least-
squares) solutions, originally proposed by Valentin Ivanov (1963) and also known as Ivanov
regularization (see, for example, (Oneto et al., 2016) and (Page and Grünewälder, 2019)
for its use in the context of learning). At the same time, from Theorem 1 of Kanamori
et al. (2012) it follows that the kernelized unconstrained least-squares importance fitting
(KuLSIF) proposed in (Kanamori et al., 2012) is in fact the application of the Lavrentiev
regularization scheme to the empirical version Eq. 2 of the Eq. 1, that is in KuLSIF we
have

β̂ = βλX = (λI + S∗XpSXp)
−1S∗XqSXq1. (3)

As we have already mentioned in Introduction, early bounds of the accuracy of Radon–
Nikodym numerical differentiation have relied only on the capacity of the approximating
space. For example, in (Nguyen et al., 2010; Kanamori et al., 2012) the capacity of the
underlying space HK has been measured in terms of the so-called bracketing entropy, and
in (Kanamori et al., 2012) the value of the regularization parameter λ in KuLSIF Eq. 2
has been chosen depending on that capacity measure. Note that, in such approach, there is
no possibility of incorporating into the regularization the information about other factors,
such as the smoothness of the approximated derivative β, which, as we know from (Gizewski
et al., 2022), also influences the regularization accuracy, and therefore should be taken into
account when choosing λ. For this reason, in the present study, we follow (Pauwels et al.,
2018) and employ the concept of the regularized Christoffel function that allows direct
incorporation of the regularization parameter λ into the definition of a capacity measure.
In this way, the intention is to relate two factors influencing regularization accuracy (i.e.,
the smoothness and the capacity) in one parameter.

Consider the function

Cλ(x) =
〈
K(·, x), (λI + J∗pJp)

−1K(·, x)
〉
HK

=
∥∥∥(λI + J∗pJp)

− 1
2K(·, x)

∥∥∥2
HK

(4)

Note that in (Pauwels et al., 2018) the reciprocal of Cλ(x), i.e. 1
Cλ(x)

, was called the reg-
ularized Christoffel function, but for the sake of simplicity, we will keep the same name
also for Eq. 4. Note also that in the context of supervised learning where usually only one
probability measure, say p, is involved, the expected value

N (λ) =

∫
X
Cλ(x)dp(x)

of Cλ(x), called the effective dimension, has been employed by (Caponnetto and De Vito,
2007) as an indicator of the capacity of the approximating space.
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At the same time, if more than one measure appears in the supervised learning context,
as is for example the case in the analysis of Nyström subsampling (Rudi et al., 2015; Lu
et al., 2019), then the C-norm of the regularized Christoffel function

N∞(λ) := sup
x∈X

Cλ(x) (5)

is used in parallel with the effective dimension N (λ). This gives a hint that N∞(λ) could
also be a suitable capacity measure for analyzing the accuracy of Radon–Nikodym numer-
ical differentiation because this differentiation is intrinsically related with more than one
measure.

We will need the following statement.

Lemma 1 Let b0 > 0 be such that |β(x)| ≤ b0 for every x ∈ X. Then with probability at
least 1− δ we have

∥∥∥(λI + J∗pJp)
− 1

2 (S∗XpSXpβ − S
∗
XqSXq1)

∥∥∥
HK
≤

(
1 +

√
2 log

2

δ

)√
N∞(λ)

√
b20
n

+
1

m
.

The proof of Lemma 1 is based on Lemma 4 of Huang et al. (2006), which we formulate in
our notations as follows

Lemma 2 (Huang et al. (2006)) Let φ be a map from X into HK such that ‖φ(x)‖HK ≤ R
for all x ∈ X. Then with probability at least 1− δ it holds∥∥∥∥∥∥ 1

m

m∑
j=1

φ(x′j)−
1

n

n∑
i=1

β(xi)φ(xi)

∥∥∥∥∥∥
HK

≤

(
1 +

√
2 log

2

δ

)
R

√
b20
n

+
1

m
.

Now we can return to Lemma 1.

Proof We define a map φ : X → HK as φ(x) = (λI + J∗pJp)
− 1

2K(·, x), x ∈ X. It is clear
that

‖φ(x)‖HK =
∥∥∥(λI + J∗pJp)

− 1
2K(·, x)

∥∥∥
HK

=
√
Cλ(x) ≤

√
N∞(λ).

Therefore, for the map φ the condition of the above Lemma 2 is satisfied with R = N∞(λ).
Then directly from that lemma, we have

∥∥∥(λI + J∗pJp)
− 1

2 (S∗XpSXpβ − S
∗
XqSXq1)

∥∥∥
HK

=

∥∥∥∥∥∥ 1

n

n∑
i=1

β(xi)φ(xi)−
1

m

m∑
j=1

φ(x′j)

∥∥∥∥∥∥
HK

≤

(
1 +

√
2 log

2

δ

)(√
b20
n

+
1

m

)√
N∞(λ).
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3. General Regularization Scheme and General Source Conditions

All of the available regularization methods have the potential to be employed for the regu-
larization of Eq. 2. In particular, we will use a general regularization scheme to construct
a family of approximate solutions βλX of Eq. 1 as follows

βλX = gλ(S∗XpSXp)S
∗
XqSXq1, (6)

where {gλ} is a family of positive valued functions parametrized by parameter λ > 0 called
a regularization parameter.

Recall that if A : HK → HK is a linear compact self-adjoint non-negative operator with
the spectral decomposition

A =
∑
i

σifi 〈fi, ·〉HK ,

then for any function g : [0, ‖A‖HK→HK ]→ [0,∞) the operator g(A) is formally defined as
follows

g(A) =
∑
i

g(σi)fi 〈fi, ·〉HK .

Note that for computing the image g(A)f of f ∈ HK it is not always necessary to know
the spectral decomposition of A. As an example, one can take the computation of the
iterated Lavrentiev regularization discussed below.

