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Abstract

Mitigating the climate crisis requires a rapid transition towards lower-carbon energy.
Catalyst materials play a crucial role in the electrochemical reactions involved in numerous
industrial processes key to this transition, such as renewable energy storage and electrofuel
synthesis. To reduce the energy spent on such activities, we must quickly discover more
efficient catalysts to drive electrochemical reactions. Machine learning (ML) holds the
potential to efficiently model materials properties from large amounts of data, accelerating
electrocatalyst design. The Open Catalyst Project OC20 dataset was constructed to that
end. However, ML models trained on OC20 are still neither scalable nor accurate enough
for practical applications. In this paper, we propose task-specific innovations applicable to
most architectures, enhancing both computational efficiency and accuracy. This includes
improvements in (1) the graph creation step, (2) atom representations, (3) the energy
prediction head, and (4) the force prediction head. We describe these contributions, referred
to as PhAST, and evaluate them thoroughly on multiple architectures. Overall, PhAST
improves energy MAE by 4 to 42% while dividing compute time by 3 to 8× depending on
the targeted task/model. PhAST also enables CPU training, leading to 40× speedups in
highly parallelized settings. Python package: https://phast.readthedocs.io.
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1. Introduction

To mitigate climate change at a global scale, it is imperative to reduce the carbon emissions
of ubiquitous industrial processes like cement production or fertiliser synthesis, as well
as to develop infrastructures for storing low-carbon energy at scale, enabling to re-use it
wherever and whenever needed. Since such processes rely on electrochemical reactions, they
require the design of more efficient electrocatalysts (Zakeri and Syri, 2015) to become more
environmentally and economically viable.

However, discovering easy-to-exploit low-cost catalysts that drive electrochemical reactions
at high rates remains an open challenge. In fact, today’s catalyst discovery pipeline mostly
relies on expensive quantum mechanical simulations such as the Density Functional Theory
(DFT) to approximate the behaviour of the materials involved in the targeted chemical
reaction. Unfortunately, the high computational cost of these simulations limits the number
of candidates that can be efficiently tested, and consequently stagnates further advances in
the field.

Machine learning (ML) holds the potential to approximate these calculations while
reducing the time needed to assess each candidate by several orders of magnitude (Zitnick
et al., 2020). This capability could transform the search for new catalysts, by making it
possible to sort through millions or even billions of possible materials to identify promising
candidates for experimental inquiry(Zitnick et al., 2020).

To enable to use of ML for catalyst discovery, the Open Catalyst Project released OC20
(Chanussot et al., 2021), a large data set of pairs of catalyst and target molecule (known
as adsorbate), along with the relaxed energy of the resulting system—a relevant metric to
assess how good a catalyst is for a given chemical reaction—computed with DFT from the
initial atomic structure. Despite recent progress (Gasteiger et al., 2021; Ying et al., 2021),
major challenges remain. First, state-of-the-art models have not yet reached high enough
performance for practical applications. Second, they are still too computationally expensive
to allow the millions of inferences required to explore the large space of potential catalysts.
Third, the graph neural networks (GNNs) typically used are designed for general 3D material
modeling tasks rather than specifically for catalyst discovery, a complex task that may benefit
from domain-specific architectures.

To address these challenges, we propose multiple model improvements to increase the
accuracy and scalability of generic GNNs applied to catalyst discovery. In particular, our
contributions are (1) a graph construction that is tailored to catalyst-adsorbate modeling,
(2) richer physics-based atom representations, (3) an energy head that learns a weighted
sum of per-atom predictions, and (4) a direct force prediction head encouraging energy
conservation. We provide a broad evaluation of these contributions on OC20 and a thorough
ablation study. In sum, the proposed PhAST improvements decrease energy MAE by 5–
42 % while dividing compute time by 3–8× depending on the targeted task/model. These
gains in model scalability enable efficient CPU training, with up to 40× speedups in highly
parallelized pipelines using PhAST, making these models significantly more accessible to a
wider community of researchers. We also believe that our work provides valuable insights for
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future research as it leverages domain-specific knowledge to improve parts of the pipeline
that were not investigated up to now. Overall, the resulting performance and scalability
gains open the door to a practical use of GNNs for new electrocatalyst design, the ultimate
end goal of this line of research.

2. Background

The problem we address is the prediction of the relaxed energy y ∈ R of an adsorbate-catalyst
system from its initial configuration in space (XXX,ZZZ), where XXX ∈ RN×3 is the matrix of 3D
atom positions and ZZZ ∈ NN contains atom characteristic numbers. This task is referred to
as Initial Structure to Relaxed Energy, IS2RE, in Zitnick et al. (2020). This is commonly
formulated as a graph regression task, where each sample is represented as a 3D graph G with
node set V of dimension N and adjacency matrix AAA ∈ RN×N . HHH ∈ RN×H represents atom
embeddings and TTT ∈ {0, 1, 2}N corresponds to tag information (see 3.1). ML models designed
for this task generally adopt graph neural networks as an architecture, as it naturally suits
3D material modeling. Such GNNs typically share a common pipeline for how they are
applied, as depicted in Fig. 1.

Figure 1: Common GNN inference pipeline for 3D material modeling. The graph creation
step remains unchanged across all methods: it creates AAA using cutoff distances and periodic
boundary conditions. The Embedding and Output blocks slightly differ across models but
the underlying idea is the same. The Embedding block learns a representation for each
chemical element and the Output block applies a global pooling of each node’s representation
to obtain the energy prediction. The key distinction between methods typically lies in the
Interaction block, where the message passing schemes vary.

In material modeling tasks, it is desirable to endow ML models with relevant symmetry
properties. In particular, we want predictions to be equivariant to translations, rotations and
(often) reflections. Many models enforce these physical priors within the architecture, making
it explicitly invariant or equivariant to the desired transformations. Formal definitions are
included in Appendix A.1.

