
Journal of Machine Learning Research 25 (2024) 1-52 Submitted 7/23; Revised 9/24; Published 9/24

Matryoshka Policy Gradient for Entropy-Regularized RL:
Convergence and Global Optimality

François G. Ged1,2 fged.math@gmail.com
1Chair of Statistical Field Theory
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Abstract

A novel Policy Gradient (PG) algorithm, called Matryoshka Policy Gradient (MPG), is
introduced and studied, in the context of fixed-horizon max-entropy reinforcement learning,
where an agent aims at maximizing entropy bonuses additional to its cumulative rewards.
In the linear function approximation setting with softmax policies, we prove uniqueness and
characterize the optimal policy of the entropy regularized objective, together with global
convergence of MPG. These results are proved in the case of continuous state and action
space. MPG is intuitive, theoretically sound and we furthermore show that the optimal
policy of the infinite horizon max-entropy objective can be approximated arbitrarily well
by the optimal policy of the MPG framework. Finally, we provide a criterion for global
optimality when the policy is parametrized by a neural network in terms of the neural
tangent kernel at convergence. As a proof of concept, we evaluate numerically MPG on
standard test benchmarks.

Keywords: reinforcement learning, policy gradient, entropy regularization, global con-
vergence, neural networks

1. Introduction

The family of Policy Gradient algorithms (PG) in Reinforcement Learning (RL) originated
several decades ago with the algorithm REINFORCE (Williams, 1992), the name Policy
Gradient appearing only in 2000 in Sutton et al. (1999), they recently regained interest
thanks to many remarkable achievements, to name a few: in continuous control (Lillicrap
et al., 2015; Schulman et al., 2015, 2017b) and natural language processing such as GPT-3
(Brown et al., 2020)1, and more generally in the fine-tuning from human feedback stage of

1. instructGPT and chatGPT are trained with Proximal Policy Optimization, see https://openai.com/

blog/chatgpt/.
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large language models (Ziegler et al., 2019). See the blog post of Weng (2018) that lists
important PG methods and provides a concise introduction to each of them.

PG methods are considered more suitable for large (possibly continuous) state and ac-
tion spaces than other nonetheless important methods such as Q-learning and its variations.
However, for large spaces, the exploitation-exploration dilemma becomes more challenging.
In order to enhance exploration, it has become standard to use a regularization to the ob-
jective, as in max-entropy RL (Nachum et al., 2017; O’Donoghue et al., 2016; Schulman
et al., 2017a; Mnih et al., 2016; Haarnoja et al., 2018a), where the agent maximizes the sum
of its rewards plus a bonus for the entropy of its policy2. In particular Ahmed et al. (2019)
study specifically the impact of entropy on policy optimization. Not only does max-entropy
RL boost exploration, it also yields an optimal policy that is stochastic, in the form of a
Boltzmann measure, such that the agent keeps taking actions at random while maximiz-
ing the regularized objective. This is sometimes preferable than deterministic policies. In
particular, Eysenbach and Levine (2021) show that the max-entropy RL optimal policy
is robust to adversarial change of the reward function (their Theorem 4.1) and transition
probabilities (their Theorem 4.2); see also references therein for more details on that topic.
Finally, max-entropy RL is appealing from a theoretical perspective. For example, soft
Q-learning, introduced by Haarnoja et al. (2017) (see also Haarnoja et al. (2018a,b) for
implementations of soft Q-learning with an actor-critic scheme), strongly resembles PG in
max-entropy RL (Schulman et al., 2017a); max-entropy RL has also been linked to varia-
tional inference (Levine, 2018). Other appealing features of max-entropy RL are discussed
by Eysenbach and Levine (2019) and references therein.

A vast number of works on RL have focused on either infinite horizon tasks, or episodic
tasks where the length of an episode is random. In both these cases, policies only depend on
the current state of the agent. In Ernst et al. (2003), the fixed, finite horizon optimal policy
is used as an approximation, as the horizon grows to infinity, to approximate the infinite-
horizon optimal policy. Nonetheless and even though the fixed (deterministic) horizon
setting has received less attention, the benefits of fixing the horizon are multiple and have
been investigated in recent relevant works, such as Asis et al. (2019); Guin and Bhatnagar
(2023); VP and Bhatnagar (2021). Asis et al. (2019) study a Temporal Difference algorithm
(which is not PG), typically involving bootstrapping. When it is used offline (off-policy)
together with function approximation, it encounters the well-known stability issue called the
deadly triad, see Sutton and Barto (2018) Section 11.3. By using horizon-dependent value
functions, they do not rely on bootstrapping, getting rid of one element of the triad, thus
ensuring more stability. It is worth noting that thanks to the fixed-horizon setting, they
empirically overcome the specific Baird’s example of divergence. Guin and Bhatnagar (2023)
defines an actor-critic algorithm for constrained RL, where the agent aims at maximizing
the cumulative rewards while satisfying some given constraints. They prove the convergence
for finite state and action spaces but do not study global convergence.

In the same spirit, van Seijen et al. (2019) investigate the impact of the discount fac-
tor when optimizing a discounted infinite-horizon objective evaluated on a finite-horizon
undiscounted objective. They empirically found that for some tasks, lower discount factors
(thus closer to a fixed-horizon objective) lead to better performance. With a fixed horizon,

2. Other regularization techniques are used and studied in the literature, we focus on entropy regularized
RL in this paper.
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policies are time-dependent, and are usually called non-stationary policies, as in dynamic
programming (Bertsekas, 1995).

Regarding PG methods specifically in the fixed-horizon setting with tabular softmax
parametrization, the preprint by Klein et al. (2023) proves global convergence using the
gradient domination property, which generally does not holds in the infinite state-action
space, see our discussion on previous approaches below. PG with fixed horizon has also
recently been studied outside of the MDP setting. Global convergence of some algorithms
is established for some class of continuous time problems, see e.g. Hambly et al. (2021);
Giegrich et al. (2022).

Contributions. We consider the function approximation setting with log-linear paramet-
ric policies, that are constructed as the softmax of linear models. For convergence results, we
assume perfect gradient updates, i.e. we have access to the exact gradient of the objective.
The main contributions of this work are:

(i) We define the fixed-horizon max-entropy RL objective and introduce a new algorithm
(Equation (8)), named Matryoshka Policy Gradient (MPG).

(ii) We establish global convergence for continuous state and action space: under the
realizability assumption, MPG converges to the unique optimal policy (Theorem 2).
When the realizability assumption does not hold, we prove uniqueness of the optimal
policy and prove global convergence of MPG (Theorem 3).

(iii) We approximate arbitrarily well the optimal policy for the infinite horizon objective
by the optimal policy of the MPG objective (Proposition 2).

(iv) In the case where the policy is parametrized as the softmax of a (deep) neural network’s
output, we describe the limit of MPG training in terms of the neural tangent kernel
and the conjugate kernel of the neural network at the end of training (Corollary 1).
In particular, MPG globally converges in the lazy regime.

(v) Numerically, we successfully train agents on standard simple tasks without relying on
RL tricks, and confirm our theoretical findings (see Section 4).

In our numerical experiments described in Section 4, we first consider an analytical task
and verify the global convergence property of the MPG: MPG consistently finds the unique
global optimum, which satisfies the projectional consistency property. Then, we study two
benchmarks from OpenAI: the Frozen Lake game and the Cart Pole. We obtain successful
policies for both benchmarks with the MPG algorithm, comparing also to vanilla PG method
(Sutton et al., 1999). Rather than competing with the state-of-the-art algorithms, our aim
is to provide a proof of concept by showing that successful training can be obtained with
a straightforward implementation of MPG. We hope that more general and bigger scale
experiments implementing variations of MPG will follow the present work.

Comparison with previous results and approaches. Besides the well-known Policy
Gradient Theorem (see Chapter 13 in Sutton and Barto (2018)) that can imply convergence
of PG (provided good learning rate and other assumptions), for many years, not much more
was known about the global convergence of PG (i.e. convergence to an optimal policy) until
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recently. Despite the numerous remaining gaps, some important progress have already been
made. In particular, the global convergence of PG methods has been studied and proved
in specific settings, see for instance Fazel et al. (2018); Agarwal et al. (2022); Bhandari and
Russo (2019); Mei et al. (2020); Zhang et al. (2020, 2019); Cen et al. (2020); Ding et al.
(2021); Wang et al. (2019); Agazzi and Lu (2020); Bhandari and Russo (2020); Leahy et al.
(2022); Guin and Bhatnagar (2023). Convergence guarantees often come with convergence
rates (with or without perfect gradient estimates). Though strengthening the trust in PG
methods for practical tasks, most of the theoretical guarantees obtained in the literature so
far require rather restrictive assumptions, and often assume that the action-state space of
the MDP is finite (but not always, e.g. Agazzi and Lu (2020) address continuous action-
state space for neural policies in the mean-field regime and Leahy et al. (2022) prove global
convergence when adding a strong enough regularization on the parameters.) In particular,
in the context of tabular softmax policies, Li et al. (2021) study the dependency of the
number of iterations of the (perfect) gradient PG update on the size of the state space, and
construct environments with only three actions per state requiring the algorithm to make
1
η |S|

2Ω(1/(1−γ))
iterations to converge, where γ is the discount factor and η the learning rate.

We now highlight the key differences in proof techniques between our work and previous
works. Agarwal et al. (2022) give many convergence guarantees for different policy gradient
algorithms. In particular, in the tabular case with finite state and action spaces, global
convergence is obtained thanks to the gradient domination property, stated in their Lemma
4.1 as follows: for every probability distributions µ, ρ on S, for every policy π, the difference
between the value function of the optimal policy π∗ and the value funtion of π satisfies∑

s∈S
(Vπ∗(s)− Vπ(s))ρ(s) ≤ 1

1− γ

∣∣∣∣∣∣∣∣dπ∗ρµ
∣∣∣∣∣∣∣∣
∞

max
π′

(π′ − π)∇π
∑
s∈S

Vπ(s)µ(s),

where dπ∗ρ is the state-visitation distribution induced by the initial state distribution ρ and
π∗, and the max is taken over the set of all policies. The factor ||dπ∗ρ /µ||∞ is called the
distribution mismatch between dπ∗ρ and µ. Since dπ∗ρ (s) is proportional to the discounted
time spent in state s under the optimal policy π∗, the gradient domination property ensures
that if the policy is trained with respect to a state distribution µ whose support contains
that of dπ∗ρ , then the gradient vanishes only at the optimum.

One advantage is that in the tabular setting, the rate of convergence can be deduced,
involving the distribution mismatch, see e.g. Section 4 in Agarwal et al. (2022). In the
function approximation setting with infinite state space and finite action space, they obtain
convergence results for the natural policy gradient algorithm, which uses the Fisher infor-
mation matrix induced by the policy in the update, but do not obtain the optimality of the
limit.

Similarly, Mei et al. (2020) study convergence rates towards global optimum but rely on
tabular parametrization with finite state and action spaces to guarantee finite concentration
coefficient and to obtain a  Lojasiewicz type of inequality (also lower bound on the gradient),
which is vacuous in infinite state space. See also Ding et al. (2021) for global convergence
of an entropy-regularized PG method with softmax policies with sample-based updates,
assuming finite state and action spaces and tabular parametrization. Convergence rates
for general modified policy iteration approaches are also obtained in Geist et al. (2019) for
finite state and action spaces with finite concentration coefficient. In the parametric case,
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with log-linear policies, Yuan et al. (2022) study convergence rates for natural gradient
descent. However, they do not show global convergence and also require finite state and
action space. In Mei et al. (2021), a convergence rate to the global optimum is obtained for
Geometry-aware Normalized PG, but it requires finite state and action spaces to guarantee
finite concentrability coefficient, while their non-uniform  Lojasiewicz inequality is vacuous
as the number of states grows to infinity.

The main takeaway is that standard methods, including the works mentioned above,
use bounds on the gradient of the objective (gradient domination property,  Lojasiewicz
inequality, ...) to deduce convergence rates, which often need finite state and action space,
while global optimality usually requires tabular parametrization. Besides, none of them
concerns non-stationary policies. On the other hand, our proof for the convergence of MPG
does not rely on a lower bound of the gradient, which is why we do not obtain convergence
rates. However, we obtain global convergence as follows:

i) The gradient of the objective remains Lipschitz continuous along the training trajec-
tory, which ensures that the objective converges (Theorem 1).

ii) To ensure that the policy converges too, we show that the sequence generated dur-
ing training is relatively compact (Lemma 9), which essentially guarantees that the
sequence of policies generated during training converge (more precisely, any of its
subsequence has a converging subsequence).

iii) The parameters remain bounded during training (Lemma 10), which entails that any
limiting policy of training is a critical point that belongs to the parametric space.

iv) Using tools from information geometry (Appendix C), we then show that the only
critical point of the objective inside the parametric space is the unique projection of
the global optimal policy onto the parametric space (see proofs of Theorem 2 and
Theorem 3). This projection is globally optimal in the parametric space.

The main strength of MPG

• State space and action space can be infinite, continuous and even unbounded.

• Global convergence is guaranteed in the function approximation setting with log-linear
policies.

• Even when the realizable assumption does not hold, MPG converges to the unique op-
timal policy in the parametric policy space. This global optimum can be characterized
as the unique policy satisfying the projectional consistency property in the parametric
space.

2. Fixed-horizon max-entropy RL

In this section, we introduce the fixed-horizon max-entropy RL, describe its optimal policy
and establish some of its properties.
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2.1 Definitions

Markov Decision Process The Markov Decision Process (MDP) setup is a very stan-
dard and important setup in RL (Puterman, 2014; Sutton and Barto, 2018). It is suited
for sequential decision making, where the dynamics are Markovian, i.e. depend on the past
decisions only through the current state of the agent, making it mathematically tractable.

The agent evolves according to a MDP characterized by the tuple (S,A, p, prew) mod-
elling the environment, a map called a policy π : A × S → [0, 1], and an initial state
distribution ν on S.3 The action space can be state dependent As, nonetheless we assume
for simplicity that it is the same regardless of the current state of the agent. We assume that
the action and state spaces A,S ⊂ Rd are closed sets. Let s′ 7→ p(s, a, s′) be the probability
(the density if S is continuous) that the agent moves from s ∈ S to s′ ∈ S after taking
action a ∈ A. When p(s, a, s′) = δs′,f(s,a) for some f : S × A → S, then we say that the
transitions are deterministic. The reward depends on the action and on the current state,
its law is denoted by prew(·|s, a). Throughout, we assume that the rewards are uniformly
bounded and for all (s, a) ∈ S×A, we denote by r(a, s) the mean reward after taking action
a at state s.

A stationary policy π : A × S → [0 , 1] is a map such that for all s ∈ S, π(·|s) is a
probability distribution on A that describes the law of the action taken by the agent at
state s. Let P denote the set of stationary policies. Let n ∈ N be some fixed horizon,
we denote by Pn the set of non-stationary policies π = (π(1), . . . , π(n)) where for all i =
1, . . . , n, π(i) ∈ P. Henceforth, we use the term “policy” for non-stationary policies. We
say that the agent follows a policy π ∈ Pn if and only if it chooses its actions sequentially
according to π(n), then π(n−1), and so on until π(1) and the end of the episode. That is for
each episode of fixed length n, starting from a given state S0, the agent generates a path
S0, A0, S1, A1, . . . , An−1, Sn, where Ai ∼ π(n−i)(·|Si) and Si+1 ∼ p(Si, Ai, ·). Note that in
the standard infinite horizon setting, a policy corresponds to an infinite sequence of the
same stationary policy {(π, π, π, · · · );π ∈ P} ⊂ P∞. All random variables are such that the
process is Markovian.