3.1 General Regularization Scheme

From the regularization theory we know (e.g., Lu and Pereverzyev, 2013, def. 2.2) that a
family of functions gλ : [0, c]→ [0,∞) parametrized by positive parameter λ can give rise to
a regularization algorithm if there are positive constants γ0, γ− 1

2
, γ−1 for which the following

holds:

sup
0<t≤c

|1− tgλ(t)| ≤ γ0,

sup
0<t≤c

√
t|gλ(t)| ≤

γ− 1
2√
λ
,

sup
0<t≤c

|gλ(t)| < γ−1
λ
.

(7)

Here and in the sequel, we adopt the convention that c denotes a generic positive coefficient,
which can vary from appearance to appearance and may only depend on basic parameters
such as p, q, κ0, b0, and others introduced below.

The qualification of a regularization scheme indexed by gλ is the maximal s > 0 for
which

sup
0<t≤c

ts|1− tgλ(t)| ≤ γsλs, (8)

where γs does not depend on λ. Following Definition 2.3 of Lu and Pereverzyev (2013)
we also say that the qualification s covers a non-decreasing function ϕ : [0, c] → [0,∞),
ϕ(0) = 0, if the function t → ts

ϕ(t) is non-decreasing for t ∈ (0, c]. Note that the higher the
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qualification is the more rapidly increasing the function it can cover, and in this way, as it
can be seen below, the more smoothness of approximated solutions can be utilized in the
regularization.

Observe that the Lavrentiev regularization used in KuLSIF Eq. 3 corresponds to gλ(t) =
(λ + t)−1 and has qualification s = 1. At the same time, one can increase qualification by
using the idea of the iterative Laverentiev regularization (e.g., Pereverzyev, 2022, page 41).
In this way, the approximate Radon–Nikodym derivative can be obtained iteratively as
follows

βλ,0X = 0,

βλ,lX = (λI + S∗XpSXp)
−1(S∗XqSXq1 + λβλ,l−1X ), l ∈ N.

After k such iterations we obtained the approximation βλX = βλ,kX that can be represented
in the form Eq. 6 with

gλ(t) = gλ,k(t) =
1− λk

(λ+t)k

t
.

The regularization indexed by gλ,k(t) has the qualification k that can be taken as large as
desired. Moreover, for gλ(t) = gλ,k(t) the requirements Eq. 7, Eq. 8 are satisfied with

γ0 = 1, γ− 1
2

= k
1
2 , γ−1 = k, γk = 1.

For the sake of shortness, we introduce the residual function

rλ(t) := 1− tgλ(t),

for which Eq. 7 and Eq. 8 give the bounds rλ(t) ≤ γ0 and |tsrλ(t)| ≤ γsλs.

3.2 General Source Conditions

As mentioned in the previous section, the Eq. 1 is inaccessible, but the result of Mathé and
Hofmann (2008) tells us that there always exists an element νq ∈ HK and a continuous,
strictly increasing function ϕ : [0, ‖J∗pJp‖HK→HK ] → [0,∞), which obeys ϕ(0) = 0, such
that the solution of Eq. 1 allows for a representation in terms of the source condition:

β = ϕ(J∗pJp)νq. (9)

The function ϕ above is usually called the index function. Moreover, for every ε > 0 one
can find such ϕ that Eq. 9 holds true for νq with

‖νq‖HK ≤ (1 + ε)‖β‖HK .

It is worth mentioning that Corollary 1 of Mathé and Hofmann (2008) tell us that under all
index functions ϕ in Eq. 9 there is no function with the highest decay rate to zero, or what
is the same, there is no maximal smoothness of β with respect to the operator J∗pJp. This
is because in Eq. 9 the element νq ∈ HK also allows for a representation νq = ϕ1(J

∗
pJp)ν

′
q

with some other index function ϕ1 and ν ′q ∈ HK ,
∥∥ν ′q∥∥HK ≤ (1 + ε) ‖νq‖HK . Then from Eq.

9 it follows that
β = ϕ(J∗pJp)ϕ1(J

∗
pJp)ν

′
q = ϕ2(J

∗
pJp)ν

′
q,

8
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where
∥∥ν ′q∥∥HK ≤ (1 + ε)2 ‖β‖HK , and ϕ2(t) = ϕ(t)ϕ1(t) is an index function with higher

decay rate to zero than ϕ(t) as t→ 0.
Note that since the operator J∗pJp is not accessible, there is a reason to restrict ourselves

to consideration of such index functions ϕ, which allow us to control perturbations in the
operators involved in the definition of source conditions. A class of such index functions
has been discussed in (Mathé and Pereverzev, 2003) and in (Bauer et al., 2007). Here
we follow those studies. Namely, we consider the class F = F(0, c) of index functions
ϕ : [0, c]→ R+ allowing splitting ϕ(t) = ϑ(t)ψ(t) into monotone Lipschitz part ϑ, ϑ(t) = 0,
with the Lipschitz constant equal to 1, and an operator monotone part ψ,ψ(0) = 0.

Recall that a function ψ is operator monotone on [0, c] if for any pair of self-adjoint
operators U, V with spectra in [0, c] such that U ≤ V (i.e.V −U is an non-negative operator)
we have ψ(U) ≤ ψ(V ).

An important property of an operator monotone index function, say ϕ, is that it keeps
bounds on the error of approximation of one self-adjoint operator U with spectrum on [0, c]
by another such operator V . Namely, ‖ϕ(U)− ϕ(V )‖ ≤ cϕ(‖U − V ‖), where c depends
only on ϕ. The opposite side of this property of the operator monotone index functions
is that they cannot converge faster than linearly to zero, for details, see (e.g., Mathé and
Pereverzev, 2003). This is the reason to consider the class F = F(0, c) of index functions
that are free from above limitation.

Examples of operator monotone index functions are ψ(t) = tν , ψ(t) = log−ν
(
1
t

)
, ψ(t) =

log−ν
(
log 1

t

)
, 0 < ν ≤ 1, while an example of a function ϕ from the above defined class F

is ϕ(t) = tr log−ν
(
1
t

)
, r > 1, 0 < ν ≤ 1, since it can be split into a Lipschitz part ϑ(t) = tr

and an operator monotone part ψ(t) = log−ν
(
1
t

)
.

