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Abstract

The random forest (RF) algorithm has become a very popular prediction method for
its great flexibility and promising accuracy. In RF, it is conventional to put equal weights
on all the base learners (trees) to aggregate their predictions. However, the predictive per-
formance of different trees within the forest can vary significantly due to the randomization
of the embedded bootstrap sampling and feature selection. In this paper, we focus on RF
for regression and propose two optimal weighting algorithms, namely the 1 Step Optimal
Weighted RF (1step-WRFopt) and 2 Steps Optimal Weighted RF (2steps-WRFopt), that
combine the base learners through the weights determined by weight choice criteria. Under
some regularity conditions, we show that these algorithms are asymptotically optimal in
the sense that the resulting squared loss and risk are asymptotically identical to those of
the infeasible but best possible weighted RF. Numerical studies conducted on real-world
data sets and semi-synthetic data sets indicate that these algorithms outperform the equal-
weight forest and two other weighted RFs proposed in the existing literature in most cases.
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1. Introduction

Random forest (RF) (Breiman, 2001), growing trees using Classification and Regression
Trees (CART) algorithm, is one of the most successful machine learning algorithms that
scale with the volume of information while maintaining sufficient statistical efficiency (Biau
and Scornet, 2016). Due to its great flexibility and promising accuracy, RF has been widely
used in diverse areas of data analysis, including policy-making (Yoon, 2021; Lin et al., 2021),
business analysis (Pallathadka et al., 2023; Ghosh et al., 2022), chemoinformatics (Svetnik
et al., 2003), real-time recognition of human pose (Shotton et al., 2011), and so on. RF
ensembles multiple decision trees grown on bootstrap samples and yields highly accurate
predictions. In the conventional implementation of RF, it is customary and convenient
to allocate equal weight to each decision tree. Theoretically, the predictive performance
varies from tree to tree due to the application of randomly selected sub-spaces of data and
features. In other words, trees exhibit greater diversity due to the injected randomness.
An immediate question then arises: Is it always optimal to employ equal weights? In
fact, there is sufficient evidence to indicate that an averaging strategy with appropriately
selected unequal weights may achieve better performance than simple averaging (that is,
equally weighting) if individual learners exhibit non-identical strength (Zhou, 2012; Peng
and Yang, 2022).

To solve the problem mentioned above, some efforts have been made in the literature
regarding weighted RFs. Specifically, Trees Weighting Random Forest (TWRF) introduced
by Li et al. (2010) employs the accuracy in the out-of-bag data as an index that measures
the classification power of the tree and sets it as the weight. Winham et al. (2013) develop
Weighted Random Forests (wRF), where the weights are determined based on tree-level
prediction error. Based on wRF, Xuan et al. (2018) put forward Refined Weighted Random
Forests (RWRF) using all training data, including in-bag and out-of-bag data. A novel
weights formula is also developed in RWRF but cannot be manipulated into a regression
pattern. Pham and Olafsson (2019) replace the regular average with a Cesáro average
with theoretical analysis. However, these studies have predominantly focused on classifi-
cation, and less attention has been paid to the regression pattern (that is, estimating the
conditional expectation), although some mechanisms for classification can be transformed
into corresponding regression patterns. In addition, none of the aforementioned studies
have investigated the theoretical underpinnings regarding the optimality properties of their
methods.

Recently, Qiu et al. (2020) propose a novel framework that averages the outputs of
multiple machine learning algorithms by the weights determined by Mallows-type criteria.
Motivated by their work, we extend this approach by developing an asymptotically optimal
weighting strategy for RF. Specifically, we treat the individual trees within the RF as base
learners and employ Mallows-type criterion to obtain their respective weights. It is worth
noting that Qiu et al. (2020) implicitly assume the independence of the “hat matrix” from
the response values (the term “hat matrix” generally refers to the matrix that maps the
response vector to the corresponding vector of fitting values), which is deemed unrealistic
in practical situations. In the current study, we remove this restriction and establish the
asymptotic optimality under the standard setting where the “hat matrix” is determined by
a response-based splitting criterion (Breiman, 2001; Chi et al., 2022). Moreover, to reduce
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computational burden, we further propose an accelerated algorithm that requires only two
quadratic optimization tasks. Asymptotic optimality is established for both the original and
accelerated weighted RF estimators. Extensive analyses on real-world and semi-synthetic
data sets demonstrate that the proposed methods show promising performance over existing
RFs.

The remaining part of the paper proceeds as follows: Section 2 formulates the prob-
lem. Section 3 establishes our weighted RF algorithms and provides theoretical analysis.
Section 4 shows their promising performance on 12 real-world data sets from UCI Machine
Learning Repository and Openml.org, as well as on semi-synthetic data. Section 5 concludes.
The data and codes are available publicly on https://github.com/XinyuChen-hey/Optimal-
Weighted-Random-Forests.

2. Model and Problem Formulation

Let x0
i = (xi1, xi2, . . .)

> be a set of countably infinite predictors (or explanatory variables,
attributes, features) and yi be a univariate response variable for i = 1, . . . , n. The data
generating process is as follows

yi = µi + ei,

where {ei,x0
i }ni=1 are independent and identically distributed random variables with E(ei|x0

i )
= 0 and E(e2

i |x0
i ) = σ2

i , and µi = E(yi|x0
i ). So conditional heteroscedasticity is allowed here.

Consider an observable data set D = {yi,xi}ni=1, where xi = (xi1, . . . , xip)
> with p being

the dimension of the feature. Given a predictor vector xi, the corresponding prediction for
yi by a tree (or base learner, BL) in the construction of RF can be written as follows

ŷi = P>BL(xi,X,y,B,Θ)y,

where y = (y1, . . . , yn)> is the vector of the response variable, PBL(xi,X,y,B,Θ) is an n-
dimensional vector for tree configuration, and X = (x1, . . . ,xn)> is the matrix of predictors.
The variables B and Θ play implicit roles in injecting randomness into RFs. First, each tree
is fitted to an independent bootstrap sample from the original data, with B determining
the randomization inherent in this bootstrap sampling process. Second, Θ dictates the
randomness in feature selection at each node within the trees. The specific nature and
dimensions of B and Θ are contingent upon the specific implementation of each tree. Note
that B is irrelevant to y, while Θ relies on y for guiding splits.1

Let us assume that we have drawn Mn bootstrap data sets of size n and grown Mn trees
on their bootstrap data, where Mn can grow with n or remain fixed. Take the mth tree for
example. Dropping an instance (y0,x0) down this base learner and end up with a specific
tree leaf l with nl observations Dl = {(yi1 ,xi1), . . . , (yinl

,xinl
)}. Assume that the number of

occurrences of instance (yi,xi) in this tree is hi for all i because of the bootstrap sampling
procedure. Then PBL(x0,X,y,B,Θ) for this tree is a sparse vector, with elements being
hi/nl or zero, depending on the relationship between D and Dl. More specifically, the ith

element of PBL(x0,X,y,B,Θ) equals 0 if (yi,xi) /∈ Dl and (y0,x0) ∈ Dl. Elements of
PBL(x0,X,y,B,Θ) are weights put on elements of y to make a prediction for y0.

1. In case where the tree structure is unaffected by y, Θ becomes independent of y, therefore reducing
PBL(xi,X,y,B,Θ) to PBL(xi,X,B,Θ). Such a situation occurs with split-unsupervised trees as dis-
cussed in Section 3.2.

3

https://github.com/XinyuChen-hey/Optimal-Weighted-Random-Forests
https://github.com/XinyuChen-hey/Optimal-Weighted-Random-Forests


Chen, Yu and Zhang

By randomly selecting sub-spaces of data and features, trees in RFs are given more
randomness than trees without these randomization techniques. Specifically, bootstrap data
are used to grow trees rather than the original training data. In addition, when searching
for the best splitting variable at each node, we draw q (q < p) variables from the total pool
of p variables, rather than using all p variables. If without the bootstrap procedure, we have
hi ≡ 1 for all i ∈ {1, . . . , n}, and PBL(x0,X,y,B,Θ) will contain fewer zero elements.

The prediction for yi by the mth tree (or the mth base learner) within the forest obeys
the following relationship

ŷ
(m)
i = P>BL(m)(xi,X,y,B(m),Θ(m))y, (1)

where ŷ(m)
i is the prediction for yi by the mth tree, and PBL(m)(xi,X,y,B(m),Θ(m)) is the

n-dimensional vector for configuring themth tree. The final output of the forest is integrated
by

ŷi(w) =

Mn∑
m=1

w(m)ŷ
(m)
i ,

where w(m) is the weight put on the mth tree. Our goal is to determine appropriate weights
to improve prediction accuracy of RF, given a predictor vector x. Clearly, the conventional
RF has w(m) ≡ 1/Mn for m = 1, . . . ,Mn.

3. Mallows-type Weighted RFs

Let PBL(m) be an n× n “hat matrix”, of which the ith row is P>BL(m)(xi,X,y,B(m),Θ(m)).
Let

P(w) =

Mn∑
m=1

w(m)PBL(m),

and

ŷ(w) =

Mn∑
m=1

w(m)ŷ
(m),

with

ŷ(m) =
(
ŷ

(m)
1 , . . . , ŷ(m)

n

)>
.

Define the following averaged squared error function

Ln(w) ≡ ‖ŷ(w)− µ‖2, (2)

which measures the sum of squared biases between the true µ = (µ1, . . . , µn)> and its
model averaging estimate ŷ(w). Denote Rn(w) = E {Ln(w)|X}, where X is the σ-algebra
generated by {x0

1, . . . ,x
0
n,B(1), . . . ,B(Mn),Θ(1), . . . ,Θ(Mn)}. We will propose some weight

choice criteria to obtain weights based on Rn(w).
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3.1 Mallows-type Weight Choice Criteria

Considering the choice of weights, we use the solution obtained by minimizing the following
Mallows-type criterion (3) with the restriction of w ∈H ≡

{
w ∈ [0, 1]Mn :

∑Mn
m=1w(m) = 1

}
Cn(w) = ‖y −P(w)y‖2 + 2

n∑
i=1

e2
iPii(w), (3)

where Pii(w) is the ith diagonal term in P(w), and e = (e1, . . . , en)> is the true error term
vector.

This criterion is originally proposed by Zhao et al. (2016) for considering linear models.
In the context of linear models, E{Cn(w) | X} equals the conditional risk Rn(w) up to a
constant term that is irrelevant to w. Zhao et al. (2016) further show that the criterion is
asymptotically optimal in the context considered therein. However, ei’s are unobservable
terms in practice. So they further consider the following feasible criterion, replacing the true
error terms with averaged residuals

C ′n(w) = ‖y −P(w)y‖2 + 2

n∑
i=1

êi(w)2Pii(w), (4)

where

ê(w) = {ê1(w), . . . , ên(w)}> =

Mn∑
m=1

w(m)ê
(m) = {In −P(w)}y,

ê(m) is the residual vector for the mth candidate model, and In is an identity matrix with
dimension n. This feasible criterion also accommodates conditional heteroscedasticity. Be-
sides, it relies on all candidate models to estimate the true error vector, which avoids placing
too much confidence on a single model. Similar criterion has also been considered in Qiu
et al. (2020).

We apply criterion (4) to determine w in ŷ(w). Criterion (4) comprises two terms. The
first term measures the fitting error of the weighted RF in the training data, by computing
the residual sum of squares. The second term penalizes the complexity of the trees in the
forest. For each m ∈ {1, . . . ,Mn}, PBL(m),ii denotes the ith diagonal term in PBL(m). As
explained in Section 2, PBL(m),ii is the proportion of the ith observation to the total number
of samples in the leaf that includes the ith observation. Thus, for each m ∈ {1, . . . ,Mn}
and i ∈ {1, . . . , n}, the larger the value of PBL(m),ii, the smaller the gap between yi and
ŷ

(m)
i . In the most extreme case where a tree is so deep that the leaf node containing the
ith observation is pure, PBL(m),ii equals 1, and ŷ

(m)
i equals yi. Essentially, this tree has low

prediction error within the training sample, but may exhibit poor generalization performance
when applied to new data. To mitigate the contribution of overfitted trees in the ensemble
output, this algorithm assigns lower weights to these trees, thereby decreasing the second
term.

From another aspect, noting that
∑n

i=1 êi(w)2Pii(w) > min16i6n êi(w)2
∑n

i=1 Pii(w), the
summation part

∑n
i=1 Pii(w) =

∑Mn
m=1w(m)

∑n
i=1 PBL(m),ii =

∑Mn
m=1w(m)`(m) represents the

weighted number of leaves of all trees, where `(m) is the number of leaves of the mth tree,
representing the complexity of the tree. The regularized objective for minimization in the
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Extreme Gradient Boosting (XGBoost) algorithm, proposed by Chen and Guestrin (2016),
also contains a penalty term that penalizes the number of leaves in the tree. In light of
this, both the weighted RF with weights obtained by minimizing criterion (4) and XGBoost
employ the number of leaves in a tree to measure its complexity. The regularization term
helps to allocate the weights to avoid overfitting (Chen and Guestrin, 2016).

Inherent from the Mallows criterion (Hansen, 2007), the resulting weights of (4) exhibit
sparsity. It is important to note that some trees within a RF might contribute to the
deterioration of the ensemble’s overall performance. Therefore, forming a more accurate
committee via removal of trees with poor performance is a more rational strategy. It is
called the theorem of MCBTA (“many could be better than all”) introduced by Zhou et al.
(2002), which indicates that for supervised learning, given a set of individual learners, it
may be better to ensemble some instead of all of these individual learners. Employing
sparse weights can be regarded as a form of adaptive tree selection, reducing the risk of
integrating trees that could weaken the final outcome of the ensemble. Additionally, it
offers advantages over model selection methods, which only choose a single tree and thereby
ignore model uncertainty. In short, our approach with sparse weights provides a balanced
and adaptive solution, selectively aggregating members while acknowledging the significance
of trees diversity.

It is clear that criterion (4) is a cubic function of w, whose optimization is substantially
more time-consuming than that of quadratic programming. To expedite the process, we
further suggest an accelerated algorithm that estimates e using a vector that is irrelevant to
w. The accelerated algorithm consists of two steps, where the first step involves calculating
the estimated error terms, and the second step involves substituting the vector obtained in
the first step for the true error terms in criterion (3). In specific, consider the following
intermediate criterion,

C◦n(w) = ‖y −P(w)y‖2 + 2

n∑
i=1

σ̂2Pii(w), (5)

where σ̂2 = ‖y − P(w0)y‖2/n, and w0 is an n-dimensional vector with all elements being
1/Mn. Solve this quadratic programming task over w ∈ H, and get a solution w◦. Then,
calculate the residual vector by

ẽ = (ẽ1, . . . , ẽn)> = {In −P(w◦)}y.

Next, consider the following criterion

C ′′n(w) = ‖y −P(w)y‖2 + 2

n∑
i=1

ẽ2
iPii(w). (6)

Both (5) and (6) are quadratic functions of w, while criterion (4) is a cubic function. Many
contemporary software packages, such as quadprog in R or MATLAB, can effectively handle
quadratic programming problems. In fact, from the real data analysis conducted in Section
4.1, it is observed that the time required to solve two quadratic programming problems is
notably lower compared to that required to solve a more intricate nonlinear programming
problem of higher order. Please see Table 5 for more details.
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Algorithm 1: 1step-WRFopt

Input: (1) The training data set D = {yi,xi}ni=1 (2) The number of trees in

random forest Mn

Output: Weight vector ŵ ∈H

1 for m = 1 to Mn do

2 Draw a bootstrap data set D(m) of size n from the training data set D;

3 Grow a random-forest tree f̂(m) to the bootstrap data D(m), by recursively

repeating the following steps for each terminal node of the tree, until the

minimum node size nodesize is reached ; // nodesize, q are hyper

parameters

4 i. Select q variables at random from the p variables;

5 ii. Pick the best variable/ splitting point among the q;

6 iii. Split the node into two daughter nodes.

7 for i = 1 to n do

8 Drop xi down the the mth tree and get PBL(m)(xi,X,y,B(m),Θ(m)).

9 end

10 PBL(m) ← {PBL(m)(x1,X,y,B(m),Θ(m)), . . . ,PBL(m)(xn,X,y,B(m),Θ(m))}>.
11 end

12 Solve the convex optimization problem:

ŵ = (ŵ(1), . . . , ŵ(Mn))
> ← arg min

w∈H
C ′n(w).