Henceforth, we assume that A and S are continuous, the results identically holding true
when they are countable. We also assume that

• The sets A,S ⊂ Rd are closed Borel sets.

• The transition probability function p : S × A × S → [0, 1] and the reward function
r : A× S are measurable.

• For all Borel set B ⊂ S, the map (s, a) 7→ p(s, a,B) is continuous.

• The so-called measurable selection assumption holds.

The measurable selection assumption is a technical statement that ensures that the MDP
has a well-defined optimal solution. Several conditions ensuring that it holds can be found in
Hernández-Lerma and Lasserre (1999) Section 3.3. To avoid technical discussions that are
not relevant to the present work, the reader can replace the measurable selection assumption
by assuming the following simple sufficient and not too restrictive condition:

3. Implicitly assumed in the MDP definition is the fact that all variables such that actions, visited states
and rewards are measurable, so that they are well-defined random variables.
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• The action space A is compact and the reward function and the transition probability
function are continuous with respect to the Euclidean metric.

Value and Q functions. For every s ∈ S and π, π′ ∈ P, we denote by DKL(π||π′)(s) =
DKL(π(·|s)||π′(·|s)) the Kullback-Leibler divergence between π(·|s) and π(·|s′), defined as

DKL(π||π′)(s) :=

∫
A

log
π

π′
(a|s)π(da|s),

and is set to ∞ if π′(·|s) is not absolutely continuous with respect to π(·|s).
To regularize the rewards, we add a penalty term that corresponds to the Kullback-

Leibler (KL) divergence of the agent’s policy and a baseline policy. In practice, the baseline
policy can be used to encode a priori knowledge of the environment; a uniform baseline
policy corresponds to adding entropy bonuses to the rewards. Regularizing with the KL
divergence is thus more general than with entropy bonuses and this is the regularization
that we consider in this paper, akin to Schulman et al. (2017a).

We denote by π the arbitrary baseline policy and let us assume for conciseness that
π ∈ P. Let τ > 0 be the so-called temperature parameter governing the strength the of the
regularization. Similar to Ding et al. (2021); Mei et al. (2020); Geist et al. (2019) in the

stationary setting, we define the n-step value function V
(n)
π : S → R induced by a policy

π ∈ Pn as

V (n)
π : s 7→ Eπ

[
n−1∑
k=0

(Rk − τDKL(π(n−k)||π)(Sk))
∣∣∣S0 = s

]
,

where the expectation is along the trajectory of length n sampled under policy π =
(π(1), . . . , π(n)). Note that we have

V (n)
π (s) = Eπ(n) [R0]−τDKL(π(n)||π)(s) + Eπ(n) [V

(n−1)
π′ (S1)], (1)

where π′ = (π(1), . . . , π(n−1)) ∈ Pn−1, and S1 ∼
∫
A p(s, a, ·)π

(n)(da|s). It is common to add
a discount factor γ ∈ (0 , 1] to the rewards to favor more the quickly obtainable rewards. In
the infinite horizon case (n = ∞), γ < 1 ensures that the cumulative reward is finite a.s.
(provided finite first moment). Our study trivially applies to the case where the rewards
are discounted.

The n-step entropy regularized Q-function induced by π is defined as

Q(n)
π : (a, s) 7→ r(a, s) +

∫
S
p(s, a,ds′)V

(n−1)
π′ (s′). (2)

Notation: Henceforth, for a policy π ∈ Pn, we use the abuse of notation V
(i)
π for

i < n for the i-step value function associated with (π(1), . . . , π(i)), and similarly for the Q
functions and other quantities of interest, when the context makes it clear which policy is
used.
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2.2 Objective and optimal policy

The standard discounted max-entropy RL objective is defined for stationary policies π ∈ P
by

J(π) :=

∫
S
Eπt
[ T∑
k=0

γk (Rk −DKL(πt||π)(Sk))
∣∣∣S0 = s

]
ν(ds), (3)

where T ∈ N∪{∞} is the horizon and ν is the initial state distribution, see e.g. Eysenbach
and Levine (2021) and references therein. It is often assumed that T is random and therefore
π is stationary.

Instead of the above objective, we consider the following objective function for non-
stationary policy π:

Jn(π) :=

∫
S
V (n)
π (s)ν(ds). (4)

Since we assume that the rewards are bounded and since the Kullback-Leibler divergence
is non-negative, the objective function above is bounded from above by n||r||∞.

We say that a policy π ∈ Pn is optimal if and only if Jn(π) ≥ Jn(π′) for all π′ ∈ Pn.
Note that in general, uniqueness is not guaranteed, since for example π(n) only sees states
in the support of ν, which can be strictly smaller than S. If a policy π ∈ Pn is such that

V
(i)
π (s) ≥ V

(i)
π′ (s) for all s ∈ S, all i = 1, . . . , n and all π′ ∈ Pn, we say that π is uniformly

optimal. It is clear that a uniformly optimal policy is in particular optimal. The existence
and unicity of the uniformly optimal policy is established by the next proposition, providing
in passing its explicit expression.

Proposition 1 There exists a unique uniformly optimal policy, denoted by π∗ = (π
(1)
∗ , . . . , π

(n)
∗ ) ∈

Pn. The i-step optimal policies, i = 1, . . . , n, can be obtained as follows: for all a ∈ A,
s ∈ S,

π
(1)
∗ (a|s) =

π(a|s) exp(r(a, s)/τ)

Eπ[exp(r(A, s)/τ)]
, π

(i+1)
∗ (a|s) =

π(a|s) exp
(
Q

(i+1)
∗ (a, s)/τ

)
Eπ
[
exp

(
Q

(i+1)
∗ (A, s)/τ

)] ,
where Q

(i+1)
∗ is a short-hand notation for Q

(i+1)
π∗ recursively defined as in (2).

For i = 1, . . . , n, let m
(i)
π be the law of Sn−i under π and with given initial state

distribution ν. Note that m
(n)
π = ν. It is readily seen that if π is optimal for Jn, then

necessarily, π(n)(·|s) = π
(n)
∗ (·|s) for ν-almost every s. In particular, m

(n−1)
π = m

(n−1)
π∗ and

then π(n−1)(·|s) = π
(n−1)
∗ (·|s) for m

(n−1)
π∗ -almost every s ∈ S. Reasoning by induction shows

that π(i)(·|s) = π
(i)
∗ (·|s) for m

(i)
π∗ -almost every s ∈ S, for all i = 1, . . . , n. Hence, the optimal

policy is unique over the support of the state distributions induced by the uniformly optimal
policy. Since π∗(a|s) > 0 for all (a, s) ∈ A × S, the supports of these state distributions
consist of all reachable states from the support of ν.
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Lemma 1 For all s ∈ S and n ≥ 1, it holds that

V
(n)
∗ (s) = τ logEπ

[
exp

(
Q

(n)
∗ (A, s)/τ

)]
,

where V
(0)
∗ (s′) = 0.

Thanks to Lemma 1, we can write more concisely

π
(i)
∗ (a|s) = π(a|s) exp

((
Q

(i)
∗ (a, s)− V (i)

∗ (s)
)
/τ
)
. (5)

For all n,m ∈ N such that n > m, we define the operator Tn,m : Pn → Pm by

Tn,m : (π(1), . . . , π(n)) 7→ (π(1), . . . , π(m)). (6)

In Proposition 2 below, for all n ∈ N, we denote by π∗,n ∈ Pn the uniformly optimal pol-
icy with maximum horizon n and with discounted rewards. The infinite horizon entropy-
regularized RL objective is defined in (3) with T = ∞, and we denote by π∗,∞ the corre-
sponding uniformly optimal policy.

Proposition 2 Suppose that the initial state distribution ν has full support and that the
MDP is ergodic. We have:

(i) As n→∞, the policy π
(n)
∗,n converges to π∗,∞, in the sense that for ν-almost all s ∈ S,

lim
n→∞

∫
A

∣∣∣π(n)
∗,n(a|s)− π∗,∞(a|s)

∣∣∣da = 0.

(ii) for all n,m ∈ N such that n > m, it holds that Tn,m(π∗,n) = π∗,m.

The above Proposition 2 is intuitive when ν has full support so that the unique optimal
policy is the uniformly optimal policy: item (i) shows that one can learn the standard
discounted entropy-regularized RL objective by incrementally extending the agent’s horizon;
item (ii) goes the other way and shows that the uniformly optimal policy for large horizon
is built of shorter horizons uniformly optimal policies in a consistent manner.

3. Matryoshka Policy Gradient

3.1 Policy parametrization

For i ∈ {1, . . . , n}, let θ(i) ∈ RPi be the parameters of a linear model h
(i)

θ(i) : A×S → R, that

outputs for all (a, s) ∈ A×S the i-step preference h
(i)

θ(i)(a, s) for action a at state s, that is,

h
(i)

θ(i)(a, s) := θ(i) · ψ(i)(a, s),

where ψ(i) : A×S → RPi is a feature map. We assume throughout the paper that ψ(i) is a
continuous and bounded map, such that for all s ∈ S and all θ(i) with ||θ(i)|| 6= 0, the map
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a 7→ h
(i)
θ (a, s) is not constant. The i-step policy π

(i)

θ(i) is defined as the Boltzmann policy

according to h(i), that is, for all (a, s) ∈ A× S,

π
(i)

θ(i)(a|s) := π(a|s)
exp(h

(i)

θ(i)(a, s)/τ)∫
A exp(h

(i)

θ(i)(a
′, s)/τ)π(da′|s)

.

The gradient of the policy thus reads as

∇π(i)

θ(i)(a|s) = π
(i)

θ(i)(a|s)
∫
A

(
δa,da′ − π

(i)

θ(i)(da
′|s)
)
∇h(i)

θ(i)(a
′, s)/τ. (7)

3.2 Definition of the MPG update

Policy gradient (PG) for max-entropy RL consists in following ∇θJ(πθ) for the standard
objective (3). In our setting, the ideal PG update would be such that θt+1−θt = η∇θJn(πt).
We introduce Matryoshka Policy Gradient (MPG) as a practical algorithm that produces
unbiased estimates of the gradient (see Lemma 8 in Appendix).

Suppose that at time t ∈ N of training, the agent starts at a state S0 ∼ ν0. To lighten the

notation, we write π
(i)
t := π

(i)

θ
(i)
t

. We assume that the agent samples a trajectory according

to the policy πt, defined as follows:

• sample action A0 according to π
(n)
t (·|S0),

• collect reward R0 ∼ prew(·|S0, A0) and move to next state S1 ∼ p(S0, A0, ·),

• sample action A1 according to π
(n−1)
t (·|S1),

• · · ·

• stop at state Sn.

The MPG update is as follows: for i = 1, . . . , n,

θ
(i)
t+1 = θ

(i)
t + η

n−1∑
`=n−i

(
R` − τ log

π
(n−`)
t

π
(A`|S`)

)
∇ log π

(i)
t (An−i|Sn−i)

= θ
(i)
t + ηCi∇ log π

(i)
t (An−i|Sn−i), (8)

where we just introduced the shorthand notation Ci. We see that the i-step policy π(i) is
updated using the (i− `)-step policies.

3.3 Global convergence: the realizable case

Recall that m
(i)
π denotes the law of Sn−i when following policy π from a starting state with

distribution ν. We say that a sequence of policies (πt)t∈N ⊂ Pn converges to π ∈ Pn if and

only if for every i = 1, . . . , n, for π-almost every a ∈ A and for m
(i)
π -almost every s ∈ S, it

holds that

π
(i)
t (a|s) −→

t→∞
π(i)(a|s). (9)

10
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To be concise, the states on which the convergence holds are called reachable state, where
we keep the dependence in i implicit. In particular, we will write “π1 = π2 on reachable

states” to mean that for all i = 1, . . . , n, it holds that π
(i)
1 (·|s) = π

(2)
2 (·|s) for m

(i)
π2 -almost

every s.
With PG, the so-called Policy Gradient Theorem (see Section 13.2 in Sutton and Barto

(2018)) provides a direct way to guarantee convergence of the algorithm. The analog holds
in our setup, that is, if θt+1 is obtained as in (8), then E[θt+1−θt] = η∇θJn(πt); it is proven
in Appendix D.3.

Importantly, training with true gradient update converges, as stated in the following
theorem:

Theorem 1 Suppose that ||ψ|| := supa∈A,s∈S,i=1,...,n ||ψ(i)(a, s)||2 < ∞, and that θt+1 =

θt + η∇θJn(πt) for all t ≥ 0. For all initial parameters θ0, if η < 2
L(θ0) , then it holds that

Jn(πt) converges as t→∞, where

L(θ0) := 4(n2 + n3)
(

2 +
P

τ

)‖ψ‖2
τ2

(Jn(π∗)− Jn(πθ0) + 3n‖r‖∞) + 4n2 ‖ψ‖2

τ2
.

Moreover, ||∇θJn(πt)||2 → 0 as t→∞.

Note that Theorem 1 does not show that the policy πt converges as t → ∞, only that
the objective does. Furthermore, even if πt converges, its limit could be outside of the
parametric space, if the parameters during training are such that ||θt||2 →∞ as t→∞.

For the Theorem below, we assume the following:

A1. Realizability assumption There exists θ∗ ∈ RP such that πθ∗ = π∗.

Theorem 2 Under A1. and the same assumptions as in Theorem 1, limt→∞ πt = π∗ in
the sense of (9).

Intuition of the proof: the bandit case. To prove Theorem 1, we bound the 2-norm
of the Hessian of the objective to show that ∇θJn(πθ) is Lipschitz, with a constant that only
decreases along training trajectories, as long as the learning rate is chosen small enough.
However, the objective is non-concave, and it is not obvious that its critical points all
correspond to policy π∗. We present the heuristics on the illustrative bandit case |S| = 1
with horizon n = 1. We thus keep the state and horizon implicit below.

We know from Theorem 1 that J(πt) converges as t→∞, but the limit could be reached
as ‖θt‖ → ∞. However, since there is an optimal θ∗ ∈ RP by A1., for very large ‖θt‖2, the
vectors −θt and θ∗ − θt must be almost colinear. Based on this observation, we show that
if the norm of θt is very large, then moving the parameters slightly in the direction −θt
improves the performance, showing that ‖θt‖2 remains bounded.

The second step is to show that for all θ ∈ RP if πθ 6= π∗, then θ is not a critical point.
The objective is given by J(πθ) = J(π∗)−τDKL(πθ||π∗). Without loss of generality, assume
that τ = 1. In particular,

∇θJ(πθ) = −
∫
A
πθ(da)

(
log

πθ
π∗

(a) + 1

)
∇θ log πθ(a)

= −
∫
A
πθ(da) log

πθ
π∗

(a)∇θ log πθ(a),

11
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where we used that Eπθ [∇θ log πθ(A)] = 0. For the case |A| < ∞ and tabular parametri-
sation πθ(a) = eθa/Eπ[eθA ] and ∇θ log πθ(a) = (δa(a

′) − πθ(a′))a′∈A. Recall that π∗(a) =
er(a)/Eπ[er(A)]. We have

∇θJ(πθ) = −
∑
a∈A

πθ(a) (θa − r(a) + Const)∇θ log πθ(a)

= −
∑
a∈A

πθ(a) (θa − r(a)) (δa(a
′)− πθ(a′))a′∈A

= −
(
πθ(a

′)(θa′ − r(a′)− Eπθ [θA − r(A)])
)
a′∈A .

Hence, the gradient is null if and only if θa′ − r(a′) = Eπθ [θA − r(A)] for all a′ ∈ A, that
is, if and only if θa′ − r(a′) is constant in a′. This is equivalent to having πθ = π∗, which
proves that all critical points of θ 7→ J(πθ) encode the optimal policy π∗ in the bandit case
with tabular softmax parametrisation.

