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Abstract
Models with intractable normalizing functions have numerous applications. Because the normal-
izing constants are functions of the parameters of interest, standard Markov chain Monte Carlo
cannot be used for Bayesian inference for these models. A number of algorithms have been devel-
oped for such models. Some have the posterior distribution as their asymptotic distribution. Other
“asymptotically inexact” algorithms do not possess this property. There is limited guidance for
evaluating approximations based on these algorithms. Hence it is very hard to tune them. We pro-
pose two new diagnostics that address these problems for intractable normalizing function models.
Our first diagnostic, inspired by the second Bartlett identity, is in principle broadly applicable to
Monte Carlo approximations beyond the normalizing function problem. We develop an approxi-
mate version of this diagnostic that is applicable to intractable normalizing function problems. Our
second diagnostic is a Monte Carlo approximation to a kernel Stein discrepancy-based diagnostic
introduced by Gorham and Mackey (2017). We provide theoretical justification for our methods
and apply them to several algorithms in challenging simulated and real data examples including
an Ising model, an exponential random graph model, and a Conway–Maxwell–Poisson regression
model, obtaining interesting insights about the algorithms in these contexts.
Keywords: Bartlett identity, doubly intractable distributions, kernel Stein discrepancy, Markov
chain Monte Carlo, sample quality measure

1. Introduction

Models with intractable normalizing functions arise in many contexts, notably the Ising (Lenz, 1920;
Ising, 1925) and autologistic models (see Besag, 1974; Hughes et al., 2011, for a review) for binary
data on a lattice, exponential random graph models (see Robins et al., 2007; Hunter and Hand-
cock, 2006) and mixed graphical models (see Lauritzen and Wermuth, 1989; Lee and Hastie, 2015;
Cheng et al., 2017) for explaining relationships among actors in networks, interaction point pro-
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cess models (see Strauss, 1975; Goldstein et al., 2015) for describing spatial patterns among points,
and Conway–Maxwell-Poisson regression models (see Conway and Maxwell, 1962; Shmueli et al.,
2005; Chanialidis et al., 2018) for over- or under-dispersed count data. Interest in models having
intractable normalizing functions has increased rapidly during the last two decades. Indeed, a look
at the Web of Science database shows that the number of yearly citations of articles on this subject
has grown quadratically since 2005. Unfortunately, standard Markov chain Monte Carlo (MCMC)
algorithms, the workhorse of Bayesian inference in the past few decades, cannot be applied to these
models. Suppose we have data x ∈ X generated from a probability model f(x | θ) with likelihood
function L(θ | x) = h(x | θ)/c(θ), where c(θ) is a normalizing function, and a prior density p(θ).
The posterior density of θ is π(θ | x) ∝ p(θ)h(x | θ)/c(θ), which brings about so-called doubly
intractable posterior distributions. A major problem in constructing a standard MCMC algorithm
for such models is that c(θ) cannot be easily evaluated. The Metropolis–Hastings (MH) algorithm
(Metropolis et al., 1953; Hastings, 1970) acceptance probability at each step requires evaluating the
unknown ratio c(θ)/c(θ′), where θ′ denotes the proposed value.

A wide range of computational methods have been proposed for Bayesian inference for doubly
intractable posterior distributions (see Park and Haran, 2018, for a review). There are asymptotically
exact algorithms whose Markov chain has a stationary distribution equal to its target distribution
(cf. Møller et al., 2006; Murray et al., 2006; Atchadé et al., 2013; Lyne et al., 2015; Liang et al.,
2016). Throughout this manuscript we use “target distribution” to refer to the posterior distribution
of interest. Some of the asymptotically exact algorithms are available only for a small class of
probability models having intractable normalizing functions. The other algorithms are complicated
to construct and have to be carefully tuned to provide reliable inference. These algorithms tend to
be computationally intensive (Park and Haran, 2018). There are asymptotically inexact algorithms
that may be much faster and can be applied to a wider class of problems (cf. Liang, 2010; Alquier
et al., 2016; Park and Haran, 2020). An asymptotically inexact algorithm either converges to an
approximation of the target or is not known to converge to any distribution. The performance
of these algorithms relies on the choice of various tuning parameters. It is also not always easy
to judge the tradeoffs between using a faster asymptotically inexact algorithm and a potentially
more computationally expensive but asymptotically exact algorithm. Hence, it is crucial to have
diagnostics that provide guidance for users to carefully tune their algorithms to provide reliable
results.

There is a large literature on convergence diagnostics for MCMC algorithms (see Cowles and
Carlin, 1996; Flegal and Jones, 2011; Roy, 2020, for a review). In fact, given the wide usage of
MCMC and the importance of MCMC diagnostics, some of the best known MCMC diagnostics
papers have thousands of citations (cf. Gelman and Rubin, 1992; Geyer, 1992; Geweke et al., 1991)
and at this point perhaps often even get used without citation. However, the literature on assessing
the quality of approximations provided by asymptotically inexact algorithms is very limited. There
are several approaches that measure the deviation between sample means and target expectations
whose values are known (Fan et al., 2006; Gorham and Mackey, 2015, 2017). Lee et al. (2019) and
Xing et al. (2019) have provided tools for assessing the coverage of approximate credible intervals.
These are laudable innovations, but they are not available for asymptotically inexact algorithms for
doubly intractable distributions. This motivates our development of sample quality measures that
assist scientists in tuning these algorithms.

In this article we describe a new diagnostic method that uses the well known second Bartlett
identity (Bartlett, 1953a,b). Our method is, in principle, applicable in virtually any likelihood-based
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context where misspecification is of concern. We develop a Monte Carlo approximation to this
new diagnostic that is applicable to intractable normalizing function models. We also develop an
approximate version of the kernel Stein discrepancy introduced by Gorham and Mackey (2017),
making this available for doubly intractable distributions. This diagnostic asymptotically inherits
the same convergence properties as that of Gorham and Mackey (2017) and thus can be used for
diagnosing convergence of a sequence of sample distributions to the target distribution. Following
Gorham and Mackey (2017), we think of our diagnostics as measuring “sample quality.”

The remainder of this article is organized as follows. In Section 2 we briefly describe computa-
tional methods for models with intractable normalizing functions. In Section 3 we discuss the need
for diagnostics for tuning asymptotically inexact algorithms. In Section 4 we propose a new diag-
nostic for asymptotically exact and inexact methods, and we develop an approximation for doubly
intractable distributions. In Section 5 we briefly describe the kernel Stein discrepancy introduced by
Gorham and Mackey (2017) and propose its Monte Carlo approximation for intractable normalizing
function models. We provide theoretical justification for our diagnostics. In Section 7 we describe
the application of our diagnostic approaches to several algorithms in the context of three different
challenging examples and study the computational complexity and variability of our diagnostics.
Finally, in Section 8 we conclude with a brief summary and discussion.

2. Inference for Models with Intractable Normalizing Functions

Several computational methods have been developed for Bayesian inference for models with in-
tractable normalizing functions. Park and Haran (2018) categorized these algorithms into two gen-
eral, overlapping classes: (1) auxiliary variable approaches, which introduce an auxiliary variable
and cancel out the normalizing functions in the Metropolis–Hastings acceptance probability (Møller
et al., 2006; Murray et al., 2006; Liang, 2010; Liang et al., 2016), and (2) likelihood approximation
approaches, which directly approximate the normalizing functions and plug the approximations into
the Metropolis–Hastings acceptance probability (Atchadé et al., 2013; Lyne et al., 2015; Alquier
et al., 2016; Park and Haran, 2020). An important characteristic of these algorithms is whether they
are “asymptotically exact” or “asymptotically inexact.” Asymptotically exact algorithms generate a
sequence whose asymptotic distribution is exactly equal to the target distribution. Asymptotically
inexact algorithms generate a sequence that does not converge to the target distribution (or to any
distribution in some cases).

Asymptotically exact algorithms have attractive theoretical properties but can often be compu-
tationally burdensome or even infeasible for challenging models. For instance, Møller et al. (2006)
and Murray et al. (2006) depend on perfect sampling (cf. Propp and Wilson, 1996), an algorithm that
generates an auxiliary variable exactly from the target distribution using bounding Markov chains.
Perfect samplers tend to be very computationally expensive and are available only for a small class
of probability models. Atchadé et al. (2013) and Liang et al. (2016) propose asymptotically ex-
act algorithms that do not need perfect sampling. Atchadé et al. (2013)’s adaptive MCMC (ALR)
algorithm introduces multiple particles θ(1), . . . ,θ(d) over the parameter space and approximates
c(θ) in the acceptance probability through importance sampling using the entire sample path of the
algorithm. Liang et al. (2016)’s adaptive exchange (AEX) algorithm runs an auxiliary chain and
a target chain simultaneously. At each iteration, the auxiliary chain simulates and stores a sam-
ple from a set of distributions, {h(x | θ(1))/c(θ(1)), . . . , h(x | θ(d))/c(θ(d))}, where θ(1), . . . ,
θ(d) are predetermined particles over the parameter space. The target chain generates a posterior
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sample via the exchange algorithm (Murray et al., 2006), where an auxiliary variable y is sampled
from the cumulative samples in the auxiliary chain instead of exact sampling of y. These algo-
rithms require storing simulated auxiliary data or their sufficient statistics with each iteration. The
computational and memory costs are very expensive for models without low-dimensional sufficient
statistics. Pseudo-marginal MCMC algorithms (Beaumont, 2003; Andrieu and Roberts, 2009) are
approaches that use an unbiased Monte Carlo approximation of an intractable likelihood. Lyne et al.
(2015) constructed an unbiased likelihood estimate for models with intractable normalizing func-
tions. To obtain a single estimate, their approach requires multiple Monte Carlo approximations to
the normalizing constant and thus can often be computationally prohibitive.

