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Abstract

This paper studies the binary classification of unbounded data from Rd generated under
Gaussian Mixture Models (GMMs) using deep ReLU neural networks. We obtain — for
the first time — non-asymptotic upper bounds and convergence rates of the excess risk (ex-
cess misclassification error) for the classification without restrictions on model parameters.
While the majority of existing generalization analysis of classification algorithms relies on a
bounded domain, we consider an unbounded domain by leveraging the analyticity and fast
decay of Gaussian distributions. To facilitate our analysis, we give a novel approximation
error bound for general analytic functions using ReLU networks, which may be of inde-
pendent interest. Gaussian distributions can be adopted nicely to model data arising in
applications, e.g., speeches, images, and texts; our results provide a theoretical verification
of the observed efficiency of deep neural networks in practical classification problems.

Keywords: binary classification, Gaussian Mixture Model, excess risk, ReLU neural
networks, statistical learning theory

1. Introduction

This paper studies the binary classification of unbounded data generated by a mixture of
Gaussian distributions using neural networks. We assume our data in Rd follow a class
of distribution largely used to model real-world data, namely the Gaussian Mixture Model
(GMM). Many studies have shown that GMM is an effective model for audio, speech, image,
and text processing, e.g., see (Reynolds et al., 2000; Portilla et al., 2003; Blekas et al., 2005).
The universality of GMM (Goodfellow et al., 2016) motivates us to study the classification
problem under such distributional assumptions on data.

In this paper, we consider data X ∈ Rd drawn from a GMM with two classes, denoted
as {−1, 1}, and members of each class are drawn from a mixture of Gaussian distributions.
Denote the domain by X = Rd and the output set by Y = {−1, 1}. We also denote by
ρ a joint distribution on Z := X × Y for a GMM to be specified later. We are interested
in learning a binary classifier f : Rd → {−1, 1} using deep neural networks (DNNs). To
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evaluate the effectiveness of a classifier f , we conduct a misclassification error analysis.
Specifically, we examine its excess risk (excess misclassification error). For any classifier
sgn(f) induced by a function f : Rd → R, its misclassification error is defined as

R(f) := E[1{Y ·sgn(f(X))=−1}] = P(Y · sgn(f(X)) = −1).

A Bayes classifier fc minimizes the misclassification error and gives the best prediction of
Y for a given X:

fc(X) =

{
1, if P(Y = 1|X) ≥ P(Y = −1|X),

−1, if P(Y = 1|X) < P(Y = −1|X).
(1)

We aim to learn a classifier f as close as possible to fc using trainable DNNs. The accuracy
of a classifier can be characterized by the excess risk given by: R(f)−R(fc). In this work, we
establish fast convergence rates of excess risk of classifiers under the GMM model generated
by DNNs (given in Theorem 6).

The mathematical analysis of classification algorithms was initiated upon the introduc-
tion of support vector machines (Cortes and Vapnik, 1995; Vapnik, 1999) with a focus on
margin-based analysis. Shortly after, the universality of classification induced by kernel-
based regularization schemes was established in (Steinwart, 2001, 2002). Tsybakov’s noise
condition (Tsybakov, 2004), together with a comparison theorem (Zhang, 2004), have fa-
cilitated the analysis of the excess risk of classification algorithms. Since then, a significant
body of literature has emerged to study the theoretical guarantees of kernel methods in
classification (Chen et al., 2004; Steinwart, 2005; Wu et al., 2007; Kim and Scott, 2009).
All the existing work is carried out on a bounded domain (Steinwart and Christmann, 2008;
Campbell and Ying, 2011). The study of classification algorithms continues to be an active
area of research in both theory and practice.

Today, neural networks are widely considered a popular choice for classification tasks in
the machine learning community, often preferred over kernel methods. Since the last decade,
the development of powerful GPUs and large data sets has enabled the training of deep and
complex neural networks. These led to breakthroughs in many fields, including computer
vision, speech recognition, and natural language processing. A rapidly growing line of
literature demonstrates the accuracy and effectiveness of DNNs in tackling classification
tasks arising in practice, e.g., text and image classifications (Krizhevsky et al., 2012; He
et al., 2016).

Given the unboundedness of Gaussian distributions, we study the classification of GMM
on an unbounded domain. We would like to highlight that all existing results of classifica-
tion, whether by ReLU neural networks or kernel-based classifiers, rely on a bounded input
domain, e.g., the unit cube [0, 1]d (Kim et al., 2021; Bos and Schmidt-Hieber, 2022; Shen
et al., 2022), the unit sphere Sd−1 (Feng et al., 2021). However, since Gaussian distribu-
tions are unbounded, existing results cannot be applied. In contrast to the prior works, our
paper considers the unbounded domain Rd. Many existing approaches in the mathematical
analysis of classification problems, such as covering numbers and integral operators, do not
apply to unbounded input spaces. We extend the analysis from a bounded to an unbounded
domain by leveraging the fast decay and analyticity of Gaussian functions. By not restrict-
ing data in a bounded set, our work speaks directly to many modern classification tasks in
practice.
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To conduct a generalization analysis of neural network classifiers, we adopt the Hinge loss
function. Given a random sample z := {(xi, yi)}ni=1 drawn from Rd × {−1, 1}, it is natural
to find a classifier that minimizes the empirical risk 1

n

∑n
i=1 1{yi·sgn(f(xi))=−1}. However,

minimizing the empirical risk with the 0-1 loss considered by (Tsybakov, 2004; Audibert
and Tsybakov, 2007) is NP-hard and thus computationally infeasible (Bartlett et al., 2006).
In this paper, we adopt the well-known Hinge loss function φ(t) := max{0, 1 − t} to make
computations feasible. Learning a neural network classifier with Hinge loss is relatively
straightforward owing to the gradient descent algorithm (Molitor et al., 2021; George et al.,
2024). Also, there exists a well-established and neat comparison theorem from (Zhang,
2004) with respect to Hinge loss, which facilitates the generalization analysis of neural
network classifiers.

The effectiveness of a classifier can be evaluated by its excess risk. Excess risk bounds
are typically given regarding the underlying distribution ρ, the loss function, and the clas-
sification algorithm. Before we get into the main results of this paper, we would like to
review some findings on the excess risk of different classifiers in the literature. We would
like to pay special attention to their assumptions on the distribution ρ and their uses of loss
functions.

1.1 Related Work

Here, we review some related work. Previously, (Jalali et al., 2019) studied the classification
of GMM data in Rd using 1-layer and 2-layer neural networks with C∞ sigmoid-type acti-
vation functions. It considered the set SD,t = {x ∈ Rd : D(x) ≥ t} with t > 0 and D being
the GMM discriminant function. This is a bounded set on Rd depending on the threshold

t. It established a bound of the relative error
∣∣∣ D̂(X)−D(X)

D(X)

∣∣∣ for approximation on this set by

2-layer sigmoid networks. Neither estimates of approximation error nor excess risk is given.
They imposed several regularity assumptions on the activation function, which ReLU does
not satisfy.

Due to the availability of scalable computing and stochastic optimization techniques,
sigmoid neural networks have taken a back seat to ReLU networks in the last decade. Deep
ReLU networks are extensively used nowadays in practice because they have overcome
optimization hurdles of vanishing gradients and exhibit superior empirical performances.

In the past three years, a handful of stimulating papers, e.g., (Feng et al., 2021; Kim
et al., 2021; Shen et al., 2022), have studied the theoretical guarantees of ReLU neural
networks for binary classification on bounded domains under structural assumptions of
the regression function, noise or decision boundary. Note that the regression function is
defined as the conditional mean fρ(X) = E[Y |X]. Tsybakov’s noise condition (Tsybakov,
2004) with noise exponent q ≥ 0 assumes that P({X ∈ X : |fρ(X)| ≤ t}) = O(tq). A
noteworthy work is (Kim et al., 2021). It showed that, with Hinge loss and noise exponent
q, the empirical risk minimizer generated from ReLU fully-connected neural networks (ReLU

FNNs) achieves rates ofO
(
n
− α(q+1)
α(q+2)+(d−1)(q+1)

)
andO

(
n
− α(q+1)
α(q+2)+d

)
for the excess risk when

the decision boundary belongs to C0,α([0, 1]d) or when the regression function fρ(X) ∈
C0,α([0, 1]d). Here C0,α([0, 1]d) denotes the space of Hölder continuous functions with order
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α > 0 in [0, 1]d. Note that the results in (Kim et al., 2021) are derived under some additional
conditions on the density of X.

Moreover, two recent works studied the binary classification by ReLU convolutional
neural networks (ReLU CNNs) (Feng et al., 2021; Shen et al., 2022). Feng et al. (Feng
et al., 2021) considered the p-norm loss φ(t) := max{0, 1−t}p, p ≥ 1 (1-norm loss is the hinge
loss) and input data supported on the sphere Sd−1 in Rd. The approximation error bound
and the excess risk for a target function in the Sobolev space W r

p (Sd−1) (with r > 0, p ≥ 1)
are derived under a varying power condition. Two quantities including β = max{1, (d +
3 + r)/(2(d − 1))} and τ ∈ [0, 1] are involved in the convergence rates. More recently,
(Shen et al., 2022) established convergence rates of the excess risk for classification with
a class of convex loss functions. They considered data drawn from d−dimensional cube
[0, 1]d, which is compact. We would like to point out that the excess risk estimates of the
above-mentioned works all contain a constant term depending on r or α. For example, Feng
et al. gave excess risk bounds containing a constant 2β that increases exponentially with
the smoothness index r > 0 (Feng et al., 2021, Theorem 2).

Table 1 summarizes convergence rates of the excess risks in the existing literature and
this paper, where the logarithm factors are dropped for brevity. The table is based on Table
3 in (Shen et al., 2022).

The regression function under a GMM is entire, implying that it is infinitely differen-
tiable. All the above-mentioned excess risk estimates in the literature increase
to infinity when we take the smoothness index goes to be infinity, due to the
constant terms involved. In our work, we use the analyticity of the GMM regression

function and obtain a novel result. We establish an excess risk estimate of order O
(
n
− q+1
q+2

)
,

where q ≥ 0. Our result does not depend on any smoothness index or the dimension d.
From Table 1, we can see that our convergence rate is faster than all existing results in the
literature.

In the field of statistics, there are two classes of classification approaches — namely gen-
erative classification and discriminative classification. For GMM, the generative approach is
to train a classifier by estimating the parameters (means and covariances) of the Gaussian
components and then derive the Bayes classifier using the parameter estimates. On the
other hand, the discriminative approach is to estimate the Bayes classifier from samples
directly. Detailed and full definitions of generative and discriminative classifications can be
found in (Ng and Jordan, 2001; Christmann, 2002; Li et al., 2015). We would like to point
out that the classification of GMM by neural network is a discriminative approach since the
procedure does not involve the estimation of GMM parameters.

We now turn our attention to the related works in classifications of GMM in the statistics
literature. There is a long and continuing history of research on GMM. A complete review
of GMM-related literature is not feasible. Here, we would like to focus on papers most
related to our work, which are papers studying the classification of GMM.

A handful of statistics papers have studied the binary classification of GMM by gener-
ative approaches (Li et al., 2015, 2017). They considered a special kind of GMM — GMM
consisting of only two Gaussian distributions in Rd (each Gaussian distribution corresponds
to one class) with identical covariance Σ. Let µ0 and µ1 denote the Gaussian means. Their
analysis relies on the identical covariance assumption that the Bayes classifier is a linear
function of a given sample x ∈ Rd. Under a sparsity condition ‖Σ−1(µ1 − µ0)‖0 = s and
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Reference Function space Loss Condition Rate

Tsybakov (2004)
measurable
functions

0-1 loss

∈ C0,α([0, 1]d)
decision boundary

q-noise condition; O
(
n−

α(q+1)
α(q+2)+(d−1)q

)
Kim et al. (2021) ReLU FNNs Hinge

O
(
n−

α(q+1)
α(q+2)+(d−1)(q+1)

)
q-noise condition;
fρ ∈ C0,α([0, 1]d)

O
(
n−

α(q+1)
α(q+2)+d

)
Feng et al. (2021)

ReLU CNNs

Hinge
fρ ∈W r

p (Sd−1)
O
(
n−

r
2β(d−1)+r(2−τ)

)
p-norm O

(
n−

pr
2(β+1)(d−1)+2pr(2−τ)

)
2-norm

fρ ∈W r
p (Sd−1);

q-noise condition
O
(
n−

2rq
(2+q)((β+1)(d−1)+2r

)

Shen et al. (2022)
Hinge

fρ ∈W r
p ([0, 1]d);

q-noise condition
O
(
n−

r(q+1)
d+2r(q+1)

)
Logistic

fρ ∈W r
p ([0, 1]d)

O
(
n−

r
2d+4r

)
Least square O

(
n−

4r
3d+16r

)
Theorem 6
in this work

ReLU FNNs Hinge
q-noise condition;

GMM
O
(
n−

q+1
q+2

)
Table 1: This table compares the excess risk in the existing literature and this paper. The

logarithm factors are dropped for brevity. Recall that C0,α is the Hölder space
of order α > 0, W r

p is the Sobolev space of order r > 0 and p ≥ 1, the quantity
β = max{1, (d+ 3 + r)/(2(d− 1))}, and τ ∈ [0, 1].

some additional constraints on µ0 and µ1, Li et al. (Li et al., 2015) derived an excess risk
estimate depending on s, d, and n, achieved by some regularized logistic regression classifiers
(under the 0-1 loss).

Subsequent to the above-mentioned work, Li et al. (Li et al., 2017) derived the excess risk
estimates (under the 0-1 loss) achieved by Fisher’s linear discriminant under the same GMM
setting, but with an additional assumption that the Gaussian distributions are isotropic
(that is, Σ = σ2I for some known σ). Since the analysis in the papers (Li et al., 2015) and
(Li et al., 2017) require the Bayes classifier to be linear, their approaches cannot be applied
to a general GMM setting.

In this work, we will first prove that deep ReLU neural networks can generate func-
tions that approximate entire functions well on the whole unbounded domain. Using this
approximation result and the fact that a GMM regression function is entire, we are able to
establish an excess risk estimate of the classification of a general GMM. Our results apply
to the binary classification of a general GMM without any assumptions on the number of
Gaussian components or Gaussian parameters, especially the covariance or sparsity.

1.2 Our Contributions

To our best knowledge, this paper presents the best rate for the excess risk of classification
with a GMM without restrictions on the domain, model parameters, or the number of
Gaussian components. Our main contributions can be summarized as follows.
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1. Our first result (Theorem 1) proves that there exists a ReLU DNN that can approxi-
mate the GMM discriminant function, which will be defined shortly, to any arbitrary
accuracy as the depth of the network grows. This novel approximation error bound
is given explicitly in terms of the network parameters and model parameters. By ap-
proximating the discriminant function, such a ReLU DNN can, in turn, approximate
the Bayes classifier fc well w.r.t. the misclassification error.

2. Next, our second result (Theorem 2) shows that there exists a ReLU DNN that can
approximate a general analytic function well. This approximation result is of inde-
pendent interest and may be useful in other problems.

3. We propose a special ReLU fully-connected neural network architecture for learning
the Bayes classifier from GMM data (Section 4). The design of the special network is
based on the results in Theorem 1, which guarantees a small approximation error when
the network is sufficiently deep. With Hinge loss and a Tsybakov-type noise condition,
our third result (Theorem 6) establishes a fast convergence rate of the excess risk of

order O
(
n
− q+1
q+2 (log n)4

)
using the proposed ReLU network architecture, where q ≥ 0

is the noise exponent. We do not require the domain to be bounded. The convergence
rate we obtained is faster than the existing results, and it does not depend on the
dimension d, which demonstrates that ReLU networks can overcome the curse of
dimensionality in classification.

The rest of the paper is organized as follows. In Section 2, we describe the setup of
the binary classification problem and the class of ReLU-activated neural networks used
in classification. In Section 3, we establish convergence rates on approximating GMM
discriminant functions (Theorem 1) and general analytic functions (Theorem 2) via deep
ReLU networks. In Section 4, we outline the construction of a special ReLU network
architecture for learning the Bayes classifier from GMM data. In Section 5, we show that
this network architecture achieves a fast convergence rate of excess risk under Tsybakov-
type noise condition (Theorem 6). The proofs of Theorem 1 and Theorem 6 are provided
in Sections 6 and 7, respectively. Concluding remarks are given in Section 8. Whenever
possible, we relegate proofs of results, technical lemmas, and propositions to the Appendix.

2. Problem Formulations

In this section, we present the problem formulations. In Subsection 2.1, we describe our
binary classification problem and the Gaussian Mixture Model from which our data is
drawn. We then establish connections between the defined classification problem with the
approximation of GMM discriminant function. In Subsection 2.2, we present a Tsybakov-
type noise condition that is crucial for conducting generalization analysis of neural network
classifiers. Lastly, in Subsection 2.3, we formulate the ReLU fully-connected neural networks
we consider for classification.
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2.1 Gaussian Mixture Models (GMM) and their classifiers

Consider the binary classification problem with data from the domain X = Rd and output
label Y = {−1, 1}. A joint distribution ρ on Z := X × Y can be decomposed into the
marginal distribution ρX on X and the conditional distributions ρ(·|X) at X ∈ X .

We are interested in learning a binary classifier f : Rd → {−1, 1}. As mentioned earlier,
the Bayes classifier fc (also known as the Bayes decision function) takes the form (1). Since
the regression function fρ is given by the conditional mean fρ(X) = E[Y |X] at X ∈ X , we
observe that fc = sgn(fρ) (i.e., fc is the sign of fρ).

In this paper, we study the binary classification problem with data generated from a
Gaussian Mixture Model (GMM). Let P+ = P(y = 1) and P− = P(y = −1) = 1 − P+

denote the prior probabilities that a data point is drawn from the positive and negative class,
respectively. Assume that members of each class are drawn from a mixture of Gaussian
distributions. Also, assume that there are overall K different Gaussian distributions to
draw from, where K is a positive integer at least 2. Each Gaussian distribution is assigned
uniquely to one of the two classes. The assignment of the Gaussian distributions to the two
classes is represented by sets T + and T − (i.e., T + ∩ T − = ∅ and T +

⋃
T − = {1, . . . ,K}).

Conditioned on being in the positive class, let pi, i ∈ T +, denote the probability that
the data comes from Gaussian distribution i. Let card(S) be the cardinality of the set
S. Then, for the positive class, the data are drawn from a mixture of card(T +) Gaussian
distributions with densities

N (x, µi,Σi) =
1√

(2π)d|Σi|
exp

(
−1

2
(x− µi)T (Σi)

−1(x− µi)
)
, i ∈ T +,

where µi ∈ Rd and Σi ∈ Rd×d denote the mean and the covariance matrix of Gaussian
distribution i. We do not impose any constraints on the means or the covariances, except
that we require the covariances to be non-degenerate. Similarly, data belonging to the
negative class is drawn from card(T −) Gaussian distributions with densities N (x, µi,Σi),
for i ∈ T −.

