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Abstract

AI systems empowered by reinforcement learning (RL) algorithms harbor the immense
potential to catalyze societal advancement, yet their deployment is often impeded by sig-
nificant safety concerns. Particularly in safety-critical applications, researchers have raised
concerns about unintended harms or unsafe behaviors of unaligned RL agents. The philos-
ophy of safe reinforcement learning (SafeRL) is to align RL agents with harmless intentions
and safe behavioral patterns. In SafeRL, agents learn to develop optimal policies by receiv-
ing feedback from the environment, while also fulfilling the requirement of minimizing the
risk of unintended harm or unsafe behavior. However, due to the intricate nature of SafeRL
algorithm implementation, combining methodologies across various domains presents a
formidable challenge. This had led to an absence of a cohesive and efficacious learning
framework within the contemporary SafeRL research milieu. In this work, we introduce
a foundational framework designed to expedite SafeRL research endeavors. Our compre-
hensive framework encompasses an array of algorithms spanning different RL domains and
places heavy emphasis on safety elements. Our efforts are to make the SafeRL-related re-
search process more streamlined and efficient, therefore facilitating further research in AI
safety. Our project is released at: https://github.com/PKU-Alignment/omnisafe.
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1. Introduction

Reinforcement Learning(RL) has gained immense attention as a powerful class of machine
learning algorithms capable of addressing complex problems in diverse domains such as
robotics and game playing (Silver et al., 2016, 2017; Vinyals et al., 2019). Nevertheless, the
application of RL in safety-critical domains raises concerns about unintended consequences
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and potential harms (Bi et al., 2021). The self-governed learning of RL agents, relying on
environmental feedback, can give rise to unsafe control policies. This may result in adverse
outcomes, such as autonomous vehicles valuing speed over safety. These concerns have
prompted extensive research into developing SafeRL algorithms (Garcıa and Fernández,
2015; Gu et al., 2022) for safety-critical applications (Feng et al., 2023; Vidgen et al., 2024).

Lack of OSS Infrastructure for SafeRL Research Despite the existence of open-
source software (OSS) and frameworks, a unified code framework remains elusive in the
SafeRL field. OpenAI introduced the safety-starter-agent (Ray et al., 2019), a SafeRL
framework in 2019 that implemented four classical algorithms based on TensorFlow-v1.
While this framework has aided subsequent researchers, it has not been updated or main-
tained since its release, and its core dependency, TensorFlow-v1, has been deprecated for
years. SafeRL algorithm implementation is complex in nature such that the cross-domain
integration with RL algorithms (i.e. constraint optimization, safe control theory) poses a
significant technical challenge, resulting in the ongoing absence of a unified and effective
learning framework within the contemporary SafeRL research landscape. This lack of a
unified backend and extensible framework substantially impedes progress in the domain.

To fulfill this gap, we present OmniSafe , an infrastructural framework designed to
accelerate SafeRL research by providing a wide range of algorithms, including Off-Policy,
On-Policy, Model-based, and Offline algorithms, etc.

2. Features of OmniSafe

The OmniSafe 1 framework is featured with the following contributions:

(1) High scalability. OmniSafe is a highly scalable framework, employing two distinctive
design components: Adapter and Wrapper. The Adapter provides a unified interface for
environment interaction to the algorithm, shielding the learning process from variations in
different interaction mechanisms (e.g., offline). The Wrapper offers plug-and-play features
for the environment interaction layer (e.g., action scaling). These abstraction layers enable
researchers to reuse all implementations of the environment interaction layer when focusing
on a specific part, such as the algorithm implementation (Altman, 1999; Sun et al., 2021;
Sootla et al., 2022) or environment customization (Li et al., 2022; Ji et al., 2023).

(2) High-performance parallel computing acceleration. By harnessing the capabil-
ities of torch.distributed, OmniSafe accelerates the learning process of algorithms with
process parallelism. This enables OmniSafe not only to support environment-level asyn-
chronous parallelism but also incorporates agent asynchronous learning. This methodology
bolsters training stability and expedites the training process via the deployment of a par-
allel exploration mechanism. The integration of agent asynchronous learning in OmniSafe

underscores its commitment to providing a versatile platform for advancing SafeRL research.