Several computationally efficient asymptotically inexact algorithms have also been proposed.
For instance, the double Metropolis–Hastings (DMH) sampler, proposed by Liang (2010), replaces
perfect sampling with a standard Metropolis–Hastings algorithm, an “inner sampler,” at each itera-
tion of the exchange algorithm. The DMH algorithm is easy to implement and is computationally
efficient compared to the other algorithms discussed thus far. But the inner sampling becomes more
computationally expensive with an increase in the dimension of the data. For large data problems,
Park and Haran (2020) proposed a function emulation algorithm that approximates the likelihood
normalizing function (or full likelihood function) at several parameter values and interpolates the
function using a Gaussian process. This provides significant gains in computational efficiency.
More asymptotically exact and inexact algorithms are found in Park and Haran (2018).

Both asymptotically exact and inexact algorithms require careful tuning in order to provide good
approximations in a reasonable amount of time. For instance, the ALR and AEX algorithms require
users to select an appropriate number d of particles to cover the important region of the parameter
space. The DMH algorithm requires users to decide the lengthm of the inner sampler for generating
an auxiliary variable. As m grows large the auxiliary variable becomes approximately a draw from
the probability model at the expense of longer computing time. However, currently there is little
guidance on how to tune these algorithms, and most of them rely on simulation studies. Also, the
behavior of the algorithm varies across models or across datasets for a given model.

3. The Need for Diagnostics for Intractable Normalizing Function Problems

There is a vast literature on MCMC convergence diagnostics (see Cowles and Carlin, 1996; Flegal
and Jones, 2011; Roy, 2020, for a review). However, these diagnostics may not be adequate for
asymptotically inexact algorithms. Suppose we have a sample generated by an asymptotically inex-
act method. Such a sample may not have an asymptotic distribution, or said sample may converge
but to a mere approximation of the target distribution. Standard MCMC diagnostics assess whether
the sample has converged to its asymptotic distribution but do not assess whether the asymptotic dis-
tribution is equal to the target distribution. As discussed in Section 2, however, asymptotically exact
algorithms for models with intractable normalizing functions are available only for a few special
cases, and even for these cases computing tends to be quite burdensome.

Several approaches based on measuring the difference between sample means and target expec-
tations have been proposed for assessing the quality of approximations provided by asymptotically
inexact algorithms. Fan et al. (2006) proposed score function (i.e., gradient of the log likelihood)
diagnostics for assessing estimates of some quantities, the values of which are known under the
target distribution. They suggested plotting the Monte Carlo estimate versus the sample size to-
gether with error bounds. Gorham and Mackey (2015) pointed out limitations of the score function
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diagnostics caused by considering only a finite class of functions and introduced a new diagnos-
tic method based on a Stein discrepancy. Gorham and Mackey (2015) defined Stein discrepancies
that bound the discrepancy between the sample mean and the target expectation over a large col-
lection of functions whose target expectations are zero. The Stein discrepancies are supported by
a theory of weak convergence and are attainable by solving a linear program. Combining this
idea with the theory of reproducing kernels, Gorham and Mackey (2017) provided a closed-form
kernel Stein discrepancy with sound theoretical support analogous to that of Gorham and Mackey
(2015) (see Section 5.1 for details). The kernel Stein discrepancy requires evaluating the score
∇θ logL(θ | x) of a full likelihood. This can be often expressed as a sum over data points, i.e.,
∇θ logL(θ | x) =

∑n
i=1∇θ logL(θ | xi). Stochastic Stein discrepancies (SSDs) approximate

the likelihood’s score using subsampling data points to expedite computation (Liu and Wang, 2016;
Ranganath et al., 2016; Aicher et al., 2023). Gorham et al. (2020) provided theoretical justifica-
tion for SSDs. These approaches are useful for comparing asymptotically approximate samplers
and for selecting tuning parameters for such samplers. However, all of them require evaluating the
score function of the target density, which is not possible for doubly intractable posterior distribu-
tions. In contrast, our approaches apply broadly to asymptotically exact and inexact algorithms even
for such challenging problems. To our knowledge, no other diagnostics are currently available for
asymptotically inexact algorithms for intractable normalizing function models. We have studied our
diagnostics as applied in several challenging real data settings. In addition, we provide theoretical
justification for our methods.

4. Curvature Diagnostics

In this section we introduce two new diagnostics that are useful for tuning asymptotically exact and
inexact algorithms: a curvature diagnostic (CD) and an approximate curvature diagnostic (ACD).
The curvature diagnostic is based on the second Bartlett identity from the classical theory of max-
imum likelihood. The approximate curvature diagnostic is an approximation of the CD that is
suitable for intractable normalizing function problems.

4.1 A General Purpose Curvature Diagnostic

consider a sample θ(1), . . . ,θ(n) generated by an algorithm having π(θ | x) as its target distribution.
Our aim is to determine whether the sample will produce a good approximation to some quantity
of interest, e.g., Eπ{z(θ)}, where z(θ) is a real-valued function. Our diagnostic, the curvature
diagnostic, is inspired by the method for obtaining the asymptotic variance of a maximum likelihood
estimator under a misspecified model. When the model is misspecified, the second Bartlett identity
does not hold, which is to say (see details below) the sensitivity matrix is not equal to the variability
matrix. And so the asymptotic variance of the estimator does not simplify to the inverse of the
Fisher information. Our curvature diagnostic uses the dissimilarity between the sensitivity matrix
and the variability matrix to assess the quality of the sample. We provide details in the following
paragraph.

Let u(θ) = ∇θ log π(θ | x) be the score function of the posterior density π(θ | x). The
posterior density has the sensitivity matrix

Eπ {−∇θu(θ)} =

∫
Θ
−∇θu(θ)π(θ | x)dθ
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and the variability matrix varπ {u(θ)} = Eπ
{
u(θ)u(θ)>

}
. Note that the identity for the variability

matrix follows from Bartlett’s first identity: Eπ{u(θ)} = 0. Let H(θ) = ∇θu(θ), J(θ) =
u(θ)u(θ)>, and d(θ) = vech[J(θ) + H(θ)], where vech(M) denotes the half-vectorization of
the matrix M . We have Eπ{d(θ)} = 0 by Bartlett’s second identity: Eπ{−H(θ)} = Eπ{J(θ)}.
Using the sample θ(1), . . . ,θ(n) we construct a Monte Carlo approximation to the half-vectorized
difference between the sensitivity and variability matrices as

dn :=
1

n

n∑
i=1

d(θ(i)). (1)

Suppose that θ(1), . . . ,θ(n) are independent. By the central limit theorem, we have

√
ndn

d→ N(0, V ),

where V := covπ{d(θ)} = Eπ
{
d(θ)d(θ)>

}
. Our unbiased and consistent approximation of V is

calculated as

Vn :=
1

n

n∑
i=1

d(θ(i))d(θ(i))>. (2)

If θ(1), . . . ,θ(n) are from a Markov process and thus dependent, then by the Markov chain Monte
Carlo central limit theorem we have

√
ndn

d→ N(0,Σ),

where Σ := covπ{d(θ(i))} + 2
∑∞

k=1 covπ{θ(i),θ(i+k)}. The asymptotic covariance matrix Σ
can be estimated by the multivariate batch means method (Chen and Seila, 1987; Flegal and Jones,
2011). Let n = anbn where an is the number of batches and bn is the batch size. The batch means
estimate of Σ is calculated as

Σn :=
bn

an − 1

an∑
j=1

(d̄jbn − dn)(d̄jbn − dn)>, (3)

where d̄jbn =
∑jbn

i=(j−1)bn+1 d(θ(i)). The batch means estimator is strongly consistent under some
conditions (Damerdji, 1994; Jones et al., 2006; Vats et al., 2019). Because it is simple to construct
and appears to work well in practice under quite a wide range of settings (cf. Flegal et al., 2008),
we suggest using batch means. Our curvature diagnostic is then defined as follows.

Definition 1 (Curvature Diagnostic (CD)) consider a sample θ(1), . . . , θ(n) generated by an al-
gorithm having π(θ | x) as its target. If the sample is independent, our curvature diagnostic is
defined as Cn(x) := nd>n V

−1
n dn. If the sample is from a Markov process, our curvature diagnostic

is defined as CBM
n (x) := nd>nΣ−1n dn.

The CD has an asymptotic χ2(r) distribution, where r = p(p+ 1)/2 and p is the dimension of θ, if
the asymptotic distribution of the sample is equal to the target distribution. A simple and effective
heuristic for determining n is to plot V̂n against the posterior sample size n and select n at which the
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approximations appear to have stabilized. Given n, an abnormally large value of CD with respect to
χ2(r) can signal poor sample quality. We use the 1− α quantile of the χ2(r) as a threshold for our
diagnostic. A sample path for which the CD value is below the threshold is considered to have an
asymptotic distribution that is reasonably close to the target distribution. We found that α = 0.01
performed well in our simulation experiments, and so we take α = 0.01 in the sequel.

We note that our curvature diagnostic is, in principle, applicable not only in intractable normal-
izing function problems but in virtually any likelihood-based context where misspecification is of
concern. Moreover, the framework we present in this article can be extended to incorporate higher
moments.

4.2 An Approximate Curvature Diagnostic for Intractable Normalizing Function Problems

If the normalizing function c(θ) of the likelihood is intractable, it is not possible to evaluate the
curvature diagnostic since the diagnostic involves ∇θ log c(θ) and ∇2

θ log c(θ). The intractable
terms can be written as

∇θ log c(θ) = EX∼f(·|θ) {∇θ log h(X | θ)} (4)

∇2
θ log c(θ) = EX∼f(·|θ)

{
∇2
θ log h(X|θ)

}
+ EX∼f(·|θ)

{
[∇θ log h(X|θ)][∇θ log h(X|θ)]>

}
− EX∼f(·|θ) {∇θ log h(X|θ)}EX∼f(·|θ) {∇θ log h(X|θ)}> . (5)

We can replace the expectations with their Monte Carlo approximations using auxiliary variables
y(1), . . . ,y(N) that are generated exactly from f(· | θ) or generated by a Monte Carlo algorithm
having f(· | θ) as its target distribution. We provide details in Appendix A.