For the positive class, we define its discriminant function D+ : Rd → R in terms of the
prior probabilities {pi}i∈T + :

D+(x) := P(x, y = 1) = P+
∑
i∈T +

piN (x, µi,Σi),

while the discriminant function for the negative class D− : Rd → R is defined in the same
way:

D−(x) := P(x, y = −1) = P−
∑
j∈T −

pjN (x, µj ,Σj).

Observe that the density function of the marginal distribution ρX equals D+(X) +
D−(X). The regression function fρ can thus be expressed as

fρ(X) = E[Y |X] = P(Y = 1|X)− P(Y = −1|X) =
D+(X)−D−(X)

D+(X) +D−(X)
, (2)
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which implies
fc(X) = sgn(fρ(X)) = sgn

(
D+(X)−D−(X)

)
.

In other words, we can learn the Bayes classifier fc(X) by learning the sign of D+(X) −
D−(X). Denote by D(X) = D+(X)−D−(X) our function of interest. Notice that D is of
the form

D(x) = D+(x)−D−(x) =
K∑
j=1

βj exp(−uj(x)), x ∈ Rd, (3)

where βj are the constant coefficients, and uj(x) is a quadratic term given by

uj(x) = (x− µj)T (Σj)
−1(x− µj)/2, ∀j = 1, . . . ,K. (4)

Essentially, D is a linear combination of K Gaussian functions. Since all exponential func-
tions are analytic everywhere, we know that D is entire and thus infinitely differentiable.
This nice property of D enables us to learn a binary classifier that learns the Bayes classifier
fc with fast learning rates.

2.2 Tsybakov-type Noise Condition

The Tsybakov noise condition is widely used to study the quantitative behaviors of clas-
sification algorithms, e.g., (Tsybakov, 2004; Audibert and Tsybakov, 2007; Kim et al.,
2021; Feng et al., 2021). The original Tsybakov noise condition (Mammen and Tsybakov,
1999; Tsybakov, 2004) is stated in terms of the regression function fρ. It assumes that
for some c0 > 0 and q ∈ [0,∞), P({X ∈ X : |fρ(X)| ≤ t}) ≤ c0t

q, ∀t > 0. Intuitively,
it describes (with parameter q) how the regression function behaves around the boundary
{x : fρ(x) = 0}. Bigger q means there is a jump of fρ near the boundary {x : fρ(x) = 0},
which is favorable for classification; smaller q (i.e., q close to 0) means there is a plateau
behavior near the boundary, which is considered difficult for classification. For the extreme
case of hard margin when q is infinity, it implies that fρ is bounded away from 0.

Throughout this paper, we assume a Tsybakov-type noise condition as follows.

Assumption 1. Assume a Tsybakov-type noise condition that for some c0 > 0 and
q ∈ [0,∞), there holds

P({X ∈ X : |D(X)| ≤ t}) ≤ c0t
q, ∀t > 0, (5)

where q is often referred to as the noise exponent.

Since D(X) = (D+(X) + D−(X))fρ(X) in our GMM setting, and we know the factor
D+(X) + D−(X) is bounded above on the whole space Rd and bounded below on any
bounded domain, (5) is of the same type of Tsybakov noise condition.

2.3 Formulation of ReLU Fully-connected Neural Network (ReLU FNN)

Throughout this paper, we study deep fully-connected neural networks equipped with
ReLU activation functions (ReLU FNNs), where the ReLU function is defined by σ(a) =
max{a, 0}. We consider deep ReLU FNNs that take d-dimensional inputs and produce
one-dimensional outputs.
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To mathematically define such a class of deep ReLU FNNs, we adopt the notation
used by (Schmidt-Hieber, 2020) with slight modification. The network architecture (L,p)
consists of a positive integer L, which indicates the number of hidden layers (also known
as the depth), and a width vector p = (p1, . . . , pL) ∈ NL which indicates the width in each
hidden layer. A deep ReLU FNN with architecture (L,p) can be written in the following
compositional form

f(x) := fθ(x) = a · σ
(
W (L) · σ

(
W (L−1) . . . σ

(
W (1)x+ b(1)

)
. . .+ b(L−1)

)
+ b(L)

)
, (6)

where x ∈ Rd is the input, a ∈ RpL is the outer weight, W (i) is a pi × pi−1 weight matrix

with p0 = d, and b(i) ∈ Rpi is the bias vector, for i = 1, . . . , L. Denote by W =
{
W (i)

}L
i=1

the set of all weight matrices, b =
{
b(i)
}L
i=1

the set of all bias vectors, and θ = {W , b, a}
the collection of all trainable parameters in the network.

From now on, we use F(L,p) to represent the set of functions of the form (6) produced
by a class of ReLU FNNs with architecture (L,p).

3. Main Results I: Universal Approximation Theorem for GMM
discriminant functions and general analytic functions

For x ∈ Rd, we denote by ‖x‖ the standard Euclidean norm in Rd, unless otherwise specified.
Recall that we assume our GMM model consists of K Gaussian distributions in total, each
with mean and covariance denoted by µj and Σj , for j = 1, . . . ,K. We define µ∗ to be

µ∗ = max
1≤j≤K

‖µj‖. (7)

Let σ̃ be the smallest eigenvalue of all the K covariance matrices {Σj}Kj=1.
Our first result proves that there exists a ReLU FNN that approximates our function of

interest D(x) = D+(x) −D−(x) very well for x on a cube [−b, b]d, while keeping bounded
outside. The proof of Theorem 1 is given in Section 6.

Theorem 1. Let b ≥ 1,m, ` ∈ N, C0
K ≥

√
d√
σ̃
, C1

K ≥
µ∗√
σ̃

and R2 ≥
√
d(b + 1)C0

K + C1
K .

Consider the GMM discriminant function D defined in (3). If ` ≥ 2 log((R2)2de)/ log(2),
there exists a function D̃ : Rd → R implementable by a ReLU FNN ∈ F(L,p) with L =
m+ 3 + (m+ 1)(`+ 1) and the width vector p ∈ NL given by

p1 = 4d+ 2dK, p2 = 1 + dK,

p3 = pm+4 = 4dK,

pi+s(m+1) = 10dK, if s = 0, 1, i = 4, . . . ,m+ 3,

p(j+2)(m+1)+4 = 5K
(
2j
)
, if j = 0, . . . , `− 1,

p(j+2)(m+1)+i = 11K
(
2j
)
, if j = 0, . . . , `− 1, i = 5, . . . ,m+ 4,

and with all weights and biases taking values in [−4, 4] except for the L-th layer such that∣∣∣D̃(x)−D(x)
∣∣∣ ≤ CR2

(
2`+1

4m+1
+ 2−

`(2`)
2

)
, ∀x ∈ [−b, b]d (8)
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and ∣∣∣D̃(x)
∣∣∣ ≤ CR2 , ∀x ∈ Rd, (9)

where CR2 =
(∑K

j=1 |βj |
)
e(R2)2d.

Here are some interpretations of Theorem 1. On one hand, Inequality (8) shows that
when the data is bounded in a d-dimensional cube, the function D̃ closely approximates D
to any arbitrary accuracy as the depth of the ReLU network grows (i.e., as m, ` goes to
infinity). On the other hand, even when the data is unbounded in Rd, Inequality (9) shows
that the function value D̃(x) is bounded by some constant. The error bounds given in (8)
and (9) are important tools for deriving the excess risk bound later in Theorem 6.

Observe that D(x) =
∑K

j=1 βj exp(−uj(x)) is an entire function. In light of this, we
can extend the above universal approximation theorem to a more general class of analytic
functions. We first recall the definition of an analytic function. If a function t is analytic
throughout a disk |z−u0| < R, centered at u0 and with radius R > 0, then t has the power
series representation

t(z) =

∞∑
i=0

t(i)(u0)

i!
(z − u0)i, |z − u0| < R. (10)

In other words, series (10) converges to t(z) when z lies in the aforementioned open disk.
Now, we present our result on approximating a univariate analytic function via a deep

ReLU FNN.

Theorem 2. Let m, ` ∈ N, 1 < R1 < R0 ≤ ∞. Consider a univariate function t(u) on
(−R0, R0), which can be extended to an analytic function on the disk |z| < R0. For input
x ∈ [−1, 1], there exists a function F implementable by a deep ReLU FNN ∈ F(`(m+ 1),p)
with width vector p ∈ N`(m+1) given by, for j = 0 . . . , `− 1,{

pj(m+1)+1 = 5
(
2j
)
,

pj(m+1)+i = 11
(
2j
)
, for i = 2, . . . ,m+ 1,

and with all weights and biases taking values in [−4, 4] except the last layer such that

sup
x∈[−1,1]

|F (x)− t(x)| ≤ CR1

(
1

4m+1
+

1

R2`
1

)
, (11)

where CR1 = 27+blog 4/ logR1c

(R1−1) supi∈Z+

∣∣∣ t(i)(0)
i! (R1)i

∣∣∣.
Theorem 2 shows that there exists a deep ReLU FNN that can approximate a general

analytic function defined on [−1, 1] to any arbitrary accuracy as the ReLU network grows.
This approximation result is of independent interest and may be useful in other problems.
The proof of Theorem 2 can be found in Appendix B.

Theorem 2 considers univariate analytic functions on a compact interval. A question
arises at this point: Is it possible to generalize this result to multivariate analytic func-
tions (on a compact domain)? While we believe such a generalization may be possible, it

10
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requires some significant work, and thus we leave this for future study. The challenge of
generalization to multivariate analytic functions is that our main tool to derive Theorem 2
is a monomial gate approximating univariate monomials with neat constant terms. It is not
obvious how this monomial gate can approximate multivariate monomials with controlled
constant terms.

4. Methodology

To solve the GMM classification problem effectively, our primary goal is to learn the optimal
Bayes classifier fc = sgn(D) well, where D is the GMM discriminant function defined
earlier in (3). To do so, we propose a special ReLU FNN architecture for learning the
Bayes classifier from GMM data. This special ReLU FNN has an expansive binary-tree
structure. The design of this network architecture is based on the results in Theorem
1, which guarantees a small approximation error for a sufficiently deep ReLU network.
For brevity, we refer to this special network as the Expansive Binary-Tree ReLU network
(EBTnet).

In this section, we first outline the design of the EBTnet (Subsection 4.1). Then, we
describe a preprocessing subnetwork (Subsection 4.2). Lastly, in Subsection 4.3, we define
our final network architecture and the hypothesis space for classification.

We will show, later in Section 5, that this network architecture (i.e., EBTnets followed
after the preprocessing subnetwork) achieves a good excess risk bound.

4.1 Expansive Binary-tree network

Recall that Theorem 1 shows that there exists a function D̃ implementable by a ReLU FNN
that approximates D well. From the Taylor’s expansion of exponential functions, we know
that D(x) =

∑K
j=1 βj exp(−uj(x)) can be expressed as a linear combination of monomials.

The results in Theorem 1 guide us to construct a monomial gate, which is a ReLU FNN
designed to approximate linear combinations of monomial functions. This network has an
expansive binary-tree structure. We start by introducing two important building blocks of
the monomial gate, namely the squaring gate f̂m and the product gate Φ̂.

The squaring gate f̂m =: f̂m,θ is a ReLU FNN ∈ F(m, (5, 5, . . . , 5)), where m ∈ N. Each

f̂m has parameters – weights W , bias vectors b and outer weights a – all taking values on
[−4, 4]. This network architecture, introduced by (Yarotsky, 2017), is used to approximate
the quadratic function f(u) = u2 for any input u ≥ 0. It is demonstrated in (Yarotsky,
2017, Proposition 2) that there exists a specific function fm(u) ∈ F(m, (5, 5, . . . , 5)) with
all parameters bounded by 4 such that

fm(u) ∈ [0, 1] and |u2 − fm(u)| ≤ 4−(m+1) ∀u ∈ [0, 1]. (12)

Here and later, we use the hat sign in f̂m to denote a network output function
with flexible parameter choices while fm without the hat sign denotes a specific
network output function with specific parameter choices.

The main idea for constructing this specific squaring gate is to approximate u2 by the
network output fm(u) := u−

∑m
s=1

gs(u)
22s

. Here, gs(u) := g ◦ g ◦ · · · g(u)︸ ︷︷ ︸
s folds

is a s-compositions

11
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Figure 1: An illustration of the network architecture f̂m for approximating u2 for input u ≥ 0. f̂m
is a ReLU FNN with m hidden layers, and each layer has 5 neurons. The red numbers
below the architecture indicate the order of hidden layers.

of hat functions g : [0,∞)→ [0, 1] defined as

g(u) = 2σ(u)− 4σ

(
u− 1

2

)
+ 2σ(u− 1) =


2u, if 0 ≤ u ≤ 1

2 ,
2(1− u), if 1

2 < u ≤ 1,
0, if u > 1.

(13)

We see that the function g can be implemented by a single-layer ReLU network with
input u ≥ 0. It follows that we can construct the squaring gate f̂m, which belongs to
F(m, (5, 5, . . . , 5)). A more detailed discussion on f̂m is given later in Subsection 6.1.

Next, invoking the identity

u · v =

∣∣∣∣u+ v

2

∣∣∣∣2 − ∣∣∣∣u− v2

∣∣∣∣2
and f̂m, we are able to construct a product gate Φ̂ =: Φ̂θ, which is a ReLU FNN belonging
to F(m+ 1, (4, 10, 10, . . . , 10)) for m ∈ N. A similar network construction can be found in
(Suh et al., 2023, Lemma D.2.2). The first hidden layer of the product gate Φ̂ takes u, v ∈ R
as inputs and outputs |u+v

2 | and |u−v2 | via |u| = σ(u)+σ(−u). Then, |u+v
2 | and |u−v2 | become

inputs for two identical f̂m respectively. We know that f̂m takes m hidden layers (each with
a width of 5) to output f̂m(|u+v

2 |) ≈ |
u+v

2 |
2 and f̂m(|u−v2 |) ≈ |

u−v
2 |

2, respectively. These
outputs are merged together via

Φ̂(u, v) = f̂m

(∣∣∣∣u+ v

2

∣∣∣∣)− f̂m(∣∣∣∣u− v2

∣∣∣∣) .
We prove, later in Proposition 7 (in Subsection 6.1), that a specific function Φ ∈ F(m+

1, (4, 10, 10, . . . , 10)) with a specific fm can approximate the multiplication u · v to any
arbitrary accuracy for m sufficiently large.

Now we are in a position to introduce the monomial gate – a ReLU network architecture
that employs an expansive binary-tree structure. The aforementioned product gate Φ̂ is an

12
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Figure 2: An illustration of Φ̂ for approximating u · v with inputs (u, v) ∈ R2. Φ̂ is a ReLU FNN

with m+1 hidden layers. The first hidden layer generates |u+v2 | and |u−v2 |, which become

the inputs of two squaring gates f̂m respectively. The red numbers below the architecture

indicate the order of hidden layers.

important building block of this network. The monomial gate is constructed to approximate
monomial functions of degree k ∈ N, that is uk with input u ∈ [−1, 1]. This ReLU FNN,
as illustrated in Figure 3, belongs to F(`(m+ 1),p), where the width vector p ∈ N`(m+1) is
given by, for j = 0 . . . , `− 1,{

pj(m+1)+1 = 5
(
2j
)
,

pj(m+1)+i = 11
(
2j
)
, for i = 2, . . . ,m+ 1.

Notice that Φ̂(u, u) = f̂m(|u|)− f̂m(0). Define the functions
{
ĥk(u)

}2`

k=1
on R for ` ∈ N

by {
ĥk(u)

}2

k=1
=
{
ĥ1(u) = u, ĥ2(u) = Φ̂(u, u) = f̂m(|u|)− f̂m(0)

}
, (14)

and iteratively for j = 1, . . . , `− 1,

ĥ2j+i(u) = Φ̂
(
ĥ2j (u), ĥi(u)

)
, i = 1, . . . , 2j . (15)

The key idea for constructing the monomial gate is to employ an expansive binary-tree
structure. The network comprises ` subnetworks, each equipped with product gates Φ̂. The
1st subnetwork takes the input u and outputs ĥ2(u) = Φ̂(u, u) and u. The outputs of the
1st subnetwork become the inputs of the 2nd subnetwork, which outputs{

u, ĥ2(u)
}
→
{
u, ĥ2(u), ĥ3(u) = Φ̂(h2(u), u), ĥ4(u) = Φ̂(h2(u), h2(u))

}
.

The k-th subnetwork has 2k−1 product gates Φ. This subnetwork takes in the outputs from
the (k − 1)-th subnetwork and computes{

u, ĥ2(u), . . . , ĥ2k−1(u)
}
→
{
u, ĥ2(u), . . . , ĥ2k−1(u), . . . , ĥ2k(u)

}
.

13
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Figure 3: An illustration of the monomial gate for approximating the set of monomials {uk}2`k=1

with input u ∈ [−1, 1]. The network has an expansive binary-tree structure. It comprises

` subnetworks equipped with the product gate Φ̂. The width of the k-th subnetwork is
doubled from that of the (k − 1)-th subnetwork for k = 1, . . . , `.

In this way, we can see that the width of the k-th subnetwork is doubled
from that of the (k−1)-th subnetwork for k = 1, . . . , `, thereby forming the ex-
pansive binary-tree structure. The final output of the monomial gate (i.e., an EBTnet)

is
∑2`

k=1 ckĥk(u), which is a linear combination of ĥk(u) with some constant coefficients ck
for k = 1, . . . , 2`.

Later in Proposition 8 (in Subsection 6.2), we prove that there exists a specific set of

functions {hk(u)}2`k=1, implemented by this EBTnet with specific parameter choices, approx-

imating the set of monomials {uk}2
`

k=1 up to any arbitrary accuracy, given that the depth of
the network is sufficiently large. The approximation error bound is obtained by induction.

4.2 Preprocessing subnetwork: High Dimensional Truncation of Unbounded
Data

Notice that input data generated from GMM is unbounded. Later when we conduct a
generalization analysis of ReLU network classifiers, we need to estimate the covering num-

14
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bers of a set of output functions generated from the EBTnet. However, the unboundedness
of input data makes estimating covering numbers infeasible. We do not choose to make
the assumption that data is bounded because Gaussian distributions are unbounded, and
real-world features, such as images and speeches, are typically unbounded.

