
Journal of Machine Learning Research 25 (2024) 1-25 Submitted 8/23; Revised 10/24; Published 12/24

PGMax: Factor Graphs for Discrete Probabilistic Graphical
Models and Loopy Belief Propagation in JAX

Guangyao Zhou1 stannis@google.com

Antoine Dedieu1 adedieu@google.com

Nishanth Kumar2 njk@mit.edu

Wolfgang Lehrach1 wpl@google.com

Shrinu Kushagra1 shrinukushagra@google.com

Dileep George1 dileepgeorge@google.com

Miguel Lázaro-Gredilla1 lazarogredilla@google.com
1 Google DeepMind
2 Massachusetts Institute of Technology

Editor: Alexandre Gramfort

Abstract

PGMax is an open-source Python/ JAX package for (a) easily specifying discrete Proba-
bilistic Graphical Models (PGMs) as factor graphs; and (b) automatically running efficient
and scalable differentiable Loopy Belief Propagation (LBP). PGMax supports general factor
graphs with tractable factors, and leverages modern accelerators like GPUs for inference.
Compared with alternative libraries, PGMax obtains higher-quality inference results with
up to three orders-of-magnitude inference time speedups. PGMax interacts seamlessly with
the growing JAX ecosystem, opening up new research possibilities. Our source code, exam-
ples and documentation are available at https://github.com/google-deepmind/PGMax.

Keywords: Probabilistic Graphical Models, Bayesian Inference, Belief Propagation, JAX

1. Introduction

Probabilistic Graphical Models (PGMs) compactly encode the full joint probability distribu-
tion of a set of random variables. PGMs are commonly specified using factor graphs (Kschis-
chang et al., 2001), and have been successfully used in in computer vision (Wang et al., 2013),
error correcting codes (McEliece et al., 1998), biology (Durbin et al., 1998), etc.

In this paper, we focus on discrete PGMs. A standard approach for performing approxi-
mate posterior inference on discrete PGMs with tractable factors1 involves message-passing
algorithms like Loopy Belief Propagation (LBP) (Pearl, 1988; Murphy et al., 1999). LBP
propagates “messages” between the variables and the factors of the factor graph. How-
ever, despite several past attempts (see Section 2), there is no well-established open-source
Python package that implements efficient and scalable LBP for general factor graphs. A
key challenge lies in the design and manipulation of the Python data structures containing
the LBP messages for supporting a large class of factor graphs with arbitrary topology and

1. By tractable factors we mean factors for which the LBP updates in Equations 6 and 9 in Appendix B
can be computed in polynomial time.

c©2024 Guangyao Zhou, Antoine Dedieu, Nishanth Kumar, Wolfgang Lehrach, Shrinu Kushagra, Dileep George,
Miguel Lázaro-Gredilla.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-1010.html.

https://github.com/google-deepmind/PGMax
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-1010.html


Zhou, Dedieu, Kumar, Lehrach, Kushagra, George and Lázaro-Gredilla

different factor types (e.g., the non standard pairwise factors discussed in Section 5.2) while
also guaranteeing fast and scalable inference.

In this paper, we describe PGMax, a new open-source Python package that (a) provides
an easy-to-use interface for specifying a large family of factor graphs with discrete variables
and tractable factors, and (b) implements efficient and scalable LBP in JAX (Bradbury
et al., 2018). Compared with alternative libraries, PGMax (a) supports a larger class of
tractable factors; (b) demonstrates superior inference performance in terms of quality, speed
and scalability; and (c) opens up new research possibilities from its seamless interaction with
the rapidly growing JAX ecosystem (Babuschkin et al., 2020).

2. Related Work

Several Python packages have been proposed for running LBP in discrete PGMs. Some
examples include pyfac, py-factorgraph, factorflow, fglib, and sumproduct. Two of
the most recent and efficient packages are pomegranate (Schreiber, 2018) and pgmpy (Ankan
and Panda, 2015). As we discuss in Section 4, their LBP implementations rely on for
loops, which are slow in Python. In contrast, PGMax introduces a novel array-based LBP
implementation, which makes it faster and more scalable (see Section 5.1).

Due to the challenges in deriving an efficient LBP implementation in Python, past
works resort to other programming languages. OpenGM (Andres et al., 2012; Kappes et al.,
2013), written in C++, supports general factor graphs but is no longer maintained, while
ForneyLab (Cox et al., 2019) and ReactiveMP (Bagaev and de Vries, 2022), both written in
Julia, focus on conjugate state-space models and/or variational inference. These packages
cannot easily interact with the vast Python scientific computing ecosystem.

Another related line of work is probabilistic programming languages (PPLs). While
PPLs (van de Meent et al., 2018; Carpenter et al., 2017; Bingham et al., 2019; Salvatier
et al., 2016) have appealing properties, they have limited support for undirected PGMs and
discrete variables (Zhou, 2020). In contrast, PGMax is a specialized PPL that specifies
discrete PGMs with tractable factors, and automatically derives GPU-accelerated LBP
inference.

3. Main PGMax Features

Specification of general factor graphs: PGMax 2 handles general factor graphs with
(a) arbitrary topology, (b) different factor types, and (c) variable-specific number of states
(which can be heterogeneous within the same factor graph). See Section 5.2 for examples.

Efficient, scalable LBP implementation: PGMax adopts an LBP implementation
using parallel message updates and damping (Pretti, 2005)— see Appendix B for details.
This setup has been extensively tested in recent works (Dedieu et al., 2023; George et al.,
2017; Lázaro-Gredilla et al., 2021; Lazaro-Gredilla et al., 2021; Zhou et al., 2021) on a wide
range of discrete PGMs. PGMax develops a novel fully flat array-based LBP implementation
(see Section 4) in JAX, and effectively leverages just-in-time compilation to run on modern
accelerators like GPUs. As we show in Section 5.1, PGMax inference is up to three orders
of magnitude faster than existing libraries.

2. We refer the readers to our example notebook [link] for a tutorial on basic PGMax usage.

2

https://github.com/rdlester/pyfac
https://github.com/mbforbes/py-factorgraph
https://github.com/jeroen-chua/factorflow
https://github.com/danbar/fglib
https://github.com/ilyakava/sumproduct
https://github.com/deepmind/PGMax/blob/main/examples/ising_model.ipynb


PGMax: Factor Graphs for Discrete PGMs and Loopy Belief Propagation in JAX

Specialized inference routines for common discrete factors: To scale to large
factor graphs, PGMax provides specialized, efficient, and computationally stable message
updates for common discrete factors. In particular, PGMax supports three types of factors
representing logical relations between discrete variables (Ravanbakhsh et al., 2016; Dedieu
et al., 2023; Lazaro-Gredilla et al., 2021) for which it implements message updates with
linear complexity. See Appendix B, Section B.5 for details.

Seamless interaction with JAX: PGMax implements LBP as pure functions with
no side effects. This allows PGMax to seamlessly interact with the rapidly growing JAX
ecosystem (Babuschkin et al., 2020). For example, we can apply JAX transformations like
jit/vmap/grad, etc., to these functions. This allows us to run LBP in parallel over large
batches, or as part of a larger end-to-end differentiable system, as discussed in Section 5.3.

Software engineering best practices: PGMax follows the best software development
workflows, with enforced format and static type checking, automated continuous integration
and documentation generation, and comprehensive unit tests that fully cover the codebase.