Many GNNs in prior work focus on enforcing equivariance, though it is not strictly required
for relaxed energy prediction, which calls for invariance. Equivariant GNNs (Thomas et al.,
2018; Anderson et al., 2019; Fuchs et al., 2020; Batzner et al., 2022; Brandstetter et al.,
2021) are expressive and generalize well, but are very computationally expensive as they
are constrained by equivariant filters built on spherical harmonics and the Clebsch-Gordan
tensor product. Recent methods (Schütt et al., 2021; Satorras et al., 2021; Thölke and
De Fabritiis, 2022) model equivariant interactions in Cartesian space using both invariant
(scalar) and vector representations. While they are faster, their architectures are often very
complex and lack theoretical guarantees. Alternatively, E(3)-invariant methods (Schütt
et al., 2017; Unke and Meuwly, 2019; Shuaibi et al., 2021; Ying et al., 2021; Adams et al.,
2021; Zitnick et al., 2022) do not use atom positions directly in their internal workings.
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Instead, these methods extract and use quantities that remain invariant under rotations
and reflections. DimeNet++ (Klicpera et al., 2020b,a), for example, includes a directional
message passing (MP) mechanism that incorporates bond angles in addition to atom relative
distances. However, distances and bond angles do not suffice to uniquely identify the graph
3D structure. This is achieved by SphereNet (Liu et al., 2021) and GemNet (Gasteiger et al.,
2021), which additionally extract torsion information (between quadruplets of nodes). On
the downside, these methods are very computationally expensive as they require considering
3-hop neighbourhoods for each update step. Importantly, all these Message Passing methods
aim at broad applicability and do not leverage the specific constraints of individual tasks.

3. Proposed Method

In this section, we describe PhAST, a Physics-Aware, Scalable, and Task-specific GNN
framework for catalyst design. Notably, the architectural innovations in our proposed
framework are applicable to most current GNNs used in materials discovery. These include
a novel graph creation step, richer atom representations, an advanced energy head for
graph-level prediction, and a direct (energy-conserving) force-head for atom-wise predictions.

3.1 Graph creation

Although the graph construction step is critical in graph ML tasks, it has received little or no
attention by previous work on the OC20 data set. Most methods reuse the original proposal
by Chanussot et al. (2021). In OC20, each graph’s atom is tagged as part of the adsorbate
(tag 2), the catalyst’s surface (tag 1), or its sub-surface volume (tag 0). Tag 0 atoms were
originally added in DFT simulations to represent more explicitly the repeating pattern of
the catalyst slab. They are, by definition, further away from the adsorbate and are fixed
by construction, unlike tag 1 and tag 2 atoms, which can move during the relaxation. As a
result, we hypothesise they contain redundant information, making them of lesser importance
to predict the final relaxed energy. Besides, since they account for ∼ 65% of the nodes B.5,
and since SOTA GNNs often depend on multiple hops to compute bond and torsion angles,
we propose to remove these nodes from the graph. This should greatly reduce inference time
without impacting expressivity. As an alternative intermediate approach, we explore forming
super nodes that aggregate tag 0 atoms to avoid a potential information loss caused by their
total removal. We briefly describe these changes below, with more details in Appendix A.2.

remove-tag-0 removes all atoms with tag 0 (i.e. in S = {i ∈ V : ti = 0}) from the
graph, adapting correspondingly all graph attributes (XXX, AAA, ZZZ, TTT , etc.).

one-supernode-per-graph aggregates all tag 0 nodes from G into a supernode s with
position xxxs = 1

|S|
∑

i∈S xxxi, adjacency Ais = max(Aij : j ∈ S) and a new characteristic number
zs.

one-supernode-per-atom-type replicates the above strategy but creates one super
node per distinct chemical element in the catalyst subsurface. Its attributes are defined
based on its components, as previously.
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3.2 Atom Embeddings

In all previously proposed GNN methods to solve energy-prediction tasks (e.g. IS2RE), atom
representations are learned from scratch based on atomic number HHH = HHHZZZ . We propose to
leverage domain information to improve these representations. First, we hypothesise that
whether a given atom belongs to the adsorbate, the catalyst surface, or its subsurface is
important information. We therefore incorporate tag information into our model by utilizing
a learnable embedding matrix HHHTTT that encodes the tags as vectors. Second, we know from
previous studies that some atomic properties (e.g. atomic radius or density) are useful for
catalyst discovery (Takigawa et al., 2016; Ward et al., 2017). We leverage them as an
additional embedding vector HHHF (see A.3 for the full list of properties). Lastly, we let the
GNN learn embeddings for both the group and period information (HHHP,HHHG) since atoms
belonging to the same group or period often share similar behaviours (Xie and Grossman,
2018). As a result, our proposed atom embedding HHH is a concatenation of all of the above:
HHH = HHHZ ||HHHT ||HHHF ||HHHP ||HHHG.

3.3 Energy head

In the literature, there is often limited focus on the energy head, which is the part of the
output block responsible for the energy computation from final atom representations hhhLi .
To the best of our knowledge, all GNNs compute the relaxed energy using global pooling
ŷ =

∑
i∈V hi, where node embeddings are reduced to a scalar hi by linear layers. We identify

two limitations in this procedure: First, all atoms are assigned the same importance, even
though the properties of an atom are normally influenced by the properties of the element.
Second, the graph topology is neglected by simply summing all atom encodings regardless of
their 3D positions. To overcome these limitations, we explore alternative energy heads.

First, a weighted sum of node representations, which grants adaptive importance
to each chemical element, expressed as ŷ =

∑
i∈V α(hhhLi ) ·hi or ŷ =

∑
i∈V α(hhh0i ) ·hi, where the

learnable importance weights α(·) depend either on the embedding block initial encodings hhh0i
or final ones hhhLi .

Second, a hierarchical pooling approach endowed with the following energy head
pipeline: hhhLi → [Pooling→ GCN] (×2)→ Global Pooling→ MLP→ ŷ. By applying a graph
convolutional network (GCN, Kipf and Welling, 2016) on a coarsened graph, we propagate
information differently, allowing us to capture hierarchical graph information. We implement
hoscpool (Duval and Malliaros, 2022): an end-to-end pooling operator that learns a cluster
assignment matrix using a loss function inspired by motif spectral clustering.

3.4 Force head

A closely related task to IS2RE (i.e. energy prediction) consists in computing forces together
with energy. This involves the additional prediction and training of atom-wise 3D vectors
representing the forces currently applied on each atom by the rest of the system. This task
is referred to as Structure to Energy and Forces, S2EF in Zitnick et al. (2020). In many
previous works, atomic forces are directly computed as the predicted energy’s gradient with
respect to atom positions ~yi = - ∂y

∂xxxi
(i.e. its definition in physics). While this guarantees
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energy-conserving forces1, Kolluru et al. (2022) demonstrated the significant computational
burden associated with this approach, which increases memory use by a factor of 2–4 and
leads to decreased modeling performance for specific datasets. As a result, several recent
works neglected this principle on OC20, proposing direct force predictions from final
atom representations. Here, we extend this idea by proposing a plug-and-play force head
architecture for traditional energy conserving GNNs (Schütt et al., 2017; Klicpera et al.,
2020b). We thus use a shared backbone with two independent output heads: ΦE denotes
graph-level energy predictions and ΦF denotes atom-level force predictions (both including
the backbone).