We will need the result of Proposition 3.1 in (Pereverzyev, 2022), which we formulate
in our notations as follows

Lemma 3 Let ϕ : [0, c] → R, ϕ(0) = 0, be any non-decreasing index function. If the
qualification s of the regularization indexed by a family {gλ} covers the function ϕ, then for
any λ ∈ (0, c] it holds

sup
t∈[0,c]

|rλ(t)ϕ(t)| ≤ γ0,sϕ(λ),

where γ0,s = max{γ0, γs}, and γ0, γs are the coefficients appearing in Eq. 7 and in Eq. 8.

To estimate the regularized Christoffel functions we slightly generalize a source condition
for kernel sections K(·, x) that has been used in various contexts in (Lu et al., 2019) and
(De Vito et al., 2014).

Assumption 1 (Source condition for kernel) Let ξ : [0,
∥∥J∗pJp∥∥HK→HK ] → [0,∞) be

an operator monotone index function such that the function ξ2 is covered by qualification
s = 1. Assume that for each x ∈ X there exists an element vx ∈ HK such that

K(·, x) = ξ(J∗pJp)vx,

and the norms ‖vx‖ are uniformly bounded by a constant c that is independent of x.

Remark 4 In fact, Assumption 1 is not so restrictive, because as noted, for example, in
(Bauer et al., 2007), any function f ∈ HK meets the source condition f = (J∗pJp)

µv with
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µ > 0 and ‖v‖HK ≤ c ‖f‖HK . Observe that by definition K(·, x) ∈ HK and ‖K(·, x)‖HK ≤
κ0. Therefore, for each x ∈ X there is µx and vµx ∈ HK such that

K(·, x) = (J∗pJp)
µxvµx , ‖vµx‖HK ≤ cκ0. (10)

Then Assumption 1 just says that there is an operator monotone index function ξ(t) such
that the functions hµx = tµx/ξ(t) are bounded on [0,

∥∥J∗pJp∥∥HK→HK ] by some constant c1,

and ξ2(t) is covered by qualification s = 1. Indeed, if such ξ(t) exists then

K(·, x) = (J∗pJp)
µxvµx = ξ(J∗pJp)hµx(J∗pJp)vµx ,

which means that Assumption 1 is satisfied with vx = hµx(J∗pJp)vµx and ‖vx‖HK ≤ c1cκ0.
Note that Assumption 3b of De Vito et al. (2014) assumes the above function ξ(t) to be of
the form ξ(t) = ta, a ∈ (0, 12 ], which means that all µx in Eq. 10 are assumed to be bounded
away from zero by a > 0. This condition can be made even weaker by assuming ξ(t) to be,
for example, of the form ξ(t) = log−a(1t ), a > 0.

Assumption 1 allows us to relate the concept of the source conditions with the concept
of the regularized Christoffel functions.

Lemma 5 Under Assumption 1,

N∞(λ) ≤ cξ
2(λ)

λ
.

Proof This simply follows from Lemma 3, Assumption 1 and the fact that the Lavrentiev
regularization associated with gλ(t) = (λ+ t)−1 has the qualification s = 1. Indeed,

N∞(λ) = sup
x∈X

∥∥∥(λI + J∗pJp)
− 1

2K(·, x)
∥∥∥2
HK

= sup
x∈X

∥∥∥(λI + J∗pJp)
− 1

2 ξ(J∗pJp)vx

∥∥∥2
HK

≤ sup
x∈X
‖vx‖2HK sup

t∈[0,||J∗pJp||]
|(λ+ t)−

1
2 ξ(t)|2

≤ c sup
t
|(λ+ t)−1ξ2(t)|

≤ cλ−1 sup
t

∣∣∣∣ (1− t(λ+ t)−1
)
ξ2(t)

∣∣∣∣
≤ cλ−1 sup

t
|rλ(t)ξ2(t)|

≤ cξ
2(λ)

λ
.

Remark 6 In (Pauwels et al., 2018), the asymptotic behavior of the regularized Christoffel
functions Cλ(x) as λ → 0 has been analyzed for translation invariant kernels K(x, t) =
K(x− t). Our Lemma 5 can be viewed as an extension of that analysis based on the general
source conditions on the kernel sections Kx(·) = K(·, x) ∈ HK .
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4. Error Estimates in RKHS

In this section, we discuss error estimates between β and βλX for RKHS norm. To this end,
we consider an auxiliary regularized approximation β̄λ defined as follows

β̄λ = gλ(S∗XpSXp)S
∗
XpSXpβ. (11)

Then we decompose the error bound into two parts:∥∥∥β − βλX∥∥∥HK ≤
∥∥∥β − β̄λ∥∥∥

HK
+
∥∥∥β̄λ − βλX∥∥∥HK . (12)

We call the first term on the right-hand side of Eq. 12 the approximation error, and the
second term the noise propagation error.

Following (Lu et al., 2020), we introduce the functions

Bn,λ :=
2κ0√
n

(
κ0√
nλ

+
√
N (λ)

)
, (13)

Υ(λ) :=

(
Bn,λ√
λ

)2

+ 1, (14)

which will be useful in the subsequent analysis.
Moreover, we need the following estimates from (Lu et al., 2020) that are valid with

probability at least 1− δ and can be written in our notations as∥∥∥J∗pJp − S∗XpSXp∥∥∥HK→HK ≤ 4κ20√
n

log
2

δ
, (15)∥∥∥(λI + J∗pJp)

−1/2(J∗pJp − S∗XpSXp)
∥∥∥
HK→HK

≤ Bn,λ log
2

δ
, (16)

Ξ :=
∥∥∥(λI + J∗pJp)(λI + S∗XpSXp)

−1
∥∥∥
HK→HK

≤ 2

(Bn,λ log 2
δ√

λ

)2

+ 1

 . (17)

Proposition 7 (Approximation error bound) 1. If β meets source condition Eq. 9,
where ϕ is an operator monotone index function, then∥∥∥β − β̄λ∥∥∥

HK
≤ c(γ0 + γ−1)Ξϕ(λ), 0 < λ ≤ κ0.