4. A Flat Array-Based LBP Implementation

LBP passes “messages” along the edges of a factor graph. It is challenging to design efficient
Python data structures for storing these messages in order to support efficient and scalable
inference on a large class of factor graphs. Existing Python packages (e.g. pgmpy and
pomegranate) store messages in separate arrays. Their LBP implementation relies on for
loops, which are slow in Python. In contrast, PGMax concatenates all the variables-to-
factors and factors-to-variables messages of a factor graph into two separate 1D arrays,
and develops a novel fully flat array-based LBP implementation. By keeping track of the
global indices of variable states and the corresponding valid factor configurations, PGMax
leverages the gather/scatter JAX primitives, which gets rid of the need for for loops. This
guarantees efficient and scalable LBP implementation, and supports GPU acceleration.

5. Experiments

5.1 Timing Comparison with Alternative Libraries

We compare PGMax v0.6.1 with Python alternatives for maximum-a-posteriori (MAP)
inference on restricted Boltzmann Machines (RBMs). We discarded py-factorgraph and
fglib, which we could not get to work. pgmpy v0.1.25’s belief propagation uses junction
tree algorithm for exact inference and is prohibitively slow. pgmpy additionally implements
the max-product linear programming (MPLP) algorithm (Globerson and Jaakkola, 2007),
which we use as a baseline, along with pomegranate v1.0.4’s LBP. pgmpy only runs on
CPUs: we use it with default settings. We run pomegranate and PGMax for 200 LBP
steps on both CPUs and GPUs—with a 0.5 damping for PGMax. We use an instance with
8 Intel(R) Xeon(R) 2.20GHz CPUs and a single NVIDIA V100 GPU. Our experiments can
be reproduced using our code on PGMax GitHub [link].

First, we randomly generate 50 RBMs with 24 units (12 hidden and 12 visible variables)
and derive their ground truth (GT) MAP estimates via brute force. We measure the infer-
ence quality of a method by computing the energy of its MAP estimate. pgmpy consistently

3

https://www.tensorflow.org/xla/operation_semantics#gather
https://www.tensorflow.org/xla/operation_semantics#scatter
https://github.com/google-deepmind/PGMax/tree/main/benchmark


Zhou, Dedieu, Kumar, Lehrach, Kushagra, George and Lázaro-Gredilla

gives poor MAP estimates. PGMax (resp. pomegranate) recovers the GT MAP estimates
for 21/50 RBMs (resp. 13/50). PGMax also reaches the lowest (best) energy for 46/50
RBMs, and a strictly lower energy than pgmpy and pomegranate for 26/50 RBMs.

40 60 80 100 120 140 160 180 200
Total number of binary units in the RBM

100

101

102

103

In
fe

re
nc

e 
tim

e 
(s

ec
on

ds
, l

og
 sc

al
e)

PGMax CPU
PGMax GPU
pomegranate CPU
pomegranate GPU
pgmpy

Figure 1: PGMax inference speedups on RBMs

Second, we compare the packages scal-
ability by increasing the RBM sizes to
40, 60, . . . , 200 units—with an equal number
of hidden and visible variables—and ran-
domly generating 20 RBMs for each size.
Again, pgmpy’s MPLP consistently gives
poor MAP estimates, while pomegranate is
competitive. On average, PGMax obtains
the lowest (best) energy for 17.00(±0.61)
out of the 20 RBMs, and a strictly lower
energy than pgmpy and pomegranate for
15.67(±0.67) RBMs. Figure 3, Appendix A, displays a detailed analysis, highlighting that
PGMax benefits from using a large number of 200 iterations. Figure 1 compares the average
timings of each method, when using a batch size of 100. PGMax benefits from GPU ac-
celeration and achieves significant inference speedups. This advantage is more pronounced
for large models: for a RBM with 200 units, inference takes 0.59s(±0.01) with PGMax on
a GPU, and 408.73s(±77.45) with pomegranate on a CPU. Finally, Figure 2, Appendix
A, investigates the impact of the batch size: while PGMax is always faster on GPUs,
pomegranate is faster on CPUs for a small batch size of 1 and as fast on GPUs as on CPUs
for a large batch size of 1k. For 200 units, PGMax on GPU is three orders of magnitude
faster than pomegranate for a small batch size of 1, and two orders of magnitude faster
for a large batch size of 1k. Overall, these large speedup gains demonstrate the benefits of
PGMax flat array-based LBP implementation, both in terms of inference speed and quality.

5.2 Specifying a Large Class of Factor Graphs

One of our example notebooks [link] presents a PGMax implementation of max-product
LBP inference for Recursive Cortical Network (RCN) (George et al., 2017). PGMax natu-
rally supports RCN’s non-standard pairwise factors: the categorical variables have a large
number of states, but only a small number of explicitly enumerated joint configurations are
valid. Another example notebook [link] uses PGMax to build a large PGM with logical
factors. It then leverages the specialized message updates for logical factors to efficiently
solve the 2D blind deconvolution problem from Lazaro-Gredilla et al. (2021).

5.3 Leveraging Advanced JAX Features

Two of our example notebooks illustrate how PGMax can interact with JAX advanced
functionalities. The first one [link] draws samples from a pretrained RBM in parallel.
The second one [link] learns the parameters of a PGM by using automatic differentiation
to compute the gradient of the likelihood: the marginals are computed using LBP inference.

4

https://github.com/google-deepmind/PGMax/blob/main/examples/rcn.ipynb
https://github.com/deepmind/PGMax/blob/main/examples/pmp_binary_deconvolution.ipynb
https://github.com/deepmind/PGMax/blob/main/examples/rbm.ipynb
https://github.com/deepmind/PGMax/blob/main/examples/grid_mrf.ipynb


PGMax: Factor Graphs for Discrete PGMs and Loopy Belief Propagation in JAX

Acknowledgement

We thank Kevin Murphy for useful discussions about PGMax and for proofreading the
paper. We also thank the anonymous reviewers for their relevant suggestions on how to
improve PGMax example notebooks, and how to best compare PGMax against alternative
libraries.

Contribution Statement

Guangyao Zhou came up with the flat array-based LBP implementation.

Guangyao Zhou and Nishanth Kumar implemented the initial version of PGMax, open
sourced PGMax under the Vicarious repository, and wrote the first version of the paper.

Antoine Dedieu implemented logical factors with specialized inference, sped up the factor
graph creation and the LBP inference runtime, led the migration of PGMax from the
Vicarious repository to the DeepMind repository on GitHub, led the editing of the paper
for the JMLR submission and revisions, including the writing of the technical appendices.

Guangyao Zhou and Nishanth Kumar implemented and ran the benchmarking experiments
of PGMax against pomegranate and pgmpy.

Antoine Dedieu and Guangyao Zhou maintain PGMax on GitHub.

Wolfgang Lehrach improved PGMax infrastructure and provided guidance on LBP acceler-
ation.

Shrinu Kushagra implemented the RCN example notebook.

Dileep George advised and provided funding for the project.

Miguel Lázaro-Gredilla provided guidance on LBP implementation and advised the project.

5



Zhou, Dedieu, Kumar, Lehrach, Kushagra, George and Lázaro-Gredilla

Appendix A. Additional comparisons with pomegranate

A.1 Varying the batch size

Figure 2 studies the effect of increasing the batch size from 1 to 100 and 1000 when running
inference with PGMax and with pomegranate, both on CPU and on GPU, on a sequence
of RBMs of increasing sizes. Each batch entry copies the same input: the batch size does
not affect the solution returned by inference. While Figure 3 in the main paper compares
timings for 200 LBP steps, here, we also include the timings for only running 20 LBP steps.
Note that the time vertical axis is fixed across all the six subplots.