We keep the traditional energy loss LE = ||ŷ− y||2 and force loss LF =
∑

i ||~̂yi− ~yi||2
to train our network, respectively pushing predicted energy ŷ = ΦE(G) towards its ground
truth value y and predicted forces ~̂yi = ΦF

i (G) towards their ground truth value ~yi, i.e. the
negative energy gradient. However, using LE and LF does not guarantee that ~̂yi and - ∂ŷ

∂xxxi

will be aligned since both are predicted separately.
To encourage energy conservation in the presence of a force head, we propose a new

gradient-target loss term: the L2 (squared) distance between atomic force predictions and
the negative energy gradient with respect to atom positions. For a given graph:

LGrad =
1

|G|
∑
i∈G

∥∥~̂yi − (- ∂ŷ
∂xxxi

)∥∥2
2

(1)

This term aims to correct for the possible misalignment between predicted forces and
predicted energy, reinforcing the energy conserving character of our predictions. Alternatively,
while the norm considers both the concept of direction and distance, we also study substituting
the above term by a cosine similarity loss between predicted forces and the negative
predicted energy gradient which mostly focuses on directional misalignment:

LCos =
1

|G|
∑
i∈G

~̂yi ·
(
- ∂ŷ
∂xxxi

)
‖~̂yi‖2 · ‖

(
- ∂ŷ
∂xxxi

)
‖2
. (2)

While one could train with LGrad or LCos all along, we empirically obtained slightly better
performance by using this term at the end of training only, as fine-tuning. We hypothesize
this is because we first want the GNN to properly predict energy and forces before making
predictions more energy conserving.

3.5 PhAST: final components

In Section 5, we present the ablation study that lead us to the selection of the various
components that make PhAST, across the four areas of improvements. All results displayed
in Section 4 thus leverage these components. As an overview, we list them here:

1. Graph creation: remove-tag-0.

2. Atom embeddings: all embeddings HHH = HHHZ ||HHHT ||HHHF ||HHHP ||HHHG.

1. a desirable feature in molecular dynamics, as it improves the stability of the simulation and the ability to
reach local minima (Chmiela et al., 2017)
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3. Energy head: weighted sum from initial embeddings.

4. Force head: direct force prediction with gradient target loss.

4. Evaluation

In this section, we evaluate the performance and scalability of the PhAST framework for
five well-known GNNs on the OC20 dataset (Chanussot et al., 2021). We first perform an
in-depth study of the first three components of PhAST on the OC20 IS2RE energy prediction
task, before looking at the gains of the last component (i.e. the force head) on the OC20
S2EF-2M energy-force prediction task.

4.1 Baselines

We target five well-known GNN baselines to study the impact of our contributions, including
state-of-the-art method GemNet-OC Gasteiger et al. (2022). We have selected them based
on their popularity and ease-of-implementation but note that PhAST improvements are
applicable to all recent GNNs for 3D material modeling, to the best of our knowledge, because
the changes are architecture-agnostic. We use the hyperparameters, training settings and
model architectures provided in the original papers. As mentioned in Figure 1, they all follow
a similar pipeline, mainly differing in their interaction blocks, which we briefly detail below.

SchNet (Schütt et al., 2017) is a simple message passing architecture that leverages
relative distances to update atom representations via a continuous filter: hhh(l+1)

i =
∑

j hhh
l
j �

W l(xxxi − xxxj) where W l(xxxi − xxxj) is a radial basis function to encode distance between atom
pairs.

DimeNet++ (Klicpera et al., 2020a) is an optimised version of DimeNet (Klicpera et al.,
2020b), which proposes a directional message passing. In other words, they compute and
update edge representations instead of atoms) using interatomic distances eRBF (encoded
via bessel functions) and bond angles aSBF (encoded via 2D spherical Fourier-Bessel basis):

m
(l+1)
ij = fupdate

(
m

(l)
ij ,

∑
k∈Nj\i

fint(m
(l)
ij , e

(ij)
RBF ,a

(ki,ji)
SBF )

)

ForceNet (Hu et al., 2021) is a scalable force-centric GNN that does not impose explicit
physical constraints (energy conservation, rotational invariance). It attempts to encourage
invariance by efficient rotation-based data augmentation. Model-wise, it adopts a node
message passing approach that leverages node positions directly via a spherical harmonics
basis.

GemNet (Gasteiger et al., 2021) builds on top of DimeNet++, but additionally incorpo-
rates torsion information between quadruplets of atoms. This grants it the ability to process
more geometric information and thus to distinguish between a wider range of different graphs,
at the cost of extra computational cost and model complexity.

GemNet-OC (Gasteiger et al., 2022) is an improved version of GemNet.
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4.2 PhAST performance on IS2RE

Dataset. OC20 contains 1,281,040 DFT relaxations of randomly selected catalysts and
adsorbates from a set of plausible candidates. In this section, we focus on the Initial Structure
to Relaxed Energy (IS2RE) task (Zitnick et al., 2020), that is the direct prediction of the
relaxed adsorption energy from the initial atomic structure. It comes with a pre-defined
train/val/test split, 450,000 training samples and hidden test labels. Experiments are
evaluated on the validation set, which has four splits of ∼ 25K samples: In Domain (ID),
Out of Domain adsorbates (OOD-ads), Out of Domain catalysts (OOD-cat), and Out of
Domain adsorbates and catalysts (OOD-both).

Metrics. We measure accuracy via the energy Mean Average Error (MAE) in meV on
each validation split, and scalability by the inference time (in seconds) over the whole ID
validation set. We also include throughput in Table 4, i.e. the number of samples processed
per second at inference time2. Since the absolute time metrics are difficult to compare across
hardware setups with respect to other works, we note that the most relevant metrics are the
relative improvements we show using the exact same hardware and software for all models.
In order to easily visualize the contributions of PhAST on the baseline models in terms of
performance improvement, in Figure 2 (left) we plot the relative MAE improvement with
respect to the baseline. Specifically, we compute the MAE improvement as

MAE improvement = 100× MAE(baseline)−MAE(PhAST)
MAE(baseline)

. (3)

Baselines. We study the enhancements brought by the PhAST components (see Sec-
tion 3.5) to five key GNN architectures for material modeling: SchNet (Schütt et al., 2017),
DimeNet++ (Klicpera et al., 2020a), ForceNet (Hu et al., 2021), GemNet (Gasteiger et al.,
2021) and GemNet-OC (Gasteiger et al., 2022). We compare every baseline with their PhAST
counterpart, incorporating the best components of each category detailed in Section 3.5, that
is graph creation (3.1), enriched atom embedding (3.2) and advanced energy-head (3.3), as
determined by the ablation study conducted in Section 5.