To circumvent the challenges that come with unbounded data, we adopt a specific pre-
processing subnetwork which is placed prior to the EBTnets. This preprocessing subnetwork
contains a high-dimensional truncation unit. This truncation unit, which will be defined
shortly, manually projects d-dimensional unbounded input to a bounded domain for d ∈ N.

We first consider the case d = 1. Let b > 0, define a univariate trapezoid-shaped function
Tb : R→ R by

Tb(u) := σ(u+ b+ 1)− σ(u+ b)− σ(u− b) + σ(u− b− 1) (16)

=


u+ b+ 1, if − b− 1 ≤ u < −b,
1, if − b ≤ u ≤ b,
−u+ b+ 1, if b < u ≤ b+ 1,

0, if u < −b− 1 or u > b+ 1.

With u ∈ R, Tb can be implemented by a single-layer ReLU network without any free
parameter.

Now consider d > 1. We extend the univariate trapezoid-shaped function to a higher
dimensional space. With input u = (u1, u2, · · · , ud) ∈ Rd, define a d-dimensional truncation
function Ψb : Rd → R by

Ψb(u) := σ

{
d∑
i=1

Tb(ui)− (d− 1)

}
. (17)

The truncation function Ψb alone can be implemented by a ReLU FNN with 1 hidden layer
(of width 4d) without any free parameter, as illustrated below:

u1

...
ud

→



σ(u1 + b+ 1)
σ(u1 + b)
σ(u1 − b)

σ(u1 − b− 1)
...
...

σ(ud + b+ 1)
σ(ud + b)
σ(ud − b)

σ(ud − b− 1)



→ Ψb(u) = σ

{
d∑
i=1

Tb(ui)− (d− 1)

}
.

A similar truncation network is given in (Shaham et al., 2018). The following Lemma
presents the truncation property of Ψb. Its proof is given in Appendix A.1.

Lemma 3. Let b > 0, and Ψb be defined by (17). With input u ∈ Rd, we have

0 ≤ Ψb(u) ≤ 1

15
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and

Ψb(u) =

{
0, if u /∈ [−b− 1, b+ 1]d,

1, if u ∈ [−b, b]d.

Lemma 3 tells us that applying Ψb to any data u ∈ Rd will project the data onto the
interval [0, 1]. Particularly, if u lies outside the cube [−b− 1, b+ 1]d, Ψb will truncate u to
0 (i.e., makes u vanishes).

Now, we apply the truncation function Ψb to our data, which is x ∈ Rd generated from
some GMM. Recall that we assume our model has a total of K Gaussian distributions, each
with mean and covariance denoted by µj and Σj , for j = 1, . . . ,K. Since x is unbounded,
it follows that

uj(x) = (x− µj)T (Σj)
−1(x− µj)/2, ∀j = 1, . . . ,K,

are also unbounded. To learn the GMM discriminant function D(x) =
∑K

j=1 βj exp(−uj(x))
(previously defined in (3)) by ReLU FNNs, we need to input uj(x) into the EBTnet. But
since uj(x) is unbounded, we first apply Ψb to project uj(x) onto a bounded domain.

Let ri,j(x) be the i-th component of the vector (Σj)
−1/2 (x−µj)√

2
for i = 1, . . . , d and

j = 1, . . . ,K. They are affine functions of x and thus can be implemented by a ReLU FNN
via ri,j(x) = σ(ri,j(x)) − σ(−ri,j(x)). We use a ReLU FNN belonging to F(2, (2, 1)) with
the hypothesis space

H̊ =
{
W̊ · x+ b̊ : W̊ ∈ Rd, ‖W̊‖ ≤ C0

K , |̊b| ≤ C1
K

}
(18)

to learn ri,j(x) by r̂i,j(x) = W̊i,j · x+ b̊i,j , where C0
K and C1

K are tunable parameters.

Instead of directly applying Ψb truncate to r̂(x), we make use of Ψb and the product
gate Φ̂ simultaneously. More specifically, we construct a preprocessing subnetwork
to compute Φ̂(Ψb(x), r̂i,j(x)) with input x ∈ Rd.

Let us explain the purpose of computing Φ̂(Ψb(x), r̂i,j(x)) here. From Lemma 3, we
know that {

Φ̂(Ψb(x), r̂i,j(x)) = Φ̂(0, r̂i,j(x)) = 0, if x /∈ [−b− 1, b+ 1]d,

Φ̂(Ψb(x), r̂i,j(x)) = Φ̂(1, r̂i,j(x)), if x ∈ [−b, b]d.
(19)

for all i = 1, . . . , d and j = 1, . . . ,K.

Recall that Φ(u, v) is a specific network architecture that is used to approximate the
multiplication u · v. Equations (19) tells us that if x lies in [−b, b]d, the preprocessing
subnetwork generates Φ̂(1, r̂i,j(x)), which is used to approximate 1 · ri,j(x) = ri,j(x). On
the other hand, if x lies outside the d-dimensional cube [−b − 1, b + 1]d, the preprocessing
subnetwork outputs 0. This is how the preprocessing network makes r̂i,j(x) vanishes when
x ∈ Rd is too large.

The following flowchart (20) illustrates the preprocessing subnetwork. It is equipped
with one truncation unit Ψb and d · K product gates Φ̂. This subnetwork alone belongs
to F(m + 3, (4d + 2dK, 1 + dK, 4dK, 10dK, 10dK, · · · , 10dK)). The final outputs is the
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collection of Φ̂(Ψb(x), r̂i,j(x)) for i = 1, . . . , d, and j = 1, . . . ,K.

x1

...
xd

→ · →



Ψb(x)
r̂1,1(x)
...

r̂d,1(x)
...

r̂1,K(x)
...

r̂d,K(x)


→ · · · →

 Φ̂(Ψb(x), r̂1,1(x))
...

Φ̂(Ψb(x), r̂d,K(x))

 (20)

Next, we will define our final ReLU network architecture. In the final network architec-
ture, the preprocessing subnetwork is placed at the beginning.

4.3 Defining the Hypothesis Space

Here, we define our final neural network architecture and the hypothesis space H for clas-
sification. Recall the Bayes classifier fc given by

fc(x) = sgn(D(x)) = sgn

 K∑
j=1

βj exp(−uj(x))

 ,

where βj are constant coefficients given by the model, and uj(x) = (x−µj)T (Σj)
−1(x−µj)/2.

The function space H consists of functions implementable by a ReLU FNN and closely
approximate fc for a given x ∈ X . Before we introduce H, we first define the function
σλ : R→ [−1, 1] for some 0 < λ ≤ 1 to be the linear combination of four scaled ReLU units
given by

σλ(u) := σ
(u
λ

)
− σ

(u
λ
− 1
)
− σ

(
−u
λ

)
+ σ

(
−u
λ

+ 1
)

=


1, if u ≥ λ,
u
λ , if u ∈ [−λ, λ),

−1, if u < −λ.
(21)

We can see that if λ is close to 0, σλ(u) is close to sgn(u). In other words, we use the
function σλ to approximate the sign function.

Recall that µ∗ = max1≤j≤K ‖µj‖. Here, we give the definition of our hypothesis space
H. We will show, later in Theorem 6, that functions in H can indeed learn fc with a fast
learning rate (i.e., the excess risk converges to 0 fast).

Definition 4 (Hypothesis Space H). Let 0 < λ ≤ 1, b ≥ 1 and m, ` ∈ N. Also let
R2 ≥ 1 + 1√

σ̃
(
√
d(b+ 1) + µ∗). Define h∗k,j : Rd → R by

h∗k,j(x) = ĥk

(
1

d

d∑
i=1

Φ̂
(

Φ̂(Ψb(x), r̂i,j(x)), Φ̂(Ψb(x), r̂i,j(x))
))

. (22)
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With input x ∈ X = Rd, the hypothesis space H is given by

H =

{
σλ

 K∑
j=1

2`∑
k=1

ck,jh
∗
k,j(x) + c0

 : |ck,j |, |c0| ≤ CK ,W = {Wi}mi=1 ∈ [−4, 4]5×5,

b = {bi}mi=1 ∈ [−4, 4]5, a ∈ [−4, 4]5, r̂i,j ∈ H̊

}
.

Here, CK is a positive tunable parameter equal to or greater than CR2 =
∑K

j=1 |βj | exp
(
(R2)2d

)
.

Remark 5. The hypothesis space H consists of functions implementable by ReLU FNNs
∈ F(L,p) where L = m+ 3 + (`+ 1)(m+ 1) + 1 and the width vector p ∈ NL given by

p1 = 4d+ 2dK, p2 = 1 + dK,

p3 = pm+4 = 4dK,

pi+s(m+1) = 10dK, if s = 0, 1, i = 4, . . . ,m+ 3,

p(j+2)(m+1)+4 = 5K
(
2j
)
, if j = 0, . . . , `− 1,

p(j+2)(m+1)+i = 11K
(
2j
)
, if j = 0, . . . , `− 1, i = 5, . . . ,m+ 4,

pL = 4.

The beginning of the network is a preprocessing subnetwork that outputs Φ̂(Ψb(x), r̂i,j(x)) for
i = 1, . . . , d, and j = 1, . . . ,K. Each of these outputs is used to approximate ri,j(x). Next,

each output from the preprocessing subnetwork enters one product gate Φ̂ (i.e., we have
K product gates Φ̂ followed by the preprocessing subnetwork). This group of product gates

together outputs 1
d

∑d
i=1 Φ̂

(
Φ̂(Ψb(x), r̂i,j(x)), Φ̂(Ψb(x), r̂i,j(x))

)
for j = 1, . . . ,K, which is

used to approximate 1
d

∑d
i=1(ri,j(x))2 = 1

duj(x). Then, each of these products enters a
monomial gate (EBTnet), and all outputs of the K monomial gates are merged together via∑K

j=1

∑2`

k=1 ck,jh
∗
k,j(x) + c0. If ` is large, this output can be used to approximate a linear

combination of {(uj(x))k}∞k=0, and thereby approximate D(x) =
∑K

j=1 βj exp(−uj(x)) with
suitable choices of coefficients ck,j and c0. The last layer of the network is a scaling unit σλ,
which is close to the sign function if λ is close to 0. We use the output function f(x) ∈ H
to learn our target Bayes classifier fc(x) = sgn(D(x)).

5. Main Results II: Generalization Analysis of ReLU Network Classifier

Consider the hypothesis space H defined above in Definition 4. For any function f in H,
the misclassification error w.r.t. the probability measure ρ is defined as

R(f) := E[1{Y ·sgn(f(X))=−1}] = P(Y · sgn(f(X)) = −1), ∀f ∈ H (23)

To show functions in H can learn fc sufficiently well, we aim to find a f ∈ H that mini-
mizes the excess risk R(f)−R(fc) ≥ 0. In practice, the probability measures ρ are usually
unknown. The classifier f will be learned based on a random sample z := {(xi, yi)}ni=1
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drawn independently and identically distributed from ρ, where n is the sample size. We
find a classifier that minimizes the empirical risk:

f̂n := arg min
f∈H

1

n

n∑
i=1

1{yi·sgn(f(xi))=−1}.

However, the empirical risk w.r.t. 0-1 loss – the natural loss function for binary classifi-
cation – is non-continuous and non-convex (Bartlett et al., 2006). Instead of minimizing the
0-1 loss, we can adopt some convex loss function V : X ×Y → [0,∞) to make computation
feasible. The Hinge loss, defined as φ(t) := max{0, 1− t}, is one of the most commonly used
loss functions in maximum-margin classifications, most notably the support vector machine
(Rosasco et al., 2004). The generalization error associated with the Hinge loss φ for f is
defined by

ε(f) =

∫
Z
φ(yf(x))dρ =

∫
X

∫
Y
φ(yf(x))dρ(y|x)dρX

=

∫
X

(φ(f(x))P(y = 1|x) + φ(−f(x))P(y = −1|x)) dρX .

Given a sample z = {(xi, yi)}ni=1, define the empirical risk of f w.r.t. φ over z as

εz(f) :=
1

n

n∑
i=1

φ(yif(xi)). (24)

Our goal is to find a classifier f ∈ H that minimizes the empirical risk w.r.t. φ, that is,
the empirical risk minimizer (ERM) defined as

fz := arg min
f∈H

εz(f) (25)

The well-known Comparison Theorem in classification in (Zhang, 2004) suggests that,
for the Hinge loss φ and any measurable function f : X → R,

R(sgn(f))−R(fc) ≤ ε(f)− ε(fc). (26)

In other words, we can minimize the excess generalization error (also known as the excess
φ-error) ε(fz) − ε(fc) to, in turn, bound the excess risk R(sgn(fz)) − R(fc). To derive
the convergence rate of the excess generalization error, we assume the Tsybakov-type noise
condition given earlier in Assumption 1. As a recap, Assumption 1 asserts that for some
c0 > 0 and q ∈ [0,∞), there holds

P({X ∈ X : |D(X)| ≤ t}) ≤ c0t
q, ∀t > 0,

where q is often referred to as the noise exponent.
Our third result derives the convergence rate of the excess generalization error ε(fz)−

ε(fc), which in turn gives the convergence rate of the excess risk. In other words, the
following theorem establishes the learning rate of ReLU networks on learning the Bayes
classifier fc of GMM data. To our best knowledge, this is the first generalization error bound
for classifications under a general GMM setting without constraints on model parameters or
the number of Gaussian components. In particular, we do not impose any sparsity condition
on the covariance matrices. The proof of Theorem 6 is given in Section 7.4.
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Theorem 6. Let n ≥ 3, q > 0, b ≥ 1, C0
K ≥

√
d√
σ̃
, C1

K ≥
µ∗√
σ̃
, R2 = 2

√
d(C0

K + C1
K)b, CK =

c2 exp(c3b
2) with c2 ≥

∑K
j=1 |βj |, c3 ≥ 4d2(C0

K + C1
K))2. Let fz be the empirical risk mini-

mizer of the hypothesis space H with the chosen CK . Suppose the noise condition (5) holds

for some noise exponent q and constant c0 > 0. Take λ = n
− 1
q ,m = `(2`−1), b =

√
c′q`(2

`−1)

with c′q = q(log 2)
1

16σ∗+c3q
and ` to be the smallest integer satisfying `2`−1 ≥ 16σ∗

c′q
log n. For any

0 < δ < 1, with probability 1− δ, there holds,

R(sgn(fz))−R(fc) ≤ ε(fz)− ε(fc) ≤ Cq,d log

(
2

δ

)
(log n)4

(
1

n

) q+1
q+2

, (27)

where Cq,d is a positive constant independent of n or δ.

We can see that the excess risk bound depends on q, the noise exponent. Theorem 6
tells us that when q = 0 (no noise assumption), the convergence rate of the excess risk is of

O
(

(1/n)
1
2 (log n)4

)
. When q increases (stronger noise assumption), the convergence rate of

the excess risk approaches O
(
(1/n)(log n)4

)
.

In the classic literature, convergence rates of the excess risk of order O
(

(1/n)
1
2

)
with 0-1

loss were established (Mammen and Tsybakov, 1999). Moreover, it is proven in (Tsybakov,
2004) that, when the ERM is taken over all measurable classifiers, the minimax lower

bound of the excess risk is O
(
n
− α(q+1)
α(q+2)+(d−1)q

)
, under Tsybakov noise condition and when

the decision boundary is α-Hölder smooth.
Recall Table 1 given earlier in Section 1. This table compares our finding in Theorem

6 with the existing results on excess risk in the literature. Comparatively, our result does
not depend on any smoothness or regularity measure, whereas the existing results from
(Feng et al., 2021; Kim et al., 2021; Shen et al., 2022) contain constant terms depending
on smoothness index. For example, the excess risk estimate given in (Feng et al., 2021,
Theorem 2) contains a constant term that increases exponentially with the smoothness
index r > 0. Since the regression function under GMM is infinitely differentiable, existing
results increase to infinity when we take the smoothness index to be infinity.

Moreover, notice that our convergence rate does not depend on the dimension d. Such
a result matches the well-established phenomenon that when the smoothness of the func-
tions is proportional to the dimensionality, then the rates of excess risk are dimension-
independent, e.g., the Barron class (E et al., 2022).

All existing results on function approximations by ReLU neural networks consider only
functions on bounded domains. Specifically, approximation of polynomials (and thereby
functions with smoothness) on a bounded domain by ReLU networks has been extensively
studied, starting from the seminal work (Yarotsky, 2017). However, there is no result on
function approximation on an unbounded domain by ReLU networks, even for polynomials.
Our novelty in this aspect is that we utilize the special composition form of the GMM
discriminant function: It is a composition of quadratic polynomials on the whole space
Rd with a univariate exponential function. Our network is designed specifically to learn
functions of this form. Our approach uses the positivity of these quadratic polynomials and
the decay of the exponential function e−u, which enables us to reduce the approximation
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from the whole space to a bounded domain. It is possible to extend our results to the setting
where the exponential function e−u is replaced with some other entire function decaying at
infinity. However, this is not the main focus of this work on GMM classification.

6. Proof of Theorem 1: Approximation of GMM Discriminant Function
by ReLU Network

In this section, we present the proof of Theorem 1. The proof of Theorem 1 can be divided
into three steps. First, we prove that the new product gate can approximate multiplication
well (Subsection 6.1). Then, using the new product gate, we study how ReLU networks
can approximate monomial functions (Subsection 6.2). After that, we prove Theorem 1
by showing how the GMM discriminant function D can be well approximated by ReLU
networks (Subsection 6.3).

6.1 A Novel Product gate

From (Yarotsky, 2017), it is shown that a m-layer ReLU FNN can approximate f(u) = u2

to an accuracy 1
4m+1 with input u ∈ [0, 1]. Inspired by Yarotsky’s results, we propose

a new product gate that achieves the same approximation accuracy on [0, 1]2 and has a
linear increment on R2 while adopting a structure that enables efficient approximation of
monomials later.

Recall the hat function g : [0,∞) → [0, 1] we defined earlier in (13) by extending the
construction by (Yarotsky, 2017) on the interval [0, 1] to [0,∞). The function g can be
regarded as the output of a ReLU network with 1 hidden layer and 3 neurons. The s-
composition gs of g with itself on [0,∞) takes the form

gs(u) := g ◦ g ◦ · · · g(u)︸ ︷︷ ︸
s folds

=


2s
(
u− 2k

2s

)
, if u ∈

[
2k
2s ,

2k+1
2s

]
, k = 0, 1, . . . , 2s−1 − 1,

2s
(

2k
2s − u

)
, if u ∈

[
2k−1

2s , 2k
2s

]
, k = 1, 2, . . . , 2s−1,

0, if u > 1.