1 100 1000
Batch size

10 1

100

101

102

103

RBM with 40 binary units

1 100 1000
Batch size

10 1

100

101

102

103

RBM with 80 binary units

1 100 1000
Batch size

10 1

100

101

102

103

In
fe

re
nc

e 
tim

e 
(s

ec
on

ds
, l

og
 sc

al
e)

RBM with 100 binary units

1 100 1000
Batch size

10 1

100

101

102

103

RBM with 140 binary units

1 100 1000
Batch size

10 1

100

101

102

103

RBM with 160 binary units

1 100 1000
Batch size

10 1

100

101

102

103

RBM with 200 binary units

PGMax CPU, 200 iters
PGMax GPU, 200 iters

Pomegranate CPU, 200 iters
Pomegranate GPU, 200 iters

PGMax CPU, 20 iters
PGMax GPU, 20 iters

Pomegranate CPU, 20 iters
Pomegranate GPU, 20 iters

Figure 2: Inference timing comparisons when running PGMax and pomegranate (a) on
CPU and on GPU, (b) for 20 and 200 inference steps.

6



PGMax: Factor Graphs for Discrete PGMs and Loopy Belief Propagation in JAX

We derive the following findings from Figure 2:

• PGMax runs constantly faster on GPU. While this timing difference is lower for
small batch sizes, it is important for larger batches. For instance, running 200 LBP
steps in parallel on 1000 RBMs with 200 unit each takes 4.43s(±0.01) on a GPU and
170.51s(±1.26) on a CPU.

• For RBMs with 40 units, PGMax GPU timings do not vary much as we increase
the batch size. It takes 0.22s(±0.01) to run 200 LBP steps on a single RBM, and
0.35s(±0.01) to run 200 LBP steps in parallel on 1000 RBMs. However, for larger
models with 200 units, PGMax gets slower as we increase the batch size. It takes
0.24s(±0.01) to run 200 LBP steps on a single RBM and 4.43s(±0.01) on 1000 RBMs.

• For a small batch size of 1, pomegranate is around three times faster on a CPU than
on a GPU. It takes 1.32s(±0.06) to run 200 LBP steps on an RBM with 40 binary
units on a CPU, and 3.11s(±0.15) on a GPU. Similarly, on an RBM with 200 binary
units, pomegranate takes 377.31s(±71.67) on a CPU, and 1210.31s(±230.47) on a
GPU. However, as we increase the batch size, pomegranate CPU timings increase
while its GPU timings do not vary much. Running 200 LBP steps on 1000 RBMs
with 40 units takes 3.71s(±0.17) on a CPU, and 3.41s(±0.15) on a GPU. Similarly,
running 200 iterations on 1000 RBMs with 200 units takes 849.84s(±161.00) on a
CPU, and 1206.90s(±229.53) on a GPU. For larger batch sizes, pomegranate will
eventually benefit from GPU acceleration.

• The numbers above also highlight that pomegranate timings significantly increase
when we increase the number of units. For a fixed batch size and background,
pomegranate is two orders of magnitude faster on a small RBM with 40 units than
on a large RBM with 200 units.

• Consequently, the gap between pomegranate and PGMax also increases for larger
models. For small models with 40 units, and 200 LBP steps, PGMax is only one
order of magnitude faster than pomegranate for a batch size of 1—0.22s(±0.01) vs.
1.32s(±0.06)—as well as for a batch size of 1k—0.35s(±0.01) vs. 3.11s(±0.15). How-
ever, for large RBM with 200 units, PGMax is up to three orders of magnitudes faster
for a small batch size of 1—0.24s(±0.01) vs. 377.31s(±71.67)—and up to two orders
of magnitude faster for a large batch size of 1k—4.43s(±0.01) vs. 849.84s(±161.00).

• Naturally, all the methods are slower when we increase the number of LBP iterations
from 20 to 200.

A.2 Comparing the energies

For a given RBM size, Figure 3 reports the ratio of RBMs—out of the 20 randomly
generated—for which each method reaches the lowest energy.3 As above, we also compare
the solutions returned by PGMax and pomegranate for 20 and 200 LBP steps.

Figure 3 highlights that for each RBM size, PGMax reaches the lowest energy more
frequently than pomegranate. This gap is bigger for larger models: for an RBM with

3. Note that several methods can sometimes return the lowest energy.

7



Zhou, Dedieu, Kumar, Lehrach, Kushagra, George and Lázaro-Gredilla

200 units, PGMax with 200 iterations reaches the lowest energy for 20/20 RBMs, while
pomegranate never does so. In addition, for larger models, PGMax inference quality benefits
from using more LBP steps.

40 60 80 100 120 140 160 180 200
Total number of binary units in the RBM

0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f R

BM
s

 w
ith

 lo
we

st
 e

ne
rg

y

PGMax, 20 iters
PGMax, 200 iters
pomegranate, 20 iters
pomegranate, 200 iters
pgmpy

Figure 3: Number of RBMs for which each method achieves the lowest energy.

Finally, we define the set M of all methods compared in Figure 3. For each RBM and
method m ∈ M, we define E(m) the energy of the MAP estimate returned by the method
m, as well as E∗ = minm∈M the lowest energy returned by a method. Figure 3 averages
the statistic 1(E(m) = E∗) which indicates whether a method returns a solution with the
lowest energy.

In Figure 4, we average over the 20 RBMs of the same size the (non-negative) differences
E(m)− E∗ ≥ 0 between the energy returned by a method and the lowest energy among all
the methods. Figure 4 also shows that (a) the inference quality gap between PGMax and
pomegranate widens as the RBMs get larger and (b) for larger models, PGMax benefits
from using more LBP steps.

40 60 80 100 120 140 160 180 200
Total number of binary units in the RBM

0

5

10

15

20

Re
la

tiv
e 

di
ffe

re
nc

e 
 w

ith
 b

es
t m

et
ho

d 
en

er
gy PGMax, 20 iters

PGMax, 200 iters
pomegranate, 20 iters
pomegranate, 200 iters

Figure 4: Difference between the energy returned by each method and the lowest energy
returned across methods, averaged over the 20 RBMs (lower is better).

8



PGMax: Factor Graphs for Discrete PGMs and Loopy Belief Propagation in JAX

Appendix B. Parallel Loopy Belief propagation in PGMax

We derive herein the parallel belief propagation (BP) algorithm implemented in PGMax
for the supported families of tractable factors. First, we discuss how PGMax implements
BP at any temperature in the general case of “enumeration factors”. Second, we discuss
how PGMax implements message updates for “logical factors” that are both (a) specialized
with a complexity linear in the number of connected variables (b) computationally stable
at low temperatures.

B.1 General framework

We consider a discrete probabilistic graphical model (PGM) with categorical variables z

described by a set of F factors {θf>ηf (zf )}Ff=1 and I unary terms {θ>i ηi(zi)}Ii=1. For the

fth factor, zf is the vector of variables connected to the factor, θf is a vector of factor
parameters and ηf (zf ) is a vector of factor sufficient statistics. Similarly, for the variable
zi, θi is a vector of unary parameters and ηi(zi) is a vector of variable sufficient statistics.
The energy of the model can be expressed as

E(z) = −
I∑

i=1

θ>i ηi(zi)−
F∑

f=1

θf
>
ηf (zf ). (1)

The probability of a configuration z satisfies p(z) ∝ exp(−E(z)).