Results. From Table 1 and Figure 2, we conclude that our set of PhAST enhancements
consistently improve both MAE and inference time upon the original baselines. More precisely,
PhAST improves Average MAE over the four validation splits by ∼ 6.2 % on average across
baselines, while reducing model inference time by ∼ 4.5× (on average across all baselines).
Moreover, we observe an MAE improvement of 12.4 % for SchNet and 9.7 % for DimeNet++
on val OOD-both, compared to a 7.7 % and 5.2 % for Average MAE. This suggests that
PhAST models generalise better than original baselines. From the ablation study conducted
in Section 5, we conclude that this is due to the combination of our extensions, as they
all contribute to significantly better performance on out-of-distribution adsorbate-catalyst
systems (OOD-both). Note that inference time gains with PhAST are almost doubled from
SchNet, a 1-hop message passing (MP) approach, to DimeNet++, a 2-hops MP approach

2. Throughput differs from inference time as it only measures the on-device forward pass of the model,
neglecting data-loading, inter-device transfers etc. While more theoretically relevant, it is also less
practically informative, which is why we report both.
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Figure 2: A comparison of the improvements brought by PhAST to the model’s MAE (left)
and inference times (right) on OC20 IS2RE. The PhAST components are selected in Section 5
and summarised in Section 3.5. MAE improvements (left) are computed as in Equation 3 and
values to the right of the dashed line at 0.0 denote an improvement of PhAST with respect
to the baseline. The results are averaged over 3 runs, with bootstrapped confidence intervals
represented by small horizontal bars. PhAST leads to a significant MAE improvement for
each validation split, up to 13 %, in addition to decreasing inference time (s) by several
factors (e.g. 3.4× or 5.4×). Absolute numerical values are provided in Table 1.

Baseline / MAE ID OOD-ad OOD-cat OOD-both Average Inference time (s)

SchNet 637 734 661 703 683 15± 0.49
PhAST-SchNet 618 677 611 616 630 5± 0.365± 0.365± 0.36

D++ 571 722 561 661 628 110± 0.57
PhAST-D++ 568 654 560 597 595 20± 0.6320± 0.6320± 0.63

ForceNet 658 701 632 628 654 167± 0.96
PhAST-ForceNet 612 664 592 597 616 33± 0.6033± 0.6033± 0.60

GemNet 573 808 571 744 674 487± 0.24
PhAST-GemNet 559 713 558 648 619619619 88± 0.1088± 0.1088± 0.10

GemNet-OC 593 658 605 584 610 868± 1.89
PhAST-GemNet-OC 564 636 587 562 588 257± 0.09257± 0.09257± 0.09

Table 1: MAE and inference time for various GNNs and their PhAST counterpart on OC20
IS2RE, averaged over 3 runs. Average MAE is computed over all validation splits. PhAST
models all show improved accuracy and drastic speedups. Note that PhAST-SchNet almost
matches the original DimeNet++ while being 21 times faster. A graphical visualisation of
the inference time and of relative MAE improvement is provided in Figure 2. Seamingly
suboptimal MAE results for the two baseline GemNet models are explained in Appendix B.2.

(from 3× to 5.5× speedup)3. Throughput scores provided in Table 4 support the results
obtained from inference time.
3. A “limited” speedup of 3.4× on GemNet-OC can be explained by the fact that it is a bigger but more

efficient version of the original GemNet architecture.
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4.3 PhAST performance on S2EF

Dataset. In this section, we focus on the Structure to Energy and Forces (S2EF-2M) OC20
dataset, that is, the prediction of both the overall energy and atom forces, from a set of
2 million 3D material structures. According to the dataset creators, the 2M split closely
approximates the much more expensive full S2EF dataset, making it suitable for model
evaluation (Gasteiger et al., 2022). It also come with pre-defined train/val/test splits4.

Metrics. Both Energy MAE (E-MAE) and Forces MAE (F-MAE) are used to measure
model accuracy. Regarding scalability, we continue to use the inference time (seconds) over
the ID validation set as well as the number of samples per seconds processed by the model
at inference time (throughput).

Baselines. We re-use the same baselines as above, leaving aside GemNet and GemNet-
OC given the increased computational scale of this new dataset and the size of those two
models5. Since ForceNet already has a direct force prediction head, unlike SchNet and D++,
we implemented ForceNet-FE which computes forces as the gradient of the energy with
respect to atom positions (denoted FE, i.e. from energy) in order to assess the added value
of the force head. PhAST-FE includes the components of the previous subsection (graph
creation, atom embedding, energy head) and computes forces using the energy gradient while
PhAST additionally contains the best performing force head, determined in Section 5.

Results. From Table 2, we conclude that (1) PhAST-FE improvements are also very
significant on S2EF. They lead to better modeling accuracy (13% E-MAE improvement) and
lower compute time (inference time divided by 4.4) across all three models. (2) Including the
proposed PhAST force-head yields significantly better energy MAE than original PhAST-FE
and it reduces memory usage by a factor of 2 to 4 as well as compute time by a smaller
factor.

PhAST improves Energy MAE by 32% compared to base models and by 22% compared to
PhAST-FE while suffering from a 7% drop in Force MAE (on average across all three GNNs).
Compared to baselines, PhAST multiplies throughput by 10-15× and divides inference time
by a factor of 4-8. Compared to energy-focused PhAST enhancements, it reduces inference
time by 31% on average and increases throughput by a factor of 2.4×. These scalability gains
arise both from avoiding to compute the gradient and from increasing batch size given saved
memory space6. Lastly, we manage to make force prediction slightly more energy-conserving
by using the gradient-target loss term, although the improvement is relatively small. A more
detailed analysis can be found in Section 5.

5. Ablation study

In this section, we provide the results of a careful ablation study assessing the contribution
to both accuracy and reduction in compute time of each of the proposed components of

4. Similarly to IS2RE, the S2EF validation dataset comes in 4 distinct splits with a cumulative total of 1M
samples: ID, OOD-ad, OOD-cat, OOD-both.