We refer to the RF with tree-level weights derived from optimizing criterion (4) as 1
Step Optimal Weighted RF (1step-WRFopt), and the RF with weights of trees obtained by
optimizing criterion (6) as 2 Steps Optimal Weighted RF (2steps-WRFopt). Their details
are given in Algorithms 1 and B.1, respectively. For the sake of simplicity, we provide
the complete description of Algorithm B.1 in Appendix B.1, since it shares a large part in
common with Algorithm 1 except for the weight choice criteria. In the following, we use the
WRFopt to refer to the algorithms including both the 1step-WRFopt and 2steps-WRFopt.

3.2 Asymptotic Optimality

Denote the selected weight vectors from C ′n(w) and C ′′n(w) by

ŵ = arg min
w∈H

C ′n(w) and w̃ = arg min
w∈H

C ′′n(w),

respectively. In this section, we aim to analyze the loss and risk behavior associated with ŵ
and w̃. Before providing the theoretical support for the proposed algorithms, as an inter-
mediate step, we first introduce a special tree-type algorithm which splits nodes without the
guidance of response values in learning samples. Namely, the “hat matrix” is independent
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Tree-Based
Candidate Models

BL-of-RF-Based
Candidate Models

Dependence of
P on y

Least squares model
averaging (Hansen,

2007)
7 7 7

↓
Mallows-type
averaging (Qiu
et al., 2020)

X 7 7

↓
WRFopt with SUT X X 7

↓
WRFopt with CART X X X

Table 1: Flowchart of Theoretical Analysis (Inside the dotted box are our works.)

of the output values of learning samples. In this context, the vector PBL(xi,X,y,B,Θ)
reduces to PBL(xi,X,B,Θ). This setup has also been imposed in the theoretical analysis
of Geurts et al. (2006) and Biau (2012). Besides, this theoretical framework is referred to as
“honesty” in the field of causal inference (Athey and Imbens, 2016). We term this methodol-
ogy as Split-Unsupervised Tree (SUT) in contrast to CART whose splitting criterion relies
on response information. Adopting the SUT simplifies theoretical analysis, aligning it with
the framework of Mallows model averaging estimator (Hansen, 2007) in linear regression,
where the “hat matrix” P is independent of response values. This approach is also similar
to the estimators explored by Qiu et al. (2020), making it a useful intermediary for fur-
ther analysis on the asymptotic optimality of our proposed weighted RFs. In the remaining
part of this section, we first discuss the asymptotic optimality of the WRFopt with SUT.
Subsequently, we present the asymptotic optimality of the WRFopt with CART, which is
the most important conclusion in this paper. This is achieved by theoretically linking the
large sample behavior of WRFopt with CART to the behavior of WRFopt with SUT. The
corresponding theoretical analysis process is outlined in Table 1. Appendix A provides the
details of the CART algorithm and an example of SUT algorithm (used in Section 4.1).

3.2.1 Asymptotic Optimality with SUT

In this section, we will establish the asymptotic optimality of the 1step-WRFopt estimator
and 2steps-WRFopt estimator with SUT trees. To differentiate notations associated with the
SUT methodology from those used in CART, we employ the script ? on RF-related notations
when referring to their SUT counterparts. This indicates that the notations pertain to the
SUT methodology, while maintaining their fundamental meanings with the exception of the
splitting criterion. For example, for m = 1, . . . ,Mn, P?BL(m) and PBL(m) share the same
fundamental meaning, with the former associated with SUT trees and the latter related to
CART trees. Likewise, P?(w) =

∑Mn
m=1w(m)P?BL(m) contrasts with P(w) for CART trees.

Let ξn = infw∈H Rn(w), n(m),l be the number of observations in the lth leaf of the mth
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tree, and n = min16m6Mn min16l6`(m)
n(m),l be the smallest sample size (controlled by the

hyper parameter nodesize in R package randomForest) across all leaves in all trees within
the CART trees. We employ ξ?n and n? to denote the counterparts of ξn and n pertaining
to SUT trees, respectively. For brevity, we will not enumerate each SUT-corresponding
notation individually. We list and discuss some technical conditions as follows.

Condition 1 ξ−1
?nM

2
n = o(1) almost surely, and E

(
ξ−1
?nM

2
n

)
exists for all fixed n > 1.

Condition 2 There exists a positive constant v such that E
(
e4
i | x0

i

)
6 v <∞ almost surely

for i = 1, . . . , n.

Additionally, we define h(m),i as the number of occurrences of instance (yi,xi) in the mth

bootstrap sample. Following Chi et al. (2022), when the summation is over an empty set,
we define its value as zero; also, we define 0/0 = 0. Thus, without loss of generality, we
assume that h(m),i > 0 for all m = 1, . . . ,Mn and i = 1, . . . , n in the remaining part of this
study. Denote hmax = max16m6Mn,16i6n h(m),i.

Condition 3 hmaxn
−1
? n1/2 = O(1) almost surely.

Condition 4 For each fixed i, j ∈ {1, . . . , n}, there exists a positive constant c such that
ch(m),j 6 h(m),i each m = 1, . . . ,Mn, almost surely.

Condition 5 ξ−1
?nMnn

1/2 = o(1) almost surely, and E
(
ξ−1
?nMnn

1/2
)
exists for all fixed n >

1.

Conditions 1 and 5 restrict the increasing rates of the number of trees Mn and regulate
the behavior of the minimum averaging risk ξ?n. Similar conditions have been considered
and discussed by Zhang et al. (2020), Zhang (2021), Zou et al. (2022), and others. One
typical scenario that guarantees these two conditions occurs when all trees are misspecified,
which precludes any trees within the RF yield perfect predictions and dominate others.
The misspecification scenario is particularly common under high-dimensional data contexts,
where important predictors might be omitted from tree construction due to the randomiza-
tion process inherent in feature selection at each split. Besides, inspired by Chi et al. (2022),
we first rigorously define the notion of “important predictors” in the context of RF under a
simplified scenario in Appendix C.7. Then, under this situation, it is reasonable to expect
that the key identity ξ−1

?n converges to 0 at the rate O(n−1). In such cases, the rate of con-
vergence in Conditions 1 and 5 can both be further simplified to M2

nn
−1 = o(1). Moreover,

even when all the important predictors are incorporated into the tree-building process, in a
very simplified situation where a non-adaptive tree is considered, Lin and Jeon (2006) show
that the mean square error of the limiting value of the RF estimator is bounded below by
C/{N? logp−1(n)}, where C is a positive constant and N? represents the maximal number
of samples across all leaves and all trees. This indicates that ξ−1

?n = O[1/{N? logp−1(n)}].
In this case, Conditions 1 and 5 can be further reduced to M2

n/{N? logp−1(n)} = o(1) and
Mnn

1/2/{N? logp−1(n)} = o(1), respectively. However, given the complexity of RF, achiev-
ing an explicit rate of convergence for ξ−1

?n under general RF scenarios remains an open
question, which we identify as a direction for future research.
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Condition 2 imposes the boundedness of the conditional moments, which is a mild con-
dition and can be found in much literature, including works by Hansen and Racine (2012),
and Hansen (2007). Condition 3 is a high-level assumption that restricts the structure
of the RF and its constituent trees, which is equivalent to Condition C.9 of Qiu et al.
(2020) in the context therein. In fact, Condition 3 requires that the minimum sample size
across all leaves and all trees grows with order no slower than n1/2. Besides, it yields that
trace(P?BL(m)) = O(n1/2), almost surely. This poses restrictions on the degrees-of-freedom
or complexity of trees. In other words, trees should not be fully developed. Actually, as
noted by Probst et al. (2019), increasing hyper parameter nodesize, leading to less tree
leaves, can decreases the computation time approximately exponentially. Our practical ex-
perience, particularly with large data sets, suggests that setting this hyper parameter to
a value higher than the default can significantly reduce runtime, often without markedly
compromising prediction performance. Specifically, Segal (2004) show an example where
increasing the number of noise variables results in a higher optimal nodesize. Therefore, it
is advisable to construct trees in a RF that are moderately developed, balancing between
being too shallow, which may result in underfitting (Hastie et al., 2009; James et al., 2013),
and being excessively deep, which can impose a significant computational burden. Thus,
Condition 3 is reasonable and easy to be satisfied in practice. Condition 4 excludes the
unbalanced sampling in bootstrap sampling process, specifically ruling out the extreme case
where certain samples disproportionately dominate the bootstrap samples.

The following theorems establish the asymptotic optimality of the 1step-WRFopt esti-
mator and 2steps-WRFopt estimator, respectively.

Theorem 1 (Asymptotic Optimality for 1step-WRFopt with SUT) Assume
Conditions 1 - 4 hold. Then, as n→∞,

L?n (ŵ?)

infw∈H L?n(w)

p→ 1. (7)

If, in addition, there exists an integrable random variable η such that∣∣{L?n(ŵ?)− ξ?n} ξ−1
?n

∣∣ 6 η,
then

R?n(ŵ?)

infw∈H R?n(w)

p→ 1. (8)

Theorem 2 (Asymptotic Optimality for 2steps-WRFopt with SUT) Assume
Conditions 1 - 5 hold. Then, as n→∞,

L?n (w̃?)

infw∈H L?n(w)

p→ 1. (9)

If, in addition, there exists an integrable random variable η such that∣∣{L?n(w̃?)− ξ?n} ξ−1
?n

∣∣ 6 η,
then

R?n(w̃?)

infw∈H R?n(w)

p→ 1. (10)

10
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Results obtained in (7) and (9) regard the asymptotic optimality in the sense of achieving
the lowest possible squared loss, while (8) and (10) yield asymptotic optimality in the sense
of achieving the lowest possible squared risk. Proofs of Theorems 1 and 2 are presented in
Appendices C.2 and C.3, respectively.

3.2.2 Asymptotic Optimality with CART

Theoretical analysis regarding CART is generally very challenging, as the splitting criterion
relies on response information and the black-box nature of the procedure (Scornet et al.,
2015). Nevertheless, there are some pioneering studies in the literature that employ the
CART splitting criterion. For example, in the context of additive regression models, Scor-
net et al. (2015) study the consistency of Breiman’s results (Breiman, 2001). Moreover,
Klusowski (2021) establishes the universal consistency of CART in the context of high di-
mensional additive models. In addition, Syrgkanis and Zampetakis (2020) analyze the finite
sample properties of CART with binary features, under a sparsity constraint. More re-
cently, Chi et al. (2022) establish the consistency rates for the original CART. Now, we are
equipped to establish the asymptotic optimality of WRFopt using CART trees, which will
be achieved by studying the difference between CART-based RF and its limiting version,
based on the intermediate results established in Section 3.2.1. More specifically, following
the recent work of Chi et al. (2022) and Scornet et al. (2015), we term the limiting version
of CART-splitting criterion as the theoretical CART-splitting criterion. Unlike its practical
counterpart, the theoretical CART-splitting criterion does not depend on response values
and therefore can be considered as a special type of splitting criterion employed by SUT
trees. Our analysis in this section focuses on the discrepancy between estimators using the
CART-splitting criterion and those using the theoretical CART-splitting criterion (referred
to as theoretical RF).

To facilitate the technical presentation, we first introduce additional notations for the
structure of a tree and its cells. Following Chi et al. (2022), without loss of generality, we set
xi ∈ [0, 1]p and define a cell as a rectangle t = ×pd=1td, representing the Cartesian product
of the closed or half-closed interval td in [0, 1]. Let θk = {θk,1, . . . ,θk,2k} with elements
θk,· ⊂ {1, . . . , p} be the sets of available features for the 2k−1 splits at level k − 1 that
grow the 2k cells (including empty cells). Given the CART-splitting criterion and a set of
θ1:k = {θ1, . . . ,θk}, let T (θ1:k) = {t1:k,1, . . . , t1:k,2k} be the collection of all cell sequences
connecting the root to the end cells at level k, which is determined by Θ. Each sequence
t1:k,s for s = 1, . . . , 2k can be considered as a “tree branch”, representing a partition of
[0, 1]p. One can refer to Figure 1 of Chi et al. (2022) for a graphical illustration for this
splitting scheme. It is natural to consider varying tree heights within a RF, implying that
the maximum level k depends on m for each m = 1, . . . ,Mn. Therefore, we use k(m) to
denote the maximum level of the mth tree.

For a new instance x, which is an independent copy of x1, the mth tree estimator given
T (θ1:k(m)

) and {h(m),1, . . . , h(m),n} can be expressed as follows

µ̂T (θ1:k(m)
)(x) =

2
k(m)∑
s=1

I
(
x ∈ tk(m),s

) ∑n
i=1 h(m),iyiI

(
xi ∈ tk(m),s

)
∑n

i=1 h(m),iI
(
xi ∈ tk(m),s

)
11
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=

n∑
i=1

yi

2
k(m)∑
s=1

h(m),iI
(
x ∈ tk(m),s

)
I
(
xi ∈ tk(m),s

)
∑n

i′=1 h(m),i′I
(
xi′ ∈ tk(m),s

) , (11)

where tk(m),s is the end cell of the tree branch t1:k(m),s (also referred to leaves if it is not
empty), and I(·) denotes the indicator function. Now, by definition, the (i, j)th element of
PBL(m) can be expressed as

PBL(m),ij =
2
k(m)∑
s=1

h(m),jI
(
xi ∈ tk(m),s

)
I
(
xj ∈ tk(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ tk(m),s

) , (12)

for all m = 1, . . . ,Mn. Consistent with Chi et al. (2022), given a cell t, the CART-splitting
criterion is defined as

CARTt(d, c) = min
c1∈R1

∑n
i=1 I(xid < c,xi ∈ t) (yi − c1)2

n

+ min
c2∈R1

∑n
i=1 I(xid > c,xi ∈ t) (yi − c2)2

n
,

with its theoretical version

CART∗t(d, c) = Pr (x1d < c | x1 ∈ t) var (y1 | x1d < c,x1 ∈ t)

+ Pr (x1d > c | x1 ∈ t) var (y1 | x1d > c,x1 ∈ t) ,

where d is the label of splitting variable, c is a corresponding splitting point, and xid is
the dth entry of xi. Analogous to (12), we denote the corresponding theoretical version of
PBL(m) pertaining to CART∗t(d, c) for each m ∈ {1, . . . ,Mn} as

P∗BL(m) =
(
P ∗BL(m),ij

)
n×n

=


2
k(m)∑
s=1

h(m),jI
(
xi ∈ t∗k(m),s

)
I
(
xj ∈ t∗k(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ t∗k(m),s

)

n×n

, (13)

where t∗k(m),s
for each m ∈ {1, . . . ,Mn} and s ∈ {1, . . . , 2k(m)} is the sth end cell of the mth

base learner based on the theoretical CART-splitting criterion CART∗t(d, c). Further, we
continue employing the script ∗ on RF-related notations when referring to their theoretical
counterparts. Detailed definitions corresponding to theoretical CART-splitting criterion will
not be enumerated here, in the interest of brevity.

Note that the theoretical CART-splitting criterion is independent of response values
and therefore can be viewed as a special type of splitting criterion used by SUT trees.
Consequently, as an immediate application, Theorems 1 - 2 in Section 3.2.1 guarantee the
asymptotic optimality of the WRFopt with theoretical CART-splitting criterion. In what
follows, we introduce additional notations crucial for quantifying the discrepancy between
the RF and theoretical RF. Let

Pr
{
I
(
xi ∈ tk(m),s∆t∗k(m),s

)
= 1
}

= p(m),is,

12
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and

δn = max
16i6n,16m6Mn,16s62

k(m)

I
(
xi ∈ tk(m),s∆t∗k(m),s

)
,

where S1∆S2 = (S1 ∪ S2)− (S1 ∩ S2) is the symmetric difference between two generic sets
S1, S2. Let K̄n = max16m6Mn 2k(m) be the largest number of end cells (including empty
end cells) among all trees, and N = max16m6Mn,16l6`(m)

n(m),l be the largest sample size
across all leaves in all trees within the RF,2 with N∗ being the theoretical counterpart of
N. Now, we are equipped to explore the discrepancy between the RF and theoretical RF.
The following result bounds the gap between two pivotal matrices PBL(m) and P∗BL(m) for
all m = 1, . . . ,Mn.

Lemma 1 Under Condition 4, there exist two positive constants c1, c2 such that

n∑
i=1

n∑
j=1

∣∣∣PBL(m),ij − P ∗BL(m),ij

∣∣∣ 6 c1K̄n(N + N∗)δn, (14)

and

max
16i6n

n∑
j=1

∣∣∣PBL(m),ij − P ∗BL(m),ij

∣∣∣ 6 {2 + c2

(
1 +

N∗

n

)}
δn, (15)

almost surely, uniformly for all m = 1, . . . ,Mn.

Clearly, δn plays a pivotal role in bounding the proximity between the matrices PBL(m) and
P∗BL(m). The proof of Lemma 1 will be provided in Appendix C.4. Let ξ∗n and n∗ be
the counterparts of ξn and n under theoretical CART, we list and discuss some technical
conditions as follows.