For the more general log-linear parametrisation hθ = θ ·ψ, the gradient times itself yields

∇θJ(πθ) · ∇θJ(πθ) =

∫
A
πθ(da) log

πθ
π∗

(a)

∫
A
πθ(da

′) log
πθ
π∗

(a′)∇θ log πθ(a) · ∇θ log πθ(a
′)

=

∫
A
πθ(da) (hθ(a)− r(a))

∫
A
πθ(da

′)
(
hθ(a

′)− r(a′)
)

Θ̃(a, a′),

where we introduced the matrix Θ̃(a, a′) = ∇θ log πθ(a) ·∇θ log πθ(a
′), depending implicitly

on the parameters. It is linked to the other matrix Θ(a, a′) := ψ(a) · ψ(a′) since one can
check that

Θ̃(a, a′) = Θ(a, a′)− Eπθ [Θ(A, a′)]− Eπθ [Θ(a,A′)] + Eπθ [Θ(A,A′)].

The gradient ∇θJ(πθ) is null if and only if (hθ(a)− r(a))a∈A belongs to the null space of Θ̃.
Note, however, that (hθ(a)−r(a))a∈A belongs to the image of Θ, since we assume A1.. One
can show through standard facts on matrices that the relation between Θ and Θ̃ implies
that ∇θJ(πθ) is null if and only if hθ − r is constant, or equivalently, if and only if πθ = π∗.

This idea works for infinite or continuous A using kernels and their reproducible kernel
Hilbert space (details are provided in Appendix B). We also stress that using non-stationary
policies is crucial in extending the proof to larger horizons n > 1, by using that fixing the
parameters of the policies with horizon less or equal to n − 1, the horizon n objective can
be seen as a horizon 1 objective where the rewards are determined by r and the fixed
subsequent policies.

3.4 Global convergence: beyond the realizability assumption

Let Pn = {πθ; θ ∈ RP } ⊂ Pn be the set of parametric policies. We now address the case
π∗ /∈ Pn, that is, Assumption A1. does not hold. We give a sketch of the main ideas to
extend Theorem 2 to the non-realizable case, showing global convergence and providing a
characterisation of the limit. All details are provided in Appendix D

We focus on the 1-step policy. Suppose that ϑ ∈ RP is a critical point of θ 7→ Jn(πθ).

Since Q
(1)
∗ (a, s) = r(a, s), one can show that

0 = ∇θ(1)Jn(πϑ) = −Eπϑ
[
∇θ(1)DKL(π

(1)
ϑ ||π

(1)
∗ )(Sn−1)

]
, (10)

12
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where the law of Sn−1 only depends on π
(n)
ϑ , . . . , π

(2)
ϑ . Since this law is fixed (ϑ is a critical

point), the right-hand side above corresponds to the gradient of a Bregman divergence on the

set of 1-step policies, which we denote byD(π
(1)
ϑ , π

(1)
∗ ). Let π

(1)
θ∗
∈ argmin

π
(1)
θ ∈P1

D(π
(1)
θ , π

(1)
∗ ).

Bregman divergences satisfy a Pythagorean identity, which in particular implies that

D(π
(1)
ϑ , π

(1)
∗ ) = D(π

(1)
ϑ , π

(1)
θ∗

) +D(π
(1)
θ∗
, π

(1)
∗ ).

Hence, we have by (10) that

0 = −∇θ(1)D(π
(1)
ϑ , π

(1)
θ∗

).

We deduce that πϑ(1) is a critical point of the 1-step MPG objective, where the initial

state distribution is prescribed by π
(i)
ϑ for i = 2, . . . , n, and where the rewards are given

by rθ∗ := h
(1)
θ∗

. In particular, Theorem 2 applies and shows that π
(1)
ϑ (·|s) = π

(1)
θ∗

(·|s) for all

reachable states s. This also proves the uniqueness of π
(1)
θ∗

on reachable states.

The argument propagates to larger horizons, by using that maxima can be taken in any
order, which proves that the unique critical point πϑ of Jn is globally optimal. Formally,
the following theorem completes the picture of the global convergence guarantees of MPG:

Theorem 3 Under the same assumptions as in Theorem 1, it holds that limt→∞ πt = πθ∗
in the sense of (9), where πθ∗ = argmaxπθ∈Pn

Jn(πθ) is unique on reachable states.

Clearly, when π∗ ∈Pn, then π∞ = π∗ on reachable states and we retrieve Theorem 2.

3.5 Projectional consistency property

Let Θ(i) : (A×S)2 → R be the positive-semidefinite kernel given by the dot product of the
feature map, that is

Θ(i)((a, s), (a′, s′)) := ψ(i)(a, s) · ψ(i)(a′, s′).

The function space {f : (a, s) 7→ θ(i) · ψ(i)(a, s); θ(i) ∈ RPi} from which we chose the
preferences of our parametric Boltzmann policies corresponds to the reproducible kernel
Hilbert space (RKHS) associated with Θ(i), that we denote by HΘ(i) . Note that when A,S
are finite, with Kronecker delta kernels Θ(i)((a, s), (a′, s′)) = δa,a′δs,s′ , we retrieve the so-
called tabular case with one parameter θs,a per state-action pair (s, a). Since we assume
that the ψ(i)’s are continuous and bounded, it is also the case for the kernels.

The realizability assumption A1. can be equivalently written as: for all i = 1, . . . , n,

there exists a map Ci : S → R such that (a, s) 7→ Q
(i)
∗ (a, s) + Ci(s) ∈ HΘ(i) , where the

maps Ci are constant in a. The Ci’s play no role in the policies encoded by functions in the
RKHS, since for a fixed s, shifting the preferences by a constant keeps the policy unchanged.

It turns out that the global optimum πθ∗ from Theorem 2 can be characterised by a prop-

erty of independent interest. Let θ ∈ RP and for all i = 1, . . . , n, let m
(i)
θ be the law of state

Sn−i under policy πθ with m
(n)
θ = ν0 by assumption. Define Pi : L2(m

(i)
θ (ds)π

(i)
θ (da|s)) →

HΘ(i) to be the orthogonal projection onto HΘ(i) in the L2(m
(i)
θ (ds)π

(i)
θ (da|s)) sense. We

13
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say that πθ satisfies the projectional consistency property if and only if for all i = 1, . . . , n,
it holds that

π
(i)
θ (a|s) = π(a|s)

exp
(
PiQ

(i)
πθ (a, s)/τ

)
∫
A π(da′|s) exp

(
PiQ

(i)
πθ (a′, s)/τ

) . (11)

Proposition 3 The global optimum πθ∗ from Theorem 3 is the only policy in Pn, up to
non-reachable states, that satisfies the projectional consistency property (11)

3.6 Neural MPG

Suppose that instead of a linear model, the policy’s preferences h
(i)
θ , i = 1, . . . , n, are

parametrized by deep neural networks. It is immediate from the proofs that the policy
gradient theorem holds true, that is, θt+1 − θt = η∇θJn(πt) for the ideal MPG update. We
describe the limit of training in terms of the Neural Tangent Kernels (NTKs) of the neural
networks and the conjugate kernels (CKs). The NTK of the i-step policy (or rather, of the
i-step preference) at time t of training is defined for all (a, s), (a′, s′) ∈ A× S as

Θ
(i)
t ((a, s), (a′, s′)) := ∇θ(i)h

(i)
t (a, s) · ∇θ(i)h

(i)
t (a′, s′).

The CK of the i-step policy is defined as the inner product of the last hidden layer, that
we denote by α, that is

Σt((a, s), (a
′, s′)) := αt(a, s) · αt(a′, s′).

Moreover, letting HK be the induced RKHS of a kernel K, it holds that HΣt ⊂ HΘt , see
Appendix A.2 for more details.

For the trained policy π∞, let PΘ
n be the space of log-linear policies whose i-step pref-

erence belongs to H
Θ

(i)
∞

, i = 1, . . . , n, and similarly for PΣ
n and Σ

(i)
∞ .

Corollary 1 Let πt ∈ Pn be parametrized by neural networks. Suppose that θt+1 − θt =
η∇θJn(πt) with η > 0 small enough and that π∞ = limt→∞ πt with parameters ||θ∞||2 <∞.
Then, it holds that

π∞ = argmax
π∈PΘ

n

Jn(π) = argmax
π∈PΣ

n

Jn(π).

In particular, if π∗ ∈ PΘ
n (equivalently PΣ

n ), then π∞ = π∗ on reachable states.

A direct consequence of Corollary 1 is global convergence of MPG in the NTK regime, see
the forthcoming Remark 1 in Appendix.

4. Numerical experiments

This section describes the performance of the MPG framework. In the first experiment, we
evaluate the MPG framework on an analytical task and show that we converge to the the

14



Matryoshka Policy Gradient

optimal policy when the optimal policy is realisable, and to the optimal policy in the param-
eter space when the true optimal policy is not representable by the policy parameterisation.
Then, we compare the performance of MPG against REINFORCE (Sutton et al., 1999)
(denoted as PG), REINFORCE with entropy regularisation (softPG) and a non-stationary
policy gradient method (nsPG), which is the MPG method without entropy regularisation
in two simple control tasks. More details on the implementation, experimental setups and
additional results can be found in Appendix F.

4.1 Analytical task

To numerically evaluate the consequences of Theorem 2, we devise the following analytical
problem: consider a state-space consisting of S = {0, 1, 2, 3, 4}, an action space A = {1, 2}
with horizon n = 2. At each state s, the agent performs action a, taking the agent to the

next state (s+a) mod 5 (see appendix F.1 for fully specified Q
(1)
∗ function, the linear basis

{ei; i = 1, . . . , 5} considered and experimental setup for the presented experiments).

We consider the preference function to be represented by a linear model and we consider
a true gradient update. Then, we investigate the first two step policies obtained using MPG
are when assumption A1. holds and when it does not. The results are shown in Figure 1.
Namely, on the left, we use the full basis {ei; i = 1, . . . , 5} for the parametric model, and we
are able to find the 1-step and 2-step policies which maximize the objective J , and converge
towards the optimal 1-step and 2-step policies. On the right of Figure 1, we performed the

same experiment using an incomplete basis, that cannot express Q
(1)
∗ nor Q

(2)
∗ . Namely, we

used {ei; i = 1, . . . , 4} for both the 1-step and the 2-step policies. In this case, we check
that the limit is the only policy satisfying the projectional consistency property within the
parametric policy space. In both cases, the L∞-error between the obtained policies and
optimal policies go to zero as more episodes are used.
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Figure 1: Analytical task. Convergence of 5 agents with random initialisation during train-
ing; the errors are measured through the L∞-norm and π(1) denotes the one-step
policy and π(2) the two-step policy. On the left, the convergence of the found
1-step and 2-step policies towards the optimal policies when the parametric space
can represent the policy (i.e. when assumption A1. holds) is shown. On the right,
the convergence of the 1-step and 2-step policies towards the optimal projected
policies (i.e. when assumption A1. does not hold) is shown.
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4.2 Control problems

In this section we present a summary of the performance of the MPG algorithm on two
standard RL problems, comparing it to REINFORCE (Sutton et al., 1999) (denoted as PG),
REINFORCE with entropy regularisation (softPG) and a non-stationary policy gradient
method (nsPG). In the following experiments, we use a deep neural network to represent
the policy (see appendix F for architecture) and we estimate the gradient update based on
one trajectory as in (8).

For both tasks, we follow the experimental protocol as in Patterson et al. (2023), where
we first make a sweep over the hyper-parameter spaces considered, evaluating the perfor-
mance over 3 agents per set of hyper-parameters, which are initial temperature τ0 and initial
learning rate η0 because we decay both the learning rate and temperature – namely, starting
from a higher temperature encourages the exploration of the environment in early stages
of training. After this initial stage, we select the best performing sets of hyper-parameters
and run more throughout experiments (over 50 agents) to compare the performance of
the different algorithms. For those experiments, confidence intervals around the mean are
computed using bootstrap and considering m = 1000 resampled samples of the mean. In
this section we present the results for the the extended experiments, while the preliminary
experiments with the hyper-parameter exploration can be found in the appendix F.2.

Frozen Lake: The Frozen Lake benchmark (see Brockman et al. (2016)) features a 4× 4
grid composed of cells, holes and one treasure, and a discrete action space, namely, the
agent can move in four directions (up, down, left, right). The episode terminates when the
agent reaches the treasure or falls down holes.

For all three algorithms, we considered the hyper-parameter space over initial learn-
ing rates and initial temperature, as specified in table 1. Then, for each algorithm, we
augmented the search space if we found best performing agents at the boundary of the con-
sidered initial hyper-parameter space, also denoted in table 1. In addition, we considered
a horizon length of N = 20, a terminal τT = 0.01, terminal learning rate ηT = 1 × 10−6

and 1000 episodes. From these initial runs (results can be found in the appendix), we
found the best sets of hyper-parameters for each of the algorithms, denoted on table 24.
Using those hyper-parameters, we ran more extended experiments, now considering 50 in-
dependent agents. In figure 2, on the left, we present the training curves, showing the
accumulated reward per episode, the shaded regions bound the mean using the 2.5th per-
centile and 97.5th percentile means using bootstrap to compute the confidence interval; on
the right, we present the histogram of the cumulative rewards at test time, after training:
each agent attempts to solve the task 100 times. While the performance between MPG
and PG was relatively similar: either the agent finds the treasure consistently or fails to
find the treasure, training with nsPG or softPG did not yield a good performance in this
task; namely, using softPG the agent often gets stuck at moving around the map (which
yielded a +0.01 reward at each step, and a cumulative reward of 0.2) instead of finding
the treasure. We conducted more experiments using different terminal temperature τT and
terminal learning rate ηT with little success. Possible ways to address this could be to
reshape the reward function further but this was beyond the scope of this current paper.

4. In the cases where there were several sets of good hyper-parameters, we ran an intermediate step with
15 agents and selected the best set of hyper-parameters.
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Table 1: Hyper-parameters for Frozen lake
Initial PG softPG nsPG MPG

η0
{0.01, 5× 10−3, 1× 10−3,

5× 10−4, 1× 10−4} {} {0.1, 0.05} {0.5, 0.1, 0.05} {}

τ0
{0.15, 0.2, 0.25, 0.3, 0.35,
0.4, 0.45, 0.5, 0.55, 0.6} NA {0.6, 0.65, 0.7} NA {}

Table 2: Best set of hyper-parameters for Frozen lake
PG softPG nsPG MPG

η0 0.01 0.01 0.05 5× 10−3

τ0 NA 0.6 NA 0.4

Furthermore, we noted that when the horizon was decreased (for N = 10 and N = 15),
we were not able to find the treasure with PG, softPG nor nsPG, whereas training with
MPG, the agents would still consistently find the treasure and train successfully.

Cart Pole: The Cart Pole benchmark is a classical control problem where a pole is
attached by an un-actuated joint to a cart, which moves along a frictionless track. The
pole is placed upright on the cart, and the goal is to balance the pole by moving the cart
to the left or right for some finite horizon time. It features a continuous environment and
a discrete action space.