5. For reference, GemNet-OC is trained for 2800 GPU hours, a computational budget we could not afford.
6. The enabled increase in batch size explains how throughput and inference time improve differently: while

isolated forward passes can scale linearly with batch size due to GPU parallelism (throughput), the data
loading of larger batches can be a bit slower (inference time). As explained before, we keep both figures
because of the theoretical/practical gains trade-off.
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Baseline / MAE E-MAE F-MAE EC Throughput (s/s) Inference time (s)

SchNet 1014 70.6 0 519± 33 2050± 15
PhAST-FE-SchNet 890 68.468.468.4 0.27 2404± 125 593± 04
PhAST-SchNet 595595595 77.2 0.220.220.22 6042± 3876042± 3876042± 387 477± 03477± 03477± 03

D++ 913 69.2 0 103± 14 10189± 114
PhAST-FE-D++ 813 67.967.967.9 0.11 615± 40 1687± 05
PhAST-D++ 636636636 83.6 0.100.100.10 1522± 2051522± 2051522± 205 1259± 261259± 261259± 26

ForceNet 721 68.6 0.25 227± 25 4524± 47
ForceNet-FE 765 190 0 105± 14 9191± 18
PhAST-ForceNet-FE 607 157 0 505± 40 2117± 03
PhAST-ForceNet 542542542 63.963.963.9 0.190.190.19 1090± 1771090± 1771090± 177 1357± 771357± 771357± 77

Table 2: A comparison of energy and forces prediction, throughput and inference time of
PhAST-FE and PhAST (i.e. with force-head improvements) on the baseline GNN models
on OC20 S2EF. E-MAE and F-MAE denote respectively the Average Energy/Force MAE
computed over all validation splits. Inference time (sec.) and Throughput (samples/sec.
processed during inference) are averaged over 3 runs.

PhAST. Note that due to the size and computational cost of GemNet and GemNet-OC, we
did not conduct a full ablation study on those two models.

5.1 Selecting IS2RE PhAST components

We study the accuracy and scalability gains of

– the graph creation step contributions: (1) remove-tag-0 (2) one-supernode-per-graph
(denoted as sn-graph in the table) (3) one-supernode-per-atom-type (sn-atom-type); all
described in Section 3.1.

– the atom embeddings’ contributions, where we include in addition to HZ: (1) tag
embeddings HT (denoted as tag-embed in the table) (2) physics-aware embeddings
HF (phys-embed) (3) learned physics aware embeddings (l-phys-embed) (4) period
and group embeddings HP,HG (pg) (5) all of them (all, i.e. 1-2-4 concatenated), all
described in Section 3.2.

– the energy-head contributions: (1) a weighted sum of node representation from initial
encodings (denoted as w-init in the table) (2) a weighted sum of node representation
from final encodings (w-final) (3) the hierachical pooling operator (hoscpool), all
described in Section 3.3.

Figure 3 shows graphical results of the MAE improvement computed as in Equation 3 of
the ablation study whose exact numerical values can be found in Table 5, Table 6, Table 7 in
the appendix. From Figure 3, we derived the following observations:
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Figure 3: Ablation study results on IS2RE of our PhAST contributions about (1) the graph
creation step, (2) atom embeddings and (3) the energy prediction head, all detailed in Section 3,
for SchNet, DimeNet++ and ForceNet. All changes lead to significant improvements in
model performance compared to the dash line denoting the baseline (Left). All contributions
have little impact on inference time except from the graph rewiring steps which divides it
by several factors (Right). The best technique from each family selected for PhAST are
highlighted with a darker edge around the shaded background.

• Regarding our proposed improvements in the graph creation step, sub-surface atoms
appear to contain redundant information as remove-tag-0 does not cause performance
drop and aggregating it into super nodes does not yield better results. We offer two
potential explanations: (1) the data generation process of DFT simulations is not

12
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optimal and tag 0 does contain redundant information (2) ML models do not manage to
extract meaningful information from this repeated pattern, in which case our approach
could be used by future work to demonstrate a better usage of this long range context
info. remove-tag-0 also dramatically decreases compute time.

• Enriched atom embeddings improve performance and generalisation, especially when
adding tag information (available in the data set). Notably, the combination of all
embeddings provided the best results.

• Regarding the energy head, the hierarchical pooling approach is not very successful,
either due to the difficulty of the task or the absence of hierarchical structures; but
both energy-head weighted sums are beneficial.

In conclusion, we obtain the following best components for the PhAST version of our
models: remove-tag-0, full concatenation of atom embeddings (all) and predicting the system
energy as a learned weighted sum of per-atom predictions, from the initial embeddings (w-init).

5.2 Selecting S2EF PhAST components

Table 3 contains the result of an ablation study comparing the options described in Sections 3.4
and 4.3 to adapt PhAST to the OC20 S2EF data set. We study the accuracy / scalability
trade-off of the following combinations:

– FE : original model, with forces predicted as the gradient of the energy prediction with
respect to atom positions.

– PhAST-FE : PhAST enhancement of a baseline GNN model, with components selected
in the IS2RE ablation study (Section 5.1).

– PhAST-Direct : PhAST model with the proposed direct force head.

– PhAST-Grad : PhAST model with direct force head and energy-grad loss from Eq.1.

– PhAST-Cos : PhAST model with direct force head and cosine similarity loss from Eq.2.

From Table 3, we draw the following observations:

• PhAST-FE yields significant compute time and MAE improvements for all baselines,
similarly to what we saw on IS2RE in Sections 4.2 and 5.1. This confirms its relevance
and generalization capabilities. To be more concrete, PhAST-FE leads to 13% and 4%
improvements in E-MAE and F-MAE, respectively, while inference time is divided by
4.2 and throughput multiplied by 5.1× (averaged over all three baselines).

• PhAST-Direct yields additional computational gains compared to PhAST-FE. Indeed,
direct force predictions avoids computing the energy gradient, which saves memory
as we do not have to compute the energy’s gradient in the forward pass. This extra
memory space can be used to increase the batch size, leading to even lower total
inference time.
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Baseline / MAE E-MAE F-MAE EC Throughput Inference time

SchNet-FE 1014 70.6 0 519± 33 2050± 15
PhAST-FE-SchNet 890 68.468.468.4 0 2404± 125 593± 04
PhAST-Direct-SchNet 716 81.2 0.27 6110± 390 455± 03
PhAST-Grad-SchNet 619619619 79.9 0.23 6164± 4116164± 4116164± 411 456± 03
PhAST-Cos-SchNet 667 84.9 −0.10 6078± 376 435435435± 02

D++-FE 913 69.2 0 103± 14 10189± 114
PhAST-FE-D++ 813 67.967.967.9 0 615± 40 1687± 05
PhAST-Direct-D++ 663 83.7 0.11 1575± 184 1255± 28
PhAST-Grad-D++ 659659659 83.7 0.10 1621± 1801621± 1801621± 180 1271± 12
PhAST-Cos-D++ 713 83.9 −0.19 1607± 171 1092± 941092± 941092± 94

ForceNet 721 68.6 0.25 227± 25 4524± 47
ForceNet-FE 765 190 0 105± 14 9191± 18
PhAST-FE-ForceNet 607 157 0 505± 40 2117± 03
PhAST-Direct-ForceNet 542542542 63.963.963.9 0.19 1090± 1771090± 1771090± 177 1357± 77
PhAST-Grad-ForceNet 554 64.0 0.18 1066± 189 1294± 86
PhAST-Cos-ForceNet 700 80.1 −0.12 1034± 143 1262± 88

Table 3: Comparing model performance on OC20 S2EF for baseline GNN, PhAST-FE GNN
and the different PhAST force-head proposed enhancements whose description is provided
in the Baselines paragraph above. E-MAE and F-MAE denote respectively the Average
Energy/Force MAE computed over all val splits. Inference time (sec.) and Throughput
(samples/sec. during inference) are averaged over 3 runs.