2. If β meets source condition Eq. 9, where ϕ = ϑψ ∈ F(0, c) with c is large enough and

if the qualification of the regularization gλ covers ϑ(t)t
3
2 , then∥∥∥β − β̄λ∥∥∥

HK
≤ cΞϕ(λ) + ψ(κ0)γ0

∥∥∥J∗pJp − S∗XpSXp∥∥∥HK→HK .
Proof The Proposition 7 can be proved by repeating line by line the argument of the proof
of Proposition 4.3 in (Lu et al., 2020), where the items denoted there as T , Tx, f † and f̄λx
should be substituted by J∗pJp, S

∗
Xp
SXp , β, and β̄λ, respectively.

11
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Remark 8 In the report of an anonymous reviewer on the previous version of this study
it has been noted that the requirement on the qualification of gλ to cover ϑ(t)t

3
2 seems to be

unnecessary. Indeed, after a close examination of the proof of Proposition 4.3 in (Lu et al.,
2020) we can conclude that part 2 of Proposition 7 can be proven under a weaker assumption,
namely, that the qualification of the regularization gλ, covers the index function ϑ(t)t. At
the same time, to guarantee the accuracy bounds of the pointwise evaluation of the Radon–
Nikodym numerical differentiation proven below in Proposition 14 and Theorem 16 we indeed
need a regularization with a qualification covering the index function ϑ(t)t

3
2 (details are

explained in Section 5). On the other hand, from the viewpoint of the iterated Lavrentiev
regularization discussed in Section 3.1, if the qualification s = k of the regularization gλ =

gλ,k(t) =
1− λk

(λ+t)k

t covers the index function ϑ(t)t (i.e., the function t → tk−1

ϑ(t) is non-

decreasing), but does not cover the function ϑ(t)t
3
2 , then one can perform just one more

iteration and construct the regularization gλ = gλ,k+1(t), which qualification s = k + 1 is

sufficient to cover the function ϑ(t)t
3
2 .

Proposition 9 (Noise propagation error bound) Let βλX, β̄
λ be defined by Eq. 3, Eq.

11. Then with probability at least 1− δ it holds∥∥∥β̄λ − βλX∥∥∥HK ≤ c
(
γ2− 1

2

+ γ2−1

) 1
2

Ξ
1
2

1√
λ

(
m−

1
2 + n−

1
2

)√
N∞(λ)

(
log

1
2

1

δ

)
.

Proof From Eq. 17 and well-known Cordes inequality (‖AsBs‖ ≤ ‖AB‖s for s ∈ [0, 1]
and arbitrary positive operators A,B on a Hilbert space), as well as from the fact that
(λI + J∗pJp), (λI + S∗XpSXp)

−1 are positive and self-adjoint operators, we have∥∥∥(λI + J∗pJp)
1/2(λI + S∗XpSXp)

−1/2
∥∥∥
HK→HK

≤ Ξ1/2. (18)

Then using Eq. 7 and Lemma 1, we can continue∥∥∥β̄λ − βλX∥∥∥HK =
∥∥∥gλ(S∗XpSXp)(S

∗
XqSXq1− S

∗
XpSXpβ)

∥∥∥
HK

≤
∥∥∥gλ(S∗XpSXp)(λI + S∗XpSXp)

1
2

∥∥∥
HK→HK

∥∥∥(λI + S∗XpSXp)
− 1

2 (λI + J∗pJp)
1
2

∥∥∥
HK→HK

×
∥∥∥(λI + J∗pJp)

− 1
2 (S∗XqSXq1− S

∗
XpSXpβ)

∥∥∥
HK

≤ sup
0<t≤c

|gλ(t)(λ+ t)
1
2 |Ξ

1
2

∥∥∥(λI + J∗pJp)
− 1

2 (S∗XpSXpβ − S
∗
XqSXq1)

∥∥∥
HK

≤ (γ2− 1
2

+ γ2−1)
1
2

1√
λ

Ξ
1
2

(
1 +

√
2 log

2

δ

)(√
b20
n

+
1

m

)√
N∞(λ)

≤ c
(
γ2− 1

2

+ γ2−1

) 1
2 1√

λ
Ξ

1
2

(
m−

1
2 + n−

1
2

)√
N∞(λ)

(
log

1
2

1

δ

)
.

The next proposition summaries of Proposition 7 and Proposition 9.
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Proposition 10 If β meets source condition Eq. 9, where ϕ is an operator monotone index
function, then with probability at least 1− δ it holds∥∥∥β − βλX∥∥∥HK ≤ c

(
Υ(λ)ϕ(λ) +

1√
λ

[Υ(λ)]
1
2 (m−

1
2 + n−

1
2 )
√
N∞(λ)

)(
log

2

δ

)2

.

If β meets source condition Eq. 9, where ϕ = ϑψ ∈ F(0, c) with c is large enough, and

if the qualification of the regularization gλ covers ϑ(t)t
3
2 then with probability at least 1− δ

the total error allows for the bound∥∥∥β − βλX∥∥∥HK ≤ c
(

Υ(λ)ϕ(λ) + n−
1
2 +

1√
λ

[Υ(λ)]
1
2 (m−

1
2 + n−

1
2 )
√
N∞(λ)

)(
log

2

δ

)2

.

Proof We first prove the results for β meets source condition Eq. 9, where ϕ is an operator
monotone index function. Using the error estimates in Proposition 7 and Proposition 9,
and Eq. 13 - Eq. 17, we have

∥∥∥β − βλX∥∥∥HK ≤c(γ0 + γ−1)

(Bn,λ log 2
δ√

λ

)2

+ 1

ϕ(λ)

+
(
γ2− 1

2

+ γ2−1

) 1
2 1√

λ

√√√√(Bn,λ log 2
δ√

λ

)2

+ 1

(
log

1
2

1

δ

)(
m−

1
2 + n−

1
2

)√
N∞(λ)

≤c
(

Υ(λ)ϕ(λ) +
1√
λ

[Υ(λ)]
1
2 (m−

1
2 + n−

1
2 )
√
N∞(λ)

)(
log

2

δ

)2

.