We considered a horizon length of N = 100, a terminal τT = 0.01, terminal learning
rate ηT = 5 × 10−8 and 1000 episodes. For all three algorithms, we considered the hyper-
parameter space over initial learning rates and initial temperature, as specified in table 3,
if the best parameter was found at the boundary of the hyper-parameter space, we added
another value to the hyper-parameter search. From these initial runs, we found the best
sets of hyper-parameters for each of the algorithms, denoted on table 4. Using these hyper-
parameters, we ran more extended experiments, now considering 50 independent agents. In
figure 3, on the left, we present the training curves, showing the accumulated reward per
episode, the shaded regions bound the mean using the 2.5th percentile and 97.5th percentile
mean using bootstrap to compute the confidence interval; on the right, we present the
histogram of the cumulative rewards after training. We note that all algorithms attain
quite similar performance, with the entropy regularised ones (MPG and softPG) requiring
more episodes to reach the same cumulative reward. This is not surprising, as the agent
spends more time exploring the environment at the early stages of training because τ is
larger. We observe that once trained, the testing performance of PG, MPG and nsPG is
quite similar, whereas softPG has a larger spread in the cumulative reward, which appears
consistent with the larger confidence intervals observed during training.
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Figure 2: Frozen Lake. Left: Cumulative rewards per episode during training time
when training using different RL algorithms with the best found set of hyper-
parameters. Right: Cumulative rewards per episode after training, each trained
agent attempts to solve the task 100 times.

Table 3: Hyper-parameters for balancing cart pole task
Initial PG softPG nsPG MPG

η0

{5× 10−5,
1× 10−5,
5× 10−6,
1× 10−6}

{0.005, 0.001,
5× 10−4,
1× 10−4}

{1× 10−4}
{0.005, 0.001,

5× 10−4,
1× 10−4}

{1× 10−4}

τ0

{0.1, 0.15,
0.20, 0.25,

0.3}
NA {0.35, 0.4, 0.45} NA {}

5. Conclusion

In this paper, we have studied a framework combining fixed-horizon RL and max-entropy
RL. We have introduced the Matryoshka Policy Gradient algorithm in the function approx-
imation setting, with log-linear parametric policies. We proved that the global optimum
of the MPG objective is unique, and that MPG converges to this global optimum, includ-
ing for continuous state and action space. Furthermore, we proved that these results hold
true even when the true optimal policy does not belong to the parametric space (that is

Table 4: Best set of hyper-parameters for the balancing cart pole task
PG softPG nsPG MPG

η0 0.001 5× 10−5 0.001 5× 10−5

τ0 NA 0.3 NA 0.3
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Figure 3: Cart Pole. Left: Cumulative rewards per episode during training time when train-
ing using different RL algorithms with the best found set of hyper-parameters.
Right: Cumulative rewards per episode after training, each trained agent at-
tempts to solve the task 100 times.

when Assumption A1. does not hold). The limit – globally optimal within the paramet-
ric space – corresponds to a projection of the optimal policy onto the parametric space.
It is written as the softmax of orthogonal projections of the optimal preferences onto the
RKHSs of the parametrization, with respect to the state-visitation measures induced by
the policy, see (11). Finally, letting the horizon tend to infinity, the optimal policy of MPG
retrieves the optimal policy of the standard infinite-horizon max-entropy objective, when
the initial state distribution has full support. For neural policies, we prove that the limit
is optimal within the RKHSs of the NTK (equivalently of the CK) at the end of training,
and can be written in terms of orthogonal projections of optimal preferences onto these
RKHSs, yielding criterion for global optimality in terms of the NTK (equivalently the CK).
In particular it establishes the global convergence of neural MPG in the NTK regime. The
MPG framework is intuitive, theoretically sound and it is easy to implement. Furthermore,
as verified in the numerical experiments, there appears to be an slight advantage to using
entropy regularisation and non-stationary policies over the compared PG algorithms. More
challenging experiments will be considered in future work.

Limitations. The main limitations of our work are the following: (a) we have not stud-
ied the rate of convergence of MPG (typically more assumptions on the environment, the
horizon, are needed), (b) we assumed that perfect gradient updates whereas in practice,
one uses the estimate (8), (c) as a theoretical paper, our numerical experiments are rather
simple. We hope to address these limitations in future work, as well a other perspectives
such as:

• Additionally to MPG as defined in this paper, we expect to have nice theoretical
properties of variations of MPG that are used for other PG algorithms. E.g. one can
think of natural MPG, actor-critic MPG, path consistency MPG (see Nachum et al.
(2017) for path consistency learning).
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• We motivated the use of MPG with neural softmax policies by some theoretical,
practical, and heuristic arguments; we believe that more can be said on the use of
neural policies with MPG, in particular by studying the spectra of the NTK and the
CK of neural networks along specific geodesics in the parametric space.

• How does the fixed-horizon max-entropy framework compares to the standard max-
entropy RL framework in terms of exploration, adversarial robustness, sample effi-
ciency, and so on?
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Appendix

The appendix is organized as follows:

• A: we recall basic properties of softmax policies, then discuss the potential benefits
to using a single neural network for the preferences of all i-step policies. This section
ends with an explanation on how to approximate a kernel with finitely many features.

• B: we state and derive some basic facts on RKHS.

• C: We use concepts from Information Geometry to show that critical points of the
MPG objective correspond to critical points of a Bregman divergence; this fact is
useful when the realizable assumption does not hold to ensure that MPG converges
to the unique global optimum.

• D: we prove the Matryoshka Policy Gradient Theorem (Theorem 1), Proposition 2
that shows that the infinite horizon optimal policy can approximated arbitrarily well
by finite horizon optimal policies, Theorem 2 and Theorem 3 that shows global con-
vergence of MPG.

• E: we list and discuss our main assumptions.

• F: we provide more detailed numerical experiments implementing MPG.

Appendix A. More on the parametrization

A.1 Softmax policy

As long as the map ψ is uniformly bounded, softmax policies enjoy the two following
properties:

• For all s ∈ S, it holds that

Eπθ [∇θ log πθ(A|s)] =

∫
A
∇θπθ(da|s) = 0. (12)

• It holds that πθ(a|s) > 0 for all (a, s) ∈ A× S such that π(a|s) > 0.

A.2 Neural networks

Neural Tangent Kernel. For a measurable nonlinearity σ : R → R, we recursively
define a neural network of depth L ≥ 1, with trainable parameters W ` ∈ Rd` × Rd`+1 as
f : x ∈ Rd0 7→ α̃L(x) ∈ RdL , with α0(x) := x and

α̃`+1(x) := W `α`(x),

α`+1(x) := σ
(
α̃`+1(x)

)
,

where σ is applied element-wise.
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Note that the connection between the last hidden layer and the output layer is linear,
since f = WLαL−1. In particular, f belongs to the RKHS of the conjugate kernel (CK)
associated with the neural network, defined as

Σ(x, x′) := αL−1(x) · αL−1(x′).

On the other hand, the training of the neural network is governed by the neural tangent
kernel (NTK), which is defined as

Θ(x, x′) := ∇f(x) · ∇f(x′) =

P∑
p=1

∂θpf(x)∂θpf(x′),

where θ ∈ RP is the vector of all the trainable parameters of the neural network. It is
important to note that both the CK and the NTK depend on the parameters and as such,
move during training. Moreover, isolating the derivatives with respect to parameters WL

of the last linear layer from the others θ̃, we have that

Θ(x, x′) = αL−1(x)αL−1(x′) +∇
θ̃
f(x)∇

θ̃
f(x′)

= Σ(x, x′) +K(x, x′),

and K is another positive semidefinite kernel. We therefore have that

HΣ ⊂ HΘ, ∀θ ∈ RP . (13)

Remark 1 For infinitely wide neural networks in the NTK regime (Jacot et al., 2018)
(a.k.a. lazy regime (Chizat and Bach, 2018), kernel regime), the NTK is fixed during train-
ing and is strictly positive definite, therefore convergence to the optimal policy is guaranteed.

Non-stationary policy parametrized by a single neural network. One of the as-

sumptions of MPG is that for any i 6= j, the policies π
(i)

θ(i) and π
(j)

θ(j) do not share parameters.
Using one neural network per horizon becomes quickly costly as the maximal horizon in-
creases. In order to avoid this issue, one can use a single neural network hθ to parametrize

all i-step policies by using i as an input such that π
(i)
θ (a|s) ∝ π(a|s) exp(hθ(a, s, i)/τ). By

deviating from the theory, we nonetheless expect the performance of the model to be en-
hanced: as i grows large, the i-step optimal policy gets closer to the i+ 1-step policy. One
could also use 1− 1

i as an input to the network (or any increasing map g : N 7→ [0 , 1] such
that i 7→ g(i+ 1)− g(i) is decreasing).

A.3 Kernel methods

Suppose that Θ is a strictly pd kernel with P positive eigenvalues. Recall the linear model
a 7→ hθ(a) = θ ·ψ(a), with parameters θ ∈ RP , such that ψ is a feature map associated with
Θ. Then if P = ∞, one can use random features, i.e. sample g1, . . . , gP ′ i.i.d. Gaussian
processes with covariance kernel Θ, then hθ := 1√

P ′

∑P ′

i=1 θigi. One can thus approximate

the true kernel predictor using a finite number of features, see Jacot et al. (2020).
Another way to approximate the kernel predictor with finitely many features is to use

the spectral truncated kernel Θ̂ of rank P ′ ∈ N, by cutting off the smallest eigenvalues. If
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(ei, λi)i≥1 are the eigenfunction/eigenvalue pairs of Θ ranked in the non-increasing order of
λi, one can use

Θ̂(x, x′) :=
P ′∑
i=1

λiei(x)ei(x
′),

and the predictor hθ :=
∑P ′

i=1 θiei.

Appendix B. Reproducible kernel Hilbert spaces

In this section, we recall and provide some basic facts on RKHSs that we use throughout
the proofs. Given some RKHS H, we write H⊥ for its orthogonal complement; it is also an
RKHS.

Lemma 2 Let H1,H2 be two RKHSs on A× S,

(i) The intersection H1 ∩H2 is an RKHS.

(ii) For any element f ∈ H1, there exists a unique decomposition f = g• + g⊥ such that
g• ∈ H1 ∩H2 and g⊥ ∈ H1 ∩ (H2)⊥.

For a probability measure of the form µ(ds)π(da|s) on A× S, where π is a policy, and
for a positive-semidefinite kernel K on A × S, we define the integral operator IK(µ, π) :
L2(µ(ds)π(da|s)) by

IK(f ;µ, π) : (a, s) 7→
∫
A×S

µ(ds′)π(da′|s′)f(a′, s′)K((a, s), (a′, s′)).

Mercer’s Theorem states that if A × S is closed (in a real space), and if K is con-
tinuous and satisfies

∫
(A×S)2 K((a, s), (a′, s′))2π(da|s)µ(ds)π(da′|s′)µ(ds′) <∞, then there

exists eigenfunction/eigenvalue pairs (ei, λi)i≥1 associated with IK(µ, π), ranked in the non-
increasing order of λi ≥ 0 such that

K((a, s), (a′, s′)) =
∑
i≥1

λiei(a, s)ei(a
′, s′).

Moreover, {ei; i ≥ 1} is an orthonormal basis of L2(µ(ds)π(da|s)) and the RKHS HK has
orthonormal basis {

√
λiei;λi > 0} with respect to the RKHS inner product. We refer the

reader to Minh et al. (2006) for more details.
We stress that the notion of orthogonality depends on the measure µ(ds)π(da|s).

Henceforth, we write H⊥ for the orthogonal space of the RKHS, where this measure is
implicit but given by the context.

In the rest of the current section, we use the notation introduced above and assume that
Mercer’s Theorem applies.

Lemma 3 Let f ∈ L2(µ(ds)π(da|s)). It holds that IK(f ;µ, π)(a, s) = 0 for all a ∈ A, s ∈ S
if and only if f ∈ (HK)⊥.
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Proof We write∫
A×S

µ(ds)π(da|s)f(a, s)IK(f ;µ, π)(a, s)

=

∫
A×S

µ(ds)π(da|s)(a, s)
∫
A×S

µ(ds′)π(da′|s′)f(a, s)f(a′, s′)K((a, s), (a′, s′))

=
∑
i≥1

λi

(∫
A×S

µ(ds)π(da|s)f(a, s)ei(a, s)

)2

,

where we used Mercer’s Theorem to write K((a, s), (a′, s′)) =
∑

i≥1 λiei(a, s)ei(a
′, s′). The

claim follows.

Lemma 4 It holds that

K̃((a, s), (a′, s′)) := K((a, s), (a′, s′))−
∫
A
K((b, s), (a′, s′))π(db|s)

−
∫
A
K((a, s), (b′, s′))π(db′|s′) +

∫
A2

K((b, s), (b′, s′))π(db|s)π(db′|s′)

is a positive-semidefinite kernel. Furthermore, any map g ∈ HK ∩ (H
K̃

)⊥ is such that for
µ-almost every s ∈ S, the map a 7→ g(a, s) is constant.

Proof Let d := sup{i ≥ 1 : λi > 0} where the λi’s are the eigenvalues of IK . To prove the
first part of the claim, it suffices to show that for all g ∈ L2(µ(ds)π(da|s)), we have∫

(S×A)2

µ(ds)π(da|s)µ(ds′)π(da′|s′)g(a, s)g(a′, s′)K̃((a, s), (a′, s′)) ≥ 0. (14)

To ease the notation, for any maps f, g ∈ L2(µ(ds)π(da|s)) we write

〈f, g〉 :=

∫
S×A

µ(ds)π(da|s)f(a, s)g(a, s),

f(s) :=

∫
A
π(da|s)f(a, s).

We now establish (14). Using that K((a, s), (a′, s′)) =
∑

j≤d λjej(a, s)ej(a
′, s′), we get

K̃((a, s), (a′, s′)) =
∑
j≤d

λj(ej(a, s)− ej(s))(ej(a′, s′)− ej(s′)).

The left-hand side of (14) thus reads as∑
j≤d

λj
(
〈g, ej〉2 − 2〈g, ej〉〈g, ej〉+ 〈g, ej〉2

)
=
∑
j≤d

λj
(
α2
j − 2αj〈g, ej〉+ 〈g, ej〉2

)
=
∑
j≤d

λj (αj − 〈g, ej〉)2 .
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The right-hand side above being clearly non-negative, this shows that K̃ is positive-semidefinite.
We now turn our attention to the last part of the claim. Suppose that g ∈ HK ∩ (H

K̃
)⊥,

so that we can write g =
∑

j≤d αjej , with αj = 〈g, ej〉. Moreover, by Lemma 3, we have an
equality in (14), and we get ∑

j≤d
λj(〈g, ej〉 − 〈g, ej〉)2 = 0.

We thus necessarily have 〈g, ej〉 = 〈g, ej〉 for all j ≤ d. In particular,

〈g, g〉 =
∑
j≤d

α2
j =

∑
j≤d

αj〈g, ej〉 = 〈g, g〉.

On the other hand, Cauchy-Schwarz Inequality shows that if s 7→ g(a, s) is not constant in
a for all s, then

〈g, g〉 =

∫
S
µ(ds)

∫
A
π(da|s)g(a, s)2

>

∫
S
µ(ds)

(∫
A
π(da|s)|g(a, s)|

)2

≥ 〈g, g〉.

This is a contradiction and thus implies that g must be constant in a.

Since the feature maps we consider in this work are continuous, necessarily, the map g in
the above is constant for µ-almost every s ∈ S if and only if it is constant for all s in the
support of µ.

Appendix C. Information Geometry

The goal of this section is to show that a Pythagorean identity that is used in the forthcoming
proof of Theorem 3. We use it in the case of a 1-step policy, and for a fixed state distribution,
that we denote by ν in this section. Without loss of generality, we also assume to ease the
notation that τ = 1.

Consider the parametric space of preferences HΘ := {hθ =
∑d

k=1 θkψk; θ ∈ Rd}, where
ψ is the feature map of a positive definite kernel Θ that we assume to be continuous and
bounded. The space HΘ is the RKHS associated with Θ. Fix ϑ ∈ Rd and let πϑ be the
1-step policy induced by the preference hϑ (with baseline policy π as usual).

