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Abstract

Random smoothing data augmentation is a unique form of regularization that can prevent
overfitting by introducing noise to the input data, encouraging the model to learn more
generalized features. Despite its success in various applications, there has been a lack of
systematic study on the regularization ability of random smoothing. In this paper, we
aim to bridge this gap by presenting a framework for random smoothing regularization
that can adaptively and effectively learn a wide range of ground truth functions belong-
ing to the classical Sobolev spaces. Specifically, we investigate two underlying function
spaces: the Sobolev space of low intrinsic dimension, which includes the Sobolev space in
D-dimensional Euclidean space or low-dimensional sub-manifolds as special cases, and the
mixed smooth Sobolev space with a tensor structure. By using random smoothing regular-
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ization as novel convolution-based smoothing kernels, we can attain optimal convergence
rates in these cases using a kernel gradient descent algorithm, either with early stopping or
weight decay. It is noteworthy that our estimator can adapt to the structural assumptions
of the underlying data and avoid the curse of dimensionality. This is achieved through
various choices of injected noise distributions such as Gaussian, Laplace, or general poly-
nomial noises, allowing for broad adaptation to the aforementioned structural assumptions
of the underlying data. The convergence rate depends only on the effective dimension,
which may be significantly smaller than the actual data dimension. We conduct numerical
experiments on simulated data to validate our theoretical results.

Keywords: random smoothing, regularization, kernel gradient descent, early stopping,
weight decay

1. Introduction

Random smoothing data augmentation is a technique used to improve the generalization
and robustness of machine learning models, particularly in the context of deep learning.
This method involves adding random noise, such as Gaussian or Laplace noise, to the input
data during the training process. The idea behind random smoothing is to make the model
more robust to small perturbations in the input data, as the added noise simulates variations
that may occur naturally in real-world data. This augmentation approach has proven to be
an effective regularization technique, contributing to the empirical success of deep learning
models across various applications. For instance, random flip, random crop, and color jitter
can significantly improve the classification accuracy in natural images (Goodfellow et al.,
2016; Shorten and Khoshgoftaar, 2019). Random smoothing has been proven effective for
improving model robustness and generalization (Blum et al., 2020; Rosenfeld et al., 2020;
Mehra et al., 2021; Wang et al., 2020; Gao et al., 2020). For example, random smoothing
with Gaussian noise injection is introduced to address the adversarial vulnerability (Cohen
et al., 2019; Salman et al., 2019), and by encouraging the feature map to be invariant under
data augmentations, self-supervised contrastive learning methods (He et al., 2020; Chen
et al., 2020; Grill et al., 2020; Chen and He, 2021; He et al., 2021) can achieve state-of-the-
art performance for various downstream tasks.

Random smoothing can be viewed as a form of regularization (Grandvalet et al., 1997).
Regularization techniques generally aim to reduce the complexity of a model, making it less
prone to fitting the noise in the training data and, consequently, improving its performance
on unseen data. Random smoothing can be considered an implicit form of regularization,
as it does not directly modify the model’s parameters or loss function, unlike explicit reg-
ularization techniques such as `1 or `2 regularization. Instead, it indirectly influences the
model’s behavior by altering the input data during training. By adding random noise to the
input data, random smoothing forces the model to focus on the underlying structure of the
data rather than memorizing specific instances. This leads to more robust and generalizable
models that can better handle variations in real-world data. As a result, random smoothing
acts as a regularizer, improving the model’s ability to generalize from the training set to
unseen data. Such a regularization perspective at least starts with Grandvalet et al. (1997).
However, in spite of the empirical success of random smoothing in various applications,
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there is a lack of systematic research on the regularization effect of random smoothing in
the literature.

In this paper, we address this gap by examining the classic nonparametric regression prob-
lem from the perspective of random smoothing regularization. In nonparametric regression,
the primary objective is to uncover the functional relationship between input and output
variables. By making appropriate assumptions about the underlying truth function and
selecting the appropriate estimator, we focus on understanding the efficiency of the esti-
mation, specifically, the rate at which the estimation error converges to zero as the sample
size n increases. The optimal convergence rate is typically dictated by the problem’s inher-
ent complexity. The actual achievable convergence rates depend on the specific estimation
methods employed. Among various techniques, we consider kernel methods that have been
extensively investigated in the research literature (Wahba, 1990; Hastie et al., 2001).

In this study, we present a unified framework that can learn a wide range of D-dimensional
ground truth functions belonging to the classical Sobolev spaces (Wmf ) in an effective and
adaptive manner. The framework incorporates random smoothing as a central component.
Our hypothesis space is a reproducing kernel Hilbert space that is associated with a ker-
nel function of smoothness denoted by m0. Random smoothing regularization leads to a
novel convolution between the kernel function and a probability density function for the in-
jected input noise. This injected noise is governed by either short or long-tail distributions,
namely Gaussian and polynomial (including Laplace) noises, respectively. The resulting
convolution-based random smoothing kernel enables us to adapt to the smoothness of the
target functions more efficiently. Notably, we establish that for any m0 and mf greater
than D/2, optimal convergence rates can be achieved by utilizing random smoothing regu-
larization and appropriate early stopping and/or weight decay techniques.

To be specific, we investigate two possible function spaces that may contain the target
function. In Section 4.2, we analyze the Sobolev space with a low intrinsic dimension,
which is denoted by d. This space covers both D-dimensional Euclidean spaces (when
d = D) and low-dimensional sub-manifolds as specific examples. In Section 4.3, we explore
the mixed smooth Sobolev spaces, which possess a tensor structure. Our principal findings
are summarized below.

• In case of Sobolev space of low intrinsic dimensionality d ≤ D:

When using Gaussian random smoothing, an upper bound of the convergence
rate is achieved at n−mf/(2mf+d)(log n)D+1, which recovers the results presented in
Hamm and Steinwart (2021a) and is hypothetically optimal up to a logarithmic factor.
However, in contrast to Hamm and Steinwart (2021a), we present a different approach
that allows us to analyze polynomial smoothing;

When using polynomial random smoothing with data size adaptive smoothing
degree, a convergence rate of n−mf/(2mf+d)(log n)2mf+1 is achieved, which is again,
hypothetically optimal up to a logarithmic factor.
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• In case of mixed smooth Sobolev spaces, using polynomial random smoothing of degree

mε, a fast convergence rate of n−2mf/(2mf+1)(log n)
2mf

2mf+1

(
D−1+ 1

2(m0+mε)

)
is achieved,

which is optimal up to a logarithmic factor.

To the best of our knowledge, such results have not been studied in the literature so far.
They have various implications below.

First of all, these results enhance the convergence rates in the context of kernel ridge re-
gression by incorporating random smoothing data augmentation with two other popular
techniques, early stopping and weight decay. In kernel ridge regression, it is crucial to
balance the smoothness of the kernel function (m0) with that of the ground truth (mf ).
In practice, it is common for m0 to be unequal to mf . In cases of mismatch, regular-
ization becomes essential. Specifically, if m0 ∈ [mf/2,∞), the optimal convergence rate
n−mf/(2mf+D) can be achieved by employing an appropriate ridge penalty strength. This
result can be generalized to low intrinsic dimensionality d ≤ D, where the hypothetically
optimal convergence rate is n−mf/(2mf+d) (Hamm and Steinwart, 2021a). However, when
the chosen kernel has a smoothness m0 less than mf/2, the optimal adaptation is not well
studied in kernel ridge regression. To the best of our knowledge, only upper bounds are
available in this case, and is not optimal. For example, Wang and Jing (2022) derived the
upper error bound of the form n−2m0/(4m0+d) for m0 < mf/2. In comparison, similar con-
vergence rate of the form n−m0/(2m0+d) can be achieved by distributed learning but without
disjoint subset (Guo et al., 2017; Lin et al., 2017). In contrast, our findings demonstrate op-
timal adaptation for arbitrary m0 and mf ≥ D/2 without such a constraint. This highlights
the broad adaptation ability of random smoothing regularization.

Moreover, the optimal adaptation of polynomial random smoothing has an implication
for neural networks via the (generalized) Laplace random smoothing. It is known that
the training of neural networks, with enough overparametrization, can be characterized by
kernel methods with a special family of kernels called the “neural tangent kernel” (NTK).
Due to the low smoothness of the ReLU activation function, the corresponding NTK also
has a low smoothness that is the same as a Laplace kernel (Chen and Xu, 2020; Geifman

et al., 2020). To the best of our knowledge, the estimation error is at the rate n−
D

2D−1

(Hu et al., 2021). Our results, using the polynomial random smoothing with (generalized)
Laplace distributions, show that the convergence rate can be improved, which sheds light on
understanding non-smooth augmentations such as random crop and mask. Based on this
understanding, numerical experiments with neural networks are conducted on simulated
data to corroborate our theoretical results.

Finally, it is worth mentioning that with random smoothing, the convergence rates men-
tioned above can be obtained by early stopping. However, if one applies weight decay, the
number of iterations can be reduced from polynomial(n) to polynomial(log n). Addition-
ally, our estimator can adapt to the low-dimensional assumptions mentioned earlier, as the
convergence rates depend on D at most logarithmically, alleviating the curse of dimension-
ality. It is also important to note that we do not employ the spectrum of integral operator
technique (Yao et al., 2007; Lin et al., 2016; Lin and Rosasco, 2017), but instead use Fourier
analysis, which provides a universal basis for kernels of different smoothness, and avoids
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imposing conditions on the eigenvalues and eigenfunctions of the kernel function. This is
because there is no clear relationship between the low intrinsic dimension and the eigen-
values of the integral operator. Furthermore, our theoretical analysis can be applied to the
widely used Matérn kernel functions.

The remainder of this paper is structured as follows. In Section 2, we provide a review
of related works. Section 3 introduces the settings considered in this work, which include
early stopping with a random smoothing kernel, as well as the conditions and assumptions
utilized in this work. The main theoretical results are presented in Section 4, and numerical
studies are conducted in Section 5. Conclusions and a discussion are provided in Section 7.
Technical proofs are included in the Appendix.

2. Related Works

Various means of regularization have been proposed for kernel methods to better recover the
underlying function, among which, ridge penalty and early stopping are the most popular.
Kernel ridge regression has been extensively studied in the literature, see Blanchard and
Mücke (2018); Dicker et al. (2017); Guo et al. (2017); Lin et al. (2017); Steinwart et al.
(2009); Tuo et al. (2020); Wu et al. (2006) for example. Early stopping treats the number
of training iterations as a hyperparameter in the optimization process, which has been
extensively studied by the applied mathematics community (Dieuleveut and Bach, 2016;
Yao et al., 2007; Pillaud-Vivien et al., 2018; Raskutti et al., 2014). Various forms of early
stopping also have been studied including boosting (Zhang and Yu, 2005; Bartlett and
Traskin, 2007), conjugate gradient algorithm (Blanchard and Krämer, 2016) and kernel
gradient descent (Bühlmann and Yu, 2002; Caponnetto and Yao, 2010; Yao et al., 2007;
Wei et al., 2017; Lin et al., 2016). Some works (e.g. Lin et al., 2016; Lin and Rosasco,
2017; Pillaud-Vivien et al., 2018) have explored early stopping by employing the integral
operator induced by the kernel, imposing conditions on the eigenvalues and eigenfunctions
of the kernel function. Smoothness or regularity of functions thus implicitly depends on the
measure that defines the spectrum of the integral operator, whereas classical smoothness
like Sobolev spaces is not explicitly handled.

In kernel regression with gradient descent, Raskutti et al. (2014) showed that early stop-
ping and ridge penalty both can achieve the optimal convergence rate if the smoothness is
well-specified. Yet, kernel ridge regression might suffer the “saturation issues” while early
stopping does not (Engl et al., 1996; Yao et al., 2007). In regression problems, it is usually
assumed that the domain of interest has a positive Lebesgue measure, while in practice, the
data generating distribution is supported on some low-dimensional smooth sub-manifold
(Scott and Nowak, 2006; Yang and Dunson, 2016; Ye and Zhou, 2008, 2009; Hamm and
Steinwart, 2021b,a). Kernel methods can circumvent the curse of dimensionality and adapt
to various low-dimensional assumptions of the underlying function. In particular, Hamm
and Steinwart (2021b,a) generalized the manifold assumption by applying the box-counting
dimension of the support of the data distribution, and derived upper bounds on the conver-
gence rate of the prediction error. Another simplifying assumption is tensor product kernels
(Gretton, 2015; Szabó and Sriperumbudur, 2017), whose product forms allow efficient com-
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putation of Gaussian process regression (Saatçi, 2012; Wilson and Nickisch, 2015; Ding and
Zhang, 2022; Chen et al., 2022) and analysis of independent component (Bach and Jordan,
2002; Gretton et al., 2005, 2007). The RKHS induced by a tensor product kernel is simply
tensored RKHS (Paulsen and Raghupathi, 2016, Theorem 5.11). Tensor product kernels we
consider induce the tensored Sobolev spaces (Rieger and Wendland, 2017, Proposition 1).

For complicated high-dimensional data, deep learning models seem to perform extremely
well, which has sparked numerous investigations into their generalization ability. As it
turns out, the training of neural networks has deep connections to kernel methods with
neural tangent kernels (NTK). Under proper initialization, training sufficiently wide DNN
with gradient descent equates to kernel regression using NTK. First introduced by Jacot
et al. (2018), the correspondence has been significantly extended (Du et al., 2018; Li and
Liang, 2018; Arora et al., 2019a; Cao and Gu, 2020; Arora et al., 2019b; Li et al., 2019;
Huang et al., 2020; Kanoh and Sugiyama, 2021; Hu et al., 2022). From the NTK point
of view, ridge penalty and early stopping are also vital in training neural networks. The
former is equivalent to weight decay (Hu et al., 2021), which is applied by default in training
deep learning models for better generalization, so is early stopping (Prechelt, 1998). Zhang
et al. (2021); Hardt et al. (2016) revealed that longer training can harm the generalization
performance of deep models. Li et al. (2020); Bai et al. (2021) utilized early stopping to
improve robustness to label noises.

Besides NTK, various data augmentation techniques in deep learning that are proven ef-
fective in improving model generalization can also provide inspiration for kernel methods.
Grandvalet et al. (1997) studied from a regularization perspective how noise injection can
improve generalization. Data augmentation is particularly important for handling natural
images (Shorten and Khoshgoftaar, 2019), where horizontal flip, random crop, color jitter
can significantly improve the classification accuracy. By applying the above augmenta-
tions, self-supervised contrastive learning methods (He et al., 2020; Chen et al., 2020; Grill
et al., 2020; Chen and He, 2021; He et al., 2021) can achieve state-of-the-art performance
for various downstream tasks. Randomized smoothing (Cohen et al., 2019; Salman et al.,
2019) is a special data augmentation, first proposed to address the adversarial vulnerabil-
ity (Goodfellow et al., 2014; Carlini and Wagner, 2017) of deep learning models. The key
idea is to perturb the input with random noise injection and make predictions by aggregat-
ing the outputs from all augmented inputs. Random smoothing has been proven effective
for improving model robustness and generalization (Rosenfeld et al., 2020; Mehra et al.,
2021; Wang et al., 2020; Gao et al., 2020). Our proposed framework incorporates random
smoothing, together with weight decay and early stopping, to provide a unified solution for
the smoothness mismatch problem in kernel regression. It is worth clarifying the difference
between our method and the “errors in variables” literature (Zhou et al., 2019; Wang et al.,
2022; Cressie and Kornak, 2003; Cervone and Pillai, 2015). Though the formulations seem
similar, i.e., the inputs in both cases are corrupted with noises, the two are fundamentally
different. In our setting, both the input x and added noise ε are known (we control the
noises in our estimator) while in the other setting, the input is noisy and only x + ε is
observed.
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3. Random Smoothing Kernel Regression

In this section, we introduce the problem of interest, our methodology, and the necessary
conditions used in this work.

3.1 Problem Setting

Suppose we have observed data (xj , yj) for j = 1, ..., n, which follows the relationship given
by

yj = f∗(xj) + εj . (1)

Here, xj ’s are independent and identically distributed (i.i.d.) following a marginal distribu-
tion PX with support supp(PX) = Ω ⊂ RD. The function f∗ ∈ H(Ω), where H(Ω) denotes
a function space, and εj ’s are i.i.d. noise variables with mean zero and finite variance. Our
objective is to recover the function f∗ based on the noisy observations.

In this work, we consider two cases. In the first case (Section 4.2), the function space
H(Ω) is a Sobolev space with smoothness m, denoted by Wm(Ω), and the data is of low
intrinsic dimension. In the second case (Section 4.3), the function space H(Ω) is a tensor
Sobolev space. Throughout this work, we assume without loss of generality that PX follows
a uniform distribution. Note that our theoretical analysis can be easily extended to the
case where PX is upper and lower bounded by positive constants. Specifically, suppose the
density of PX, denoted by p(x), satisfies 0 < c1 ≤ p(x) ≤ c2 < ∞, then it can be shown
that c1‖f‖2Unif(Ω) ≤ ‖f‖

2
P (X) ≤ c2‖f‖2Unif(Ω), and our theoretical analysis can be mimicked.

Furthermore, we can extend our results to unbounded regions by applying the truncation
technique to light-tailed densities (e.g., sub-Gaussian densities).

In order to recover the function f∗, we use reproducing kernel Hilbert spaces (RKHSs). We
briefly introduce the RKHSs and their relationship with Sobolev spaces in the following, and
refer to Wendland (2004) and Adams and Fournier (2003) for details. Let K : Ω× Ω→ R
be a symmetric positive definite kernel function. Define the linear space

FK(Ω) =

{
n∑
k=1

βkK(·,xk) : βk ∈ R,xk ∈ Ω, n ∈ N

}
, (2)

and equip this space with the bilinear form〈
n∑
k=1

βkK(·,xk),
m∑
j=1

γjK(·,x′j)

〉
K

:=

n∑
k=1

m∑
j=1

βkγjK(xk,x
′
j).

Then the reproducing kernel Hilbert space HK(Ω) generated by the kernel function K is
defined as the closure of FK(Ω) under the inner product 〈·, ·〉K , and the norm of HK(Ω) is

‖f‖HK(Ω) =
√
〈f, f〉HK(Ω), where 〈·, ·〉HK(Ω) is induced by 〈·, ·〉K . The following theorem

gives another characterization of the reproducing kernel Hilbert space when K is stationary,
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via the Fourier transform. Our notion of the Fourier transform is

F(g)(ω) = (2π)−D/2
∫
RD

g(x)e−iω
Txdx,

for a function g ∈ L1(RD). Note that a kernel function K is said to be stationary if the value
K(x,x′) only depends on the difference x−x′. Thus, we can write K(x−x′) := K(x,x′). In
this work, we only consider the stationary kernel due to the ease of mathematical treatment.
Our theory can be generalized to the case where the kernel function is non-stationary but
the corresponding RKHS is norm-equivalent to an RKHS generated by a stationary kernel.
The general non-stationary kernel, albeit its flexibility, is out of the scope of this work, and
will be pursued in the future.

Theorem 1 (Theorem 10.12 of Wendland, 2004) Let K be a positive definite kernel
function that is stationary, continuous, and integrable in RD. Define

G := {f ∈ L2(RD) ∩ C(RD) : F(f)/
√
F(K) ∈ L2(RD)},

with the inner product

〈f, g〉HK(RD) = (2π)−d/2
∫
RD

F(f)(ω)F(g)(ω)

F(K)(ω)
dω.

Then G = HK(RD), and both inner products coincide.

For m > D/2, the (fractional) Sobolev norm for function g on RD is defined by

‖g‖2Wm(RD) =

∫
RD
|F(g)(ω)|2(1 + ‖ω‖22)mdω, (3)

and the inner product of a Sobolev space Wm(RD) is defined by

〈f, g〉Wm(RD) =

∫
RD
F(f)(ω)F(g)(ω)(1 + ‖ω‖22)mdω.

Remark 2 In this work, we are only interested in Sobolev spaces with m > D/2 because
these spaces contain only continuous functions according to the Sobolev embedding theorem.

Comparing Theorem 1 and (3), it can be seen that if

c1(1 + ‖ω‖22)−m ≤ F(K)(ω) ≤ c2(1 + ‖ω‖22)−m, ∀ω ∈ RD,

for some two constants c1, c2 > 0, then Wm(RD) coincides with the reproducing kernel
Hilbert space HK(RD) with equivalent norms (also see Wendland, 2004, Corollary 10.13).
By the extension theorem (DeVore and Sharpley, 1993), HK(Ω) also coincides withWm(Ω),
and two norms are equivalent.
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3.2 Random Smoothing Kernel Regression with Early Stopping

In this study, we systematically investigate the efficiency of random smoothing data aug-
mentation, which is a widely used technique in deep learning, in improving the estimation
efficiency (i.e., convergence rate) for f∗ ∈ H(Ω) without assuming any relationship between
H(Ω) and HK(Ω) and considering a wide context of Ω that may have Lebesgue measure
zero. To overcome the lack of smoothness in HK(Ω), we construct N augmentations for
each observed input point xj by adding i.i.d. noise εjk with a continuous probability den-
sity function pε. We can generate εjk independently for each j, or we can generate εk for
k = 1, ..., N , and apply them to all xj , j = 1, ..., n simultaneously. While the latter is easier
to implement, the former is easier to theoretically justify. Due to its lower computational
complexity, we only consider the latter method in this work.

Remark 3 (Adding non-smooth noise and practical data augmentation techniques)
It should be noted that we do not assume pε to be Gaussian, and can be non-smooth. While
applying Gaussian noise is a common practice, not all data augmentation techniques involve
smooth noise, such as random crop, random mask, and random flip. In this work, we in-
vestigate various types of noise, including non-smooth Laplace noise and smooth Gaussian
noise. Although adding non-smooth noise still cannot capture the effects of complex data
augmentation techniques such as random mask or random crop, we aim to use it as a tool
to gain insights into the success of these more complicated data augmentations.

With augmented data, we proceed to the estimation of the function f∗. For any point
x ∈ Ω, we obtain the estimator by computing the average of the function values evaluated
at the N augmented inputs. Specifically, the estimator is constructed as

f(x) =
1

N

N∑
k=1

h(x+ εk), (4)

for h ∈ HK(Ω). By properties of the RKHS, f as in (4) is also inside HK(Ω). We consider
the following l2 loss function defined as

Ln(f) =
1

2n

n∑
j=1

(f(xj)− yj)2 , (5)

or equivalently,

Ln(h) =
1

2n

n∑
j=1

(
1

N

N∑
k=1

h(xj + εk)− yj

)2

. (6)

Remark 4 The loss function Ln(h) is slightly different from the loss function used in prac-
tice, i.e.,

L′n(h) =
1

2n

n∑
j=1

1

N

N∑
k=1

(h(xj + εk)− yj)2 . (7)
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However, it can be shown that Ln(h) is close to L′n(h). To see this, note that

L′n(h)− Ln(h) =
1

2n

n∑
j=1

1

2N2

N∑
k=1

N∑
l=1

(h(xj + εk)− h(xj + εl))
2 . (8)

As we will see later in Section 4, we require that the variance of εk to converge to zero,
which implies that the right-hand side in (8) is close to zero.

In order to minimize (5), we apply the gradient descent method. Since we impose a restric-
tion that the estimator f is in the RKHS HK(Ω), by the representer theorem, it suffices to
consider the function space

F0 =

f : f(·) =

n∑
j=1

N∑
k=1

wjkK(· − (xj + εk)), wjk ∈ R

 .

Because the number of parameters in F0 scales as n×N , which can be prohibitively large
if there are too many augmentations, it is often necessary to reduce the flexibility of F0

in order to minimize the loss function (5). To achieve this, we consider a subspace of F0,
denoted by

F =

f : f(·) =
n∑
j=1

N∑
k=1

wjK(· − (xj + εk)), wj ∈ R

 ,

i.e., all the weights for the different augmented data from the same input xj are the same.
Define an empirical random smoothing kernel function by

KS(xl − xj) :=
1

N2

N∑
k1=1

N∑
k2=1

K(xl + εk1 − (xj + εk2)), (9)

whose expectation leads to the following random smoothing kernel function, which plays an
important role in the convergence analysis.