To reduce computational cost, we employ self-normalizing importance sampling (SNIS; Tan
and Friel, 2020). For i = 1, . . . , n we need to estimate EX∼f(·|θ(i)){g(X)} where g denotes any
function inside of the expectations in (4) and (5). For some ψ ∈ Θ, the expectation can be written
as

EX∼f(·|θ(i)){g(X)} = EX∼f(·|ψ)

{
g(X)

h(X | θ(i))
h(X | ψ)

}/
EX∼f(·|ψ)

{
h(X | θ(i))
h(X | ψ)

}
.

The SNIS introduces a finite set S = {ψ1, . . . ,ψM} of particles over the parameter space Θ

and simulates auxiliary variables y(1)r , . . . ,y
(N)
r from f(· | ψr) for each r = 1, . . . ,M . For

i = 1, . . . , n, the consistent estimate of EX∼f(·|θ(i)){g(X)} can be obtained by
∑N

j=1w
(j)
r g(y

(j)
r ),

where

w(j)
r =

h(y
(j)
r | θ(i))

h(y
(j)
r | ψr)

/ N∑
j′=1

h(y
(j′)
r | θ(i))

h(y
(j′)
r | ψr)

,

andψr is the particle nearest to θ(i). For particle sampling we use a quasi-random number generator
(Faure and Lemieux, 2009). The quasi-random number generation can be done easily using R
package qrng. We use Mahalanobis distance to measure closeness, and we estimate the covariance
matrix using θ(1), . . . ,θ(n). We found that M = 200p and N = 10, 000 performed well in our
simulation experiments.

By plugging these approximations into d(θ) we obtain its approximation d̂N (θ). By replacing
d(θ) with its approximation d̂N (θ) in (1), (2), and (3) we obtain d̂n,N , V̂n,N , and Σ̂n,N . We
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note that the number an,N of batches and the length bn,N of each batch depend on n and N for
Σ̂n,N . Then an approximate version of the curvature diagnostic for intractable normalizing function
problems can be defined as follows.

Definition 2 (Approximate Curvature Diagnostic (ACD)) consider a sample θ(1), . . . ,θ(n) gen-
erated by an algorithm having π(θ | x) as its target. If the sample is independent, our approximate
curvature diagnostic is defined as Ĉn,N (x) := n d̂>n,N V̂

−1
n,N d̂n,N . If the sample is from a Markov

process, our approximate curvature diagnostic is defined as ĈBM
n,N (x) := n d̂>n,N Σ̂−1n,N d̂n,N .

To provide theoretical justification for Ĉn,N (x), we make the following assumptions regarding
the prior density p(θ) and the unnormalized probability model density h(x | θ). We use ‖ · ‖max to
represent the max norm of vectors or matrices.

Assumption 3 ‖∇θ log p(θ)‖max <∞ and ‖∇2
θ log p(θ)‖max <∞.

Assumption 4 ‖∇θ log h(x | θ)‖max <∞ and ‖∇2
θ log h(x | θ)‖max <∞.

Since the prior density is determined by the user, the prior’s score function and Hessian matrix
may be assumed to be bounded. In many applications Assumption 4 may be checked easily. In
particular, Assumption 4 is satisfied with high probability for exponential families. For a probability
model in an exponential family, the model’s score is its summary statistics and the first inequality of
Assumption 4 is satisfied with high probability (Chazottes et al., 2007). The model’s Hessian matrix
is zero and the second inequality is satisfied almost surely. Under these assumptions, Theorem 5
quantifies the distance between the asymptotic covariance matrix V and its two-stage approximation
V̂n,N .

Theorem 5 Consider an i.i.d. sample θ(1), . . . ,θ(n) the asymptotic distribution of which is π(θ |
x). If Assumptions 3 and 4 hold, we have ‖V̂n,N − V ‖max ≤ O

(
n−1/2

)
+ O

(
N−1/2

)
almost

surely.

A proof of Theorem 5 is provided in Appendix B. Provided the theorem holds, the two-stage ap-
proximation V̂n,N will get closer to V as the posterior sample size n and the auxiliary sample size
N increase.

To provide theoretical justification for ĈBM
n,N (x), we make the following assumption in addition

to Conditions 1 and 2 of Vats et al. (2019).

Assumption 6 The batch size bn,N is an integer sequence that satisfies bn,N →∞ and (bn,N/N)1/2

→ 0 as N →∞ and n→∞.

Under Assumptions 3, 4, and 6 and Conditions 1 and 2 of Vats et al. (2019), Theorem 7 quantifies
the distance between Σ and Σ̂n,N .

Theorem 7 consider a sample θ(1), . . . ,θ(n) generated from a Markov process that is an π-invariant
polynomially ergodic and of order m > (1 + ε1)(1 + 2/δ) for some ε1 > 0 and δ > 0. Then Con-
dition 1 of Vats et al. (2019) holds with γ(n) = n1/2−λ for some λ > 0. If Assumptions 3, 4, and 6,
and Condition 2 of Vats et al. (2019) hold, we have

‖Σ̂n,N − Σ‖max ≤ O
[
{(log n)/bn,N}1/2n1/2−λ

]
+O

[
(bn,N/N)1/2

]
almost surely.
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A proof of Theorem 7 is provided in Appendix C. Provided the theorem holds, the two-stage ap-
proximation Σ̂n,N will get closer to Σ as the posterior sample size n and the auxiliary sample size
N increase.

A simple heuristic for determining N is to plot the approximation d̂N (θ) against the auxiliary
sample size N and select N at which the approximation appears to stabilize. Similarly we choose
n at which the approximation V̂n,N or Σ̂n,N appears to stabilize for the pre-determined N . We
henceforth take the batch size to be bn,N = min{n1/3, N2/5} which satisfies Assumption 6 and
Condition 2 of Vats et al. (2019).

5. A Kernel Stein Discrepancy

In this section we briefly describe an inverse multiquadric kernel Stein discrepancy (IMQ KSD)
introduced by Gorham and Mackey (2017) which is a kernel Stein discrepancy-based diagnostic
for assessing the convergence of a sequence of sample distributions to its target distribution and
has theoretical support. To make this approach available for doubly intractable target distributions,
we develop its Monte Carlo approximation, AIKS (approximate inverse multiquadric kernel Stein
discrepancy) and show that it asymptotically inherits the same convergence properties as IMQ KSD.

5.1 An Inverse Multiquadric Kernel Stein Discrepancy

Consider a target distribution P under which direct integration is infeasible. Suppose we ap-
proximate integration under P using a weighted sample Qn =

∑n
i=1 qn(θ(i))δθ(i) with sample

points θ(1), . . . ,θ(n) and a probability mass function qn. Each Qn provides an approximation
EQn {z(θ)} =

∑n
i=1 z(θ

(i))qn(θ(i)) to each intractable expectation EP {z(θ)} for a real-valued
function z(θ). To assess the quality of the approximation, one may consider discrepancies quantify-
ing the maximum expectation error over a set of test functionsZ: dZ(Qn, P ) = supz∈Z

∣∣EP {z(θ)}
−EQn {z(θ)}

∣∣. When Z is large enough the discrepancy is called an integral probability metric
(IPM) (Müller, 1997) and dZ(Qn, P ) → 0 only if Qn ⇒ P for any sequence Qn. We use ⇒ to
denote the weak convergence of a sequence of probability measures. However, it is not practical to
use IPM for assessing a sample since EP {z(θ)} may not be computable for some z ∈ Z .

According to Stein’s method (Stein, 1972), Gorham and Mackey (2015) defined a Stein discrep-
ancy as S(Qn, TP ,G) = supg∈G |EQn {(TP g)(θ)}| for a Langevin Stein operator TP and a Stein
set G that satisfy EP {(TP g)(θ)} = 0 for all g ∈ G. The Stein discrepancy is the maximum ex-
pectation error over the Stein set G given the Stein operator TP . This avoids explicit integration
under P by selecting appropriate TP and G that lead the target expectation to zero. Gorham and
Mackey (2017) selected kernel Stein set based on the inverse multiquadric kernel and defined the
inverse multiquadric kernel Stein discrepancy S(Qn, TP ,Gk,‖·‖) for any norm ‖ · ‖, which admits
closed-form solution.

Definition 8 (IMQ KSD (Gorham and Mackey, 2017)) Let k(x,y) = (c2+‖x−y‖22)β for some
c > 0 and β ∈ (−1, 0). For each j ∈ {1, . . . , p} construct the Stein kernel

kj0(x,y) = uj(x)uj(y)k(x,y) + uj(x)∇yjk(x,y) + uj(y)∇xjk(x,y) +∇xj∇yjk(x,y),

where uj is the jth entry of the score function of the target density. Then IMQ KSD S(Qn, TP ,Gk,‖·‖)

= ‖w‖, where wj =
√

1
n2

∑n
k,l=1 k

j
0(θ

(k),θ(l)).

9
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Computation of w is parallelizable over sample pairs (θ(k),θ(l)) and coordinates j. Gorham and
Mackey (2017) provided theoretical justification for its use for diagnosing convergence of a se-
quence Qn to its target distribution P (see Theorem 8 and Proposition 9 of Gorham and Mackey
(2017)).

5.2 An Approximate Inverse Multiquadric Kernel Stein Discrepancy for Intractable
Normalizing Function Problems

When the target distribution P is doubly intractable, computation of IMQ KSD is not feasible. This
is because IMQ KSD requires evaluating the score function of the target density. In this section we
introduce an approximate version of IMQ KSD with L2 norm by replacing the score function with
its Monte Carlo approximation. The approximate inverse multiquadric kernel Stein discrepancy
(AIKS) is defined as follows.