Up to reparametrization (potentially decreasing the value of d), we can assume without
loss of generality that HΘ := {hθ =

∑d
k=1 θkϕk; θ ∈ Rd} where {ϕk; k = 1, . . . , d} is an

orthonormal basis ofHΘ in L2(ν(ds)πϑ(da|s)). For k ≥ 1, define ϕk such that {ϕk; k ≥ d+1}
is an orthonormal basis of (HΘ)⊥, the orthogonal complement of HΘ in L2(ν(ds)πϑ(da|s)).

The map

F : θ 7→
∫
S
ν(ds) log

∫
A
π(da|s)ehθ(a,s)

Rd
′ → R
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is strictly convex. Indeed, it is straightforward to compute

∂θiF (θ) =

∫
S
ν(ds)

∫
A
πθ(da|s)ϕi(a, s),

and then

∇θ∇θF (θ) =

(∫
S
ν(ds)

∫
A
πθ(da|s)ϕi(a, s)(ϕj(a, s)− Eπθ [ϕj(A, s)])

)
i,j≤d′

=

∫
S
ν(ds)Varπθ [ϕ(A, s)] ,

where Varπθ [ϕ(A, s)] is the covariance matrix of ϕ(A, s) for A ∼ πθ(·|s). We thus have that

θT∇θ∇θF (θ)θ =

∫
S
ν(ds)

∫
A
πθ(da|s) (hθ(a, s)− Eπθ [hθ(A, s)])

2 ,

which is non-negative, and null if and only if hθ(a, s) = Eπθ [h(A, s)] for all a ∈ A, that is,
if and only if θ = 0. This shows that ∇θ∇θF (θ) is strictly convex on Rd′ .

As a strictly convex map, F induces a Bregman divergence on the quotient space P(d′),
where P(d′) is the set of softmax policies with preferences parametrized by θ ∈ Rd′ . The
Bregman divergence is defined as

DF (θ, θ′) : = F (θ)− F (θ′)−∇F (θ′) · (θ − θ′)

=

∫
S
ν(ds)DKL(πθ′ ||πθ)(s).

More generally, DF (π, π′) :=
∫
S ν(ds)DKL(π′||π)(s) is well defined for any policies π, π′ ∈ P.

One can define a dual coordinate system ξ(θ) := ∇F (θ), and the manifold P(d′) is said to
be dually flat, as each coordinate system induces a notion of flatness.

Recall that ϑ ∈ Rd is fixed and let Q̂ ∈ L2(ν(ds)πϑ(da|s)), with π̂ the induced policy.
In particular, we can write Q̂ =

∑∞
k=1 θ̂kϕk. For all d′ ≥ 1, let π̂d′ ∈ P(d′) be the policy

induced by ĥd′ :=
∑d′

k=1 θ̂kϕk ∈ Fd′ . In particular, by Theorem 1.5 in Amari (2016) p.27,
we have that

π̂d
′
d := argminπθ∈P(d)DF (π̂d′ , πθ)

is unique in P(d), and moreover,

DF (π̂d′ , πϑ) = DF (π̂d′ , π̂
d′
d ) +DF (π̂d

′
d , πϑ).

We now extend this identity to the infinite dimensional case, that is, with π̂ in place of π̂d′ .
Firstly, it is clear that π̂d′ → π̂ as d′ → ∞. Since DF is continuous, the Maximum

Theorem (see p.116 of Berge (1963)) entails that

π̂∞d := lim
d′→∞

π̂d
′
d = argminπθ∈P(d)DF (π̂, πθ),

and then

DF (π̂, πϑ) = DF (π̂, π̂∞d ) +DF (π̂∞d , πϑ).

(Alternatively, one can show the above as Equation (4) in Fukumizu (2005))
From the above equation we easily deduce the following Lemma:

Lemma 5 With the notation introduced above, the vector ϑ ∈ Rd is a critical point of
θ 7→ DF (π̂, πθ) if and only if it is a critical point of θ 7→ DF (π̂∞d , πθ).
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Appendix D. Proofs

D.1 Matryoshka Policy Gradient Theorem and convergence of the objective

The following property is simple yet useful for later computations.

Lemma 6 For all n ≥ 1, all π ∈ Pn and all s ∈ S, it holds that

V (n)
π (s)− V (n)

∗ (s) = −τEπ

[
n−1∑
i=0

DKL(π(n−i)||π(n−i)
∗ )(Si)

∣∣∣∣∣S0 = s

]
.

Proof Recall (1) and write

V (n)
π (s) =

∫
A
π(n)(da|s)

(
r(a, s)− τ log

π(n)

π
(a|s) +

∫
S
p(s, a,ds′)V (n−1)

π (s′)

)
=

∫
A
π(n)(da|s)

(
V

(n)
∗ (s)− τ log

π(n)

π∗
(a|s) +

∫
S
p(s, a,ds′)(V (n−1)

π (s′)− V (n−1)
∗ (s′))

)
,

where we plugged in the expression of the optimal policy (5). We can rewrite the above as

V (n)
π (s)− V (n)

∗ (s) = −τDKL(π(n)||π(n)
∗ ) + Eπ

[
V (n−1)
π (S1)− V (n−1)

∗ (S1)
∣∣∣S0 = s

]
.

The claim follows by induction.

The next lemma provides bounds that are needed to take derivatives of the objective
for the proof of Theorem 1 later on.

Lemma 7 For all a ∈ A, s ∈ S, θ, θ′ ∈ RP and all i ∈ {1, . . . , n}, it holds that

(i) ‖∇θπ
(i)
θ (a|s)‖2 ≤ 2

τ ‖ψ‖π
(i)
θ (a|s);

(ii) ‖∇2
θ log π

(i)
θ (a|s)‖2 ≤ 2Pi

τ2 ‖ψ‖2;

(iii)
∫
A π

(i)
θ (da|s)

∣∣∣ log
π

(i)
θ

π
(i)
∗

(a|s)
∣∣∣ ≤ DKL(π

(i)
θ ||π

(i)
∗ )(s) + 3n

τ ‖r‖∞;

(iv) Let fθ : A× S 7→ R be differentiable with respect to θ ∈ RP such that ‖f‖∞ ≤ C and
‖∇θfθ(a, s)‖2 ≤ C(1 + ‖θ‖2) for all (a, s) ∈ A × S for some constant C > 0, then it
holds that

∇θEπθ [fθ(Ai, Si)] = Eπθ

[( i∑
j=0

∇θ log π
(n−j)
θ (Aj |Sj)

)
fθ(Ai, Si)

]
+ Eπθ [∇θfθ(Ai, Si)] .

Proof (i) Recall (7). We have ∇θπ
(i)
θ (a|s) = π

(i)
θ (a|s)(ψ(i)(a, s)−Eπθ [ψ(i)(A, s)])/τ . In par-

ticular, ‖∇θπ
(i)
θ (a|s)‖2 ≤ 2π

(i)
θ (a|s)‖ψ‖/τ , where we recall that ‖ψ‖ = supa,s,i ‖ψ(i)(a, s)‖2.

This proves (i).
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(ii) We compute

∇2
θ log π

(i)
θ (a|s) = ∇θ

(
ψ(i)(a, s− Eπθ [ψ

(i)(A, s)])
)
/τ

= − 1

τ2
E
π

(i)
θ

[
ψ(i)(A, s)

(
ψ(i)(A, s)− Eπθ [ψ

(i)(A′, s)]
)T ]

.

Since the 2-norm of a matrix is upper-bounded by its Frobenius norm, the above entails
that ‖∇2

θ log πθ(a|s)‖22 ≤
∑

k,`≤P (∇2
θ log πθ(a|s))2

k,` ≤
4P 2

τ4 ‖ψ‖4, which proves (ii).

(iii) Let i ∈ {1, . . . , n}. We note that

∫
A
π

(i)
θ (da|s)

∣∣∣∣ log
π

(i)
θ

π
(i)
∗

(a|s)
∣∣∣∣ = DKL(π

(i)
θ ||π

(i)
∗ )(s) + 2

∫
A
π

(i)
θ (da|s) log

π
(i)
∗

π
(i)
θ

(a|s)1{π(i)
θ (a|s)<π(i)

∗ (a|s)}.

We claim that for all θ ∈ RP and all s ∈ S, it holds that

∫
A
π

(i)
θ (da|s) log

π
(i)
∗

π
(i)
θ

(a|s)1{π(i)
∗ (a|s)>π(i)

θ (a|s)} ≤ e
−1 +

3n

2τ
||r||∞. (15)

To lighten the notation, let us keep the variables a and s implicit in the calculations. To
establish (15), we write by definition that

0 ≤
∫
A

dπ
(i)
θ log

π
(i)
∗

π
(i)
θ

1{π(i)
∗ >π

(i)
θ }

=
1

τ

∫
A

dπ
(i)
θ

(
Q

(i)
∗ − V (i)

∗

)
1{π(i)

∗ >π
(i)
θ }

−
∫
A

dπeh
(i)
θ /τ−logEπ [e

h
(i)
θ
/τ

]

(
1

τ
h

(i)
θ − logEπ[eh

(i)
θ /τ ]

)
1{π(i)

∗ >π
(i)
θ }

≤ ||Q
(i)
∗ − V (i)

∗ ||∞
τ

−
∫
A

dπeh
(i)
θ /τ−logEπ [e

h
(i)
θ
/τ

]

(
1

τ
h

(i)
θ − logEπ[eh

(i)
θ /τ ]

)
1{π(i)

∗ >π
(i)
θ }
.

To lower bound the second term, note that the integral is of the form
∫
A dπefθfθ, and one

can easily check that xex ≥ e−1 for all x ∈ R, so that
∫
A dπefθfθ ≥ e−1. We thus have

proved that

∫
A

dπ
(i)
θ log

π
(i)
∗

π
(i)
θ

1{π(i)
∗ >π

(i)
θ }
≤ e−1 +

||Q(i)
∗ − V (i)

∗ ||∞
τ

.

We now bound ||Q(i)
∗ − V (i)

∗ ||∞. Note that V
(1)
∗ (s) = τ logEπ[er(A,s)/τ ], so that ||V (1)

∗ ||∞ ≤
||r||∞, and then,

||Q(1)
∗ ||∞, ||V (1)

∗ ||∞ ≤ ||r||∞.
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We reason by induction. We have

∣∣∣Q(i+1)
∗ (a, s)− V (i+1)

∗ (s)
∣∣∣ =

∣∣∣∣r(a, s) +

∫
S
p(s, a,ds′)V

(i)
∗ (s′)− τDKL(π

(i+1)
∗ ||π)(s)− V (i+1)

∗ (s)

∣∣∣∣
≤
∣∣∣∣r(a, s) +

∫
S
p(s, a,ds′)V

(i)
∗ (s′) + Eπ∗ [Q

(i+1)
∗ (A, s)]

∣∣∣∣
≤ ||r||∞ + ||V (i)

∗ ||∞ + ||Q(i+1)
∗ ||∞

≤ 2||r||∞ + 2||V (i)
∗ ||∞.

In particular, ||V (i+1)
∗ ||∞ ≤ ||Q(i+1)

∗ ||∞ + 2||r||∞ + 2||V (i)
∗ ||∞ ≤ 3||r||∞ + 3||V (i)

∗ ||∞. By
induction, we get for all i = 1, . . . , n that

||V (i)
∗ ||∞ ≤

i−1∑
j=1

3jr =
3i−1

2
||r||∞ ≤

3n−1 − 1

2
||r||∞,

||Q(i)
∗ ||∞ ≤ ||r||∞ + ||V (i−1)

∗ ||∞ ≤
3n−2 + 1

2
||r||∞. (16)

This proves (15), which in turns proves (iii).

(iv) Let fθ satisfy the conditions of the statement. For all i ∈ {0, . . . , n− 1}, the state
distribution satisfies

m(n−i)
πθ

(ds) =

∫
S

m(n−i+1)
πθ

(ds′)

∫
A
π

(n−i+1)
θ (da|s′)p(s′, a,ds)

=

∫
S
ν(ds0)

∫
A
π

(n)
θ (da0|s0)

∫
S
p(s0, a0, ds1) . . .

. . .×
∫
A
π

(n−i+1)
θ (dai−1|si−1)

∫
S
p(si−1, ai−1, ds).

Note that π
(i)
θ = π e

h
(i)
θ
/τ

Eπ [e
h

(i)
θ
/τ

]

, with ‖h(i)
θ ‖∞ ≤ supa,s ‖θ(i)‖2‖ψ(i)(a, s)‖2 < ‖ψ‖, which entails

that for all θ ∈ RP , being integrable with respect to m
(i)
πθ (ds)π

(i)
θ (da|s) is equivalent to being

integrable with respect to m
(i)
π (ds)π(i)(da|s). On the other hand, for any s0, a0, . . . , si, ai,

we have that

∇θ
i∏

`=0

π
(n−`)
θ (a`|s`) =

 i∏
j=0

π
(n−j)
θ (aj |sj)

 i∑
j=0

∇θ log π
(n−j)
θ (aj |sj)
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Since ‖ log π
(n−j)
θ (aj |sj)‖2 ≤ 2

τ ‖ψ‖ by (i), from Measure Theory, we know that we can
differentiate inside the integral and write

∇θ
∫
S

m(`)
πθ

(ds)

∫
A
π

(`)
θ (da|s)fθ(a, s)

=

∫
· · ·
∫
ν(ds0)

(∏̀
i=0

π
(n−i)
θ (dai|si)p(si, aidsi+1)

)∑̀
j=0

∇θ log π
(n−j)
θ (aj |sj)

 fθ(a`, s`)

+

∫
S

m(`)
πθ

(ds)

∫
A
π

(`)
θ (da|s)∇θfθ(a, s),

which is equivalent to the claim and thus concludes the proof.

We show below that in expectation, the MPG update (8) is proportional to the gradient
of the objective. It is the only statement where we do not assume perfect gradient update;
everywhere else, we assume that θt+1 = θt + η∇θJn(πt).

Lemma 8 For θt constructed as in (8), it holds that E[θt+1 − θt] ∝ ∇θJn(πt).

Proof Recall that ‖r‖∞ <∞ and note that

∣∣∣ log
π

(i)
t

π
(a|s)

∣∣∣ ≤ ∣∣h(i)
θ (a, s)/τ − logEπ[eh

(i)
θ (A,s)/τ ]

∣∣
≤ 2‖θ‖2‖ψ‖,

where we recall that ‖ψ‖ = supa,s,i ‖ψ(i)(a, s)‖2. Hence, Lemma 7(iv) applies in the com-
putations below.

Let m
(i)
π denote the law of Sn−i, that is, the (n − i)-th visited state under π. The

distribution of the sequence S0, A0, . . . , An−i−1, Sn−i is not influenced by the parameters
θ(i), thus we can write

∇θ(i)Jn(πt) =

∫
S
∇θ(i)V (n)

πt (s)ν0(ds)

= ∇θ(i)

(
Eπt
[ n−i−1∑

`=0

R` − τ log
π

(n−`)
t

π
(A`|S`)

]

+ E
Sn−i∼m

(i)
πt

[
Eπt
[ n∑
`=n−i

R` − τ log
π

(n−`)
t

π
(A`|S`)

∣∣∣Sn−i]])
= 0 + E

Sn−i∼m
(i)
πt

[
∇θ(i)V (i)

πt (Sn−i)

]
,
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where we have used the Markov property. We then have that

∇θ(i)V (i)
πt (Sn−i) = ∇θ(i)ETn,i(πt)

[ n∑
`=n−i

R` − τ log
π

(n−`)
t

π
(A`|S`)

∣∣∣∣Sn−i]

= Eπt
[( n∑

`=n−i

(
R` − τ log

π
(n−`)
t

π
(A`|S`)

)
− τ
)
∇ log π

(i)
t (An−i|Sn−i)

∣∣∣Sn−i]

= Eπt
[ n∑
`=n−i

(
R` − τ log

π
(n−`)
t

π
(A`|S`)

)
∇ log π

(i)
t (An−i|Sn−i)

∣∣∣Sn−i],
where we have used (12) to get rid of τ .