With input u ≥ 0, we can generate gs for s = 1, 2, . . . ,m by a ReLU network of m layers.
Denote a function vector σ by

σ(u) =

 σ(u− 1)
σ(u− 1/2)

σ(u)

 . (28)

By gs and σ(u) = u for u ≥ 0, the following flow chart illustrates how the functions
{u, g1(u), g2(u), . . . , gm(u)} are produced by a ReLU FNN with m hidden layers:

u→
[
σ(u)

]
→
[
σ (g1(u))

u

]
→

σ (g2(u))
g1(u)
u

→ · · · →
σ (gm−1(u))∑m−2

s=1
gs(u)
22s

u

 =: Gm(u)→ fm(u),

(29)
where fm : [0,∞)→ [0,∞) is defined as a linear combination of {gs}ms=1 given by

fm(u) = u−
m∑
s=1

(fs−1(u)− fs(u)) =

{
u−

∑m
s=1

gs(u)
22s

, if 0 ≤ u ≤ 1,
u, if u > 1.
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As observed in (Yarotsky, 2017), on the interval [0, 1], fm is the piecewise linear interpolation
of u2 on 2m subintervals on [0, 1] with breakpoints {0, 1

2m , ...,
2m

2m = 1}. From (29), we see
that fm can be implemented by a ReLU FNN with m hidden layers, each of which consists
of 5 nodes or units. All the parameters take values on [−4, 4].

Now, motivated by the identity u · v =
∣∣u+v

2

∣∣2 − ∣∣u−v2

∣∣2, we introduce a novel product
gate Φ : R× R→ R as

Φ(u, v) = fm

(∣∣∣∣u+ v

2

∣∣∣∣)− fm(∣∣∣∣u− v2

∣∣∣∣) , ∀u, v ∈ R. (30)

It follows that the multiplication function u·v can be well-approximated by a ReLU network,
as stated in the proposition below.

Proposition 7. Let m ∈ N. With the input (u, v) ∈ R2, the function Φ : R2 → R can be
implemented by a ReLU FNN ∈ F(m + 1, (4, 10, 10, . . . , 10)) with all the parameters take
values on [−4, 4] such that

1. Φ(u, v) = 0 if u = 0 or v = 0;

2. |Φ(u, v)| ≤ |u|+ |v|;

3. If u, v ∈ [−1, 1], Φ(u, v) ∈ [−1, 1] and it achieves an approximation accuracy

|Φ(u, v)− u · v| ≤ 4−(m+1).

Proof Note that |t| = σ(t) + σ(−t) for all t ∈ R. Hence σ
(
u+v

2

)
+ σ

(
−u+v

2

)
gives

∣∣u+v
2

∣∣,
which will be the input of a subnetwork fm. The following flow chart demonstrates how
the product gate Φ is generated:

[
u
v

]
→


σ
(
u+v

2

)
σ
(
−u+v

2

)
σ
(
u−v

2

)
σ
(
−u−v

2

)
→ [

σ
(∣∣u+v

2

∣∣)
σ
(∣∣u−v

2

∣∣)]→ · · · →→ · · · →

[
Gm(

∣∣u+v
2

∣∣)
Gm(

∣∣u−v
2

∣∣)
]
→ Φ(u, v).

The complexity of the network Φ follows from that of fm.
If u = 0 or v = 0, we have

∣∣u+v
2

∣∣ =
∣∣u−v

2

∣∣ and thereby Φ(u, v) = 0. Observe that
0 ≤ fm(u) ≤ u for u ∈ [0,∞), if follows that for u, v ∈ R,

|Φ(u, v)| =
∣∣∣∣fm(∣∣∣∣u+ v

2

∣∣∣∣)− fm(∣∣∣∣u− v2

∣∣∣∣)∣∣∣∣ ≤ ∣∣∣∣u+ v

2

∣∣∣∣+

∣∣∣∣u− v2

∣∣∣∣ ≤ |u|+ |v|.
It is shown in (Yarotsky, 2017, Proposition 2) that 0 ≤ fm(u) − u2 ≤ 4−(m+1) and 0 ≤
fm(u) ≤ 1 for u ∈ [0, 1]. We have, for u, v ∈ [−1, 1], −1 ≤ Φ(u, v) ≤ 1 and

Φ(u, v)− u · v =

{
fm

(∣∣∣∣u+ v

2

∣∣∣∣)− ∣∣∣∣u+ v

2

∣∣∣∣2
}
−

{
fm

(∣∣∣∣u− v2

∣∣∣∣)− ∣∣∣∣u− v2

∣∣∣∣2
}

∈
[
−4−(m+1), 4−(m+1)

]
.

This proves the proposition.

One of the advantages of our product gate is that for input on the domain [0, 1], the output
is also on [0, 1]. Such consistency of the domain and range [0, 1] helps us to define the
monomial gate in an elegant way in the next subsection.
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6.2 Monomial Gate

Following the idea of the product gate introduced in the previous subsection, we construct
a network to approximate monomial functions uk on [−1, 1], with k ∈ N. This network is
a monomial gate (i.e., EBTnet) defined in subsection 4.1 with specific parameter choices.

Define the functions {hk(u)}2`k=1 on R for ` ∈ Z+ by

{hk(u)}2k=1 = {h1(u) = u, h2(u) = Φ(u, u)}, (31)

and iteratively for j = 1, . . . , `− 1,

h2j+k(u) = Φ(h2j (u), hk(u)), k = 1, . . . , 2j . (32)

Here, we focus on the input domain [−1, 1].

Proposition 8. Let ` ∈ Z+. Consider the functions {hk(u)}2`k=1 defined in (31) and (32).

For input u ∈ [−1, 1], there exists a ReLU FNN that outputs the set of functions {hk(u)}2`k=1

such that for j = 0, 1, . . . , `− 1 and k = 1, . . . , 2j,

h2j+k(u) ∈ [−1, 1] (33)

and ∣∣∣h2j+k(u)− u2j+k
∣∣∣ ≤ 2j+1 − 1

4m+1
. (34)

This ReLU FNN belongs to F(`(m + 1),p), where the width vector p is given by, for j =
0 . . . , `− 1, {

pj(m+1)+1 = 5
(
2j
)
,

pj(m+1)+i = 11
(
2j
)
, for i = 2, . . . ,m+ 1.

All parameters take value in [−4, 4].

Proof The network described here is an EBTnet defined in subsection 4.1. It consists of `
subnetworks, each with depth m+ 1, forming an expansive binary tree structure. We prove
our statements by induction on j.

The case j = 0 is obvious: the 1st subnetwork takes u a sinput and outputs {h2(u), h1(u)}.
For u ∈ [−1, 1], we have

h2(u) = Φ(u, u) = fm(|u|) ∈ [0, 1]

and

|h2(u)− u2| =
∣∣fm(|u|)− u2

∣∣ = fm(|u|)− u2 ≤ 4−(m+1) =
2− 1

4(m+1)
.

Now, assume the statements are true for the j-th subnetwork, where 0 ≤ j ≤ ` − 1. The
(j + 1)-th subnetwork takes [hi(u)]2

j

i=1 as inputs, and outputs h2j+1(u), . . . , h2j+1(u).

By the induction hypothesis, h2j−1+k(u) ∈ [−1, 1] and |h2j−1+k(u)−u2j−1+k| ≤ 2j−1
4m+1 for

u ∈ [−1, 1] and k = 1, . . . , 2j−1. We obtain, for u ∈ [−1, 1] and k = 1, . . . , 2j ,

h2j+k(u) = Φ(h2j (u), hk(u)) ∈ [−1, 1],
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and

|h2j+k(u)− u2j+k|
= |h2j+k(u)− h2j (u) · hk(u) + h2j (u) · hk(u)− u2j+k|

≤ |Φ(h2j (u), hk(u))− h2j (u) · hk(u)|+
∣∣∣(h2j (u)− u2j

)
hk(u) + u2j (hk(u)− uk)

∣∣∣
≤ 1

4m+1
+ 2 · 2j − 1

4m+1
=

2j+1 − 1

4m+1
.

This completes the induction procedure and the proof of Proposition 8.

6.3 Proof of Theorem 1

Recall the GMM discriminant function D defined in (3) by

D(x) = D+(x)−D−(x) =

K∑
j=1

βj exp(−uj(x)),

where βj are constant coefficients, and uj(x) = (x− µj)T (Σj)
−1(x− µj)/2.

Recall that ri,j(x) is the i-th component of the vector (Σj)
−1/2 (x−µj)√

2
for i = 1, . . . , d

and j = 1, . . . ,K. Also, recall that µ∗ = max1≤j≤K ‖µj‖ and σ̃ is the smallest eigenvalue
of all the K covariance matrices. We have for j = 1, . . . ,K,

|ri,j(x)| ≤ ‖(Σj)
−1/2(x− µj)‖ ≤

1√
σ̃
‖x− µj‖ ≤

1√
σ̃

(‖x‖+ µ∗). (35)

Here, we present the proof of Theorem 1.
Proof of Theorem 1. Since the input x ∈ Rd is unbounded, uj(x) is unbounded for
j = 1, . . . ,K. We first apply the preprocessing subnetwork to truncate x. This part of the
neural network is a fixed network structure (i.e., all network parameters are not free). The
flowchart below showcases the preprocessing unit of our neural network:

x1

...
xd

→,→



Ψb(x)
r1,1(x)
...

rd,1(x)
...

r1,K(x)
...

rd,K(x)


→ · · · →

Φ(Ψb(x), r1,1(x))
...

Φ(Ψb(x), rd,K(x))



It follows from Proposition 7 that |Φ(Ψb(x), ri,j(x))| ≤ |Ψb(x)|+ |ri,j(x)|.
Then we have, from Lemma 3, for j = 1, . . . ,K,{

Φ(Ψb(x), ri,j(x)) = Φ(0, ri,j(x)) = 0, if x /∈ [−b− 1, b+ 1]d,

Φ(Ψb(x), ri,j(x)) = Φ(1, ri,j(x)), if x ∈ [−b, b]d.
(36)
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Recall the function space H̊ defined earlier in (18). Every r̂i,j ∈ H̊ has the form r̂i,j(x) =

W̊i,j · x + b̊i,j with ‖W̊i,j‖ ≤ C0
K , |bi,j | ≤ C1

K . In Theorem 1, we choose C0
K ≥

√
d√
σ̃

and

C1
K ≥

µ∗√
σ̃

. We observe from (35) that ri,j ∈ H̊ due to the choices of C0
K , C

1
K here. Also,

|ri,j(x)| ≤ 1√
σ̃

(
√
d(b+ 1) + µ∗) for x ∈ [−b− 1, b+ 1]d. But R2 ≥

√
d(b+ 1)C0

K +C1
K . Then

for j = 1, . . . ,K and i = 1, . . . , d, |ri,j(x)/R2| ≤ 1 and∣∣∣∣Φ(Ψb(x),
ri,j(x)

R2

)∣∣∣∣ ≤ 1, ∀x ∈ [−b− 1, b+ 1]d (37)

and thus for all x ∈ Rd by (36). Observe that

D(x) =
K∑
j=1

βj exp(−uj(x)) =
K∑
j=1

βj exp

(
−

d∑
i=1

(ri,j(x))2

)

=
K∑
j=1

βj exp

(
−(R2)2

d∑
i=1

(
ri,j(x)

R2

)2
)
.

By the Taylor expansion of the exponential function exp
(
−(R2)2u

)
for u ∈ R, we can

further write D as

D(x) =
K∑
j=1

βj

∞∑
k=0

(−1)k(R2)2kdk

k!

(
1

d

d∑
i=1

(
ri,j(x)

R2

)2
)k

.

Note that Φ(u, u) = fm(|u|) by the definition of Φ in (30). Now define D̃ : Rd → R by

D̃(x) =
K∑
j=1

βj

1 +
2`∑
k=1

(−1)k(R2)2kdk

k!
hk

(
1

d

d∑
i=1

fm

(∣∣∣∣Φ(Ψb(x),
ri,j(x)

R2

)∣∣∣∣)
) . (38)

For brevity, we wrote fm

(∣∣∣Φ(Ψb(x),
ri,j(x)
R2

)∣∣∣) instead of Φ
(

Φ
(

Ψb(x),
ri,j(x)
R2

)
,Φ
(

Ψb(x),
ri,j(x)
R2

))
.

We would like to highlight that σλ(D̃) ∈ H. In other words, D̃ can be implemented by a
ReLU FNN described in Remark 5 excluding the last scaling layer σλ.

For k = 1, . . . , 2` and x ∈ Rd, we have

hk

(
1

d

d∑
i=1

fm

(∣∣∣∣Φ(Ψb(x),
ri,j(x)

R2

)∣∣∣∣)
)

= hk

(
1

d

d∑
i=1

fm

(∣∣∣∣Φ(Ψb(x),
ri,j(x)

R2

)∣∣∣∣)
)
−

(
1

d

d∑
i=1

fm

(∣∣∣∣Φ(Ψb(x),
ri,j(x)

R2

)∣∣∣∣)
)k

+

(
1

d

d∑
i=1

fm

(∣∣∣∣Φ(Ψb(x),
ri,j(x)

R2

)∣∣∣∣)
)k

.

Applying Proposition 8, by (37) and 0 ≤ fm(u) ≤ 1 for u ∈ [0, 1], we get for k = 1, . . . , 2`

and x ∈ Rd,
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∣∣∣∣∣hk
(

1

d

d∑
i=1

fm

(∣∣∣∣Φ(Ψb(x),
ri,j(x)

R2

)∣∣∣∣)
)∣∣∣∣∣ ≤ 1. (39)

By (39), when x ∈ [−b− 1, b+ 1]d,

|D̃(x)| ≤
K∑
j=1

|βj |

1 +
2`∑
k=1

((R2)2d)k

k!

 ≤
K∑
j=1

|βj | exp
(
(R2)2d

)
. (40)

When x /∈ [−b − 1, b + 1]d, by (36), we have fm

(∣∣∣Φ(Ψb(x),
ri,j(x)
R2

)∣∣∣) = 0 and thereby

|D̃(x)| ≤
∣∣∣∑K

j=1 βj

∣∣∣ ≤∑K
j=1 |βj |

(
exp

(
(R2)2d

))
. This proves (9) in Theorem 1.

Now if x ∈ [−b, b]d, we know Ψb(x) = 1 from Lemma 3. Applying the approximation
error bound (12) for fm, we get∣∣∣∣∣fm

(∣∣∣∣Φ(Ψb(x),
ri,j(x)

R2

)∣∣∣∣)− (ri,j(x)

R2

)2
∣∣∣∣∣ =

∣∣∣∣∣fm
(∣∣∣∣Φ(1,

ri,j(x)

R2

)∣∣∣∣)− (ri,j(x)

R2

)2
∣∣∣∣∣ ≤ 4−(m+1).

It follows from Proposition 8 that for x ∈ [−b, b]d, k = 1, . . . , 2`,∣∣∣∣∣∣hk
(

1

d

d∑
i=1

fm

(∣∣∣∣Φ(Ψb(x),
ri,j(x)

R2

)∣∣∣∣)
)
−

(
1

d

d∑
i=1

(
ri,j(x)

R2

)2
)k∣∣∣∣∣∣

≤ 2` − 1

4m+1
+

∣∣∣∣∣∣
(

1

d

d∑
i=1

fm

(∣∣∣∣Φ(Ψb(x),
ri,j(x)

R2

)∣∣∣∣)
)k
−

(
1

d

d∑
i=1

(
ri,j(x)

R2

)2
)k∣∣∣∣∣∣

≤ 2` − 1

4m+1
+
k

d

d∑
i=1

∣∣∣∣∣fm
(∣∣∣∣Φ(Ψb(x),

ri,j(x)

R2

)∣∣∣∣)− (ri,j(x)

R2

)2
∣∣∣∣∣

≤ 2` − 1

4m+1
+ k

(
4−(m+1)

)
=

2` + k − 1

4m+1
.

Here, we have used the Mean Value Theorem to bound |uk− vk| ≤ k|u− v| for u, v ∈ [0, 1].
Then, for x ∈ [−b, b]d, we have∣∣∣D̃(x)−D(x)

∣∣∣
≤

∣∣∣∣∣∣D̃(x)−
K∑
j=1

βj

2`∑
k=0

(−1)k(R2)2kdk

k!

(
1

d

d∑
i=1

(
ri,j(x)

R2

)2
)k∣∣∣∣∣∣

+

∣∣∣∣∣∣
K∑
j=1

βj

∞∑
k=2`+1

(−1)k(R2)2kdk

k!

(
1

d

d∑
i=1

(
ri,j(x)

R2

)2
)k∣∣∣∣∣∣

≤
K∑
j=1

|βj |
2`∑
k=0

(R2)2kdk

k!

∣∣∣∣∣∣hk
(

1

d

d∑
i=1

fm

(∣∣∣∣Φ(Ψb(x),
ri,j(x)

R2

)∣∣∣∣)
)
−

(
1

d

d∑
i=1

(
ri,j(x)

R2

)2
)k∣∣∣∣∣∣
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+

∣∣∣∣∣∣
K∑
j=1

βj

∞∑
k=2`+1

(−1)k(R2)2kdk

k!

(
1

d

d∑
i=1

(
ri,j(x)

R2

)2
)k∣∣∣∣∣∣

≤
K∑
j=1

|βj |


2`∑
k=1

((R2)2d)k

k!

(
2` + k − 1

4m+1

)+
K∑
j=1

|βj |
∞∑

k=2`+1

((R2)2d)k

k!

≤
K∑
j=1

|βj |


2`∑
k=1

((R2)2d)k

k!

(
2`+1

4m+1

)
+

∞∑
k=2`+1

((R2)2d)k

k!

 .

By Stirling’s formula,

√
2πk

(
k

e

)k
exp

(
1

12k + 1

)
< k! <

√
2πk

(
k

e

)k
exp

(
1

12k

)
,

we know that

∞∑
k=2`+1

((R2)2d)k

k!
<

∞∑
k=2`+1

((R2)2d)k√
2πk

( e
k

)k
exp

(
− 1

12k + 1

)
≤

∞∑
k=2`+1

(
(R2)2de

k

)k
.

Since ` ≥ 2 log((R2)2de)
log 2 , we have((R2)2de)2 ≤ 2` + 1. We then apply the bound 2` + 1 ≤ k

for k ≥ 2` + 1 and find

∞∑
k=2`+1

(
(R2)2de

k

)k
≤

∞∑
k=2`+1

(
1√
k

)k
≤
(

1√
2`

)2` ∞∑
k=2`+1

(
1√
2`

)k−2`

≤ 2−
`(2`)

2 ,

where we have bounded k ≥ 2` + 1 by 2` from below and then
√

2` by 2 from below.