Definition 9 (AIKS) Let k(x,y) = (c2 + ‖x− y‖22)β for some c > 0 and β ∈ (−1, 0). Define an
approximate Stein kernel as

k̂0(x,y) =

p∑
j=1

{
ûj(x)ûj(y)k(x,y) + ûj(x)∇yjk(x,y) + ûj(y)∇xjk(x,y) +∇xj∇yjk(x,y)

}
,

where ûj is the jth entry of the approximate score function of the target density. Then the AIKS is

defined as Ŝ(Qn, TP ,Gk,‖·‖2) =
√

1
n2

∑n
k,l=1 k̂0(θ

(k),θ(l)).

For doubly intractable target density π(θ | x), the score function can be approximated as de-
scribed in Section 4.2. Under the assumptions of IMQ KSD on the target distribution, Theorem 10
quantifies the distance between AIKS and IMQ KSD for L2 norm.

Theorem 10 For a target distribution P having a bounded score function and a sample distribu-
tion Qn targeting P , let S(Qn, TP ,Gk,‖·‖2) and Ŝ(Qn, TP ,Gk,‖·‖2) denote IMQ KSD and AIKS,
respectively, for the sample distribution. Then∣∣∣Ŝ(Qn, TP ,Gk,‖·‖p)− S(Qn, TP ,Gk,‖·‖p)

∣∣∣ ≤ O{N−1/4}
almost surely where N is the auxiliary sample size used to approximate the score function of the
target density.

A proof of Theorem 10 is provided in Appendix D. The theorem implies that AIKS will get closer
to IMQ KSD as the auxiliary sample size N increases. The following proposition shows that AIKS
asymptotically inherits the same convergence properties as IMQ KSD.

Proposition 11 (i) Detecting non-convergence: for a distantly dissipative target distribution P ,
if Ŝ(Qn, TP ,Gk,‖·‖2)→ 0 as n,N →∞, then Qn ⇒ P as n→∞.

(ii) Detecting convergence: for a target distribution P having Lipschitz score function with
EP
{
‖u(θ)‖22

}
< ∞, if the Wasserstein distance dW‖·‖2 (Qn, P ) → 0 as n → ∞, then

Ŝ(Qn, TP ,Gk,‖·‖2)→ 0 as n,N →∞.

10
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A proof of Theorem 11 is provided in Appendix E. In this article we use β = −1/2, and c = 1.
The AIKS is a form of two-sample V -statistics. Chwialkowski et al. (2016) obtain the asymp-

totic distribution of a kernel Stein discrepancy using the theory of V -statistics for dependent sam-
ples. Leucht and Neumann (2013) provides the asymptotic distribution of a V -statistic for depen-
dent samples. By a direct application of Theorem 2.1 of Leucht and Neumann (2013), the following
proposition characterizes the asymptotic behavior of AIKS.

Proposition 12 Consider a sample θ(1), . . . ,θ(n) generated from a P -invariant β-mixing process
with

∑∞
r=1 r

2
√
β(r) < ∞. If k̂0 is Lipschitz continuous and EP [k̂0(θ,θ)] < ∞, then as n,N →

∞, we have nŜ2(Qn, TP ,Gk,‖·‖2)
d→
∑∞

k=1 λkZ
2
k almost surely. The {λk} are the eigenvalues of

kernel k̂0(θ,θ′) under P, i.e., they are the solutions of λkφk(θ) =
∫
θr
k̂0(θ,θr)φk(θr)P (θr)dθr.

The {Zk} are centered, jointly Gaussian random variables with cov(Zi, Zj) =
∑∞

r=−∞ cov[φi(θ),
φj(θr)].

The β-mixing is a notion of dependence that is weak enough for most practical uses. For instance,
iid samples and stationary, geometrically ergodic Markov chains are β-mixing. The proof of Propo-
sition 12 is a simple verification of assumptions and can be found in the Appendix F.

However, the asymptotic distribution of AIKS does not have a closed form in general. To obtain
consistent estimates of quantiles of the asymptotic distribution, we employ a bootstrap method pro-
posed by Leucht and Neumann (2013). We compute bootstrap samples as Ŝ∗2 = 1

n2

∑n
k,l=1(Wk −

W̄ )k̂0(θ
(k),θ(l))(Wl − W̄ ), where W̄ = 1

n

∑n
k=1Wk and {Wk, k = 1, . . . , n} is an auxiliary

random process for accommodating the dependence structure of the original process {θ(k), k =
1, . . . , n} asymptotically when the kernel k̂0 is degenerate, i.e., when the sample is drawn from a
P -invariant process. By Remark 2 of Leucht and Neumann (2013), we can construct the auxiliary
process as Wk = e−1/ξWk−1 +

√
1− e−2/ξεk where W0, ε1, . . . , εn are independent standard nor-

mal random variables and ξ is a tuning parameter that performs a similar role to the block length
of blockwise bootstrap methods. A simulation experiment by Leucht and Neumann (2013) shows
that the choice of ξ does not significantly affect test performance. We use ξ = 7 and take the
bootstrap sample size to be b = 1,000 in the sequel. We calculate the empirical (1 − α) quantile
γ̂1−α of nŜ∗2. We use γ̂1−α as a threshold for AIKS. The following proposition shows that γ̂1−α
consistently approximates the quantile of the limiting distribution of nŜ2(Qn, TP ,Gk,‖·‖2).

Proposition 13 Consider a sample θ(1), . . . ,θ(n) generated from a P -invariant β-mixing process
with

∑∞
r=1 r

2
√
β(r) < ∞. If k̂0 is Lipschitz continuous and EP [k̂0(θ,θ)] < ∞, then as n,N →

∞, we have supx
∣∣P(nŜ∗2 ≤ x)− P(nŜ2(Qn, TP ,Gk,‖·‖2) ≤ x)

∣∣ p→ 0.

The proof is a straightforward verification of assumptions that can be found in the Appendix G.
A sample path for which nŜ2(Qn, TP ,Gk,‖·‖2) is below γ̂1−α is considered to have an asymptotic
distribution that is reasonably close to the target distribution.

A notable special case of doubly intractable posterior distributions arises when a prior distribu-
tion has an intractable normalizing constant that is a function of parameter of interest (cf. Rao et al.,
2016; Vats et al., 2022). Suppose that we have a prior density p(θ | η) = g(θ | η)/z(η), where
z(η) is intractable. If hyperprior k(·) is assigned to η, the posterior density is

π(θ,η | x) ∝ g(θ | η)

z(η)
k(η)L(θ | x),

11
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Table 1: Power and Type I error rates of a multivariate normality test with increasing sample size n
and dimension p, averaged over 1,000 simulations.

Method n
Power Type I error rate

p=2 5 10 15 20 25 2 5 10 15 20 25

CD
1000 1 1 1 1 1 1 0.02 0.03 0.04 0.07 0.10 0.14
2000 1 1 1 1 1 1 0.01 0.03 0.03 0.03 0.05 0.08
5000 1 1 1 1 1 1 0.01 0.01 0.01 0.01 0.01 0.02

KSD
1000 1 1 1 1 1 1 0.01 0.02 0.00 0.00 0.00 0.00
2000 1 1 1 1 1 1 0.00 0.03 0.00 0.00 0.00 0.00
5000 1 1 1 1 1 1 0.01 0.04 0.01 0.00 0.00 0.00

which leads to a doubly intractable posterior distribution. Our diagnostics ACD and AIKS can
be applied to this case if auxiliary variables can be generated exactly from the prior distribution
or generated by a Monte Carlo algorithm having p(θ | η) as its target distribution. Using the
auxiliary variables, we can approximate intractable derivatives of the prior and obtain our diagnostic
quantities.

6. Comparison of Diagnostics

We recreate the experiment in Section 4 of Chwialkowski et al. (2016) and compare the power
and Type I error rates of the CD-based and IMQ KSD-based tests. For i = 1, . . . , n we generate
θ(i) = z(i) + uie1, where z(i) iid∼ MVN(0, Ip), ui

iid∼ Unif(0, 1), and e1 = (1, 0, . . . , 0)>, for
various combinations of sample size n and parameter dimension p. We compare the power of the
CD test and IMQ KSD test to assess whether θ(1), . . . ,θ(n) were drawn from the target distribution
P = MVN(0, Ip). We also generate samples from P and compare the Type I error rates of the two
tests. The nominal significance level is α = 0.01. The results, averaged over 1,000 simulations,
are displayed in Table 1. Both tests provide high power for the values of n and p we considered.
We see that the Type I error rate of the CD grows as p increases and n ≤ 2000. The CD requires
approximation of the asymptotic covariance matrix of d(θ), which is a p(p + 1)/2 by p(p + 1)/2
matrix. A sufficiently large n is required to accurately estimate this covariance matrix. The Type I
error rate of the CD is well controlled when n = 5000. We see that the IMQ KSD’s Type I error
rate is well controlled across the range of n and p values. We recommend AIKS when n is small
but p is high.

We note that violation of higher-order identities, corresponding to the third moment or higher,
cannot be detected by our curvature diagnostic because our diagnostic does not verify that any mo-
ment constraint of order 3 or higher is satisfied. Extending our methodology to include higher-order
Bartlett identities is left to future work. The AIKS is supported by a theory of weak convergence and
thus can be used for deciding convergence of a sequence of sample points to the target distribution.

A limitation of the ACD is that it requires the first- and second-order gradients of the likelihood
and prior while AIKS requires only the first-order gradient. But ACD can be more computationally
efficient than AIKS for large n. Let s denote the computational cost of simulating a single auxiliary

12
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variable. Using N auxiliary variables, we approximate d(θ) for ACD and u(θ) for AIKS at each
posterior sample point. The time complexity of the approximation step is O(nsN). The threshold
value for ACD is the (1−α) quantile of the χ2(r) of distribution, which is a known value. The time
complexity for ACD is O(n) given the approximations. In contrast, the asymptotic distribution of
AIKS has no closed-form expression. For each test sample path, it requires a bootstrap approxima-
tion to the threshold value, which costs O(bn2) where b is the bootstrap sample size. Thus the total
computational complexity for AIKS is O((b+ 1)n2) given the score approximations.