Condition 1′ ξ−1
∗nM

2
n = o(1) almost surely, and E

(
ξ−1
∗nM

2
n

)
exists for all fixed n > 1.

Condition 2′ There exist two positive constants v1 and v2 such that E
(
|ei|r | x0

i

)
6

v2
1v
r−2
2 r!/2 almost surely for every i = 1, . . . , n and r > 2.

Condition 3′ hmaxn
−1
∗ n1/2 = O(1) almost surely.

Condition 5′ ξ−1
∗nMnn

1/2 = o(1) almost surely, and E
(
ξ−1
∗nMnn

1/2
)
exists for all fixed n > 1.

Condition 6 As n → ∞, N∗/n, N + N∗ and p(m),is are bounded above by deterministic
series, say, r̄n , N̄n and p̄n, respectively.

2. Note that for all m = 1, . . . ,Mn, l ∈ {1, . . . , `(m)} represents the index of leaves (non-empty end cells)
in the mth tree, while s ∈ {1, . . . , 2k(m)} denotes the index of all end cells, inclusive of those that are
empty.

13
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Condition 7 As n→∞, p̄n < 1/2,

ε̄n = ξ−1
n K̄nN̄n log2 (n)


√√√√2 log(2nMnK̄n)

log
(

1
p̄n
− 1
) + p̄n


1/4

= o(1),

almost surely, and E(ε̄n) exists all fixed n > 1.

Conditions 1′ - 3′ and 5′ correspond to Conditions 1 - 3 and 5, respectively, with
the focus shifted to theoretical CART-splitting. Moreover, Condition 2′ guarantees that
E|ei|r 6 v2

1v
r−2
2 r!/2, which is referred to as Bernstein’s moment condition (Zhang and Chen,

2021). Particularly, if {ei}ni=1 are generated independently by Normal(0, σ2), it follows
that v2

1 = 2σ2 and v2 = σ2 (Zhang and Chen, 2021, Example 5.4). In addition, Con-
dition 6 imposes restrictions on the hyper parameters of RF, requiring the behavior of
these parameters does not become too erratic as the amount of data increases. Condition
7 requires that the CART criterion leads to reasonably accurate splits in the sense that
the difference between tk(m),s and t∗k(m),s

(measured by E(δn), which is bounded above by√
2 log(2nMnK̄n)/log

(
p̄−1
n − 1

)
+ p̄n) is ignorable in comparison to ξn.

Theorem 3 (Asymptotic Optimality under CART and criterion 5) Assume
that Conditions 1′ - 3′, 4, and 6 - 7 hold. Then, as n→∞,

Ln(w◦)

infw∈H Ln(w)

p→ 1,

where w◦ is the solution of minimizing the criterion (5) over w ∈H.

The proof of Theorem 3 is provided in Appendix C.5. Theorem 3 demonstrates the
asymptotic optimality of the weighted RF with CART-splitting criterion, with weights ob-
tained by criterion (5). This criterion is derived under a “working homoskedastic” framework
and serves as a groundwork for further theoretical analysis. Based on Theorem 3, similar
theoretical results regarding the heteroskedastic criteria (that is, C ′n(w) and C ′′n(w)) can be
established.

Corollary 1 (Asymptotic Optimality for 1step-WRFopt with CART) Assume
Conditions 1′ - 3′, 4, and 6 - 7 hold. Then, as n→∞,

Ln (ŵ)

infw∈H Ln(w)

p→ 1. (16)

If, in addition, there exists an integrable random variable η such that∣∣{Ln(ŵ)− ξn} ξ−1
n

∣∣ 6 η,
then

Rn(ŵ)

infw∈H Rn(w)

p→ 1. (17)
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Corollary 2 (Asymptotic Optimality for 2steps-WRFopt with CART) Assume
Conditions 1′ - 3′, 4, 5′ and 6 - 7 hold. Then, as n→∞,

Ln (w̃)

infw∈H Ln(w)

p→ 1. (18)

If, in addition, there exists an integrable random variable η such that∣∣{Ln(w̃)− ξn} ξ−1
n

∣∣ 6 η,
then

Rn(w̃)

infw∈H Rn(w)

p→ 1. (19)

With the result established in Theorem 3, Corollaries 1 and 2 can readily be verified
within the same framework that proves Theorem 2 and thus is omitted. Theorem 3 and
Corollaries 1 and 2 extend the results in Theorems 1 and 2 from SUT to CART. We are
unaware of any similar results in this field.

4. Numerical Study

In this section, we will conduct experiments using real and semi-synthetic data, the latter
derived from the former, to evaluate the performance of different weighted RFs.

4.1 Real Data Analysis

To assess the prediction performance of different weighted RFs in practical situations, we
used 11 data sets from the UCI data repository for machine learning (Dua and Graff, 2017).
Because most of these data sets are low-dimensional, one additional high-dimensional data
set from openml.org (Vanschoren et al., 2013) was also included. The details of the 12 data
sets are listed in Table 2. Appendix B features a demonstration of two competitors, namely
wRF and CRF.

For the sake of brevity, in the following, we will refer to each data set by its abbreviation.
We randomly partitioned each data set into training data, testing data and validation data,
in the ratio of 0.5 : 0.3 : 0.2. The training data was used to construct trees and to calculate
weights, and the test data was used to evaluate the predictive performance of different
algorithms. The validation data was employed to select tuning parameters, such as the
exponent in the expression for calculating weights in the wRF, and probability sequence in
the SUT algorithm.

In this section, the number of trees Mn was set to 100. Before each split, the dimension
of random feature sub-space q was set to dp/3e, which is the default value in the regression
mode of the R package randomForest. We set the minimum leaf size nodesize to d

√
ne in

CART trees and 5 in SUT trees, in order to control the depth of trees. We also tried other
values of Mn and nodesize, and the patterns of the performance remain stable in general.
Figures D.12 - D.23 in Appendix D will provide more information on the robustness of the
proposed methods over different RF hyper parameters.3

3. In our robustness tests for Mn, we varied Mn across 100, 200, 400 and 800, while keeping nodesize fixed
at d
√
ne. For nodesize robustness tests, nodesize was set to the quintiles within the range of [5, d

√
ne],

with Mn fixed at 100.
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Data set Abbreviation Attributes Samples
Boston Housing BH 12 506

Servo Servo 4 167
Concrete Compressive Strength CCS 9 1030

Airfoil Self-Noise ASN 5 1503
Combined Cycle Power Plant CCPP 4 9568

Concrete Slump Test CST 7 103
Energy Efficiency EE 8 768

Parkinsons Telemonitoring PT 20 5875
QSAR aquatic toxicity QSAR 8 546
Synchronous Machine SM 4 557
Yacht Hydrodynamics YH 6 308

Tecator Tecator 124 240

Table 2: Summary of 12 Data Sets

For each strategy, the number of replication was set to D = 1000 and the forecasting
performance was accessed by the following two criteria:

MSFE =
1

D × ntest

D∑
d=1

ntest∑
i=1

(yi − ŷi,d)2 and MAFE =
1

D × ntest

D∑
d=1

ntest∑
i=1

|yi − ŷi,d| ,

where ntest is the size of testing data, and ŷi,d is the forecast for yi in the dth repetition.
MSFE and MAFE are abbreviations of “Mean Squared Forecast Error” and “Mean Absolute
Forecast Error”, respectively.

As noted in Section 1, an averaging strategy with appropriately selected unequal weights
may outperform simple averaging if individual learners display non-identical strength. To
ascertain the relationship between the performance of the WRFopt and the diversity level
of base learners, we employ the following weighted correlation between the residuals r(m) =

y− ŷ(m) and r(m′) = y− ŷ(m′) where 1 6 m,m′ 6Mn and m 6= m′, as proposed by Breiman
(2001),

ρ̄ =

 2

Mn(Mn − 1)

∑
16m<m′6Mn

ρ(r(m), r(m′)) sd(r(m)) sd(r(m′))

 /

{
1

Mn

Mn∑
m=1

sd(r(m))

}2

,

where ρ(r(m), r(m′)) is the correlation between r(m) and r(m′), and sd(r(m)) is the standard
deviation of r(m). It is clear that a larger ρ̄ signifies reduced diversity among base learners. In
this scenario, it is expected that equal weights may also yield reasonable performance (Zhou,
2012). In fact, our numerical experiments below echo this speculation, showing that the
WRFopt strategies significantly outperform conventional RFs when ρ̄ is relatively small, for
instance, ρ̄ < 0.5. Consequently, with a relatively small ρ̄, one can expect more pronounced
improvements in predictive performance by adopting appropriate unequal weights. Next,
we will provide the results of different weighting techniques on RFs with CART trees and
RFs with SUT trees, respectively.
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Data set RF 2steps-WRFopt 1step-WRFopt wRF CRF
BH 15.484(5) 13.958(1) 14.038(2) 14.517(3) 14.664(4)

Servo 1.610(5) 0.825(1) 0.836(2) 0.860(3) 1.169(4)

CCS 60.460(5) 50.004(1) 50.048(2) 52.868(3) 54.065(4)

ASN 20.022(5) 14.572(1) 14.575(2) 15.611(3) 17.054(4)

CCPP 18.016(5) 16.065(2) 16.062(1) 16.237(3) 16.556(4)

CST 26.421(5) 19.877(1) 20.074(2) 21.500(3) 22.534(4)

EE 4.332(5) 3.643(2) 3.642(1) 3.964(3) 4.087(4)

PT 14.641(5) 8.653(2) 8.649(1) 9.099(3) 10.819(4)

QSAR 1.436(5) 1.423(3) 1.434(4) 1.417(1) 1.420(2)

SM(×10−4) 6.981(5) 3.403(1) 3.404(2) 4.342(3) 5.214(4)

YH 35.442(5) 3.727(1) 3.735(2) 5.603(3) 13.422(4)

Tecator 5.274(5) 3.295(2) 3.282(1) 3.458(3) 3.879(4)

Table 3: Test Error Comparisons by MSFE for Different Forests with CART Trees

4.1.1 RFs with CART Trees

Tables 3 and 4 exhibit the risks of RFs with CART trees in terms of MSFE and MAFE,
respectively. Each row presents the results for a specific data set, comparing the risks
associated with different RF algorithms across columns. Values in parentheses in the upper
right corner indicate the risk ranking for each RF algorithm within the same data set, with
a lower rank denoting a lower risk.

Regarding MSFE, the 1step-WRFopt or 2steps-WRFopt estimator manifests the best
performance in 11 out of 12 data sets, whereas exhibits the best performance in 10 out of
12 data sets in terms of MAFE. It is observed that the wRF becomes the best method in
some data sets. Of all cases considered, the CRF is found to never be the best method. It
is also noticeable that the 2steps-WRFopt is superior to the 1step-WRFopt in most cases,
albeit with minor differences.

Table 5 compares the time consumption of the 2steps-WRFopt and 1step-WRFopt algo-
rithms for a single run, averaged over D repetitions, with the ratio of the latter to the former
in the fourth column. Apparently, the 2steps-WRFopt can accelerate optimization by tens
or hundreds of times when compared to the 1step-WRFopt, given that solving quadratic
optimization is considerably faster than solving a higher-order nonlinear optimization task.

To further assess the performance of the 2steps-WRFopt over other competing meth-
ods, we evaluated their relative risks with respect to the 2steps-WRFopt. Specifically, we
calculated the relative risks of the RF, 1step-WRFopt, wRF, and CRF by dividing their
respective risks by that of the benchmark 2steps-WRFopt. In the following, we assert that
a relative risk is not essential if it falls in the interval of (0.95, 1.05), while it is essential if
it is lower than 0.95 or higher than 1.05. The relative MSFE and MAFE of each method
on 12 data sets are reported in Figures 1 and 2, respectively. The results are depicted by
blue, green, purple and red bars, respectively, for the RF, 1step-WRFopt, wRF, and CRF.
Furthermore, to illustrate the relationship between the performance of the WRFopt and the
diversity level of base learners, we displayed averaged ρ̄ over D replications below the names
of the data sets, arranged in ascending order from the smallest to the largest.

17



Chen, Yu and Zhang

Data set RF 2steps-WRFopt 1step-WRFopt wRF CRF
BH 2.608(5) 2.536(1) 2.549(3) 2.539(2) 2.562(4)

Servo 0.900(5) 0.550(2) 0.550(3) 0.535(1) 0.754(4)

CCS 6.092(5) 5.500(1) 5.503(2) 5.668(3) 5.751(4)

ASN 3.607(5) 3.013(1) 3.013(2) 3.121(3) 3.295(4)

CCPP 3.243(5) 3.058(2) 3.058(1) 3.075(3) 3.108(4)

CST 4.023(5) 3.425(1) 3.445(2) 3.568(3) 3.676(4)

EE 1.563(5) 1.349(2) 1.349(1) 1.423(3) 1.487(4)

PT 2.933(5) 2.201(2) 2.201(1) 2.241(3) 2.493(4)

QSAR 0.892(4) 0.888(3) 0.892(5) 0.885(1) 0.887(2)

SM(×10−2) 2.044(5) 1.374(1) 1.375(2) 1.551(3) 1.746(4)

YH 3.877(5) 1.182(1) 1.182(2) 1.358(3) 2.329(4)

Tecator 1.637(5) 1.319(2) 1.318(1) 1.362(3) 1.435(4)

Table 4: Test Error Comparisons by MAFE for Different Forests with CART Trees

Data set 2steps-WRFopt 1step-WRFopt Ratio
BH 0.065 3.898 60.371
Servo 0.072 1.347 18.778
CCS 0.081 6.822 83.982
ASN 0.094 6.468 68.840
CCPP 0.566 2.785 4.916
CST 0.075 2.061 27.630
EE 0.072 3.498 48.304
PT 0.291 40.445 138.967

QSAR 0.069 3.148 45.431
SM 0.060 1.409 23.327
YH 0.065 2.631 40.546

Tecator 0.041 2.710 66.098

Table 5: Time Consumption Comparisons (Unit: seconds)

Some findings are worth mentioning in Figure 1. First, the improvement of the WRFopt

(including the 1step-WRFopt and 2steps-WRFopt) over the conventional RF is essential in
11 out of 12 data sets. What stands out in the figure is that the relative MSFEs of others
with respect to the benchmark are conspicuously large in the YH data set. This spells the
great success of our WRFopt methods in practice. More importantly, the WRFopt methods
outperform competitors essentially in 8 out of 12 data sets, while none of the competitors
dominate the benchmark essentially in all cases, underscoring the robustness of the WRFopt.

Figure 2 remains the similar qualitative results, albeit with less notable power of the
WRFopt than Figure 1. Specifically, the WRFopt shows essential improvement over the
conventional RF in 10 out of 12 data sets, and dominates all competitors essentially in 3
out of 12 data sets. These proportions are relatively lower than those in Figure 1. But none
of the competitors surpass the benchmark essentially in all cases, which is consistent with
Figure 1.
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Figure 1: Relative MSFE for Different Forests with CART Trees (The horizontal axis shows
the names of 12 data sets, arranged in ascending order of their corresponding
averaged ρ̄ displayed beneath each data set’s abbreviation. The green bars are
barely discernible, with a relative risk close to 1 due to their negligible predictive
error difference compared to the 2steps-WRFopt. This pattern consistent across
subsequent Figures 2 - 4 and 7 - 8.)

Note that the wRF algorithm requires tuning a parameter outside of the training set,
whereas the WRFopt and CRF do not. For the fairness of the comparison, all three weighted
RFs should use identical tree models built in the same training data set. Were WRFopt and
CRF not compared with wRF, they can employ more training samples, potentially leading
to superior predictive performance than currently observed.

Combining all the findings together, we can conclude that the proposed WRFopt methods
yield more accurate predictions compared to the conventional RF and other existing weighted
RFs in most cases. Additionally, it is clear from Figures 1 and 2 that in the first four data
sets, which have relatively low averaged ρ̄ , WRFopt methods tend to yield more pronounced
performance over their competitors, with the exception of the Servo data set. In other words,
these first four data sets grow trees with greater diversity, suggesting a stronger preference for
unequal weights over equal weights, thus yielding better performance of the WRFopt. This
observation aligns with our anticipation, and exactly the motivation for adopting unequal
weights, as discussed in Section 1. The Servo data set stands out as an exception, possessing
the highest ρ̄ value among the 12 data sets yet exhibiting relatively pronounced predictive
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Figure 2: Relative MAFE for Different Forests with CART Trees (The horizontal axis shows
the names of 12 data sets, arranged in ascending order of their corresponding
averaged ρ̄ displayed beneath each data set’s abbreviation.)

performance. This anomaly is likely due to its small number of samples and attributes
(n = 167 and p = 4). Similar phenomenon has also been observed in the literature, as seen
in Hansen (2007), Zhang et al. (2013) and Zhang et al. (2016).