Therefore, for x ∈ [−b, b]d, there holds

|D̃(x)−D(x)| ≤

 K∑
j=1

|βj |

 exp
(
(R2)2d

)( 2`+1

4m+1
+ 2−

`(2`)
2

)
,

which verifies (8) in Theorem 1. The proof of Theorem 1 is complete.

7. Proof of Theorem 6: Generalization Analysis

In this section, we derive the high probability upper bound of excess generalization error
ε(fz)− ε(fc) for proving Theorem 6.

To start, we decompose ε(fz)− ε(fc) into estimation error terms and an approximation
error term (Subsection 7.1). Then, we bound the estimation error terms (in Subsection
7.2) that involve estimating the covering number of our hypothesis space H. After that, we
bound the approximation error term (Subsection 7.3). Lastly, by combining all the error
estimates together, we are able to derive the proof of Theorem 6 (Subsection 7.3).
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7.1 Error decomposition

We consider the following error decomposition. Similar error decompositions can be found
in (Zhou and Huo, 2024; Huang et al., 2022).

Lemma 9 (Decomposition of ε(fz) − ε(fc)). Let fH be any functions in H defined in
Definition 4. There holds

ε(fz)− ε(fc) ≤ {ε(fz)− εz(fz)}+ {εz(fH)− ε(fH)}+ {ε(fH)− ε(fc)}. (41)

Proof We express ε(fz)− ε(fc) by inserting empirical risks as follows

ε(fz)− ε(fc) = {ε(fz)− εz(fz)}+ {εz(fz)− εz(fH)}+ {εz(fH)− ε(fH)}+ {ε(fH)− ε(fc)}.

Both fz and fH lies on the hypothesis space H. From the definition of fz at (25), fz
minimizes the empirical risk εz(f) over H. Thus we have εz(fz)− εz(fH) ≤ 0. This yields
the expression (41).

{ε(fz)−εz(fz)} is the first estimation error (also known as the sample error) term, {εz(fH)−
ε(fH)} is the second estimation error term, whereas {ε(fH) − ε(fc)} — which does not
depend on the data — is the approximation error term induced by fH. To give an upper
bound to the excess generalization error, we will proceed to bound these three error terms
respectively.

7.2 Upper Bound of Estimation Errors

In this subsection, we derive an upper bound of the estimation errors ε(fz) − εz(fz) +
εz(fH)− ε(fH).

We first rewrite it by inserting ε(fc) and εz(fc):

ε(fz)− εz(fz) + εz(fH)− ε(fH) = ε(fz)− ε(fc)− (εz(fz)− εz(fc)) (42)

+εz(fH)− εz(fc)− (ε(fH)− ε(fc)). (43)

In other words, to bound ε(fz)− εz(fz) + (εz(fH)− ε(fH)), we should bound the R.H.S. of
(42) and the R.H.S. of (43) respectively.

The following devotes to an upper bound of R.H.S. of (42).

7.2.1 Upper bound of ε(fz)− ε(fc)− (εz(fz)− εz(fc))

The expression (42)

ε(fz)− ε(fc)− (εz(fz)− εz(fc)) ≤ sup
f∈H
{ε(f)− ε(fc)− (εz(f)− εz(fc))}

can be estimated by the theory of uniform convergence. Since our domain X = Rd is
unbounded, deriving covering number estimates for our hypothesis space H is difficult.

Let

B :=
∑
i∈T +

P+pi√
(2π)d|Σi|

+
∑
j∈T −

P−pj√
(2π)d|Σj |

. (44)

Recall the Tsybakov-type noise condition we stated in Assumption 1. The following Lemma
presents an upper bound of the second moment and thereby the variance of φ(yf(x)) −
φ(yfc(x)) for any function f : X → [−1, 1] under the noise condition (5).
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Lemma 10. Let 0 ≤ q ≤ ∞. Also let φ(t) = max{0, 1 − t} to be the Hinge loss function.
Consider the constant B given by (44). If noise condition (5) holds for some noise exponent
q and constant c0 > 0, then for every function f : X → [−1, 1], there holds

E
[
{φ(yf(x))− φ(yfc(x))}2

]
≤ 8 (c0)

1
q+1 (B(ε(f)− ε(fc)))

q
q+1 . (45)

The proof of Lemma 10 is given in Appendix A.2.
For ε > 0, denote by N (ε,K) = N (ε,K, ‖·‖∞) the ε-covering number of a set of functions

K with respect to ‖ · ‖∞ := supz |f(z)|. More specifically, N (ε,K) is the minimal N ∈ N
such that there exists functions {f1, . . . , fN} ∈ K satisfying

min
1≤i≤N

‖f − fi‖∞ ≤ ε, ∀f ∈ K. (46)

Observe that the Hinge loss function φ(t) = max{0, 1− t} is Lipschitz continuous on R
with Lipschitz constant M = 1 because

|φ(t1)− φ(t2)| ≤ |t1 − t2| ∀t1, t2 ∈ R. (47)

Next, we construct a function set G induced by functions in H. The following Lemma
tells us that the covering number of G, denoted by N (ε,G), is no greater than N (ε,H).
After that, we will proceed to estimate N (ε,H) which will help us derive an upper bound
of ε(fz)− ε(fc)− (εz(fz)− εz(fc)).

Lemma 11. For φ(t) = max{0, 1− t}, define the set of functions on Z = X × Y given by

G := {φ(yf(x))− φ(yfc(x)) : f ∈ H}, (48)

where H is the hypothesis space defined at (4). For ε > 0, there holds

N (ε,G) ≤ N (ε,H). (49)

Proof For any f1, f2 ∈ H and (x, y) ∈ Z, it follows from (47)∣∣{φ(yf1(x))− φ(yfc(x))
}
−
{
φ(yf2(x))− φ(yfc(x))

}∣∣ = |φ(yf1(x))− φ(yf2(x))|
≤ |yf1(x)− yf2(x)|
≤ ‖f1 − f2‖∞,

which implies N (ε,G) ≤ N (ε,H).

For ` ∈ N, let c∗ = [−CK , CK ]2
`

with CK to be a positive constant given in Definition
4. The following Proposition devotes to an upper bound of the covering number of our
hypothesis space H. Its proof is relatively long and is given in Appendix C.

Proposition 12 (Covering number of the hypothesis space H). Let H be defined by

Definition 4 with C0
K ≥

√
d√
σ̃
, C1

K ≥
µ∗√
σ̃

, and R2 ≥
√
d(b + 1)C0

K + C1
K . For 0 < ε ≤ 1, 0 <

λ ≤ 1, b ≥ 1,m, ` ∈ N, there holds

logN (ε,H) ≤ C ′m2` log

(
bCK
λε

)
+ 4`(2`) log(CK) + C ′′m2`(2`), (50)

where C ′, C ′′ are positive constants independent of m, `, b, λ, CK or ε.
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As a simple corollary combining Proposition 12 and Lemma 11, for every 0 < ε ≤ 1,
there holds

logN (ε,G) ≤ C ′m2` log

(
bCK
λε

)
+ 4`(2`) log(CK) + C ′′m2`(2`),

where C ′, C ′′ are positive constants independent of `,m, b, λ, CK or ε. We will next apply
this covering number estimate to derive a high probability upper bound of the estimation
error term ε(fz) − ε(fc) − (εz(fz) − εz(fc)), which is the R.H.S. of (42). The proof of the
following Lemma (Lemma 13) is given in Appendix A.3.

Lemma 13. Let q ≥ 0,m, ` ∈ N, 0 < λ ≤ 1. Suppose noise condition (5) holds for some
noise exponent q and constant c0 > 0. For any 0 < δ < 1, n ≥ 3, with probability 1 − δ/2,
there holds

ε(fz)− ε(fc)− (εz(fz)− εz(fc))

≤ Cq,B

(
m2`2` + `(2`) log(CK) + log

(
2

δ

)
+m2` log

(
bCK
λ

)) q+1
q+2
(

log n

n

) q+1
q+2

+
ε(fz)− ε(fc)

2
,

where Cq,B is a constant depending on q, c0, B only.

7.2.2 Upper bound of εz(fH)− εz(fc)− (ε(fH)− ε(fc))

Now we move on to estimate εz(fH)− εz(fc)− (ε(fH)− ε(fc)), which is the R.H.S. of (43).

Define a random variable ξ(z) := ξ(x, y) = φ(yfH(x))− φ(yfc(x)). We have

εz(fH)− εz(fc)− (ε(fH)− ε(fc))

=
1

n

n∑
i=1

{
φ(yifH(xi))− φ(yifc(xi))

}
−
∫
Z
φ(yfH(x))− φ(yfc(x))dρ

=
1

n

n∑
i=1

ξ(zi)− E[ξ(z)]

is a function of a single random variable ξ and thus can be estimated by Bernstein’s in-
equality (see, e.g., (Györfi et al., 2002, Lemma A.2)). To apply Bernstein’s inequality, we
need first to establish an upper bound of the variance of ξ, denoted by σ2 = Var[ξ]. To
achieve so, we apply Lemma 10 to fH. With a bound of σ2 in hand, we can obtain a high
probability upper bound of εz(fH)− εz(fc)− (ε(fH)− ε(fc)).

Lemma 14. Let 0 ≤ q ≤ ∞. Suppose noise condition (5) holds for some q and constant
c0 > 0. For any 0 < δ < 1, with probability 1− δ/2, there holds

εz(fH)− εz(fc)− (ε(fH)− ε(fc)) ≤
4

n
log

(
2

δ

)
+ 2(c0)

1
q+1B

q
q+1 (ε(fH)− ε(fc))

q
q+1 . (51)

The proof of the above Lemma is given in Appendix A.4.
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7.3 Upper Bound of the Approximation Error

Note that σλ(D̃) ∈ H where D̃ (defined in (38)) is the approximation of the function D in
Theorem 1. Recall that we use fH denote any functions in H. In this subsection, we derive
a tight upper bound for the approximation error ε(fH)− ε(fc) by taking fH = σλ(D̃).

Recall σ∗, the largest eigenvalue of all the covariance matrices Σj for j = 1, . . . ,K. Also
recall µ∗ defined earlier in (7) as µ∗ = max1≤i≤K ‖µi‖.

Lemma 15. Let b ≥ max{2µ∗, 1}, 0 < λ ≤ 1. Let τ > 0 such that ‖D̃ −D‖L∞[−b,b]d ≤ τ .
Assume noise condition (5) holds for some noise exponent q and constant c0 > 0. There
holds

∣∣∣ε(σλ (D̃))− ε(fc)∣∣∣ ≤ 2

(
K∑
i=1

pi√
Σi

(4σ∗)
d
2

)
exp

(
− b2

16σ∗

)
+ 2c0 (τ q + (τ + λ)q) . (52)

Proof We know that

|ε(fH)− ε(fc)| =
∫
X

∫
Y
|yfH(x)− yfc(x)| dρ(y|x)dρX

=

∫
X
|fH(x)− fc(x)| |fρ(x)|dρX ≤

∫
X
|fH(x)− fc(x)| dρX .

Since ρX has density function D+(x) +D−(x), we know

|ε(fH)− ε(fc)| ≤
∫
X
|fH(x)− fc(x)| (D+(x) +D−(x))dx. (53)

To further bound the R.H.S. of (53), we consider the cases ‖x‖ ≥ b and ‖x‖ < b separately,
with b ≥ max{2µ∗, 1}. For the case ‖x‖ ≥ b, we have ‖x−µj‖ ≥ ‖x‖−‖µj‖ ≥ ‖x‖−µ∗ ≥ b/2.
Hence, we have

(x− µj)TΣ−1
j (x− µj) ≥

‖x− µj‖2

σ∗
≥ b2

4σ∗
.

Observe that |fH(x)| ≤ 1 and |fc(x)| ≤ 1. Making use of the decay of Gaussian density
function N , we get∫

{x∈X :‖x‖≥b}
|fH(x)− fc(x)| (D+(x) +D−(x))dx

≤ 2

∫
{x∈X :‖x‖≥b}

(
D+(x) +D−(x)

)
dx

≤ 2

∫
{x∈X :‖x‖≥b}

(
K∑
i=1

pi√
(2π)d|Σi|

exp

(
−‖x− µi‖

2

2σ∗

))
dx.

But

exp

(
−‖x− µi‖

2

2σ∗

)
≤ exp

(
−‖x− µi‖

2

4σ∗

)
exp

(
− b2

16σ∗

)
.
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We use
∫
{x∈X :‖x‖≥b} e

− ‖x−µj‖2
4σ∗ dx <

√
(2π)d

(
2
√
σ∗
)d

and obtain

∫
{x∈X :‖x‖≥b}

|fH(x)− fc(x)| (D+(x) +D−(x))dx

≤ 2 exp

(
− b2

16σ∗

) K∑
i=1

pi√
|Σi|

∫
{x∈X :‖x‖≥b}

1√
(2π)d

exp

(
−‖x− µi‖

2

4σ∗

)
dx

≤ 2 exp

(
− b2

16σ∗

) K∑
i=1

pi√
|Σi|

(4σ∗)d/2.

Take fH = σλ

(
D̃
)
∈ H. For ‖x‖ < b, we consider the cases |D(x)| ≤ τ and |D(x)| > τ

separately for some τ > 0 satisfying ‖D̃ − D‖L∞[−b,b]d ≤ τ . For the case ‖x‖ < b and
|D(x)| ≤ τ , it follows from the noise condition (5) that∫

{x∈X :‖x‖<b, |D(x)|≤τ}
|fH(x)− fc(x)| dρX ≤ 2

∫
{x∈X :‖x‖<b, |D(x)|≤τ}

dρX

= 2 · P({x ∈ X : ‖x‖ < b, |D(x)| ≤ τ})
≤ 2 · P({x ∈ X : |D(x)| ≤ τ})
≤ 2c0τ

q.

For ‖x‖ < b and |D(x)| > τ , since ‖D̃−D‖L∞[−b,b]d ≤ τ , we have sgn(D̃) = sgn(D) = fc.

If σλ(D̃(x)) = {1,−1}, then σλ

(
D̃(x)

)
is exactly equal to fc(x) which implies |σλ

(
D̃(x)

)
−

fc(x)| = 0. Thus, we have∫
{x∈X :‖x‖<b, |D(x)|>τ}

∣∣∣σλ (D̃) (x)− fc(x)
∣∣∣ dρX

=

∫
{x∈X :‖x‖<b, |D(x)|>τ,|σλ(D̃(x))|<1}

∣∣∣σλ (D̃) (x)− fc(x)
∣∣∣ dρX

≤ 2 · P(x ∈ X : ‖x‖ < b, |D(x)| > τ, |σλ
(
D̃
)

(x)| < 1)

≤ 2 · P(x ∈ X : ‖x‖ < b, |σλ
(
D̃
)

(x)| < 1)

= 2 · P(x ∈ X : ‖x‖ < b, |D̃(x)| < λ)

≤ 2 · P(x ∈ X : |D(x)| < τ + λ)

≤ 2c0(τ + λ)q.

Here, we have used the equivalence between |σλ
(
D̃
)

(x)| < 1 and |D̃(x)| < λ and the

condition ‖D̃ −D‖L∞[−b,b]d ≤ τ for getting |D(x)| < τ + λ when ‖x‖ < b and |D̃(x)| < λ.
Combining the above estimates, we get the desired bound and prove the lemma.
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7.4 Combining error bounds together

Now that we derived the upper bounds of the estimation errors and the approximation
error, we can combine them together to prove Theorem 6.

Proof of Theorem 6. With probability at least 1− δ, we have

ε(fz)− ε(fc)
≤ {ε(fz)− εz(fz)}+ {εz(fH)− ε(fH)}+ {ε(fH)− ε(fc)}

≤ Cq,B
(
m2`2` + `(2`) log(CK) + log

(
2

δ

)
+m2` log

(
bCK
λ

)) q+1
q+2
(

log n

n

) q+1
q+2

+
ε(fz)− ε(fc)

2
+

4

n
log

(
2

δ

)
+ 2(c0)

1
q+1B

q
q+1 (ε(fH)− ε(fc))

q
q+1 + ε(fH)− ε(fc).

Take τ as in Lemma 15. This implies, with probability at least 1− δ,

ε(fz)− ε(fc)

≤ 2Cq,B

(
m2`2` + `(2`) log(CK) + log

(
2

δ

)
+m2` log

(
bCK
λ

)) q+1
q+2
(

log n

n

) q+1
q+2

+
8

3n
log

(
2

δ

)
+

8

n
log

(
2

δ

)
+ 4(c0)

1
q+1B

q
q+1 (ε(fH)− ε(fc))

q
q+1 + 2(ε(fH)− ε(fc))

≤ 2Cq,B

(
m2`2` + `(2`) log(CK) + log

(
2

δ

)
+m2` log

(
bCK
λ

)) q+1
q+2
(

log n

n

) q+1
q+2

+
11

n
log

(
2

δ

)
+
(

2 + 4(c0)
1
q+1B

q
q+1

)
(ε(fH)− ε(fc))

= 2Cq,B

(
m2`2` + `(2`) log(CK) + log

(
2

δ

)
+m2` log

(
bCK
λ

)) q+1
q+2
(

log n

n

) q+1
q+2

+
11

n
log

(
2

δ

)
+
(

4 + 8(c0)
1
q+1B

q
q+1

){( K∑
i=1

pi√
Σi

(4σ∗)
d
2

)
exp

(
− b2

16σ∗

)
+ c0 (τ q + (τ + λ)q)

}
.

Now take c′q,B = 4 + 8(c0)
1
q+1B

q
q+1 , c1 =

∑K
i=1

pi√
Σi

(4σ∗)
d
2 . We have, with probability at

least 1− δ,

ε(fz)− ε(fc) ≤ 2Cq,B

(
m2`2` + `(2`) log(CK) + log

(
2

δ

)
+m2` log

(
bCK
λ

)) q+1
q+2
(

log n

n

) q+1
q+2

+
11

n
log

(
2

δ

)
+ c′q,B

(
c1 exp

(
− b2

16σ∗

)
+ 2c0(τ + λ)q

)
.

Recall R2 ≥
√
d(b+1)C0

K +C1
K and CK ≥

∑K
j=1 |βj |e(R2)2d are positive tunable parameters.