Notations: We use the following notations. First, for any f ≤ F , let Nf = {i ≤ I : zi ∈
zf} be the indices of the variables connected to the fth factor. Similarly, for any i ≤ I, let
Ni = {f ≤ F : zi ∈ zf} be the indices of the factors connected to the ith variable.

Second, we note V (zi) (resp. V (zf )) the set of valid assignments for the categorical variable
zi (resp. for the variables connected to the fth factor). Each element w ∈ V (zf ) corresponds
to an assignment for each variable in zf : we denote w = (wi)i∈Nf . Naturally, we have
ηi(zi) = (1(zi = k))k∈V (zi)

and ηf (zf ) =
(
1(zf = w)

)
w∈V (zf )

.

Finally, let us denote θi(k) the unary entry of the vector θi associated with k ∈ V (zi);
and θf (w) the potential entry of the vector θf associated with w ∈ V (zf ). It holds θi =
(θi(k))k∈V (zi)

and θf =
(
θf (w)

)
w∈V (zf )

.

B.2 Inference in PGMs

PGMax is specialized to solve the two following types of inference problems in the discrete
PGM above.

Problem 1: mode estimation. The first problem we are interested in is estimating
the mode of the probability distribution p. This problem, also referred to as maximum
a posteriori (MAP) problem, is equivalent to finding the variables assignment with the
lowest energy, that is in solving

zMAP ∈ argmin
z

E(z) = argmax
z

I∑
i=1

θ>i ηi(zi) +
F∑

f=1

θf
>
ηf (zf ). (2)

9



Zhou, Dedieu, Kumar, Lehrach, Kushagra, George and Lázaro-Gredilla

The MAP Problem in Equation 2 is an integer programming problem and can be rewritten

max
z

I∑
i=1

∑
k∈V (zi)

θi(k)1(zi = k) +
F∑

f=1

∑
w∈V (zf )

θf (w)1(zf = w). (3)

Problem 2: marginals estimation. The second problem we are interested in consists
in estimating the marginal distribution of p:

p(zi = k) =
∑

z: zi=k

p(z), ∀i, ∀k ∈ V (zi). (4)

Belief propagation: Exact MAP or marginal inference in complex PGMs is often in-
tractable. To mitigate this problem, several techniques have been proposed for approximate
inference, among which a popular one is belief propagation (BP) (Pearl, 1988). The BP
algorithm takes as input a temperature T ∈ [0, 1]. When T = 0, it is often referred to as
the max-product algorithm, and it returns an estimate of the MAP solution to Equation 2.
When T = 1, it is often referred to as the sum-product algorithm, and it returns an esti-
mate of the marginal probabilities in Equation 4. When T ∈ (0, 1), BP estimates the soft

max-marginals
(∑

z: zi=k p(z)
1/T
)T

. While BP is guaranteed to converge in trees (Yedidia
et al., 2000), convergence is not guaranteed for loopy models.

In the rest of this section, we discuss the BP algorithm that we have implemented in
PGMax at any temperature T ∈ [0, 1]. Section B.4 discusses message updates for a general
class of “enumeration factors”. Section B.5 introduces “logical factors” and Sections B.6 and
B.7 places a special emphasis on presenting how PGMax derives message updates for logical
factors that are both (a) specialized with a complexity linear in the number of variables
connected to a factor (b) computationally stable at low temperatures.

B.3 Stable computation of two useful functions

We introduce two operators that PGMax relies on and discuss their computational stability.

Log-sum-exp: for a vector x = (x1, . . . , xn) ∈ Rn, we define the log-sum-exp operator
at the temperature T via

LSE(x, T ) = T log

(∑
i

exp
(xi
T

))
.

To guarantee computational stability, we introduce x∗ = maxi xi and implement this oper-
ator as

LSE(x, T ) = x∗ + T log

(∑
i

exp

(
xi − x∗

T

))
.

10



PGMax: Factor Graphs for Discrete PGMs and Loopy Belief Propagation in JAX

Log-minus-exp: for two scalar x1, x2 ∈ R such that x1 ≥ x2, we define the log-minus-
exp operator at the temperature T via:

LME(x1, x2, T ) = T log
(

exp
(x1

T

)
− exp

(x2

T

))
= x1 + T log

(
1− exp

(
x2 − x1

T

))
= x1 + T log1mexp

(
x1 − x2

T

)
.

The last equation guarantees the computational stability of the implementation. We im-
plement log1mexp(x) = log(1− e−x) accurately using Mächler (2012).

B.4 Belief propagation in PGMax for an enumeration factor

PMax refers to a general factor θf
>
ηf (zf ) in Equation 1 as an “enumeration factor”. An

enumeration factor is then defined by a set of valid configurations represented by ηf (zf ),
paired with their respective vector of log-potentials θf . PGMax considers two cases when
implementing the belief propagation algorithm: the max-product algorithm at T = 0 is
treated separately from the more general case T ∈ (0, 1].

B.4.1 At the temperature T=0

Message updates: Given a factor f and a variable i ∈ Nf connected to this factor, the
max-product algorithm estimates the solution to the (MAP) Problem in Equation 2 by
defining positive messages mzi→f (k) from the state k of the variable zi to the fth factor,
and positive messages mf→zi(k) from the fth factor to the state k of the variable zi. It
then iterates the fixed-point updates for NBP iterations:

mzi→f (k) = exp (θi(k))
∏

g∈Ni: g 6=f

mg→zi(k) (5)

mf→zi(k) = max
w∈V (zf ): wi=k

{
exp

(
θf (w)

) ∏
j∈Nf : j 6=i

mzj→f (wj)

}
.

Equations 5 are derived by setting the gradients of the Lagrangian of the Bethe free energy
to 0: see Wainwright et al. (2008) for details.

Log-space mapping: For computational stability, PGMax maps the messages to log-
space by defining nzi→f (k) = logmzi→f (k) and nf→zi(k) = logmf→zi(k). It then imple-
ments Equations 5 as

nzi→f (k) = θi(k) +
∑

g∈Ni: g 6=f

ng→zi(k) (6)

nf→zi(k) = max
w∈V (zf ): wi=k

{
θf (w) +

∑
j∈Nf : j 6=i

nzj→f (wj)

}
.

11



Zhou, Dedieu, Kumar, Lehrach, Kushagra, George and Lázaro-Gredilla

Parallelization: One of the appealing properties of the max-product algorithm is that it
is highly parallelized. In PGMax, all the variables-to-factors message updates (top row in
Equation 6) are computed in parallel. Similarly all the factors-to-variables message updates
(bottom row in Equation 6) are also computed in parallel.

Optional damping: In loopy models where BP is not guaranteed to converge, a damping
factor α ∈ (0, 1) in the message updates from factors to variables can be used to improve
convergence. After computing nf→zi(k) as in Equation 6, the messages from factors to
variables are updated via

nnew
f→zi

(k) = αnf→zi(k) + (1− α)nold
f→zi

(k).

PGMax supports damping: the user has to specify α. α = 0.5 offers a good trade-off
between accuracy and speed in most cases.

Beliefs and MAP estimate: After NBP iterations of Equation 6 with optional damping,
PGMax defines the beliefs of the variables states as

bi(k) = θi(k) +
∑
f∈Ni

nf→zi(k), ∀i, ∀k ∈ V (zi). (7)

The max-product MAP estimate is then

z∗i = argmax
k∈V (zi)

bi(k), ∀i.