4.1.2 RFs with SUT Trees

For comparison purpose, we also study the performance of our proposed methods based
on SUT trees, reporting results in Tables 6 and 7. The 1step-WRFopt or 2steps-WRFopt

estimator consistently outperforms the conventional RFs and the two competitors in terms
of MSFE, while performing best in 11 out of 12 data sets in terms of MAFE. Additionally,
the gaps between the 1step-WRFopt and 2steps-WRFopt are relatively small, akin to RFs
with CART trees.

The relative MSFE and MAFE are depicted in Figures 3 and 4, respectively. With
SUT trees rather than CART trees, the WRFopt methods perform better at upgrading
equal-weight forests. Concerning the MSFE and MAFE, the number of supporting data
sets remains 11 and 10 out of 12 data sets, respectively. Additionally, the proportion of
outperforming rivals climbs to 10 out of 12 data sets in terms of MSFE and 8 out of 12
data sets in terms of MAFE. Notably, the advantages in the SM, YH, and EE data sets are
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Data set RF 2steps-WRFopt 1step-WRFopt wRF CRF
BH 38.213(5) 24.516(1) 24.522(2) 28.797(3) 29.974(4)

Servo 1.604(5) 0.964(1) 0.968(2) 0.998(3) 1.232(4)

CCS 149.276(5) 119.471(1) 119.505(2) 136.243(4) 132.435(3)

ASN 36.391(5) 33.465(1) 33.472(2) 35.675(4) 35.419(3)

CCPP 50.329(5) 36.619(2) 36.613(1) 39.145(4) 38.600(3)

CST 42.899(5) 25.933(2) 25.928(1) 32.806(3) 36.783(4)

EE 17.768(5) 5.140(2) 5.140(1) 6.193(3) 8.026(4)

PT 98.864(5) 89.299(1) 89.325(2) 97.924(4) 95.321(3)

QSAR 1.737(5) 1.657(1) 1.661(2) 1.680(4) 1.668(3)

SM(×10−4) 20.963(5) 0.212(1) 0.212(2) 0.251(3) 4.460(4)

YH 33.241(5) 2.433(2) 2.431(1) 3.171(3) 8.152(4)

Tecator 143.584(5) 101.741(1) 101.940(2) 126.409(3) 128.264(4)

Table 6: Test Error Comparisons by MSFE for Different Forests with SUT Trees

Data set RF 2steps-WRFopt 1step-WRFopt wRF CRF
BH 3.759(5) 3.128(1) 3.131(2) 3.314(3) 3.349(4)

Servo 0.847(5) 0.578(1) 0.578(2) 0.606(3) 0.701(4)

CCS 9.914(5) 8.764(1) 8.764(2) 9.421(4) 9.273(3)

ASN 4.903(5) 4.689(2) 4.685(1) 4.813(4) 4.765(3)

CCPP 5.805(5) 4.860(2) 4.858(1) 5.019(4) 4.999(3)

CST 5.209(5) 3.927(2) 3.926(1) 4.455(3) 4.773(4)

EE 3.356(5) 1.611(2) 1.609(1) 1.799(3) 2.094(4)

PT 7.995(5) 7.553(2) 7.544(1) 7.948(4) 7.815(3)

QSAR 1.001(5) 0.979(3) 0.980(4) 0.977(2) 0.972(1)

SM(×10−2) 3.674(5) 0.290(1) 0.291(2) 0.304(3) 1.628(4)

YH 3.508(5) 0.856(1) 0.857(2) 0.902(3) 1.483(4)

Tecator 9.624(5) 7.787(1) 7.805(2) 8.886(3) 8.993(4)

Table 7: Test Error Comparisons by MAFE for Different Forests with SUT Trees

particularly substantial. Besides, the relationship between the performance of the WRFopt

and the diversity level of SUT trees follows a similar pattern to that observed in Figures 1
and 2.

Without response data for guiding splits, the WRFopt methods with SUT trees yield
worse predictive performance than their counterparts with CART trees. However, it is
worthwhile noting that the improvement of the WRFopt methods over RFs employing equal
weights become more significant, demonstrating the potential advantage of our WRFopt with
weaker base learners.

4.2 Semi-Synthetic Experiments

To further investigate the data set characteristics that affect the effectiveness of the WRFopt,
we conducted semi-synthetic experiments using the real data sets in Section 4.1. Clearly,
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Figure 3: Relative MSFE for Different Forests with SUT Trees (The horizontal axis shows
the names of 12 data sets, arranged in ascending order of their corresponding
averaged ρ̄ displayed beneath each data set’s abbreviation.)

both the signal-to-noise ratio (SNR) and dimension are critical characteristics of data sets.
Therefore, we will first assess the performance of WRFopt on semi-synthetic data sets under
various noise scenarios. Moreover, given our prior analysis on low-dimensional data sets, we
now turn our attention to the performance of different algorithms on high-dimensional data,
which has been augmented via feature engineering.

4.2.1 Improvement Ratio vs SNR

In order to examine the effectiveness of the WRFopt on noisy data sets, we consider three
different noise injection schemes, similar to Reis et al. (2018):4

(a) Noise in the predictive variables only (that is, X),

(b) Noise in the response variable only (that is, y),

(c) Noise both in the predictive and response variables (that is, X and y).

We follow Reis et al. (2018) to configure noise injection:

4. They focus on classification scenarios.
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Figure 4: Relative MAFE for Different Forests with SUT Trees (The horizontal axis shows
the names of 12 data sets, arranged in ascending order of their corresponding
averaged ρ̄ displayed beneath each data set’s abbreviation.)

• For response variable or continuous predictive variables—The noise comes from a
Gaussian distribution, with its magnitude randomly set for each object and feature in
the data set. Specifically, a per-object noise coefficient, No for each o ∈ {1, . . . , n}, is
randomly drawn from a uniform distribution between 0 and 1. Likewise, a per-feature
noise coefficient, Nf for each f = 1, . . . , p, follows the same uniform distribution.
Then, the noise coefficient for a specific measurement, corresponding to a particular
object-feature pair, is defined as No,f = No ×Nf ×Ns. Here, Ns is the overall noise
coefficient for the data set, which will be varied from 0 to 1 throughout the experiment.
The synthetic noise for the f th feature is defined by σo,f = No,f × σf , with σf being
the standard deviation of the given feature across all objects. This multiplication en-
sures that the noisy data retains the same physical units as the original. Finally, the
noisy measurement for each object-feature pair is drawn from the normal distribution
Normal

(
xo,f , σ

2
o,f

)
, where xo,f denotes the original measurement. To evaluate perfor-

mances of different strategies as a function of the noise level in the data set, σo,f/σf ,
averaged across different features and objects, can be used to represent the average
scatter due to the noise with respect to the intrinsic scatter of the original data set
(Reis et al., 2018). Thus, it can be considered as the average inverse of the relative
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SNR of the semi-synthetic data set, with respect to the real data set. An Ns value
of 0 implies no noise injection, while a value of 1 yields an relative SNR close to the
scale of 4. By combining the inherent noise from the original data with the injected
noise, the real SNR of the noisy data (that is, semi-synthetic data) is sufficiently low
to mimic the actual noisy scenarios encountered in real world.

• For categorical predictive variables—the probability of a class switch is determined by
po,f = po × pf . In this context, po and pf are independently drawn from a uniform
distribution ranging between 0 and 0.5. Consequently, the class of the object-feature
pair is randomly switched to another class with a probability of po,f/(C − 1), where
C represents the total number of classes for the given feature. That is, the class
remains unchanged with a probability of 1−po,f . Note that the number of categorical
features in the data set is considerably less than that of continuous features, resulting
in a relatively minor impact on the overall noise level of the data. For simplicity, we
opt not to introduce an additional parameter for varying noise levels specifically for
categorical predictive variables.

The 12 noisy data sets serve as inputs to the RF algorithms, and we focus on the relative
performance of four weighted RFs over conventional RFs, rather than the predictive perfor-
mance itself. Hence, the improvement ratio (IR) is used to evaluate different algorithms:

IR =
1

D

D∑
d=1


∑ntest

i=1

(
yi − ŷRF

i,d

)2

∑ntest
i=1

(
yi − ŷXRF

i,d

)2 − 1

 ,

where ŷRF
i,d and ŷXRF

i,d represent the forecasts for yi by conventional RF and any weighted RF
in the dth repetition, respectively. If not specified, other settings remain the same as those
in Section 4.1.1.

The IR values of all weighted strategies under various noise levels were calculated for
all 12 data sets. For the sake of simplicity, we display only two representative figures here,
while the remaining figures can be found in Appendix D. Figures 5 and 6 illustrate the IR
of the 1step-WRFopt, 2steps-WRFopt, wRF and CRF on the ASN and CCPP data sets,
represented by blue, green, purple, and red lines, respectively. Additionally, the averaged ρ̄
under different noise scenarios are shown using yellow bars.

It is clear from Figures 5 and 6 that the WRFopt algorithms consistently outperform the
conventional RF and two competitors across all noise scenarios. As expected, the IR values
of all weighted RFs decrease as the noise level increases. This phenomenon can be attributed
to data sets with higher levels of noise yielding trees that are less informative and possess
reduced predictive power, thereby diminishing the benefits from post-processing (that is,
weighting strategy). What stands out in the figures is the inverse relationship between ρ̄
and IR, highlighting the practical significance of ρ̄ as an indicator for the effectiveness of
WRFopt. Regarding Figures D.1 - D.10 in Appendix D, the trends are mostly align to those
observed in the ASN and CCPP data sets. However, note that the WRFopt methods continue
to underperform compared to the conventional RF or the two competitors in varied noise
scenarios on the data sets where they failed in Section 4.1. To summarize, SNR plays an
unneglectable role in affecting the improvability of the WRFopt over equal weight strategy.
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Figure 5: Improvement Ratio vs Noise on ASN Data Set (The green and blue lines are
nearly indistinguishable from each other, owing to the similar performance be-
tween the 1step-WRFopt and 2steps-WRFopt. This pattern may consistent across
subsequent Figures 6, D.1 - D.10 and D.12 - D.23).
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Figure 6: Improvement Ratio vs Noise on CCPP Data Set

More specifically, it is observed from numerical study that when the data are deemed to have
relatively low noise levels, WRFopt strategies typically provide more obvious improvements.

4.2.2 Performance under High-Dimensional Setting

Having analyzed performance on low-dimensional data sets earlier (that is, where the sample
size is much larger than the number of attributes), we now shift our focus to high-dimensional
data sets. For this purpose, we semi-synthesize high-dimensional data using all the data sets
from Section 4.1, generating additional attributes by sklearn.preprocessing.Polynomial
Features (Pedregosa et al., 2011). More specifically, we create new attributes comprising all
polynomial combinations of the original attributes up to a specified degree. For instance, in
a two-dimensional feature set represented as {a, b}, the degree-2 polynomial attributes would
be {1, a, b, a2, ab, b2}. The details of these 12 semi-synthetic data sets are provided in Table
8, with the last column indicating the degree parameter used in PolynomialFeatures.

In alignment with the analytical methods in Section 4.1, we present the risks of different
RFs regarding MSFE and MAFE in Tables D.1 and D.2, respectively. For brevity, these
tables are included in Appendix D, as their patterns are similar to those in Tables 3 and 4
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Data set Abbreviation Attributes Samples Degree
Boston Housing BH 558 506 3

Servo Servo 363 167 3
Concrete Compressive Strength CCS 1286 1030 5

Airfoil Self-Noise ASN 1286 1503 8
Combined Cycle Power Plant CCPP 10625 9568 20

Concrete Slump Test CST 119 103 3
Energy Efficiency EE 1286 768 5

Parkinsons Telemonitoring PT 10625 5875 4
QSAR aquatic toxicity QSAR 494 546 4
Synchronous Machine SM 494 557 8
Yacht Hydrodynamics YH 461 308 5

Tecator Tecator 7874 240 1

Table 8: Summary of 12 High-Dimensional Data Sets

but with notably smaller values.5 Additionally, the relative MSFE and MAFE, based on the
2steps-WRFopt, are depicted in Figures 7 and 8, respectively. While the scale of improve-
ment for conventional RFs is less pronounced in these figures compared to their original
counterparts, which is expected given the significant risk reduction achieved through fea-
ture engineering. Generally, it is challenging to achieve comparable levels of improvement
in a model that has already undergone substantial optimization. Nonetheless, the WRFopt

methods continue to exhibit commendable performance on high-dimensional data. Specif-
ically, they significantly improve conventional RFs in 5 out of 12 data sets in terms of
MSFE, and in 4 out of 12 data sets in terms of MAFE. Moreover, none of the competi-
tors consistently outperform the WRFopt across all scenarios, highlighting the robustness of
WRFopt in high-dimensional situations. Once again, it is clear that the WRFopt methods
show more pronounced improvement when associated with relatively low ρ̄ , similar to the
low-dimensional scenario. As mentioned before, this phenomenon is owing to the fact that
the data set with large ρ̄ yields similar base learners and thus the conventional RF with
equal weights can also provide promising prediction in this situation.

5. Conclusion

This study proposes an optimal weighted RF algorithm for regression and the corresponding
accelerated variant is also studied. These methods are proven to be asymptotically optimal.
We also employ a cost-efficient indicator, ρ̄, to guide RF users in deciding whether to consider
the WRFopt methods as a post-processing technique to enhance predictive performance.
Empirical evidence demonstrates that the proposed methods yield lower risks compared
to RFs with equal weights and other existing unequally weighted forests, on both low-

5. Conventional RFs exhibit enhanced predictive power after feature engineering, potentially reducing risks
to as little as one percent of the original. For a comprehensive comparison of relative risks between
conventional RFs using augmented (that is, high-dimensional) data sets and original data sets, refer to
Figure D.11 in Appendix D. It is a common practice in machine learning to employ automated feature
engineering tools to boost the predictive capabilities of models.
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Figure 7: Relative MSFE for Different Forests on High-Dimensional Data (The horizontal
axis shows the names of 12 data sets, arranged in ascending order of their corre-
sponding averaged ρ̄ displayed beneath each data set’s abbreviation.)

dimensional and high-dimensional data. Additionally, our weighting methods show good
robustness across various configurations of key hyper parameters within the RF algorithm,
as verified in numerical experiments. In light of the results obtained, we provide the following
suggestions for RF users seeking to improve the predictive capabilities of their finely-tuned
models:

1. We suggest RF users to consider the WRFopt under the following scenarios:

(a) Pre-RF building: The data are considered to exhibit a relatively high signal-to-
noise ratio or to be well cleansed.

(b) Post-RF building: The ρ̄ of the RF model is relatively small, for instance, ρ̄ < 0.5.

2. We recommend using the 2steps-WRFopt rather than the 1step-WRFopt as the former
offers comparable performance but is less computationally burdensome.

While the current study focuses on regression, it is also important to study the optimal
weighted RF for classification with different loss functions. We identify this as a promising
future research direction.
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Figure 8: Relative MAFE for Different Forests on High-Dimensional Data (The horizon-
tal axis shows the names of 12 data sets, arranged in ascending order of their
corresponding averaged ρ̄ displayed beneath each data set’s abbreviation.)
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Appendix Appendix A. Tree-Building Algorithms

We will elucidate the differences between the two practical splitting criteria in this appendix.
When constructing RFs using CART trees, we employ Algorithm A.1, and when building
them with SUT trees, we adopt Algorithm A.2. The structures of SUT trees are developed in
an unsupervised manner, eliminating the reliance on response values during splits, whereas
CART trees use the information of y to obtain the best splitting variables and cut points.
They are the same in other procedures, such as growing on the bootstrap data. Note that
there are many ways to grow SUT trees, provided that their splitting processes are not
dependent on response values. Algorithm A.2 represents just one of these methods.

When selecting the probability sequence P in Algorithm A.2, we built conventional RFs
with CART trees in the validation data to compute variables importance. The variable
importance is the total decrease in node impurities from splitting on the variable, averaged
over all trees. For regression, the node impurity is measured by residual sum of squares. After
that, the probability sequence P was determined by the normalized variables importance.

Appendix Appendix B. Detailed Demonstration of the 2steps-WRFopt

and Competitors

In this appendix, we provide details of the 2steps-WRFopt algorithm, and present an expo-
sition of two weighted RF algorithms introduced in Section 1. Since these two competitors
are proposed for classification trees, we further describe a methodology to transform classi-
fication patterns into regression patterns to address regression tasks.