Definition 5 (Random smoothing kernel function) The kernel function KS defined
in (9) is the empirical random smoothing kernel function corresponding to the original
kernel K. The expectation of KS with respect to the noise εk is the convoluted kernel
function K ∗ pε, where ∗ is a convolution operator defined by

(g1 ∗ g2)(s) =

∫
g1(t)g2(s− t)dt,

for two functions g1 and g2. We call the convoluted kernel function K ∗ pε as the random
smoothing kernel function.
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Now we can rewrite the loss function Ln(f) in (5) (up to a constant multiplier 1/n which
is not influenced by the solution of the optimization problem) as

Ln(w) =
1

2
‖y −Kw‖22 , (10)

where K = (KS(xj − xk))jk, w = (w1, ..., wn)T , and y = (y1, ..., yn)T . Following the
tradition in Raskutti et al. (2014), consider the gradient descent on the transformed vector
θ =
√

Kw, where the square root can be taken because K is positive (semi-)definite. Then,
we apply gradient descent on the square loss (10) with the transformed vector θ. Initialize
θ0 = w0 = 0. Taking gradient with respect to θ, direct computation shows that the gradient
update is1

θt = θt − βt
(
Kθt −

√
Ky
)
, (11)

where βt > 0, t = 0, 1, 2, . . . is the learning rate (step size). With parameter wt obtained at
the t-th iteration, the corresponding estimator of f∗(x) for any point x ∈ Ω is defined by

ft(x) = wT
t k(x), (12)

where k(x) = (KS(x− x1), . . . ,KS(x− xn))T .

In practice, gradient descent is often paired with weight decay (Krogh and Hertz, 1992) to
prevent overfitting and improve generalization (Hu et al., 2021). Therefore, we also consider
the gradient descent with weight decay, where the parameter θ is updated by

θt+1 = θt − βt
(
Kθt −

√
Ky
)
− αtθt, (13)

with αt > 0, t = 0, 1, 2, . . . being the strength of weight decay. The learning rate βt and
weight decay parameter αt can vary with t, but for mathematical convenience, we assume
that the step sizes βt and the weights decay parameter αt are not related to the iteration
number t, i.e., βt = β and αt = α for all t = 0, 1, 2, . . ..

As mentioned in Raskutti et al. (2014), one advantage of early stopping compared with
kernel ridge regression is lower computational complexity. Specifically, in kernel ridge re-
gression, one needs to solve a family of quadratic programming problem (or a matrix inver-
sion) for a specified set of regularization parameter, each of which typically requires O(n3)
operations (Caponnetto and Yao, 2010). In early-stopping, the regularization path is given
by a sequence of gradient descent update, where each update only involves matrix-vector
multiplication of typical O(n2) operations.

One key difference between the usual early-stopping and our method is that we apply
the random smoothing, which introduces extra computation. If there are N augmented
data for each xj , then in order to compute the empirical random smoothing kernel, one
needs extra O(n2N2) operations. Although the proposed random augmentation introduces

1. Although we employ reparameterization as θ =
√
Kw, the gradient descent can be applied to w directly

by wt+1 = wt − βt (Kwt − y)− αtwt, and these two update rules are equivalent.

11



Ding, Hu, Jiang, Li, Wang, and Yao

extra computation, it provides benefits on the theoretical convergence rates and empirical
performance, as we will see in Sections 4 and 5.

In this work, we are interested in the prediction error

‖f∗ − ft‖L2(PX). (14)

In the rest of this paper, the following definitions are used. For two positive sequences an
and bn, we write an � bn if, for some C,C ′ > 0, C ≤ an/bn ≤ C ′. Similarly, we write
an & bn if an ≥ Cbn for some constant C > 0, and an . bn if an ≤ C ′bn for some constant
C ′ > 0. Also, C,C ′, cj , Cj , j ≥ 0 are generic positive constants, of which value can change
from line to line.

4. Main Results

In this section, we present our main theoretical results. We begin by collecting all the
assumptions that will be used throughout the paper in Section 4.1. Then, in Section 4.2,
we consider the case where Ω has a finite intrinsic dimension. Finally, in Section 4.3, we
consider the case where H(Ω) is a tensor RKHS.

4.1 Assumptions

In this work, we will use the following assumptions.

Assumption 1 The error εj’s in (1) are i.i.d. sub-Gaussian (van de Geer, 2000), i.e.,
satisfying

C2(Ee|εj |
2/C2 − 1) ≤ C ′, j = 1, ..., n,

for some positive constants C and C ′.

Assumption 2 There exists m0 > D/2 such that

c1(1 + ‖ω‖22)−m0 ≤ F(K)(ω) ≤ c2(1 + ‖ω‖22)−m0 , ∀ω ∈ RD.

for some positive constants c1 and c2.

Assumption 3 (Tensor kernel function) The kernel function K can be expressed as
K =

∏D
j=1Kj, where Kj’s are one-dimensional kernel functions. There exists m0 > 1/2

such that for j = 1, . . . , D,

c1(1 + ω2
j )
−m0 ≤ F(Kj)(ωj) ≤ c2(1 + ω2

j )
−m0 , ∀ωj ∈ R.

for some positive constants c1 and c2.

12
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Remark 6 In this work, we only consider the kernel functions whose Fourier transform has
the same orders for the upper and lower bounds. This is because the corresponding RKHS
is equivalent to some (tensored) Sobolev space, and it is easier to discuss the relationship
between our convergence results with the existing works. It is also possible to analyze the
prediction error when the kernel function has Fourier transform has different orders for the
upper and lower bounds, but this is mathematically involved and is left for future works.

Example 1 A class of kernel functions satisfying Assumption 2 is the isotropic Matérn
kernel functions (Williams and Rasmussen, 2006). With reparameterization, the Matérn
kernel function is given by

K(x) =
(2φ
√
m0 −D/2‖x‖2)m0−D/2

Γ(m0 −D/2)2m0−D/2−1
Bm0−D/2(2φ

√
m0 −D/2‖x‖2), (15)

with the Fourier transform (Tuo and Wu, 2016)

F(K)(ω) = π−D/2
Γ(m0)

Γ(m0 −D/2)
(4φ2(m0 −D/2))m0−D/2(4φ2(m0 −D/2) + ‖ω‖22)−m0 , (16)

where φ > 0, and Bm0−D/2 is the modified Bessel function of the second kind. It can be
seen that (16) is bounded above and below by (1 + ‖ω‖22)−m0, up to a constant multiplier.

Another example satisfying Assumption 2 is the generalized Wendland kernel function
(Wendland, 2004; Gneiting, 2002; Chernih and Hubbert, 2014; Bevilacqua et al., 2019;
Fasshauer and McCourt, 2015), defined as

KGW (x) =

{
1

Beta(2κ,µ+1)

∫ 1
‖φx‖2 u(u2 − ‖φx‖22)κ−1(1− u)µdu, 0 ≤ ‖x‖2 < 1

φ ,

0, ‖x‖2 ≥ 1
φ ,

(17)

where φ, κ > 0 and µ ≥ (D + 1)/2 + κ, and Beta denotes the beta function. Theorem 1 of
Bevilacqua et al. (2019) shows that (17) satisfies Assumption 2 with m0 = (D + 1)/2 + κ.

If the kernel function K =
∏D
j=1Kj, and each Kj is a one-dimensional Matérn kernel

function or generalized Wendland kernel function, then Assumption 3 is satisfied.

Assumption 4 (Random smoothing noise) The elements of εk are i.i.d. mean zero
sub-Gaussian random variables. σ2

n’s are positive parameters to be specified later in Section
4.

(C1) (Polynomial noise) There exists mε > D/2 such that the characteristic function of εk
satisfies

c1(1 + σ2
n‖ω‖22)−mε ≤ E(eiω

T εk) ≤ c2(1 + σ2
n‖ω‖22)−mε ,∀ω ∈ RD.

(C2) (Tensor Polynomial noise) There exists mε > 1/2 such that the characteristic function
of εk satisfies

c1

D∏
j=1

(1 + σ2
nω

2
j )
−mε ≤ E(eiω

T εk) ≤ c2

D∏
j=1

(1 + σ2
nω

2
j )
−mε , ∀ω = (ω1, . . . , ωD) ∈ RD.
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(C3) (Gaussian noise) The elements of εk are normally distributed with variance σ2
n.

Here the constants c1 and c2 do not depend on σn and mε. We call σn the smoothing scale
in this work.

Example 2 It is easy to construct distributions satisfying (C1) or (C2). For example, the
generalized Laplace distribution with parameter s has a density function (Kozubowski et al.,
2013; Kotz et al., 2001)

pε(x) =
21−s

(2π)D/2Γ(s)
(
√

2‖x‖2)s+D/2Bs−D/2

(√
2‖x‖2

)
, (18)

where Γ is the Gamma function, and Bs−D/2 is the modified Bessel function of the second
kind. It can be shown that the generalized Laplace distribution has the characteristic function

EX(eiω
TX) =

(
1 +

1

2
ωTω

)−s
.

Then εk = σnX satisfies Assumption 4 (C1).

If each component of εk/σn has a univariate generalized Laplace distribution and all com-
ponents are independent, then Assumption 4 (C2) is satisfied.

Assumption 1 assumes that the observation error is sub-Gaussian, which is a standard as-
sumption in nonparametric literature. See van de Geer (2000) for example. Assumption 2
assumes that the Fourier transform of the kernel function K(· − ·) has an algebraic decay.
Under this assumption, Corollary 10.13 of Wendland (2004) shows that the reproducing
kernel Hilbert space HK(RD) coincides with the Sobolev space Wm0(RD), with equivalent
norms. More details on this can be found in Section 3.1. Assumption 3 states that the
kernel function K has a tensor structure, and the Fourier transform of each component
Kj has an algebraic decay. Assumptions 2 and 3 will be used in Sections 4.2 and 4.3, re-
spectively. Assumption 4 imposes conditions on the noise εk’s and considers three types of
augmentations: polynomial noise, tensor polynomial noise, and Gaussian noise. The corre-
sponding smoothing techniques are referred to as polynomial smoothing, tensor polynomial
smoothing, and Gaussian smoothing, respectively.

4.2 Low Intrinsic Dimension Space

We first consider Ω with finite intrinsic dimension. The intrinsic dimension provides a
“measure of the complexity” for the region of interest Ω. The definition of the intrinsic
dimension depends on the covering number; see Definition 2.1 of van de Geer (2000) for
example.

Definition 7 (Covering number) Consider a subset A ⊂ G where G is a normed space.
For a given δ > 0, the covering number of A, denoted by NG(δ,A), is defined by the smallest
integer M such that A can be covered by M balls with radius δ and centers x1, ...,xM ∈ G.
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Assumption 5 (Low intrinsic dimension) There exist positive constants c1 and d ≤ D
such that for all δ ∈ (0, 1), we have

N`D∞(δ,Ω) ≤ c1δ
−d,

where `D∞ is the RD space equipped with `∞ norm.

For discussion and examples of regions that satisfy Assumption 5, we refer to Hamm and
Steinwart (2021a). In particular, if Ω ⊂ RD is a bounded region with positive Lebesgue
measure or a bounded D′-dimensional differentiable manifold, then Assumption 5 holds
with d = D and d = D′, respectively.

Besides the low intrinsic dimension, our theoretical results depend on the smoothness of the
underlying function. Because we are considering function space on a finite intrinsic dimen-
sional space, which may have Lebesgue measure zero, the usual definition of (fractional)
Sobolev space via Fourier transform stated in Section 3.1 cannot be directly applied in our
case. Thus, we need to introduce our notion of the smoothness assumption for the functions
on finite intrinsic dimension space. Specifically, we impose the following assumption on the
underlying true function f∗.

Assumption 6 There exists a region Ω1 with positive Lebesgue measure and a Lipschitz
boundary such that Ω ⊂ Ω1. The underlying true function f∗ is well-defined on Ω1 with
f∗ ∈ Wmf (Ω1), where mf = argsupm>D/2{m : f∗ ∈ Wm(Ω1)}, and mf > D/2.

In Assumption 6, we further assume that the boundary of Ω1 is “sufficiently regular” (see
Leoni, 2017 for the definition of Lipschitz boundary) and Ω can be contained by Ω1. Thus,
the extension theorem (DeVore and Sharpley, 1993) ensures that there exists an extension
operator from L2(Ω1) to L2(RD) and the smoothness of each function is maintained. With
Assumption 6, we use mf to denote the smoothness of f∗. By some well-known extension
theorems (see, for example, DeVore and Sharpley, 1993; Evans, 2009, Pages 268-272; Stein,
1970, Theorem 5, Page 181), if D = d, then our notion of smoothness coincides with the
smoothness of functions on the whole space RD. In addition, we require f∗ ∈ Wmf (Ω1),
which implies that {m : f∗ ∈ Wm(Ω1)} is a closed interval [mf ,+∞).

Our notion of low-dimensional region and smoothness is based on the description provided
in Section 3 of Hamm and Steinwart (2021a). In Hamm and Steinwart (2021a), a Besov
space Bs

2,∞ is defined with the same low-dimensional support Ω, using the s-th modulus
of smoothness. By the embedding relationship Hs ⊂ Bs

2,∞ (see Page 44 of Edmunds and
Triebel, 2008), it can be seen that our definition represents a specific instance of this broader
framework.

Now we are ready to present the main theorems in this subsection. Theorems 8 and 9
state the convergence rates when applying polynomial smoothing and Gaussian smoothing,
respectively.
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Theorem 8 (Polynomial smoothing) Suppose Assumptions 1, 2, 4 (C1), 5 and 6 are
satisfied. Let ft(x) be as in (12) and β = n−1C1 with the positive constant C1 ≤ (2 supx∈RD KS(x))−1.
Suppose the smoothing scale σn � nν with ν ≤ 0. Suppose one of the following holds:

1. There is no weight decay in the gradient descent, and the iteration number t satisfies

t � n
2(m0+mε)

2mf+d σ2mε
n

2. There is weight decay in the gradient descent with α � n
−1− 2(m0+mε)

2mf+d σ−2mε
n , and the

iteration number satisfies t ≥ C2(
mf

2mf+d + 1/2) log n/(log(1 − α)) for some positive

constant C2.

Then by setting mε = 2d−1(2Dmax(m0,mf ) +m0d) log n−m0 and

ν =

{
− 2(2m0+2mε)D−(2m0+2mε−D)d

(2mf+d)(4mεD−(2m0+2(1−(logn)−1)mε−D)d)
< 0, D > d,

0, D = d,

we have

‖ft − f∗‖2L2(PX) =OP

(
n
−

2mf
2mf+d (log n)2mf+1

)
.

for N > N0, where N is the number of augmentations, and N0 depends on n (specified in
Equation 43).

Theorem 9 (Gaussian smoothing) Suppose Assumptions 1, 2, 4 (C3), 5, and 6 are sat-
isfied. Let ft(x) be as in (12), β = n−1C1 with the positive constant C1 ≤ (2 supx∈RD KS(x))−1,

and σn � n
− 1

2mf+d . Suppose one of the following holds:

1. There is no weight decay in the gradient descent, and the iteration number t satisfies

t � n
2m0+2mf

2mf+d

2. There is weight decay in the gradient descent with α � n
−1− 2(m0+mε)

2mf+d , and the iteration
number satisfies t ≥ C2(

mf
2mf+d +1/2) log n/(log(1−α)) for some positive constant C2.

Then we have

‖f∗ − f̂t‖2L2(PX) = OP(n
−

2mf
2mf+d (log n)D+1), (19)

when N > N0, where N is the number of augmentations, and N0 depends on n (specified
in Equation 73).
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Remark 10 We require β = n−1C1 with the positive constant C1 ≤ (2 supx∈RD KS(x))−1

in both Theorems 8 and 9 is because by Gershgorin’s theorem (Varga, 2010), we have for
sufficiently large n,

βη1(K) + α ≤ βnmax
j,k
|KS(xj ,xk)|+ α < 1,

where η1(K) is the largest eigenvalues of K, which ensures that the gradient descent algo-
rithm can converge.

Remark 11 In Theorems 8 and 9, the large number of augmentations N0 is necessary in
our theoretical analysis, while in practice, the number of augmentations is usually small. A
smaller, but more practical N0 will be pursued in the future.

Remark 12 In this work, we focus exclusively on the performance of the estimator ft at the
final iteration, with a pre-specified iteration number t. While many other studies, such as
Yao et al. (2007); Raskutti et al. (2014), use a learning rate that is a function of t (typically
in the form tζ for some ζ ∈ R), our decay rate αt and learning rate βt are independent of t
and are chosen to meet the required order as t approaches t. Adapting αt and βt to t could
indeed accelerate the training process. However, it is noteworthy that in the case of weight
decay, convergence can be achieved in only O(log n) iterations, indicating that our current
training procedure is also efficient.

If the region Ω has a positive Lebesgue measure, then it has been shown that the optimal
convergence rate is n−mf/(2mf+D) (Stone, 1982). By random smoothing, the gradient de-
scent with early stopping can achieve the optimal convergence rate in this case, up to a
logarithm term. Furthermore, it can adapt to the low intrinsic dimension case, where Ω
can have Lebesgue measure zero. In Hamm and Steinwart (2021a), it is strongly hypoth-
esized that the convergence rate n−mf/(2mf+d) is optimal. Although our definition of the
smoothness is different, we have the same hypothesis and leave its exploration as a future
work.

It is worth noting that our approach differs from that in Hamm and Steinwart (2021a), and
therefore, we can investigate the effects of polynomial smoothing, which may have its own
interest. Such non-smooth noise can shed light on non-smooth augmentations commonly
used in practice. Furthermore, we obtain an identical result as in Hamm and Steinwart
(2021a) if we use Gaussian smoothing. Comparing the convergence rates in Theorems 8
and 9, we find that the convergence rate by polynomial smoothing is slightly worse than
that of Gaussian smoothing, since mf > D/2 (Assumption 6). In comparison, Eberts and
Steinwart (2013) achieved convergence rate of the similar form n−2mf/(2mf+d)+ξ by applying
kernel ridge regression with Gaussian kernel functions, where ξ can be any value strictly
larger than zero. Clearly, this rate is slower than those in Hamm and Steinwart (2021a)
and ours. Under additional assumptions such as a compact Riemannian manifold input
space and the underlying function having Lipschitz continuity mf ∈ (0, 1], Ye and Zhou

(2008) derived convergence rates of the form
(
log2(n)/n

)mf/(8mf+4d)
. Instead of kernel
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ridge regression, Yang and Dunson (2016) focused on Bayesian regression with Gaussian
process and proved the convergence rate n−2mf/(2mf+d)(log n)d+1. However, their theorem is
limited by a compact low dimensional differentiable manifold input space, and the condition
mf ≤ 2. As a comparison, we do not require such restrictive assumptions.

From a different perspective of early stopping, we consider both cases with and without
weight decay, while existing studies only consider the case without weight decay. With
weight decay, one can achieve the same convergence rate but with a much smaller iteration
number. Specifically, the iteration number should be polynomial in n without weight decay,
which can be reduced to polynomial in log n if one applies weight decay. This also justifies
the use of weight decay in practice. Besides, the random smoothing kernel enables us to
establish connections with data augmentation and we further explain the effectiveness of
using augmentation, which may lead to a new interpretation of using augmentations in deep
learning.

Our approach to studying early stopping is distinct from previous studies in the literature
(see, e.g., Dieuleveut and Bach, 2016; Yao et al., 2007; Pillaud-Vivien et al., 2018; Raskutti
et al., 2014), which typically use integral operator techniques and impose assumptions on
the eigenvalues of the kernel function (which always exists by Mercer’s theorem). However,
such assumptions cannot be easily applied to the low intrinsic dimension case, as it is
unclear how eigenvalues behave in this regime. Additionally, previous studies often impose
a “source condition” that requires the kernel function to have finite smoothness, which is
not satisfied when using Gaussian smoothing to construct the random smoothing kernel.
Therefore, even for the special case where the intrinsic dimension is equal to the ambient
dimension, Theorems 8 and 9 improve upon previous results in the early stopping literature.

As a special case, it can be shown that trainning a sufficiently overparametrized shallow
neural network can be described by a specific kernel called as “neural tangent kernel”
(NTK) (Jacot et al., 2018). Chen and Xu (2020) further showed that the NTK induced
by the ReLU activation function and Laplace Kernel have the same RKHS. Hence, if we
directly choose m0 = d/2 + 1/2, we can see that our convergence results can be applied to
the overparametrized shallow neural networks.

4.3 Tensor Reproducing Kernel Hilbert Space

In this section, we consider a low-dimensional structure for the function class, specifically a
tensor reproducing kernel Hilbert space. Let K =

∏D
j=1Kj be kernel functions that satisfy

Assumption 3, while Ω can have a low intrinsic dimensional structure, as discussed in Section
4.2, or have a positive Lebesgue measure in RD.

Our theoretical results in this section are based on mixed smooth Sobolev spaces, denoted
byMWm(RD), where m > 1/2. For a function f defined on RD, the mixed smooth Sobolev
norm is defined as

‖f‖MWm(RD) =

∫
RD
|F(f)(ω)|2

D∏
j=1

(1 + |ωj |2)mdω

1/2

, (20)
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and the mixed smooth Sobolev spaces on Ω can be defined via restriction similar to the
Sobolev spaces. In fact, the mixed smooth Sobolev space is a tensor product of one-
dimensional Sobolev spaces, and it can be shown that MWm0(RD) is equivalent to the
tensor reproducing kernel Hilbert space generated by kernel function K =

∏D
j=1Kj satisfy-

ing Assumption 3. Because of such a tensor structure, it is often considered as a reasonable
model reducing the complexity in high-dimensional spaces (Kühn et al., 2015; Dũng, 2021).
For instance, the mixed smooth Sobolev spaces are utilized in high-dimensional approxima-
tion and numerical methods of PDE (Bungartz and Griebel, 1999), data mining (Garcke
et al., 2001), and deep neural networks (Dũng, 2021).

If the underlying function belongs to some mixed smooth Sobolev space, then it can be
shown that by applying appropriate augmentations, we can achieve a fast convergence
rate, which nearly coincides with the minimax rate in the one-dimensional case, up to a
logarithmic term. Similar to Assumption 6, we assume that f∗ can be extended to some
“regular space” with positive Lebesgue measure, as follows.

Assumption 7 There exists a region Ω1 with positive Lebesgue measure and a Lipschitz
boundary such that Ω ⊂ Ω1, and the underlying true function f∗ is well-defined on Ω1 and
f∗ ∈MWmf (Ω1).

The following theorem states the convergence rate when applying tensor polynomial smooth-
ing in the tensor RKHS case.

Theorem 13 (Tensor polynomial smoothing) Suppose Assumptions 1, 3, 4 (C2), 5,
and 7 are satisfied. Let ft(x) be as in (12) and β = n−1C1 with the positive constant
C1 ≤ (2 supx∈RD KS(x))−1. Let mε +m0 ≥ mf , and the smoothing scale σn � 1.

Then the following statements are true with N > N0, where N is the number of augmen-
tations, and N0 depends on n (specified in Equation 83). Suppose one of the following
holds:

1. There is no weight decay in the gradient descent, and the iteration number t satisfies

t � n
2(m0+mε)

2mf+1 (log n)
2(D−1)(m0+mε)+1

2mf+1

2. There is weight decay in the gradient descent with α � n
−1− 2(m0+mε)

2mf+d (log n)
2(D−1)(m0+mε)+1

2mf+1 ,
and the iteration number satisfies t ≥ C2(

mf
2mf+1 + 1/2) log n/(log(1 − α)) for some

positive constant C2.