In addition, PGMax estimates the normalized max-marginals via the relation

max
z: zi=k

p(z) ∝ exp(bi(k))∑
`∈V (zi)

exp(bi(`))
. (8)

B.4.2 At a temperature T>0

Message updates: The belief propagation algorithm can be extended to any temperature
T ∈ (0, 1] by redefining the message updates from factors to variables in Equation 5 as

mf→zi(k)1/T =
∑

w∈V (zf ): wi=k

exp(θf (w))1/T
∏

j∈Nf : j 6=i

mzj→f (wj)
1/T ,

which can be equivalently written in log-space as

nf→zi(k) = T log

 ∑
w∈V (zf ): wi=k

exp

(
θf (w) +

∑
j∈Nf : j 6=i nzj→f (wj)

T

) .

That is, for T > 0, PGMax leaves the message updates from variables to factors nzi→f (k)
in Equation 6 unchanged and implements the message updates from factors to variables as

nf→zi(k) = LSE


θf (w) +

∑
j∈Nf : j 6=i

nzj→f (wj)


w∈V (zf ): wi=k

, T

 . (9)

12



PGMax: Factor Graphs for Discrete PGMs and Loopy Belief Propagation in JAX

Beliefs and MAP estimate: After NBP iterations of Equation 9 with optional damping,
PGMax estimates the beliefs as in Equation 7. Similar to Equation 8, it then estimates the
normalized soft max-marginal probabilities, defined as ∑

z: zi=k

p(z)1/T

T

∝ exp(bi(k))∑
`∈V (zi)

exp(bi(`))
.

In the case T = 1, we recover the sum-product algorithm (Pearl, 1988) and PGMax esti-
mates the marginal probabilities via

p(zi = k) =
∑

z: zi=k

p(z) ≈ exp(bi(k))∑
`∈V (zi)

exp(bi(`))
.

B.5 Belief propagation for logical factors

In addition to the enumeration factors discussed in Section B.4, PGMax supports three
classes of “logical factors”, which express logical relations between the variables they con-
nect. The supported OR factors, AND factors and Pool factors are displayed in Figure 5.
These factors connect binary variables and are defined as follows:

OR factors : An OR factor connects n binary parents variables p1, . . . , pn with one binary
child variable c. c = 1 iff at least one pi is equal to 1.

AND factor : An AND factor connects n binary parents variables p1, . . . , pn with one
binary child variable c. c = 1 iff if at least all the pis are equal to 1.

Pool factor : A Pool factor connects one binary parent variable p with n binary child
variables c1, . . . , cn. p = 1 iff exactly one ci is equal to 1; and p = 0 iff all the cis are equal
to 0.

c c . . .cn c1

OR AND Pool

. . .p1 pn . . .p1 pn p

Figure 5: [Left] An OR factor. [Middle] An AND factor. [Right] A Pool factor.

Specialized message updates for logical factors: The OR and AND factors in Figure 5
have 2n valid configurations. Consequently, the implementation of the BP message updates
from factors to variables in Equations 6 and 9 has an exponential complexity in the number
of variables connected to these factors. Similarly, the message updates for a Pool factor
have a quadratic complexity in the number of variables. We discuss herein how PGMax
leverages the structure of these logical factors to reduce, for any temperature T ∈ [0, 1],
the complexity of the message updates from factors to variables down to a linear cost in

13



Zhou, Dedieu, Kumar, Lehrach, Kushagra, George and Lázaro-Gredilla

the number of connected variables. In addition, we discuss computational stability of these
specialized message updates at low temperatures T ∼ 0.

Related work: For T = 0 (i.e. for the max-product algorithm), some of the following
equations are presented in Lázaro-Gredilla et al. (2016); Lazaro-Gredilla et al. (2021). How-
ever, we discuss herein how to efficiently implement parallel message updates by reusing
computations. For T > 0, we are not aware of a previous work that derives the BP updates
for the logical factors aforementioned.

B.6 Message updates for an OR factor

We reuse the previous notations and study how to efficiently implement BP updates for
an OR factor. Note that the same updates can be used for an AND factor by exploiting the
relation

c = AND(p1, . . . , pn) ⇐⇒ c̄ = OR(p̄1, . . . , p̄n)

The message updates from variables to factors nzi→f (k) in Equation 6 are left unchanged
for logical factors. Similarly, the damping step and the beliefs computation are defined as
before. We therefore only study the message updates from factors to variables nf→zi(k).

Notations: We note i∗1 ∈ argmaxi{npi→f (1)−npi→f (0)} and i∗2 ∈ argmaxi 6=i∗1
{npi→f (1)−

npi→f (0)}.

Lemma 1 below justifies the need to separately consider the variable with the largest in-
coming log-message difference. We defer the proof to Section C.

Lemma 1 Given the incoming variables to factor messages, the valid configuration (p∗, 1)
of an OR factor satisfying c = 1 and with the highest sum of incoming log-messages is given
by p∗i∗1

= 1 and p∗j = argmax{npj→f (0), npj→f (1)}) otherwise.

B.6.1 At the temperature T=0

Outgoing messages to the child variable: The messages going from the fth OR factor
to the child variable c can be derived from Lemma 1:

nf→c(1) = npi∗1→f (1) +
∑
j 6=i∗1

max{npj→f (1), npj→f (0)}

nf→c(0) =
∑
j
npj→f (0),

Outgoing messages to the parents variables: We now consider the messages going
from the OR factor to the parent variables. For i 6= i∗1, it holds:

nf→pi(1) = nc→f (1) +
∑
j 6=i

max{npj→f (1), npj→f (0)}

nf→pi(0) = max


nc→f (0) +

∑
j 6=i

npj→f (0),

nc→f (1) + npi∗1→f (1) +
∑

j 6=i∗1,i
max{npj→f (1), npj→f (0)}

 ,

where we have applied a similar reasoning to Lemma 1 to compute the second term in
nf→pi(0).

14



PGMax: Factor Graphs for Discrete PGMs and Loopy Belief Propagation in JAX

For i = i∗1, nf→pi∗1
(1) is derived as above. For nf→pi∗1

(0) it holds

nf→pi(0) = max


nc→f (0) +

∑
j 6=i

npj→f (0),

nc→f (1) + npi∗2→f (1) +
∑

j 6=i∗2,i
max{npj→f (1), npj→f (0)}


Efficient parallel message updates: To compute the updates in parallel efficiently, we
first introduce the quantities

i∗1 ∈ argmaxi {npi→f (1)− npi→f (0)}
∆n∗1 = npi∗1→f (1)− npi∗1→f (0)

∆n∗2 = maxi 6=i∗1
{npi→f (1)− npi→f (0)}

S =
∑
i
npi→f (0)

SM =
∑
i

max{npi→f (1), npi→f (0)}

SMi = SM −max{npi→f (1), npi→f (0)}+ nc→f (1), ∀i.

PGMax derives all the message updates to the variables in parallel, with a linear complexity,
via

nf→c(0) = S

nf→c(1) = SM + min {0, ∆n∗1}
nf→pi(1) = SMi ∀i
nf→pi(0) = max {S − npi→f (0) + nc→f (0), SMi + min {0, ∆n∗1}} , ∀i 6= i∗1

nf→pi∗1
(0) = max

{
S − npi∗1→f (0) + nc→f (0), SMi∗1

+ min {0, ∆n∗2}
}
.

Only computing message difference: The BP algorithm does not need to access the
message updates from an OR factor to both states 0 and 1 of a variable. Only computing
the message difference—i.e. nf→c(1)−nf→c(0) for a child variable and nf→pi(1)−nf→pi(0)
for a parent variable—can make inference faster and more stable. However, alternative
inference methods to BP may require to access the message updates to both variable states.
Therefore, PGMax computes both message updates. When using BP, PGMax only returns
the message differences and lets the JAX compiler simplify intermediate computations.