B.1 2steps-WRFopt

The following Algorithm B.1 presents the complete 2steps-WRFopt algorithm described in
Section 3.1.

B.2 Weighted RF (wRF)

Much of the current literature on binary classification pay particular attention to out-of-bag
data. Namely, Li et al. (2010) use the accuracy in the out-of-bag data as an index of the
classification ability of a given tree. This metric is subsequently employed to assign weights
to the individual trees. Winham et al. (2013) provide a family of weights choice based on
the prediction error in the out-of-bag data of each tree. The reason why using out-of-bag
individuals instead of another shared data set is that it gives internal estimates that are
helpful in understanding the predictive performance and how to improve it without testing
data set aside (Breiman, 2001).

Specifically, Winham et al. (2013) define the tree-level prediction error (tPE), measuring
the predictive ability of the mth tree as follows

tPEm =
1∑n

i=1 OOBim

n∑
i=1

|vim − yi| ·OOBim, (B.1)

where vim is the vote for the ith subject in the mth tree, and OOBim is the indicator for the
out-of-bag status of the ith subject in the mth tree. By drawing on the concept of tPE, they
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Algorithm A.1: CART
Split_a_node(S)

Input: The local learning subset S corresponding to the node we want to split

Output: A split [a < c] or nothing

-If Stop_split(S) is TRUE then return nothing.

-Otherwise select q attributes Aq =
{
aj1 , . . . , ajq

}
randomly among all non constant

(in S) candidate attributes;

-Return the best split s∗, where s∗ = Find_the_best_split(S,Aq).

Find_the_best_split(S,Aq)

Input: The subset S and the selected attribute list Aq
Output: The best split

- Seek the splitting variable aj and cut point c that solve

mind∈{j1,...,jq},c CARTt(d, c);

- Return the split [aj < c].

Stop_split(S)

Input: A subset S

Output: A boolean

- If |S| < nodesize, then return TRUE;

- If all attributes are constant in S, then return TRUE;

- If the output is constant in S, then return TRUE;

- Otherwise, return FALSE.

have been able to show that weights inversely related to tPE are appropriate. Such as

w(m) = 1− tPEm, (B.2)

w(m) = exp

(
1

tPEm

)
, (B.3)

and

w(m) =

(
1

tPEm

)λ
for some λ. (B.4)

In their proposed wRF algorithm, they normalized weights of the form

w(m) =
w(m)∑Mn
m=1w(m)

.
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The classification model can be easily turned into a regression model by simply changing
(B.1) to the following definition

tPE′m =
1∑n

i=1 OOBim

n∑
i=1

∣∣∣f̂(m)(xi)− yi
∣∣∣ ·OOBim, (B.5)

where f̂(m)(xi) is the prediction for yi by the mth tree. The details of the wRF in regression
pattern is in Algorithm B.2, which selects (B.4) for example. For simplicity, we only present
the best result of the wRF family as a representative in Section 4.

B.3 Cesáro RF (CRF)

Another unequally weighted RF mentioned earlier is the CRF proposed by Pham and Olaf-
sson (2019), which replaces the regular average with the Cesáro average. Their method is
based on a renowned theory that if a sequence converges to a number c, then the Cesáro
sequence also converges to c. To implement the CRF, a strategy for sequencing Mn trees
from best to worst must be established. This can be done by ranking trees based on their
out-of-bag error rates or accuracy on a separate training set. Next, a weight sequence{
w(m)

}Mn

m=1
is obtained by arranging weights in descending order, where w(m) =

∑Mn
ν=m ν

−1,
with normalizer being

∑Mn
m=1

∑Mn
ν=m ν

−1.
This classification model can be easily converted into a regression model as well through

a simple modification in the sequencing methods. We can draw tPE′ defined by the wRF
algorithm, and subsequently rank trees using out-of-bag data. The details of the CRF in
regression pattern are in Algorithm B.3.

Appendix Appendix C. Proofs and Derivations

In the current appendix, we provide proofs of the lemmas and theorems in Section 3.2, along
with derivations and further discussions to support our findings.

C.1 Preliminary Results

The following preliminary results will be used in the proofs. Note that this appendix and
the following ones, Appendices C.2 - C.3, focus on the SUT methodology and are based on
the work by Qiu et al. (2020). Their theoretical framework presumes tree structures are
independent of response values (that is, “hat matrix” is independent of y). Consequently,
notations throughout these appendices are distinguished with the ? script for clarity and
consistency.

Lemma C.1 For each m ∈ {1, . . . ,Mn}, let P?X(m) denote the “hat matrix” corresponding
to any algorithm for ensemble. In addition to the independence of P?X(m) from y, assume
the following Conditions C.4 - C.9 hold as well.6

C.4 There exists a positive constant c0 such that for all m, r ∈ {1, . . . ,Mn},

trace
(
P?X(m)P

>
?X(m)

)
> c0 > 0 and trace

(
P?X(m)P

>
?X(r)

)
> 0,

6. The condition labels here are directly adopted from Qiu et al. (2020) for ease of reference.
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almost surely.

C.5 There exists a positive constant c1 such that for all m ∈ {1, . . . ,Mn},

ζmax

(
P?X(m)P

>
?X(m)

)
6 c1,

almost surely, where ζmax(B) denotes the largest singular value of a generic matrix B.

C.6 There exists a positive constant c2 such that for all m, r ∈ {1, . . . ,Mn},

trace
(
P2
?X(m)

)
6 c2 trace

(
P>?X(m)P?X(m)

)
,

and
trace

(
P>?X(r)P?X(m)P

>
?X(r)P?X(m)

)
6 c2 trace

(
P>?X(m)P?X(m)

)
,

almost surely.

C.7 ξ−1
?nM

2
n → 0 almost surely, as n→∞, and E(ξ−1

?nM
2
n) exists for any fixed n > 1.

C.8 There exists a positive constant v such that E
(
e4
i | x0

i

)
6 v < ∞ almost surely for

i = 1, . . . , n.

C.9 ῑn = max16m6Mn max16i6n ι
(m)?
ii = O(n−1/2) almost surely, as n→∞, where ι(m)?

ii is
the ith diagonal element of P?X(m).

Then, as n→∞, we have (7).

The original version of Lemma C.1 is established in the proof of Theorem 1 in Qiu et al.
(2020) for non-stochastic X. However, as demonstrated in Appendix C.6, by substituting
expectations with conditional expectations, and applying the Law of Iterated (or Total)
Expectation, Pull-out rule and Lebesgue’s Dominated Convergence Theorem, the proof by
Qiu et al. (2020) can be readily extended to accommodate scenarios with stochastic X. Thus
we omit the step-by-step proof in the current study.

Next, we introduce four other lemmas for proving Theorems 1 - 3.

Lemma C.2 (Gao et al., 2019) Let

w̃ = argminw∈H {Ln(w) + an(w) + bn} ,

where an(w) is a term related to w and bn is a term unrelated to w. If

sup
w∈H

|an(w)| /Rn(w) = op(1), sup
w∈H

|Rn(w)− Ln(w)| /Rn(w) = op(1),

and there exists a constant c and a positive integer n0 so that when n > n0 and infw∈H Rn(w)
> c > 0 almost surely, then Ln(w̃)/ infw∈H Ln(w)→ 1 in probability.
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Lemma C.3 (Saniuk and Rhodes, 1987) For any n×n matrices G1 and G2 with both
G1,G2 > 0,

trace(G1G2) 6 ‖G1‖2 trace(G2),

where ‖ · ‖2 denotes the spectral norm or largest singular value. Besides, for any n × n
symmetric matrices G1 and G2 with G2 > 0,

trace(G1G2) 6 λmax(G1) trace(G2),

where λmax(·) denotes the largest eigenvalue.

Lemma C.4 (Buldygin and Moskvichova, 2013) Let β(p) denote a Bernoulli random
variable with probabilities p ∈ [0, 1] and q = 1 − p. Let β(0)(p) be the centered Bernoulli
random variable with parameter p, that is

β(0)(p) = β(p)− E {β(p)} = β(p)− p.

Then, when p ∈ (0, 1/2), the variance proxy (or the square of sub-Gaussian norm) of β(0)(p)
is

τ2(p) =
1
2 − p

log
(

1
p − 1

) ,
which is a monotonically increasing function of p.

Lemma C.5 (Zhang and Chen, 2021) Let {Zi}ni=1 be sub-Gaussian random variables
(without independence assumption) with mean zero and variance proxy τ2. Then, we have

E
(

max
16i6n

|Zi|
)
6 τ

√
2 log(2n).

C.2 Proof of Theorem 1

To verify (7), it remains to verify that Conditions 1 - 4 in the main paper can guarantee
Conditions C.4 - C.9 in Lemma C.1. Having clearly configured the base learners within
RFs, we now verify that Conditions C.4 - C.6 are satisfied when P?BL(m) is used in place of
P?X(m).

For each m = 1, . . . ,Mn, i = 1, . . . , n and j = 1, . . . , n, recall that

P ?BL(m),ij =
2
k(m)∑
s=1

h(m),jI
(
xi ∈ t?k(m),s

)
I
(
xj ∈ t?k(m),s

)
∑n

j=1 h(m),jI
(
xj ∈ t?k(m),s

) ,

which is the counterpart of PBL(m)i,j (the precise definition of PBL(m)i,j is given in Equation
12),7 pertaining to SUT trees. Then, there exists a positive constant c such that

trace
(
P>?BL(m)P?BL(m)

)
7. This notation is introduced in Section 3.2.2, under the context of CART trees, but is also applicable to

SUT trees.
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=
n∑
i=1

n∑
j=1


2
k(m)∑
s=1

h(m),jI
(
xi ∈ t?k(m),s

)
I
(
xj ∈ t?k(m),s

)
∑n

j=1 h(m),jI
(
xj ∈ t?k(m),s

)


2

=

n∑
i=1

n∑
j=1

2
k(m)∑
s=1

2
k(m)∑
k=1

h2
(m),jI

(
xi ∈ t?k(m),s

)
I
(
xj ∈ t?k(m),s

)
I
(
xi ∈ t?k(m),k

)
I
(
xj ∈ t?k(m),k

)
∑n

j=1 h(m),jI
(
xj ∈ t?k(m),s

)∑n
j=1 h(m),jI

(
xj ∈ t?k(m),k

)
=

n∑
i=1

n∑
j=1

2
k(m)∑
s=1

h2
(m),jI

(
xi ∈ t?k(m),s

)
I
(
xj ∈ t?k(m),s

)
{∑n

j=1 h(m),jI
(
xj ∈ t?k(m),s

)}2

> c
2
k(m)∑
s=1

n∑
i=1

n∑
j=1

h(m),ih(m),jI
(
xi ∈ t?k(m),s

)
I
(
xj ∈ t?k(m),s

)
{∑n

j=1 h(m),jI
(
xj ∈ t?k(m),s

)}2

= c

2
k(m)∑
s=1

∑n
i=1 h(m),iI

(
xi ∈ t?k(m),s

)∑n
j=1 h(m),jI

(
xj ∈ t?k(m),s

)
{∑n

j=1 h(m),jI
(
xj ∈ t?k(m),s

)}2

= c `(m)

> 0, (C.1)

almost surely, where the fourth step is from Condition 4. Clearly, for all m = 1, . . . ,Mn, the
elements of P?BL(m) are non-negative. Therefore, for all m, r ∈ {1, . . . ,Mn}, it is clear that

trace
(
P?BL(m)P

>
?BL(r)

)
> 0.

Thus, Condition C.4 in Lemma C.1 is satisfied. Besides, we have

∥∥P?BL(m)

∥∥
∞ = max

16i6n

n∑
j=1

2
k(m)∑
s=1

h(m),jI
(
xi ∈ t?k(m),s

)
I
(
xj ∈ t?k(m),s

)
∑n

l=1 h(m),lI
(
xl ∈ t?k(m),s

)
= max

16i6n

2
k(m)∑
s=1

I
(
xi ∈ t?k(m),s

) ∑n
j=1 h(m),jI

(
xj ∈ t?k(m),s

)
∑n

l=1 h(m),lI
(
xl ∈ t?k(m),s

)
=1, (C.2)

and

∥∥P?BL(m)

∥∥
1

= max
16j6n

n∑
i=1

2
k(m)∑
s=1

h(m),jI
(
xi ∈ t?k(m),s

)
I
(
xj ∈ t?k(m),s

)
∑n

l=1 h(m),lI
(
xl ∈ t?k(m),s

)
= max

16j6n

2
k(m)∑
s=1

I
(
xj ∈ t?k(m),s

) ∑n
i=1 h(m),jI

(
xj ∈ t?k(m),s

)
∑n

l=1 h(m),lI
(
xl ∈ t?k(m),s

)
6c max

16j6n

2
k(m)∑
s=1

I
(
xj ∈ t?k(m),s

) ∑n
i=1 h(m),iI

(
xi ∈ t?k(m),s

)
∑n

l=1 h(m),lI
(
xl ∈ t?k(m),s

)
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=c max
16j6n

2
k(m)∑
s=1

I
(
xj ∈ t?k(m),s

)
=c, (C.3)

almost surely. Here, the last step in (C.2) is from the fact that
∑2

k(m)

s=1 I
(
xi ∈ t?k(m),s

)
≡ 1,

and the inequality in (C.3) comes from Condition 4. Combining (C.2) and (C.3), we have

ζ2
max

(
P?BL(m)P

>
?BL(m)

)
=ζ2

max

(
P>?BL(m)P?BL(m)

)
=λmax

(
P>?BL(m)P?BL(m)P

>
?BL(m)P?BL(m)

)
=
∥∥∥P>?BL(m)P?BL(m)

∥∥∥2

6
∥∥P?BL(m)

∥∥
∞

∥∥P?BL(m)

∥∥
1

6c,

almost surely. Thus, Condition C.5 in Lemma C.1 is satisfied. In addition, from Condition
4 and (C.1), we have

trace
(
P2
?BL(m)

)
=

n∑
i=1

n∑
l=1

2
k(m)∑
s=1

h(m),lh(m),iI
(
xi ∈ t?k(m),s

)
I
(
xl ∈ t?k(m),s

)
{∑n

j=1 h(m),jI
(
xj ∈ t?k(m),s

)}2

6 c
n∑
i=1

n∑
l=1

2
k(m)∑
s=1

h2
(m),lI

(
xi ∈ t?k(m),s

)
I
(
xl ∈ t?k(m),s

)
{∑n

j=1 h(m),jI
(
xj ∈ t?k(m),s

)}2

= c trace
(
P>?BL(m)P?BL(m)

)
,

almost surely. Additionally, by Lemma C.3, for each m, r ∈ {1, . . . ,Mn}, we have

trace
(
P>?BL(m)P?BL(r)P

>
?BL(m)P?BL(r)

)
6 trace

(
P?BL(r)P

>
?BL(r)P?BL(m)P

>
?BL(m)

)
6 λmax

(
P?BL(r)P

>
?BL(r)

)
trace

(
P?BL(m)P

>
?BL(m)

)
6 c trace

(
P>?BL(m)P?BL(m)

)
,

almost surely, where the first inequality comes from the fact that trace
{(

A>B
)2}

6

trace
(
AA>BB>

)
for any generic matrices A,B ∈ Rm×n, and the second step stems from

Lemma C.3. Thus, Condition C.6 in Lemma C.1 is satisfied.
Further, Conditions 1 and 2 in the main text are equivalent to Conditions C.7 and C.8

in Lemma C.1, respectively. Besides, Condition 3 guarantees Conditions C.9. Based on
these observations, it is readily seen that Lemma C.1 holds under Conditions 1 - 4, and this
proves (7).
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By (7) in Section 3, and (A34) in Proof of Theorem 2 by Qiu et al. (2020) , we further
have

L?n(ŵ?)ξ−1
?n = 1 + op(1). (C.4)

This is owing to the fact that

L?n(ŵ?)ξ−1
?n 6 sup

w∈H

{
L?n(ŵ?)L?n

−1(w)
}

sup
w∈H

{
L?n(w)R?n

−1(w)
}

6 sup
w∈H

{
L?n(ŵ?)L?n

−1(w)
}
×
[
1 + sup

w∈H

{
|L?n(w)−R?n(w)|R?n

−1(w)
}]

=1 + op(1), (C.5)

and

L?n(ŵ?)ξ−1
?n > sup

w∈H

{
L?n(ŵ?)L?n

−1(w)
}

inf
w∈H

{
L?n(w)R?n

−1(w)
}

= sup
w∈H

{
L?n(ŵ?)L?n

−1(w)
}
×
[
1 + inf

w∈H

{
(L?n(w)−R?n(w))R?n

−1(w)
}]

> sup
w∈H

{
L?n(ŵ?)L?n

−1(w)
}
×
[
1− sup

w∈H

{
|L?n(w)−R?n(w)|R?n

−1(w)
}]

= 1 + op(1). (C.6)

Then, under the same framework of Appendix A.4 in Zhang et al. (2020), it is readily seen
from Lebesgue’s Dominated Convergence Theorem that E

∣∣{L?n(ŵ?)− ξ?n} ξ−1
?n

∣∣ → 0, and
this proves (8).