Recalling the MPG update (8), we thus have proved that E[θt+1 − θt] = η∇θJn(πt).

Proof (Theorem 1) The strategy is to show that θ 7→ ∇θJn(πθ) is Lipschitz by bounding the
2-norm of the Hessian of Jn along the training trajectory. It is standard in Optimisation
that this implies that for η smaller than 2 over the Lipschitz constant, the objective is
monotonically increasing during gradient ascent, to finally deduce the convergence of Jn(πt)
as t→∞.

Recall that by Lemma 7(i), for all i ∈ {0, . . . , n− 1}, for all a ∈ A and s ∈ S, we have

‖∇θ log
π

(n−i)
θ

π
(n−i)
∗

(a|s)‖2 ≤
2

τ
‖ψ‖.

Moreover, for all (a, s) ∈ A× S,

∣∣∣ log
π

(n−i)
θ

π
(n−i)
∗

(a|s)
∣∣∣ ≤ ∣∣h((n−i))

θ (a, s)/τ − logEπ[eh
(n−i)
θ (A,s)/τ ]

∣∣+
1

τ
‖Q(n−i)
∗ − V (n−i)

∗ ‖∞

≤ 1

τ
(‖θ‖2‖ψ‖+ 3n‖r‖∞) , (17)

where we used (16). Hence, we can apply Lemma 7(iv) to differentiate Jn(πθ), thus obtain-
ing

∇θJn(πθ) = −τ
n−1∑
i=0

∇θEπθ

[
log

π
(n−i)
θ

π
(n−i)
∗

(Ai|Si)

]

= −τ
n−1∑
i=0

Eπθ

[( i∑
j=0

∇θ log π
(n−j)
θ (Aj |Sj)

)
log

π
(n−i)
θ

π
(n−i)
∗

(Ai|Si)
]

+ Eπθ

[
∇θ log

π
(n−i)
θ

π
(n−i)
∗

(Ai|Si)

]

= −τ
n−1∑
i=0

i∑
j=0

Eπθ

[
∇θ log π

(n−j)
θ (Aj |Sj) log

π
(n−i)
θ

π
(n−i)
∗

(Ai|Si)
]
, (18)
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where we used that Eπθ [∇θ log π
(n−i)
θ (Ai|Si)] = 0. Exchanging the order of summation and

focusing on the components of the gradient ∇θ(n−j) for j ∈ {0, . . . , n− 1} fixed, we get

∇θ(n−j)Jn(πθ) = −τ
n−1∑
i=j

Eπθ

[
∇θ(n−j) log π

(n−j)
θ (Aj |Sj) log

π
(n−i)
θ

π
(n−i)
∗

(Ai|Si)
]
. (19)

To compute the Hessian of Jn(πθ), we need to differentiate once more the expecta-
tion. Fix j ≥ j′ ∈ {0, . . . , n − 1}, we compute the components of the Hessian of the form
∇θ(n−j′)∇θ(n−j)Jn(πθ). For j′ < j, the terms inside the expectation do not depend on θ(n−j′),
so that Lemma 7(iv) trivially applies and yields

∇2
θ(n−j′),θ(n−j)Jn(πθ)

= −τ
n−1∑
i=j

Eπθ

[
∇θ(n−j′) log π

(n−j′)
θ (Aj′ |Sj′)(∇θ(n−j) log π

(n−j)
θ (Aj |Sj))T log

π
(n−i)
θ

π
(n−i)
∗

(Ai|Si)
]
.

Lemma 7 shows that

‖∇2
θ(n−j′),θ(n−j)Jn(πθ)‖2 ≤

n−1∑
i=j

4‖ψ‖2

τ
Eπθ

[∣∣∣ log
π

(n−i)
θ

π
(n−i)
∗

(Ai|Si)
∣∣∣]

≤ n4‖ψ‖2

τ2
(Jn(π∗)− Jn(πθ) + 3n‖r‖∞),

where we used Lemma 6 to bound the expectation of the Kullback-Leibler divergences by
the performance gap. For j′ = j, to apply Lemma 7(iv), we check that the gradient of the
terms in the expectation of (19) is bounded, that is,

(a, s) 7→ ∇2
θ(n−j) log π

(n−j)
θ (a|s)Eπθ

[
log

π
(n−i)
θ

π
(n−i)
∗

(Ai|Si)
∣∣∣Aj = a, Sj = s

]
+∇θ(n−j) log π

(n−j)
θ (a|s)(∇θ(n−j) log π

(n−j)
θ (a|s))T .

By (17) and Lemma 7(i) and (ii), each coordinate of the above matrix is bounded by C‖θ‖2
for some constant C > 0. Hence Lemma 7(iv) applies and the Hessian for j = j′ has the
additional terms

n−1∑
i=j

Eπθ

[
∇2
θ(n−j) log π

(n−j)
θ (Aj |Sj) log

π
(n−i)
θ

π
(n−i)
∗

(Ai|Si)
]

+ Eπθ

[
∇θ(n−j) log π

(n−j)
θ (Aj |Sj)(∇θ(n−j) log π

(n−j)
θ (Aj |Sj))T

]
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We get by Lemma 7

‖∇2
θ(n−j),θ(n−j)Jn(πθ)‖2 ≤ 4n

‖ψ‖2

τ2
(Jn(π∗)− Jn(πθ) + 3n‖r‖∞)

+

n−1∑
i=j

(
E

[
‖∇2

θ(n−j) log π
(n−j)
θ (Aj |Sj)‖2

∣∣∣ log
π

(n−i)
θ

π
(n−i)
∗

(Ai|Si)
∣∣∣]

+ Eπθ

[∥∥∥∇θ(n−j) log π
(n−j)
θ (Aj |Sj)(∇θ(n−j) log π

(n−j)
θ (Aj |Sj))T

∥∥∥
2

])
≤ 4n

‖ψ‖2

τ2
(Jn(π∗)− Jn(πθ) + 3n‖r‖∞)

+ 2n
P

τ3
‖ψ‖2(Jn(π∗)− Jn(πθ) + 3n‖r‖∞) + 4n

‖ψ‖2

τ2

= 2n
‖ψ‖2

τ2

(
2 +

P

τ

)
(Jn(π∗)− Jn(πθ) + 3n‖r‖∞) + 4n

‖ψ‖2

τ2
.

Finally, to obtain a bound on ‖∇2
θJn(πθ)‖2, we only need to sum over j, j′ ∈ {0, . . . , n−

1}. This yields

∇2
θJn(πθ)‖2 ≤ 2n2 ‖ψ‖2

τ2

(
2 +

P

τ

)
(Jn(π∗)− Jn(πθ) + 3n‖r‖∞) + 4n2 ‖ψ‖2

τ2

+ (n− 1)4n2 ‖ψ‖2

τ2
(Jn(π∗)− Jn(πθ) + 3n‖r‖∞)

≤ 4(n2 + n3)
(

2 +
P

τ

)‖ψ‖2
τ2

(Jn(π∗)− Jn(πθ) + 3n‖r‖∞) + 4n2 ‖ψ‖2

τ2

= L(θ).

We thus have shown that ∇θJn(πθ) is locally Lipschitz with constant L(θ). Since
θ 7→ L(θ) is monotonically decreasing as Jn(π∗) − Jn(πθ) decreases, if η < 2/L(θ0) at
the start of training, as explained at the beginning of the proof, it implies by induction that
η < 2/L(θt) for all t ≥ 0, which entails the claim and concludes the proof.

D.2 On the optimal policy

Proof (Lemma 1) By definition, we write

V
(n)
∗ (s) = τ

∫
A
π

(n)
∗ (da|s)

(
Q

(n)
∗ (a, s)− τ log

π
(n)
∗
π

(a|s)

)

= τ logEπ
[
exp(Q

(n)
∗ (A, s)/τ)

] ∫
A
π(da|s)

exp
(
Q

(n)
∗ (a, s)/τ

)
Eπ
[
exp

(
Q

(n)
∗ (A, s)/τ

)]
= τ logEπ

[
exp

(
Q

(n)
∗ (A, s)/τ

)]
,

as claimed, which concludes the proof.
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Proof (Proposition 2) Assume that ν has full support.

(i) Let π ∈ P be any standard policy, and let πn = (π, . . . , π) ∈ Pn. By definition
of the standard infinite-horizon discounted objective J∞, using the dominated convergence
theorem (rewards are bounded), we have that Jn(πn) → J∞(π). In particular, we get

that π
(n)
∗,n achieves a performance arbitrarily close to that of π∗,∞ in the infinite horizon

discounted setting, and since the optimal policy of J∞ is unique (ν-almost everywhere), we

deduce that π
(n)
∗,n → π∗,∞ as n→∞.

(ii) Suppose that J1(π∗,1) > J1(Tn,1(π∗,n)), that is∫
S
V (1)
π∗,1(s)ν(ds) >

∫
S
V (1)
π∗,n(s)ν(ds).

In particular, the set S̃ := {s ∈ S : V
(1)
π∗,1(s) > V

(1)
π∗,n(s)} is non-empty and ν(S̃). Further-

more, by optimality, s ∈ S \ S̃ if and only if V
(1)
π∗,1(s) = V

(1)
π∗,n(s). Let π̃∗,n ∈ Pn be identical

to π∗,n except for the 1-step policy where π
(1)
∗,n is replaced by π∗,1. Then, the recursive struc-

ture of the value function (1) entails that Jn(π̃∗,n) > Jn(π∗,n), which is a contradiction.
Therefore, Tn,1(π∗,n) = π∗,1.

Then, by induction and using the recursive structure of the value function, the same
argument shows that Tn,m(π∗,n) = π∗,m for allm = 2, . . . , n−1, which concludes the proof.

D.3 On the convergence of training

By Theorem 1, we know that Jn(πt) converges monotonically as t→∞. However, this does
not ensure that πt converges, and a fortiori that θt converges. In this section, we prove two
results of importance in establishing the global convergences of Theorem 2 and Theorem 3

Below, we show in Lemma 9 that the sequence of policies visited during training is
relatively compact, that is, any of its subsequences admits a weakly converging subsequence.
A sequence of measure (µk)k≥0 is said to converge weakly if and only if limk→∞

∫
fdµk =∫

fdµ for every continuous bounded map f .

Then, we show in Lemma 10 that the parameters of a converging subsequence (πtk)k≥0

remain uniformly bounded, which implies that any limit of the parameters θtk belongs to
RP . In particular, the subsequences of policies converging weakly during training actually
have their parameters converging inside RP , so that the convergence is in the stronger sense
of (9).

Lemma 9 Under the assumptions of Theorem 1, for all i = 1, . . . , n, the sequence of

probability measures (m
(i)
πt (ds)π

(i)
t (da))t≥0 on S ×A is relatively compact.

Proof By Prohorov’s theorem (Theorem 5.1 in Billingsley (2013)), it suffices to show that

(m
(i)
πt (ds)π

(i)
t (da))t≥0 is tight for all i = 1, . . . , n. We say that a sequence of probability

measures µt is tight if and only if for all ε > 0, there exists a compact set Kε such that
µt(Kε) > 1− ε. Roughly speaking, this ensures that no mass escapes at infinity.
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Starting with i = n, we first show that for every ε > 0, there exists a compact set

Kε ⊂ S ×A such that lim supt→∞
∫
Kε

dνdπ
(n)
t > 1− ε. By contradiction, suppose that this

is not the case, then there exists ε > 0 such that lim supt→∞
∫
Kc dνdπ

(n)
t ≥ ε for all compact

K ⊂ S ×A, where Kc is the complement of K. Let δ > 0 be arbitrarily smaller that ε and
consider a compact Kδ ⊂ S ×A such that

∫
Kc
δ

dνdπ < δ, then necessarily, we have

lim sup
t→∞

∫
Kc
ε

ν(ds)π
(n)
t (da|s) log

π
(n)
t

π
(a|s) = − lim sup

t→∞

∫
Kc
ε

ν(ds)π
(n)
t (da|s) log

π

π
(n)
t

(a|s)

≥ − lim sup
t→∞

log

∫
Kc
ε
ν(ds)π(da|s)∫

Kc
ε
ν(ds)π

(n)
t (da|s)

≥ − log
δ

ε
,

where we used Jensen’s inequality by concavity of the logarithm. Since δ > 0 is arbitrary,

this shows that lim supt→∞
∫
S DKL(π

(n)
t ||π)(s)ν(ds) = ∞, which contradicts the fact that

Jn(πt) =
∑n

i=0 Eπt [Ri −DKL(π
(n−i)
t ||π)(Si)] converges to a finite value.

Hence (ν(ds)π
(n)
t (da))t≥0 is tight and then relatively compact.

To end the proof, we reason by induction as follows: let 1 < i ≤ n and consider a

subsequence (πtk)k≥0 such that m
(j)
πt (ds)π

(j)
tk

(da) converges weakly toward m
(j)
π∞(ds)π

(j)
∞ (da)

for all j = i, . . . , n, for some policy π∞. Note that m
(i−1)
πtk

only depends on π
(j)
tk

for j ∈
{i, . . . , n}, so that for any Borel subset B ⊂ S,

m(i−1)
πtk

(B) =

∫
S

m(i)
πtk

(ds′)

∫
A
π

(i)
tk

(da)p(s′, a, B)

−→
k→∞

∫
S

m(i)
π∞(ds′)

∫
A
π(i)
∞ (da)p(s′, a, B),

where the convergence is in the weak sense and where we used the fact that (s, a) 7→
p(s, a,B) is continuous (and obviously bounded). Then, the same reasoning by contradic-
tion as for the case i = n applies, by letting Kδ ⊂ S × A be a compact subset such that∫
Kc
δ

dm
(i−1)
πtk

dπ < δ. This concludes the proof.

Lemma 10 Under the assumptions of Theorem 1, it holds that supt≥0 ||θt|| <∞.

Proof Let θtk be a subsequence of θt such that πtk converges weakly to some π∞, which

exists thanks to Lemma 9. Assume that there exists i ∈ {1, . . . , n} such that ||θ(i)
tk
|| → ∞ as

k →∞, and let i be the smallest such integers. Let θ
(i)
tk

:=
θ
(i)
tk

||θ(i)
tk
||2

and θ
(i)
∞ := limk→∞ θ

(i)
tk

(to

ensure convergence, one can always take subsequences since θtk lives in a compact sphere.)
Without loss of generality, we choose the subsequence such that

θ(i)
∞ · ∇θ(i)Jn(πtk) > 0. (20)
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Indeed, since ||θ(i)
tk
||2 → ∞ and θtk → θ∞, necessarily, ∇θ(i)Jn(πtk) must point inside the

half-plane {v ∈ RPi : v · θ(i)
∞ > 0} infinitely many times. We now show that this leads to a

contradiction.
Firstly, there exists a constant C independent of tk such that for all j < i, it holds that

||θ(j)
tk
||2 ≤ C. We thus have for all s ∈ S that

DKL(π
(j)
tk
||π)(s) =

∫
A
π

(j
tk

(da|s)
(
h

(j)
tk

(a, s)/τ − logEπ[e
h

(j)
tk

(A,s)/τ
]

)
≤ 2

τ
||θ(j)

tk
||2||ψ(j)||∞

≤ 2

τ
C||ψ(j)||∞

In particular, by definition of Q-functions, this yields

||Q(i)
πtk
||∞ ≤ i (||r||∞ + 2C||ψ||∞) . (21)

On the other hand, by Lemma 6, it holds that

Q(i)
πt (a, s) = r(a, s) +

∫
S
p(s, a,ds′)V (i−1)

πt (s′)

= τ log
π

(i)
∗
π

(a|s)−
∫
S
p(s, a,ds′)(V (i−1)

πt (s′)− V (i)
∗ (s′))

= τ log
π

(i)
∗
π

(a|s)− τ
n−1∑
k=i+1

Eπt
[
DKL(π

(n−k)
t ||π(n−k)

∗ )(Sk)|Si = s,Ai = a
]
.