7. Applications

Here we apply our methods to both asymptotically exact and asymptotically inexact algorithms
in the context of three general classes of models with intractable normalizing functions: (1) the
Ising model, (2) a social network model, and (3) a Conway–Maxwell–Poisson regression model.
Effective sample size (ESS), which is one of the most widely used MCMC diagnostics, is helpful
for asymptotically exact methods since all chains converge to the target distribution. However, for
asymptotically inexact methods, ESS is inadequate since an algorithm that mixes better might yield
a poorer approximation to the target distribution. To illustrate the usefulness of our approaches for
asymptotically inexact methods, we compare the approximate curvature diagnostic (ACD) and the
approximate multiquadric kernel Stein discrepancy (AIKS) with ESS. We also study the computa-
tional complexity and the variability of our diagnostics. The code for our diagnostics is implemented
in R (Ihaka and Gentleman, 1996) and C++, using the Rcpp and RcppArmadillo packages (Ed-
delbuettel and Francois, 2011). The calculation of ESS follows Kass et al. (1998) and Robert and
Casella (2004). All code was run on dual 10-core Xeon E5-2680 processors on the Penn State
high-performance computing cluster. The source code may be found in the following repository
(https://github.com/bokgyeong/Diagnostics).

7.1 The Ising Model

The Ising model (Lenz, 1920; Ising, 1925) is one of the most famous and important models from
statistical physics and provides an approach for modeling binary images. For an r × s lattice x =
{xij} with binary values xi,j ∈ {−1, 1}, where i, j denotes the row and column, the Ising model
with a parameter θ ∈ (0, 1) has likelihood

L(θ | x) =
1

c(θ)
exp{θS(x)},

where

S(x) =
r∑
i=1

s−1∑
j=1

xi,jxi,j+1 +
r−1∑
i=1

s∑
j=1

xi,jxi+1,j ,

is the sum over all possible products of neighboring elements and imposes spatial dependence.
A larger value for the dependence parameter θ produces stronger interactions among neighboring
observations. Calculation of the normalizing function c(θ) requires summation over all 2rs possible
outcomes for the model, which is computationally infeasible even for lattices of moderate size. We
carried out our simulation using perfect sampling (Propp and Wilson, 1996) on a 30 × 30 lattice
with the parameter setting θ = 0.2, which represents moderate dependence.
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(a) ALR: Diagnostics and computation times
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(b) AEX: Diagnostics
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(c) DMH: Diagnostics

Figure 1: Results for the Ising model. The ESS, ACD, AIKS, and computation time for samples
generated from (a) ALR with different numbers d of particles, (b) AEX with different
numbers d of particles, and (c) DMH with different numbers m of inner updates. The
triangle/square and vertical line show the empirical mean and 95% uncertainty interval,
respectively, of 30 replications of the diagnostic. The red triangle and blue square indicate
poor sample quality and good sample quality, respectively.

For this example we consider ALR, AEX, and DMH algorithms described in Section 2. The
ALR and AEX algorithms are asymptotically exact. The DMH algorithm is asymptotically inexact
but was found to be very efficient in terms of effective sample size per unit time and is applicable
for doubly intractable problems with higher parameter dimension. To find appropriate values for
the tuning parameters of the algorithms, we generate multiple chains from each algorithm with
different choices of tuning parameters. The performance of ALR and AEX depends heavily on the
set of particles. A sufficiently large number d of particles is required to cover the important region
of the parameter space. Selecting a suitable value of d is difficult because said value varies across
models or across datasets for a given model. The choices for the other tuning parameters are rather
well studied and good heuristics exist. We implement ALR and AEX with different numbers d of
particles. We choose values for the other tuning parameters according to Park and Haran (2018). To
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Table 2: Summary statistics of posterior samples and a gold standard in the Ising model for a sim-
ulated binary lattice.

Algorithm d or m Median LTP RTP

DMH 1 0.19 0.09 0.09
DMH 4 0.19 0.05 0.05
ALR 10 0.19 0.05 0.05
AEX 470 0.19 0.05 0.04

Gold standard 0.19 0.05 0.05

SD, standard deviation; LTP, left-tail probability; RTP, right-tail probability.

obtain the particles, we used fractional DMH, which is DMH with a larger acceptance probability,
and a short run of DMH with a single cycle of (inner) Gibbs updates for AEX and ALR, respectively.
We implement DMH with different numbers m of (inner) Gibbs updates. We use a uniform prior
with range [0, 1] for θ.

All algorithms were run for n = 100,000 iterations, and all 100,000 posterior samples were used
for testing. We used parallel computing to obtain 30 replications of each diagnostic for each sample
path. We assess the samples using the empirical mean of 30 replications. The threshold value of
ACD is the 0.99 quantile of χ2(1), which is 6.63. We estimated the 0.99 quantile of the asymptotic
distribution of AIKS via the bootstrap method. ACD computation took approximately 3 seconds
and AIKS computation took approximately 27 seconds for each test sample path.

Figure 1 shows the diagnostic values and computation time for each sample path. For ALR,
Figure 1 (a) shows that all diagnostics provide the same conclusion: ALR is not so sensitive to the
number d of particles in this setting. For AEX and DMH, ACD and AIKS provide considerably
different conclusions from ESS. In Figure 1 (b) we see that, for AEX, ESS is maximized (the best)
at d = 100 and generally decreases (worsens) as d increases. On the other hand, ACD and AIKS
have their largest (worst) values at d = 100 and indicate that d should be at least 470. Likewise,
for DMH, Figure 1 (c) shows that ESS is maximized (the best) at m = 1 and generally decreases
(worsens) as m increases, while ACD and AIKS take their largest (worst) values at m = 1 and
decrease (improve) as m increases. ACD recommends m of 4 or more, and AIKS recommends m
of 3 or more. The computation time is measured using a single run for each case. We observe that
DMH with m = 4 provides a good approximation of the target distribution while being extremely
computationally efficient.

We use the sample generated from the exchange algorithm (Murray et al., 2006), which is
asymptotically exact and has no tuning parameter, as the gold standard. Table 2 presents sum-
mary statistics for some of the posterior samples and the gold standard. Cutoff values for the left-
and right-tail probabilities are the lower 5% and the upper 5% percentiles of the gold standard. Both
ACD and AIKS suggest that ALR with d = 10, AEX with d = 470, and DMH with m = 4 provide
high quality samples. It is observed that they provide similar values of the summary statistics to the
gold standard. On the other hand, the ESS-recommended DMH sample with m = 1 does not match
the gold standard. It provides higher tail probabilities compared to the gold standard. This shows
that ACD and AIKS perform well in assessing how close samples are to the exact posterior. Not
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Figure 2: Results for the ERGM. The minimum ESS, ACD, AIKS and computation time for sam-
ples generated from DMH with different numbersm of inner updates. The triangle/square
and vertical line show the empirical mean and 95% uncertainty interval, respectively, of
30 replications of the diagnostic. The red triangle and blue square indicate poor sample
quality and good sample quality, respectively.

surprisingly, ESS is inadequate as a tool for this purpose. In summary, our approaches provide good
guidance on how to assess the quality of samples for both the asymptotically exact and asymptot-
ically inexact algorithms. In addition, our diagnostics help one to select the best algorithm and its
tuning parameter in terms of statistical efficiency.

7.2 A Social Network Model

An exponential family random graph model (ERGM) (Robins et al., 2007; Hunter et al., 2008)
is a statistical model for analysing network data. Consider an undirected ERGM with n vertices.
Relationships among the vertices can be represented as an n×n adjacency matrix x as follows: for
all i 6= j, xi,j = 1 if the ith and jth vertices are connected, and xi,j = 0 otherwise. And xi,i is 0
for all i ∈ {1, . . . , n}, i.e., there are no loops. The number of possible network configurations is
2n(n−1)/2 and summation over those configurations is required to calculate the normalizing function
of the model. Thus computing c(θ) is infeasible unless n is quite small.

For an undirected graph with n vertices, the ERGM likelihood is given by

L(θ | x) =
1

c(θ)
exp{θ1S1(x) + θ2S2(x)},

S1(x) =

n∑
i=1

(
xi+
1

)
,

S2(x) = eτ
n−2∑
k=1

{
1− (1− e−τ )k

}
EPk(x).

The sufficient statistics S1(x) and S2(x) are the number of edges in the graph and the geometrically
weighted edge-wise shared partnership (GWESP) statistic (Hunter and Handcock, 2006; Hunter,
2007), respectively. xi+ denotes the sum of the ith row of the adjacency matrix and EPk(x) denotes
the number of edges between two vertices that share exactly k neighbors. It is assumed that τ
is fixed at a value of 0.25. We simulated a network with 30 actors using 10,000 cycles of Gibbs
updates, where the true parameter was θ = (θ1, θ2)

> = (−0.96, 0.04)>.
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For this example we consider the DMH algorithm, which is asymptotically inexact. We ex-
plained the DMH algorithm in Section 7.1. We implement DMH with different numbersm of Gibbs
updates. We use uniform priors with range [−5.00, 2.27] × [−1.57, 2.32] for (θ1, θ2)

>, which are
centered around the maximum pseudo-likelihood estimates (MPLE) and have widths of 12 standard
deviations.

All algorithms were run for n = 300,000 iterations, and all 300,000 posterior samples were
used for testing. We used parallel computing to obtain 30 replications of each diagnostic for each
sample path. We assess the samples using the empirical mean of 30 replications. The threshold
value of ACD is the 0.99 quantile of χ2(3), which is 11.34. ACD computation took approximately
54 seconds and AIKS computation took approximately 38 minutes for each test sample path.