Then we have

‖ft − f∗‖2L2(PX) =OP

(
n
−

2mf
2mf+1 (log n)

2mf
2mf+1

(
D−1+ 1

2(m0+mε)

))
. (21)

Based on Theorem 13, tensor polynomial smoothing leads to a convergence rate of tensor

RKHS, which is OP(n
−

2mf
2mf+1 (log n)

2mf
2mf+1

(D−1+ 1
2(m0+mε)

)
). This convergence rate is almost
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the same as the optimal convergence rate in the one-dimensional case OP(n
−

2mf
2mf+1 ), differing

only by a logarithmic term.

Moreover, compared to Theorem 8, Theorem 13 has less stringent requirements for tensor
polynomial smoothing when Assumption 7 holds. Specifically, Theorem 13 allows for mε

to be a constant as long as mε + m0 ≥ mf , whereas Theorem 8 requires mε to be compa-
rable to log n. Additionally, while the smoothing scale σn in Theorem 8 demands careful
selection, Theorem 13 permits a constant smoothing scale σn. These differences suggest
that the tensor RKHS has a simpler structure than the Sobolev RKHS even in a low in-
trinsic dimension space. The convergence rate in Theorem 13 does not depend on the low
intrinsic dimension of Ω, and is almost dimension-free. Moreover, because the power of the
logarithmic term in (21) decreases as mε increases, the convergence rate in Theorem 13 de-
creases as mε increases, encouraging the use of a smoother tensor polynomial smoothing for
faster convergence. This aligns with the results in Theorem 8 and Theorem 9, as Gaussian
smoothing may yield faster convergence rates than polynomial smoothing. Few studies have
explored tensor RKHSs with early stopping, and our findings can provide valuable insights
into this area.

Remark 14 For any Wmf (RD) with mf > D/2, an m∗ > 1/2 can be found for which
the embedding relations hold true: Wmf (RD) ↪→MWm∗(RD) and MWm∗(RD) ↪→ C(RD).
Therefore, Wm∗(RD) offers a feasible choice as a target space for containing the underlying
function, presenting an alternative to the more conventionally used Sobolev spaces.

Remark 15 Convolutional Neural Networks (CNNs) can be described using NTKs in the
form of tensor products, as shown in Geifman et al. (2022). In their study, Geifman et al.
(2022) proved that the NTKs for CNNs are tensor products of kernels whose eigenvalues
exhibit polynomial decay. Consequently, by setting m0 = ζ+2ν−3, where ζ is the number of
channels in a CNN and ν depends on the input dimension, we can see that our convergence
results can also be applied to CNNs.

5. Numerical Studies

In this section, we enhance our theoretical findings by experimentally validating the ef-
fectiveness of the random smoothing kernel with data augmentation and early stopping
on synthetic data sets. We focus on five data spaces with dimensions D = 1 (d = 1),
D = 2 (d = 1, 2) and D = 3 (d = 1, 2), as illustrated in Figure 1 and Figure 2, where xj
samples are uniformly drawn.

In our experiments, the underlying function f∗ is obtained by drawing random sample paths
from the Gaussian process with the Matérn covariance function. This covariance function is
widely used in Gaussian process modeling. We adopt the Matérn covariance function with
the following form:

Kν(x) = σ2 21−ν

Γ(ν)

(√
2ν
‖x‖2
ρ

)ν
Bν

(√
2ν
‖x‖2
ρ

)
, (22)

20



Random Smoothing Regularization in Kernel Gradient Descent Learning

Figure 1: Simulated data spaces in the forms of: line (D = 1, d = 1), ring (D = 2, d = 1)
and disk (D = 2, d = 2).

Figure 2: Simulated data spaces in the forms of: ring (D = 3, d = 1) and sphere (D =
3, d = 2).

where σ, φ, ν > 0, Γ is the Gamma function, and Bν is the modified Bessel function of the
second kind. In order to make f∗ smoother, we set the smoothness parameter ν = 5.0 for
Matérn kernel (22). The error εj ’s are i.i.d. Gaussian with mean zero and variance 0.01.

We utilize two-hidden-layer neural networks with ReLU activation (Nair and Hinton, 2010)
as our predictor. Each hidden layer of the neural network comprises 100 nodes, and all
weights are initialized using Kaiming Initialization (He et al., 2015). For random smoothing,
we experiment with both non-smooth Laplace noise and smooth Gaussian noise. To be
precise, each element of εk is randomly sampled from either N (0, σ2) or Laplace(0, b). For
more experiment details and additional results, we refer to Appendix N.

Figure 3 presents a visualization of the underlying truth (blue curve), training data (blue
dots), and neural network predictions (orange dots) when the training size is 50. The
underlying truth is smooth since we use a smooth kernel. However, the neural network
predictions without random smoothing are not smooth due to the low smoothness of the
ReLU activation function and tend to overfit the noise. Upon applying random smoothing,
the neural network predictions become smoother and approach the underlying truth.
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Figure 3: Visualization of the underlying truth (blue curve), training data (blue dots),
and neural network predictions (orange dots) when training size is 50, where
the first and second rows represent cases with weight decay and early stopping,
respectively. It is obvious to see that the optimization without random smoothing
will be more vulnerable to noise.
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Figure 4: Underlying truth (blue curve), training data (blue dots), and neural network
predictions (orange dots) when training size is 100.
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Figure 5: Underlying truth (blue curve), training data (blue dots), and neural network
predictions (orange dots) when training size is 200.

Figure 4 and Figure 5 further show the underlying truth (blue curve), training data (blue
dots), and neural network predictions (orange dots) when the training size is 100 and 200,
respectively. Although increasing the training size improves smoothness in cases like size
200 with weight decay, the fitted curve still experiences a perturbation from overfitted noise
compared to examples where random smoothing is applied.

Table 1 presents a summary of the test l2 loss under different settings. Both Gaussian
smoothing and polynomial smoothing (random smoothing with Laplacian noise) improve
the l2 loss in all settings, demonstrating the effectiveness of random smoothing. Figure 6
further investigates how the l2 loss changes concerning the smoothing scale σn when D = 1.
The plot shows a U-shaped curve, indicating that an optimal smoothing can minimize the l2
loss, while either smaller or larger values will result in a larger l2 loss. It is worth noting that
when the training size is small, such as size 50, the U-shape curve in Figure 6 may be less
distinct due to noise introduced by early stopping based on a small validation set. Another
observation from Figure 6 is that the optimal smoothing scales exhibit a decreasing trend as
the sample size increases, as indicated by Theorem 8 and Theorem 9. Additionally, Figures
7-8 and Figures 9-10 depict the U-shaped curves of l2 loss changes concerning smoothing
scale when D = 2 (d = 1, 2) and D = 3 (d = 1, 2), respectively. While it is possible that
some red points may not be accurately placed due to a small validation set, the optimal
smoothing scales exhibit a decreasing trend with respect to training size, which is consistent
with the trend observed in D = 1 as depicted in Figure 6.
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Dim Type
With weight decay Early stopping

Training size Training size
50 100 200 50 100 200

D=1,d=1
G 1.6765e-03 9.3367e-04 8.2806e-04 1.3468e-03 7.5579e-04 5.8775e-04
L 1.7466e-03 9.8343e-04 9.1924e-04 2.0638e-03 9.2128e-04 6.5118e-04
N 1.9381e-03 1.3045e-03 1.1135e-03 2.2168e-03 1.2985e-03 8.4292e-04

D=2,d=1
G 4.1084e-03 1.9663e-03 1.8606e-03 2.9608e-03 1.3643e-03 9.5987e-04
L 4.7216e-03 2.1707e-03 1.7646e-03 3.0796e-03 1.5640e-03 1.0766e-03
N 7.8836e-03 3.4316e-03 2.6008e-03 5.1484e-03 2.6596e-03 1.6057e-03

D=2,d=2
G 6.4676e-03 2.9491e-03 2.2136e-03 6.7205e-03 3.5027e-03 1.7132e-03
L 6.4208e-03 3.1423e-03 2.1842e-03 8.2725e-03 3.9418e-03 1.7674e-03
N 9.2474e-03 4.5782e-03 2.5810e-03 1.2628e-02 6.2301e-03 3.1396e-03

D=3,d=1
G 4.0382e-03 1.9133e-03 1.3327e-03 1.7104e-02 6.8696e-03 3.7194e-03
L 4.8212e-03 2.1033e-03 1.9527e-03 1.7297e-02 7.0159e-03 3.7916e-03
N 7.4013e-03 3.4172e-03 1.9693e-03 2.3458e-02 8.8306e-03 5.1156e-03

D=3,d=2
G 1.6599e-02 6.9336e-03 4.4334e-03 1.4852e-02 7.1306e-03 3.7147e-03
L 1.6498e-02 7.2578e-03 3.9938e-03 1.5167e-02 6.6471e-03 3.8615e-03
N 2.0987e-02 8.1158e-03 4.5752e-03 2.0178e-02 8.4932e-03 4.9460e-03

Table 1: Test l2 loss of SGD with early stopping. “G”, “L”, and “N” correspond to random
smoothing with Gaussian noise, random smoothing with Laplacian noise, and no
random smoothing. The smallest losses are underlined.

With Weight Decay Early Stopping

0.0 0.2 0.4 0.6
2.8

2.6

2.4

lo
g 1

0(
lo

ss
)

Gaussian

size = 50

0.0 0.2 0.4 0.6
2.8

2.6

Laplacian

size = 50

0.0 0.2 0.4 0.6

3.0

2.8

2.6

lo
g 1

0(
lo

ss
)

size = 100

0.0 0.2 0.4 0.6
3.0

2.8

2.6

2.4
size = 100

0.0 0.2 0.4 0.6
Smoothing scale

3.0

2.8

2.6

lo
g 1

0(
lo

ss
)

size = 200

0.0 0.2 0.4 0.6
Smoothing scale

3.0

2.8

2.6

2.4
size = 200

0.0 0.2 0.4 0.6

2.8

2.6

lo
g 1

0(
lo

ss
)

Gaussian

size = 50

0.0 0.2 0.4 0.6

2.7

2.6

Laplacian

size = 50

0.0 0.2 0.4 0.6

3.0

2.8

2.6

lo
g 1

0(
lo

ss
)

size = 100

0.0 0.2 0.4 0.6

3.0

2.8

size = 100

0.0 0.2 0.4 0.6
Smoothing scale

3.2

3.0

2.8

2.6

lo
g 1

0(
lo

ss
)

size = 200

0.0 0.2 0.4 0.6
Smoothing scale

3.2

3.0

2.8

size = 200

Figure 6: Loss changes according to smoothing scale with training size increase from 50 to
200 in the data space of D = 1, d = 1. The red points represent the optimal
smoothing scales selected based on the validation set.
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Figure 7: Loss changes according to smoothing scale with training size increase from 50 to
200 in the data space of D = 2, d = 1. The red points represent the optimal
smoothing scales selected based on the validation set.
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Figure 8: Loss changes according to smoothing scale with training size increase from 50 to
200 in the data space of D = 2, d = 2. The red points represent the optimal
smoothing scales selected based on the validation set.
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Figure 9: Loss changes according to smoothing scale with training size increase from 50 to
200 in the data space of D = 3, d = 1. The red points represent the optimal
smoothing scales selected based on the validation set.
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Figure 10: Loss changes according to smoothing scale with training size increase from 50
to 200 in the data space of D = 3, d = 2. The red points represent the optimal
smoothing scales selected based on the validation set.
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Figure 11: Visualization of the underlying truth (blue curve), training data (blue dots), and
neural network predictions (orange dots) when the loss function L′n is applied.
Different rows represent different training sizes.

5.1 Comparison under Different Loss Functions

To illustrate that random smoothing can achieve a similar improvement in the performance
of the loss function L′n in (7), which is slightly different from the one we analyze (Ln
in Equation 6), we conducted additional experiments focusing on early stopping with a
dimension of D = 1(d = 1). As the performance of L′n is unstable, we set the number of
augmented samples N = 5000 and the region for the smoothing scale is from 0 to 0.003.
The remaining experimental setup is the same as in Ln.

Figure 11 presents a visualization of the fitted curve with different training sizes. We take
the average of the estimator instead of utilizing the prediction directly. The performance
is similar to that of Ln (in Figure 3-5), where optimization without random smoothing is
more vulnerable to noise, although an increased training size can improve smoothness.

Table 2 summarizes the test l2 loss with different settings. Both Ln and L′n in different
training sizes can be improved with random smoothing. However, the test loss of L′n is
slightly higher compared to Ln. Figure 12 further demonstrates the varying losses according
to the smoothing scale with different loss functions. Although a U-shaped curve can be
obtained by L′n, the optimal smoothing scale is inconsistent with that of Ln, which decreases
as the training size increases.
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Type
L′n Ln

Training size Training size
50 100 200 50 100 200

G 2.0824e-03 1.1469e-03 7.7571e-04 1.3468e-03 7.5579e-04 5.8775e-04
L 2.3245e-03 1.1320e-03 7.0490e-04 2.0638e-03 9.2128e-04 6.5118e-04
N 3.5092e-03 1.4109e-03 7.9209e-04 2.2168e-03 1.2985e-03 8.4292e-04

Table 2: Test l2 loss of SGD with early stopping. We focus on the comparison between dif-
ferent loss functions L′n and Ln with dimension D = 1(d = 1). “G”, “L”, and “N”
correspond to random smoothing with Gaussian noise, random smoothing with
Laplacian noise, and no random smoothing. The smallest losses are underlined.
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Figure 12: Comparison of different loss changes according to smoothing scale with training
size increase from 50 to 200 in the data space of D = 1, d = 1. The red points
represent the optimal smoothing scales selected based on the validation set.
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Data set Type
With weight decay Early stopping

Training size Training size
25 50 100 200 400 25 50 100 200 400

Iris
G 93.33 94.67 - - - 92.11 94.56 - - -
L 94.67 97.33 - - - 91.16 94.01 - - -
N 82.67 90.67 - - - 88.16 93.88 - - -

Rice
G 89.50 88.77 91.18 91.86 92.44 87.80 88.74 90.17 90.78 91.81
L 89.19 88.08 90.87 91.23 92.49 88.99 88.57 89.57 90.73 91.33
N 88.19 87.98 90.18 90.29 92.23 88.38 88.15 89.04 89.94 90.49

Dry Bean
G 73.83 82.94 86.87 90.04 91.32 75.64 82.93 86.51 88.17 89.86
L 74.96 81.97 88.14 90.35 91.69 75.76 82.48 86.43 88.76 90.00
N 73.32 80.38 86.04 88.94 91.31 74.18 81.12 86.35 88.23 89.76

Raisin
G 76.67 82.00 85.78 86.67 85.78 79.27 81.93 81.25 83.63 86.17
L 80.00 83.56 85.56 86.22 85.56 78.71 81.79 81.50 83.99 85.80
N 77.33 83.33 84.67 85.56 85.33 79.84 81.38 81.56 82.68 84.38

Table 3: Test accuracy of different real world data set. “G”, “L”, and “N” correspond to
random smoothing with Gaussian noise, random smoothing with Laplacian noise,
and no random smoothing. The highest accuracies are underlined.

6. Experiments on Real-world Data set

To demonstrate the practical application of our theoretical findings, we conducted classifi-
cation tasks on four real-world data sets: Iris (Fisher, 1988), Rice (Cammeo and Osmancik)
(mis, 2019), Dry Bean (mis, 2020), and Raisin (Çinar et al., 2023).

Following the experiments in Section 5, We use a two-hidden-layer neural network with
N = 1000 augmented samples and replace the l2 loss with Cross Entropy loss. To isolate
the influence of random smoothing, we apply a constant weight decay strength for each
data set. For early stopping without weight decay, we evaluate the validation set every 200
steps and select the highest accuracy. We conduct grid searches to determine the optimal
smoothing scale for each data set and repeat the experiment 5 times to report the average
accuracy on the test set.

Table 3 presents the test classification accuracy of four real-world data sets with varying
training sizes. Due to the sample size limitation, we only consider 25 and 50 training data
for Iris. Almost all settings show a significant improvement in test accuracy after applying
the random smoothing method, especially for smaller data sets like Iris.

7. Conclusions and Discussion

This work studies random smoothing kernel and random smoothing regularization, which
have a natural relationship with data augmentations. We consider two cases: when the
region Ω has a low intrinsic dimension, or when the kernel function can be presented as
a product of one-dimensional kernel functions. In both cases, we show that by applying
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random smoothing, with appropriate early stopping and/or weight decay techniques, the
resulting estimator can achieve fast convergence rates, regardless of the kernel function used
in the construction of the random smoothing kernel estimator.

There are several directions that could be pursued in future research. First, while we
consider noise injection to construct augmentations and use non-smooth noise to interpret
practical non-smooth augmentation techniques, such as random crop, random mask, and
random flip, this interpretation may not be perfect. For example, the behavior of adding
noise may differ from that of random crop. Furthermore, these practical techniques may also
introduce some prior knowledge on the geometry of the low intrinsic dimension. A sharper
characterization of practical augmentation techniques is needed and will be pursued in
future work.

Second, while we consider gradient descent, we believe that our results can be generalized
to the stochastic gradient descent method. However, the discussion of the latter is beyond
the scope of the current work.

Third, we mainly consider regression in this work, where the square loss is a natural choice.
An interesting extension is to study whether the results remain true when considering
classification, which requires the study of other loss functions, such as cross-entropy loss
and hinge loss.
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Appendix A. Analysis of Gradient Update and Error Decomposition

Let X = (x1, ...,xn), α > 0 if there is weight decay, and α = 0 if there is no weight decay.
By the gradient update rule, we have

ft(X) =Kwt =
√

Kθt

=
√

Kθt − β
√

K
(
Kθt −

√
Ky
)
− α
√

Kθt

=((1− α)I− βK)ft(X) + βKy,

which implies

ft+1(X)− β(αI + βK)−1Ky = ((1− α)I− βK)(ft(X)− β(αI + βK)−1Ky)

= . . . = −((1− α)I− βK)t+1β(αI + βK)−1Ky, (23)
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where we recall f0(X) = 0. If there is weight decay (i.e., α > 0), then it can be seen that

ft+1(X)−K(α/βI + K)−1y = −((1− α)I− βK)t+1β(αI + βK)−1Ky. (24)

If there is no weight decay (i.e., α = 0), then by rearrangement of (23), we obtain

ft+1(X) =
(
I− (I− βK)t+1

)
y. (25)

The estimator after t-th iteration can be obtained by

ft(x) =wT
t k(x) = k(x)TK−1ft(X). (26)

Note that the kernel matrix K is generated by the empirical kernel KS defined in (9). By
taking the expectation with respect to εk1 and εk2 , we define the expected smoothing kernel
K̃S as

K̃S(x,x′) =

∫
RD

∫
RD

K(x+ ε− (x′ + ε′))pε(ε)pε(ε
′)dεdε′. (27)

Since K̃S is close to the empirical version of the smoothing kernel KS , we can consider the
gradient flow with respect to the kernel function K̃S . The error analysis between K̃S and
KS is provided in Appendix B.

Let gt be the function obtained at t-th iteration by the gradient update rule with respect
to the kernel function K̃S . Analogous to (24) and (25), we have

gt(X) = K̃(α/βI + K̃)−1y − ((1− α)I− βK̃)tβ(αI + βK̃)−1Ky, (28)

if there is weight decay, and

gt(X) =
(
I− (I− βK̃)t

)
y, (29)

if there is no weight decay, where K̃ = (K̃S(xj − xk))jk. Similarly, the predictor of f∗(x)
using the kernel function K̃ can be obtained by

gt(x) = k̃(x)T K̃−1gt(X). (30)

Thus, the empirical error ‖ft(X)− f∗(X)‖2 can be decomposed by

‖ft(X)− f∗(X)‖2 ≤ ‖ft(X)− gt(X)‖2 + ‖gt(X)− f∗(X)‖2. (31)

Appendix B. Error of Data Augmentation

We first consider bounding the difference between the empirical smoothing kernel function

KS(x− x′) =
1

N2

N∑
k=1

N∑
j=1

K(x+ εj − (x′ + εk)),

and the expected smoothing kernel function

K̃S(x− x′) = Eε,ε′
(
K(x+ ε− (x′ + ε′))

)
=

∫
RD

∫
RD

K(x+ ε− (x′ + ε′))pε(ε)pε(ε
′)dεdε′.

Specifically, we have the following lemma.
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Lemma 16 If Assumption 2 or 3, and Assumption 4 are satisfied , then

sup
x,x′∈Ω

∣∣∣∣∣∣Eε,ε′(K(x+ ε− (x′ + ε′))
)
− 1

N2

N∑
k=1

N∑
j=1

K(x+ εj − (x′ + εk))

∣∣∣∣∣∣ = OP

(√
logN

N

)
.

Based on Lemma 16, we can obtain an upper bound of ‖ft − gt‖L∞(Ω) as follows. Recall

that K = (KS(xj−xk))nj,k=1, K̃ = (K̃S(xj−xk))nj,k=1. Let η1(K) and ηn(K) be the largest

and smallest eigenvalues of K, respectively. Let ηn(K̃) be the smallest eigenvalue of K̃.

Lemma 17 Suppose Assumption 2 or 3, and Assumption 4 are satisfied. Furthermore,
assume that

1

2
ηn(K̃) ≥ n

√
logN

N
, (32)

and the learning rate β satisfies βη1(K) + α < 1, where α = 0 if there is no weight decay,
and α > 0 if there is weight decay. Then we have

sup
t≥1
‖ft − gt‖L∞(Ω) = OP

(
n2
√

logN/N

ηn(K̃)2

)
,

where the probability is with respect to the augmentation ε.

Since K̃ and ηn(K̃) are determined by the data (xj , yj), j = 1, ..., n, the left-hand side of
(32) is not depending on N . Therefore, the condition (32) can be fulfilled if we add sufficient
augmentations. In the next lemma, we provide a more explicit lower bound of ηn(K̃) in
(32) in terms of xj ’s.

Lemma 18 Let qX be the separation distance defined as

qX =
1

2
min
j 6=k
‖xj − xk‖2.

The minimum eigenvalue of K̃, denoted by ηn(K̃), is lower bounded as follows.

1. if Assumption 2 and Assumption 4 (C1) are satisfied, then

ηn(K̃) ≥ C1

(
1 + 4M2

)−m0
(
1 + 4σ2

nM
2
)−mεMD;

2. if Assumption 3 and Assumption 4 (C2) are satisfied, then

ηn(K̃) ≥ C2

(
1 + 4M2

)−m0D(1 + 4σ2
nM

2
)−mεDMD;

3. if Assumption 2 and Assumption 4 (C3) are satisfied, then

ηn(K̃) ≥ C3

(
1 + 4M2

)−m0e−8σ2
nM

2
MD,

where Ci’s are constants only depending on D, M = 12
qX

(πΓ2(D
2

+1)

9

) 1
D+1 , and Γ(·) denotes

the Gamma function.

The proofs of the above three lemmas are put in Appendix H.
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Appendix C. A Comparison Theorem

In this section, we provide a byproduct, which is a generic comparison theorem between the
early-stopping without weight decay and the kernel ridge regression estimator. Let K1 be
a positive definite kernel function. The kernel ridge regression is defined by

g̃ = argmin
f∈HK1

(Ω)
‖f − y‖2n + λ‖f‖2HK1

(Ω), (33)

where y = (y1, ..., yn)T , yj ’s are as in (1), and λ > 0 is a regularization parameter. The
main theorem in this subsection is as follows.

Theorem 19 Let (βt)−1 = nλ. Suppose εj’s are i.i.d. random noise with mean zero and

finite variance σ2
ε . Let g̃t(x) = wT

t k(x), which is similar to f̂t(x) in (12) but with K1

instead of KS and with update rule (11). Then there exists a constant C > 0 such that

E‖g̃t − f∗‖2n ≤ CE‖g̃ − f∗‖2n, (34)

and

E‖g̃t‖2HK1
(Ω) ≤ 2E‖g̃‖2HK1

(Ω), (35)

where the expectation is taken with respect to the noises εj, j = 1, ..., n.