From (8) of Theorem 1, we know that

‖D̃ −D‖L∞[−b,b]d ≤ CK
(

2`+1

4m+1
+ 2−

`(2`)
2

)
= CK

(
2`

2(4m)
+ 2−

`(2`)
2

)
.
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We takeR2 = 2
√
d(C0

K+C1
K)b, CK = c2 exp(c3b

2) and τ = c2 exp(c3b
2)

(
2`

2(4m) + 2−
`(2`)

2

)
,

where c2 ≥
∑K

j=1 |βj |, c3 ≥ (2
√
d(C0

K + C1
K))2d = 4d2(C0

K + C1
K))2 ≥ 4d2 (

√
d+µ∗)2

σ̃ . Then

log(CK) = log(c2) + c3b
2. It follows that with probability at least 1− δ,

ε(fz)− ε(fc)

≤ 2Cq,B

(
m2`2` + `(2`)(log(c2) + c3)b2 + log

(
2

δ

)
+m2`

(
log

(
b

λ

)
+ (log(c2) + c3)b2

)) q+1
q+2

(
log n

n

) q+1
q+2

+
11

n
log

(
2

δ

)
+c′q,B

(
c1 exp

(
− b2

16σ∗

)
+ 2c0

(
c2 exp(c3b

2)

(
2`

2(4m)
+ 2−

`(2`)
2

)
+ λ

)q)
.

We take m = `(2`−1). We can easily verify that

(
2`

2(4m) + 2−
`(2`)

2

)
≤ 2 · 2−

`(2`)
2 =

21−`(2`−1). We then choose b such that exp
(
− b2

16σ∗

)
=
(

exp(c3b
2)2−`(2

`−1)
)q

, that is

− b2

16σ∗
= c3qb

2 − `q(2`−1)(log 2) ⇐⇒ b2 =
q(log 2)`(2`−1)

1
16σ∗ + c3q

.

We thus take b =
√
c′q`(2

`−1) with c′q = q(log 2)
1

16σ∗+c3q
. Next, we take λ = n

− 1
q . By our choices

of b,m, λ and by applying (a+ b)q ≤ 2q max{aq, bq}, we can see that

c′q,B

(
c1 exp

(
− b2

16σ∗

)
+ 2c0

(
c2 exp(c3b

2)

(
2`

2(4m)
+ 2−

`(2`)
2

)
+ λ

)q)
≤ c′q,B

(
c1 exp

(
− b2

16σ∗

)
+ 2q+1c0 max

{
cq2 exp(c3qb

2)

(
2`

2(4m)
+ 2−

`(2`)
2

)q
, λq
})

≤ c′q,B

(
c1 exp

(
− b2

16σ∗

)
+ 2q+1c0c

q
2 exp(c3qb

2)
(

21−`(2`−1)
)q

+ 2q+1c0λ
q

)
≤ c′q,B

(
(c1 + 2q+1c0c

q
22q) exp

(
− b2

16σ∗

)
+

2q+1c0

n

)
.

Finally, we take ` to be the smallest positive integer such that

exp

(
− b2

16σ∗

)
= exp

(
−
c′q`(2

`−1)

16σ∗

)
≤ 1

n

which means `2`−1 ≥ 16σ∗

c′q
log n. With this choice, the above quantity is bounded by

c′′q,B
n ,

where c′′q,B = c′q,B((c1 + 2q+1c0c
q
22q) + 2q+1c0).

Observe from σ∗ ≥ σ̃ that

16σ∗

c′q
=

16σ∗

q(log 2)
(

1

16σ∗
+ c3q) ≥

16σ∗4d2(
√
d+ µ∗)2q

q(log 2)σ̃
≥ 16σ∗4d3

(log 2)σ̃
≥ 16(4d3) ≥ 64.
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Thus, the restriction on ` implies ` ≥ 4. But ` is the smallest integer satisfying (`−1)2`−2 <
16σ∗

c′q
log n and thereby `2` < 16(`−1)2`−1 < 162σ∗

c′q
log n. Thus, with our choices of `, b,m, λ,

we see that m2`2` = `323`−2 ≤
(

162σ∗ logn
c′q

)3
and

`(2`)(log(c2) + c3)b2 ≤ (log(c2) + c3)
(log 2)q
1

16σ∗ + c3q
(`(2`))2 ≤ (log(c2) + c3)

(
162σ∗ log n

)2
c′q

and

m2`
(

log

(
b

λ

)
+ (log(c2) + c3)b2

)
≤ m2`((log(c2) + c3 + 1)b2 − log λ)

≤ `22`−1

(
(log(c2) + c3 + 1)c′q`(2

`−1) +
log n

q

)
≤ (log(c2) + c3 + 1)

(162σ∗ log n)3

(c′q)
2

+
1

q

(
162σ∗

c′q

)2

(log n)3.

The proof is complete.

8. Conclusions

In this paper, we establish universal approximation theorems for GMM discriminant func-
tions and general analytic functions using ReLU neural networks. Moreover, with Hinge loss
and a Tsybakov-type noise condition, we obtain a fast convergence rate of the excess risk

of order O
(
n
− q+1
q+2 (log n)4

)
for binary classification of GMM data by deep ReLU networks.

Our convergence rate is better than the existing ones in the literature by leveraging the
analyticity of the Gaussian function. Also, our convergence rate does not depend on the
dimension d, demonstrating that neural networks can overcome the curse of dimensionality
in classification.

To our best knowledge, our work is the first to study the generalization of classification
with a GMM without restrictions on model parameters or the number of Gaussian com-
ponents. This is also the first paper studying the statistical guarantees of neural network
classifiers on an unbounded domain. Our findings shed light on the practical effectiveness of
deep neural networks in classification problems, considering the universality of the Gaussian
distribution across various data feature spaces such as speeches, images, and texts.

There has been an active line of research studying the theoretical aspects of multi-
class classifications, see e.g., (Lei et al., 2015; Bos and Schmidt-Hieber, 2022). A future
direction will be to extend our work to a multi-class classification problem. It would also
be interesting to study the classification of GMM data with respect to a more general class
of convex surrogate losses, e.g., the cross-entropy loss and logistic loss. These problems
deserve further study in the future.
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Appendices

Appendix A. Proof of Supporting Lemmas

A.1 Proof of Lemma 3

Proof The proof is straightforward. Since 0 ≤ Tb(ui) ≤ 1, we have
∑d

i=1 Tb(ui)−(d−1) ≤ 1

then 0 ≤ Ψb(u) ≤ 1 for u ∈ Rd. If uj ∈ [−b, b] for all j ∈ {1, . . . , d}, then
∑d

i=1 Tb(ui) = d
which gives Ψb(u) = 1. If uj /∈ [−b− 1, b + 1] for at least one j ∈ {1, . . . , d}, then we have∑d

i=1 Tb(ui) ≤ d− 1 and thus Ψb(u) = 0.

A.2 Proof of Lemma 10

Proof Since f(x) ∈ [−1, 1], φ(yf(x))−φ(yfc(x)) = 1−yf(x)−(1−yfc(x)) = y(fc(x)−f(x)).
It follows that

E
[
{φ(yf(x))− φ(yfc(x))}2

]
= E[y2(fc(x)− f(x))2] =

∫
X

(fc(x)− f(x))2dρX (54)

and

ε(f)− ε(fc) =

∫
X

∫
Y
y(fc(x)− f(x))dρ(y|x)dρX =

∫
X

(fc(x)− f(x))fρ(x)dρX

=

∫
X
|fc(x)− f(x)||fρ(x)|dρX

because, once again, fc = sgn(fρ) ∈ {−1, 1}.
Let t > 0. Consider these two subsets of domain X : X+

t = {x ∈ X : |D(x)| > t} and
X−t = {x ∈ X : |D(x)| ≤ t}. On the set X+

t , we apply |fc(x)− f(x)| ≤ 2 and get

|fc(x)− f(x)|2 ≤ 2|fc(x)− f(x)| |D(x)|
t

.

On the set X−t , we have |fc(x)−f(x)|2 ≤ 4. RecallB =
∑

i∈T +
P+pi√

(2π)d|Σi|
+
∑

j∈T −
P−pj√

(2π)d|Σj |
.

From (2) and (3), we have |D(x)| = |D+(x)−D−(x)| = |(D+(x)+D−(x))fρ(x)| ≤ B|fρ(x)|.
It follows from the noise condition (5) that

E
[
{φ(yf(x))− φ(yfc(x))}2

]
=

∫
X−t

(fc(x)− f(x))2dρX +

∫
X+
t

(fc(x)− f(x))2dρX

≤ 4P({x ∈ X : |D(x)| ≤ t}) +
2

t

∫
X+
t

|fc(x)− f(x)||D(x)|dρX

≤ 4P({x ∈ X : |D(x)| ≤ t}) +
2B

t

∫
X
|fc(x)− f(x)||fρ(x)|dρX
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≤ 4c0t
q +

2B

t
(ε(f)− ε(fc)).

Now set t =
(
B(ε(f)−ε(fc))

2c0

)1/(q+1)
, we obtain our desired upper bound.

A.3 Proof of Lemma 13

Lemma 13 present a high probability upper bound of the estimation error term ε(fz) −
ε(fc)− (εz(fz)− εz(fc)). To prove Lemma 13, we make use of the following concentration
inequality found in (Cucker and Zhou, 2007, Lemma 10.20):

Lemma 16. Let 0 ≤ γ ≤ 1, C1, C2 ≥ 0 and K be a set of functions on Z such that for
every f ∈ K, E[f ] ≥ 0, ‖f −E[f ]‖∞ ≤ C2 and E[f2] ≤ C1(E[f ])γ . Then for all ε > 0, with
probability at least

1−N (ε,K) exp

(
− nε2−γ

2
(
C1 + C2

3 ε
1−γ
)) ,

there holds

sup
f∈F

{
E[f ]− 1

n

∑n
i=1 f(zi)

((E[f ])γ + εγ)1/2

}
≤ 4ε1−

γ
2 . (55)

Recall the function set G = {φ(yf(x))−φ(yfc(x)) : f ∈ H} defined earlier in Lemma 11.
To achieve the upper bound given in Lemma 13, we will apply Lemma 16 on the function
set G.
Proof of Lemma 13. To apply Lemma 16 to the function set G = {φ(yf(x))−φ(yfc(x)) :
f ∈ H}, we need first to check that the three assumptions stated in Lemma 16 are satisfied.
That is, for every function g ∈ G, there holds

1. E[g] ≥ 0,

2. ‖f − E[g]‖∞ ≤ C2,

3. E[g2] ≤ C1(E[g])γ ,

for some constants C1, C2 ≥ 0, and 0 ≤ γ ≤ 1.
We have E[g] = ε(f) − ε(fc) ≥ 0 because the Bayes classifier fc minimizes the gen-

eralization error ε(f) over all functions. Since f ∈ H is bounded in [−1, 1], |g(x)| =
|φ(yf(x)) − φ(yfc(x))| = |1 − yf(x) − (1 − yfc(x))| = |y(fc(x) − f(x))| ≤ 2. We know
|E[g]| ≤ 2. It follows that ‖g − E[g]‖∞ ≤ 4. So the second assumption is satisfied with

C2 = 4. Recall from Lemma 10 that E[g2] ≤ C1(E[g])γ with C1 = 8 (c0)
1
q+1 (B)

q
q+1 and

γ = q
q+1 with c0 > 0, q ≥ 0. So we proved that all three assumptions are satisfied for every

g ∈ G.
We can now apply Lemma 16 to G. Lemma 16 tells us that for every 0 < ε ≤ 1, with

probability at least

1−N (ε,G) exp

(
− nε2−γ

2
(
C1 + C2

3 ε
1−γ
))
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= 1−N (ε,G) exp

(
− nε2−γ

16 (c0)
1
q+1 B

q
q+1 + 4

3ε
1−γ

)

≥ 1− exp

(
C ′m2` log

(
bCK
λε

)
+ 4`(2`) log(CK) + C ′′m2`(2`)− nε2−γ

16 (c0)
1
q+1 B

q
q+1 + 4

3

)
,

there holds

sup
g∈G

{
E[g]− 1

n

∑n
i=1 g(zi)

((E[g])γ + εγ)1/2

}
≤ 4ε1−

γ
2 ,

which implies

E[g]− 1

n

n∑
i=1

g(zi) ≤ 4ε1−
γ
2 ((E[g])γ + εγ)1/2, ∀g ∈ G

and thereby

ε(f)− ε(fc)− (εz(f)− εz(fc)) ≤ 4ε1−
γ
2 ((ε(f)− ε(fc))γ + εγ)1/2, ∀f ∈ H.

For brevity, we choose not to plug in γ = q
q+1 ∈ [0, 1] for now.

Setting the above confidence bound to be 1− δ/2, then the solution ε satisfies

C ′m2` log

(
1

ε

)
− nε2−γ

16 (c0)
1
q+1 B

q
q+1 + 4

3

= log

(
δ

2

)
−C ′m2` log

(
bCK
λ

)
−4`(2`) log(CK)−C ′′m2`(2`).

Let ε̂ = ε2−γ and cq,B = 16 (c0)
1
q+1 B

q
q+1 + 4

3 > 0. We can see that cq,B is a constant
depending on q, c0, B only. We then have

C ′m2`

2− γ
log

(
1

ε̂

)
− nε̂

cq,B
= log

(
δ

2

)
− C ′m2` log

(
bCK
λ

)
− 4`(2`) log(CK)− C ′′m2`(2`).

We solve for ε̂ with the above equation. Note that the function T : (0, 1] → R defined by

T (u) = C′m2`

2−γ log
(

1
u

)
− nu

cq,B
is decreasing. Take

A =

(
C ′m2`

2− γ
+ log

(
2

δ

)
+ C ′m2` log

(
bCK
λ

)
+ 4`(2`) log(CK) + C ′′m2`(2`)

)
cq,B.

For n ≥ 3 (which implies log n > 1), there holds A(logn)
n ≥ 1

n . It follows that

T

(
A(log n)

n

)
≤ C ′m2`

2− γ
log n− (log n)

(
C ′m2`

2− γ
+ log

(
2

δ

)
+ C ′m2` log

(
bCK
λ

)
+ 4`(2`) log(CK) + C ′′m2`(2`)

)
≤ −(log n)

(
log

(
2

δ

)
+ C ′m2` log

(
bCK
λ

)
+ 4`(2`) log(CK) + C ′′m2`(2`)

)
≤ log

(
δ

2

)
− C ′m2` log

(
bCK
λ

)
− 4`(2`) log(CK)− C ′′m2`(2`).
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Since T is decreasing, we have ε̂ ≤ A(logn)
n , which implies ε ≤

(
A(logn)

n

)1/(2−γ)
.

Now, take f = fz and the above estimate of ε, we obtain

ε(fz)− ε(fc)− (εz(fz)− εz(fc)) ≤ 4

(
A(log n)

n
(ε(fz)− ε(fc))γ

)1/2

+ 4

(
A(log n)

n

)1/(2−γ)

with probability at least 1− δ/2. Plug in γ = q
q+1 , we get with probability at least 1− δ/2,

ε(fz)− ε(fc)− (εz(fz)− εz(fc)) ≤ 4

(
A(log n)

n

)1/2

(ε(fz)− ε(fc))
q

2(q+1) + 4

(
A(log n)

n

) q+1
q+2

.

We then apply Young’s Inequality for products (Young, 1912):

a · b ≤ ap

p
+
bp
∗

p∗
with a ≥ 0, b ≥ 0, p > 1, p∗ > 1 and

1

p
+

1

p∗
= 1

to further upper bound 4
(
A(logn)

n

)1/2
(ε(fz)− ε(fc))

q
2(q+1) . We get

4

(
A(log n)

n

)1/2

(ε(fz)− ε(fc))
q

2(q+1) ≤

(
4
(
A(logn)

n

)1/2
) 2(q+1)

q+2

2(q+1)
q+2

+
ε(fz)− ε(fc)

2(q+1)
q

≤ 2
3q+2
q+2

q + 2

q + 1

(
A(log n)

n

) q+1
q+2

+
ε(fz)− ε(fc)

2
. (56)

Notice thatA ≤ cq,B
(

C′

2−(q/(q+1)) + C ′′
)(

m2`(2`) + log
(

2
δ

)
+ 4`(2`) log(CK) +m2` log

(
bCK
λ

))
.

Plug in this upper bound of A and (56), we finally get, with probability at least 1− δ/2,

ε(fz)− ε(fc)− (εz(fz)− εz(fc))

≤
(

2
3q+2
q+2

q + 2

q + 1
+ 4

)(
A(log n)

n

) q+1
q+2

+
ε(fz)− ε(fc)

2

≤ Cq,B
(
m2`2` + log

(
2

δ

)
+ `(2`) log(CK) +m2` log

(
bCK
λ

)) q+1
q+2
(

log n

n

) q+1
q+2

+
ε(fz)− ε(fc)

2
,

where Cq,B is a positive constant depending only on q, c0, B. The proof is complete.

A.4 Proof of Lemma 14

Proof Notice that |ξ(z)| = |φ(yfH(x))− φ(yfc(x))| ≤ 2. It follows from Lemma 10 that

σ2 = Var[ξ(z)] ≤ E[ξ(z)2] ≤ 8(c0)
1
q+1 (B(ε(fH)− ε(fc)))

q
q+1 .

By the one-sided Bernstein’s inequality, for any η > 0, there holds, with probability at

least 1− exp
(
− nη2

2(σ2+2η/3)

)
,

εz(fH)− εz(fc)− (ε(fH)− ε(fc)) ≤ η. (57)
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Setting this confidence bound to be 1 − δ/2, we get a quadratic equation nη2

2(σ2+2η/3)
=

log(2/δ) for η. We solve this equation and get a positive solution η∗ given by

η∗ =

4
3 log(2

δ ) +

√
16
9

(
log(2

δ )
)2

+ 8nσ2 log(2
δ )

2n

≤ 2

3n
log

(
2

δ

)
+

2

3n
log

(
2

δ

)
+

√
2σ2 log(2

δ )
√
n

≤ 4

3n
log

(
2

δ

)
+ 4

√
log(2

δ )

n
(c0)

1
2(q+1) (B(ε(fH)− ε(fc)))

q
2(q+1)

≤ 4

3n
log

(
2

δ

)
+ 2

(
log(2

δ )

n
+ (c0)

1
q+1 (B(ε(fH)− ε(fc)))

q
q+1

)

≤ 4

n
log

(
2

δ

)
+ 2(c0)

1
q+1B

q
q+1 (ε(fH)− ε(fc))

q
q+1 .

Here, we have used 2
√
ab ≤ a+ b in the third inequality.

Appendix B. Proof of Theorem 2: Approximation of Analytic Functions

In this part, we present the proof of Theorem 2. We apply our monomial gate to approximate
univariate analytic functions.
Proof of Theorem 2. The convergence of the Taylor series of t at R1 implies

M̃ := sup
i∈Z+

∣∣∣∣∣ t(i)(0)

i!
(R1)i

∣∣∣∣∣ <∞.
It follows that, for ` ∈ N and u ∈ [−1, 1],∣∣∣∣∣∣t(u)− t(0)−

2`∑
i=1

t(i)(0)

i!
(R1)i

(
u

R1

)i∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

i=2`+1

t(i)(0)

i!
(R1)i

(
u

R1

)i∣∣∣∣∣∣ ≤ M̃
∞∑

i=2`+1

∣∣∣∣ uR1

∣∣∣∣i

≤ M̃

R1 − 1
R−2`

1 .