Note that by compactness, we can take a subsequence such that θ
(j)
tk
→ θ

(j)
∞ simultaneously

for all j ≤ i. We still denote by θ
(j)
tk

such subsequences. A computation similar to Equation
(18) gives

−θ(i)
tk
· ∇θ(i)Jn(πtk) =

∫
S

m(i)
πtk

(ds)

∫
A
π

(i)
tk

(da|s) log
π

(i)
θtk

π
(a|s)

×
(
τ log

π
(i)
tk

π
(a|s)− τDKL(π

(i)
tk
||π)(s)−Q(i)

πtk
(a, s) + Eπtk

[
Q
π

(i)
tk

(A|s)
])

.

Using that h
(i)

θ
(i)
tk

= ||θ(i)
t ||2h

(i)

θ
(i)
tk

by definition, we have that

τ

(
log

π
(i)
tk

π
(a|s)−DKL(π

(i)
tk
||π)(s)

)
= h

(i)
θtk

(a, s)− Eπtk
[
h

(i)
θtk

(A, s)
]

= ||θ(i)
tk
||2
(
h

(i)
θtk

(a, s)− Eπtk
[
h

(i)
θtk

(A, s)
])

= τ ||θ(i)
tk
||2
(

log
π

(i)
θtk

π
(a|s)− Eπtk

[
log

π
(i)
θtk

π
(A|s)

])
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Hence, we obtain

−θ(i)
tk
· ∇θ(i)Jn(πtk) = ||θ(i)

tk
||2
∫
S

m(i)
πtk

(ds)

∫
A
π

(i)
tk

(da|s) log
π

(i)
θtk

π
(a|s)

×
(
τ log

π
(i)
θtk

π
(a|s)− τEπtk

[
log

π
(i)
θtk

π
(A|s)

]
−
Q

(i)
πtk

(a, s)− Eπtk
[
Q

(i)
πtk

(A|s)
]

||θtk ||2

)
.

By Theorem 1, the right-hand side above converges to 0 as k → ∞. In particular, since

||θ(i)
tk
||2 →∞, the weak convergence of m

(i)
πtk

(ds)× π(i)
tk

(da|s) and the uniform boundedness

of log
π

(i)
θtk
π and Q

(i)
πtk

entail that

0 =

∫
S

m(i)
π∞(ds)

∫
A
π(i)
∞ (da|s)

(
log

π
θ
(i)
∞

π
(a|s)− Eπ∞

[
log

π
(i)
θ∞

π
(A|s)

])2

.

This shows that for m
(i)
π∞-almost every s, the map a 7→ log

π
(i)
θ∞
π (a|s) is constant on the

support of π
(i)
∞ . If π

(i)
∞ (·|s) has full support for m

(i)
πtk

-almost every s, then a 7→ hθ∞(a, s) is
constant for such s, which contradicts the fact that ||θ∞||2 = 1 6= 0.

Suppose instead that π
(i)
∞ (·|s) does not have full support for a subset of S with positive

m
(i)
π∞-measure. For all s ∈ S, let Es := Supp(π∞(·|s)) and denote by EcS its complementary

set. One can show by contradiction that since h
(i)
tk

= ||θ(i)
tk
||2h(i)

θtk
and h

(i)
θtk
→ h

(i)
θ∞

pointwise

as k →∞, it holds that h
(i)
θ∞

(a, s) = Cs := supa′∈A h
(i)
θ∞

(a′, s), for all a ∈ Es, and similarly,

h
(i)
θ∞

(a, s) ≤ Cs for all a ∈ Ecs. We therefore see that for all s ∈ S, it holds that

∫
A
π

(i)
tk

(da|s)

(
log

π
(i)
tk

π
(a|s)−DKL(π

(i)
tk
||π)(s)−Q(i)

πtk
(a, s) + Eπtk

[
Q(i)
πtk

(A, s)
])

log
π

(i)
θ∞

π
(s)

=

∫
Ecs

π
(i)
tk

(da|s)

(
log

π
(i)
tk

π
(a|s)−DKL(π

(i)
tk
||π)(s)−Q(i)

πtk
(a, s) + Eπtk

[
Q(i)
πtk

(A, s)
])

×

log
π

(i)
θ∞

π
(a|s)− log

Cs
π

 , (22)

where we used that the integral over A of the terms inside the first parentheses is null. As
explained above, the second factor in the integral is non-positive, and strictly negative for

some a since π
(i)
θ 6= π. We claim that the first term is negative, which is seen as follows:

we note that for all s, for all a ∈ Es and a′ ∈ Ecs, we have for all k large enough that

log
π

(i)
tk
π (a|s) +Q

(i)
πtk

(a, s) > log
π

(i)
tk
π (a′|s) +Q

(i)
πtk

(a′, s), since Q
(i)
πtk

is uniformly bounded and

log
π

(i)
tk
π (a′|s) → −∞ for all a′ ∈ Ecs. Moreover, π

(i)
tk

(Ecs|s) → 0 as k → ∞. Hence, for all

a′ ∈ Ecs, we have log
π

(i)
tk
π (a′|s) +Q

(i)
πtk

(a′, s) > Eπtk [log
π

(i)
tk
π (A|s) +Q

(i)
πtk

(A, s)] for all k large
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enough. This shows that for all s ∈ S, for all k large enough, the left-hand side of (22) is
positive.

Hence, we now see that

−θ(i)
∞ · ∇θ(i)Jn(πtk) =

∫
S

m(i)
πtk

(ds)

∫
A
π

(i)
tk

(da|s) log
π

(i)
θ∞

π
(a|s)

×
(
τ log

π
(i)
tk

π
(a|s)− τDKL(π

(i)
tk
||π)(s)−Q(i)

πtk
(a, s) + Eπtk

[
Q
π

(i)
tk

(A|s)
])

is positive for all k large enough. This contradicts (20) and concludes the proof.

D.4 Global optimality of MPG: realizable case

Proof (Proposition 1) The Kullback-Leibler divergence being non-negative, it is readily

seen that for all s ∈ S, the maximal value of π 7→ V
(n)
π (s) is obtained for π = π∗. It is then

immediate that π∗ is the unique uniformly optimal policy for the objective Jn given in (4).

Recall that m
(i)
π denotes the law of Sn−i when following policiy π from initial state

S0 ∼ ν.

Lemma 11 Let t ∈ N and m ∈ {1, . . . , n}. Suppose that π
(k)
t (·|s) = π

(k)
∗ (·|s) for m

(k)
π -

almost every s ∈ S, for all k = 1, . . . ,m− 1. For all a ∈ A and s ∈ S, it holds that

log π
(m)
t+1(a|s)− log π

(m)
t (a|s)

= −ητ
∫
S

m(m)
πt (ds′)

∫
A
π

(m)
t (da′|s′)

(
log

π
(m)
t

π
(m)
∗

(a′|s′)−DKL(π
(m)
t ||π

(m)
∗ )(s′)

)
×
(

Θ(m)((a, s), (a′, s′))− E
π

(m)
t

[Θ(m)((A, s), (a′, s′))]
)

+ o (ηC(θt)) ,

where the constant C(θt) does not depend on η.

Proof The gradient of the policy reads as

∇θπ
(m)
t (a|s) =

1

τ
π

(m)
t (a|s)

∫
A

(
δa,da′ − π

(m)
t (da′|s)

)
∇θh

(m)
t (a, s). (23)

Let (a, s) ∈ A× S. Using (8) and a first order Taylor approximation, we write

log π
(m)
t+1(a|s)− log π

(m)
t (a|s) = (θ

(m)
t+1 − θ

(m)
t ) · ∇θπ

(m)
t (a|s)

π
(m)
t (a|s)

+ o (ηC(θt))

=
η

τ2
Eπt
[
Cm

∫
A×A

(
δa,da′ − π

(m)
t (da′|s)

)
×
(
δAn−m,da′′ − π

(m)
t (da′′|Sn−m)

)
Θ(m)((a′, s), (a′′, Sn−m))

]
+ o (ηC(θt)) .

(24)
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We focus on the expectation. It is equal to

Eπt
[
Cm

(
Θ(m)((a, s), (An−m, Sn−m))− EA

[
Θ(m)((A, s), (An−m, Sn−m))

]
− EA

[
Θ(m)((a, s), (A′, Sn−m))

]
+ EA,A′

[
Θ(m)((A, s), (A′, Sn−m))

])]
,

where A,A′ have respective laws π
(m)
t (·|s) and π

(m)
t (·|Sn−m) and are mutually independent

of all other variables (conditionally given Sn−m for A′). Using the trick E[X(Y − E[Y ])] =
E[(X − E[X])Y ], we obtain

Eπt
[

(Cm − E [Cm|Sn−m])
(

Θ(m)((a, s), (An−m, Sn−m))− EA
[
Θ(m)((A, s), (An−m, Sn−m))

] )]
.

(25)

We write

E [Cm|Sn−m] = E

[
n∑

`=n−m

(
R` − τ log

π
(n−`)
t

π
(A`|S`)

)∣∣∣∣Sn−m
]

= V (m)
πt (Sn−m)

= V
(m)
∗ (Sn−m)−DKL(π

(m)
t ||π

(m)
∗ )(Sn−m),

where we used Lemma 6 and the fact that π
(i)
t (·|s) = π

(i)
∗ (·|s) for m

π
(i)
t

-almost every s ∈ S,

for all i = 1, . . . ,m − 1. Similarly and using the expression (5) of the optimal policy, we
have

E[Cm|Sn−m, An−m] = Rn−m − τ log
π

(m)
t

π
(An−m|Sn−m) + E

[
V (m−1)
πt (Sn−m)

∣∣∣Sn−m, An−m]
= E

[
V (m−1)
πt (Sn−m+1)− V (m−1)

∗ (Sn−m+1)
∣∣∣Sn−m, An−m]

− τ log
π

(m)
t

π
(m)
∗

(An−m|Sn−m) + V
(m)
∗ (Sn−m)

= −τ log
π

(m)
t

π
(m)
∗

(An−m|Sn−m) + V
(m)
∗ (Sn−m).

Hence, the expression in (25) becomes

τEπt
[(
DKL(π

(m)
t ||π

(m)
∗ )(An−m|Sn−m)− log

π
(m)
t

π
(m)
∗

(An−m|Sn−m)

)(
Θ(m)((a, s), (An−m, Sn−m))

− EA
[
Θ(m)((A, s), (An−m, Sn−m))

] )]
,

which corresponds to the first order term in right-hand side of the equation in the Lemma.
Coming back to (24), this concludes the proof.
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Proof (Theorem 2) The idea of the proof is rather simple: by Lemmas 9 and 10, we know
that any subsequence of πt has a converging subsequence, and that the limits have finite
norm parameters. Hence, we only need to show the unicity of the limit, namely, that θ ∈ RP
is a critical point if and only πθ = π∗. We follow the intuition given after Theorem 2.

We reason by induction. Let m ≤ n, suppose that π
(i)
t (·|s) = π

(i)
∗ (·|s) for m

(i)
πt -almost

every s ∈ S, for all i = 1, . . . ,m− 1, and that π
(i)
t = π

(i)
∞ for all i = m, . . . , n. In particular,

we are at a critical point (θ
(1)
t , . . . , θ

(n)
t ) of (θ(1), . . . , θ(n)) 7→ Jn(πθ). Let a ∈ A, s ∈ S. By

Lemma 11, we have that

0 = log π
(m)
t+1(a|s)− log π

(m)
t (a|s)

= −ητ
∫
A×S

m(m)
πt (ds′)π

(m)
t (da′|s′)

(
log

π
(m)
t

π
(m)
∗

(a′|s′)−DKL(π
(m)
t ||π

(m)
∗ )(s′)

)

×
(

Θ(m)((a, s), (a′, s′))− E
π

(m)
t

[Θ(m)((A, s), (a′, s′))]

)
+ o (ηC(θt)) ,

Since the above must be true for all η > 0, we deduce that∫
A×S

m(m)
πt (ds′)π

(m)
t (da′|s′)

(
log

π
(m)
t

π
(m)
∗

(a′|s′)−DKL(π
(m)
t ||π

(m)
∗ )(s′)

)

×
(

Θ(m)((a, s), (a′, s′))− E
π

(m)
t

[Θ(m)((A, s), (a′, s′))]

)
= 0. (26)

Let Θ̃(m) be the positive-semidefinite kernel constructed from Θ(m) and π
(m)
t as in Lemma

4. One can easily check that

log
π

(m)
t

π
(m)
∗

(a|s)−DKL(π
(m)
t ||π

(m)
∗ ) = h

(m)
t (a, s)−Q(m)

∗ (a, s)− E
π

(m)
t

[
h

(m)
t (A, s)−Q(m)

∗ (A, s)
]
.

In particular, using the trick E[X(Y − E[Y ])] = E[(X − E[X])Y ], we can rewrite (26) as∫
A×S

m(m)
πt (ds′)π

(m)
t (da′|s′)

(
h

(m)
t (a′, s′)−Q(m)

∗ (a′, s′)
)

Θ̃(m)((a, s), (a′, s′)) = 0. (27)

Since the above is true for all (a, s) ∈ A×S, we see by Lemma 3 that h
(m)
t −Q

(m)
∗ ∈ (H

Θ̃(m))
⊥,

that is the orthogonal complement of H
Θ̃(m) in L2(m

(m)
πt (ds′)π

(m)
t (da′|s′)). By Assumption

A1., we get h
(m)
t − Q(m)

∗ ∈ HΘ(m) ∩ (H
Θ̃(m))

⊥, and Lemma 4 entails that for m
(m)
πt -almost

every s ∈ S, the map a 7→ h
(m)
t (a, s) − Q∗(a, s) is constant. This implies in turn that

π
(m)
t (·|s) = π

(m)
∗ (·|s) for m

(m)
πt -almost every s ∈ S, which concludes the proof.

D.5 Global optimality of MPG: non-realizable case

In order to extend the global optimality from the case where π∗ belongs to the parametric
space Pn to the case where π∗ is outside of Pn, we use tools from information geometry
and apply the strategy outlined in Section 3.4.
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We use the following notation in the proof: the set of parametric 1-step policies whose
preference hθ belongs to HΘ(i) is denoted by P(i).
Proof (Theorem 3) Let ϑ ∈ RP be a critical point of θ 7→ Jn(πθ). Consider a fixed

i ∈ {1, . . . , n}. Recall that Q
(i)
πϑ(a, s) = r(a, s) +

∫
S p(s, a,ds

′)V
(i−1)
πϑ (s′), which does not

depend on π
(j)
ϑ , j ≥ i. Let π̂(i) be the policy with preference Q

(i)
πϑ . Note that Q

(i)
πϑ does not

necessarily belong to HΘ(i) , hence we do not make the dependence on ϑ (which is fixed)
explicit in π̂(i). This is the optimal policy given that the shorter j-step policies, j < i, are
fixed. Indeed, we always have that

Ĵ (i)(π(i), ϑ) :=

∫
S

m(i)
πϑ

(ds)
(
Eπ(i) [Q(i)

πϑ
(A, s)]− τDKL(π(i)||π)(s)

)
= τ

∫
S

m(i)
πϑ

(ds)

(
log

(∫
A
π(da|s)eQ

(i)
πϑ

(a,s)/τ

)
−DKL(π(i)||π̂(i))(s)

)
.