Theorem 19 states that the mean squared prediction error of the early-stopping without
weight decay is smaller than (at most the same as) that of the kernel ridge regression
estimator, up to a multiplicative constant. This explains why the upper bounds on the
early-stopping without weight decay and the kernel ridge regression estimator derived in
Raskutti et al. (2014) are identical, in a more explicit way. Note that the conditions of
Theorem 19 are quite mild. We do not assume any relationship between f∗ and HK1(Ω),
and do not require any particular structure of the RKHS HK1(Ω). Furthermore, we do not
impose any conditions on λ, and we only require that εj ’s are i.i.d. with finite variance (not
necessarily sub-Gaussian and can be even heavy-tailed).

It is worth noting that the complexity (i.e., the RKHS norm) of the early-stopping without
weight decay is also bounded by the complexity of the kernel ridge regression estimator, up
to a constant multiplier. Since the difference between the empirical norm ‖ · ‖n and the L2

norm depends on the complexity of the estimator, it can be expected that (34) still holds
if we replace the empirical norm by the L2 norm.

Appendix D. Proof of Theorem 8

In this section, we show the proof of the following theorem. Note that the second statement
in Theorem 20 is Theorem 8.
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Theorem 20 (Polynomial smoothing) Suppose Assumptions 1, 2, 4 (C1), and 5 are
satisfied. Suppose there exists Ω1 with positive Lebesgue measure and a Lipschitz boundary
such that Ω ⊂ Ω1 and f∗ ∈ Wmf (Ω1). Let ft(x) be as in (12) and β = n−1C1 with the
positive constant C1 ≤ 2−1 supx∈RD KS(x). Suppose the smoothing scale σn � nν with
ν ≤ 0. Suppose one of the following holds:

1. There is no weight decay in the gradient descent, and the iteration number t satisfies

t � n
2(m0+mε)

2mf+d σ2mε
n

2. There is weight decay in the gradient descent with α � n
−1− 2(m0+mε)

2mf+d σ−2mε
n , and the

iteration number satisfies t ≥ C2(
mf

2mf+d + 1/2) log n/(log(1 − α)) for some positive

constants C2.

Then the following statements are true with N > N0, where N is the number of augmenta-
tions, and N0 depends on n and the iteration number t.

1. For any a > 0, there exists an mε such that when

ν =

{
− 2(2m0+2mε)D−(2m0+2mε−D)d

(2mf+d)(4mεD−(2m0+2(1−d−1(2mf+d)a)mε−D)d)
, D > d,

0, D = d,

we have

‖ft − f∗‖2L2(PX) =OP

(
n
−

2mf
2mf+d

+a
)
.

2. Set mε = 2d−1(2Dmax(m0,mf ) +m0d) log n−m0. Then by choosing

ν =

{
− 2(2m0+2mε)D−(2m0+2mε−D)d

(2mf+d)(4mεD−(2m0+2(1−(logn)−1)mε−D)d)
< 0, D > d,

0, D = d,

we have

‖ft − f∗‖2L2(PX) =OP

(
n
−

2mf
2mf+d (log n)2mf+1

)
.

We first present several lemmas used in this proof. The proof of these lemmas can be found
in Appendix I.

Lemma 21 Suppose the conditions of Theorem 8 are fulfilled. Let f∗n be the solution to the
optimization problem

min
g∈HK̃S (Ω)

‖f∗ − g‖2L2(PX) + λn‖g‖2HK̃S (Ω). (36)
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Then if m0 ≤ mf , we have

‖f∗ − f∗n‖2L2(PX) + λn‖f∗n‖2HK̃S (Ω) ≤ C1 max

(
(λn(mε + 1)mεσ2mε

n )
mf

m0+mε , λn

)
. (37)

and if m0 > mf , we have

‖f∗ − f∗n‖2L2(PX) + λn‖f∗n‖2HK̃S (Ω) ≤ C2 max

(
(λn(mε + 1)mεσ2mε

n )
mf

m0+mε , λ

mf
m0
n

)
. (38)

Here the constants C1 and C2 are independent with mε.

Lemma 22 Suppose the conditions of Theorem 8 are fulfilled. Let f∗n be as in Lemma 21.
Suppose there exists T > 0 (depending on n) such that

‖f∗ − f∗n‖2L2(PX) + λn‖f∗n‖2HK̃S (Ω) ≤ T.

Let f̂n be the solution to the optimization problem

min
g∈HK̃S (Ω)

‖y − g‖2n + λn‖g‖2HK̃S (Ω), (39)

where y = (y1, ..., yn)T . Suppose

σ−d/2n m
mD

2m−D+ 1
2 log p

converges to zero as n goes to infinity, where p = 4D
2m−D , and m = m0 +mε. Then we have

M1 = max

(
(T + n−1/2T 1/2)1/2, λ

− p
2(4−p)

n

(
σ−d/2n n−1/2m

mD
2m−D+ 1

2 (T + n−1/2T 1/2)
1
2
− p

4

) 2
4−p

,

σ−d/2n n−1/2m
mD

2m−D+ 1
2λ
− p

4
n ,

(
σ−d/2n n−1/2m

mD
2m−D+ 1

2 (λ−1
n T )

p
2 (T + n−1/2T 1/2)1− p

2

)1/2
,

(σ−d/2n n−1/2m
mD

2m−D+ 1
2 )

2
2+p (λ−1

n T )
p

2(2+p)

)
,

M2 = max

(
(λ−1
n (T + n−1/2T 1/2))1/2,

(
λ−1
n σ−d/2n n−1/2m

mD
2m−D+ 1

2 (T + n−1/2T 1/2)
1
2
− p

4

) 2
4−p

,

σ−d/2n n−1/2m
mD

2m−D+ 1
2λ
− 2+p

4
n ,

(
λ−1
n σ−d/2n n−1/2m

mD
2m−D+ 1

2 (λ−1
n T )

p
2 (T + n−1/2T 1/2)1− p

2

)1/2
,

λ−1/2
n (σ−d/2n n−1/2m

mD
2m−D+ 1

2 )
2

2+p (λ−1
n T )

p
2(2+p)

)
,

Then we have

‖f∗ − f̂n‖n = OP(M1), ‖f̂n‖HK̃S (Ω) = OP(M2).

Furthermore, if f̃n be the solution to the optimization problem

min
f∈HK̃S (Ω)

‖f∗ − f‖2n + λn‖f‖HK̃S (Ω), (40)

then

‖f∗ − f̃n‖n = OP((T + n−1/2T 1/2)1/2), ‖f̃n‖HK̃S (Ω) = OP((λ−1
n (T + n−1/2T 1/2))1/2).
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Lemma 23 (Lemma F.5 of Wang, 2021) Assume for class G, supg∈G ‖g‖L∞(Ω) ≤ c <

1, and the bracket entropy HB(δn,G, ‖ · ‖L2(PX)) ≤
nδ2
n

1200c2
, and nδ2

n →∞, where 0 < δn < 1.
Then we have

P

(
inf

‖g‖L2(PX)≥2δn,g∈G

‖g‖2n
‖g‖2L2(PX)

< C3

)
≤ C5 exp(−C6nδ

2
n/c

2),

and

P

(
sup

‖g‖L2(PX)≥2δn,g∈G

‖g‖2n
‖g‖2L2(PX)

> C4

)
≤ C7 exp(−C8nδ

2
n/c

2),

for some constants C3, C4 > 0 and Ci’s (i = 5, 6, 7, 8) are only depending on Ω.

Lemma 24 (Interpolation inequality for Polynomial RKHS) Let g ∈ Wm(RD).

When r = D
2(m0+mε)

and D > 1, we have

‖g‖L∞(RD) ≤ C9‖g‖1−rL2(RD)
‖g‖rWm(RD),

where the positive constant C9 =
(∫

RD(1 + ‖ω‖22)−
D
2 dω

) 1
2
<∞.

D.1 Without Weight Decay

By the triangle inequality, it can be seen that

‖ft − f∗‖L2(PX) ≤‖ft − gt‖L2(PX) + ‖gt − f∗‖L2(PX), (41)

where gt is as in (29).

By Lemma 17, the first term ‖ft − gt‖L2(PX) in (41) can be bounded by

‖ft − gt‖L2(PX) ≤ C10‖ft − gt‖L∞(Ω) = OP

(
n2
√

logN/N

ηn(K̃)2

)
,

as long as

1

2
ηn(K̃) ≥ n

√
logN

N
. (42)

Choose

N0 =
4n2

ηn(K̃)2
. (43)

Then it holds that when N ≥ N0,

‖ft − gt‖L2(PX) = OP

(
n−1/2

)
. (44)
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It remains to consider ‖gt − f∗‖L2(PX) in (41). In order to do so, we consider the empirical
version of ‖gt − f∗‖L2(PX), and let

J2 = ‖gt − f∗‖2n =
1

n
‖gt(X)− f∗(X)‖22. (45)

Let (βt)−1 = nλn. Consider the kernel ridge regression

g̃ = argmin
f∈HK̃S (Ω)

‖f − y‖2n + λn‖f‖2HK̃S (Ω). (46)

By the representer theorem, g̃(x) = k̃(x)T (K̃ + nλnI)−1y for all x ∈ Ω, where k̃(x) =
(K̃S(x− x1), ..., K̃S(x− xn))T . Then it can be seen that

g̃(X)− f∗(X) = nλn(K̃ + nλnI)−1f∗(X) + K̃(K̃ + nλnI)−1ε = q1 + q2.

Recall that (see Equation 29)

gt(X) =
(
I− (I− βK̃)t

)
y,

which implies

gt(X)− f∗(X) = −(I− βK̃)tf∗(X) +
(
I− (I− βK̃)t

)
ε. (47)

By the Cauchy-Schwarz inequality, (45), and (47), it can be seen that

nJ2 ≤2(f∗(X))T (I− βK̃)2tf∗(X) + 2εT (I− (I− βK̃)t)2ε

=2nJ21 + 2nJ22, (48)

and

n‖g̃ − f∗‖2n ≤2(nλn)2(f∗(X))T (K̃ + nλnI)−2f∗(X) + 2εT (K̃ + nλnI)−1K̃2(K̃ + nλnI)−1ε

=2‖q1‖22 + 2‖q2‖22. (49)

Similar to (90), it can be seen that

2nJ21 ≤ C11‖q1‖22, (50)

for some positive constants C11, and similar to (94), the term 2nJ22 can be further bounded
by

2nJ22 =2

n∑
j=1

(1− (1− βηj)t)2(vTj ε)
2 ≤ 2

n∑
j=1

4(βtηj)
2

(1 + βtηj)2
(vTj ε)

2

=8εT (K̃ + (βt)−1I)−1K̃2(K̃ + (βt)−1I)−1ε = 8‖q2‖22, (51)

where η1 ≥ . . . ≥ ηn > 0 and vj , j = 1, . . . , n be the eigenvalues and corresponding
eigenvectors of K̃, respectively. In the last inequality of (51), we note (βt)−1 = nλn.
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Plugging (50) and (51) into (48), we obtain

J2 ≤
2C12

n

(
‖q1‖22 + ‖q2‖22

)
, (52)

for some positive constants C12. The term ‖q1‖22 and ‖q2‖22 can be directly bounded by
Lemma 22. To see this, let f0(x) = 0 for all x ∈ Ω. Then it can be checked that

1

n
‖q1‖22 =‖f̃n − f‖2n,

and

1

n
‖q2‖22 =‖f̂0,n − f0‖2n,

where f̃n is as in (40), and f̂0,n is the solution to the optimization problem

min
g∈HK̃S (Ω)

‖ε− g‖2n + λn‖g‖2HK̃S (Ω).

Let δ0 ∈ (0, 1) such that 4mεD − (2m0 + 2(1− δ0)mε −D)d > 0. Take

λn � n
− 2(m0+mε)

2mf+d σ−2mε
n , σn � n

− 2(2m0+2mε)D−(2m0+2mε−D)d
(2mf+d)(4mεD−(2m0+2(1−δ0)mε−D)d) , n−1(βt)−1 � λn, β � n−1.

Therefore, if mε = O((log n)C) for some constant C, and

λn ≤ C13(λn(mε + 1)mεσ2mε
n )

mf
m0+mε

⇔n
− 2(m0+mε)

2mf+d n
4mε(2m0+2mε)D−2mε(2m0+2mε−D)d

(2mf+d)(4mεD−(2m0+2(1−δ0)mε−D)d) ≤ C14n
−

2mf
2mf+d (mε + 1)

mεmf
m0+mε

⇐m2
εδ0d > mε(2mfD + (m0 −mf )(1− δ0)d)

⇐mε >
2mfD +m0d

δ0d
, (53)

for some positive constants C13 and C14, when m0 ≤ mf , or

λ

mf
m0
n ≤ C15(λn(mε + 1)mεσ2mε

n )
mf

m0+mε

⇔n
− 2(m0+mε)

2mf+d n
4mε(2m0+2mε)D−2mε(2m0+2mε−D)d

(2mf+d)(4mεD−(2m0+2(1−δ0)mε−D)d) ≤ C16n
− 2m0

2mf+d (mε + 1)
mεm0
m0+mε

⇐m2
εδ0d > 2m0mεD

⇐mε >
2m0D +m0d

δ0d
, (54)

for some positive constants C15 and C16, when m0 > mf , we have

T ≤ C17n
−

2mf
2mf+d (mε + 1)

mεmf
m0+mε ≤ C17n

−
2mf

2mf+d (mε + 1)mf ,
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for some positive constants C17, where T is as in Lemma 22. Suppose D > 1, long but
tedious calculation shows that

M1 ≤ C18(mε +m0)mf+ 1
2n
−

mf
2mf+d

+δ′

,

for some positive constants C18, where M1 is as in Lemma 22, and

δ′ =
((4m0 + 4mε)D − (2m0 + 2mε −D)d)mεd

(2mf + d)(2mε + 2m0 −D)(4mεD − (2m0 + 2(1− δ0)mε −D)d)
δ0 ≤

d

2(2mf + d)
δ0,

where the inequality is because of (53) (if m0 ≤ mf ) or (54) (if m0 > mf ). Therefore, by
taking δ0 = d−1(2mf + d)a and mε = (δ0d)−1(2Dmax(m0,mf ) +m0d) + 1, we have

1

n
‖q1‖22 =‖f̃n − f‖2n = OP

(
n
−

2mf
2mf+d

+a
)
,

1

n
‖q2‖22 =‖f̂0,n − f0‖2n = OP

(
n
−

2mf
2mf+d

+a
)
. (55)

Then by (52) and (55), we obtain

J2 = OP

(
n
−

2mf
2mf+d

+a
)
, (56)

which corresponds to the first statement of Theorem 8.

Taking δ0 = (log n)−1, we obtain that

M1 ≤ C18n
−

mf
2mf+d e

d
2(2mf+d) (mε +m0)mf+ 1

2 ≤ C19n
−

mf
2mf+d (mε +m0)mf+ 1

2 ,

for some positive constants C19, where we require mε > d−1(2Dmax(m0,mf ) +m0d) log n.
Thus, we can directly take mε = 2d−1(2Dmax(m0,mf ) +m0d) log n−m0 such that

1

n
‖q1‖22 =‖f̃n − f‖2n = OP

(
n
−

2mf
2mf+d (log n)2mf+1

)
,

1

n
‖q2‖22 =‖f̂0,n − f0‖2n = OP

(
n
−

2mf
2mf+d (log n)2mf+1

)
. (57)

Thus, by (52) and (57), we have

J2 = OP

(
n
−

2mf
2mf+d (log n)2mf+1

)
, (58)

which corresponds to the second statement of Theorem 8.

It remains to bound ‖gt − f∗‖L2(PX). Note that

‖gt − f∗‖L2(PX) ≤ ‖gt − f∗n‖L2(PX) + ‖fn − f∗‖L2(PX) ≤ ‖gt − f∗n‖L2(PX) + T 1/2,

39



Ding, Hu, Jiang, Li, Wang, and Yao

and

‖gt − f∗n‖n ≤‖gt − f∗‖n + ‖f∗n − f∗‖n ≤ ‖gt − f∗‖n +OP

((
T + n−1/2T 1/2

)1/2
)

≤OP

(
n
−

2mf
2mf+d (log n)2mf+1

)
,

where the second inequality is because of (135). Therefore, it suffices to bound the difference
between ‖gt − f∗n‖L2(PX) and ‖gt − f∗n‖n. By (95) and Lemma 22, we have

‖gt‖2Nσ(Ω) ≤ σ
−2m0
n ‖gt‖2HK̃S (Ω) ≤ C20σ

−2m0
n ‖g̃‖2HK̃S (Ω) = OP

(
nν1(log n)2mf+1

)
, (59)

for some positive constants C20, where

ν1 =
2(m0 +mε −mf )

2mf + d
+ 2(mε −m0)ν,

and ν =− 2(2m0 + 2mε)D − (2m0 + 2mε −D)d

(2mf + d)(4mεD − (2m0 + 2(1− δ0)mε −D)d)
. (60)

Consider function class G = {h : h = (gt−f∗n)/(C21n
ν1/2(log n)mf+1/2)}, where the constant

C21 is taken such that ‖h1‖Nσ(Ω) < 1 for all h1 ∈ G. Then lemma 24 leads to

‖h1‖L∞(Ω) ≤ C22‖h1‖
1− D

2(m0+mε)

L2(PX) ‖h1‖
D

2(m0+mε)

Nσ(Ω) ,

for some positive constants C22 and all h1 ∈ G, which implies

c1 := sup
h1∈G

‖h1‖L∞(Ω) ≤ C22R
1− D

2(m0+mε)

1 ,

where R1 = suph1∈G ‖h1‖L2(PX) ≤ suph1∈G ‖h1‖L∞(Ω) ≤ suph1∈G ‖h1‖Nσ(Ω) < 1, because

of the reproducing property. Let m = m0 + mε. Taking c = C22R
1− D

2m
1 < 1, and δn =

C23(σ−dn n−1c2m
2mD

2m−D )
2m−D

4m for some positive constants C23 in Lemma 23, it can be checked
that

C24nδ
2
nc
−2 ≥ H(δ,BHσ(Ω), ‖ · ‖L∞(Ω)),

for some positive constants C24, which implies the conditions of Lemma 23 are fulfilled.
Applying Lemma 23 to the case ‖gt − f∗n‖2L2(PX) ≥ δ

2
nn

ν1 , together with (58), we have

R1 = OP

(
max{n

−
mf

2mf+d
−ν1/2

(log n)mf+1/2, δn}
)
. (61)

If δn ≥ n
−

mf
2mf+d

−ν1/2
(log n)mf+1/2, we have R1 ≤ C25δn for some positive constants C25,

which implies

R1 ≤ C26(σ−dn n−1c2m
2mD

2m−D )
2m−D

4m ,
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for some positive constants C26. Therefore, we have

‖gt − f∗n‖L2(PX) ≤ C21n
ν1/2R1 ≤ C27n

ν2(log n)D/2,

where

ν2 =
(m0 +mε −mf )

2mf + d
+ (mε −m0)ν − 2m−D

4m
(dν + 1) < −

mf

2mf + d
.

If δn < n
−

mf
2mf+d

−ν1/2
(log n)mf+1/2, then R1 = OP(n

−
mf

2mf+d
−ν1/2

(log n)mf+1/2), which im-

plies ‖gt−f∗n‖L2(PX) = OP(n
−

mf
2mf+d (log n)mf+1/2). Here we note that the proof is still valid if

we replace gt with g̃. Therefore, in both cases we have ‖gt−f∗n‖L2(PX) = OP(n
−

mf
2mf+d (log n)mf+1/2),

which, together with (51) and (44), finishes the proof.

D.2 With Weight Decay

If α > 0, we decompose the error by

‖ft − f∗‖L2(PX) ≤‖ft − gt‖L2(PX) + ‖k̃(·)T (α/βI + K̃)−1y − f∗‖L2(PX)

+ ‖βk(·)T ((1− α)I− βK̃)t(αI + βK̃)−1y‖L2(PX)

=I1 + I2 + I3. (62)

As in (44), there exists an N0 (depending on n) such that when N ≥ N0,

I1 = OP

(
n−1/2

)
. (63)

The second term is the error ‖f̃n − f∗‖L2(PX), where f̃n is as in (40). Lemma 22 gives us
that

‖f̃n − f∗‖n = OP(n
−

mf
2mf+d ).

Following a similar approach in Appendix D.1, it can be further shown that

I2 = OP(n
−

mf
2mf+d ), (64)

where we let α � n
−1− 2(m0+mε)

2mf+d σ−2mε
n , and β and σn are as in Theorem 8.
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It remains to bound I3 in (62). By Cauchy-Schwarz inequality,

‖βk(·)T ((1− α)I− βK̃)t(αI + βK̃)−1y‖L2(PX)

≤

∥∥∥∥∥
(

tr

((
(α/βI + K̃)−1yk(·)T

)2
)

tr
(

((1− α)I− βK̃)2t
))1/2

∥∥∥∥∥
L2(PX)

≤
∥∥∥k(·)T (α/βI + K̃)−1y

∥∥∥
L2(PX)

(
tr
(

((1− α)I− βK̃)2t)
))1/2

≤‖(k(·)Tk(·))1/2‖L2(PX)‖y‖2β/α

=OP

(
n

1+
2(m0+mε)

2mf+d σ2mε
n (1− α)t

)
. (65)

Thus, there exists t0 > 0 such that as long as t > t0, I2 dominates I3. Combining (63),
(64), and (65), we finish the proof.

Appendix E. Proof of Theorem 9

We first present some lemmas, whose proofs can be found in Appendix J.

Lemma 25 Let kσ(x− x′) be a Gaussian kernel defined by

kσ(x− x′) = exp

(
−‖x− x

′‖22
4σ2

)
, (66)

and Hσ(RD) be the RKHS generated by kσ(x− x′). Then we have

‖h1‖Hσn/√2(RD) ≤ C1σ
−D/2
n ‖h1‖HK̃S (RD),

and

‖h2‖HK̃S (RD) ≤ C2σ
−m0−D/2
n ‖h2‖H√3σn

(RD),

for h1 ∈ HK̃S (RD) and h2 ∈ H√3σn
(RD), where the positive constants C1 and C2 does not

depend on σn.

Lemma 26 Let f∗n be the solution to the optimization problem

min
g∈HK̃S (Ω)

‖f∗ − g‖2L2(PX) + λn‖g‖2HK̃S (Ω). (67)

Then

‖f∗ − f∗n‖2L2(PX) ≤ C3 max(λnσ
−2m0
n , σ

2mf
n ),

and

‖f∗n‖2HK̃S (Ω) ≤ C3λ
−1
n max(λnσ

−2m0
n , σ

2mf
n ),

for some positive constants C3.
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Lemma 27 Let f∗n be the solution to the optimization problem

min
g∈HK̃S (Ω)

‖f∗ − g‖2L2(PX) + λn‖g‖2HK̃S (Ω). (68)

Suppose there exists T > 0 (depending on n) such that

‖f∗ − f∗n‖2L2(PX) + λn‖f∗n‖2HK̃S (Ω) ≤ T.

Let f̂n be the solution to the optimization problem

min
g∈HK̃S (Ω)

‖y − g‖2n + λn‖g‖2HK̃S (Ω). (69)

Let p = (log n)−1,

M1 = max

(
(T + n−1/2T 1/2)1/2, σ

−d/2− pD
4

n p−(D+1)/2n−1/2λ
− p

4
n ,

λ
− p

2(4−p)
n

(
σ
−d/2− pD

4
n p−(D+1)/2n−1/2(T + n−1/2T 1/2)

1
2
− p

4

) 2
4−p

,(
σ
−d/2− pD

4
n p−(D+1)/2n−1/2(λ−1

n T )
p
2 (T + n−1/2T 1/2)1− p

2

)1/2

,

(σ
−d/2− pD

4
n p−(D+1)/2n−1/2)

2
2+p (λ−1

n T )
p

2+p

)
,

M2 = max

(
(λ−1
n (T + n−1/2T 1/2))1/2, σ

−d/2− pD
4

n p−(D+1)/2n−1/2λ
− 2+p

4
n ,(

λ−1
n σ

−d/2− pD
4

n p−(D+1)/2n−1/2(T + n−1/2T 1/2)
1
2
− p

4

) 2
4−p

,(
λ−1
n σ

−d/2− pD
4

n p−(D+1)/2n−1/2(λ−1
n T )

p
2 (T + n−1/2T 1/2)1− p

2

)1/2

,

λ−1/2
n (σ

−d/2− pD
4

n p−(D+1)/2n−1/2)
2

2+p (λ−1
n T )

p
2+p

)
.