Figure 2 shows the minimum effective sample size—this is the conservative way of using ESS
when there are multiple ESSs due to the multivariate posterior distribution—, ACD, AIKS, and
computation time for the DMH sample, for a sequence of m values. The minimum ESS is maxi-
mized (the best) at m = 4. ACD and AIKS generally decrease (become better) as m increases. The
ACD implies that m should be at least 4, and AIKS suggests that m should be at least 3. We see
that m = 4 yields a good approximation according to both diagnostics, at a modest computing cost.
We treat a run from DMH with 20 cycles of Gibbs updates as the gold standard. We observe that all
ESS-, ACD-, and AIKS-selected samples provide almost the same values of the summary statistics
as the gold standard. In this case, all of the diagnostics generally agree.

7.3 A Conway–Maxwell–Poisson Regression Model

The Conway–Maxwell–Poisson (COMP) distribution (Conway and Maxwell, 1962) is a two-parameter
generalization of the Poisson distribution for modeling count data that are characterized by under-
dispersion (variance less than the mean) or over-dispersion (variance greater than the mean). For a
COMP(λ, ν) variable Y , the probability mass function is given by

P (Y = y) =
1

c(λ, ν)

λy

(y!)ν
,

where λ > 0 is a generalization of the Poisson rate parameter, ν ≥ 0 denotes the dispersion parame-
ter, and c(λ, ν) =

∑∞
z=0 λ

z/(z!)ν is a normalizing function. The COMP distribution accommodates
under- (ν > 1), equi- (ν = 1), or over-dispersion (0 ≤ ν < 1). The COMP distribution forms a
continuous bridge between the Poisson (ν = 1), geometric (ν = 0 and λ < 1), and Bernoulli (ν =
∞ and success probability λ/(1 + λ)) distributions. Guikema and Goffelt (2008) proposed a repa-
rameterization, substituting η = λ1/ν to approximate the center of the COMP distribution. For a
count variable Y that follows the COMPη(η, ν) distribution, the probability mass function is

P (Y = y) =
1

cη(η, ν)

(
ηy

y!

)ν
,

where cη(η, ν) =
∑∞

z=0 (ηz/z!)ν is the normalizing function. Huang (2017) and Ribeiro et al.
(2020) have reparameterized the COMP distribution as a function of the mean. Under any pa-
rameterization, however, the COMP normalizing function is an infinite sum, making the function
intractable.

For count response variables Yi and corresponding explanatory variablesxi = (xi,1, . . . , xi,p−1)>

for i = 1, . . . , n, a COMP regression model with log link function for η is given by Yi ∼
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Figure 3: Results for the COMP regression model. The minimum ESS, ACD, AIKS and compu-
tation time for samples generated from NormTrunc with different levels k of truncation.
The triangle/square and vertical line show the empirical mean and 95% uncertainty in-
terval, respectively, of 30 replications of the diagnostic. The red triangle and blue square
indicate poor sample quality and good sample quality, respectively.

COMPη(ηi, ν) with log(ηi) = β0 + xi,1β1 + · · · + xi,p−1βp−1 (i = 1, . . . , n), where β = (β0,
. . . , βp−1)> are regression coefficients. We study the takeover bids dataset (Cameron and Johans-
son, 1997), which comprises the number of bids received by 126 US firms that were targets of
tender offers during the period 1978–1985, along with 9 explanatory variables (see Sáez-Castillo
and Conde-Sánchez, 2013, for details). The dataset can be obtained from mpcmp package (Fung
et al., 2019). It is assumed that ν is fixed at a value of 1.754 (Huang, 2017).

For this example we consider a simple and widely used approach, namely, the NormTrunc
algorithm. Specifically, we approximate the normalizing function by truncating the infinite sum
to a truncation level k such that cη(η, ν) ≈

∑k
z=0 (ηz/z!)ν and use the approximation for each

Metropolis–Hastings accept-reject ratio. The NormTrunc algorithm is asymptotically inexact. In
order to determine a suitable value of k, we implement NormTrunc with different levels k of trun-
cation.

All algorithms were run for n = 300,000 iterations, and all 300,000 posterior samples were used
for testing. We used parallel computing to obtain 30 replications of each diagnostic for each sample
path. We assess the samples using the empirical mean of 30 replications. The threshold value of
ACD is the 0.99 quantile of χ2(55), which is 82.29. ACD computation took approximately 5.8
hours and AIKS computation took approximately 6.3 hours for each test sample path.

Table 3: Summary statistics of posterior samples and a gold standard for β0 in the COMP regression
model.

Algorithm k Median LTP RTP

NormTrunc 3 0.45 0.01 0.47
NormTrunc 10 0.31 0.05 0.05

Gold standard 0.31 0.05 0.05

SD, standard deviation; LTP, left-tail probability; RTP, right-tail probability.
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Figure 3 shows minimum effective sample size, ACD, AIKS, and computing time for the
NormTrunc sample for a range of k values. The minimum ESS is maximized (the best) at k =
3. On the other hand, both ACD and AIKS recommend k of 10 or more. We see that the uncertainty
of our diagnostics is very small since we generate auxiliary variables exactly from the model using
the rejection sampler. It appears that k = 10 is sufficient.

We treat as the gold standard a run from the exchange algorithm (Murray et al., 2006). Table 3
presents summary statistics for some of the posterior samples and a gold standard. The cutoff
values for left- and right-tail probabilities were chosen as in the previous example. Both ACD and
AIKS suggest that NormTrunc with k = 10 provides high quality samples. It is observed that the
NormTrunc sample with k = 10 provides the same values of the summary statistics as the gold
standard. On the other hand, the ESS-recommended NormTrunc sample with k = 3 does not match
the gold standard. It provides a large median and a high right-tail probability compared to the gold
standard. In summary, our approaches help tune algorithms. In particular, for asymptotically inexact
algorithms, our methods can guide users to appropriately choose their tuning parameters and help
provide reliable inference.

8. Discussion

In this article we proposed new methods that provide guidance for tuning algorithms and give some
measure of sample quality for a wide range of Monte Carlo algorithms, including a particularly
challenging class of algorithms: asymptotically inexact algorithms for distributions with intractable
normalizing functions. We describe three methods. CD applies broadly to most any likelihood-
based context where misspecification is of concern while ACD and AIKS are specifically targeted
at likelihoods with intractable normalizing functions. Our study mainly focuses on intractable nor-
malizing function problems and shows that our methods can assess the quality of samples and
provide good guidance for tuning algorithms. We have studied applications of ACD and AIKS to
several asymptotically exact and inexact algorithms in the context of challenging simulated and real
data examples. This shows that our methods provide useful results not only for asymptotically ex-
act algorithms, for which some other methods may be useful, but also for asymptotically inexact
algorithms, for which we are not aware of other methods.

There are of course simple and reasonable heuristics one can use for diagnostic purposes, such
as increasing m until DMH approximations stabilize. However, our diagnostics go beyond simple
approaches, allowing one to compare sample quality across different algorithms, including compar-
ing asymptotically exact algorithms with asymptotically inexact algorithms.

We note that ACD and AIKS could be slightly different in their conclusions, as our examples il-
lustrate, but the difference is quite small and conclusions are nearly the same overall. The difference
between ACD and AIKS can stem from the fact that they consider different sets of test functions to
quantify the difference between a sample mean and a target expectation. ACD considers two func-
tions whose target expectations are identical and measures the difference between sample means of
the two functions. AIKS considers a set of functions whose target expectations are zero and finds
the maximum error between the sample mean and the target expectation. Unless the score function
of the target density is the origin, their sets of test functions are mutually exclusive, which is the
case of all the examples in this article.

ACD and AIKS are obtained by replacing some functions that have to be evaluated for CD
and IMQ KSD with their Monte Carlo approximations. This allows for the diagnostics to be avail-
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able for doubly intractable posterior distributions. The computing time of ACD and AIKS mainly
accounts for the Monte Carlo approximation, which might be computationally expensive for high-
dimensional datasets. However, the approximation step is embarrassingly parallel and the compu-
tational cost can be reduced drastically via the self-normalized importance sampling. We want to
note that the power of our diagnostics heavily depends on the accuracy of the gradient estimations.
The approximation can be less reliable in cases where the data distribution has high variance. This
can lead to high variance in gradient estimates and make the estimates unstable. In order to alle-
viate the impact of the approximation uncertainty to the power of the diagnostics, we compute 30
independent replications of each diagnostic and use its mean for testing. Large disparities between
the posterior sample point θ(i) and the chosen particles {ψ1, . . . ,ψM} might yield poor SNIS esti-
mates. When SNIS performs poorly, we suggest sampling auxiliary variables from f(· | θ(i)) and
obtaining Monte Carlo approximations to the gradients. An important caveat of ACD is that it can
be misled if the first two moments match the target distribution but higher order moments do not.
AIKS cannot be misled in such fashion. Extending ACD to higher order moments may provide
interesting avenues for future research.

Acknowledgments

The authors are grateful to Jaewoo Park for providing useful code and to Galin Jones and Geoff
K. Nicholls for illuminating discussions. JH and MH were partially supported by the National
Institute of General Medical Sciences of the National Institutes of Health under Award Number
R01GM123007.