Similarly, if β meets source condition Eq. 9, with ϕ = ϑψ ∈ F(0, c) and the qualification of

the regularization gλ covers ϑ(t)t
3
2 , we have

∥∥∥β − βλX∥∥∥HK ≤c
(Bn,λ log 2

δ√
λ

)2

+ 1

ϕ(λ) + ψ(κ0)γ0
4κ20√
n

log
2

δ

+ c
1√
λ

√√√√(Bn,λ log 2
δ√

λ

)2

+ 1

(
log

1
2

1

δ

)(
m−

1
2 + n−

1
2

)√
N∞(λ)

≤c
(

Υ(λ)ϕ(λ) + n−
1
2 +

1√
λ

[Υ(λ)]
1
2 (m−

1
2 + n−

1
2 )
√
N∞(λ)

)(
log

2

δ

)2

.

We will also need the following statement proven in (Lu et al., 2020) as Lemma 4.6.

Lemma 11 (Lu et al. (2020)) There exists λ∗ satisfying N (λ∗)/λ∗ = n. For λ∗ ≤ λ ≤
κ0,

Bn,λ ≤
2κ0√
n

(√
2κ0 +

√
N (λ)

)
. (19)
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This yields

Υ(λ) ≤ 1 + (4κ20 + 2κ0)
2 (20)

and also

Bn,λ
(
Bn,λ +

√
λ
)
≤ (1 + 4κ0)

4 min

{
λ,

√
κ0
n

}
, (21)

for n large enough.

For λ > λ∗ we can make the statement of Proposition 10 more transparent.

Theorem 12 Let K satisfy Assumption 1, and λ ≥ λ∗. Then under the assumptions of
Proposition 10, with probability at least 1− δ, it holds∥∥∥β − βλX∥∥∥HK ≤ c

(
ϕ(λ) + (m−

1
2 + n−

1
2 )
ξ(λ)

λ

)(
log

2

δ

)2

.

Consider θϕ,ξ(t) = ϕ(t)t
ξ(t) and λ = λm,n = θ−1ϕ,ξ(m

− 1
2 + n−

1
2 ), then∥∥∥β − βλX∥∥∥HK ≤ cϕ

(
θ−1ϕ,ξ(m

− 1
2 + n−

1
2 )
)

log2
1

δ
.

Remark 13 As we already mentioned, the accuracy of the approximation Eq. 6 in RKHS
has also been estimated in Theorem 2 of Gizewski et al. (2022). In our terms, the result of
Gizewski et al. (2022) can be written as follows:∥∥∥β − βλX∥∥∥HK ≤ cϕ

(
θ−1ϕ (m−

1
2 + n−

1
2 )
)

log
1

δ
. (22)

where θϕ(t) = ϕ(t)t. To simplify the comparison of Theorem 12 and Eq. 22, let us consider
the case when β meets the source condition Eq. 9 with ϕ(t) = tη. In this case the bound
Eq. 22 can be reduced to ∥∥∥β − βλX∥∥∥HK = O

(
(m−

1
2 + n−

1
2 )

η
η+1

)
. (23)

It is noteworthy that the error bound established in Theorem 2 of Gizewski et al. (2022) does
not take into consideration the capacity of HK . Such an additional factor can be accounted
for in terms of Assumption 1. Assume that K satisfies Assumption 1 with ξ(t) = tς , 0 <

ς ≤ 1
2 , then for λ = λm,n = θ−1ϕ,ξ(m

− 1
2 + n−

1
2 ), the bound in Theorem 12 gives∥∥∥β − βλX∥∥∥HK = O
(

(m−
1
2 + n−

1
2 )

η
η+1−ς

)
,

that is better than the order of accuracy given by Eq. 23. Then one can conclude that the
bound in Theorem 12 obtained by our argument generalizes, specifies, and refines the results
of Gizewski et al. (2022).

Recall that the bounds in Theorem 12 are valid for λ > λ∗. Using Lemma 5 and 11 one
can prove that λ = λm,n also satisfies the above inequality. The corresponding proof can be
easily recovered from Figure 1.
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Figure 1: Relation between λ∗ and λm,n.

5. Error Bounds for The Pointwise Evaluation

In this section, we discuss the error between point values of β(x) and βλX(x) for all x ∈ X.
In view of the reproducing property of K and Assumption 1 we have

|β(x)− βλX(x)| =
∣∣ 〈Kx, β − βλX

〉
HK

∣∣ =
∣∣ 〈K(·, x), β − βλX

〉
HK

∣∣
=
∣∣ 〈ξ(J∗pJp)vx, β − βλX〉HK ∣∣

≤ c
∥∥∥ξ(J∗pJp)(β − βλX)

∥∥∥
HK

. (24)

Similarly, we obtain

|β(x)− β̄λ(x)| ≤ c
∥∥∥ξ(J∗pJp)(β − β̄λ)

∥∥∥
HK

,

|β̄λ(x)− βλX(x)| ≤ c
∥∥∥ξ(J∗pJp)(β̄λ − βλX)

∥∥∥
HK

,

that allows for the following decomposition of the error-bound

|β(x)− βλX(x)| ≤ c
(∥∥∥ξ(J∗pJp)(β − β̄λ)

∥∥∥
HK

+
∥∥∥ξ(J∗pJp)(β̄λ − βλX)

∥∥∥
HK

)
. (25)

The bound Eq. 25 implies that in the pointwise evaluation setting, we in fact approximate
the elements βξ = ξ(J∗pJp)β, which in view of Eq. 9 satisfy the source condition