C.3 Proof of Theorem 2

Based on Lemma C.2, we now present the proof of Theorem 2. It is seen that

C?′′n (w) = C?n(w) + 2
n∑
i=1

(
ẽ?2i − e2

i

)
P ?ii(w),

where C?n(w) and C?′′n (w), related to SUT trees, are the counterparts of Cn(w) and C ′′n(w),
respectively. Hence, from Lemma C.2 above and the derivation of (24) in Qiu et al. (2020),
in order to prove (9), we need only to verify that

sup
w∈H

{∣∣∣∣∣
n∑
i=1

(
ẽ?2i − e2

i

)
P ?ii(w)

∣∣∣∣∣ /R?n(w)

}
= op(1). (C.7)

For each m = 1, . . . ,Mn, let ι
(m)?
ii be the ith diagonal element of P?BL(m),

Q?
(m) = diag

(
ι
(m)?
11 , . . . , ι(m)?

nn

)
,

Q?(w) =

Mn∑
m=1

w(m)Q
?
(m),
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and
K?
n = diag

(
ẽ?21 − e2

1, . . . , ẽ
?2
n − e2

n

)
.

Then, we have

sup
w∈H

{∣∣∣∣∣
n∑
i=1

(
ẽ?2i − e2

i

)
P ?ii(w)

∣∣∣∣∣ /R?n(w)

}
= sup

w∈H

|trace {Q?(w)K?
n}|

R?n(w)
.

We observe that for any δ > 0, under Conditions 2 and 3,

Pr

[
sup
w∈H

∣∣∣∣trace {Q?(w)K?
n}

R?n(w)

∣∣∣∣ > δ

]
6

Mn∑
m=1

Pr


∣∣∣∣∣∣
trace

(
Q?

(m)K
?
n

)
R?n(w)

∣∣∣∣∣∣ > δ


6 δ−1

Mn∑
m=1

E


∣∣∣∣∣∣
trace

(
Q?

(m)K
?
n

)
R?n(w)

∣∣∣∣∣∣


6 δ−1
Mn∑
m=1

E
{∣∣∣trace

(
Q?

(m)K
?
n

)∣∣∣ ξ−1
?n

}
6 δ−1

Mn∑
m=1

E
{

trace
(
Q?

(m)

)
‖K?

n‖ ξ−1
?n

}
= δ−1

Mn∑
m=1

E
(
`?(m) ‖K

?
n‖ ξ−1

?n

)
6 c1δ

−1MnE
(
n1/2 ‖K?

n‖ ξ−1
?n

)
6 c1δ

−1MnE1/2
(
n1/2ξ−1

?n

)2
E1/2 ‖K?

n‖
2

6 c2δ
−1E1/2

(
Mnn

1/2ξ−1
?n

)2
,

where c1 and c2 are positive constants, the second inequality follows from the Markov’s
Inequality, the fourth inequality is obtained by Lemma C.3, the fifth inequality comes from
Condition 3, the last second inequality is from the Cauchy-Schwarz Inequality, and the last
step stems from the boundedness of E1/2 ‖K?

n‖
2 by combining equality (C.2) and Conditions

2 and 3. Thus, (9) is proved by Condition 5 and the Lebesgue’s Dominated Convergence
Theorem. Similar to the proof techniques of Theorem 1, we have L?n(w̃?)ξ−1

?n = 1 + op(1),
which yields (10).

C.4 Proof of Lemma 1

It follows from the definitions of PBL(m),ij and P ∗BL(m),ij that

n∑
i=1

n∑
j=1

∣∣∣PBL(m),ij − P ∗BL(m),ij

∣∣∣
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6
2
k(m)∑
s=1

n∑
i=1

n∑
j=1

∣∣∣∣∣∣
h(m),jI

(
xi ∈ tk(m),s

)
I
(
xj ∈ tk(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ tk(m),s

)
−
h(m),jI

(
xi ∈ tk(m),s

)
I
(
xj ∈ t∗k(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ t∗k(m),s

)
∣∣∣∣∣∣

+
2
k(m)∑
s=1

n∑
i=1

n∑
j=1

∣∣∣∣∣∣
h(m),jI

(
xi ∈ tk(m),s

)
I
(
xj ∈ t∗k(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ t∗k(m),s

)
−
h(m),jI

(
xi ∈ t∗k(m),s

)
I
(
xj ∈ t∗k(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ t∗k(m),s

)
∣∣∣∣∣∣

≡ ΞC41 + ΞC42. (C.8)

In addition, note that∣∣∣I(xj ∈ tk(m),s

)
− I
(
xj ∈ t∗k(m),s

)∣∣∣ =
∣∣∣I(xj ∈ tk(m),s

)
− I
(
xj ∈ t∗k(m),s

)∣∣∣2 .
From Condition 4, one has

ΞC41 6
2
k(m)∑
s=1

n∑
i=1

n∑
j=1

∣∣∣∣∣∣
h(m),jI

(
xi ∈ tk(m),s

)
I
(
xj ∈ tk(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ tk(m),s

)
−
h(m),jI

(
xi ∈ tk(m),s

)
I
(
xj ∈ t∗k(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ tk(m),s

)
∣∣∣∣∣∣

+

2
k(m)∑
s=1

n∑
i=1

n∑
j=1

∣∣∣∣∣∣
h(m),jI

(
xi ∈ tk(m),s

)
I
(
xj ∈ t∗k(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ tk(m),s

)
−
h(m),jI

(
xi ∈ tk(m),s

)
I
(
xj ∈ t∗k(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ t∗k(m),s

)
∣∣∣∣∣∣

6c
2
k(m)∑
s=1

n∑
j=1

n∑
i=1

∣∣∣I(xj ∈ tk(m),s

)
− I
(
xj ∈ t∗k(m),s

)∣∣∣h(m),iI
(
xi ∈ tk(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ tk(m),s

)
+c

2
k(m)∑
s=1

 ∑n
j′=1

∣∣∣I(xj′ ∈ tk(m),s

)
− I
(
xj′ ∈ t∗k(m),s

)∣∣∣∑n
j′=1 h(m),j′I

(
xj′ ∈ tk(m),s

)∑n
j′=1 h(m),j′I

(
xj′ ∈ t∗k(m),s

)
×

{
n∑
j=1

n∑
i=1

h(m),ih(m),jI
(
xi ∈ tk(m),s

)
I
(
xj ∈ t∗k(m),s

)}
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=2c

2
k(m)∑
s=1

n∑
j=1

∣∣∣I(xj ∈ tk(m),s

)
− I
(
xj ∈ t∗k(m),s

)∣∣∣
=2c

2
k(m)∑
s=1

n∑
j=1

∣∣∣I(xj ∈ tk(m),s

)
− I
(
xj ∈ t∗k(m),s

)∣∣∣2

62cδn

2
k(m)∑
s=1

n∑
j=1

{
I
(
xj ∈ tk(m),s

)
+ I
(
xj ∈ t∗k(m),s

)}
62cK̄n(N + N∗)δn, (C.9)

almost surely, and

ΞC42 6
2
k(m)∑
s=1

n∑
i=1

n∑
j=1

h(m),j

∣∣∣I(xi ∈ tk(m),s

)
− I
(
xi ∈ t∗k(m),s

)∣∣∣ I(xj ∈ t∗k(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ t∗k(m),s

)
6K̄n(N + N∗)δn. (C.10)

Thus, (14) is verified by combining (C.9) - (C.10) with (C.8).
Besides, for each i = 1, . . . , n, we have

n∑
j=1

∣∣∣PBL(m),ij − P ∗BL(m),ij

∣∣∣
6

2
k(m)∑
s=1

n∑
j=1

∣∣∣∣∣∣
h(m),jI

(
xi ∈ tk(m),s

)
I
(
xj ∈ tk(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ tk(m),s

) −
h(m),jI

(
xi ∈ t∗k(m),s

)
I
(
xj ∈ t∗k(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ tk(m),s

)
∣∣∣∣∣∣

+
2
k(m)∑
s=1

n∑
j=1

∣∣∣∣∣∣
h(m),jI

(
xi ∈ t∗k(m),s

)
I
(
xj ∈ t∗k(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ tk(m),s

) −
h(m),jI

(
xi ∈ t∗k(m),s

)
I
(
xj ∈ t∗k(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ t∗k(m),s

)
∣∣∣∣∣∣

6
2
k(m)∑
s=1

n∑
j=1

h(m),jI
(
xi ∈ t∗k(m),s

) ∣∣∣I(xj ∈ tk(m),s

)
− I
(
xj ∈ t∗k(m),s

)∣∣∣∑n
j′=1 h(m),j′I

(
xj′ ∈ tk(m),s

)
+

2
k(m)∑
s=1

n∑
j=1

h(m),jI
(
xj ∈ tk(m),s

) ∣∣∣I(xi ∈ tk(m),s

)
− I
(
xi ∈ t∗k(m),s

)∣∣∣∑n
j′=1 h(m),j′I

(
xj′ ∈ tk(m),s

)
+

2
k(m)∑
s=1

n∑
j=1

∣∣∣∣∣∣
h(m),jI

(
xi ∈ t∗k(m),s

)
I
(
xj ∈ t∗k(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ tk(m),s

) −
h(m),jI

(
xi ∈ t∗k(m),s

)
I
(
xj ∈ t∗k(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ t∗k(m),s

)
∣∣∣∣∣∣

≡ ΞC43 + ΞC44 + ΞC45. (C.11)
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Note that
∑2

k(m)

s=1 I
(
xi ∈ t∗k(m),s

)
≡ 1 and

∑2
k(m)

s=1 I
(
xi ∈ tk(m),s

)
≡ 1 for all i = 1, . . . , n and

m = 1, . . . ,Mn. Similar to the proofs of (C.9) and (C.10), it is seen that under Condition 4,

ΞC43 =
2
k(m)∑
s=1

I
(
xi ∈ t∗k(m),s

) n∑
j=1

h(m),i

∣∣∣I(xj ∈ tk(m),s

)
− I
(
xj ∈ t∗k(m),s

)∣∣∣∑n
j′=1 h(m),j′I

(
xj′ ∈ tk(m),s

)
6cδn

2
k(m)∑
s=1

I
(
xi ∈ t∗k(m),s

) ∑n
j=1 h(m),j

∣∣∣I(xj ∈ tk(m),s

)
+ I
(
xj ∈ t∗k(m),s

)∣∣∣∑n
j′=1 h(m),j′I

(
xj′ ∈ tk(m),s

)
6cδn

(
1 +

N∗

n

)
, (C.12)

almost surely,

ΞC44 =

2
k(m)∑
s=1

∣∣∣I(xi ∈ tk(m),s

)
− I
(
xi ∈ t∗k(m),s

)∣∣∣
6δn

2
k(m)∑
s=1

{
I
(
xi ∈ tk(m),s

)
+ I
(
xi ∈ t∗k(m),s

)}
=2δn, (C.13)

and

ΞC45 6
2
k(m)∑
s=1

I
(
xi ∈ t∗k(m),s

)
∑n

j=1 h(m),jI
(
xj ∈ t∗k(m),s

)
∑n

j′=1 h(m),j′I
(
xj′ ∈ t∗k(m),s

)
×

∑n
j′=1 h(m),j′

∣∣∣I(xj′ ∈ t∗k(m),s

)
− I
(
xj′ ∈ tk(m),s

)∣∣∣∑n
j′=1 h(m),j′I

(
xj′ ∈ tk(m),s

)


6δn

2
k(m)∑
s=1

I
(
xi ∈ t∗k(m),s

) ∑n
j′=1 h(m),j′

{
I
(
xj′ ∈ t∗k(m),s

)
+ I
(
xj′ ∈ tk(m),s

)}
∑n

j′=1 h(m),j′I
(
xj′ ∈ tk(m),s

)
6δn

(
1 +

N∗

n

) 2
k(m)∑
s=1

I
(
xi ∈ t∗k(m),s

)
=δn

(
1 +

N∗

n

)
. (C.14)

Thus, (15) can be verified by combining (C.11) - (C.14) together and this concludes the
proof.

C.5 Proof of Theorem 3

In accordance with Section 3.2.2, notations without the ∗ script correspond to the CART-
splitting criterion, while those with the ∗ script are related to the theoretical CART-splitting
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criterion. It is evident that δn is a key factor bounding the difference between matrices
PBL(m) and P∗BL(m). It is clear that

Pr
{
I
(
xi ∈ tk(m),s∆t∗k(m),s

)
= 0
}

= 1− p(m),is,

from the definition of p(m),is. Therefore, when 0 < p(m),is < 1/2, from Lemma C.4,

I
(
xi ∈ tk(m),s∆t∗k(m),s

)
−p(m),is is a centered Bernoulli random variable with variance proxy

τ2
(
p(m),is

)
=

1
2 − p(m),is

log
(

1
p(m),is

− 1
) ,

where τ2
(
p(m),is

)
is a strictly increasing function of p(m),is. Then, for p(m),is ∈ (0, 1/2), we

have

max
16i6n,16m6Mn,16s62

k(m)

τ2
(
p(m),is

)
6

1
2 − p̄n

log
(

1
p̄n
− 1
) 6 1

2

log
(

1
p̄n
− 1
) .

By Lemma C.5 (which does not require the assumption of independence), for each r > 1,
we have

E|δn|r = E|δn| 6 E

{
max

16i6n,16m6Mn,16s62
k(m)

∣∣∣I(xi ∈ tk(m),s∆t∗k(m),s

)
− p(m),is

∣∣∣}+ p̄n

6

√√√√2 log(2nMnK̄n)

log
(

1
p̄n
− 1
) + p̄n, (C.15)

and this provides the upper bound of E|δn|.
With the above point addressed, we now resume the primary trajectory of the proof. It

is sufficient to verify that

sup
w∈H

|Rn(w)− Ln(w)|
Rn(w)

= op(1), (C.16)

and

sup
w∈H

|C◦n(w)− Ln(w)|
Rn(w)

= op(1). (C.17)

We will verify them successively. Note that

sup
w∈H

|Rn(w)− Ln(w)|
Rn(w)

6 sup
w∈H

|Rn(w)−R∗n(w)|
Rn(w)

+ sup
w∈H

|L∗n(w)− Ln(w)|
Rn(w)

+ sup
w∈H

|R∗n(w)− L∗n(w)|
Rn(w)

, (C.18)

and

sup
w∈H

|C◦n(w)− Ln(w)|
Rn(w)

6 sup
w∈H

|{C◦n(w)− Ln(w)} − {C◦∗n (w)− L∗n(w)}|
Rn(w)
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+ sup
w∈H

|C◦∗n (w)− L∗n(w)|
Rn(w)

. (C.19)

Moreover, we have

|Rn(w)−R∗n(w)|

6
∣∣∣E{µ>P>(w)P(w)µ + 2µ>P>(w)P(w)e + e>P>(w)P(w)e | X

}
− E

{
µ>P>∗ (w)P∗(w)µ + 2µ>P>∗ (w)P∗(w)e + e>P>∗ (w)P∗(w)e | X

}∣∣∣
+2
∣∣∣E{µ>P(w)µ + µ>P(w)e | X

}
− E

{
µ>P∗(w)µ + µ>P∗(w)e | X

}∣∣∣
6
∣∣∣E [e> {P>(w)P(w)−P>∗ (w)P∗(w)

}
e | X

]∣∣∣
+2
∣∣∣E [µ> {P>(w)P(w)−P>∗ (w)P∗(w)

}
e | X

]∣∣∣
+
∣∣∣µ> {P>(w)P(w)−P>∗ (w)P∗(w)

}
µ
∣∣∣

+2
∣∣∣E [µ> {P(w)−P∗(w)} e | X

]∣∣∣+ 2
∣∣∣µ> {P(w)−P∗(w)}µ

∣∣∣ , (C.20)

and

|Ln(w)− L∗n(w)|

6
∣∣∣µ>P>(w)P(w)µ + 2µ>P>(w)P(w)e + e>P>(w)P(w)e

−
{
µ>P>∗ (w)P∗(w)µ + 2µ>P>∗ (w)P∗(w)e + e>P>∗ (w)P∗(w)e

}∣∣∣
+2
∣∣∣{µ>P(w)µ + µ>P(w)e

}
−
{
µ>P∗(w)µ + µ>P∗(w)e

}∣∣∣ . (C.21)