Then we have

‖f∗ − f̂n‖n = OP(M1), ‖f̂n‖HK̃S (Ω) = OP(M2).

Furthermore, if f̃n be the solution to the optimization problem

min
f∈HK̃S (Ω)

‖f∗ − f‖2n + λn‖f‖HK̃S (Ω), (70)

then

‖f∗ − f̃n‖n = OP((T + n−1/2T 1/2)1/2), ‖f̃n‖HK̃S (Ω) = OP((λ−1
n (T + n−1/2T 1/2))1/2).
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Lemma 28 (Interpolation inequality for Gaussian RKHS) Let g ∈ Hσ(RD). For
any 1 > r > 0, we have

‖g‖L∞(RD) ≤ C4r
−D

4 σ
D(r−1)

2 ‖g‖1−r
L2(RD)

‖g‖rHσ(RD),

where C4 is a constant not related to r, σ and g.

E.1 Without Weight Decay

We first decompose the error as

‖ft − f∗‖L2(PX) ≤‖ft − gt‖L2(PX) + ‖gt − f∗‖L2(PX), (71)

where gt is as in (29).

By Lemma 17, the first term ‖ft − gt‖L2(PX) in (71) can be bounded by

‖ft − gt‖L2(PX) ≤ C5‖ft − gt‖L∞(Ω) = OP

(
n2
√

logN/N

ηn(K̃)2

)
,

for some positive constants C5, as long as

1

2
ηn(K̃) ≥ n

√
logN

N
. (72)

Choose

N0 =
4n2

ηn(K̃)2
. (73)

Then it holds that when N ≥ N0,

‖ft − gt‖L2(PX) = OP

(
n−1/2

)
. (74)

It remains to consider ‖gt−f∗‖L2(PX). We consider the empirical version of ‖gt−f∗‖L2(PX),
and let

J2 = ‖gt − f∗‖2n =
1

n
‖gt(X)− f∗(X)‖22. (75)

Let (βt)−1 = nλn. Consider the kernel ridge regression

g̃ = argmin
f∈HK̃S (Ω)

‖f − y‖2n + λn‖f‖2HK̃S (Ω).

By the representer theorem, g̃(x) = k̃(x)T (K̃ + nλnI)−1y for all x ∈ Ω. Then it can be
seen that

g̃(X)− f∗(X) = nλn(K̃ + nλnI)−1f∗(X) + K̃(K̃ + nλnI)−1ε = q1 + q2,
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Following the arguments in Appendix D.1, the term J2 can be bounded by

J2 ≤
2

n

(
2C6‖q1‖22 + 8‖q2‖22

)
(76)

for some positive constants C6, and

1

n
‖q1‖22 =‖f̃n − f∗‖2n,

and

1

n
‖q2‖22 =‖f̂0,n − f0‖2n,

where f0(x) = 0 for all x ∈ Ω, f̃n is as in (70), and f̂0,n is the solution to the optimization
problem

min
g∈HK̃S (Ω)

‖ε− g‖2n + λn‖g‖2HK̃S (Ω).

By setting βt � n
2m0−d
2mf+d (which implies λn � n

−
2m0+2mf

2mf+d ), σn � n
− 1

2mf+d , Lemma 26 implies

that T � n
−

2mf
2mf+d , which, together with Lemma 27, implies

1

n
‖q1‖22 =‖f̃n − f∗‖2n = OP

(
n
−

2mf
2mf+d (log n)D+1

)
,

1

n
‖q2‖22 =‖f̂0,n − f0‖2n = OP

(
n
−

2mf
2mf+d (log n)D+1

)
. (77)

By (77) and (76), we obtain

J2 = OP

(
n
−

2mf
2mf+d (log n)D+1

)
. (78)

Next, we consider bounding ‖gt−f∗‖L2(PX). Similar to the proof in Appendix D.1, it suffices
to consider bounding the difference between ‖gt − f∗n‖L2(PX) and ‖gt − f∗n‖n. Lemma 25
implies that

‖g̃‖2Hσn/√2(Ω) ≤ C7σ
−D
n ‖g̃‖2HK̃S (Ω) = OP

(
n

2m0+D
2mf+d (log n)D+1

)
, (79)

for some positive constants C7.

Consider function class G = {h : h = (gt − f∗n)/(2C8n
m0+D/2
2mf+D (log n)(D+1)/2)}, where the

constant C8 is taken such that ‖h1‖Hσn/√2(Ω) < 1 for all h1 ∈ G. Taking r = (log n)−1 in

Lemma 28, together with the extension theorem leads to

‖h1‖L∞(Ω) ≤ C9r
−D

4 σ
D(r−1)

2
n ‖h1‖1−rL2(PX)‖h1‖rHσn/√2(Ω),
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for some positive constants C9 and all h1 ∈ G. Therefore, we have

c1 := sup
h1∈G

‖h1‖L∞(Ω) ≤ C9r
−D

4 σ
D(r−1)

2
n R1−r

1 ,

where R1 = suph1∈G ‖h1‖L2(PX) ≤ suph1∈G ‖h1‖L∞(Ω) ≤ suph1∈G ‖h1‖Hσn/√2(Ω) < 1, because

of the reproducing property. Taking c = C9r
−D

4 σ
D(r−1)

2
n R1−r

1 and δn = C10(σdnr
−D−1c−2)

1
r+2

for some positive constants C10 in Lemma 23, it can be checked that

C11nδ
2
nc
−2 ≥ H(δn,BHσn/√2(Ω), ‖ · ‖L∞(Ω)),

for some positive constants C11. By repeating the proof in Appendix D.1, we obtain that

‖gt − f∗‖L2(PX) = OP

(
n
−

2mf
2mf+D (log n)D+1

)
,

which, together with (71) and (74), implies

‖ft − f∗‖L2(PX) = OP

(
n
−

2mf
2mf+D (log n)D+1

)
.

This finishes the proof.

E.2 With Weight Decay

The results can be obtained by merely repeating the proof in Appendix D.2, where the only
difference is that the corresponding convergence rate for I2 (in Equation 62 of Appendix
D.2) is obtained via the proof in Appendix E.1. Thus we omit it here.

Appendix F. Proof of Theorem 13

We first present several lemmas used in this proof.

Lemma 29 Suppose the conditions of Theorem 13 are fulfilled and f∗ ∈MWmf (Ω1). Let
f∗n be the solution to the optimization problem

min
g∈HK̃S (Ω)

‖f∗ − g‖2L2(PX) + λn‖g‖2HK̃S (Ω).

Then

‖f∗ − f∗n‖2L2(PX) + λn‖f∗n‖2HK̃S (Ω) .
∑

l∈{0,1}D:|l|≥1

(λnσ
2mε|l|
n )

mf
m0+mε .
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Lemma 30 Suppose the conditions of Theorem 13 are fulfilled. Let f∗n be as in Lemma 29.
Suppose there exists T > 0 (depending on n) such that

‖f∗ − f∗n‖2L2(PX) + λn‖f∗n‖2HK̃S (Ω) ≤ T.

Let f̂n be the solution to the optimization problem

‖y − f̂n‖2n + λn‖f̂n‖2HK̃S (Ω). (80)

Let p = 1
m0+mε

, q = D−1
2 + p

4

M1 = max

(
λ
− p

2(4−p)
n

(
σ−d/2n n−1/2(T + n−1/2T 1/2)

1
2
− p

4

∣∣ log(T + n−1/2T 1/2)
∣∣q) 2

4−p
,

(T + n−1/2T 1/2)1/2, σ−d/2n n−1/2λ
− p

4
n

∣∣ log(σ−d/2n n−1/2λ
− p

4
n )

∣∣q,(
σ−d/2n n−1/2(λ−1

n T )
p
2 (T + n−1/2T 1/2)1− p

2

∣∣ log(T + n−1/2T 1/2)
∣∣q)1/2

,

(σ−d/2n n−1/2)
2

2+p (λ−1
n T )

p
2(2+p)

∣∣ log
(
(σ−d/2n n−1/2)

2
2+p (λ−1

n T )
p

2(2+p)
)∣∣q 2

2+p

)
,

M2 = max

((
λ−1
n σ−d/2n n−1/2(T + n−1/2T 1/2)

1
2
− p

4

∣∣ log(T + n−1/2T 1/2)
∣∣q) 2

4−p
,

(λ−1
n (T + n−1/2T 1/2))1/2, σ−d/2n n−1/2λ

− 2+p
4

n

∣∣ log(σ−d/2n n−1/2λ
− p

4
n )

∣∣q,(
λ−1
n σ−d/2n n−1/2(λ−1

n T )
p
2 (T + n−1/2T 1/2)1− p

2

∣∣ log(T + n−1/2T 1/2))
∣∣q)1/2

,

λ−1/2
n (σ−d/2n n−1/2)

2
2+p (λ−1

n T )
p

2(2+p)

∣∣∣log
(

(σ−d/2n n−1/2)
2

2+p (λ−1
n T )

p
2(2+p)

)∣∣∣ 2q
2+p

)
.

Then we have

‖f∗ − f̂n‖n = OP(M1), ‖f̂n‖HK̃S (Ω) = OP(M2).

Furthermore, if f̃n is the solution to the optimization problem

‖f∗ − f̃n‖2n + λn‖f̃n‖HK̃S (Ω), (81)

then

‖f∗ − f̃n‖n = OP((T + n−1/2T 1/2)1/2), ‖f̃n‖HK̃S (Ω) = OP((λ−1
n (T + n−1/2T 1/2))1/2).

Lemma 31 (Interpolation inequality for tensored RKHS) Let g ∈MWm(RD).

For any 1 ≥ r > m−1/2, we have

‖g‖L∞(RD) ≤ Cr‖g‖1−rL2(RD)
‖g‖rMWm(RD),

where Cr is a constant that only depends on r.
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F.1 Without Weight Decay

The result can be obtained by merely repeating the proof in Appendix D.1. We let λn �

n
− 2(m0+mε)

2mf+1 (log n)
2(D−1)(m0+mε)+1

2mf+1 , σn � 1, then by Lemma 29 and Lemma 30, the term J2

in (58) becomes

J2 = OP

(
n
−

2mf
2mf+1 (log n)

2mf
2mf+1

(D−1+ 1
2(m0+mε)

)
)
. (82)

Similar to the proof in Appendix D.1, we can choose

N0 =
4n2

ηn(K̃)2
, (83)

and obtain that when N ≥ N0,

‖ft − gt‖L2(PX) = OP

(
n−1/2

)
. (84)

To bound the difference between the empirical norm ‖gt − f∗‖n and ‖gt − f∗‖L2(PX). By
(95) and Lemma 30, we have

‖gt‖2Nσ(Ω) ≤ σ
−2m0
n ‖gt‖2HK̃S (Ω) ≤ C17σ

−2m0
n ‖g̃‖2HK̃S (Ω) = OP (nν1(log n)ν2) , (85)

for some positive constants C17, where

σn �1,

ν1 =
2(m0 +mε −mf )

2mf + 1
,

ν2 =2(mf −m0 −mε) +
1

2mf + 1

(
mf

2(m0 +mε)
− 1

)
.

Consider function class G = {h : h = (gt− f∗)/(Cnν1/2(log n)ν2/2}, where the constant C is

taken such that ‖h1‖Nσ(Ω) < 1 for all h1 ∈ G. Select r = 1
2

2mf+1
m0+mε

> 1
2

1
m0+mε

, then Lemma
31 leads to

‖h1‖L∞(Ω) ≤ C1‖h1‖
1−

2mf+1

2(m0+mε)

L2(PX) ‖h1‖
2mf+1

2(m0+mε)

Nσ(Ω) ,

for some positive constants C1 and all h1 ∈ G, which implies

c1 := sup
h1∈G

‖h1‖L∞(Ω) ≤ C2R
1−

2mf+1

2(m0+mε)

1 ,

where R1 = suph1∈G ‖h1‖L2(PX) ≤ suph1∈G ‖h1‖L∞(Ω) ≤ suph1∈G ‖h1‖Nσ(Ω) < 1, because

of the reproducing property. Taking c = C2R
1− 1

2(m0+mε)

1 < 1, and we also let δn =
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C3(n−1c2)
m0+mε

2(m0+mε)+1 (log n)
D−1

2
+ 1

4(m0+mε) , for some positive constants C2 and C3 in Lemma
23, it can be checked that

C4nδ
2
nc
−2 ≥ H(δ,BHσ(Ω), ‖ · ‖L∞(Ω)),

for some positive constants C4, which implies the conditions of Lemma 23 are fulfilled.
Applying Lemma 23 to the case ‖gt − f∗‖2L2(PX) ≥ δ2

nn
ν1(log n)ν2 , together with (82), cal-

culations similar to the proof in section D.1 shows

‖gt − f∗‖L2(PX) = OP

(
n
−

mf
2mf+1 (log n)

mf
2mf+1

(D−1+ 1
2(m0+mε)

)
)
.

This finishes the proof.

F.2 With Weight Decay

The results can be obtained by merely repeating the proof in Appendix D.2, where the only
difference is that the corresponding convergence rate for I2 (in Equation 62 of Appendix
D.2) is obtained via the proof in Appendix F.1. Thus we omit it here.

Appendix G. Proof of Theorem 19

Similar to (29), we have

g̃t(X) =
(
I− (I− βK1)t

)
y,

thus

g̃t(X)− f∗(X) = −(I− βK1)tf∗(X) +
(
I− (I− βK1)t

)
ε, (86)

where K1 = (K1(xj − xk))jk, and f∗(X) = (f∗(x1), ..., f∗(xn))T . Taking expectation with
respect to ε, the mean squared prediction error of g̃t with respect to the empirical norm is
given by

E‖g̃t − f∗‖2n =
1

n

(
(f∗(X))T (I− βK1)2tf∗(X) + σ2

ε tr
(
I− (I− βK1)t

)2)
=

1

n
J11 +

1

n
J12. (87)

By the representer theorem, the solution to (33) is given by

g̃(x) = k1(x)T (K1 + nλI)−1y, (88)

where k1(·) = (K1(· −x1), . . . ,K1(· −xn))T . Thus, the mean squared prediction error with
respect to the empirical norm of g̃ can be computed by

E‖g̃ − f∗‖2n

=
1

n

(
(nλ)2(f∗(X))T (K1 + nλI)−2f∗(X) + σ2

ε tr
(
(K1 + nλI)−1K2

1(K1 + nλI)−1
)2)

=J21 + J22. (89)
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Let η1 ≥ . . . ≥ ηn > 0 and vj , j = 1, . . . , n be the eigenvalues and corresponding eigenvectors
of K1, respectively. By the basic inequalities 1− u ≤ exp(−u) ≤ 2e(1 + u)−2 for any u > 0,
the term J11 can be bounded by

J11 =
n∑
j=1

(1− βηj)2t(vTj f
∗(X))2 ≤

n∑
j=1

(1− βηj)t(vTj f∗(X))2

≤
n∑
j=1

exp(−βtηj)(vTj f∗(X))2 ≤ 2e
n∑
j=1

(βt)−2

((βt)−1 + ηj)2
(vTj f

∗(X))2

=2e(βt)−2(f∗(X))T (K1 + (βt)−1I)−2f∗(X)

=2eJ21, (90)

where the last equality is because we choose nλ = (βt)−1.

Next, we consider J12. Let r be the smallest integer such that βtηr ≤ 1. Then for j =
1, ..., r − 1, we have

1− (1− βηj)t ≤ 1 ≤ 2βtηj
1 + βtηj

, (91)

and for j = r, ..., n, we have

1− (1− βηj)t ≤ βtηj ≤
2βtηj

1 + βtηj
, (92)

where the first inequality is by Bernoulli’s inequality. Combining (91) and (92), we have

1− (1− βηj)t ≤
2βtηj

1 + βtηj
, (93)

for all j = 1, . . . , n. By (93), the second term J12 in (87) can be bounded by

J12 =σ2
ε

n∑
j=1

(1− (1− βηj)t)2 ≤ σ2
ε

n∑
j=1

4(βtηj)
2

(1 + βtηj)2

=4σ2
ε tr
(
(K1 + nλI)−1K2

1(K1 + nλI)−1
)2

= 4J22, (94)

where in the second equality, we use nλ = (βt)−1 again. By (87), (89) (90) and (94), and
2e > 4, we have

E‖gt − f∗‖2n ≤ 2eE‖g̃ − f∗‖2n,

which finishes the proof of (34).

Next, we consider the RKHS norm of g̃t and show that (35) holds. Direct computation
shows that

‖gt‖2HK1
(Ω) = gt(X)TK−1

1 gt(X) =
n∑
j=1

(1− (1− βηj)t)2

ηj
(vTj y)2

≤
n∑
j=1

4(βt)2ηj
(1 + βtηj)2

(vTj y)2 = 4yT (K1 + (βt)−1I)−1K1(K1 + (βt)−1I)−1y

=4‖g̃‖2HK1
(Ω), (95)
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where the inequality is by (93), and the last equality is because nλ = (βt)−1. This finishes
the proof of (35).

Appendix H. Proof of Lemmas in Appendix B

H.1 Proof of Lemma 16

From Assumption 2 or Assumption 3, for any x,x′ ∈ Ω, the Fourier inversion theorem
yields ∣∣∣∣∣∣Eε,ε′(K(x+ ε− (x′ + ε′))

)
− 1

N2

N∑
k=1

N∑
j=1

K(x+ εj − (x′ + εk))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
RD

Eε,ε′
(
eiω

T (x+ε−x′−ε′))F(K)(ω)− 1

N2

N∑
k=1

N∑
j=1

eiω
T (x+εk−x′−ε′j)F(K)(ω)dω

∣∣∣∣∣∣
≤
∫
RD

∣∣∣∣∣∣∣∣Eε(eiωT ε)∣∣2 −
∣∣∣∣∣ 1

N

N∑
k=1

eiω
T εk

∣∣∣∣∣
2
∣∣∣∣∣∣F(K)(ω)dω

≤
∫
RD

∣∣∣∣Eε(eiωT ε)− 1

N

N∑
k=1

eiω
T εk

∣∣∣∣(∣∣Eε(e−iωT ε)∣∣+

∣∣∣∣∣ 1

N

N∑
k=1

e−iω
T εk

∣∣∣∣∣
)
F(K)(ω)dω

≤2

∫
RD

∣∣∣∣∣Eε(eiωT ε)− 1

N

N∑
k=1

eiω
T εk

∣∣∣∣∣F(K)(ω)dω. (96)

According to Assumption 4, ε is sub-Gaussian. From Csörgő (1985), we can have the

following error estimate for the empirical characteristic function 1
N

∑N
k=1 e

−iωT εk almost
surely. Specifically, for any A > 0, we have

lim sup
N→∞

√
N

logN
sup

‖ω‖2≤NA

∣∣∣∣Eε(eiωT ε)− 1

N

N∑
k=1

eiω
T εk

∣∣∣∣ ≤ 2 +
√

2 min(A, 1) + 4

√
1 + (A+

1

2
)D.

(97)

By (97), (96) can be further bounded by

2

∫
RD

∣∣∣∣Eε(eiωT ε)− 1

N

N∑
k=1

eiω
T εk

∣∣∣∣F(K)(ω)dω

=2

∫
‖ω‖2≤NA

∣∣∣∣Eε(eiωT ε)− 1

N

N∑
k=1

eiω
T εk

∣∣∣∣F(K)(ω)dω

+

∫
‖ω‖2>NA

∣∣∣∣Eε(eiωT ε)− 1

N

N∑
k=1

eiω
T εk

∣∣∣∣F(K)(ω)dω

=OP

(∫
‖ω‖2≤NA

√
logN

N
F(K)(ω)dω + 2

∫
‖ω‖2>NA

F(K)(ω)dω

)
.
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If Assumption 2 is satisfied, then we can set A = (2m0 − d)−1 and obtain∫
‖ω‖2≤NA

√
logN

N
F(K)(ω)dω + 2

∫
‖ω‖2>NA

F(K)(ω)dω

≤C1

(∫
‖ω‖2≤NA

√
logN

N
(1 + ‖ω‖22)−m0dω + 2

∫
‖ω‖2>NA

(1 + ‖ω‖22)−m0dω

)
.

√
logN

N
,

for some positive constants C1, where the last inequality is because m0 > D/2. Similarly,
if Assumption 3 is satisfied, then we set A = (2m0 − 1)−1 and get∫

‖ω‖2≤NA

√
logN

N
F(K)(ω)dω + 2

∫
‖ω‖2>NA

F(K)(ω)dω

≤C2

(∫
‖ω‖2≤NA

√
logN

N

D∏
j=1

(1 + ω2
j )
−m0dω + 2

∫
‖ω‖2>NA

D∏
j=1

(1 + ω2
j )
−m0dω

)

.

√
logN

N
+

∫
maxj |ωj |≥NA/

√
D

D∏
j=1

(1 + ω2
j )
−m0dω

.

√
logN

N
,

for some positive constants C2.
This finishes the proof.

H.2 Proof of Lemma 17

For any x ∈ Ω, by (26) and (30), we have

ft(x) = k(x)T (α/βI + K)−1y − βk(x)T ((1− α)I− βK)t(αI + βK)−1y,

gt(x) = k̃(x)T (α/βI + K̃)−1y − βk̃(x)T ((1− α)I− βK̃)t(αI + βK̃)−1y.