βξ = ϕξ(J
∗
pJp)νq

with the index functions ϕξ(t) = ξ(t)ϕ(t). According to Assumption 1, ξ2(t) is covered by
the qualification s = 1, which implies that the highest decay rate of ξ(t) to zero as t→ 0 is

O(t
1
2 ). Moreover, for ϕ ∈ F(0, c) we have ϕξ(t) = ξ(t)ϑ(t)ψ(t), where ψ(t) is assumed to be
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an operator monotone and, as it has been mentioned above with the reference to (Mathé
and Pereverzev, 2003), ψ(t) cannot converge to zero faster than linearly. Then the highest

decay rate of ϕξ(t) to zero is O(ϑ(t)t
3
2 ). Therefore, to guarantee that the qualification of a

regularization gλ is able to cover the index functions ϕξ(t) = ξ(t)ϑ(t)ψ(t) appearing in the
pointwise evaluation setting it is sufficient to require that the qualification of gλ covers the
index functions ϑ(t)t

3
2 , which is what is assumed in Proposition 7 and the next proposition

estimating the first term in the right-hand side of Eq. 25.

Proposition 14 Let Assumption 1 be satisfied. Assume also the conditions of Proposition
7. Then∥∥∥ξ(J∗pJp)(β − β̄λ)

∥∥∥
HK
≤ cξ(λ)

(
Ξ

3
2ϕ(λ) + (γ0 + γ 1

2
)Ξ

1
2ψ(κ0)

∥∥∥J∗pJp − S∗XpSXp∥∥∥HK→HK
)
.

for ϕ ∈ F(0, c), while for an operator monotone index function ϕ we have∥∥∥ξ(J∗pJp)(β − β̄λ)
∥∥∥
HK
≤ c(γ0 + γ 3

2
)Ξ

3
2 ξ(λ)ϕ(λ).

Proof The analysis below is based on a modification of arguments developed in (Lu et al.,

2020) for estimating the L2,p-norm of any function f ∈ L2,p in terms of
∥∥∥(J∗pJp)

1
2 f
∥∥∥
HK

. For

the reader’s convenience, we present this modification in detail.
First of all, directly from Lemma A.1 (Lu et al., 2020), it follows that, if gλ is any

regularization with qualification 1, then∥∥∥rλ(S∗XpSXp)(λI + S∗XpSXp)
1
2

∥∥∥
HK→HK

≤
√

(γ20 + γ21
2

)λ
1
2 . (26)

If gλ has qualification at least 3/2 then∥∥∥rλ(S∗XpSXp)(λI + S∗XpSXp)
3
2

∥∥∥
HK→HK

≤
√

8(γ20 + γ23
2

)λ
3
2 . (27)

If β meets source condition Eq. 9, then for any λ > 0∥∥∥ξ(J∗pJp)(β − β̄λ)
∥∥∥
HK

=
∥∥∥ξ(J∗pJp)(I − gλ(S∗XpSXp)S

∗
XpSXp)β

∥∥∥
HK

=
∥∥∥ξ(J∗pJp)(I − gλ(x∗SXp)S

∗
XpSXp)ϕ(J∗pJp)v

∥∥∥
HK

≤
∥∥∥ξ(J∗pJp)(λI + J∗pJp)

− 1
2

∥∥∥
HK→HK

∥∥∥(λI + J∗pJp)
1
2 rλ(S∗XpSXp)ϕ(J∗pJp)v

∥∥∥
HK

. (28)

Now we are going to estimate each component on the right-hand side of Eq. 28. From the
proof of Lemma 5, we have∥∥∥ξ(J∗pJp)(λI + J∗pJp)

− 1
2

∥∥∥
HK→HK

≤ cξ(λ)√
λ
. (29)

Observe also that∥∥∥(λI + J∗pJp)
1
2 rλ(S∗XpSXp)ϕ(J∗pJp)v

∥∥∥
HK

≤
∥∥∥(λI + J∗pJp)

1
2 rλ(S∗XpSXp)(λI + J∗pJp)

∥∥∥
HK→HK

∥∥(λI + J∗pJp)
−1ϕ(J∗pJp)v

∥∥
HK

.
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Moreover, using Eq. 17 and the bounds Eq. 18 and Eq. 27, we get∥∥∥(λI + J∗pJp)
1
2 rλ(S∗XpSXp)(λI + J∗pJp)

∥∥∥
HK→HK

≤
∥∥∥(λI + J∗pJp)

1
2 (λI + S∗XpSXp)

− 1
2 (λI + S∗XpSXp)

1
2 rλ(S∗XpSXp)(λI + J∗pJp)

∥∥∥
HK→HK

≤ Ξ
1
2

∥∥∥(λI + S∗XpSXp)
1
2 rλ(S∗XpSXp)(λI + S∗XpSXp)(λI + S∗XpSXp)

−1(λI + J∗pJp)
∥∥∥
HK→HK

≤ Ξ
1
2

∥∥∥(λI + S∗XpSXp)
1
2 rλ(S∗XpSXp)(λI + S∗XpSXp)

∥∥∥
HK→HK

Ξ

=
∥∥∥rλ(S∗XpSXp)(λI + S∗XpSXp)

3
2

∥∥∥
HK→HK

Ξ
3
2

≤ cΞ
3
2λ

3
2

(
γ0 + γ 3

2

)
.

Besides, using the same argument as in the proof of Lemma 5, for an operator monotone
index function ϕ we have∥∥(λI + J∗pJp)

−1ϕ(J∗pJp)v
∥∥
HK
≤ cϕ(λ)

λ
‖v‖HK . (30)

Thus, ∥∥∥(λI + J∗pJp)
1
2 rλ(S∗XpSXp)ϕ(J∗pJp)v

∥∥∥
HK
≤ c

(
γ0 + γ 3

2

)
Ξ

3
2λ

1
2ϕ(λ).

Substituting Eq. 29 and the above estimate into Eq. 28, we obtain the second bound of
the proposition.