To further approximate t(u), consider the monomial gate defined in Section 2 with input
u ∈ [−1, 1]. We can construct a deep ReLU network of depth (m+ 1) · ` which outputs the
function

F (u) = t(0) +

2`∑
i=1

t(i)(0)

i!
(R1)i

hi(u)

(R1)i
,

where {hi}2
`

i=1 are outputs of the monomial gate defined in Proposition 8. Recall from

Proposition 8 that {hi(u)}2`i=1 approximate
{
ui
}2`

i=1
to an accuracy∣∣∣h2j+k(u)− u2j+k

∣∣∣ ≤ 2j+1 − 1

4m+1
, for u ∈ [−1, 1], j = 0, . . . , `− 1, k = 1, . . . , 2j .
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We have

|F (u)− t(u)| ≤

∣∣∣∣∣∣
2`∑
i=1

t(i)(0)

i!
(R1)i

hi(u)− ui

(R1)i

∣∣∣∣∣∣+

∣∣∣∣∣∣
∞∑

i=2`+1

t(i)(0)

i!
(R1)i

(
u

R1

)i∣∣∣∣∣∣
≤ M̃

2`∑
i=1

∣∣hi(u)− ui
∣∣

(R1)i
+

M̃

R1 − 1
R−2`

1

≤ M̃
`−1∑
j=0

2j∑
k=1

∣∣∣h2j+k(u)− u2j+k
∣∣∣

(R1)2j+k
+

M̃

R1 − 1
R−2`

1

≤ M̃

`−1∑
j=0

2j∑
k=1

2j+1−1
4m+1

(R1)2j+k
+

1

R2`
1 (R1 − 1)


≤ M̃

 1

4m+1

`−1∑
j=0

2j+1

(R1)2j

2j∑
k=1

1

(R1)k
+

1

R2`
1 (R1 − 1)


≤ M̃

(R1 − 1)

 1

4m+1

`−1∑
j=0

2j+1

(R1)2j
+

1

R2`
1

 .

Observe that if j ≥ 5, we have 2j ≥ j2 which implies (R1)2j ≥ (R1)j
2

. Hence, for

j ≥ max{5, log 4
logR1

}, (R1)2j ≥
(
Rj1

)j
≥ 4j . Then,

|F (u)− t(u)|

≤ M̃

(R1 − 1)

 1

4m+1

max{4,blog 4/ logR1c}∑
j=0

2j+1 + 2
`−1∑

j=max{4,blog 4/ logR1c}+1

(
1

2

)j+
1

R2`
1


≤ M̃

(R1 − 1)

(
1

4m+1

(
24+blog 4/ logR1c+2 + 2

)
+

1

R2`
1

)

≤ M̃

(R1 − 1)

(
27+blog 4/ logR1c

4m+1
+

1

R2`
1

)
.

Take C = M̃(27+blog 4/ logR1c)
(R1−1) = 27+blog 4/ logR1c

(R1−1) supi∈Z+

∣∣∣ t(i)(0)
i! (R1)i

∣∣∣.
Appendix C. Proof of Proposition 12: Covering Number of the

Hypothesis Space H

In this part, we derive the upper bound of the covering number of the hypothesis space H
to prove Proposition 12.

We will first give uniform bounds of squaring gate (Subsection C.1), product gate (Sub-
section C.2), and monomial gate (Subsection C.3). Finally, we apply these uniform bounds
to prove Proposition 12 (Subsection C.4).

41



Zhou and Huo

We begin by giving some notations. For any vector ν ∈ Rn, define ‖ν‖∞ := max1≤i≤n |νi|
and ‖ν‖1 :=

∑n
i=1 |νi|. For any matrix A ∈ Rm×n, define ‖A‖∞ := max1≤i≤m

∑n
j=1 |Ai,j |,

which is the maximum absolute row sum of the matrix and equals the operator norm of
A : (Rn, ‖ · ‖∞) → (Rm, ‖ · ‖∞). For a function f : [−T, T ] → R, define ‖f‖L∞[−T,T ] :=
supx∈[−T,T ] |f(x)|. Denote further

|f |Lip1 := sup
x,y∈[−T,T ],x 6=y

|f(x)− f(y)|
|x− y|

as the Lipschitz-1 seminorm of a function on [−T, T ].

C.1 Uniform Bound of Squaring Gate f̂m

For T > 0 and x ∈ [−T, T ], let H(0) = x and define iteratively for j = 1, . . . ,m,

H(j)(x) := H
(j)
W ,b(x) = σ(W (j)H(j−1)(x) + b(j)) (58)

with W (1) ∈ [−4, 4]5×1, W (j) ∈ [−4, 4]5×5 for j ≥ 2 and b(j) ∈ [−4, 4]5. For each H(j) =
{(H(j))1, . . . , (H

(j))5}, define

‖H(j)‖L∞[−T,T ] := max
1≤i≤5

‖(H(j))i‖L∞[−T,T ]

and

|H(j)|Lip1 := max
1≤i≤5

∣∣∣(H(j))i

∣∣∣
Lip1

.

Lemma 17. For each j = 1, . . . ,m and H(j) defined by (58) with T > 0, there holds

‖H(j)‖L∞[−T,T ] ≤ 20jT + 4

(
20j − 1

20− 1

)
, (59)

and

|H(j)|Lip1 ≤ 20j . (60)

Proof From |σ(u)| ≤ |u|, we have, for i = 1, . . . , 5, j = 1, . . . ,m,∣∣∣(H(j)(x)
)
i

∣∣∣ =
∣∣∣σ(W (j)H(j−1)(x) + b(j))i

∣∣∣ ≤ ∣∣∣(W (j)H(j−1)(x))i + (b(j))i

∣∣∣
≤ ‖W (j)‖∞‖H(j−1)‖L∞[−T,T ] + ‖b(j)‖∞
≤ 20‖H(j−1)‖L∞[−T,T ] + 4.

This leads us to a recurrence relationship:

‖H(j)‖L∞[−T,T ] ≤ 20‖H(j−1)‖L∞[−T,T ] + 4 ≤ · · · ≤ 20j‖H(0)‖L∞[−T,T ] + 4

(
20j − 1

20− 1

)
= 20jT + 4

(
20j − 1

20− 1

)
, ∀j = 1, . . . ,m.
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This completes the proof of (59). Applying |σ(u)− σ(v)| ≤ |u− v|, we have for all u 6= v ∈
[−1, 1],

‖H(j)(u)−H(j)(v)‖∞ ≤ ‖W (j)H(j−1)(u) + b(j) −W (j)H(j−1)(v)− b(j)‖∞
≤ ‖W (j)‖∞‖H(j−1)(u)−H(j−1)(v)‖∞
≤ 20‖H(j−1)(u)−H(j−1)(v)‖∞
≤ · · · ≤ 20j‖H(0)(u)−H(0)(v)‖∞ = 20j |u− v|.

Hence, we obtain

|H(j)|Lip1 = sup
u,v∈[−T,T ],u6=v

‖H(j)(u)−H(j)(v)‖∞
|u− v|

≤ 20j .

This completes the proof of (60).

Recall that the squaring gate f̂m =: f̂m,θ is a ReLU FNN ∈ F(m, (5, 5, . . . , 5)) defined in
Subsection 4.1. It has all the trainable parameters θ = {W , b, a} taking values on [−4, 4].
For T > 0, the next lemma devotes to a uniform bound of ‖f̂m,θ − f̂m,θ̃‖L∞[−T,T ] where

θ = {W , b, a} and θ̃ = {W̃ , b̃, ã} represent two different collections of network parameters.
Denote by

W ∗ :=
{
W = W (1) ∈ [−4, 4]5×1, (W (j))mj=2 ∈ R5×5 : |W (j)

i,k | ≤ 4
}

and

b∗ :=
{
b = (b(j))mj=1 ∈ R5 : |b(j)i | ≤ 4

}
and

a∗ :=
{
a ∈ R5 : |ai| ≤ 4

}
.

Definition 18 (η-net). For arbitrary η > 0, let W ∗
η , b

∗
η, a
∗
η be η-nets of W ∗, b∗, a∗, re-

spectively, meaning that, for each W ∈W ∗, b ∈ b∗ and a ∈ a∗, there exist W̃ ∈W ∗
η , b̃ ∈

b∗η, ã ∈ a∗η such that

‖W − W̃ ‖∞,∞ ≤ η, ‖b− b̃‖∞ ≤ η, ‖a− ã‖1 ≤ η. (61)

Here, ‖W ‖∞,∞ := max1≤j≤m ‖W (j)‖∞ and ‖b‖∞ := max1≤j≤m ‖b(j)‖∞.

Lemma 19. Let η > 0 , T > 0, and m ∈ N. Let W ∗
η , b

∗
η, a
∗
η be η-nets of W ∗, b∗, a∗ defined

above in Definition 18. With the network input x ∈ [−T, T ], there hold

|f̂m,θ|Lip1 ≤ 20m+1 (62)

and

‖f̂m,θ − f̂m,θ̃‖L∞[−T,T ] ≤ (T + 1)(m+ 1)20mη. (63)
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Proof From Inequality (60) in Lemma 17, we know

‖H(j)(u)−H(j)(v)‖∞ ≤ 20j |u− v|, ∀j = 1, . . . ,m.

It follows that

‖H(m)(u)−H(m)(v)‖∞ ≤ 20m|u− v|, ∀u, v ∈ [−T, T ].

Then, we obtain

|f̂m(u)− f̂m(v)| =

∣∣∣∣∣
5∑
i=1

ai

(
H(m)(u)

)
i
−

5∑
i=1

ai

(
H(m)(v)

)
i

∣∣∣∣∣
≤ 20

∥∥∥H(m)(u)−H(m)(v)
∥∥∥
∞

≤ 20(20m)|u− v| = 20m+1|u− v|, ∀u, v ∈ [−T, T ].

In other words, f̂m is Lipschitz continuous with Lipschitz constant 20m+1, thus (62) holds.
Now we move on to prove (63). From (59) in Lemma 17, we know

‖H(m)
W ,b‖L∞[−T,T ] ≤ 20mT + 4

(
20m − 1

20− 1

)
.

As a result, there holds

|f̂m,θ(x)− f̂
m,θ̃

(x)| =

∣∣∣∣∣
5∑
i=1

ai

(
H

(m)
W ,b(x)

)
i
−

5∑
i=1

ãi

(
H

(m)

W̃ ,b̃
(x)
)
i

∣∣∣∣∣
=

∣∣∣∣∣
5∑
i=1

(ai − ãi)
(
H

(m)
W ,b(x)

)
i
+

5∑
i=1

ãi

(
H

(m)
W ,b(x)−H(m)

W̃ ,b̃
(x)
)
i

∣∣∣∣∣
≤

5∑
i=1

|ai − ãi| max
1≤j≤5

∣∣∣∣(H(m)
W ,b(x)

)
j

∣∣∣∣+

5∑
i=1

|ãi| max
1≤j≤5

∣∣∣∣(H(m)
W ,b(x)−H(m)

W̃ ,b̃
(x)
)
j

∣∣∣∣
≤ η‖H(m)

W ,b‖L∞[−T,T ] + 20‖H(m)
W ,b −H

(m)

W̃ ,b̃
‖L∞[−T,T ]

≤ η
(

20mT + 4

(
20m − 1

20− 1

))
+ 20‖H(m)

W ,b −H
(m)

W̃ ,b̃
‖L∞[−1,1].

To proceed, we need to compute ‖H(m)
W ,b−H

(m)

W̃ ,b̃
‖L∞[−T,T ]. Applying |σ(u)−σ(v)| ≤ |u−v|,

for i = 1, . . . , 5, j = 1, . . . ,m, we have∣∣∣(H(j)
W ,b(x)−H(j)

W̃ ,b̃
(x)
)
i

∣∣∣
≤
∣∣∣((W (j) − W̃ (j))H

(j−1)
W ,b (x)

)
i
+
(
W̃ (j)(H

(j−1)
W ,b (x)−H(j−1)

W̃ ,b̃
(x))

)
i
+ (b(j) − b̃(j))i

∣∣∣
≤ η‖H(j−1)

W ,b ‖L∞[−T,T ] + 20‖H(j−1)
W ,b −H

(j−1)

W̃ ,b
‖L∞[−T,T ] + η

≤ η
(

20j−1T + 4

(
20j−1 − 1

20− 1

))
+ 20‖H(j−1)

W ,b −H
(j−1)

W̃ ,b
‖L∞[−T,T ] + η.
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This brings us to a recurrence relationship:∥∥∥H(j)
W ,b −H

(j)

W̃ ,b̃

∥∥∥
L∞[−T,T ]

≤ 20‖H(j−1)
W ,b −H

(j−1)

W̃ ,b
‖L∞[−T,T ] + η

(
20j−1T + 4

(
20j−1 − 1

20− 1

)
+ 1

)
≤ 20‖H(j−1)

W ,b −H
(j−1)

W̃ ,b
‖L∞[−T,T ] + (T + 1)20j−1η.

We thereby obtain∥∥∥H(m)
W ,b −H

(m)

W̃ ,b̃

∥∥∥
L∞[−T,T ]

≤ 20m−1‖H(1)
W ,b −H

(1)

W̃ ,b
‖L∞[−T,T ] + (T + 1)(m− 1)20m−1η

≤ (T + 1)(20m−1)η + (T + 1)(m− 1)20m−1η

= (T + 1)m20m−1η,

where we have used ‖H(1)
W ,b−H

(1)

W̃ ,b
‖L∞[−T,T ] ≤ ‖W (1)− W̃ (1)‖∞‖H(0)‖∞+‖b(1)− b̃(1)‖∞ ≤

(T + 1)η. Finally, we get

‖f̂m,θ − f̂m,θ̃‖L∞[−T,T ] ≤ η
(

20mT + 4

(
20m − 1

20− 1

))
+ 20(T + 1)m20m−1η

≤ (T + 1)(m+ 1)20mη.

The proof of (63) is complete.

C.2 Uniform Bound of Product Gate Φ̂

We proceed by looking at the product gate Φ̂(u, v) := Φ̂θ(u, v) = f̂m,θ
(∣∣u+v

2

∣∣)− f̂m,θ (∣∣u−v2

∣∣)
defined earlier in Subsection 4.1. Here, θ = {W , b, a} represents a set of trainable param-
eters taking values on [−4, 4]. Φ̂ is a ReLU FNN ∈ F(m + 1, (4, 10, 10, . . . , 10)) with all
parameter values in [−4, 4]. Using the results in Lemma 19, we are able to derive the
Lipschitz-1 seminorm of Φ̂ and the uniform bound ‖Φ̂θ − Φ̂

θ̃
‖∞. Denote

|Φ̂θ|Lip1 = sup
x,y∈[−T,T ]2,x 6=y

|Φ̂θ(x)− Φ̂θ(y)|
‖x− y‖1

.

Lemma 20. Let η > 0, T > 0, and m ∈ N. Let W ∗
η , b

∗
η, a
∗
η be η-nets of W ∗, b∗, a∗ defined

above in Definition 18. With the input (u, v) ∈ [−T, T ]2, there hold

‖Φ̂θ‖L∞[−T,T ]2 ≤ 20m+1T (64)

and

|Φ̂θ|Lip1 ≤ 20m+1 (65)

and

‖Φ̂θ − Φ̂
θ̃
‖L∞[−T,T ]2 ≤ 2(T + 1)(m+ 1)20mη. (66)
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Proof Let us first prove (64). Applying the Lipschitz-1 seminorm of f̂m from (62), we
have, for every u, v ∈ [−T, T ],

|Φ̂θ(u, v)| =
∣∣∣∣f̂m,θ (∣∣∣∣u+ v

2

∣∣∣∣)− f̂m,θ (∣∣∣∣u− v2

∣∣∣∣)∣∣∣∣ ≤ 20m+1

∣∣∣∣∣∣∣∣u+ v

2

∣∣∣∣− ∣∣∣∣u− v2

∣∣∣∣∣∣∣∣
≤ 20m+1|v|
≤ 20m+1T.

This proves (64). Next, for every u1, u2, v1, v2 ∈ [−T, T ], we have

|Φ̂(u1, v1)− Φ̂(u2, v2)|

≤
∣∣∣∣f̂m(∣∣∣∣u1 + v1

2

∣∣∣∣)− f̂m(∣∣∣∣u2 + v2

2

∣∣∣∣)∣∣∣∣+

∣∣∣∣f̂m(∣∣∣∣u1 − v1

2

∣∣∣∣)− f̂m(∣∣∣∣u2 − v2

2

∣∣∣∣)∣∣∣∣
≤ 20m+1

∣∣∣∣∣∣∣∣u1 + v1

2

∣∣∣∣− ∣∣∣∣u2 + v2

2

∣∣∣∣∣∣∣∣+ 20m+1

∣∣∣∣∣∣∣∣u1 − v1

2

∣∣∣∣− ∣∣∣∣u2 − v2

2

∣∣∣∣∣∣∣∣
≤ 20m+1 (|u1 − u2|+ |v1 − v2|) .

This proves (65).
According to (63) in Lemma 19, ‖f̂m,θ− f̂m,θ̃‖L∞[−T,T ] ≤ (T + 1)(m+ 1)20mη. Then for

(u, v) ∈ [−T, T ]2,

‖Φ̂θ(u, v)− Φ̂
θ̃
(u, v)‖∞

≤
∥∥∥∥f̂m,θ (∣∣∣∣u+ v

2

∣∣∣∣)− f̂m,θ̃ (∣∣∣∣u+ v

2

∣∣∣∣)∥∥∥∥
∞

+

∥∥∥∥f̂m,θ̃ (∣∣∣∣u− v2

∣∣∣∣)− f̂m,θ (∣∣∣∣u− v2

∣∣∣∣)∥∥∥∥
∞

≤ ‖f̂m,θ − f̂m,θ̃‖L∞[−T,T ] + ‖f̂m,θ − f̂m,θ̃‖L∞[−T,T ]

≤ 2(T + 1)(m+ 1)20mη.

This proves (66). The proof of Lemma 20 is complete.