Now, by (14) of Lemma 1, there exists a positive constant c1 such that

sup
w∈H

∣∣∣e> {P>(w)P(w)−P>∗ (w)P∗(w)
}

e
∣∣∣

6 sup
w∈H

Mn∑
m=1

Mn∑
r=1

w(m)w(r)

∣∣∣e> (P>BL(m)PBL(r) −P>∗BL(m)P∗BL(r)

)
e
∣∣∣

6 max
16m,r6Mn

∣∣∣e> (P>BL(m)PBL(r) −P>∗BL(m)P∗BL(r)

)
e
∣∣∣

6 max
16m,r6Mn

‖e‖2∞
n∑
i=1

n∑
j=1

n∑
t=1

(∣∣∣PBL(m),tiPBL(r),tj − PBL(m),tiP
∗
BL(r),tj

∣∣∣
+
∣∣∣PBL(m),tiP

∗
BL(r),tj − P

∗
BL(m),tiP

∗
BL(r),tj

∣∣∣)

6 max
16m,r6Mn

‖e‖2∞

(
n∑
j=1

n∑
t=1

∣∣∣PBL(r),tj − P ∗BL(r),tj

∣∣∣ n∑
i=1

PBL(m),ti

+

n∑
i=1

n∑
t=1

∣∣∣PBL(m),ti − P ∗BL(m),ti

∣∣∣ n∑
j=1

P ∗BL(r),tj

)
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6 c1‖e‖2∞K̄n(N + N∗)δn

6 c1‖e‖2∞K̄nN̄nδn, (C.22)

almost surely, where the last second step is from the fact that

n∑
i=1

PBL(m),ti =
n∑
i=1

P ∗BL(m),ti ≡ 1,

for all m = 1, . . . ,Mn and t = 1, . . . , n, and the last step comes from Condition 6. Similarly,
one has

sup
w∈H

∣∣∣µ> {P>(w)P(w)−P>∗ (w)P∗(w)
}

e
∣∣∣ 6 c1‖µ‖∞‖e‖∞K̄nN̄nδn, (C.23)

almost surely, and

sup
w∈H

∣∣∣µ> {P>(w)P(w)−P>∗ (w)P∗(w)
}
µ
∣∣∣ 6 c1‖µ‖2∞K̄nN̄nδn, (C.24)

almost surely. Besides, we have

sup
w∈H

∣∣∣µ> {P(w)−P∗(w)} e
∣∣∣ 6 sup

w∈H

Mn∑
m=1

w(m)

∣∣∣µ> (PBL(m) −P∗BL(m)

)
e
∣∣∣

6 max
16m6Mn

∣∣∣µ> (PBL(m) −P∗BL(m)

)
e
∣∣∣

6 max
16m6Mn

‖µ‖∞‖e‖∞
n∑
i=1

n∑
j=1

∣∣∣PBL(m),ij − P ∗BL(m),ij

∣∣∣
6c1‖µ‖∞‖e‖∞K̄nN̄nδn, (C.25)

almost surely, and

sup
w∈H

∣∣∣µ> {P(w)−P∗(w)}µ
∣∣∣ 6 c1‖µ‖2∞K̄nN̄nδn, (C.26)

almost surely. Then, under Conditions 2′, 4, 6, and 7, by combining (C.20), (C.22) and
(C.23) - (C.26) together, it is readily seen that there exists a positive constant c3 such that

E
{

supw∈H |Rn(w)−R∗n(w)|
ξn

}
6 c3K̄nN̄nE

{
δn(1 + ‖e‖∞ + ‖e‖2∞)

ξn

}
6 c3K̄nN̄n

{
E
(
δn
ξn

)
+ E1/2‖e‖2∞E1/2

(
δn
ξ2
n

)
+ E1/2‖e‖4∞E1/2

(
δn
ξ2
n

)}
6 3c3E1/2

{
K̄2
nN̄

2
n log4(n)δn
ξ2
n

}
6 3c3E1/4(δn)E1/4

{
K̄4
nN̄

4
n log8(n)

ξ4
n

}
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6 3c3


√√√√2 log(2nMnK̄n)

log
(

1
p̄n
− 1
) + p̄n


1/4

E1/4

{
K̄4
nN̄

4
n log8(n)

ξ4
n

}
= o(1), (C.27)

almost surely. Here, several facts contribute to obtaining (C.27). The second inequality
arises from the Cauchy-Schwartz Inequality. The third is owing to the Maximal Inequality
with Bernstein’s moment conditions (Zhang and Chen, 2021, Proposition 7.1), along with
the fact that E1/r|Z|r is a non-decreasing function of r for r > 0 and any generic random
variable Z. The penultimate step results from (C.15). Finally, the last equality is from
Condition 7 combined with the Lebesgue’s Dominated Convergence Theorem. By (C.21),
under the same conditions and framework that derives (C.27), we have

E
{

supw∈H |Ln(w)− L∗n(w)|
ξn

}
= o(1), (C.28)

almost surely. Besides, since the theoretical CART-splitting criterion is independent of
response values, it can be considered as a special type of splitting criterion used by SUT
trees. Therefore, under Conditions 1′ - 3′ and 4, by combining Theorem 1, (C.27) and the
proof of Theorem 1 by Qiu et al. (2020), we have

sup
w∈H

|R∗n(w)− L∗n(w)|
Rn(w)

6 sup
w∈H

|R∗n(w)− L∗n(w)|
R∗n(w)

{
1 + sup

w∈H

|Rn(w)−R∗n(w)|
Rn(w)

}
= op(1). (C.29)

Then, (C.16) can be verified by combining this with (C.18), (C.20), (C.21), (C.27) and
(C.28) together.

Additionally,

|{C◦n(w)− Ln(w)} − {C◦∗n (w)− L∗n(w)}|

=
∣∣∣2e>{P∗(w)−P(w)}µ− 2e>{P∗(w)−P(w)}e

+2σ̂2 trace{P(w)} − 2σ̂2
∗ trace{P∗(w)}

∣∣∣
6 2

∣∣∣e>{P∗(w)−P(w)}µ
∣∣∣+ 2

∣∣∣e>{P∗(w)−P(w)}e
∣∣∣

+2σ̂2
∣∣∣ trace{P(w)−P∗(w)}

∣∣∣+ 2
∣∣σ̂2 − σ̂2

∗
∣∣ · ∣∣∣ trace{P∗(w)}

∣∣∣. (C.30)

Under the same framework that establishes (C.25), one has

sup
w∈H

∣∣∣e> {P(w)−P∗(w)} e
∣∣∣ 6 c1‖e‖2∞K̄nN̄nδn. (C.31)

In the light of (15) in Lemma 1 and Condition 6, there exists a positive constant c2 such
that

sup
w∈H

|trace{P(w)−P∗(w)}| 6 max
16m6Mn

n∑
i=1

∣∣∣PBL(m),ii − P ∗BL(m),ii

∣∣∣
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6 δn{2 + c2(1 + r̄n)}, (C.32)

almost surely. As analogues of (C.2) and (C.3) in the context of CART trees, under Condi-
tion 4, there exists a positive constant c such that∥∥PBL(m)

∥∥
∞ = 1,

and ∥∥PBL(m)

∥∥
1
6 c,

almost surely, for all m = 1, . . . ,Mn. Then, we have

‖P(w0)‖ =

∥∥∥∥∥
Mn∑
m=1

1

Mn
PBL(m)

∥∥∥∥∥ 6 max
16m6Mn

∥∥PBL(m)

∥∥ 6 max
16m6Mn

∥∥PBL(m)

∥∥
1

∥∥PBL(m)

∥∥
∞ 6 c,

(C.33)
almost surely. Therefore, it is seen that

E1/2
∣∣σ̂2
∣∣2 = E1/2

{
‖y −P(w0)y‖2

n

}2

6 2E1/2

{
‖y‖2 + ‖P(w0)‖2‖y‖2

n

}2

6 2(1 + c2)E1/2

(
‖y‖2

n

)2

= O(1), (C.34)

almost surely, where the third step comes from (C.33), and the last step is from Condition
2′. Likewise, we have

E1/2
∣∣σ̂2 − σ̂2

∗
∣∣2 6 E1/2

{
‖y −P(w0)y‖2

n

}2

+ E1/2

{
‖y −P∗(w0)y‖2

n

}2

= O(1), (C.35)

almost surely. By combining this with (C.25), (C.31), (C.32), (C.34) and (C.35) with (C.30),
we have

E
[

supw∈H | {C◦n(w)− Ln(w)} − {C◦∗n (w)− L∗n(w)} |
ξn

]
= o(1). (C.36)

Similar to (C.29), under Conditions 1′ - 3′ and 4, by combining Theorem 1, (C.27) and the
proof of Theorem 1 in Qiu et al. (2020), we have

sup
w∈H

|C◦∗n (w)− L∗n(w)|
Rn(w)

6 sup
w∈H

|C◦∗n (w)− L∗n(w)|
R∗n(w)

{
1 + sup

w∈H

|Rn(w)−R∗n(w)|
Rn(w)

}
= op(1). (C.37)

By combining (C.36), (C.37) with (C.19), we obtain (C.17) and this concludes the proof.
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C.6 Verifying Results of Qiu et al. (2020) for Stochastic X

For the sake of convenience, Qiu et al. (2020) assume in all proofs that X is non-stochastic
rather than stochastic. However, the framework developed in Qiu et al. (2020) can readily
be extended for stochastic X. We take

sup
w∈H

∣∣∣e>A?(w)µ
∣∣∣ /Rn(w) = op(1)

for example, where A?(w) = In −P?(w). In Appendix A.2 of Qiu et al. (2020), this result
is labeled as (A6). Note that the framework proposed by Qiu et al. (2020) necessitates the
independence of the “hat matrix” from response values, warranting notations in this section
to carry the script ?.

Proof of (A6) in Qiu et al. (2020) when X is Stochastic. Let Ω = diag(σ2
1, . . . , σ

2
n),

A?(m) = In − P?BL(m) for all m = 1, . . . ,Mn. Let Φ =
(
µ>A>?(m)A?(s)µ

)
Mn×Mn

, that is,

the (m, s)th component of Φ is µ>A>?(m)A?(s)µ, Gn×Mn =
(
A?(1)µ, . . . ,A?(Mn)µ

)
,Ψ ={

trace
(
P?BL(m)P

>
?BL(s)Ω

)}
Mn×Mn

, and

Ψ0 = diag
{

trace
(
P?BL(1)P

>
?BL(1)Ω

)
, . . . , trace

(
P?BL(Mn)P

>
?BL(Mn)Ω

)}
.

So Φ = G>G. For any w ∈H,

w>Ψ0w 6 w>Ψw, (C.38)

because for any m, s ∈ {1, . . . ,Mn} , w(m) > 0, w(s) > 0 and trace
(
P?BL(m)P

>
?BL(s)Ω

)
> 0

by Condition C.4. In addition, it is clear that

R?n(w) = E
{
‖P?(w)µ− µ + P?(w)e‖2

∣∣X}
= ‖A?(w)µ‖2 + trace

{
P?(w)P>? (w)Ω

}
= w>(Φ + Ψ)w

> w> (Φ + Ψ0) w, (C.39)

where the last step is from (C.38). We also have

Φ + Ψ0 > 0, (C.40)

because Φ = G>G and Ψ0 > 0 by definition.
Let ρ =

(
e>A

?(1)µ . . . , e
>A

?(Mn)µ
)>. It is straightforward to show that

E(ρ|X) = 0. (C.41)

Besides, under Condition 2, there exists a positive constant v such that

Var(ρ|X) = E
(
ρρ>

∣∣∣X)
= E

{(
e>A

?(m)µµ
>A>

?(s)e
)
Mn×Mn

∣∣∣∣X}
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=
(
µ>A>

?(s)ΩA
?(m)µ

)
Mn×Mn

6 vΦ, (C.42)

almost surely. It is seen that

sup
w∈H

{
e>A?(w)µ

}2

R?2n (w)
= sup

w∈H

(∑Mn
m=1 w(m)e

>A
?(m)µ

)2

R?2n (w)

= sup
w∈H

(
w>ρ

)2
R?2n (w)

6 sup
w∈H

(
w>ρ

)2
w> (Φ + Ψ0) w

sup
w∈H

1

R?n(w)

6 ξ−1
?n ρ

> (Φ + Ψ0)−1 ρ, (C.43)

where the third step is from (C.39), and the last step is from (C.40) and Lemma 1 in Qiu
et al. (2020). By Markov Inequality, we have that for any δ > 0,

Pr
{
ξ−1
?n ρ

> (Φ + Ψ0)−1 ρ > δ
}

6 δ−1E
{
ξ−1
?n ρ

> (Φ + Ψ0)−1 ρ
}

= δ−1E
[
E
{
ξ−1
?n ρ

> (Φ + Ψ0)−1 ρ
∣∣∣X}]

= δ−1E
[
ξ−1
?n E

{
ρ> (Φ + Ψ0)−1 ρ

∣∣∣X}]
= vδ−1E

[
ξ−1
?n trace

{
(Φ + Ψ0)−1 Φ

}]
6 vδ−1E

[
ξ−1
?n trace

{
(Φ + Ψ0)−1 Φ + Ψ

1/2
0 (Φ + Ψ0)−1 Ψ

1/2
0

}]
= vδ−1E

(
ξ−1
?nMn

)
, (C.44)

where the second step follows from the Law of Iterated (or Total) Expectation, the third
step is obtained by the Pull-out rule, and the fourth step is guaranteed by (C.41) and (C.42).
Combining (C.43), (C.44) and Condition 1, we obtain similar result in (A6) of Qiu et al.
(2020) by the Lebesgue’s Dominated Convergence Theorem. �

This demonstration bears a striking resemblance to Proof of (A6) in Appendix A.2 of Qiu
et al. (2020). The only modification lies in the substitution of expectations with conditional
expectations in (C.41) and (C.42), as well as the applications of the Law of Iterated Expec-
tation, Pull-out rule, and Lebesgue Dominated Convergence Theorem in (C.44). Similarly,
(A7) - (A9) and (A34) - (A35) for proving Theorems 1 and 2 in Qiu et al. (2020) can also
be extrapolated using the same techniques.

C.7 Some Additional Discussions on the Behavior of Risk Function When
Relevant/Important Features Are Not Involved in the Model

In many practical situations, investigators often cannot include all the relevant features in
the model (Flynn et al., 2013), which leads to unignorable misspecification. In the current
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section, we will adopt a simplified setting to demonstrate the impact of ignoring important
or relevant features in weighted random forest.

For simplicity, we use the full sample to grow random forest and only theoretical CART
is considered (similar setting has also been considered in Chi et al. (2022)). In this case,
the cells are only constructed based on Θ = {Θ(1), . . . ,Θ(Mn)}, and X reduces to the σ-
algebra generated by {x0

1, . . . ,x
0
n,Θ}. Now we formally introduce the notion of “ignoring

relevant/important features” in our context. Inspired by the Definition 1 in Chi et al. (2022),
we say our variable pool misses relevant/important features when

E
∣∣µ(x0

1)− E
{
µ(x0

1) | x1,Θ
}∣∣2 > c0 > 0 (C.45)

for some positive constant c0, where µ(x0
1) = µ1. In this scenario, we will demonstrate that

the conditional risk is asymptotically bounded below by a positive constant. To see this,
assume that min16m6Mn E

{
I
(
x1 ∈ tk(m),s

)
| Θ
}
> c0. Then, for a given tree, we have

µ(x0
i )−

Mn∑
m=1

w(m)µ̂m(xi)

=

Mn∑
m=1

w(m){µ(x0
i )− µ̂m(xi)}

=

Mn∑
m=1

w(m)

µ(x0
i )−

2
k(m)∑
s=1

I
(
xi ∈ tk(m),s

) ∑n
j=1 yjI

(
xj ∈ tk(m),s

)
∑n

j=1 I
(
xj ∈ tk(m),s

)


=

Mn∑
m=1

w(m)

µ(x0
i )−

2
k(m)∑
s=1

I
(
xi ∈ tk(m),s

) ∑n
j=1

{
µ(x0

j ) + εj

}
I
(
xj ∈ tk(m),s

)
∑n

j=1 I
(
xj ∈ tk(m),s

)


=

Mn∑
m=1

w(m)

µ(x0
i )−

2
k(m)∑
s=1

I
(
xi ∈ tk(m),s

) E
{
µ(x0

1)I
(
x1 ∈ tk(m),s

)
| Θ
}

E
{
I
(
x1 ∈ tk(m),s

)
| Θ
}


+

Mn∑
m=1

w(m)

2
k(m)∑
s=1

I
(
xi ∈ tk(m),s

)

×

[E{µ(x0
1)I
(
x1 ∈ tk(m),s

)
| Θ
}

E
{
I
(
x1 ∈ tk(m),s

)
| Θ
} −

∑n
j=1 µ(x0

j )I
(
xj∈tk(m),s

)
n∑n

j=1 I
(
xj∈tk(m),s

)
n

]
−

Mn∑
m=1

w(m)

2
k(m)∑
s=1

I
(
xi ∈ tk(m),s

) ∑n
j=1 εjI

(
xj ∈ tk(m),s

)
∑n

j=1 I
(
xj ∈ tk(m),s

)
≡

Mn∑
m=1

w(m)

µ(x0
i )−

2
k(m)∑
s=1

I
(
xi ∈ tk(m),s

) E
{
µ(x0

1)I
(
x1 ∈ tk(m),s

)
| Θ
}

E
{
I
(
x1 ∈ tk(m),s

)
| Θ
}

+ r1,i + r2,i.