B.6.2 At a temperature T>0

Outgoing messages to the child variable: At a temperature T > 0, for the outgoing
messages to the state 0 of the child variable c, we have

mf→c(0)1/T =
∏
i

mpi→f (0)1/T

from which we derive
nf→c(0) = S =

∑
i

npi→f (0), (10)

15



Zhou, Dedieu, Kumar, Lehrach, Kushagra, George and Lázaro-Gredilla

where we have reused the above quantity S. Similarly for the state 1

mf→c(1)1/T =
∑

(e1,...,en)6=(0,...,0)

∏
i

mpi→f (ei)
1/T

=
∏
i

(
mpi→f (0)1/T +mpi→f (1)1/T

)
−
∏
i

npi→f (0)1/T .

Let us define

P = T
∑
i

log

(
exp

(
npi→f (0)

T

)
+ exp

(
npi→f (1)

T

))
=
∑
i

LSE ((npi→f (0), npi→f (1)), T ) .

Then it holds

nf→c(1) = T log(eP/T − eS/T ) = LME(P, S, T ). (11)

Computational stability: When the incoming messages satisfy npi→f (0) ≥ npj→f (1), ∀i
and we are at a low temperature T ∼ 0, P and S may be really close and the LME operator in
Equation 11 may become computationally unstable. In this case, PGMax replaces nf→c(1)
by a lower bound of Equation 11 derived as follows.

Let us first observe that as npi→f (0) ≥ npj→f (1), ∀i, the two valid factor configuration p(1)

and p(2) satisfying c = 1 with highest sum of incoming messages are respectively (a) p
(1)
i∗1

= 1

and p
(1)
i = 0 o.w. and (b) p

(2)
i∗2

= 1 and p
(2)
i = 0 o.w.. A lower bound of mf→c(1)1/T is then:

mf→c(1)1/T ≥ mpi∗1
→f (1)1/T

∏
i 6=i∗1

mpi→f (0)1/T +mpi∗2
→f (1)1/T

∏
i 6=i∗2

mpi→f (0)1/T .

nf→c(1) can then be lower bounded as

nf→c(1) ≥ T log

(
exp

(
S + ∆n∗1

T

)
+ exp

(
S + ∆n∗2

T

))
= LSE ((S + ∆n∗1, S + ∆n∗2), T ) .

(12)
In practice, PGMax introduces a threshold ε = 10−4 and replaces nf→c(1) with the lower
bound when P − S ≤ ε. This lower bound is fast to compute and minimally affects the
message updates speed. Let us note that it could be refined further if needed by adding
more configurations, at the cost of more compute, to better approximate nf→c(1).

Outgoing messages to the parent variables: For the outgoing messages to the state
0 of the parent variable pi it holds:

mf→pi(1)1/T = mc→f (1)1/T
∏
j 6=i

(
mpj→f (0)1/T +mpj→f (1)1/T

)
.

By introducing Pi = T
∑
j 6=i

log

(
exp

(
npj→f (0)

T

)
+ exp

(
npj→f (1)

T

))
, we simply have:

nf→pi(1) = nc→f (1) + Pi. (13)

16



PGMax: Factor Graphs for Discrete PGMs and Loopy Belief Propagation in JAX

Similarly, for the outgoing messages to the state 1:

mf→pi(0)1/T = mc→f (0)1/T
∏
j 6=i

mpj→f (0)1/T

+mc→f (1)1/T

∏
j 6=i

(
mpj→f (0)1/T +mpj→f (1)1/T

)
−
∏
j 6=i

mpj→f (0)1/T

 .

We introduce Si =
∑
j 6=i

npi→f (0) and observe that:

mf→pi(0)1/T = mc→f (0)1/T exp

(
Si
T

)
+mc→f (1)1/T

{
exp

(
Pi

T

)
− exp

(
Si
T

)}
,

from which we derive

nf→pi(0) = T log

(
exp

(
Si + nc→f (0)

T

)
+ exp

(
Pi + nc→f (1)

T

)
− exp

(
Si + nc→f (1)

T

))
= LME (LSE ((Si + nc→f (0), Pi + nc→f (1)), T ) , Si + nc→f (1), T )

(14)

Computational stability: Again, if nc→f (1) ≥ nc→f (0) and npj→f (0) ≥ npj→f (1), ∀j 6=
i and we are at a low temperature T ∼ 0, then Pi and Si may be close and the LME operator
in Equation 14 may become computationally unstable. As before, we propose to replace
nf→pi(0) by a lower bound by using the valid configurations p(1) and p(2).

If i 6= i∗1, we use p(1) to derive a lower bound of mf→pi(0)1/T :

mf→pi(0)1/T ≥ mc→f (0)1/T exp

(
Si
T

)
+mc→f (1)1/Tmpi∗1

→f (1)1/T
∏

j 6=i∗1,i

mpj→f (0)1/T

from which we derive a lower bound of nf→pi(0):

nf→pi(0) = T log

(
exp

(
Si + nc→f (0)

T

)
+ exp

(
Si + ∆n∗1 + nc→f (1)

T

))
= LSE ((Si + nc→f (0), Si + ∆n∗1 + nc→f (1), T ) .

(15)

A similar lower bound can be derived for i∗1, using p(2).

17



Zhou, Dedieu, Kumar, Lehrach, Kushagra, George and Lázaro-Gredilla

Stable and efficient parallel message updates: To summarize Equations 10, 11, 12,
13, 14, 15, let us first introduce the quantities

i∗1 ∈ argmaxi {npi→f (1)− npi→f (0)}
∆n∗1 = npi∗1→f (1)− npi∗1→f (0)

∆n∗2 = maxi 6=i∗1
{npi→f (1)− npi→f (0)}

S =
∑
j
npj→f (0)

Si = S − npi→f (0), ∀i
ni = LSE ((npi→f (0), npi→f (1)), T )

P =
∑

j nj

Pi = P − ni, ∀i
Ii = (Pi − Si ≥ ε) ∨ (nc→f (0)− nc→f (1) ≥ ε) , ∀i

where Ii is a boolean variable. PGMax derives the OR factor to variables message updates
(a) with a linear complexity (b) stable at low temperature and (c) computed in parallel, via

nf→c(0) = S

nf→c(1) =

{
LME(P, S, T ) if P − S ≥ ε
LSE ((S + ∆n∗1, S + ∆n∗2), T ) o.w.

nf→pi(1) = Pi + nc→f (1), ∀i

nf→pi(0) =


LME

 LSE ((Si + nc→f (0), Pi + nc→f (1)), T ) ,

Si + nc→f (1),

T

 if Ii

LSE ((Si + nc→f (0), Si + ∆n∗1 + nc→f (1), T ) if not Ii and i 6= i∗1
LSE

(
(Si∗1 + nc→f (0), Si∗1 + ∆n∗2 + nc→f (1), T

)
if not Ii and i = i∗1

B.7 Message updates for a Pool factor

Finally, we derive efficient and computationally stable parallel message updates for a Pool

factor. A Pool factor only has n + 1 valid configurations: the variables (p, c1, . . . , cn) can
only be assigned to the values (0, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, 0, . . . , 0, 1). We reuse the
notations i∗1 ∈ argmaxi{nci→f (1)− nci→f (0)} and i∗2 ∈ argmaxi 6=i∗1

{nci→f (1)− nci→f (0)}.