C.3 Uniform Bound of Monomial Gate ĥk

We proceed by looking at the monomial gate
{
ĥk := ĥk,θ

}2`

k=1
for some ` ∈ N. Recall the

definitions we made at (14) and (15):{
ĥk(u)

}2

k=1
=
{
ĥ1(u) = u, ĥ2(u) = Φ̂(u, u) = f̂m(|u|)− f̂m(0)

}
,

and iteratively for j = 1, . . . , `− 1, and i = 1, . . . , 2j ,

ĥ2j+i(u) = Φ̂
(
ĥ2j (u), ĥi(u)

)
= f̂m

(∣∣∣∣∣ ĥ2j (u) + ĥi(u)

2

∣∣∣∣∣
)
− f̂m

(∣∣∣∣∣ ĥ2j (u)− ĥi(u)

2

∣∣∣∣∣
)
.

We define
Bj := B

j,θ,θ̃
= max

1≤k≤2j
‖ĥk,θ − ĥk,θ̃‖L∞[−T,T ], ∀j = 1, . . . , `, (67)
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where θ = {W , b, a} and θ̃ = {W̃ , b̃, ã} represent two different collections of network
parameters. The following Lemma presents the uniform bound of ‖ĥk,θ‖L∞[−T,T ] and Bj ,
respectively.

Lemma 21. Let T > 0,m, ` ∈ N. There holds, for j = 1, . . . , `,

max
1≤k≤2j

‖ĥk,θ‖L∞[−T,T ] ≤ 20j(m+1) (68)

and
max

1≤k≤2j
|ĥk,θ|Lip1 ≤ 2 · 20j(m+1). (69)

Let η > 0. Also let W ∗
η , b

∗
η, a
∗
η be η-nets of W ∗, b∗, a∗ defined above in Definition 18. There

holds, for j = 1, . . . , `,
Bj ≤ 2j(T + 1)(m+ 1)(20m+1)jη. (70)

Proof Let us first prove (68). Recall that from (62) Lemma 19, we derived |f̂m,θ|Lip1 ≤
20m+1 which implies

|f̂m(u)− f̂m(v)| ≤ 20m+1|u− v|, ∀u, v ∈ [−T, T ].

For j = 1, . . . , `− 1, i = 1, . . . , 2j ,

‖ĥ2j+i‖L∞[−T,T ] = sup
u∈[−T,T ]

∣∣∣∣∣f̂m
(∣∣∣∣∣ ĥ2j (u) + ĥi(u)

2

∣∣∣∣∣
)
− f̂m

(∣∣∣∣∣ ĥ2j (u)− ĥi(u)

2

∣∣∣∣∣
)∣∣∣∣∣

≤ sup
u∈[−T,T ]

20m+1|ĥi(u)| = 20m+1‖ĥi‖L∞[−T,T ].

We thereby obtain the relation

max
1≤k≤2j

‖ĥk‖L∞[−T,T ] ≤ 20m+1 max
1≤k≤2j−1

‖ĥk‖L∞[−T,T ], ∀j = 1, . . . , `.

By induction, we have max1≤k≤2j ‖ĥk‖L∞[−T,T ] ≤ 20(j−1)(m+1) max1≤k≤2 ‖ĥk‖L∞[−T,T ] ≤
20j(m+1). This proves (68). In the same way,

|ĥ2j+i(u)− ĥ2j+i(v)| =
∣∣∣Φ̂(ĥ2j (u), ĥi(u)

)
− Φ̂

(
ĥ2j (v), ĥi(v)

)∣∣∣
≤ |Φ̂|Lip1

(
|ĥ2j (u)− ĥ2j (v)|+ |ĥi(u)− ĥi(v)|

)
≤ 20m+1

(
|ĥ2j |Lip1 + |ĥi|Lip1

)
|u− v|,

which implies by induction

max
1≤k≤2j

|ĥk|Lip1 ≤ 20m+1 max
1≤k≤2j−1

2|ĥk|Lip1 ≤ 2 · 20j(m+1).

This proves (69).
Next, we move on to prove (70). From (66) of Lemma 20, we have

B1 = max
1≤k≤2

‖ĥk,θ − ĥk,θ̃‖L∞[−T,T ] ≤ ‖Φ̂θ − Φ̂
θ̃
‖L∞[−T,T ]2 ≤ 2(T + 1)(m+ 1)20mη.
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Then, by the definition of Bj in (67), for j = 1, . . . , `− 1,

Bj+1 = max
1≤k≤2j+1

‖ĥk,θ − ĥk,θ̃‖L∞[−T,T ] = max

{
Bj , max

1≤k≤2j
‖ĥ2j+k,θ − ĥ2j+k,θ̃

‖L∞[−T,T ]

}
.

For 1 ≤ k ≤ 2j ,

‖ĥ2j+k,θ − ĥ2j+k,θ̃
‖L∞[−T,T ]

≤ ‖Φ̂θ(ĥ2j ,θ, ĥk,θ)− Φ̂
θ̃
(ĥ2j ,θ, ĥk,θ)‖L∞[−T,T ] + ‖Φ̂

θ̃
(ĥ2j ,θ, ĥk,θ)− Φ̂

θ̃
(ĥ

2j ,θ̃
, ĥ

k,θ̃
)‖L∞[−T,T ]

≤ 2(T + 1)(m+ 1)20mη + ‖Φ̂
θ̃
(ĥ2j ,θ, ĥk,θ)− Φ̂

θ̃
(ĥ

2j ,θ̃
, ĥ

k,θ̃
)‖L∞[−T,T ]

≤ 2(T + 1)(m+ 1)20mη + 2
(
20m+1

)
Bj .

Now, plugging this into the above iteration relation, we get

Bj+1 ≤ 2(T + 1)(m+ 1)20mη + 2
(
20m+1

)
Bj , ∀j = 1, . . . , `− 1,

which is a recurrence relationship. We finally get

Bj ≤
(
2 · 20m+1

)j−1
B1 + (2(T + 1)(m+ 1)20mη)

(
1 + 2 · 20m+1 + · · ·+ (2 · 20m+1)j−2

)
≤ 2j+1(20m+1)j

2(20m+1)− 1
(T + 1)(m+ 1)20mη

≤ 2j(T + 1)(m+ 1)(20m+1)jη.

The proof is complete.

C.4 Proof of proposition 12

Recall c∗ = [−CK , CK ]2
`+1 with CK to be a positive constant given in Definition 4. For

η > 0, let c∗η be an η-net of c∗ such that for each c ∈ c∗, there exists c̃ ∈ c∗η such that

‖c− c̃‖1 =

2`∑
k=0

|ck − c̃k| ≤ η. (71)

Proof of Proposition 12. Applying (69) in Lemma 21 and the fact that ĥ1,θ(u) =

ĥ
1,θ̃

(u) = u ∈ [−T, T ], we obtain

2`∑
k=1

‖ĥk,θ − ĥk,θ̃‖L∞[−T,T ] =

2`∑
k=2

‖ĥk,θ − ĥk,θ̃‖L∞[−T,T ] ≤
∑̀
j=1

2j−1Bj

≤
∑̀
j=1

2j−12j(T + 1)(m+ 1)(20m+1)jη

=
(T + 1)(m+ 1)

2

∑̀
j=1

(4(20m+1))jη

≤ (T + 1)(m+ 1)(4(20m+1))`η.
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We then have

‖
2`∑
k=1

(ckĥk,θ + c0 − c̃kĥk,θ̃ − c̃0)‖L∞[−T,T ]

= ‖
2`∑
k=1

(ckĥk,θ − c̃kĥk,θ) +
2`∑
k=1

(c̃kĥk,θ − c̃kĥk,θ̃) + (c0 − c̃0)‖L∞[−T,T ]

≤ max
1≤k≤2`

‖ĥk,θ‖L∞[−T,T ]η + 2`CK(T + 1)(m+ 1)(4(20m+1))`η

≤ 20`(m+1)η + 2`CK(T + 1)(m+ 1)(4(20m+1))`η

≤ C(T + 1)(m+ 1)(8(20m+1))`η,

where C = 1 + CK is a constant greater than 1.
Next, recall the function σλ defined in Definition 4 for 0 < λ ≤ 1. We observe that

|σλ(u)− σλ(v)| ≤ 1

λ
|u− v|, ∀u, v ∈ R. (72)

Note that each fH ∈ H has the form σλ

(∑K
j=1

∑2`

k=1 ck,j,θh
∗
k,j,θ(x) + c0,θ

)
. Let fH,θ and

fH,θ̃ represents two functions in H with the set of parameters θ = {W̊ , b̊,W , b, a, c} ∈ Θ

and θ̃ = {˜̊W,
˜̊
b, W̃ , b̃, ã, , c̃} ∈ Θ̃ respectively. To estimate N (ε,H) for any 0 < ε ≤ 1, we

need to find a set of functions in H that forms an ε-net.
To obtain such a function set, we choose Θ̃ in such a way that for any θ ∈ Θ, there

exists θ̃ ∈ Θ̃ such that

‖W̊ − ˜̊W‖∞ ≤ η, ‖̊b− ˜̊b‖∞ ≤ η, ‖W − W̃ ‖∞,∞ ≤ η, (73)

‖b− b̃‖∞ ≤ η, ‖a− ã‖1 ≤ η, ‖c− c̃‖1 ≤ η.

Note that for x ∈ [−b− 1, b+ 1]d,

|r̂i,j,θ(x)− r̂
i,j,θ̃

(x)| = |W̊i,j,θ · x+ b̊i,j,θ − W̊i,j,θ̃
· x− b̊

i,j,θ̃
|

≤ |(W̊i,j,θ − W̊i,j,θ̃
) · x|+ |̊bi,j,θ − b̊i,j,θ̃| ≤ d(b+ 1)η + η,

which implies by (65) in Lemma 20 that∣∣∣Φ̂θ(Ψb(x), r̂i,j,θ(x))− Φ̂θ(Ψb(x), r̂
i,j,θ̃

(x))
∣∣∣ ≤ 20m+1(d(b+ 1) + 1)η.

Observe that |r̂i,j(x)| = |W̊i,j · x + b̊i,j | ≤ C0
K

√
d(b + 1) + C1

K for x ∈ [−b − 1, b + 1]d.
Then by (66) in Lemma 20 with T1 = max{C0

K

√
d(b+ 1) + C1

K , 1}, we have∣∣∣Φ̂θ(Ψb(x), r̂i,j,θ(x))− Φ̂
θ̃
(Ψb(x), r̂

i,j,θ̃
(x))

∣∣∣
≤ 20m+1(d(b+ 1) + 1)η + 2(T1 + 1)(m+ 1)20mη

≤ (20(d(b+ 1) + 1) + (2C0
K

√
d(b+ 1) + 2C1

K + 4)(m+ 1))20mη.
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Also, |Φ̂θ(Ψb(x), r̂i,j,θ(x))| ≤ T1 · 20m+1 by (64) of Lemma 20 which implies∣∣∣f̂m,θ (∣∣∣Φ̂θ(Ψb(x), r̂i,j,θ(x))
∣∣∣)∣∣∣ ≤ 20‖H(m)

θ ‖L∞[−T1·20m+1,T1·20m+1]

≤ 20

(
20m(T1 · 20m+1) + 4

(
20m − 1

20− 1

))
≤ (T1 + 1)202m+2 =: T2.

It follows from (72), (69), and (63) that for x ∈ [−b− 1, b+ 1]d,

|fH,θ(x)− fH,θ̃(x)|

=

∣∣∣∣∣∣σλ
 K∑
j=1

2`∑
k=1

ck,j,θh
∗
k,j,θ(x) + c0,θ

− σλ
 K∑
j=1

2`∑
k=1

ck,j,θ̃h
∗
k,j,θ̃

(x) + c
0,θ̃

∣∣∣∣∣∣
≤ 1

λ

∣∣∣∣∣∣
 K∑
j=1

2`∑
k=1

ck,j,θh
∗
k,j,θ(x) + c0,θ

−
 K∑
j=1

2`∑
k=1

ck,j,θ̃h
∗
k,j,θ̃

(x) + c
0,θ̃

∣∣∣∣∣∣
≤ 1

λ
KC(T2 + 1)(m+ 1)(8(20m+1))`η+

∣∣∣∣∣ 1λ
K∑
j=1

2`∑
k=1

c
k,j,θ̃

{
ĥ
k,j,θ̃

(
1

d

d∑
i=1

f̂m,θ

(∣∣∣Φ̂θ(Ψb(x), r̂i,j,θ(x))
∣∣∣))

−ĥ
k,j,θ̃

(
1

d

d∑
i=1

f̂
m,θ̃

(∣∣∣Φ̂θ̃
(Ψb(x), r̂

i,j,θ̃
(x))

∣∣∣))}∣∣∣∣∣
≤ 1

λ
KC(T2 + 1)(m+ 1)(8(20m+1))`η +

1

λ
K2`+1CK20`(m+1)(((T1 · 20m+1 + 1)(m+ 1)20mη

+20m+1(20(d(b+ 1) + 1) + (2C0
K

√
d(b+ 1) + 2C1

K + 4)(m+ 1))20mη)

≤ K

λ
C ′K(m+ 1)(b+ 1)20(`+2)(m+2)(C + CK)η,

where C ′K > 0 is a constant depending on d,C0
K , C

1
K .

When x /∈ [−b−1, b+1]d, we have Ψb(x) = 0 and thereby h∗k,j(x) = ĥk

(
1
d

∑d
i=1 f̂m(0)

)
=

ĥk(f̂m(0)) and by (59) with T = 1 and the bound for

|fH,θ(x)− fH,θ̃(x)|

≤ 1

λ

∣∣∣∣∣∣
 K∑
j=1

2`∑
k=1

ck,j,θĥk,θ(f̂m,θ(0)) + c0,θ

−
 K∑
j=1

2`∑
k=1

c
k,j,θ̃

ĥ
k,θ̃

(f̂
m,θ̃

(0)) + c
0,θ̃

∣∣∣∣∣∣
≤ 1

λ
KC(2 · 20m+1)(m+ 1)(8(20m+1))`η +

1

λ

K∑
j=1

2`∑
k=1

|c
k,j,θ̃
|
∣∣∣ĥk,θ̃(f̂m,θ(0))− ĥ

k,θ̃
(f̂
m,θ̃

(0))
∣∣∣

≤ 1

λ
KC(2 · 20m+1)(m+ 1)(8(20m+1))`η +

1

λ
K2`CK2 · 20`(m+1)|fm,θ(0)− f

m,θ̃
(0)|

≤ 1

λ
KC(2 · 20m+1)(m+ 1)(8(20m+1))`η +

1

λ
K2`CK2 · 20`(m+1)(2m+ 2)20mη

≤ K

λ
(2 · 20m+1)(m+ 1)20(`+1)(m+2)(C + CK)η.
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Therefore, ‖fH,θ − fH,θ̃‖∞ ≤
K
λ (C ′K + 1)(2m + 2)(b + 1)20(`+2)(m+2)(C + CK)η. Hence,

‖fH,θ − fH,θ̃‖∞ ≤ ε if

η =
λε

K(b+ 1)(C ′K + 1)(C + CK)(2m+ 2)20(`+2)(m+2)
. (74)

Since 0 < λ ≤ 1, 0 < ε ≤ 1, C > 1, CK , C
′
K > 0, b > 1,m, `,K ∈ N, we can see that

0 < η ≤ 1.

Functions in H can be implemented by a neural network consisting of a preprocessing
subnetwork, a stack of dK product gates Φ, and a stack of K EBTnets. For more details,
please refer to Remark 5.

The preprocessing subnetwork consists of dK product gates Φ̂ and dK units of F(2, (2, 1))
that is equipped with one W̊ ∈ Rd with ‖W̊‖ ≤ C0

K , and one b̊ ∈ R with |̊b| ≤ C1
K . This

implies that the preprocessing subnetwork consists of 2dK W ∈ W ∗, b ∈ b∗, a ∈ a∗, and
dK W̊ and dK b̊.

Each EBTnet consists of 1+2+ . . .+2`−1 = 2`−1 product gates Φ̂, and each Φ̂ consists
of two f̂m. Each f̂m consists of one W ∈W ∗, one b ∈ b∗ and one a ∈ a∗. This implies that
each EBTnet is equipped with 2(2` − 1)W ∈W ∗, b ∈ b∗, a ∈ a∗. Finally, we see that such
a neural network is equipped with 2K(2` + 2d− 1) W ∈W ∗, b ∈ b∗, a ∈ a∗, and K c ∈ c∗,
and dK W̊ and dK b̊.

To satisfy the requirements in (73), it suffices to choose a set Θ̃ which, with C̃ = C0
K/
√
d,

has cardinality at most

⌈
20

η

⌉5(2K)(2`+2d−1) ⌈4

η

⌉5m(2K)(2`+2d−1) ⌈20

η

⌉25m(2K)(2`+2d−1) ⌈2`CK
η

⌉K2`
⌈
C̃

η

⌉d2K ⌈
C1
K

η

⌉dK

≤
(

21

η

)(10+50m)K(2`+2d)(5

η

)10mK(2`+2d)(2`(CK + 1)

η

)K2`
(
C̃ + 1

η

)d2K (
C1
K + 1

η

)dK
≤ 21(60m)K(2`+2d)510mK(2`+2d)

(
2`K2`

)
(CK + 1)`K2`(C̃ + 1)d

2K(C1
K + 1)d

2Kη−K(70m(2`+2d)+2`+2d2)

≤ (2160510)mK(2`+2d)(2(CK + 1))`K2`((C̃ + 1)(C1
K + 1))d

2K

(
1

η

)71mK(2`+2d2)

.

Then, plugging in η given in (74), we obtain

N (ε,H) ≤ (2160510)mK(2`+2d)(2(CK + 1))`K2`((C̃ + 1)(C1
K + 1))d

2K(
K(b+ 1)(C ′K + 1)(C + CK)(2m+ 2)20(`+2)(m+2)

λε

)71mK(2`+2d2)

.

Then, we have

1

K
logN (ε,H)

≤ m(2` + 2d) log(2160510) + 4`2` log(CK) + d2 log((C̃ + 1)(C1
K + 1))
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+71m(2` + 2d2)

(
log(96KC ′K) + log

(
bmCK
λε

))
+ 639m2`(2` + 2d2) log(20)

≤ 72m(2`)(2d2)

(
log(216051096KC ′K(C̃ + 1)(C1

K + 1)) + log

(
bmCK
λε

))
+4`2` log(CK) + 639 log(20)m2`(2`)(2d2)

≤ C ′

K
m2` log

(
bmCK
λε

)
+ 4`2` log(CK) + 639 log(20)m2`(2`)(2d2)

≤ C ′

K
m2` log

(
bCK
λε

)
+ 4`2` log(CK) +

C ′′

K
m2`(2`),

where C ′, C ′′ are positive constants independent of `,m, b, λ, CK or ε.
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