Now we turn to proving the first bound and assume that β meets Eq. 9 with ϕ = ϑψ.
Then we have∥∥∥ξ(J∗pJp)(β − β̄λ)

∥∥∥
HK
≤
∥∥∥ξ(J∗pJp)rλ(S∗XpSXp)ϑ(S∗XpSXp)ψ(J∗pJp)v

∥∥∥
HK

+
∥∥∥ξ(J∗pJp)rλ(S∗XpSXp)(ϑ(J∗pJp)− ϑ(S∗XpSXp))ψ(J∗pJp)v

∥∥∥
HK

.

(31)

Further, we estimate separately each term on the right-hand side of Eq. 31. By using Eq.
29 and Eq. 30, the first term is estimated as follows:∥∥∥ξ(J∗pJp)rλ(S∗XpSXp)ϑ(S∗XpSXp)ψ(J∗pJp)v

∥∥∥
HK

≤
∥∥∥ξ(J∗pJp)(λI + J∗pJp)

− 1
2

∥∥∥
HK→HK

∥∥∥(λI + J∗pJp)
1
2 rλ(S∗XpSXp)ϑ(S∗XpSXp)ψ(J∗pJp)

∥∥∥
HK→HK

×
∥∥(λI + J∗pJp)

−1ψ(J∗pJp)v
∥∥
HK

≤ cξ(λ)√
λ

∥∥∥(λI + J∗pJp)
1
2 rλ(S∗XpSXp)ϑ(S∗XpSXp)(λI + J∗pJp)

∥∥∥
HK→HK

ψ(λ)

λ
‖v‖HK

≤ cξ(λ)ψ(λ)

λ
3
2

Ξ
1
2

∥∥∥(λI + S∗XpSXp)
1
2 rλ(S∗XpSXp)ϑ(S∗XpSXp)(λI + S∗XpSXp)

∥∥∥
HK→HK

Ξ

≤ cξ(λ)ψ(λ)

λ
3
2

Ξ
3
2ϑ(λ)λ

3
2

≤ cξ(λ)ϕ(λ)Ξ
3
2 , (32)
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and with the use of Eq. 26 we can estimate the second term in Eq. 31 as∥∥∥ξ(J∗pJp)rλ(S∗XpSXp)(ϑ(J∗pJp)− ϑ(S∗XpSXp))ψ(J∗pJp)v
∥∥∥
HK

≤
∥∥∥ξ(J∗pJp)(λI + J∗pJp)

− 1
2 (λI + J∗pJp)

1
2 rλ(S∗XpSXp)(ϑ(J∗pJp)− ϑ(S∗XpSXp))ψ(J∗pJp)v

∥∥∥
HK

≤ cξ(λ)√
λ

∥∥∥(λI + J∗pJp)
1
2 rλ(S∗XpSXp)

∥∥∥
HK→HK

∥∥∥(ϑ(J∗pJp)− ϑ(S∗XpSXp))
∥∥∥
HK→HK

≤ cξ(λ)√
λ

∥∥∥(λI + J∗pJp)
1
2 rλ(S∗XpSXp)

∥∥∥
HK→HK

∥∥∥J∗pJp − S∗XpSXp∥∥∥HK→HK ψ(κ0) ‖v‖HK

≤ cξ(λ)√
λ

Ξ
1
2

∥∥∥(λI + S∗XpSXp)
1
2 rλ(S∗XpSXp)

∥∥∥
HK→HK

∥∥∥J∗pJp − S∗XpSXp∥∥∥HK→HK
≤ cξ(λ)Ξ

1
2

(
γ0 + γ 1

2

)∥∥∥J∗pJp − S∗XpSXp∥∥∥HK→HK . (33)

Substituting Eq. 32 and Eq. 33 into Eq. 31, we obtain∥∥∥ξ(J∗pJp)(β − β̄λ)
∥∥∥
HK
≤ cξ(λ)

(
Ξ

3
2ϕ(λ) + (γ0 + γ 1

2
)Ξ

1
2

∥∥∥J∗pJp − S∗XpSXp∥∥∥HK→HK
)
.

Next proposition estimates the second term in the right-hand side of Eq. 25.

Proposition 15 Assume Assumption 1 be satisfied. Then it holds∥∥∥ξ(J∗pJp)(β̄λ − βλX)
∥∥∥
HK
≤ cξ(λ)√

λ
Ξ(γ−1+γ0+1)

∥∥∥(λI + J∗pJp)
− 1

2 (S∗XqSXq1− S
∗
XpSXpβ)

∥∥∥
HK

.

Proof Using (9), (17) and (29), we derive∥∥∥ξ(J∗pJp)(β̄λ − βλX)
∥∥∥
HK
≤
∥∥∥ξ(J∗pJp)gλ(S∗XpSXp)(S

∗
XqSXq1− S

∗
XpSXpβ)

∥∥∥
HK

≤
∥∥∥ξ(J∗pJp)(λI + J∗pJp)

− 1
2

∥∥∥
HK→HK

×

×
∥∥∥(λI + J∗pJp)

1
2 gλ(S∗XpSXp)(S

∗
XqSXq1− S

∗
XpSXpβ)

∥∥∥
HK

≤ cξ(λ)√
λ

∥∥∥(λI + J∗pJp)
1
2 gλ(S∗XpSXp)(λI + J∗pJp)

1
2

∥∥∥
HK→HK

×

×
∥∥∥(λI + J∗pJp)

− 1
2 (S∗XqSXq1− S

∗
XpSXpβ)

∥∥∥
HK

≤ cξ(λ)√
λ

Ξ
1
2

∥∥∥gλ(S∗XpSXp)(λI + S∗XpSXp)
∥∥∥
HK

Ξ
1
2×

×
∥∥∥(λI + J∗pJp)

− 1
2 (S∗XqSXq1− S

∗
XpSXpβ)

∥∥∥
HK

≤ cξ(λ)√
λ

Ξ sup
t

∣∣gλ(t)(λ+ t)
∣∣ ∥∥∥(λI + J∗pJp)

− 1
2 (S∗XqSXq1− S

∗
XpSXpβ)

∥∥∥
HK

≤ cξ(λ)√
λ

Ξ(γ−1 + γ0 + 1)
∥∥∥(λI + J∗pJp)

− 1
2 (S∗XqSXq1− S

∗
XpSXpβ)

∥∥∥
HK

.
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Now we can combine Eq. 25 with Propositions 14, 15 and with Lemma 1. Then the
same argument as in the proof of Proposition 10 gives us the following statement.