B.7.1 At the temperature T=0

Outgoing messages to the parent variable: The messages going from the fth Pool

factor to the parent variable p can be derived by using an observation similar to Lemma 1:
nf→p(1) = nci∗1→f (1) +

∑
j 6=i∗1

ncj→f (0)

nf→p(0) =
∑
j
ncj→f (0).

In particular, the message difference can be simplified:

nf→p(1)− nf→p(0) = nci∗1→f (1)− nci∗1→f (0).

18



PGMax: Factor Graphs for Discrete PGMs and Loopy Belief Propagation in JAX

Outgoing messages to the children variable: We now look at the messages going
from the Pool factor to the child variable ci. If i 6= i∗1 we have:

nf→ci(1) = np→f (1) +
∑
j 6=i

ncj→f (0)

nf→ci(0) = max

{
np→f (0) +

∑
j 6=i

ncj→f (0), np→f (1) + nci∗1→f (1) +
∑

j 6=i∗1,i
ncj→f (0)

}
.

Again, the message difference can be simplified as

nf→ci(1)− nf→ci(0) = min
{
np→f (1)− np→f (0), nci∗1→f (0)− nci∗1→f (1)

}
For i = i∗1, nf→ci∗1

(1) is derived as above while the message difference becomes:

nf→ci∗1
(1)− nf→ci∗1

(0) = min
{
np→f (1)− np→f (0), nci∗2→f (0)− nci∗2→f (1)

}
Efficient parallel message updates: By first introducing the quantities

i∗1 ∈ argmaxi {nci→f (1)− nci→f (0)}
∆n∗1 = nci∗1→f (1)− nci∗1→f (0)

∆n∗2 = maxi 6=i∗1
{nci→f (1)− nci→f (0)}

S =
∑
j
ncj→f (0)

Si = S − nci→f (0) + np→f (1), ∀i.

PGMax derives all the message updates from a Pool factor to the variables connected, with
a linear complexity, via

nf→p(0) = S

nf→p(1) = S + ∆n∗1
nf→ci(1) = Si ∀i
nf→ci(0) = Si + min {np→f (1)− np→f (0), −∆n∗1} , ] ∀i 6= i∗1
nf→ci∗1

(0) = Si + min {np→f (1)− np→f (0), −∆n∗2} .

B.7.2 At a temperature T>0

Outgoing messages to the parent variable: At a temperature T > 0, the outgoing
messages to the state 0 of the parent variable p can be expressed as

mf→p(0)1/T =
∏
i

mci→f (0)1/T ,

from which we derive

nf→p(0) =
∑
i

nci→f (0).

19



Zhou, Dedieu, Kumar, Lehrach, Kushagra, George and Lázaro-Gredilla

Similarly, for the state 1 we have

mf→p(1)1/T = mc1→f (1)1/T
∏
i 6=1

mci→f (0)1/T + . . .+mcn→f (1)1/T
∏
i 6=n

mci→f (0)1/T .

Hence the message difference can be expressed as

nf→p(1)− nf→p(0) = T log

(
mf→p(1)1/T

mf→p(0)1/T

)

= T log

(∑
i

mci→f (1)1/T

mci→f (0)1/T

)

= T log

(∑
i

exp

(
nci→f (1)− nci→f (0)

T

))
= LSE

(
(nci→f (1)− nci→f (0))i , T

)
.

(16)

Outgoing messages to the children variable: Similarly, the outgoing messages to the
state 0 of the child variable ci is

mf→ci(1)1/T = mp→f (1)1/T
∏
j 6=i

mcj→f (0)1/T ,

from which we derive
nf→ci(1) = np→f (1) +

∑
j 6=i

ncj→f (0).

And the outgoing message for the state 1 is

mf→ci(0)1/T = mp→f (0)1/T
∏
j 6=i

mcj→f (0)1/T+
∑
j 6=i

mp→f (1)1/Tmcj→f (1)1/T
∏
k 6=i,j

mck→f (0)1/T .

Hence, by reusing Equation 16, the message difference can be expressed as

nf→ci(1)− nf→ci(0) = T log

(
mf→ci(1)1/T

mf→ci(0)1/T

)

= −T log

mp→f (0)1/T

mp→f (1)1/T
+
∑
j 6=i

mcj→f (1)1/T

mcj→f (0)1/T


= −T log

exp

(
np→f (0)− np→f (1)

T

)
+
∑
j 6=i

exp

(
ncj→f (1)− ncj→f (0)

T

)
= LME (Q, nci→f (1)− nci→f (0), T )

where we have defined Q = LSE ((nf→p(1)− nf→p(0), np→f (0)− np→f (1)), T ) to reuse
Equation 16. While this reuses more computations across, the LME operator may not be
stable at low temperatures for i = i∗1. In this case, we set:

nf→ci∗1
(1)− nf→ci∗1

(0) = −LSE
((

(nci→f (1)− nci→f (0))i 6=i∗1
, np→f (0)− np→f (1)

)
, T

)
.

20



PGMax: Factor Graphs for Discrete PGMs and Loopy Belief Propagation in JAX

Efficient and stable parallel message updates: In summary, PGMax first introduces
the quantities 

i∗1 ∈ argmaxi {nci→f (1)− nci→f (0)}
∆n∗1 = nci∗1→f (1)− nci∗1→f (0)

S =
∑
j
npj→f (0)

Si = S − nci→f (0) + np→f (1) ∀i
P = LSE

(
(nci→f (1)− nci→f (0))i , T

)
Q = LSE ((P, np→f (0)− np→f (1)), T ) ,

PGMax derives stable message updates, with linear complexity, from a Pool factor to its
connected variables via

nf→p(0) = S

nf→p(1) = S + P

nf→ci(1) = Si ∀i
nf→ci(0) = Si − LME (Q, nci→f (1)− nci→f (0), T ) ∀i 6= i∗1
nf→ci∗1

(0) = Si + LSE
((

(nci→f (1)− nci→f (0))i 6=i∗1
, np→f (0)− np→f (1)

)
, T

)
B.8 Energy computation

Let us finally mention that given a PGM with both enumeration and logical factors, PGMax
efficiently computes the energy in Equation 1 for any configuration z.

Appendix C. Proof of Lemma 1

We present herein the proof of the Lemma 1.

Proof Let (p∗, 1) be the valid configuration of an OR factor satisfying c = 1, where
we have defined p∗i∗1

= 1 and p∗j = argmax{npj→f (0), npj→f (1)}) otherwise; and i∗1 ∈
argmaxi{npi→f (1)− npi→f (0)}.

The sum of the associated incoming message is

S1 = npi∗1→f (1) +
∑
j 6=i∗1

maxnpj→f (p∗j ).

Let us assume that this sum is not the highest among all the configurations satisfying
c = 1. Then we can find k 6= i∗1 such that the configuration defined by pi∗1 = 0, pk = 1 and
pi = argmax{npj→f (1), npj→f (0)}) otherwise (a) is valid for the OR factor and (b) scores
higher than p∗. The sum of the incoming messages for this configuration is

S2 = npi∗1→f (0) + npk→f (1) +
∑
j 6=i∗1

maxnpj→f (p∗j ).

21



Zhou, Dedieu, Kumar, Lehrach, Kushagra, George and Lázaro-Gredilla

It then holds:

S2 − S1 = npk→f (1)− npk→f (p∗k) + npi∗1→f (0)− npi∗1→f (1) ≥ 0.