Applying the triangle inequality yields

‖ft − gt‖L∞(Ω)

≤‖k(·)T (α/βI + K)−1y − k̃(·)T (α/βI + K̃)−1y‖L∞(Ω)

+ ‖k(·)T ((1− α)I− βK)t(α/βI + K)−1y − k̃(·)T ((1− α)I− K̃)t(α/βI + K̃)−1y‖L∞(Ω)

≤‖
(
k(·)− k̃(·)

)T
(α/βI + K)−1y‖L∞(Ω) (98)

+ ‖k̃(·)T
(
(α/βI + K)−1 − (α/βI + K̃)−1

)
y‖L∞(Ω) (99)

+ ‖
(
k(·)− k̃(·)

)T
((1− α)I− βK)t(α/βI + K)−1y‖L∞(Ω) (100)

+ ‖k̃(·)T ((1− α)I− βK)t
(
(α/βI + K̃)−1 − (α/βI + K)−1

)
y‖L∞(Ω) (101)

+ ‖k̃(·)T
(
((1− α)I− βK̃)t − ((1− α)I− βK)t

)
(α/βI + K̃)−1y‖L∞(Ω). (102)
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For (98), we have

‖
(
k(·)− k̃(·)

)T
(α/βI + K)−1y‖L∞(Ω)

≤ηn(α/βI + K)−1‖y‖2
(

sup
x∈Ω
‖k(x)− k̃(x)‖2

)

≤ηn(K)−1

√√√√ n∑
j=1

y2
j

sup
x∈Ω

√√√√ n∑
j=1

(
Ks(xi,x)− K̃s(xi,x)

)2
=ηn(K)−1

√√√√ n∑
j=1

y2
j OP

(√
n logN

N

)

≤ηn(K)−1
√

3n
(

max
j=1,...,n

|f∗(xj)|+

√√√√ 1

n

n∑
j=1

|εj |2
)
OP

(√
n logN

N

)

=OP

(
ηn(K)−1n

√
logN

N

)
=OP

(
ηn(K̃)−1n

√
logN

N

)
, (103)

where the fourth line is by Lemma 16, the sixth line is because maxj=1,...,n |f∗(xj)| .
‖f∗‖Wmf (Ω1) and εj ’s are sub-Gaussian variables, and the last line is because

ηn(K) =ηn(K̃ + (K− K̃)) ≥ ηn(K̃)− nmax
j,k
|KS(xj ,xk)− K̃S(xj ,xk)|

≥ηn(K̃)− n
√

logN

N
≥ 1

2
ηn(K̃). (104)

By Gershgorin’s theorem (Varga, 2010), we have

‖K− K̃‖2 ≤ nmax
j,k
|KS(xj ,xk)− K̃S(xj ,xk)| = OP

(
n

√
logN

N

)
. (105)

Therefore, it can be checked that

‖(α/βI + K)−1 − (α/βI + K̃)−1‖2 = ‖(α/βI + K)−1(α/βI + K̃)−1(K− K̃)‖2

≤
nmaxj,k |KS(xj ,xk)− K̃S(xj ,xk)|

ηn(K)ηn(K̃)
= OP

(
n
√

logN/N

ηn(K)ηn(K̃)

)
=OP

(
n
√

logN/N

ηn(K̃)2

)
, (106)
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where second line is because of Gershgorin’s theorem (Varga, 2010), the third line is from
Lemma 16, and the last line is from (104). Therefore, plugging (106) into (99) gives us

‖k̃(·)T
(
(α/βI + K)−1 − (α/βI + K̃)−1

)
y‖L∞(Ω)

≤ sup
x∈Ω
‖k̃(x)‖2‖y‖2‖(α/βI + K)−1 − (α/βI + K̃)−1‖2

≤n
(

sup
x∈Ω

max
j=1,...,n

K̃s(xj ,x)

)(√
3 max
j=1,...,n

|f∗(xj)|+
√

3

√√√√ 1

n

n∑
j=1

|εj |2
)
OP

(
n
√

logN/N

ηn(K̃)2

)

=OP

(
n2
√

logN/N

ηn(K̃)2

)
. (107)

For (100), because 0 < 1− α− βη1(K) < 1, we have

‖
(
k(·)− k̃(·)

)T
((1− α)I− βK)t(α/βI + K)−1y‖L∞(Ω)

≤ηn(K)−1‖y‖2
(

sup
x∈Ω
‖k(x)− k̃(x)‖2

)
=OP

(
ηn(K)−1n

√
logN

N

)
= OP

(
ηn(K̃)−1n

√
logN

N

)
, (108)

where the last line is from (103) and (104).

Similarly, for (101), we have

‖k̃(·)T ((1− α)I− βK)t
(
(α/βI + K̃)−1 − (α/βI + K)−1

)
y‖L∞(Ω)

≤ sup
x∈Ω
‖k̃(x)‖2‖y‖2‖(α/βI + K)−1 − (α/βI + K̃)−1‖2

=OP

(
n2
√

logN/N

ηn(K̃)2

)
. (109)

For (102), we have

‖k̃(·)T
(
((1− α)I− βK̃)t − ((1− α)I− βK)t

)
(α/βI + K̃)−1y‖L∞(Ω)

≤ sup
x∈Ω
‖k̃(x)‖2‖(α/βI + K̃)−1‖2‖y‖2‖((1− α)I− βK̃)t − ((1− α)I− βK)t‖2

≤ n

ηn(K̃)
‖((1− α)I− βK̃)t − ((1− α)I− βK)t‖2. (110)
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The term ‖((1− α)I− βK̃)t − ((1− α)I− βK)t‖2 can be further bounded by

‖((1− α)I− βK̃)t − ((1− α)I− βK)t‖2

≤‖βK̃− βK‖2

∥∥∥∥∥∥
t−1∑
j=0

(
(1− α)I− βK̃

)j(
(1− α)I− βK

)t−1−j

∥∥∥∥∥∥
2

=OP

(
βn

√
logN

N

) t−1∑
j=0

∣∣(1− α)− βηn(K̃)
∣∣j∣∣(1− α)− βηn(K)

∣∣t−1−j


≤OP

(√
logN

N

) t−1∑
j=0

∣∣(1− α)− β(ηn(K)− η1(K̃−K))
∣∣j∣∣(1− α)− βηn(K)

∣∣t−1−j


≤OP

(√
logN

N

) t−1∑
j=0

∣∣∣∣∣(1− α)− βηn(K) +OP

(
n

√
logN

N

)∣∣∣∣∣
j ∣∣(1− α)− βηn(K)

∣∣t−1−j


≤OP

(
t

√
logN

N

∣∣∣∣∣1− α− βηn(K) + n

√
logN

N

∣∣∣∣∣
t)
, (111)

where the second line is because of the basic identity at − bt = (a− b)(
∑t−1

j=0 a
jbt−1−j), the

third line is because of (105), and the fifth line is by the second inequality in (104).

Since α, β, and ηn(K) are not depending on N , we can let N0 satisfy n
√

logN0

N0
≤ (α +

βηn(K))/2 such that for all N > N0 + 3

∣∣∣∣∣1− α− βηn(K) + n

√
logN

N

∣∣∣∣∣ ≤
∣∣∣∣1− α+ βηn(K)

2

∣∣∣∣ .
Let t0 = 2/(α + βηn(K)), and h(t) = t(1 − (α + βηn(K))/2)t. Basic calculation shows
that if t > t0, h(t) is a decreasing function. Thus, h(t) ≤ h(t0). By the basic inequality
(1− x)x ≤ e−1, we obtain that if t > t0, (111) can be further bounded by

t

√
logN

N

∣∣∣∣∣1− α− βηn(K) + n

√
logN

N

∣∣∣∣∣
t

≤
√

logN

N
t0e
−1 ≤

√
logN

N
t0

=

√
logN

N

2

α+ βηn(K)
≤
√

logN

N

2n

nβηn(K)

≤C1
n
√

logN/N

ηn(K̃)
, (112)
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for some positive constants C1, where we use nβ is a constant. If t ≤ t0, then

t

√
logN

N

∣∣∣∣∣1− α− βηn(K) + n

√
logN

N

∣∣∣∣∣
t

≤
√

logN

N
t0 ≤ C1

n
√

logN/N

ηn(K̃)
, (113)

since 1−α− βηn(K) + n
√

logN
N < 1. Therefore, as long as N > N0 + 3, by plugging (111),

(112), and (113) in (110), we have

‖k̃(·)T (α/βI + K̃)−1y‖L∞(Ω)‖
t−1∑
j=0

(
(1− α)I− βK̃

)j(
(1− α)I− βK

)t−1−j‖2

=OP

(
n2
√

logN/N

ηn(K̃)2

)
. (114)

Putting together (103), (107), (108), (109), and (114), we obtain the final result.

H.3 Proof of Lemma 18

If Assumption 2 is satisfied, the Fourier inversion theorem implies that for any x ∈ RD, it
holds that

K̃S(x) =

∫
RD

∫
RD

K(x+ ε− ε′)pε(ε)pε(ε′)dεdε′

=(2π)−D/2
∫
RD

∫
RD

∫
RD

e−i(x+ε−ε′)TωF(K)(ω)dωpε(ε)pε(ε
′)dεdε′

=(2π)−D/2
∫
RD

e−ix
TωF(K)(ω)|ϕε(ω)|2dω,

where ϕε is the characteristic function of pε. Thus, by the Fourier theorem,

F(K̃S)(ω) = F(K)(ω)|ϕε(ω)|2.

Therefore, for any a ∈ Rn, we have

aT K̃a =

n∑
j=1

n∑
k=1

ajK̃S(xj − xk)ak

=(2π)−D/2
∫
RD

n∑
j,k=1

aje
−i(xj−xk)TωakF(K)(ω)|ϕε(ω)|2dω

≥C1

∫
RD

∣∣∣∣∣∑
k=1

ake
iωTxk

∣∣∣∣∣
2 (

1 + ‖ω‖22
)−m0 |ϕε(ω)|2dω. (115)
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where C1 is a constant only depending on D. Similarly, if Assumption 3 and Assumption 4
(C2) are satisfied, the Fourier inversion theorem implies that for any x ∈ RD,

K̃S(x,x′) =(2π)−D/2
∫
RD

e−i(x−x
′)Tω

D∏
j=1

F(Kj)(ωj)|ϕε(ω)|2dω.

Thus, for any {ai}ni=1 ⊂ R, we have

aT K̃a =
n∑

k,j=1

akK̃S(xk,xj)aj

≥C2

∫
RD

∣∣∣∣∣∑
k=1

ake
iωTxk

∣∣∣∣∣
2 D∏
j=1

|1 + ω2
j |−m0 |1 + σ2

nω
2
j |−mεdω

≥C2

∫
RD

∣∣∣∣∣∑
k=1

ake
iωTxk

∣∣∣∣∣
2

(1 + ‖ω‖22)−m0D(1 + σ2
n‖ω‖22)−mεDdω, (116)

where the positive constant C2 is only depending on D.

We then apply Theorem 12.3 of Wendland (2004) on (115) and (116), respectively, and the
final results can be straightforwardly derived.

Appendix I. Proof of Lemmas in Appendix D

In this section, we present the proof of lemmas in Appendix D.

I.1 Proof of Lemma 21

Let f̃∗n be the solution to the optimization problem

min
g∈HK̃S (RD)

‖f∗ − g‖2L2(RD) + λn‖g‖2HK̃S (RD). (117)

Since f∗n is the solution to (36), we have

‖f∗ − f∗n‖2L2(PX) + λn‖f∗n‖2HK̃S (Ω) ≤ ‖f
∗ − f̃∗n‖2L2(PX) + λn‖f̃∗n‖2HK̃S (Ω). (118)
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Let f1 = f∗ − f̃∗n. Then f1 is well-defined in RD and the Fourier inversion theorem implies
that

‖f1‖2L2(PX) =

(∫
Ω

∣∣∣∣∫
RD

eix
Tω(F(f1)(ω))dω

∣∣∣∣2 dPX

)

≤

(∫
RD

(∫
Ω

∣∣∣eixTω(F(f1)(ω))
∣∣∣2 dPX

)1/2

dω

)2

≤C1

(∫
RD
|(F(f1)(ω))|dω

)2

≤C1

∫
RD
|(F(f1)(ω))|2 dω

=C1‖f1‖L2(RD), (119)

for some positive constants C1, where the first inequality is by Minkowski’s integral in-
equality, the second inequality is by the finiteness of PX, the third inequality is by Jensen’s
inequality, and the last equality is because of Parseval’s identity.

Combining (118) and (119), we have

‖f∗ − f∗n‖2L2(PX) + λn‖f∗n‖2HK̃S (Ω) ≤C1‖f∗ − f̃∗n‖2L2(RD) + λn‖f̃∗n‖2HK̃S (RD)

≤max(C1, 1)

(
‖f∗ − f̃∗n‖2L2(RD) + λn‖f̃∗n‖2HK̃S (RD)

)
.

(120)

It remains to bound

‖f∗ − f̃∗n‖2L2(RD) + λn‖f̃∗n‖2HK̃S (RD).

The Fourier inversion theorem implies that

‖f∗ − f̃∗n‖2L2(RD) + λn‖f̃∗n‖2HK̃S (RD) =

∫
RD
|F(f∗)(ω)−F(f̃∗n)(ω)|2 + λn

|F(f̃∗n)(ω)|2

F(K̃S)(ω)
dω

≤
∫
RD
|F(f∗)(ω)−F(g̃∗n)(ω)|2 + λn

|F(g̃∗n)(ω)|2

F(K̃S)(ω)
dω

≤
∫
RD
|F(f∗)(ω)−F(g̃∗n)(ω)|2 + C2λn|F(g̃∗n)(ω)|2(1 + ‖ω‖22)m0(1 + σ2

n‖ω‖22)mεdω

=

∫
RD

C2λn(1 + ‖ω‖22)m0(1 + σ2
n‖ω‖22)mε

1 + C2λn(1 + ‖ω‖22)m0(1 + σ2
n‖ω‖22)mε

|F(f∗)(ω)|2dω

≤
∫

Ω1

C2λn(1 + ‖ω‖22)m0(1 + σ2
n‖ω‖22)mε |F(f∗)(ω)|2dω

+

∫
Ω2

C2λn(1 + ‖ω‖22)m0(1 + σ2
n‖ω‖22)mε |F(f∗)(ω)|2dω +

∫
Ω3

|F(f∗)(ω)|2dω

=I1 + I2 + I3, (121)
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for some positive constants C2, where g̃∗n minimizes∫
RD
|F(f∗)(ω)−F(g̃∗n)(ω)|2 + C2λn|F(g̃∗n)(ω)|2(1 + ‖ω‖22)m0(1 + σ2

n‖ω‖22)mεdω,

Ω1 = {ω : C2λn(1 + ‖ω‖22)m0(1 + σ2
n‖ω‖22)mε ≤ 1, σ2

n‖ω‖22 ≤ m−1
ε }, Ω2 = {ω : C2λn(1 +

‖ω‖22)m0(1 + σ2
n‖ω‖22)mε ≤ 1, σ2

n‖ω‖22 ≥ m−1
ε }, and Ω3 = {ω : C2λn(1 + ‖ω‖22)m0(1 +

σ2
n‖ω‖22)mε > 1}. In (121), the first inequality is because f̃∗n is the solution to the optimiza-

tion problem (117), and the second inequality is by Assumption 4 (C1).

Since σ2
n‖ω‖22 ≤ m−1

ε for ω ∈ Ω1, the first term I1 in (121) can be bounded by

I1 ≤
∫

Ω1

C2λn(1 + ‖ω‖22)m0(1 +m−1
ε )mε |F(f∗)(ω)|2dω

≤C2e

∫
Ω1

λn(1 + ‖ω‖22)m0 |F(f∗)(ω)|2dω. (122)

If m0 ≤ mf , then we directly have

I1 ≤C2eλn

∫
Ω1

(1 + ‖ω‖22)mf |F(f∗)(ω)|2dω. (123)

If m0 > mf , then for ω ∈ Ω1, we have

C2λn(1 + ‖ω‖22)m0 ≤ C2λn(1 + ‖ω‖22)m0(1 + σ2
n‖ω‖22)mε ≤ 1,

which implies

C2λn(1 + ‖ω‖22)m0 ≤
(
C2λn(1 + ‖ω‖22)m0

)mf
m0 = C3λ

mf
m0
n (1 + ‖ω‖22)mf ,

for some positive constants C3, therefore, by (122), we have

I1 ≤C4eλ

mf
m0
n

∫
Ω1

(1 + ‖ω‖22)mf |F(f∗)(ω)|2dω. (124)

for some positive constants C4, The second term I2 in (121) can be bounded by

I2 ≤
∫

Ω2

(
C2λn(1 + ‖ω‖22)m0(1 + σ2

n‖ω‖22)mε
) mf
m0+mε |F(f∗)(ω)|2dω

≤
∫

Ω2

(
C2λn(1 + ‖ω‖22)m0(mε + 1)mεσ2mε

n ‖ω‖2mε2

) mf
m0+mε |F(f∗)(ω)|2dω

≤
∫

Ω2

(
C2λn(mε + 1)mεσ2mε

n (1 + ‖ω‖22)m0(1 + ‖ω‖22)mε
) mf
m0+mε |F(f∗)(ω)|2dω

≤(C2λn(mε + 1)mεσ2mε
n )

mf
m0+mε

∫
Ω2

(1 + ‖ω‖22)mf |F(f∗)(ω)|2dω, (125)

where the first inequality is because on Ω2,

C2λn(1 + ‖ω‖22)m0(1 + σ2
n‖ω‖22)mε ≤ 1,
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implies

C2λn(1 + ‖ω‖22)m0(1 + σ2
n‖ω‖22)mε ≤

(
C2λn(1 + ‖ω‖22)m0(1 + σ2

n‖ω‖22)mε
) mf
m0+mε ,

provided m0 +mε ≥ mf .

The third term I3 in (121) can be bounded by

I3 ≤
∫

Ω3

(
C2λn(1 + ‖ω‖22)m0(1 + σ2

n‖ω‖22)mε
) mf
m0+mε |F(f∗)(ω)|2dω

≤(C2λn(mε + 1)mεσ2mε
n )

mf
m0+mε

∫
Ω3

(1 + ‖ω‖22)mf |F(f∗)(ω)|2dω, (126)

where the first inequality is because on Ω3,

1 ≤C2λn(1 + ‖ω‖22)m0(1 + σ2
n‖ω‖22)mε ,

implies

1 ≤
(
C2λn(1 + ‖ω‖22)m0(1 + σ2

n‖ω‖22)mε
) mf
m0+mε .

Note that all constants Cj , j = 1, ..., 4 are not depending on mε. Furthermore, we have

C

mf
m0+mε

2 ≤ (max(C2, 1))
mf

m0+mε ≤ max(C2, 1), (127)

since m0 +mε ≥ mf . By (127), plugging (123) (if m0 ≤ mf ) or (124) (if m0 > mf ), (125),
and (126) into (121), together with (120), finishes the proof.

I.2 Proof of Lemma 22

For x ∈ Ω, the Fourier inversion theorem implies

K̃S(x) =

∫
RD

∫
RD

K(x+ ε− ε′)pε(ε)pε(ε′)dεdε′

=(2π)−D/2
∫
RD

∫
RD

∫
RD

e−i(x+ε−ε′)TωF(K)(ω)dωpε(ε)pε(ε
′)dεdε′

=(2π)−D/2
∫
RD

e−ix
TωF(K)(ω)|ϕε(ω)|2dω,

where ϕε is the characteristic function of pε. Thus, by the Fourier theorem,

F(K̃S(x))(ω) = F(K)(ω)|ϕε(ω)|2. (128)

Let Ψσ be a positive definite function satisfying

c1

(
1 +

σ2

m0 +mε
‖ω‖22

)−(m0+mε)

≤ F(Ψσ) ≤ c2

(
1 +

σ2

m0 +mε
‖ω‖22

)−(m0+mε)

, ∀ω ∈ RD,
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and Nσ(Ω) be the RKHS generated by Ψσ, where the constants c1 and c2 are not depending
on mε. Therefore, for any f ∈ HK̃S (Ω), we have that

‖f‖2Nσn (Ω) =

∫
RD

|F(f)(ω)|2

F(Ψσ)(ω)
dω

≤C1

∫
RD

(
1 +

σ2

m0 +mε
‖ω‖22

)m0+mε

|F(f)(ω)|2dω

≤C1

∫
RD

(1 + ‖ω‖22)m0(1 + σ2‖ω‖22)mε |F(f)(ω)|2dω

≤C2

∫
RD

|F(f)(ω)|2

F(K)(ω)|ϕε(ω)|2
dω

=C2

∫
RD

|F(f)(ω)|2

F(K̃S)(ω)
dω,

for some positive constants C1 and C2, provided σ ≤ 1, where the last inequality is because
of Assumptions 2 and 4 (C1). Thus, we have if σ ≤ 1,

‖f‖Nσ(Ω) ≤ C3‖f‖HK̃S (Ω), (129)

for some positive constants C3.

In order to prove Lemma 22, we need the following lemmas. Although we can directly apply
Corollary A.8 of Hamm and Steinwart (2021a) and the entropy number of Sobolev spaces
to obtain an upper bound on H(δ,BHσ(Ω), ‖ · ‖L∞(Ω)), which is

H(δ,BHσ(Ω), ‖ · ‖L∞(Ω)) ≤ Cσ−dδ
− D
m0+mε , (130)

where C is a constant depending on mε. However, the dependency between C and mε is
not clear as far as we know, and thus cannot meet our needs when mε is dependent on
the sample size n. Therefore, we develop Lemma 39, providing a new upper bound on
H(δ,BHm([0,1]D), ‖ · ‖L∞([0,1]D)), where the dependency between the upper bound and mε

is clearly described. Based on Lemma 39, we provide Lemma 32, where the constant is
independent with mε.

Lemma 33 is a Bernstein-type inequality for a single g. See, for example, Massart (2007).

Lemma 32 Suppose the conditions of Lemma 22 are fulfilled. Let BNσ(Ω) be a unit ball in
Nσ(Ω). Then for all δ > 0, we have

H(δ,BHσ(Ω), ‖ · ‖L∞(Ω)) ≤Cσ−d(2m−D)−
2D

2m−Dm
2mD

2m−D δ−
2D

2m−D log(1 + δ−1),

where the constant C is independent with mε, and m = mε +m0.

Lemma 33 Suppose Xi ∼ Unif(Ω) for i = 1, . . . , n. Let g be a fixed function. We have
for all t > 0,

P
(∣∣∣‖g‖2n − ‖g‖2L2(PX)

∣∣∣ ≥ t) ≤ 2 exp

(
− nt2

8(t+ ‖g‖2L2(PX))

)
.
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Lemma 34 Suppose conditions of Theorem 9 are fulfilled. Then for some constant C2 > 0
only related to Assumption 1 and for δ > 0 with

√
nδ > 2C2 max

(∫ 1

0
H(u,BHσ(Ω), ‖ · ‖L∞(Ω))

1/2du, 1

)
,

we have for p = 4D
2(m0+mε)−D , m = m0 +mε, and

√
nδ ≥ Cσ−d/2m

mD
2m−D+ 1

2 ,

P

(
sup

g∈BHσ(Ω)

〈g, ε〉n
‖g‖1−

p
2

n

≥ δ

)
≤ C3p

−1 exp

(
−nδ

2

C2
3

)
,

where the constants C, C2 and C3 are independent with mε.

Proof of Lemma 34. The proof can be obtained by applying the peeling-off argument in
Lemma 8.4 of van de Geer (2000). Let m = m0 +mε. Note that∫ δ

0
H(u,BHσ(Ω), ‖ · ‖L∞(Ω))

1/2du

≤Cσ−d/2(2m−D)−
D

2m−Dm
mD

2m−D

∫ δ

0
u−

D
2m−D

√
log(1 + u−1)du

≤Cσ−d/2(2m−D)−
D

2m−Dm
mD

2m−D

∫ δ

0
u−

D
2m−D

√
2m−D

2D

(
1 +

1

u

) 2D
2m−D

du

≤C1σ
−d/2(2m−D)−

D
2m−Dm

mD
2m−D+ 1

2

∫ δ

0
u−

2D
2m−D du

=C1σ
−d/2(2m−D)−

D
2m−Dm

mD
2m−D+ 1

2

(
1− 2D

2m−D

)−1

δ1− 2D
2m−D

≤C1σ
−d/2(2mf + 2D)

− D
2mf+2Dm

mD
2m−D+ 1

2

(
1− D

mf + 1

)−1

δ1− 2D
2m−D

=C2σ
−d/2m

mD
2m−D+ 1

2 δ1− 2D
2m−D ,

for some positive constants C and C1, and C2, where the first inequality is by Lemma
32, the second inequality is by the basic inequality log(1 + 1/u) ≤ a(1 + 1/u)1/a for any
u, a > 0, and the fourth inequality holds as long as mε ≥ mf +D. Here the constant C2 is
independent of m.