(3) Code reliability and reproducibility. The algorithms implemented OmniSafe have
been rigorously tested in Safety-Gym (Ray et al., 2019) and Mujoco-Velocity (Zhang et al.,
2020) environments to confirm their consistency with the results presented in the original
papers. Code examples necessary for result reproduction are provided within the project.

1. More detailed experimental results can be referred to online documentation: https://www.omnisafe.ai.
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Efficient Single-File Algorithm Training

import omnisafe

env_id = 'SafetyPointGoal1-v0'
agent = omnisafe.Agent('PPOLag', env_id)

# Train Stages: Learn, Render, Evaluate
agent.learn()
agent.render(num_episodes=1,render_mode='human')
agent.evaluate(num_episodes=1)

(b)

(c) (d)

Figure 1: The core features of OmniSafe include (a) Comprehensive API documentation
with user guides, examples, and best practices for efficient learning, can be found in online
documentation; (b) Streamlined algorithm training through single-file execution, simplifying
setup and management. (c) Achieve versatility through the utilization of algorithm-level
abstraction and API interfaces; (d) Enhanced training stability and speed with environment-
level asynchronous parallelism and agent asynchronous learning.

Furthermore, observations, analyses, and raw data from this process will be made accessible
to the community as a valuable reference. To maintain stringent code quality, OmniSafe ’s
code has undergone thorough unit testing throughout the development process and adheres
to project management standards such as GitHub Actions CI, Pylint, and MyPy.

(4) Fostering the Growth of SafeRL Community. OmniSafe is a unified learning
framework that represents a significant advance in standardizing the field of SafeRL. The
platform offers comprehensive API documentation, including user guides describing both
fundamental and advanced features, illustrative examples, and best practices for algorithm
parameter selection and result monitoring. Moreover, the documentation delves into de-
tailed theoretical algorithm derivations alongside practical tutorials, thereby facilitating a
swift grasp of the SafeRL algorithm for novices.

3. DataFlows of OmniSafe

To accommodate the rapid development of various algorithms and mitigate incompatibili-
ties across different environment interfaces, we have devised a unified dataflow interaction
framework for OmniSafe as illustrated in 2. The utilization of Adapter and Wrapper designs
in OmniSafe facilitates enhanced reusability and compatibility with current code resources,
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Figure 2: A high-level depiction of OmniSafe ’s distributed dataflow process. Each pro-
cess periodically syncs weights and all-reduce gradients with other processes. Vectorized

Environments first generate trajectories of the agent’s interactions with the environment.
Second, the EnvWrapper monitors and governs the environment’s status (e.g. Auto-Reset)
and outputs. Then, the Adapter assigns a suitable execution plan that handles data pre-
processing. Next, the Learner gathers pre-processed data, calls the learning algorithm, and
trains the model. Lastly, the ActionWrapper transforms the model’s outputs to the agent’s
actions interpretable by the environments. Thereby completing a cycle of dataflow.

thereby reducing the need for additional engineering efforts when creating new algorithms
or integrating new environments. A key highlight is that the Adapter layer also provides a
convenient approach for transforming problem paradigms and extracting information from
the data inflow. For instance, to convert the CMDP (Altman, 1999) paradigm to the
SauteMDP (Sootla et al., 2022) paradigm, one simply needs to replace the Adapter on the
inflow side of data with that of the SauteMDP paradigm. This approach enables users
to concentrate more on the problem at hand while incurring minimal code alterations by
utilizing the modular tools provided by OmniSafe .

4. Conclusion and Outlook

In conclusion, OmniSafe provides a comprehensive infrastructural framework designed to
expedite SafeRL research, featuring extensive API documentation, compatibility with pop-
ular environments, high modularity, and support for distributive computing. We have
experimentally validated the implementation of numerous algorithms spanning diverse RL
domains, facilitating efficient experimentation and verification of novel concepts. Our docu-
mentation delivers practical advice for conducting SafeRL research and supplies a developer
guide for enhancing the platform’s functionality. Our endeavors are directed toward the
standardization of SafeRL-related research tools and methods, with the aim of cultivating
a more streamlined and highly efficient approach. By doing so, we endeavor to facilitate
and expedite further scientific exploration in the field of AI safety.
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