• PhAST-Direct also leads to significant gains in Energy MAE, at the cost of Force
MAE points. We hypothesise that this happens because SchNet and DimeNet++ are
invariant models and struggle to propagate equivariant information for accurate force
predictions. This hypothesis is reinforced by the fact that it is not the case for ForceNet,
which processes directional information.

• Adding a new loss term to encourage energy conservation (Grad, Cos) only has a small
effect. Indeed, the difference between predicted forces and the energy gradient, given
by the EC metric (see Equation (1)), only undergoes relatively small drops for Grad vs
the Direct force head. However, it often leads to small performance gains, making it
relevant nonetheless.

In conclusion, PhAST with direct force predictions using the gradient-target loss (Grad)
is a desirable enhancement if one targets good energy prediction and/or high scalability.
However, if interested in pure molecular dynamics, we suggest using PhAST without this
force head.
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6. CPU Training Enhancements

As described in previous sections, PhAST significantly improves the inference time of various
models on the OpenCatalyst dataset. In this section, we’ll also show how PhAST enables
machine learning researchers to train their models on CPUs, thereby providing an additional
hardware platform for different users. The greater abundance of CPUs compared to GPUs,
especially in the computational chemistry community, makes the ability to effectively train
models on CPUs highly desirable, as it unlocks the potential of training advanced ML models
on OpenCatalyst for a larger set of users.

(a) MegNet throughput on S2EF-2M on Intel Sap-
phire Rapids (SPR) CPU. Parallization across
multiple SPR nodes (2 CPUs per node) enables
significant speedback in training throughput.

(b) Speedup compared to Miret et al. (2022)
on Intel Sapphire Rapids (SPR). At the largest
degree of parallezation with 512 MPI ranks con-
taining individual processes, we achieve 40x
speedup.

Figure 4: CPU-based training of MegNet (Chen et al., 2019) using 4th Gen Intel Xeon
Scalable Processors known as Sapphire Rapids (SPR). The top of the x-axis specifies the
number of CPU nodes with each node including 2 SPR CPUs, meaning that at the largest
degree of parallization we run on 32 SPR with 64 CPUs. The bottom x-axis outlines the
number of MPI ranks, which specifies the number of parallel MPI processes occuring at a
given time. Using 32 SPR nodes, we can scale up to 512 MPI ranks which provide significant
speedup in model trianing.

To implement PhAST CPU training, we leverage the Open MatSci ML Toolkit by Miret
et al. (2022) which provides a unified platform for training deep learning on the OpenCatalyst
dataset across different hardware platforms. Additionally, Miret et al. (2022) utilize the Deep
Graph Library (DGL) as the platform for GNN development, which provides an additional
proofpoint given that all prior experiments were performed using PyTorch Geometric. In
this set of experiments, we focus on a distinct baseline architecture, MegNet (Chen et al.,
2019), a GNN that was constructed for chemical modeling featuring node attributes, bond
attributes and graph level attributes. We performed our training on fourth generation Intel
Xeon Scalable processors (named Sapphire Rapids - SPR) and investigated the scalibility
and compute of PhAST across multiple CPU nodes. All such experiments perform MegNet
training on S2EF-2M with hyperparameters described in Miret et al. (2022).
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The first set of observations we can make from our study is that applying PhAST
significantly increases the throughput of processed graphs for training experiments as shown in
Figure 4a. The throughput achieved with PhAST is greater than 5× the throughput achieved
without PhAST and scales more favorably up 128 MPI ranks. This confirms the general
trend observed in previous experiments providing further evidence that PhAST significantly
increases the compute efficiency of both inference and training on the OpenCatalyst dataset.

The second set of observations we can make relates to the training speedup achieved by
PhAST using advanced CPUs seen in Figure 4b, which shows that we can achieve up 40×
speedup in training time combining PhAST with advanced CPUs compared to the GPU
based machines used in Miret et al. (2022). Additionally, the increase in compute gained
from PhAST is clearly shown when comparing to running the same training experiment
without PhAST (shown in red on Figure 4b). At the largest degree of parallelization, regular
training achieves 5× performance gain which can attributed to more advanced hardware,
which is minimal compared to the ∼40× speedup achieved using PhAST.

7. Conclusion

In this work, we presented several enhancements targeted to catalyst discovery and applicable
across a variety of existing GNN models. We showed that (1) enriching atom representations
with physics-based properties, (2) tailoring the graph creation to the specific task at hand,
(3) weighting atoms’ importance when computing the system energy, (4) making direct
force predictions with a energy conserving loss term, all reduce inference time significantly
while leading to better accuracy. Besides, these gains in memory and running time make it
possible to run models on CPUs, achieving up to 40× speedups and making these algorithms
accessible to a greater number of researchers. Overall, our results also suggest that com-
plex practical applications like catalyst discovery benefit from task-specific methods rather
than general 3D material modeling GNNs and that performance and scalability gains can
be achieved by focusing on all aspects of the pipeline instead of only the message passing block.

Additionally, we expect generative models to play a prominent role in catalyst discovery,
replacing manual suggestion of promising new catalyst. In this paradigm, generative models
require millions of calls to a GNN oracle to assess how good each catalyst is and explore the
space of potential candidates accordingly. Due to its significant computational and accuracy
gains, we believe that PhAST holds the potential to make a real difference, enabling the
discovery of superior catalysts. This could lead to more efficient electrochemical reactions
and thus contribute to reducing carbon emissions in industrial processes like fertilizer, cement,
and green hydrogen production.

Finally, despite being designed for catalysis discovery, we anticipate that PhAST compo-
nents will yield benefits in other application domains, such as QM9 (Ramakrishnan et al.,
2014), QM7X(Hoja et al., 2021) and MD17 (Duvenaud et al., 2015), as well as generalizing
to other GNN architectures.
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Appendix A. Method

A.1 Invariance and equivariance to symmetries

Let φ : V → R and Φ : V →W be arbitrary functions where W,V are linear spaces. Let G
be a group describing a symmetry which we want to incorporate into φ, Φ (e.g. euclidean
symmetries E(3)). We use group representations ρ1 : G → GL(V ) and ρ2 : G → GL(W ),
where GL(V ) is the space of invertible linear maps V → V to represent how the symmetries
g ∈ G are applied to vectorsX ∈ V,W . φ is an G-invariant function if it satisfies φ(ρ1(g)X) =
φ(X), ∀g ∈ G and X ∈ V .
Φ is an G-equivariant function if it satisfies Φ(ρ1(g)X) = ρ2(g)Φ(X), ∀g ∈ G and X ∈ V .