Theorem 16 Under the assumption of Propositions 14 and 15, for λ > λ∗ with probability
at least 1− δ, for all x ∈ X, we have

|β(x)− βλX(x)| ≤ cξ(λ)

(
ϕ(λ) + (m−

1
2 + n−

1
2 )
ξ(λ)

λ

)(
log

2

δ

)2

,

and for λ = λm,n = θ−1ϕ,ξ(m
− 1

2 + n−
1
2 ),

|β(x)− βλX(x)| ≤ cξ(λm,n)ϕ(λm,n) log2
1

δ
.

Remark 17 Let us consider the same index functions ϕ(t) = tη and ξ(t) = tς as in Remark

13, where the accuracy of order O
(

(m−
1
2 + n−

1
2 )

η
η+1−ς

)
has been derived for Eq. 6. Under

the same assumptions, Theorem 16 guarantees the accuracy of order O
(

(m−
1
2 + n−

1
2 )

η+ς
η+1−ς

)
.

This illustrates that the reconstruction of the Radon–Nikodym derivative at any particular
point can be done with much higher accuracy than its reconstruction as an element of RKHS.
But let us stress that the above high order of accuracy is guaranteed when the qualification
s of the used regularization scheme is higher than that of the Lavrentiev regularization or
KuLSIF Eq. 3.

6. Numerical Illustrations

In our examples, we simulate inputs Xp = (x1, x2, . . . , xn) to be sampled from the normal
distribution p ∼ N(2, 5), while the inputs Xq = (x′1, x

′
2, . . . , x

′
m) are sampled from the

normal distribution q ∼ N(µq, 0.5) with µq = {2, 3, 4}. In this case, the Radon–Nikodym

derivative β = dq
dp is known to be

β(x) =
√

10e
(x−2)2−10(x−µq)2

10 .

In the algorithms described in Section 3, we choose the kernel as

K(x, x′) = 1 + e−
(x−x′)2

2 ,

which is a combination of a universal Gaussian kernel with a constant such that the corre-
sponding space HK contains all constant functions.

We are going to illustrate that to achieve a high order of accuracy for the reconstruction
of the Radon–Nikodym derivative at any particular point, as it is guaranteed by Theorem
16, one needs to employ a regularization with the qualification that is higher than 1. For
doing this we use a particular case of the general regularization scheme Eq. 6, namely
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the iterated Lavrentiev regularization, to compute the values of the approximate Radon–
Nikodym derivative βλX = (βλ1 , β

λ
2 , · · · , βλn) with βλi = βλX(xi).

Recall that the k times iterated Lavrentiev regularization is indexed by the functions

gλ(t) = gλ,k(t) =

(
1− λk

(λ+ t)k

)
t−1, (34)

and has the qualification s = k.
For gλ(t) = gλ,k(t) the vector of values of the approximate Radon–Nikodym derivative

βλX = βλ,kX given by Eq. 6, Eq. 34 is the k-th term of the sequence

βλ,lX,0 = 0,

βλ,lX = (nλI + K)−1
(
nλβλ,l−1X + F̄

)
, l = 1, 2, . . . , k. (35)

where I is n by n identity matrix, K = (K(xi, xj))
n
i,j=1, and F̄ = (Fi)

n
i=1 with Fi =

n
m

∑m
j=1K(xi, x

′
j).

The algorithm Eq. 35 has been implemented with m = n = 100 and k = {1, 2, 3, 5, 10}.
The regularization parameter λ is chosen by the so-called quasi-optimality criterion (see,
for example, Bauer and Reiß (2008), Kindermann et al. (2018)), λ̄ ∈ {λι = λ0%

ι, ι =
1, 2, . . . , w}, % < 1 such that for λ̄ = λι0 ,∥∥∥βλι0X − βλι0−1

X

∥∥∥
Rn

= min
{∥∥∥βλιX − βλι−1

X

∥∥∥
Rn
, ι = 1, 2, . . . , w

}
.

Taking into consideration Theorem 16 and Figure 1, one can expect that λ̄ ≈ λm,n >

(m−
1
2 + n−

1
2 ). Therefore, for n = m = 100 it is natural to look for λ̄ within interval

[0.1, 0.9], and in our experiments we choose λ0 = 0.9, % = 9

√
1
9 , and w = 9, such that

λι ∈ [0.1, 0.9].
The performance of each implementation has been measured in terms of the mean-square

deviation (MSD).

MSD = n−1
n∑
i=1

(
β(xi)− βλ,kX (xi)

)2
.

A summary of the performance over 20 simulations of (xi)
n
i=1, (x′j)

m
j=1 in all cases µq =

{2, 3, 4} is presented in the form of box plots in Figure 2. It can be clear seen that in our
examples the considered realization of the iterated Laventiev regularization outperforms its
original version (k = 1). This supports a conclusion from Theorem 16 suggesting the use of
high qualification regularization for pointwise evaluation of Radon–Nikodym derivation.

The performance of the algorithm in Eq. 35 for a particular simulation is displayed in
Figure 3. In this figure, the exact values β are shown by the line, and the βλ,1X (xi), β

λ,2
X (xi),

βλ,3X (xi), β
λ,5
X (xi), and βλ,10X (xi) are denoted correspondingly by green triangles, red squares,

cyan diamonds, yellow stars, and blue crosses.
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(a) (b)

(c)

Figure 2: Mean-square deviation in examples with (a) Xq ∼ N(2, 0.5), (b) Xq ∼ N(3, 0.5),
and (c) Xq ∼ N(4, 0.5).
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