Appendix A. Monte Carlo Approximations to Intractable Terms

A.1 Derivative of Log Normalizing Function

For a p-dimensional parameter vector θ, consider a posterior density π(θ | x) whose likelihood
function is L(θ | x) = h(x | θ)/c(θ) and prior density is p(θ). The kth entry of ∇θ log c(θ | x),
the score function of the normalizing function, can be written as

∂ log c(θ)

∂θk
=

1

c(θ)

∂c(θ)

∂θk

=
1

c(θ)

∂

∂θk

∫
X
h(x|θ)dx

=
1

c(θ)

∫
X

∂h(x|θ)

∂θk
dx (6)

=
1

c(θ)

∫
X
h(x|θ)

∂ log h(x|θ)

∂θk
dx

=

∫
X

∂ log h(x|θ)

∂θk
f(x|θ)dx

= Ef

{
∂ log h(X|θ)

∂θk

}
. (7)
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Equation (6) follows from the dominated convergence theorem. Under the assumptions that the
score function exists and the score function and the normalizing function are bounded, we have
exchanged the derivative with the integral.

A.2 Second Derivative of Log Normalizing Function

The (k, l)th entry of∇2
θ log c(θ | x), the Hessian matrix of the normalizing function, is given by

∂2 log c(θ)

∂θk∂θl
=

∂

∂θk

{
1

c(θ)

∂c(θ)

∂θl

}
=

1

c(θ)

∂2c(θ)

∂θk∂θl
−
{

1

c(θ)

∂c(θ)

∂θk

}{
1

c(θ)

∂c(θ)

∂θl

}
=

1

c(θ)

∂2c(θ)

∂θk∂θl
− Ef

{
∂ log h(X|θ)

∂θk

}
Ef

{
∂ log h(X|θ)

∂θl

}
. (8)

Now consider the first term on the right hand side of equation (8). It can be written as

1

c(θ)

∂2c(θ)

∂θk∂θl
=

1

c(θ)

∂2

∂θk∂θl

∫
X
h(x|θ)dx

=
1

c(θ)

∫
X

∂

∂θk

{
∂ log h(x|θ)

∂θl
h(x|θ)

}
dx (9)

=

∫
X

∂2 log h(x|θ)

∂θk∂θl
f(x|θ)dx+

∫
X

∂ log h(x|θ)

∂θk

∂ log h(x|θ)

∂θl
f(x|θ)dx

= Ef

{
∂2 log h(X|θ)

∂θk∂θl

}
+ Ef

{
∂ log h(X|θ)

∂θk

∂ log h(X|θ)

∂θl

}
. (10)

In the equation (9) we have exchanged the derivative with the integral, owing to the dominated
convergence theorem. Combining (8) and (10), the entry of∇2

θ log c(θ | x) is

∂2 log c(θ)

∂θk∂θl
= Ef

{
∂2 log h(X|θ)

∂θk∂θl

}
+ Ef

{
∂ log h(X|θ)

∂θk

∂ log h(X|θ)

∂θl

}
− Ef

{
∂ log h(X|θ)

∂θk

}
Ef

{
∂ log h(X|θ)

∂θl

}
. (11)

A.3 Monte Carlo Approximations

We approximate the kth entry of the vector ∇θ log c(θ) using a sample generated from the model
distribution:

∂ log c(θ)

∂θk
≈ 1

N

N∑
j=1

∂ log h(y(j)|θ)

∂θk
,

where y(1), . . . ,y(N) are auxiliary variables generated exactly from f(· | θ) or generated by a
Monte Carlo algorithm having f(· | θ) as its target distribution. In a similar fashion, the approxi-
mation of the (k, l)th entry of {∇θ log c(θ)} {∇θ log c(θ)}> is calculated as

∂ log c(θ)

∂θk

∂ log c(θ)

∂θl
≈

 1

N

N∑
j=1

∂ log h(y(j)|θ)

∂θk


 1

N

N∑
j=1

∂ log h(y(j)|θ)

∂θl

 , k, l = 1, . . . , p.
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Lastly we approximate (k, l)th entry of∇2
θ log c(θ) by

∂2 log c(θ)

∂θkθl
≈ 1

N

N∑
j=1

∂2 log h(y(j)|θ)

∂θk∂θl
+

1

N

N∑
j=1

∂ log h(y(j)|θ)

∂θk

∂ log h(y(j)|θ)

∂θl

−

 1

N

N∑
j=1

∂ log h(y(j)|θ)

∂θk


 1

N

N∑
j=1

∂ log h(y(j)|θ)

∂θl

 .

Appendix B. Proof of Theorem 5

Let D(θ) = J(θ) + H(θ) and Dk,l(θ) be the (k, l) entry of D(θ). Let D̂k,l(θ) be the approx-
imation, computed using auxiliary variables y(1),. . . ,y(N) generated from the model distribution,
to Dk,l(θ). Suppose we have an i.i.d. sample θ(1), . . . ,θ(n) generated from π(· | x). For all
k, l,m, s ∈ {1, . . . , p}, the difference between an entry of V = Eπ{d(θ)d(θ)>} and its two-state
approximation is

∣∣∣∣∣Eπ{Dk,l(θ)Dm,s(θ)} − 1

n

n∑
i=1

D̂k,l(θ
(i))D̂m,s(θ

(i))

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

Dk,l(θ
(i))Dm,s(θ

(i))− Eπ{Dk,l(θ)Dm,s(θ)}

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

{
D̂k,l(θ

(i))D̂m,s(θ
(i))−Dk,l(θ

(i))Dm,s(θ
(i))
}∣∣∣∣∣

≤ δ(n) +
1

n

n∑
i=1

∣∣∣D̂k,l(θ
(i))D̂m,s(θ

(i))−Dk,l(θ
(i))Dm,s(θ

(i))
∣∣∣ , (12)

where δ(n) = ‖ 1n
∑n

i=1 d(θ(i))d(θ(i))> − Eπ{d(θ)d(θ)>}‖max = O(n−1/2) from the ergodic
theorem. Now we consider the second term on the right hand side of inequality (12). Let uk(θ) be
the kth entry of the score function u(θ) of the posterior distribution and ûk(θ) be its approximation
computed using the auxiliary variables. Let Hk,l(θ) be the (k, l)th entry of the hessian matrix
H(θ) of the posterior distribution and Ĥk,l(θ) be its approximation computed using the auxiliary
variables. We can bound the difference between D̂k,l(θ)D̂m,s(θ) and Dk,l(θ)Dm,s(θ) as follows.
For all k, l,m, s ∈ {1, . . . , p}, we have

∣∣∣D̂k,l(θ)D̂m,s(θ)−Dk,l(θ)Dm,s(θ)
∣∣∣ ≤ |ûk(θ)ûl(θ)ûm(θ)ûs(θ)− uk(θ)ul(θ)um(θ)us(θ)|

+
∣∣∣ûk(θ)ûl(θ)Ĥm,s(θ)− uk(θ)ul(θ)Hm,s(θ)

∣∣∣
+
∣∣∣ûm(θ)ûs(θ)Ĥk,l(θ)− um(θ)us(θ)Hk,l(θ)

∣∣∣
+
∣∣∣Ĥk,l(θ)Ĥm,s(θ)−Hk,l(θ)Hm,s(θ)

∣∣∣ . (13)
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Let

ε1(N) = max
k
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∂θk
− Ef

{
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∂ log h(X|θ)

∂θl

}∣∣∣∣∣∣
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N∑
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∂θl∂θm
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ε6(N) = max
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N∑
j=1

{
∂ log h(y(j)|θ)

∂θk
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∂θl
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∂θl
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} ∣∣∣∣∣,
and ε(N) = max {ε1(N), ε2(N), ε3(N), ε4(N), ε5(N), ε6(N)} = O(N−1/2) from the ergodic the-
orem. Now consider the first term on the right hand side of inequality (13). For all k, l,m, s ∈
{1, . . . , p}, we have

|ûk(θ)ûl(θ)ûm(θ)ûs(θ)− uk(θ)ul(θ)um(θ)us(θ)| ≤ B1ε(N),

where B1 is some constant. The above inequality follows from Assumptions 1 and 2, and the
following elementary inequalities:

|ab− âb̂| = |ab− âb+ âb− âb̂| = |(a− â)b+ (b− b̂)â|
≤ |a− â||b|+ |b− b̂||â|, (14)

|abc− âb̂ĉ| = |abc− âbc+ âbc− âb̂ĉ| = |(a− â)bc+ (bc− b̂ĉ)â|
≤ |a− â||b||c|+ |bc− b̂ĉ||â|, (15)

|abcd− âb̂ĉd̂| = |abcd− âbcd+ âbcd− âb̂ĉd̂| = |(a− â)bcd+ (bcd− b̂ĉd̂)â|
≤ |a− â||b||c||d|+ |bcd− b̂ĉd̂||â|. (16)
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Now consider the remaining terms on the right hand side of inequality (13). In a similar fashion,
for all k, l,m, s ∈ {1, . . . , p}, we have

∣∣∣ûk(θ)ûl(θ)Ĥm,s(θ)− uk(θ)ul(θ)Hm,s(θ)
∣∣∣ ≤ B2ε(N),∣∣∣ûm(θ)ûs(θ)Ĥk,l(θ)− um(θ)us(θ)Hk,l(θ)
∣∣∣ ≤ B3ε(N),

|Ĥk,l(θ)Ĥm,s(θ)−Hk,l(θ)Hm,s(θ)| ≤ B4ε(N),

where B2, B3, and B4 are some constants. These inequalities follow from Assumptions 1 and 2 in
the manuscript and inequalities (14) to (16). Therefore, the approximation error of the two-stage
approximation to the asymptotic covariance matrix is

‖V̂n,N − V ‖max ≤ O
(
n−1/2

)
+O

(
N−1/2

)
,

almost surely. We use ‖ · ‖max to represent the max norm of vectors or matrices.