In this paper, we focus on accelerated catalysis and thus on adslab relaxed adsorption
energy prediction. Like for most 3D molecular prediction tasks, we want GNNs to predict
the same energy for two rotated, translated or reflected versions of the same system, since
their energy is equal in real-life. Hence, we target E(3)-invariant models, where E(3) is the
Euclidean group in a 3D space (we have 3D atom positions), that is, the transformations of
that 3D space that preserve the Euclidean distance between any two points (i.e. rotations,
reflections, translations). Note that we do desire reflection invariance because we rotate the
whole adsorbate-catalyst system and not just the adsorbate, in which case chiral molecules
may have a different behaviour and shall be considered distinctly.

A.2 Graph creation

A.2.1 OC20

Chanussot, Lowik, et al. Chanussot et al. (2021) create each OC20 sample by choosing a
bulk material from the Materials Project database7. Then, they select a surface from the
bulk using Miller indices (at random) and replicate it at depth of at least 7 Å and a width of
at least 8 Å. The final slab is defined by a unit cell that is periodic in all directions with a
vacuum layer of at least 20 Å applied in the z direction. Next, they pick a binding site on
this surface to attach the adsorbate onto the catalyst. The graph is now a set of atoms with
their 3D positions. Last but not least, edges are created between any two nodes within a
cutoff distance c = 6Å of each other (considering periodic boundary conditions).

7. https://materialsproject.org/
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A.2.2 PhAST graph creation process

Although well grounded, the assumptions of this graph creation process are rarely questioned.
We do, with the objective of making the graph sparser and more informative for subsequent
GNNs. We describe more formally the three proposals evoked in 3.1.

remove-tag-0. Let S = {i ∈ V : ti = 0} denote the set of tag 0 atoms in the atomic
system. The new graph we derive has attributesXXX = XXXS whereXXXS is the position of all atoms
except those in S. Similarly, ZZZ = ZZZS and TTT = TTTS . The new adjacency matrix AAAS is still
defined based on cutoff distance and periodic boundary conditions: Aij = 1 if ||xxxi − xxxj || < c,
0 otherwise. But it focuses on XXXS , thus only containing edges which do not involve atoms in
S. Same for cell offsets O.

one-supernode-per-graph. The position of the created super node is the mean of
its components: xxxs = 1

|S|
∑

i∈S xxxi (with S as defined above). We associate it to a new
characteristic number zs (corresponding to a new element in atomic table) and adjacency
Ais = max(aij : j ∈ S). We now remove all tag-0 atoms using the remove-tag-0 method, and
finally add a tag-0 attribute ti = 0 to the supernode. Note that we also remove self-loop for
the supernode.

one-supernode-per-atom-type. This extension is similar to the previous one, ex-
cept that we create one supernode for each chemical element in the sub-surface catalyst.
This complexify a bit the graph definition. Let a be the number of distinct elements with
tag 0 in the graph (a = 1, 2, 3 by construction) and ak be their characteristic number.
Let Sak = {i ∈ V|ti = 0 and zi = ak} be the set of atoms corresponding to each dis-
tinct tag-0 element ak. Each supernode sk is defined with xsk = 1

|Sak |
∑

i∈Sak
xxxi, zk = ak,

Aisk = max(Aij : j ∈ Sak) (∀i ∈ V) and Ask′sk = 1, Asksk = 0.

For both super-node methods, we encode the number of tag-0 nodes aggregated into
each super node with Positional Encodings ((Vaswani et al., 2017)) to represent their
"cardinal".

A.3 Atom properties for the Embedding block

In atom embeddings, we use the following properties from the mendeleev Python package
(Mentel (2014)):

1. atomic radius,

2. atomic volume

3. atomic density

4. dipole polarizability

5. electron affinity

6. electronegativity (allen)

7. Van-Der-Walls radius

8. metallic radius
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9. covalent radius

10. ionization energy (first and second order).

Appendix B. Results

B.1 Hyperparameters

Hyperparameters. We use each method’s optimal set of parameters, provided in the config
folder of the OCP repository for the IS2RE task, for the full dataset: https://github.
com/Open-Catalyst-Project/ocp/tree/main/configs/is2re/all. Since ForceNet was
not applied to IS2RE before, we adapted its S2EF configuration file to fit the IS2RE task.
The only change is the smaller number of epochs used for DimeNet++ (10 instead of 20)
and SchNet (20 instead of 30), as these additional epochs only lead to a small performance
gain for a large amount of additional compute time. For PhAST models, we fine-tuned its
hyperpameters to reach optimal performance.

B.2 GemNet IS2RE results

Results provided in Table 1 should appear surprising: both GemNet and GemNet-OC report
much better results on IS2RE than we show. This is due to the fact that there are, in general,
two ways to obtain the relaxed energy: either through direct prediction as we have explained
in the paper, or through relaxation. The latter relies on an S2EF model that is iteratively
applied to relax the system (positions are updated for the next step according to the current
atom positions and associated predicted forces) until convergence, and the energy of the final
(relaxed) structure is considered the model’s output energy. This procedure is both more
precise (yields better Energy MAE) but also much more computationally expensive. Both
GemNet and GemNet-OC report the iterative relaxation-based relaxed energy prediction
method to evaluate the performance of the models on IS2RE, while training on the much
larger S2EF data set.

In addition, as explained in Section 4.2 we use the published hyper parameters. We could
not afford the cost of a direct-IS2RE hyper parameter search on GemNet and GemNet-OC
and therefore resulted to use their S2EF hyper parameters.

All in all, while the absolute values of Energy MAE may seem surprising, the point
of Figure 2 and Table 1 is mainly to measure the relative effects of PhAST on the individual
models. And on this aspect, PhAST improves significantly the performance of all methods.
We expect these benefits to translate to other training configurations and state-of-the-art
architectures.

B.3 Throughput results on IS2RE

In Table 4, we include throughput results for IS2RE models.