If p∗k = 1, then npk→f (1) ≥ npk→f (0). In addition, S2 − S1 = npi∗1→f (0) − npi∗1→f (1) ≥ 0

which implies that npi∗1→f (0) ≥ npi∗1→f (1).

However, by definition, npi∗1→f (1)− npi∗1→f (0) ≥ npk→f (1)− npk→f (0) ≥ 0: contradiction.

Hence p∗k = 0. Then, S2 − S1 ≥ 0 implies npk→f (1) − npk→f (0) ≥ npi∗1→f (1) − npi∗1→f (0)

which, again contradicts the definition of i∗1.

Consequently, Lemma 1 is true.

22



PGMax: Factor Graphs for Discrete PGMs and Loopy Belief Propagation in JAX

References

Bjoern Andres, Thorsten Beier, and Jörg H Kappes. Opengm: A c++ library for discrete
graphical models. arXiv preprint arXiv:1206.0111, 2012.

Ankur Ankan and Abinash Panda. pgmpy: Probabilistic graphical models using python.
In SciPy, pages 6–11. Citeseer, 2015.

Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu,
Claudio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo
Hessel, Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King,
Markus Kunesch, Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman,
George Papamakarios, John Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Ros-
alia Schneider, Eren Sezener, Stephen Spencer, Srivatsan Srinivasan, Wojciech Stokowiec,
Luyu Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020.
URL http://github.com/google-deepmind.

Dmitry Bagaev and Bert de Vries. Reactivemp. jl: A julia package for reactive message
passing-based bayesian inference. JuliaCon Proceedings, 1(1), 2022.

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan,
Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman.
Pyro: Deep universal probabilistic programming. Journal of Machine Learning Research,
20(28):1–6, 2019.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael
Betancourt, Marcus A Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A
probabilistic programming language. Journal of Statistical Software, 76, 2017.

Marco Cox, Thijs van de Laar, and Bert de Vries. A factor graph approach to automated
design of bayesian signal processing algorithms. International Journal of Approximate
Reasoning, 104:185–204, 2019.

Antoine Dedieu, Guangyao Zhou, Dileep George, and Miguel Lazaro-Gredilla. Learn-
ing noisy-or bayesian networks with max-product belief propagation. arXiv preprint
arXiv:2302.00099, 2023.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.

Dileep George, Wolfgang Lehrach, Ken Kansky, Miguel Lázaro-Gredilla, Christopher Laan,
Bhaskara Marthi, Xinghua Lou, Zhaoshi Meng, Yi Liu, Huayan Wang, et al. A generative
vision model that trains with high data efficiency and breaks text-based CAPTCHAs.
Science, 358(6368), 2017.

23

http://github.com/google-deepmind
http://github.com/google/jax


Zhou, Dedieu, Kumar, Lehrach, Kushagra, George and Lázaro-Gredilla

Amir Globerson and Tommi Jaakkola. Fixing max-product: convergent message passing
algorithms for map lp-relaxations. Advances in Neural Information Processing Systems,
20, 2007.

Joerg Kappes, Bjoern Andres, Fred Hamprecht, Christoph Schnorr, Sebastian Nowozin,
Dhruv Batra, Sungwoong Kim, Bernhard Kausler, Jan Lellmann, Nikos Komodakis, et al.
A comparative study of modern inference techniques for discrete energy minimization
problems. In IEEE Conference on Computer Vision and Pattern Recognition, pages
1328–1335, 2013.

Frank R Kschischang, Brendan J Frey, and H-A Loeliger. Factor graphs and the sum-
product algorithm. IEEE Transactions on Information Theory, 47(2):498–519, 2001.

Miguel Lázaro-Gredilla, Yi Liu, D Scott Phoenix, and Dileep George. Hierarchical compo-
sitional feature learning. arXiv preprint arXiv:1611.02252, 2016.

Miguel Lazaro-Gredilla, Antoine Dedieu, and Dileep George. Perturb-and-max-product:
Sampling and learning in discrete energy-based models. Advances in Neural Information
Processing Systems, 34, 2021.

Miguel Lázaro-Gredilla, Wolfgang Lehrach, Nishad Gothoskar, Guangyao Zhou, Antoine
Dedieu, and Dileep George. Query training: Learning a worse model to infer better
marginals in undirected graphical models with hidden variables. In AAAI Conference on
Artificial Intelligence, volume 35, pages 8252–8260, 2021.

Martin Mächler. Accurately computing log (1- exp (- a )) assessed by the rmpfr package.
Technical report, Technical report, 2012.

R. J. McEliece, D. J. C. MacKay, and J. F. Cheng. Turbo decoding as an instance of Pearl’s
’belief propagation’ algorithm. IEEE J. on Selected Areas in Comm., 16(2):140–152, 1998.

Kevin P Murphy, Yair Weiss, and Michael I Jordan. Loopy belief propagation for approxi-
mate inference: an empirical study. In Fifteenth conference on Uncertainty in Artificial
Intelligence, pages 467–475, 1999.

Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan kaufmann, 1988.

Marco Pretti. A message-passing algorithm with damping. Journal of Statistical Mechanics:
Theory and Experiment, 2005(11):P11008, 2005.

Siamak Ravanbakhsh, Barnabás Póczos, and Russell Greiner. Boolean matrix factorization
and noisy completion via message passing. In International Conference on Machine
Learning, pages 945–954. PMLR, 2016.

John Salvatier, Thomas V Wiecki, and Christopher Fonnesbeck. Probabilistic programming
in python using pymc3. PeerJ Computer Science, 2:e55, 2016.

Jacob Schreiber. Pomegranate: fast and flexible probabilistic modeling in python. Journal
of Machine Learning Research, 18(164):1–6, 2018.

24



PGMax: Factor Graphs for Discrete PGMs and Loopy Belief Propagation in JAX

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An introduction
to probabilistic programming. arXiv preprint arXiv:1809.10756, 2018.

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families,
and variational inference. Foundations and Trends R© in Machine Learning, 1(1–2):1–305,
2008.

Chaohui Wang, Nikos Komodakis, and Nikos Paragios. Markov random field modeling,
inference & learning in computer vision & image understanding: A survey. Computer
Vision and Image Understanding, 117(11):1610–1627, 2013.

Jonathan S Yedidia, William Freeman, and Yair Weiss. Generalized belief propagation.
Advances in Neural Information Processing Systems, 13, 2000.

Guangyao Zhou. Mixed hamiltonian monte carlo for mixed discrete and continuous vari-
ables. Advances in Neural Information Processing Systems, 33:17094–17104, 2020.

Guangyao Zhou, Wolfgang Lehrach, Antoine Dedieu, Miguel Lázaro-Gredilla, and Dileep
George. Graphical models with attention for context-specific independence and an appli-
cation to perceptual grouping. arXiv preprint arXiv:2112.03371, 2021.

25


	Introduction
	Related Work
	Main PGMax Features
	A Flat Array-Based LBP Implementation
	Experiments
	Timing Comparison with Alternative Libraries
	Specifying a Large Class of Factor Graphs
	Leveraging Advanced JAX Features

	Additional comparisons with pomegranate
	Varying the batch size
	Comparing the energies

	Parallel Loopy Belief propagation in PGMax
	General framework
	Inference in PGMs
	Stable computation of two useful functions
	Belief propagation in PGMax for an enumeration factor
	At the temperature T=0
	At a temperature T>0

	Belief propagation for logical factors
	Message updates for an OR factor
	At the temperature T=0
	At a temperature T>0

	Message updates for a Pool factor
	At the temperature T=0
	At a temperature T>0

	Energy computation

	Proof of Lemma 1