Let p = 4D
2m−D and

√
nδ ≥ 4CC2σ

−d/2m
mD

2m−D+ 1
2 , where C is only depending on Assumption

1. The proof then follows the proof of Lemma 8.4 of van de Geer (2000), while the last step
becomes

P

(
sup

g∈BHσ(Ω)

〈g, ε〉n
‖g‖1−

p
2

n

≥ δ

)
≤
∞∑
s=1

C3 exp

(
− nδ2

16C2
3

2sp
)
≤ C4p

−1 exp

(
−nδ

2

C2
4

)
,

for some positive constants C3 and C4, where we use a similar approach in the proof of
Lemma 36.
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Proof of Lemma 22. Since f̂ is the solution to the optimization problem (39), it can be seen
that

‖f̂n − y‖2n + λn‖f̂n‖2HK̃S (Ω) ≤ ‖f
∗
n − y‖2n + λn‖f∗n‖2HK̃S (Ω), (131)

where f∗n is as in Lemma 21. By rearrangement, (131) implies

‖f∗ − f̂n‖2n + C5λn‖f̂n‖2HK̃S (Ω) ≤ ‖f
∗ − f∗n‖2n + C6λn‖f∗n‖2HK̃S (Ω) + 2〈ε, f̂n − f∗n〉n (132)

for some positive constants C5 and C6. Take

δn = 4CC2n
−1/2σ−d/2n m

mD
2m−D+ 1

2 ,

and let p = 4D
2m−D , where m = m0 +mε. Applying Lemma 34, with probability at least

C6p
−1 exp

(
−C7σ

−dm
2mD

2m−D+1
)
,

for some positive constants C7, which converges to zero by our assumption, we have

2〈ε, f̂n − f∗n〉n ≤ C8n
−1/2σ−d/2m

mD
2m−D+ 1

2 ‖f̂n − f∗n‖
1− p

2
n (‖f̂n‖Nσn (Ω) + ‖f∗n‖Nσn (Ω))

p
2

for some positive constants C8, which, together with (132), implies

‖f∗ − f̂n‖2n + λn‖f̂n‖2HK̃S (Ω)

≤‖f∗ − f∗n‖2n + λn‖f∗n‖2HK̃S (Ω)

+ C8n
−1/2σ−d/2m

mD
2m−D+ 1

2 ‖f̂n − f∗n‖
1− p

2
n (‖f̂n‖Nσn (Ω) + ‖f∗n‖Nσn (Ω))

p
2 . (133)

By assumption of Lemma 22, we have

‖f∗ − f∗n‖2L2(PX) + λn‖f∗n‖2HK̃S (Ω) ≤ T, (134)

which implies ‖f∗n‖2HK̃S (Ω) = O(λ−1
n T ).

Now we consider bounding the difference between ‖f∗−f∗n‖n and ‖f∗−f∗n‖L2(PX). Since f∗n
does not depend on xj ’s and ε, we can directly apply Lemma 33 to ‖f∗ − f∗n‖n and obtain
that ∣∣∣‖f∗ − f∗n‖2n − ‖f∗ − f∗n‖2L2(PX)

∣∣∣ = OP(n−1/2)‖f∗ − f∗n‖L2(PX),

which, together with (134), yields

‖f∗ − f∗n‖2n = OP

(
T + n−1/2T 1/2

)
. (135)
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Plugging (135) into (133), together with (134), gives us

‖f∗ − f̂n‖2n + λn‖f̂n‖2HK̃S (Ω)

=OP

(
T + n−1/2T 1/2

)
+OP

(
n−1/2σ−d/2m

mD
2m−D+ 1

2 ‖f̂n − f∗n‖
1− p

2
n (‖f̂n‖Nσn (Ω) + ‖f∗n‖Nσn (Ω))

p
2

)
, (136)

where we also use ‖f‖Nσn (Ω) ≤ C3‖f‖HK̃S (Ω) for all f ∈ HK̃S (Ω) (see (129)). Then (136)

implies either

‖f∗ − f̂n‖2n + λn‖f̂n‖2HK̃S (Ω) = OP

(
T + n−1/2T 1/2

)
, (137)

or

‖f∗ − f̂n‖2n + λn‖f̂n‖2HK̃S (Ω)

=OP

(
n−1/2σ−d/2m

mD
2m−D+ 1

2 ‖f̂n − f∗n‖
1− p

2
n (‖f̂n‖Nσn (Ω) + ‖f∗n‖Nσn (Ω))

p
2

)
. (138)

In order to solve (138), we consider two cases.

Case 1: ‖f̂n‖HK̃S (Ω) ≥ ‖f∗n‖HK̃S (Ω). In this case, we have

‖f∗ − f̂n‖2n + λn‖f̂n‖2HK̃S (Ω) = OP

(
σ−d/2n n−1/2m

mD
2m−D+ 1

2 ‖f̂n − f∗n‖
1− p

2
n ‖f̂n‖

p
2

HK̃S (Ω)

)
=OP

(
σ−d/2n n−1/2m

mD
2m−D+ 1

2 ‖f∗ − f∗n‖
1− p

2
n ‖f̂n‖

p
2

HK̃S (Ω)

)
+OP

(
σ−d/2n n−1/2m

mD
2m−D+ 1

2 ‖f∗ − f̂n‖
1− p

2
n ‖f̂n‖

p
2

HK̃S (Ω)

)
, (139)

where the second equality (with OP notation) is because of the triangle inequality and the
basic inequality (a+ b)q ≤ aq + bq for q ∈ (0, 1).

It can be seen that (139) further implies

‖f∗ − f̂n‖2n + λn‖f̂n‖2HK̃S (Ω) = OP

(
σ−d/2n n−1/2m

mD
2m−D+ 1

2 ‖f∗ − f∗n‖
1− p

2
n ‖f̂n‖

p
2

HK̃S (Ω)

)
,

(140)

or

‖f∗ − f̂n‖2n + λn‖f̂n‖2HK̃S (Ω) = OP

(
σ−d/2n n−1/2m

mD
2m−D+ 1

2 ‖f∗ − f̂n‖
1− p

2
n ‖f̂n‖

p
2

HK̃S (Ω)

)
.

(141)

Plugging (135) into (140), we have

‖f∗ − f̂n‖2n + λn‖f̂n‖2HK̃S (Ω) = OP

(
σ−d/2n n−1/2m

mD
2m−D+ 1

2 (T + n−1/2T 1/2)
1
2
− p

4 ‖f̂n‖
p
2

HK̃S (Ω)

)
.

(142)
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Solving (142) yields

‖f∗ − f̂n‖n =OP

(
λ
− p

2(4−p)
n

(
σ−d/2n n−1/2m

mD
2m−D+ 1

2 (T + n−1/2T 1/2)
1
2
− p

4

) 2
4−p
)
,

‖f̂n‖HK̃S (Ω) =OP

((
λ−1
n σ−d/2n m

mD
2m−D+ 1

2n−1/2(T + n−1/2T 1/2)
1
2
− p

4

) 2
4−p
)
. (143)

Solving (141) yields

‖f∗ − f̂n‖n =OP

(
σ−d/2n n−1/2m

mD
2m−D+ 1

2λ
− p

4
n

)
,

‖f̂n‖HK̃S (Ω) =OP

(
σ−d/2n n−1/2m

mD
2m−D+ 1

2λ
− 2+p

4
n

)
. (144)

Case 2: ‖f̂n‖HK̃S (Ω) < ‖f∗n‖HK̃S (Ω). In this case, (138) implies that

‖f∗ − f̂n‖2n + λn‖f̂n‖2HK̃S (Ω) = OP

(
σ−d/2n n−1/2m

mD
2m−D+ 1

2 ‖f̂n − f∗n‖
1− p

2
n ‖f∗n‖

p
2

HK̃S (Ω)

)
=OP

(
σ−d/2n n−1/2m

mD
2m−D+ 1

2 ‖f∗ − f∗n‖
1− p

2
n ‖f∗n‖

p
2

HK̃S (Ω)

)
+OP

(
σ−d/2n n−1/2m

mD
2m−D+ 1

2 ‖f∗ − f̂n‖
1− p

2
n ‖f∗n‖

p
2

HK̃S (Ω)

)
, (145)

where the second equality is because of the triangle inequality and the basic inequality
(a+ b)q ≤ aq + bq for q ∈ (0, 1) again.

By (145), we have either

‖f∗ − f̂n‖2n + λn‖f̂n‖2HK̃S (Ω) = OP

(
σ−d/2n n−1/2m

mD
2m−D+ 1

2 ‖f∗ − f∗n‖
1− p

2
n ‖f∗n‖

p
2

HK̃S (Ω)

)
,

(146)

or

‖f∗ − f̂n‖2n + λn‖f̂n‖2HK̃S (Ω) = OP

(
σ−d/2n n−1/2m

mD
2m−D+ 1

2 ‖f∗ − f̂n‖
1− p

2
n ‖f∗n‖

p
2

HK̃S (Ω)

)
.

(147)

Combining (146) and (135), we have

‖f∗ − f̂‖2n =OP

(
σ−d/2n n−1/2m

mD
2m−D+ 1

2 (λ−1
n T )

p
2 (T + n−1/2T 1/2)1− p

2

)
,

‖f̂‖2HK̃S (Ω) =OP

(
λ−1
n σ−d/2n n−1/2m

mD
2m−D+ 1

2 (λ−1
n T )

p
2 (T + n−1/2T 1/2)1− p

2

)
. (148)

Combining (147) and (135), we have

‖f∗ − f̂n‖n =OP

(
(σ−d/2n n−1/2m

mD
2m−D+ 1

2 )
2

2+p (λ−1
n T )

p
2(2+p)

)
‖f̂n‖HK̃S (Ω) =OP

(
λ−1/2
n (σ−d/2n n−1/2m

mD
2m−D+ 1

2 )
2

2+p (λ−1
n T )

p
2(2+p)

)
. (149)

By (137), (144), (143), (148), and (149), we finish the proof.
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I.3 Proof of Lemma 24

For any function g ∈ Wm(RD) where m = m0 +mε, the Fourier inversion theorem implies

|g(x)| =
∣∣∣∣∫

RD
eix

TωF(g)(ω)dω

∣∣∣∣ ≤ ∫
RD
|F(g)(ω)| dω

=

∫
RD
|F(g)(ω)|1−r (F(kσ)(ω))r/2 |F(g)(ω)|r (F(kσ)(ω))−r/2dω

≤
(∫

RD
|F(g)(ω)|

2(1−r)
2−r (F(kσ)(ω))

r
2−r dω

) 2−r
2
(∫

RD
|F(g)(ω)|2 (F(kσ)(ω))−1dω

) r
2

≤
(∫

RD
|F(g)(ω)|

2(1−r)
2−r

∣∣(1 + ‖ω‖22)−m
∣∣ r

2−r dω

) 2−r
2

‖g‖rHσ(RD)

≤
(∫

RD
|F(g)(ω)|2 dω

) 1−r
2
(∫

RD
(1 + ‖ω‖22)−mrdω

) 1
2

‖g‖rHσ(RD)

=

(∫
RD

(1 + ‖ω‖22)−mrdω

) 1
2

‖g‖1−r
L2(RD)

‖g‖rHσ(RD), (150)

where the second and fourth inequalities are by Hölder’s inequality, and the third equality
is by Parseval’s identity. Taking r = D

2(m0+mε)
in (150), we have

|g(x)| ≤
(∫

RD
(1 + ‖ω‖22)−mrdω

) 1
2

‖g‖1−r
L2(RD)

‖g‖rHσ(RD)

=

(∫
RD

(1 + ‖ω‖22)−
D
2 dω

) 1
2

‖g‖1−r
L2(RD)

‖g‖rHσ(RD)

=C4‖g‖1−rL2(RD)
‖g‖rHσ(RD),

for some positive constants C4. This finishes the proof.

Appendix J. Proof of Lemmas in Appendix E

J.1 Proof of Lemma 25

By Theorem 10.46 of Wendland (2004), there exists a nature extension of f ∈ HK̃S (Ω) on

RD, such that the RKHS norm is preserved. Thus, we can focus on the RKHS HK̃S (RD).

By (128), we have that for any f ∈ HK̃S (RD),

‖f‖2HK̃S (RD) =

∫
RD

|F(f)(ω)|2

F(K)(ω)|ϕε(ω)|2
dω.

For normal distribution, the characteristic function satisfies ϕε(ω) = e−
1
2
σ2
n‖ω‖22 . Let g1(u) =

σ2
nu−m0 log(1 + u). Taking the derivative, we obtain

g′1(u) = σ2
n −

m0

1 + u
,
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which is smaller than zero when u ∈ [0, m0
σ2
n
−1), and larger than zero when u ∈ (m0

σ2
n
−1,∞).

Therefore,

g1(u) ≥g1

(
m0

σ2
n

− 1

)
= m0 − σ2

n −m0 logm0 + 2m0 log σn

≥m0 − 1−m0 logm0 + 2m0 log σn,∀u ∈ [0,∞),

which implies

(1 + u)−m0eσ
2
nu ≥ eC1σ2m0

n ,

where C1 = m0 − 1−m0 logm0. By taking u = ‖ω‖22, Assumption 3 implies

F(K)(ω)|ϕε(ω)|2 ≥ c1(1 + ‖ω‖22)−m0e−2σ2
n‖ω‖22 ≥ C2σ

2m0
n e−3σ2

n‖ω‖22 , (151)

for some positive constants C4. As for an upper bound of F(K)(ω)|ϕε(ω)|2, direct compu-
tation shows that

F(K)(ω)|ϕε(ω)|2 ≤ c2(1 + ‖ω‖22)−m0e−σ
2
n‖ω‖22 ≤ c2e

− 1
2
σ2
n‖ω‖22 . (152)

By (66), the Fourier transform of kσ(·) is

F(kσ)(ω) = (2σ)De−σ
2‖ω‖22 . (153)

Let Hσ(RD) be the RKHS generated by kσ(x − x′). From (151), (152), and (153), it can
be seen that

‖h1‖2HK̃S (RD) =

∫
RD

|F(f)(ω)|2

F(K)(ω)|ϕε(ω)|2
dω

≥C3

∫
RD
|F(f)(ω)|2e

1
2
σ2
n‖ω‖22dω

≥C4σ
D
n ‖h1‖2Hσn/√2(RD),

and

‖h2‖2HK̃S (RD) =

∫
RD

|F(f)(ω)|2

F(K)(ω)|ϕε(ω)|2
dω

≤C5

∫
RD
|F(f)(ω)|2σ−2m0

n e3σ2
n‖ω‖22dω

≤C6σ
−2m0−D
n ‖h2‖2H√3σn

(RD),

for some positive constants C5, C6, h1 ∈ HK̃S (RD) and h2 ∈ H√3σn
(RD), where C4 and C6

does not depend on σn.
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J.2 Proof of Lemma 26

By (119), the Fourier inversion theorem, and Parseval’s identity, it can be shown that

‖f∗ − f∗n‖2L2(PX) + λn‖f∗n‖2HK̃S (Ω)

≤C1

(
‖f∗ − f∗n‖2L2(RD) + λn‖f∗n‖2HK̃S (RD)

)
=C1

(∫
RD
|F(f∗)(ω)−F(f∗n)(ω)|2 + λn

|F(f∗n)(ω)|2

F(K̃S(x))(ω)
dω

)
≤C1

(∫
RD
|F(f∗)(ω)−F(g̃∗n)(ω)|2 + λn

|F(g̃∗n)(ω)|2

F(K̃S(x))(ω)
dω

)
≤C1

(∫
RD
|F(f∗)(ω)−F(g̃∗n)(ω)|2 + C2λn|F(g̃∗n)(ω)|2σ−2m0

n e3σ2
nω

Tωdω

)
=C1

(∫
RD

C2λnσ
−2m0
n e3σ2

nω
Tω

1 + C2λnσ
−2m0
n e3σ2

nω
Tω
|F(f∗)(ω)|2dω

)

≤C3

(∫
Ω1

λnσ
−2m0
n e3σ2

nω
Tω|F(f∗)(ω)|2dω +

∫
ΩC1

|F(f∗)(ω)|2dω

)
=C3 (I1 + I2) ,

for some positive constants C1, C2 and C3, where g̃∗n minimizes∫
RD
|F(f∗)(ω)−F(g)(ω)|2 + C2λn|F(g)(ω)|2σ−2m0

n e3σ2
nω

Tωdω,

Ω1 = {ω : C2λnσ
−2m0
n e3σ2

nω
Tω ≤ 1}, which is the same as Ω1 = {ω : ‖ω‖22 <

2m0 log σn−log(C2λn)
3σ2
n

},
provided that C2λnσ

−2m0
n < 1, and the third inequality is because of (151).

Let g(u) = 3σ2
nu−mf log(1 + u). Taking the derivative, we obtain

g′(u) = 3σ2
n −

mf

1 + u
,

which is smaller than zero when u ∈ [0,
mf
3σ2
n
−1), and larger than zero when u ∈ (

mf
3σ2
n
−1,∞).

Since g(0) = 0 and

g

(
2m0 log σn − log(C2λn)

3σ2
n

)
= 2m0 log σn − log(C2λn)−mf log

(
1 +

2m0 log σn − log(C2λn)

3σ2
n

)
≤2m0 log σn − log(C2λn)−mf log ((2m0 log σn − log(C2λn))/3) + 2mf log σn

≤(2m0 + 2mf ) log σn − log(C2λn),

where the last inequality is because C2λnσ
−2m0
n = o(1), which implies log ((2m0 log σn − log(C2λn))/3) >

0 as n becomes large.

Therefore, for u ∈ [0, 2m0 log σn−log(C2λn)
3σ2
n

], we have

g(u) ≤ max(0, log(σ
(2m0+2mf )
n (C2λn)−1)),
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which implies

e3σ2
n‖ω‖22 ≤ max(1, σ

(2m0+2mf )
n (C2λn)−1)(1 + ‖ω‖22)mf ,

for ω ∈ Ω1. Thus, the term I1 can be bounded by

I1 ≤max(λnσ
−2m0
n , C−1

2 σ
2mf
n )

∫
Ω1

(1 + |ω|2)mf |F(f∗)(ω)|2dω. (154)

The term I2 can be bounded by

I2 ≤
3σ

2mf
n

(2m0 log σn − log(C2λn))mf

∫
ΩC1

(1 + |ω|2)mf |F(f∗)(ω)|2dω

≤3C4σ
2mf
n

∫
ΩC1

(1 + |ω|2)mf |F(f∗)(ω)|2dω, (155)

for some positive constants C4, where the first inequality is because on ΩC
1 , we have ‖ω‖2 ≥

2m0 log σn−log(C2λn)
3σ2
n

, which implies for sufficiently large n,

(1 + ‖ω‖22)mf ≥ (2m0 log σn − log(C2λn))mf

3σ
2mf
n

,

and the last inequality is because C2λnσ
−2m0
n = o(1). Combining (154) and (155) leads to

I1 + I2 ≤C5 max(λnσ
−2m0
n , σ

2mf
n )

∫
RD

(1 + |ω|2)mf |F(f∗)(ω)|2dω

≤C6 max(λnσ
−2m0
n , σ

2mf
n )‖f∗‖2Wmf (Ω),

for some positive constants C5 and C6, which finishes the proof.

J.3 Proof of Lemma 27

We first present a lemma used in this proof, which states the entropy numbers of RKHSs
generated by the Gaussian kernels. Lemma 35 is an intermediate step of the proof of
Theorem A.2 of Hamm and Steinwart (2021a). Lemma 36 is a direct result of the proof of
Lemma 8.4 of van de Geer (2000) and Lemma 35.

Lemma 35 Let 4σ2 ≤ 1. Then for all 0 < p < 2, there exists a constant C1 > 0 only
depending on D such that for all δ > 0, we have

H(δ,BHσ(Ω), ‖ · ‖L∞(Ω)) ≤ C1σ
−dp−D−1δ−p.

Lemma 36 Suppose conditions of Theorem 9 are fulfilled. Then for some constant C2 > 0
only related to the Assumption 1 and for δ > 0 with

√
nδ > 2C2 max

(∫ 1

0
H(u,BHσ(Ω), ‖ · ‖L∞(Ω))

1/2du, 1

)
,
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we have for all 0 < p < 2

P

(
sup

g∈BHσ(Ω)

〈g, ε〉n
‖g‖1−

p
2

n

≥ δ

)
≤ C2p

−1 exp

(
−nδ

2

C2

)
.

Proof of Lemma 36. In order to characterize the role of p in Lemma 36, we note that in the
last step of the proof of Lemma 8.4 of van de Geer (2000), we use

∞∑
s=1

C2 exp

(
− nδ2

16C2
2

2sp
)
≤
∞∑
s=1

C2 exp

(
− nδ2

16C2
2

esp/2
)

≤
∞∑
s=1

C2 exp

(
− nδ2

16C2
2

(1 +
sp

2
)

)
= C2 exp

(
− nδ2

16C2
2

) exp
(
− npδ2

32C2
2

)
1− exp

(
− npδ2

32C2
2

)
≤32C3

2

npδ2
exp

(
− nδ2

16C2
2

)
≤ 8C2

p
exp

(
− nδ2

16C2
2

)
,

where the second and the third inequalities are by eu > 1 + u for all u ∈ R, and the last
inequality is by nδ2 > 4C2

2 .

Then if C2 ≥ 1,

8C2

p
exp

(
− nδ2

16C2
2

)
≤ 16C2

2

p
exp

(
− nδ2

16C2
2

)
.

and if 0 < C2 < 1,

8C2

p
exp

(
− nδ2

16C2
2

)
≤ 16C2

p
exp

(
− nδ2

16C2

)
.

The rest of the proof is similar to the proof of Lemma 8.4 of van de Geer (2000).

Proof of Lemma 27. Since f̂ is the solution to the optimization problem (69), we have that

‖f̂ − y‖2n + λn‖f̂‖2HK̃S (Ω) ≤ ‖f
∗
n − y‖2n + λn‖f∗n‖2HK̃S (Ω), (156)

where f∗n is as in Lemma 26. By rearrangement, (156) implies

‖f − f̂n‖2n + λn‖f̂‖2HK̃S (Ω) ≤ ‖f − f
∗
n‖2n + λn‖f∗n‖2HK̃S (Ω) + 2〈ε, f̂ − f∗n〉n.

Theorem 10.46 of Wendland (2004) states that every RKHS defined on Ω possesses a natural
extension to RD with equivalent norms. Applying this natural extension to HK̃S (Ω), we
obtain that

‖f − f̂n‖2n + C3λn‖f̂‖2HK̃S (Ω) ≤ ‖f − f
∗
n‖2n + C4λn‖f∗n‖2HK̃S (RD) + 2〈ε, f̂ − f∗n〉n (157)

for some positive constants C3 and C4. By assumption, we have

‖f − f∗n‖2L2(PX) + λn‖f∗n‖2HK̃S (Ω) ≤ T.
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Then Lemma 26 implies ‖f∗n‖2HK̃S (RD)
= O(λ−1

n T ). Taking p = (log n)−1 ∈ (0, 2) and δn =

C5σ
−d/2
n p−(D+1)/2n−1/2 (where C5 is a constant only depending on D), we have

√
nδn =

C5σ
−d/2
n p−(D+1)/2. Applying Lemma 36, we obtain that with probability at least

C6(log n) exp(−C−1
6 C2

5σ
−2d
n p−2D−2),

for some positive constants C6, we have

2〈ε, f̂ − f∗n〉n ≤ C7‖f̂ − f∗n‖
1− p

2
n (‖f̂‖Hσn/√2(Ω) + ‖f∗n‖Hσn/√2(Ω))

p
2C5σ

−d/2
n p−(D+1)/2n−1/2,

(158)

for some positive constants C7. Plugging (158) into (157) yields

‖f − f̂‖2n + λn‖f̂‖2HK̃S (Ω)

≤‖f − f∗n‖2n + λn‖f∗n‖2HK̃S (RD)

+ C8σ
−d/2
n p−(D+1)/2n−1/2‖f̂ − f∗n‖

1− p
2

n (‖f̂‖Hσn/√2(Ω) + ‖f∗n‖Hσn/√2(Ω))
p
2 , (159)

for some positive constants C8. Now we consider bounding the difference between ‖f−f∗n‖n
and ‖f − f∗n‖L2(PX). Since f∗n does not depend on xj and ε, we can directly apply Lemma
33 to ‖f − f∗n‖n and obtain that∣∣∣‖f − f∗n‖2n − ‖f − f∗n‖2L2(PX)

∣∣∣ = OP(n−1/2)‖f − f∗n‖L2(PX),

which, together with Lemma 26, yields

‖f − f∗n‖2n = OP

(
T + n−1/2T 1/2

)
. (160)

Plugging (160) into (159), together with Lemma 26, gives us

‖f − f̂‖2n + λn‖f̂‖2HK̃S (Ω)

≤OP

(
T + n−1/2T 1/2

)
+ C8σ

−d/2− pD
4

n p−(D+1)/2n−1/2‖f̂ − f∗n‖
1− p

2
n (‖f̂‖HK̃S (Ω) + ‖f∗n‖HK̃S (Ω))

p
2 , (161)

where we also use σ
−D/2
n ‖f∗n‖HK̃S (Ω) ≥ C8‖f∗n‖Hσn/√2(Ω). Then (161) implies either

‖f − f̂‖2n + λn‖f̂‖2HK̃S (Ω) = OP

(
T + n−1/2T 1/2

)
, (162)

or

‖f − f̂‖2n + λn‖f̂‖2HK̃S (Ω)

≤4C8σ
−d/2− pD

4
n p−(D+1)/2n−1/2‖f̂ − f∗n‖

1− p
2

n (‖f̂‖HK̃S (Ω) + ‖f∗n‖HK̃S (Ω))
p
2 , (163)
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In order to solve (163), we consider two cases.