B.4 Numerical results of the ablation study on IS2RE

Notation. For the embedding block, tag-embed defines atom embeddings HHH using atom
tag information and characteristic number: HHH = HHHZ ||HHHT , where || denotes concatenation.
Similarly, phys-embed defines HHH = HHHZ ||HHHF . l-phys-embed is a learnable alternative HHH =
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Baseline / MAE Average Throughput (s/s) Inference time (s)

SchNet 683 3190± 302 15± 0.49
PhAST-SchNet 630 16109± 200016109± 200016109± 2000 5± 0.365± 0.365± 0.36

D++ 628 191± 30 110± 0.57
PhAST-D++ 595 1021± 1301021± 1301021± 130 20± 0.6320± 0.6320± 0.63

ForceNet 654 147± 14 167± 0.96
PhAST-ForceNet 616 734± 139734± 139734± 139 33± 0.6033± 0.6033± 0.60

GemNet 674 52± 06 487± 0.24
PhAST-GemNet 619619619 306± 31306± 31306± 31 52± 0.1052± 0.1052± 0.10

GemNet-OC 654 29± 04 858± 1.89
PhAST-GemNet-OC 616 88± 0688± 0688± 06 257± 0.09257± 0.09257± 0.09

Table 4: Comparing model performance on OC20 IS2RE. Average MAE is computed over
all validation splits. PhAST models all show improved performance and drastic speedups
(e.g. throughput is roughly 5× higher). Inference times and Throughput (number of samples
per second processed at inference time) are averaged over 3 runs.

HHHZ ||MLP (HHHF ). pg refer to period and group embeddings: HHH = HHHZ ||HHHP ||HHHG. All is a
concatenation of all five embeddings: HHH =HHHZ ||HHHT ||HHHF ||HHHP ||HHHG. For the graph creation
step, we have defined these approaches in A.2.2 (note: sn stands for supernode). For the
energy head part, w-init (w-final) denote the weighted sum of initial (final) atom embeddings.
graclus and hoscpool refer to the two hierarchical pooling approaches.

See Tables 5, 6, 7. The results are reported in a similar fashion as for Table 1. The
symbol � indicates that a result is better than the baseline model. Bold font shows the best
extension for each PhAST improvement category.

B.5 Graph-Rewiring: impact on the number of edges and nodes
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Method / MAE Average ID OOD-ad OOD-cat OOD-both Inference time (s)

tag-embed 648� 637 690� 629� 638� 15.39 +/- 0.33
phys-embed 662� 644 700� 639� 654� 15.48 +/- 0.38
l-phys-embed 678� 650 733� 649� 679� 15.59 +/- 0.37
pg 673� 646 725� 644� 676� 15.44 +/- 0.52
All 659� 665 690� 651� 630� 15.46 +/- 0.46

remove-tag-0 648� 627� 705� 627� 634� 4.744.744.74 +/- 0.500.500.50
sn-graph 654� 633� 705� 633� 646� 5.54 +/- 0.68
sn-atom-type 663� 628� 738 626� 659� 6.38 +/- 0.45

w-init 657� 635� 715� 631� 646� 15.37 +/- 0.48
w-final 668� 647 713� 644� 670� 15.41 +/- 0.38
hoscpool 667� 650 719� 636� 662� 53.93 +/- 1.36

SchNet 683 637 734 661 703 15.40 +/- 0.49

Table 5: SchNet ablation study on OC20 IS2RE.

Method / MAE Average ID OOD-ad OOD-cat OOD-both Inference time (s)

tag-embed 579� 551� 659� 545� 594� 110.04 +/- 0.89
phys-embed 590� 561� 671� 555 606� 110.08 +/- 0.74
l-phys-embed 612� 566� 700� 557� 626� 110.12 +/- 0.75
pg 624� 564� 710� 568 652� 110.18 +/- 0.71
All 602� 550� 691� 540� 626� 110.03 +/- 0.77

remove-tag-0 610� 576 684� 568 627� 20.1520.1520.15 +/- 0.550.550.55�

sn-graph - - - - - 25.04 +/- 1.54
sn-atom-type - - - - - 27.22 +/- 0.94

w-init 611� 568� 686� 560� 630� 110.23 +/- 0.81
w-final 601� 571 660� 566 606� 110.16 +/- 0.76
hoscpool 618� 565� 703� 563 642� 252.55 +/- 0.45

D++ 628 571 722 561 661 110.11 +/- 0.57

Table 6: Dimenet++ ablation study on OC20 IS2RE*

* Unfortunately we did not manage to train DimeNet++ with the super node extensions.
For a very wide range of learning rates, the training loss consistently reached NaN values.
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Method / MAE Average ID OOD-ad OOD-cat OOD-both Inference time (s)

tag-embed 640� 639� 690� 616� 617� 168.64 +/- 0.73
phys-embed 653� 657� 702 626� 627� 172.04 +/- 0.98
l-phys-embed 667 654� 734 626� 650 167.98 +/- 0.71
pg 634� 644� 669� 618� 603� 170.70 +/- 0.96
All 637� 622� 680� 603 615� 169.23 +/- 0.84

remove-tag-0 628� 637� 668� 611� 598� 17.0617.0617.06 +/- 0.580.580.58
sn-graph 635� 640� 676� 617� 607� 55.30 +/- 1.86
sn-atom-type 632� 641� 672� 616� 601� 70.55 +/- 0.15

w-init 639� 639� 687� 611� 616� 170.71 +/- 0.60
w-final 660 655� 716 627� 644 170.72 +/- 1.61
hoscpool 655 621� 703 638 638 202.03 +/- 1.23

ForceNet 654 658 701 632 628 167.08 +/- 0.52

Table 7: ForceNet ablation study on OC20 IS2RE.
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Rewiring Atoms Edges

Train
Full graph 35 789 459 1 309 308 840
remove-tag-0 32.53% 16.61%
one-supernode-per-graph 33.81% 17.76%
one-supernode-per-atom-type 35.45% 19.09%

ID
Full graph 1 939 553 70 825 106
remove-tag-0 32.54% 16.65%
one-supernode-per-graph 33.83% 17.80%
one-supernode-per-atom-type 35.47% 19.13%

OOD-ads
Full graph 1 918 704 69 877 652
remove-tag-0 32.42% 16.50%
one-supernode-per-graph 33.72% 17.64%
one-supernode-per-atom-type 35.38% 18.97%

OOD-cat
Full graph 1 917 954 70 314 085
remove-tag-0 32.88% 16.78%
one-supernode-per-graph 34.18% 17.95%
one-supernode-per-atom-type 35.90% 19.34%

OOD-both
Full graph 2 094 709 80 074 123
remove-tag-0 31.12% 15.33%
one-supernode-per-graph 32.31% 16.37%
one-supernode-per-atom-type 34.17% 17.83%

Table 8: Comparison of the number of nodes and edges in the original 5 datasets (training
and 4 validation splits) and the remaining number of nodes and edges after the various
rewiring strategies are performed. We can see that our rewiring methods generally remove
65+% of the atoms and 80+% of the edges.
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