Appendix C. Proof of Theorem 7

Suppose we have a sample θ(1), . . . ,θ(n) generated from a polynomially ergodic Markov chain with
π(θ | x) as its stationary distribution. Let D(θ) = J(θ) + H(θ) and D̂(θ) be the approximation,
computed using auxiliary variables y(1),. . . ,y(N) generated from the model distribution, to D(θ).
Let D̄ = 1

n

∑n
i=1D(θ(i)), ˆ̄D = 1

n

∑n
i=1 D̂(θ(i)), D̄j = 1

bn

∑jbn
i=(j−1)bn+1D(θ(i)), and ˆ̄Dj =

1
bn

∑jbn
i=(j−1)bn+1 D̂(θ(i)) for j = 1, . . . , an, where an is the number of batches and bn is the batch

size. For all k, l,m, s ∈ {1, . . . , p}, the difference between an entry σr of Σ and its two-state batch
means approximation is
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≤
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an∑
j=1

(D̄j
k,l − D̄k,l)(D̄

j
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∣∣∣∣∣∣
+
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an − 1

an∑
j=1

{
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ˆ̄Dj
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j
m,s − D̄m,s)

}∣∣∣∣∣∣
≤ γ(n) +

bn
an − 1

an∑
j=1

∣∣∣( ˆ̄Dj
k,l −

ˆ̄Dk,l)(
ˆ̄Dj
m,s − ˆ̄Dm,s)− (D̄j

k,l − D̄k,l)(D̄
j
m,s − D̄m,s)

∣∣∣ , (17)

where γ(n) = ‖Σ̂n − Σ‖max = O
(
(log n/bn)1/2n1/2−λ

)
→ 0 as n → ∞ for some λ > 0 under

some conditions (Theorem 2 in Vats et al., 2019). Now we consider the second term on the right
hand side of inequality (17). For all k, l,m, s ∈ {1, . . . , p}, we have
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bn

∣∣∣( ˆ̄Dj
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b1/2n |D̄

j
k,l −

ˆ̄Dj
k,l|+ b1/2n |D̄k,l − ˆ̄Dk,l|+ b1/2n

∣∣∣D̄j
k,l − Eπ[Dk,l(θ)]

∣∣∣+ b1/2n

∣∣D̄k,l − Eπ[Dk,l(θ)]
∣∣}

≤
{
b1/2n O

(
N−1/2

)
+ b1/2n O

(
N−1/2

)}{
b1/2n O

(
b−1/2n

)
+ b1/2n O

(
n−1/2

)}
+
{
b1/2n O

(
N−1/2

)
+ b1/2n O

(
N−1/2

)}
×
{
b1/2n O

(
N−1/2

)
+ b1/2n O

(
N−1/2

)
+ b1/2n O

(
b−1/2n

)
+ b1/2n O

(
n−1/2

)}
≤ O

(
(bn/N)1/2

)
+O

(
(bn/n)1/2(bn/N)1/2

)
+O (bn/N) = O

(
(bn/N)1/2

)
,

where inequality (18) follows from inequality (14). Therefore, the approximation error of the two-
stage batch means approximation to the asymptotic covariance matrix is

‖Σ̂n,N − Σ‖max ≤ O
(

(log n/bn)1/2n1/2−λ
)

+O
(

(bn/N)1/2
)
,

almost surely for some λ > 0.

Appendix D. Proof of Theorem 10

Consider a target distribution P and a weighted sampleQn =
∑n

i=1 qn(θ(i))δθ(i) targeting P , where
θ(1), . . . ,θ(n) are sample points and qn is a probability mass function. By Minkowski’s inequality,
the difference between IMQ KSD and AIKS of Qn is∣∣∣Ŝ(Qn, TP ,Gk,‖·‖p)− S(Qn, TP ,Gk,‖·‖p)

∣∣∣ ≤ ‖ŵ −w‖p.
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We now consider the term on the right hand side of this inequality.

‖ŵ −w‖pp =

p∑
j=1

|ŵj − wj |p

=

p∑
j=1

|ŵj − wj |p−1

ŵj + wj
|ŵ2
j − w2

j |

=

p∑
j=1

|ŵj − wj |p−1

ŵj + wj

n∑
k,l=1

qn(θ(k))qn(θ(l))
∣∣∣k̂j0(θ(k),θ(l))− kj0(θ(k),θ(l))∣∣∣ .

Let ε(N) = maxk ‖û(θ(k))− u(θ(k))‖max = O(1/
√
N) from ergodic theorem. The approximate

error for the Stein kernel can be derived as follows.∣∣∣k̂j0(θ(k),θ(l))− kj0(θ(k),θ(l))∣∣∣
≤ k(θ(k),θ(l))

∣∣∣ûj(θ(k))ûj(θ(l))− uj(θ(k))uj(θ(l))∣∣∣
+

∣∣∣∣∇θ(l)j

k(θ(k),θ(l))

∣∣∣∣ ∣∣∣ûj(θ(k))− uj(θ(k))∣∣∣
+

∣∣∣∣∇θ(k)j

k(θ(l),θ(k))

∣∣∣∣ ∣∣∣ûj(θ(l))− uj(θ(l))∣∣∣
≤
[
k(θ(k),θ(l))

{
|ûj(θ(k))|+ |uj(θ(l))|

}
+ 2|∇

θ
(l)
j

k(θ(k),θ(l))|
]
ε(N) (19)

≤ c1ε(N)

for bounded constant c1. The inequality in (19) follows from (14) and the fact that∇
θ
(l)
j

k(θ(k),θ(l))

and ∇
θ
(k)
j

k(θ(l),θ(k)) are symmetric around zero. Now,

‖ŵ −w‖pp ≤ c1ε(N)

p∑
j=1

|ŵj − wj |p−1

ŵj + wj

n∑
k,l=1

qn(θ(k))qn(θ(l))

≤ n2c1c2ε(N)

for bounded constant c2. Therefore, the approximate error for AIKS is∣∣∣Ŝ(Qn, TP ,Gk,‖·‖p)− S(Qn, TP ,Gk,‖·‖p)
∣∣∣ ≤ O (N−1/(2p))

almost surely.

Appendix E. Proof of Proposition 11

From theorem 10, we have

Ŝ(Qn, TP ,Gk,‖·‖p) ≤
∣∣∣Ŝ(Qn, TP ,Gk,‖·‖p)− S(Qn, TP ,Gk,‖·‖p) + S(Qn, TP ,Gk,‖·‖p)

∣∣∣
≤ O

{
N−1/(2p)

}
+ S(Qn, TP ,Gk,‖·‖p).
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The AIKS Ŝ(Qn, TP ,Gk,‖·‖p) goes to zero when Qn → P and N → ∞. This implies that AIKS
can detect convergence. Detecting non-convergence means that if AIKS goes to zero thenQn → P ,
equivalently, if Qn 6→ P then AIKS does not go to zero. From theorem 10 we have

Ŝ(Qn, TP ,Gk,‖·‖p) ≥ S(Qn, TP ,Gk,‖·‖p)−O
{
N−1/(2p)

}
The AIKS Ŝ(Qn, TP ,Gk,‖·‖p) does not go to zero if Qn 6→ P and N → ∞. This indicates that
AIKS can detect non-convergence.

Appendix F. Proof of Proposition 12

We check the following assumptions from Theorem 2.1 of Leucht and Neumann (2013).

A1 The process {θ(i)}i∈Z is β-mixing with
∑∞

r=1

√
β(r) <∞.

A2 Let k0 = limN→∞ k̂0.

(i) k0 : Rp × Rp → R is symmetric and degenerate.

(ii) k0 is positive semidefinite.

(iii) EP {k0(θ,θ)} <∞.

(iv) k0 is Lipschitz continuous.

The conditions A1, A2 (iii), and A2 (iv) are assumed in Proposition 12.
The k is symmetric, so is k0. Let Q be the stationary distribution of the process {θ(i)}i∈Z. We

will show that k0 is degenerate, i.e., EQ{k0(θ,θ)} = 0 if and only if Q = P . If Q = P , then
EQ{k0(θ,θ)} = 0 by Proposition 1 of Gorham and Mackey (2017). Suppose that Q 6= P but

EQ{k0(θ,θ)} = 0. Since EQ{k0(θ,θ)} = 0, we have EQ
{
uj(θ)k(θ, ·) + ∂k(θ,·)

∂θj

}
= 0 for j =

1, . . . , p by the proof of Proposition 2 in Gorham and Mackey (2017). Let π and q be the probability
density functions of P and Q, respectively. The uj(θ) = ∂ log π(θ)

∂θj
= ∂ log q(θ)

∂θj
+ ∂[log π(θ)−log q(θ)]

∂θj
.

We have

0 = EQ {∇θ log q(θ)k(θ, ·) +∇θ[log π(θ)− log q(θ)]k(θ, ·) +∇θk(θ, ·)}
= EQ {∇θ log q(θ)k(θ, ·) +∇θk(θ, ·)}+ EQ {∇θ[log π(θ)− log q(θ)]k(θ, ·)}
= EQ {∇θ[log π(θ)− log q(θ)]k(θ, ·)} (20)

We note that the expectation of (20) is the kernel embedding of a function g(θ) = ∇θ log
(
π(θ)
q(θ)

)
with respect to Q. By Theorem 4.4 c of Carmeli et al. (2010), the embedding is zero if and only if
g = 0. Therefore, ∇θ log

(
π(θ)
q(θ)

)
= 0 and thus log

(
π(θ)
q(θ)

)
= c where c is a constant vector. This

implies that π(θ) = ecq(θ). Since π and q integrate to one, c = 0, which contradicts with Q 6= P .
The k0(θ,θ′) = 〈TPk(θ, ·), TPk(θ′, ·)〉Kk

is an inner product and hence positive definite where
Kk is a Hilbert space of functions such that, for all θ ∈ Rp, k(θ, ·) ∈ Kk and f(θ) = 〈f, k(θ, ·)〉Kk

whenever f ∈ Kk.
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Appendix G. Proof of Proposition 13

We check assumptions from Theorem 3.1 of Leucht and Neumann (2013). The condition B1 is
assumed in Proposition 13. The condition B2 is satisfied by Remark 2 (i) of Leucht and Neumann
(2013). The condition A2 follows from the proof of Proposition 12.
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