Case 1: ‖f̂‖HK̃S (Ω) ≥ ‖f∗n‖HK̃S (Ω). In this case, we have

‖f − f̂‖2n + λn‖f̂‖2HK̃S (Ω) ≤ 8C8σ
−d/2− pD

4
n p−(D+1)/2n−1/2‖f̂ − f∗n‖

1− p
2

n ‖f̂‖
p
2

HK̃S (Ω)

≤8C8σ
−d/2− pD

4
n p−(D+1)/2n−1/2‖f − f∗n‖

1− p
2

n ‖f̂‖
p
2

HK̃S (Ω)

+ 8C8σ
−d/2− pD

4
n p−(D+1)/2n−1/2‖f − f̂‖1−

p
2

n ‖f̂‖
p
2

HK̃S (Ω), (164)

where the second equality is because of the basic inequality (a+ b)q ≤ aq + bq for q ∈ (0, 1).

It can be seen that (164) further implies

‖f − f̂‖2n + λn‖f̂‖2HK̃S (Ω) ≤ 8C8σ
−d/2− pD

4
n p−(D+1)/2n−1/2‖f − f∗n‖

1− p
2

n ‖f̂‖
p
2

HK̃S (Ω), (165)

or

‖f − f̂‖2n + λn‖f̂‖2HK̃S (Ω) ≤ 8C8σ
−d/2− pD

4
n p−(D+1)/2n−1/2‖f − f̂‖1−

p
2

n ‖f̂‖
p
2

HK̃S (Ω). (166)

Solving (166) yields

‖f − f̂‖n ≤8C8σ
−d/2− pD

4
n p−(D+1)/2n−1/2λ

− p
4

n ,

‖f̂‖HK̃S (Ω) ≤8C8σ
−d/2− pD

4
n p−(D+1)/2n−1/2λ

− 2+p
4

n . (167)

Plugging (160) into (165), we have

‖f − f̂‖2n + λn‖f̂‖2HK̃S (Ω) ≤ 8C8σ
−d/2− pD

4
n p−(D+1)/2n−1/2(T + n−1/2T 1/2)

1
2
− p

4 ‖f̂‖
p
2

HK̃S (Ω).

(168)

Solving (168) yields

‖f − f̂‖n ≤λ
− p

2(4−p)
n

(
8C8σ

−d/2− pD
4

n p−(D+1)/2n−1/2(T + n−1/2T 1/2)
1
2
− p

4

) 2
4−p

,

‖f̂‖HK̃S (Ω) ≤
(

8C8λ
−1
n σ

−d/2− pD
4

n p−(D+1)/2n−1/2(T + n−1/2T 1/2)
1
2
− p

4

) 2
4−p

. (169)

Case 2: ‖f̂‖HK̃S (Ω) < ‖f∗n‖HK̃S (Ω). In this case, (163) implies that

‖f − f̂‖2n + λn‖f̂‖2HK̃S (Ω) ≤ 8C8σ
−d/2− pD

4
n p−(D+1)/2n−1/2‖f̂ − f∗n‖

1− p
2

n ‖f∗n‖
p
2

HK̃S (Ω)

≤8C8σ
−d/2− pD

4
n p−(D+1)/2n−1/2‖f − f∗n‖

1− p
2

n ‖f∗n‖
p
2

HK̃S (Ω)

+ 8C8σ
−d/2− pD

4
n p−(D+1)/2n−1/2‖f − f̂‖1−

p
2

n ‖f∗n‖
p
2

HK̃S (Ω), (170)
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where the second equality is because of the basic inequality (a+ b)q ≤ aq + bq for q ∈ (0, 1).

By (170), we have either

‖f − f̂‖2n + λn‖f̂‖2HK̃S (Ω) ≤C9σ
−d/2− pD

4
n p−(D+1)/2n−1/2‖f − f∗n‖

1− p
2

n ‖f∗n‖
p
2

HK̃S (Ω), (171)

or

‖f − f̂‖2n + λn‖f̂‖2HK̃S (Ω) ≤C10σ
−d/2− pD

4
n p−(D+1)/2n−1/2‖f − f̂‖1−

p
2

n ‖f∗n‖
p
2

HK̃S (Ω), (172)

for some positive constants C9 and C10. Combining (171) and Lemma 26, we have

‖f − f̂‖2n =OP

(
σ
−d/2− pD

4
n p−(D+1)/2n−1/2(λ−1

n T )
p
2 (T + n−1/2T 1/2)1− p

2

)
,

‖f̂‖2HK̃S (Ω) =OP

(
λ−1
n σ

−d/2− pD
4

n p−(D+1)/2n−1/2(λ−1
n T )

p
2 (T + n−1/2T 1/2)1− p

2

)
. (173)

Combining (172) and Lemma 26, we have

‖f − f̂‖n =OP

(
σ
−d/2− pD

4
n p−(D+1)/2n−1/2)

2
2+p (λ−1

n T )
p

2+p

)
‖f̂‖2HK̃S (Ω) =OP

(
λ−1/2
n (σ

−d/2− pD
4

n p−(D+1)/2n−1/2)
2

2+p (λ−1
n T )

p
2+p

)
. (174)

By (162), (167), (169), (173), and (174), we finish the proof.

J.4 Proof of Lemma 28

For any function g ∈ Hσ(RD), the Fourier inversion theorem implies

|g(x)| =
∣∣∣∣∫

RD
eix

TωF(g)(ω)dω

∣∣∣∣ ≤ ∫
RD
|F(g)(ω)| dω

=

∫
RD
|F(g)(ω)|1−r (F(kσ)(ω))r/2 |F(g)(ω)|r (F(kσ)(ω))−r/2dω

≤
(∫

RD
|F(g)(ω)|

2(1−r)
2−r (F(kσ)(ω))

r
2−r dω

) 2−r
2
(∫

RD
|F(g)(ω)|2 (F(kσ)(ω))−1dω

) r
2

≤2
Dr
2 σ

Dr
2

(∫
RD
|F(g)(ω)|

2(1−r)
2−r e−

r
2−rσ

2‖ω‖22dω

) 2−r
2

‖g‖rHσ(RD)

≤2
Dr
2 σ

Dr
2

(∫
RD
|F(g)(ω)|2 dω

) 1−r
2
(∫

RD
e−rσ

2‖ω‖22dω

) 1
2

‖g‖rHσ(RD)

=2
Dr
2 σ

Dr
2 (4π−1rσ2)−

D
4 ‖g‖1−r

L2(RD)
‖g‖rHσ(RD)

≤C1r
−D

4 σ
D(r−1)

2 ‖g‖1−r
L2(RD)

‖g‖rHσ(RD),

for some positive constants C1, where the second and fourth inequalities are by Hölder’s
inequality, and the third equality is by Parseval’s identity. This finishes the proof.

73



Ding, Hu, Jiang, Li, Wang, and Yao

Appendix K. Proof of Lemmas in Appendix F

K.1 Proof of Lemma 29

By following the similar approach in Appendix I.1, we have

‖f∗ − f∗n‖2L2(PX) + λn‖f∗n‖2HK̃S (Ω) ≤max(C1, 1)

(
‖f∗ − f̃∗n‖2L2(RD) + λn‖f̃∗n‖2HK̃S (RD)

)
.

(175)

Therefore, it remains to bound

‖f∗ − f̃∗n‖2L2(RD) + λn‖f̃∗n‖2HK̃S (RD).

Similar to Appendix I.1, we can use the Fourier inversion theorem to get

‖f∗ − f̃∗n‖2L2(RD) + λn‖f̃∗n‖2HK̃S (RD) =

∫
RD
|F(f∗)(ω)−F(f̃∗n)(ω)|2 + λn

|F(f̃∗n)(ω)|2

F(K̃S(x))(ω)
dω

≤
∫
RD

C2λn
∏D
j=1(1 + ω2

j )
m0(1 + σ2

nw
2
j )
mε

1 + C2λn
∏D
j=1(1 + ω2

j )
m0(1 + σ2

nw
2
j )
mε
|F(f∗)(ω)|2dω

≤
∑
|l|≥1

I<l + I≥l , (176)

for some positive constants C2, where l = (l1, ..., lD) ∈ {0, 1}D,

Ωlj =

{
{ωj : σ2

nω
2
j < 1}, if lj = 0,

{ωj : σ2
nω

2
j ≥ 1}, otherwise,

Ω<
l =

[
×Dj=1Ωlj

]⋂
{ω : C2λn

D∏
j=1

(1 + ω2
j )
m0(1 + σ2

nw
2
j )
mε < 1},

Ω≥l =
[
×Dj=1Ωlj

]⋂
{ω : C2λn

D∏
j=1

(1 + ω2
j )
m0(1 + σ2

nw
2
j )
mε ≥ 1},

I<l =

∫
Ω<l

C2λn

 D∏
j=1

(1 + ω2
j )
m0(1 + σ2

nw
2
j )
mε

|F(f∗)(ω)|2dω,

I≥l =

∫
Ω≥l

|F(f∗)(ω)|2dω,

and the sum over all {|l| ≥ 1} is because on any Ω<
l and Ω≥l , there must be at least one j∗

and one j∗∗ such that σ2
nwj∗ < 1 and σ2

nwj∗∗ ≥ 1, respectively.
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Define p =
mf

m0+mε
≤ 1. On any Ω<

l , we have

C2λn

D∏
j=1

(1 + ω2
j )
m0(1 + σ2

nw
2
j )
mε

≤

C2

D∏
j=1

λ
1
D
n (1 + ω2

j )
m0(1 + σ2

nw
2
j )
mε

p

=C3

D∏
j=1

λ
p
D
n (1 + ω2

j )
m0p(1 + σ2

nw
2
j )
mεp

≤C4

D∏
j=1

(
λ
p
D
n (1 + ω2

j )
m0p
)1−lj (

λ
p
D
n (1 + ω2

j )
m0p(σ2

nw
2
j )
mεp
)lj

,

for some positive constants C3 and C4.
From the fact that m0p = mf

m0
m0+mε

≤ mf and calculations similar to (125), we have

λ
p
D
n (1 + ω2

j )
m0p ≤ λ

p
D
n (1 + ω2

j )
mf when lj = 0,

and λ
p
D
n (1 + ω2

j )
m0p(σ2

nw
2
j )
mεp ≤ (λ

1
D
n σ

2mε
n )p(1 + ω2

j )
mf when lj = 1.

As a result, on Ω<
l , we have

C2λn

D∏
j=1

(1 + ω2
j )
m0(1 + σ2

nw
2
j )
mε ≤ C4

D∏
j=1

(
λ
p
D
n

)1−lj
(
λ

1
D
n σ

2mε
n

)plj
(1 + ω2

j )
mf

= C4λ
p
nσ

2mεp|l|
n

D∏
j=1

(1 + ω2
j )
mf , (177)

where |l| =
∑D

j=1 lj .

On Ω≥l , we have

1 ≤

C2λn

D∏
j=1

(1 + ω2
j )
m0(1 + σ2

nω
2
j )
mε

p

≤

C5λn

D∏
j=1

(1 + ω2
j )
m0(σ2

nω
2
j )
mεlj

p

≤C6λ
p
nσ

2mεp|l|
n

D∏
j=1

(1 + ωj)
mf , (178)

for some positive constants C5 and C6.
Plugging (177) and (178) into (176) finishes the proof.
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K.2 Proof of Lemma 30

Let Ψσ(‖ · ‖2) :=
∏D
j=1 ψσ(| · |) be tensor product of positive definite functions with

c1(1 + σ2|ωj |2)−(m0+mε) ≤ F(ψσ) ≤ c2(1 + σ2|ωj |2)−(m0+mε),∀ω ∈ RD, ∀j = 1, . . . , d

for some positive constants c1 and c2, and Nσ(Ω) be the RKHS generated by Ψσ. We
will use the following lemmas. Lemma 37 can be derived by Corollary A.8 of Hamm and
Steinwart (2021a) and (6.6) of Dung et al. (2018). Lemma 38 is a direct result of the proof
of Lemma 8.4 of van de Geer (2000) and Lemma 37.

Lemma 37 Let 4σ2 ≤ 1. Suppose the conditions of Lemma 30 are fulfilled. Let BNσ(Ω) be
a unit ball in Nσ(Ω). Then there exists a constant C1 > 0 only depending on D and Ω such
that for all δ > 0, we have

H(δ,BHσ(Ω), ‖ · ‖L∞(Ω)) ≤ C1σ
−dδ
− 1
m0+mε | log δ|(D−1)+ 1

2(m0+mε) .

Lemma 38 Suppose conditions of Theorem 13 are fulfilled. Then for any T large enough
we have

P

(
sup

g∈BHσ(Ω)

√
n〈g, ε〉n

‖g‖1−pn | log ‖g‖n|(D−1+p)/2
≥ T

)
≤ C2 exp

(
−T

2

C3

)
.

where p = 1
2(m0+mε)

, C2 and C3 are some constant independent of T and n.

Proof of Lemma 38. From Lemma 37, we can derive that for any δ ≤ 1,∫ δ

0
H(u,BHσ(Ω), ‖ · ‖L∞(Ω))

1/2du . σ−dδ1−p∣∣ log δ
∣∣D−1+p

2 .

Then, by Corollary 8.3 of van de Geer (2000), we can derive that

P

(
sup

g∈BHσ(Ω)

√
n
∣∣〈g, ε〉n∣∣ ≥ σ−dδ1−p∣∣ log δ

∣∣D−1+p
2

)
. exp

(
−C4σ

−2d
n δ−2p| log δ|D−1+p

)
.

We then can follow the peeling-off argument in Lemma 8.4 of van de Geer (2000) to show

P

(
sup

g∈BHσ(Ω)

√
n〈g, ε〉n

‖g‖1−pn | log ‖g‖n|(D−1+p)/2
≥ T

)

≤
∞∑
s=1

P

(
sup

g∈BHσ(Ω),‖g‖n≤2−s+1

√
n〈g, ε〉n ≥ T2−s(1−p)s

D−1+p
2

)

.
∞∑
s=1

exp
(
−C4T

2σ−2d
n 24ps| log 2|D−1+p

)
.
∞∑
s=1

exp
(
−C4T

2s
)

=C2 exp

(
−T

2

C3

)
,
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for some positive constants C4.

Proof of Lemma 30. We can follow the proof of Lemma 22 to derive the following inequality
using Lemmas 37 and 38:

‖f∗ − f̂n‖2n + λn‖f̂n‖2HK̃S (Ω)

≤‖f∗ − f∗n‖2n + λn‖f∗n‖2HK̃S (Ω)

+OP(n−1/2)σ−d/2n ‖f̂n − f∗n‖
1− p

2
n | log ‖f̂n − f∗n‖n|

D−1
2

+ p
4 (‖f̂n‖Nσn (Ω) + ‖f∗n‖Nσn (Ω))

p
2 ,

(179)

where p = 1
m0+mε

. Notice that (179) is similar to (133) in the proof of Lemma 22 except

for the extra poly-log term | log ‖f̂n − f∗n‖n|
D−1

2
+ p

4 . However, the extra poly-log term will
not change the case-by-case analysis in our proof because it is always dominated by those
polynomial terms in (179). Therefore, we can follow the same logic in the proof of Lemma
22 to get the final results.

K.3 Proof of Lemma 31

For any function g ∈MWm(RD), the Fourier inversion theorem implies

|g(x)| =
∣∣∣∣∫

RD
eix

TωF(g)(ω)dω

∣∣∣∣ ≤ ∫
RD
|F(g)(ω)| dω

=

∫
RD
|F(g)(ω)|1−r (F(kσ)(ω))r/2 |F(g)(ω)|r (F(kσ)(ω))−r/2dω

≤
(∫

RD
|F(g)(ω)|

2(1−r)
2−r (F(kσ)(ω))

r
2−r dω

) 2−r
2
(∫

RD
|F(g)(ω)|2 (F(kσ)(ω))−1dω

) r
2

≤

∫
RD
|F(g)(ω)|

2(1−r)
2−r

∣∣∣∣∣∣
D∏
j=1

(1 + ω2
j )
−m

∣∣∣∣∣∣
r

2−r

dω


2−r

2

‖g‖rHσ(RD)

≤
(∫

RD
|F(g)(ω)|2 dω

) 1−r
2

 D∏
j=1

∫
R

(1 + ω2
j )
−mrdω

 1
2

‖g‖rHσ(RD)

=Cr‖g‖1−rL2(RD)
‖g‖rHσ(RD),

where the second and fourth inequalities are by Hölder’s inequality, and the third equality
is by Parseval’s identity. The positive constant Cr < ∞ for any r > m−1/2. This finishes
the proof.
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Appendix L. Proof of Lemma 32

Lemma 39 Let the RKHS Hm induced by the kernel function Km be equipped with norm
satisfying

‖f‖2Hm ≤ C
∫
RD

(
1 +
‖ω‖2

m

)m ∣∣∣f̂(ω)
∣∣∣2 dω,

where C is some constant independent of m. Then for any m > D/2, there exists a constant
C ′ independent of m such that for all δ > 0, we have

H(δ,BHm([0,1]D), ‖ · ‖L∞([0,1]D)) ≤ C ′(2m−D)−
2D

2m−Dm
2mD

2m−D δ−
2D

2m−D log(1 + δ−1).

Remark 40 If we treat m as a constant, the upper bound in Lemma 39 is larger than that
in (130). However, in the proofs of Lemmas 32 and 22, it turns out that the upper bound
in Lemma 39 is sufficient.

Proof of Lemma 32. The proof follows Corollary A.8 of Hamm and Steinwart (2021a).
Specifically, Corollary A.8 of Hamm and Steinwart (2021a) states that for any δ > 0 annd
σ > 0, it holds that

H(δ,BHσ(Ω), ‖ · ‖L∞(Ω)) ≤N`D∞(σ,Ω)H(δ,BHm([0,1]D), ‖ · ‖L∞(Ω)),

which, by Assumption 5 and Lemma 39, leads to

H(δ,BHσ(Ω), ‖ · ‖L∞(Ω)) ≤Cσ−d(2m−D)−
2D

2m−Dm
2mD

2m−D δ−
2D

2m−D log(1 + δ−1),

where the constant C is independent with mε, and m = mε +m0.

Appendix M. Proof of Lemma 39

For any f ∈ Hm([0, 1]D), we have the following representation of f by Fourier series

f =
∑
ζ∈ND

fζψζ ,

where ψζ is the Fourier basis associated to ζ and fζ is the projection of f on ψζ . Then
transference from L2(RD) to L2([0, 1]D) by Fourier multiplier (see theorem 3.4 in L Coifman
and Weiss (1977)) shows that the RKHS norm of f embedded on [0, 1]D can be written as

‖f‖2Hm ≤
∑
ζ∈ND

(1 +
‖ζ‖22
m

)mf2
ζ .

We first define a projection PM as follows:

PMf =
∑

ζ∈[M ]D

fζψζ .
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Then for the embedding operator I : H([0, 1]D)→ L∞([0, 1]D), we have

‖I‖22 = sup
f∈BHm([0,1]D)

sup
x∈[0,1]D

|f(x)|2

≤ 2 sup
f∈BHm([0,1]D)

sup
x∈[0,1]D

|PMf(x)|2 + 2 sup
f∈BHm([0,1]D)

sup
x∈[0,1]D

|f(x)− PMf(x)|2.

(180)

For the first term of (180), it is obvious that

2 sup
f∈BHm([0,1]D)

sup
x∈[0,1]D

|PMf(x)|2 ≤ 2‖I‖22 ≤ 2Km(x,x).

For the second term of (180), we have

‖I − PM‖2 = sup
f∈BHm([0,1]D)

sup
x∈[0,1]D

|f(x)− PMf(x)|

≤ sup
f∈BHm([0,1]D)

∑
ζ∈ND−[M ]D

|fζ |

≤

 ∑
ζ∈ND−[M ]D

(1 +
‖ζ‖22
m

)−m

 1
2

,

where the last line is from Hölder inequality and ∀f ∈ BHm([0,1]D), ‖f‖Hm([0,1]D) ≤ 1.

Notice that for m > D/2, we have

∑
ζ∈ND−[M ]D

(1 +
‖ζ‖22
m

)−m =
∑

ζ1≥M+1

· · ·
∑

ζD≥M+1

(
1 +

∑D
j=1 ζ

2
j

m

)−m

≤
∫ ∞
M
· · ·
∫ ∞
M︸ ︷︷ ︸

D terms

(1 +
‖ζ‖22
m

)−mdζ

=

∫ 2π

0
· · ·
∫ 2π

0

∫ ∞
M

(1 +
r2

m
)−m det(J(r,θ))drdθ

≤
∫ 2π

0
· · ·
∫ 2π

0

∫ ∞
M

(1 +
r2

m
)−mrD−1drdθ

≤ C 1

2m−D
mmM−2m+D.

Therefore, we can conclude that ‖I−PM‖2 ≤ C 1
2m−Dm

mM−2m+D for some C independent

of m. Given any δ > 0, we can select integer M = d((2m−D)m−mδ)
− 2

2m−D e so that

‖I − PM‖2 ≤ δ,
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where dre denotes the ceiling round up of r. Then we can apply Lemma 1 in Kühn (2011)
to get

H(δ,BHm([0,1]D), ‖ · ‖L∞([0,1]D)) ≤rank(PM ) log(1 + δ−1)

≤MD log(1 + δ−1)

≤C ′
(
(2m−D)m−mδ

)− 2D
2m−D log(1 + δ−1)

=C ′(2m−D)−
2D

2m−Dm
2mD

2m−D δ−
2D

2m−D log(1 + δ−1),

for some C ′ independent of m.

Appendix N. Appendix for Detailed Experiments

In this section, we present more details of numerical experiments conducted in Section 5.

Note that in the experiments, our goal is specified by minimizing the l2 loss in the form of
(5). We train the neural network using stochastic gradient descent (SGD) with momentum
(0.9), small batch size (10), and learning rate β = 0.01. We choose a constant weight
decay strength (10−4) to focus on the influence of random smoothing in cases with weight
decay. We set the number of augmented samples N = 1000 and conduct a grid search for
the smoothing scale from 0 to 0.6. The simulated data are divided into the training set,
validation set, and test set. The validation set is sampled as half the size of the training
set, while the size of the test set is fixed at 500. The test results are selected based on the
validation set unless otherwise specified and we repeat each experiment 15 times and report
the average loss on the test set.

Considering stochastic gradient descent with weight decay, we adopt a candidate list of
weight decay strength {10−3, 10−4, 10−5}. To make a fair comparison, we choose a consistent
number of iterations instead of epochs for different training sizes, i.e., given a batch size,
the number of epochs gets smaller when the training size becomes larger. Specifically, the
number of iterations in cases with weight decay is 10,000. For early stopping without weight
decay, we evaluate the validation error every 200 gradient descent steps during training and
select the model with the smallest validation error. The maximal step for SGD with early
stopping is 100,000. We repeat each experiment 15 times and report the average loss on
the test set.
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