The first term of the right-hand side depends on π
(j)
ϑ through Q

(i)
πϑ for j < i, whereas it

depends on π
(j)
ϑ through m

(i)
πϑ for j > i, but it does not depend on π

(i)
ϑ . Therefore, we see

that π̂(i) = argmaxπ(i)∈P1
Ĵ (i)(π(i), ϑ).

Similar to what was done in appendix C, let P
(i)
? be the quotient space of P(i) and

its subspace of policies whose preferences are constant in a for all s ∈ Supp(m
π

(i)
ϑ

). In this

quotient space, policies that are equal to each other on the support of m
π

(i)
ϑ

are identified

as the same policy, since states outside of this set are never visited with probability one.
Define

π
(i)
θ∗

= argmin
π

(i)
θ ∈P

(i)
?

D(i)(π̂(i), π
(i)
θ ) := argmin

π
(i)
θ ∈P

(i)
?

∫
S

m(i)
πϑ

(ds)DKL(π
(i)
θ ||π̂

(i))(s).

It turns out that the map D(i) defined above is a Bregman divergence on P? (denoting the

space where policies that coincide on the support of m
(i)
πϑ are identified together). Using the

fact that ϑ is a critical point combined with Lemma 5, we have that

0 = ∇θ(i)Jn(πϑ) = −∇θ(i)D(π
(i)
ϑ , π

(i)
θ∗

).

We stress once more that π
(i)
θ∗

only depends on π̂(i), which in turn only depends on π
(1)
ϑ , . . . , π

(i−1)
ϑ

through Q
(i)
πϑ and on π

(i+1)
ϑ , . . . , π

(n)
ϑ through m

(i)
πϑ . Therefore, the equation above corre-

sponds to the gradient of the objective of 1-step MPG with optimal policy π
(i)
θ∗

. This
observation brings us back to the realizable case, for which Theorem 2 applies. This implies

that necessarily, π
(i)
ϑ (·|s) = π

(i)
θ∗

(·|s) for m
(i)
πϑ-almost every s ∈ S. In particular, this shows

the uniqueness of the argmin for reachable states.
The above argument proves that if ϑ ∈ RP is a critical point, then

Jn(πϑ) = max
θ(i)∈RPi

Jn(π
(1)
ϑ , . . . , π

(i)

θ(i) , . . . , π
(n)

ϑ(n)).

Since this is true for every i = 1, . . . , n and since maxima can be taken in any order, we
have that

Jn(πϑ) = max
θ∈RP

Jn(πθ)
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We have thus proved that any critical point is a global maximum of the objective. As
in the proof of Theorem 2, the argument using Lemmas 9 and 10 applies to show global
convergence, concluding the proof.

Proof (Proposition 3) Suppose that θt = (θ
(1)
t , . . . , θ

(n)
t ) satisfies the projectional consis-

tency property (11). We thus have that h
(1)
t − Q

(1)
∗ ∈ (H

Θ̃(1))
⊥, the orthogonal space of

H
Θ̃(1) in L2(m(1)(ds)π

(1)
t (da)). In particular, using Lemma 3, one can show that Equation

(27) is satisfied, entailing that ∇θ(1)Jn(πθ) = 0. The same reasoning applies for all steps
i = 1, . . . , n, showing that θt is a critical point, and therefore, the unique global optimum
by Theorem 3. This concludes the proof.

Appendix E. Assumptions

We now list the assumptions and briefly mention their roles in this work:

• In Proposition 2, ν has full support in S and the MDP is ergodic: it is not restrictive,
as its role is to ensure that the optimal policies for all horizons visit Lebesgue almost
all states, thus avoiding considerations about reachable states. Ergodicity ensures the
existence of a stationary state distribution. In particular, the optimal policy π∗ does
not depend on ν.

• Continuous closed A,S: to apply Mercer’s Theorem.

• Continuous and bounded kernels Θ(i): to apply Mercer’s Theorem.

• Measurable selection assumption and measurability of p and r: ensures the mea-
surability of the variables generated by the MDP, Lebesgue integrability and avoid
pathological cases.

• For all Borel set B ⊂ S, the map (s, a) 7→ p(s, a,B) is continuous: is used in the proof
of Lemma 9 to guarantee convergence of a subsequence of the state distributions and
policies.

• Rewards are bounded: ensures that value functions are well defined. It is also used
to prove the convergence of the objective and of the parameters to finite values.

• For all s ∈ S and all θ(i) ∈ RPi , the map a 7→ h
(i)
θ (a, s) is constant if and only if

||θ(i)|| = 0: this guarantees that πθ = π if and only if ||θ|| = 0 and avoid pathological
cases, such as divergence of parameters.

Appendix F. Numerical experiments

We apply MPG on a number of numerical experiments as detailed in section 4. The MPG
is implemented as in algorithm 1.
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Algorithm 1 MPG implementation for N horizon task

Input: initial temperature τ0, initial learning rate η0, final temperature τT , final learning
rate ηT
τ ← τ0

η ← η0

for t = 1, ..., episodes do
generate trajectory from policies {πnt , πn−1

t , ..., π1
t }: {(si, si+1, ai, ri)}n−1

i=0

for i = 1, · · · , n do

Ci =
∑n−1

`=n−i

(
r` − τ log

π
(n−`)
t
π̄ (a`|s`)

)
θ

(i)
t+1 = θ

(i)
t + ηCi∇ log π

(i)
t (an−i|sn−i)

end for

decay τ, η using dτ =
(
τT
τ0

)1/episodes
and dη =

(
ηT
η0

)1/episodes

end for

F.1 Analytical task

Set-up: We consider a state-space consisting of S = {0, 1, 2, 3, 4}, an action space A =
{1, 2}. At each state s, the agent performs action a, taking the agent to the next state
(s+ a) mod 5.

We define an orthonormal basis (in `2(A× S)) of the space of functions {f : A× S →
R : f(1, s) + f(2, s) = 0, ∀s ∈ S}. Note that one can always recenter any map g on A× S
so that g(1, s) + g(2, s) = 0, without changing the policy obtained as the softmax of g, in
particular, any policy can be written as the softmax of such a function. The basis is defined
as

e1 =
√

6


1 −1
0 0
1 −1
0 0
1 −1

 , e2 =
√

4


0 0
1 −1
0 0
1 −1
0 0

 , e3 =
√

4


0 0
1 −1
0 0
−1 1
0 0

 ,

e4 =
√

8


−2 2
0 0
1 −1
0 0
1 −1

 , e5 =
√

4


0 0
0 0
1 −1
0 0
−1 1

 .

Recall that Q
(1)
∗ (a, s) = r(a, s), which can be represented by

Q
(1)
∗ (a, s) =

5∑
j=1

θ∗j ej(a, s), θ∗j ∈ R.

Experiments:

1. Obtaining the first two step policies with assumption A1., namely, that the opti-
mal policy’s parameters can be represented by our parametric space, and when the
assumption A1. does not hold.
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Setup:

• preference function h(a, s) is expressed by a linear model

• θ0 randomly initialised with i.i.d. centered Gaussian with standard deviation 1;

• θ∗ = (0, 0.1,−0.15, 0.05,−0.1);

• Initial learning rate η0 = 0.001, terminal learning rate ηT = 0.001 (no decay);

• Temperature τ = 1.0 remains fixed during training (no decau);

• True gradient update

• Number of episodes: 14000

F.2 Control problems

Setup:

• Preference function h(a, s) is expressed by a fully connected neural network with 3
hidden layers, each with width 100 and ReLU activation function. The output layer
has a softmax activation;

• Parameters are initialised with He initialisation;

• Initial learning rate η0 and initial temperature τ0 are hyper-parameters;

• Final learning rate ηT and final temperature τT are fixed and problem dependent;

• Number of episodes is task dependent;

• Both the learning rate and temperature decay during training, using the following

decay rates dη =
(
ηT
η0

)1/episodes
and dτ =

(
τT
τ0

)1/episodes
, respectively;

• Gradient update estimated using one trajectory as in (8).

Frozen lake: Aside from the details specified above, further details of the set-up for
Frozen lake are:

• Reward: it is well-known that reshaping the reward function can change the perfor-
mance of the algorithm. The original reward function does not discriminate between
falling into a hole, not moving and moving, so we used a reshaped reward function:
falling (−1), moving against a wall (−0.1), moving successfully (+0.01) and reaching
the treasure (+10.0);

• Final learning rate ηT = 1× 10−6;

• Final temperature τT = 0.01 (when applicable);

• Number of episodes: 1000.

We train sets of 3 agents to explore the hyper-parameter space as denoted in 1. In table
5, we show the hyper-parameter exploration for the different considered algorithms.
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Table 5: Hyper-parameter search using 3 agents for Frozen lake task. The ‘**’ symbol
denotes that no runs were made for that set of hyper-parameters.

η0 softPG MPG

τ0 = 0.15

0.1 −1.89 **
0.05 −1.66 **
0.01 0.20 2.13
0.005 0.20 2.06
0.001 0.20 3.04
0.0005 0.20 9.36
0.0001 0.20 −1.38

τ0 = 0.20

0.1 −0.53 **
0.05 −0.19 **
0.01 0.20 6.53
0.005 0.20 6.69
0.001 0.20 10.05
0.0005 0.20 10.05
0.0001 0.20 1.66

τ0 = 0.25

0.1 −0.93 **
0.05 −1.27 **
0.01 0.20 10.05
0.005 0.20 10.05
0.001 0.20 10.05
0.0005 0.20 9.99
0.0001 0.20 1.39

τ0 = 0.30

0.1 −1.89 **
0.05 −1.89 **
0.01 0.18 6.33
0.005 0.20 10.05
0.001 0.20 10.05
0.0005 0.20 10.05
0.0001 0.19 −1.13

τ0 = 0.35

0.1 −1.27 **
0.05 −1.05 **
0.01 0.20 10.05
0.005 0.20 10.05
0.001 0.20 10.05
0.0005 0.20 6.04
0.0001 0.20 −1.65

η0 softPG MPG

τ0 = 0.40

0.1 −1.78 **
0.05 −1.66 **
0.01 0.19 10.05
0.005 0.19 10.05
0.001 0.20 10.05
0.0005 0.20 6.72
0.0001 0.20 0.30

τ0 = 0.45

0.1 −1.55 **
0.05 −1.26 **
0.01 −0.42 10.05
0.005 0.20 6.40
0.001 0.20 4.09
0.0005 0.20 2.95
0.0001 0.20 0.25

τ0 = 0.50

0.1 −2.00 **
0.05 0.20 **
0.01 −0.15 10.05
0.005 0.20 6.61
0.001 0.20 9.75
0.0005 0.20 2.49
0.0001 0.20 −1.22

τ0 = 0.55

0.1 −1.78 **
0.05 −1.27 **
0.01 3.48 10.05
0.005 0.19 9.82
0.001 0.20 7.02
0.0005 0.20 2.59
0.0001 0.18 −1.29

τ0 = 0.60

0.1 −1.55 **
0.05 −1.27 **
0.01 3.48 10.05
0.005 0.20 10.05
0.001 0.20 6.71
0.0005 0.20 −0.92
0.0001 0.20 −1.09

η0 softPG MPG

τ0 = 0.65

0.1 −2.00 **
0.05 −0.53 **
0.01 3.14 **
0.005 0.20 **
0.001 0.20 **
0.0005 −0.53 **
0.0001 −0.44 **

τ0 = 0.70

0.1 −1.89 **
0.05 −1.27 **
0.01 −0.55 **
0.005 −0.54 **
0.001 0.20 **
0.0005 −0.34 **
0.0001 −0.56 **

η0 PG nsPG

0.5 ** −1.89
0.1 ** −1.76
0.05 2.24 6.03
0.01 10.05 2.91
0.005 7.69 2.88
0.001 −0.83 −1.00
0.0005 −0.88 −1.06
0.0001 −1.12 −1.15
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F.3 Cart Pole

Aside from the details specified above, further details of the set-up for Frozen lake are:

• Reward: The original reward function gives a +1 reward for each time that the pole
stays upright, and the task finishes if the cart leaves the domain or if the pole is
far enough from being upright. We reshape the reward function to yield a penalty
−10 exp(−0.05(i− 1)) when the task concludes, where i is the length of time the pole
stayed upright. Namely, if the pole falls early in the task, the penalisation is larger.

• Final learning rate ηT = 1× 10−8;

• Final temperature τT = 0.01 (when applicable);

• Number of episodes: 1000.

We train sets of 3 agents to explore the hyper-parameter space as denoted in 3. In table
6, we show the hyper-parameter exploration for the different considered algorithms.
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Table 6: Hyper-parameter search using 3 agents for balancing the cart pole task. The ‘**’
symbol denotes that no runs were made for that set of hyper-parameters.

η0 softPG MPG

τ0 = 0.05

0.001 ** 1.87
0.0005 ** 1.80
0.0001 ** 1.70

5× 10−5 ** 25.21
1× 10−5 ** 73.22
1× 10−6 ** 41.37
5× 10−6 ** 58.85

τ0 = 0.10

0.001 ** 1.82
0.0005 1.70 7.50
0.0001 50.95 48.21

5× 10−5 51.72 41.21
1× 10−5 81.99 95.32
1× 10−6 55.40 33.45
5× 10−6 85.41 70.08

τ0 = 0.15

0.001 ** 1.69
0.0005 14.86 1.83
0.0001 59.52 68.65

5× 10−5 79.77 86.28
1× 10−5 75.65 88.94
1× 10−6 64.15 36.35
5× 10−6 83.88 81.07

τ0 = 0.20

0.001 ** 29.14
0.0005 1.84 1.79
0.0001 51.66 77.32

5× 10−5 79.13 88.69
1× 10−5 79.07 77.21
1× 10−6 37.01 19.39
5× 10−6 66.27 74.18

τ0 = 0.25

0.001 ** 6.01
0.0005 66.09 20.18
0.0001 62.15 71.22

5× 10−5 91.59 91.37
1× 10−5 64.18 77.80
1× 10−6 26.29 18.45
5× 10−6 57.06 73.08

η0 softPG MPG

τ0 = 0.30

0.001 ** 13.95
0.0005 61.24 32.84
0.0001 67.95 97.10

5× 10−5 93.45 99.37
1× 10−5 67.59 74.31
1× 10−6 61.09 28.72
5× 10−6 65.20 80.48

τ0 = 0.35

0.001 ** 37.08
0.0005 ** 54.98
0.0001 84.55 75.19

5× 10−5 72.55 90.18
1× 10−5 86.74 76.82
1× 10−6 33.44 37.75
5× 10−6 59.14 65.92

τ0 = 0.40

0.001 ** 17.66
0.0005 ** 46.27
0.0001 75.47 98.04

5× 10−5 65.54 95.11
1× 10−5 64.47 66.66
1× 10−6 27.15 20.33
5× 10−6 75.12 63.17

τ0 = 0.45

0.001 ** **
0.0005 ** **
0.0001 88.47 **

5× 10−5 76.74 **
1× 10−5 64.13 **
1× 10−6 3.08 **
5× 10−6 52.08 **

η0 PG nsPG

0.005 2.18 38.68
0.001 80.75 98.94
0.0005 31.99 34.39
0.0001 18.62 19.18

5× 10−5 17.81 18.83
1× 10−5 16.66 16.96
5× 10−6 16.60 18.25
1× 10−6 17.62 16.28
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