(C.46)
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Now we aim to bound r1,i and r2,i. In specific, if we assume that

n > n̄n,

and
max

16m6Mn

2k(m) 6 K̄n,

where n̄n and K̄n are deterministic positive series that grow to infinity as n → ∞, and
c0 is a positive constant. Then, by Condition 2 and the fact that x0

j ’s are independent
conditionally on Θ, uniformly for every i = 1, . . . , n, we have

E1/2|r1,i|2

6
Mn∑
m=1

w(m)

×
2
k(m)∑
s=1

E1/2

∣∣∣∣∣∣∣I
(
xi ∈ tk(m),s

)E
{
µ(x0

1)I
(
x1 ∈ tk(m),s

)
| Θ
}

E{I
(
x1 ∈ tk(m),s

)
| Θ}

−

∑n
j=1 µ(x0

j )I
(
xj∈tk(m),s

)
n∑n

j=1 I
(
xj∈tk(m),s

)
n


∣∣∣∣∣∣∣
2

6
Mn∑
m=1

w(m)

2
k(m)∑
s=1

E1/2

∣∣∣∣∣∣∣
E
{
µ(x0

1)I
(
x1 ∈ tk(m),s

)
| Θ
}

E
{
I
(
x1 ∈ tk(m),s

)
| Θ
} −

∑n
j=1 µ(x0

j )I
(
xj∈tk(m),s

)
n∑n

j=1 I
(
xj∈tk(m),s

)
n

∣∣∣∣∣∣∣
2

6
Mn∑
m=1

w(m)

2
k(m)∑
s=1

E1/2

∣∣∣∣∣∣∣∣
∑n

j=1 µ(x0
j )I
(
xj∈tk(m),s

)
n − E

{
µ(x0

1)I
(
x1 ∈ tk(m),s

)
| Θ
}

∑n
j=1 I

(
xj∈tk(m),s

)
n

∣∣∣∣∣∣∣∣
2

+

Mn∑
m=1

w(m)

2
k(m)∑
s=1

E1/2

∣∣∣∣∣∣∣
E
{
µ(x0

1)I
(
x1 ∈ tk(m),s

)
| Θ
}

∑n
j=1 I

(
xj∈tk(m),s

)
n

−
E
{
µ(x0

1)I
(
x1 ∈ tk(m),s

)
| Θ
}

E{I
(
x1 ∈ tk(m),s

)
| Θ}

∣∣∣∣∣∣∣
2

= O

(
n1/2K̄n

n̄n

)
, (C.47)

where the last inequality is based on Chebyshev’s inequality. Similarly, under Condition 2,
uniformly for every i = 1, . . . , n, we also have

E1/2|r2,i|2 = O

(
n1/2K̄n

n̄n

)
. (C.48)

Combine (C.47) and (C.48) with (C.46), it is readily seen that∑n
i=1 E

{
|µ(x0

i )−
∑Mn

m=1w(m)µ̂m(xi)|2 | X
}

n

=

∑n
i=1

∣∣∣∣∣µ(x0
i )−

∑Mn
m=1w(m)

∑2
k(m)

s=1 I
(
xi ∈ tk(m),s

) E
{
µ(x0

1)I
(
x1∈tk(m),s

)
|Θ
}

E
{
I
(
x1∈tk(m),s

)
|Θ
}

∣∣∣∣∣
2

n
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+Op

(
n1/2K̄n

n̄n

)

= Ex1,c|x1,Θ

∣∣∣∣∣∣µ(x0
1)−

Mn∑
m=1

w(m)

2
k(m)∑
s=1

I
(
x1 ∈ tk(m),s

) E
{
µ(x0

1)I
(
x1 ∈ tk(m),s

)
| Θ
}

E
{
I
(
x1 ∈ tk(m),s

)
| Θ
}

∣∣∣∣∣∣
2

+Op

(
1

n1/2
+
n1/2K̄n

n̄n

)
, (C.49)

where x1,c represents the vector containing the features that are not included in the model,
and the Ex1,c|x1,Θ(·) is taken with respect to those missing features, conditional on x1 and
Θ. Then, by the Projection Theorem, it is readily seen that the leading term on the right-
hand-side of the last line of (C.49) satisfies that

Ex1,c|x1,Θ

∣∣∣∣∣∣µ(x0
1)−

Mn∑
m=1

w(m)

2
k(m)∑
s=1

I
(
x1 ∈ tk(m),s

) E
{
µ(x0

1)I
(
x1 ∈ tk(m),s

)
| Θ
}

E
{
I
(
x1 ∈ tk(m),s

)
| Θ
}

∣∣∣∣∣∣
2

> Ex1,c|x1,Θ

∣∣µ(x0
1)− E

{
µ(x0

1) | x1,Θ
}∣∣2

> c0 > 0,

where we have used the fact that

Mn∑
m=1

w(m)

2
k(m)∑
s=1

I
(
x1 ∈ tk(m),s

) E
{
µ(x0

1)I
(
x1 ∈ tk(m),s

)
| Θ
}

E
{
I
(
x1 ∈ tk(m),s

)
| Θ
}

is σ(x1,Θ)-measurable with σ(x1,Θ) being the σ-algebra generated by {x1,Θ}. This yields
that if we further assume that n1/2K̄n/n̄n = o(1), one has

inf
w∈H

1∑n
i=1 E

{
|µ(x0

i )−
∑Mn

m=1w(m)µ̂m(xi)|2 | X
} = Op

(
1

n

)
.

These discussions indicate that if some relevant/important features are missing in the model,
it is expected that ξ−1

n achieves a satisfactory rate of convergence.

Appendix Appendix D. Additional Tables and Figures
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ρ 1step−WRFopt 2steps−WRFopt wRF CRF
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Figure D.1: Improvement Ratio vs Noise on BH Data Set
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Algorithm A.2: SUT
Split_a_node(S)

Input: The local learning subset S corresponding to the node we want to split

Output: A split [a < c] or nothing

-If Stop_split(S) is TRUE then return nothing.

-Otherwise select q attributes {a1, . . . , aq} by probability sequence P among all non

constant (in S ) candidate attributes ; // Hyper parameter: probability

sequence P = {P1, . . . , Pp}, where Pj ∈ [0, 1],∀j = 1, . . . , p and
∑p

j=1 Pj = 1

-Draw q splits {s1, . . . , sq}, where si = Pick_a_split(S, ai) ,∀i = 1, . . . , q;

-Return a split s∗ such that Score (s∗, S) = maxi=1,...,q Score (si, S).

Pick_a_split(S, a)

Input: A subset S and an attribute a

Output: A split

- Let aSmax and aSmin be the maximal and minimal value of a in S;

- Calculate the cut-point c← (aSmin, a
S
max)/2 ;

- Return the split [a < c].

Stop_split(S)

Input: A subset S

Output: A boolean

- If |S| < nodesize, then return TRUE.

- If all attributes are constant in S, then return TRUE.

- If the output is constant in S, then return TRUE.

- Otherwise, return FALSE.

Score(s, S)

Input: A split s and a subset S

Output: The score of this split method

-Let XP ,XL,XR be the attribute matrix of this local parent node, left daughter,

right daughter, respectively;

-Let nP , nL, nR be the number of samples contained in the local parent node, left

daughter, right daughter, respectively;

-Obtain X̃P , X̃L, X̃R by centering and scaling of each column of the matrices

XP ,XL,XR, respectively;

-score ←
‖X̃P ‖−

nL
nP
‖X̃L‖−

nR
nP
‖X̃R‖

‖X̃P ‖
;

-Return score. 53
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Algorithm B.1: 2steps-WRFopt

Input: (1) The training data set D = {yi,xi}ni=1 (2) The number of trees in

random forest Mn

Output: Weight vector w̃ ∈H

1 for m = 1 to Mn do

2 Draw a bootstrap data set D(m) of size n from the training data set D;

3 Grow a random-forest tree f̂(m) to the bootstrap data D(m), by recursively

repeating the following steps for each terminal node of the tree, until the

minimum node size nodesize is reached ; // nodesize, q are hyper

parameters

4 i. Select q variables at random from the p variables;

5 ii. Pick the best variable/ splitting point among the q;

6 iii. Split the node into two daughter nodes.

7 for i = 1 to n do

8 Drop xi down the the mth tree and get PBL(m)(xi,X,y,B(m),Θ(m)).

9 end

10 PBL(m) ← {PBL(m)(x1,X,y,B(m),Θ(m)), . . . ,PBL(m)(xn,X,y,B(m),Θ(m))}>.
11 end

12 Solve the quadratic programming problem:

w◦ =
(
w◦(1), . . . , w

◦
(Mn)

)>
← arg min

w∈H
C◦n(w);

13 ẽ← {In −P(w◦)}y with P(w◦) =
∑Mn

m=1w
◦
(m)PBL(m);

14 Solve the quadratic programming problem:

w̃ =
(
w̃(1), . . . , w̃(Mn)

)> ← arg min
w∈H

C ′′n(w).
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Algorithm B.2: wRF
Input: (1) The training data set D = {yi,xi}ni=1 (2) The number of trees in RF

Mn (3) Parameter λ

Output: Weight vector ŵ ∈H

1 for m = 1 to Mn do

2 Draw a bootstrap data set D(m) of size n from the training data set D;

3 Grow a random-forest tree f̂(m) to the bootstrap data D(m), by recursively

repeating the following steps for each node of the tree, until the minimum node

size nodesize is reached ; // nodesize, q are hyper parameters

4 i. Select q variables at random from the p variables;

5 ii. Pick the best variable/ split-point among the q;

6 iii. Split the node into two daughter nodes.

7 tPE′m ← 1∑n
i=1 OOBim

∑n
i=1

∣∣∣f̂(m)(xi)− yi
∣∣∣ ·OOBim;

8 ŵ(m) ← ( 1
tPE′

m
)
λ;

9 end

10 ŵ←
(
ŵ(1), . . . , ŵ(Mn)

)>;
11 ŵ← ŵ

‖ŵ‖1 .
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Algorithm B.3: CRF
Input: (1) The training data set D = {yi,xi}ni=1 (2) The number of trees in RF Mn

Output: Weight vector ŵ ∈H

1 for m = 1 to Mn do

2 Draw a bootstrap data set D(m) of size n from the training data set D;

3 Grow a random-forest tree f̂(m) to the bootstrap data D(m), by recursively

repeating the following steps for each node of the tree, until the minimum node

size nodesize is reached ; // nodesize, q are hyper parameters

4 i. Select q variables at random from the p variables;

5 ii. Pick the best variable/ split-point among the q;

6 iii. Split the node into two daughter nodes.

7 tPE′m ← 1∑n
i=1 OOBim

∑n
i=1

∣∣∣f̂(m)(xi)− yi
∣∣∣ ·OOBim;

8 end

9 Sequence {tPE′1, . . . , tPE′Mn
} from smallest to largest;

10 for m = 1 to Mn do

11 rm ← the order of the mth tree in sorted sequence;

12 ŵ(m) ←
∑Mn

ν=rm
1
ν ;

13 end

14 ŵ←
(
ŵ(1), . . . , ŵ(Mn)

)>;
15 ŵ← ŵ

‖ŵ‖1 .

Data set RF 2steps-WRFopt 1step-WRFopt wRF CRF
BH 11.913(5) 11.380(1) 11.445(3) 11.401(2) 11.521(4)

Servo 1.053(3) 1.057(4) 1.063(5) 1.017(1) 1.049(2)

CCS 27.944(4) 27.658(1) 27.721(3) 27.703(2) 27.962(5)

ASN 5.308(5) 5.095(1) 5.103(2) 5.241(4) 5.232(3)

CCPP 15.818(2) 16.084(4) 16.256(5) 15.790(1) 15.901(3)

CST 10.618(5) 9.319(1) 9.395(2) 9.740(3) 10.109(4)

EE 3.533(2) 3.534(3) 3.541(4) 3.485(1) 3.559(5)

PT 1.806(5) 1.452(2) 1.449(1) 1.571(3) 1.609(4)

QSAR 1.378(3) 1.387(4) 1.397(5) 1.358(1) 1.368(2)

SM(×10−5) 2.629(5) 1.994(1) 1.999(2) 2.444(3) 2.444(4)

YH 2.495(5) 1.850(1) 1.891(3) 1.869(2) 2.072(4)

Tecator 3.790(5) 2.955(2) 2.948(1) 3.178(3) 3.338(4)

Table D.1: Test Error Comparisons by MSFE for Different Forests on High-Dimensional
Data
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ρ 1step−WRFopt 2steps−WRFopt wRF CRF
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Figure D.2: Improvement Ratio vs Noise on Servo Data Set

Data set RF 2steps-WRFopt 1step-WRFopt wRF CRF
BH 2.293(5) 2.273(3) 2.284(4) 2.254(1) 2.271(2)

Servo 0.610(3) 0.613(4) 0.614(5) 0.604(1) 0.609(2)

CCS 3.870(5) 3.836(1) 3.841(2) 3.847(3) 3.866(4)

ASN 1.672(5) 1.646(1) 1.648(2) 1.662(3) 1.663(4)

CCPP 3.030(2) 3.048(4) 3.060(5) 3.026(1) 3.034(3)

CST 2.504(5) 2.311(1) 2.320(2) 2.377(3) 2.434(4)

EE 1.191(2) 1.192(3) 1.194(4) 1.184(1) 1.197(5)

PT 0.860(5) 0.777(1) 0.777(1) 0.794(3) 0.808(4)

QSAR 0.871(3) 0.873(4) 0.876(5) 0.864(1) 0.867(2)

SM(×10−3) 2.882(5) 2.763(1) 2.773(2) 2.813(3) 2.846(4)

YH 0.724(5) 0.667(2) 0.675(3) 0.651(1) 0.676(4)

Tecator 1.342(5) 1.207(1) 1.207(1) 1.246(3) 1.275(4)

Table D.2: Test Error Comparisons by MAFE for Different Forests on High-Dimensional
Data
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Figure D.3: Improvement Ratio vs Noise on CCS Data Set
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Figure D.4: Improvement Ratio vs Noise on CST Data Set
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Figure D.5: Improvement Ratio vs Noise on EE Data Set
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Figure D.6: Improvement Ratio vs Noise on PT Data Set
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Figure D.7: Improvement Ratio vs Noise on QSAR Data Set
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Figure D.8: Improvement Ratio vs Noise on SM Data Set
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Figure D.9: Improvement Ratio vs Noise on YH Data Set
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Figure D.10: Improvement Ratio vs Noise on Tecator Data Set
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Figure D.11: Comparative Analysis of Conventional RF Predictive Performance Between
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Figure D.12: Improvement Ratio vs Hyper Parameters of RF on BH Data Set
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Figure D.13: Improvement Ratio vs Hyper Parameters of RF on Servo Data Set
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Figure D.14: Improvement Ratio vs Hyper Parameters of RF on CCS Data Set
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Figure D.15: Improvement Ratio vs Hyper Parameters of RF on ASN Data Set
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Figure D.16: Improvement Ratio vs Hyper Parameters of RF on CCPP Data Set
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Figure D.17: Improvement Ratio vs Hyper Parameters of RF on CST Data Set
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Figure D.18: Improvement Ratio vs Hyper Parameters of RF on EE Data Set
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Figure D.19: Improvement Ratio vs Hyper Parameters of RF on PT Data Set
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Figure D.20: Improvement Ratio vs Hyper Parameters of RF on QSAR Data Set
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Figure D.21: Improvement Ratio vs Hyper Parameters of RF on SM Data Set
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Figure D.22: Improvement Ratio vs Hyper Parameters of RF on YH Data Set
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Figure D.23: Improvement Ratio vs Hyper Parameters of RF on Tecator Data Set
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