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Abstract

We provide new nonasymptotic false discovery proportion (FDP) confidence envelopes in
several multiple testing settings relevant for modern high dimensional-data methods. We
revisit the multiple testing scenarios considered in the recent work of Katsevich and Ram-
das (2020): top-k, preordered (including knockoffs), online. Our emphasis is on obtaining
FDP confidence bounds that both have nonasymptotical coverage and are asymptotically
accurate in a specific sense, as the number m of tested hypotheses grows. Namely, we
introduce and study the property (which we call m-consistency) that the confidence bound
converges to or below the desired level α when applied to a specific reference α-level false
discovery rate (FDR) controlling procedure. In this perspective, we derive new bounds
that provide improvements over existing ones, both theoretically and practically, and are
suitable for situations where at least a moderate number of rejections is expected. These
improvements are illustrated with numerical experiments and real data examples. In par-
ticular, the improvement is significant in the knockoffs setting, which shows the impact of
the method for a practical use. As side results, we introduce a new confidence envelope for
the empirical cumulative distribution function of i.i.d. uniform variables and we provide
new power results in sparse cases, both being of independent interest.

Keywords: Confidence envelope, False discovery rate, Knockoffs, Posthoc inference,
Online multiple testing

1. Introduction

1.1 Background

Multiple inference is a crucial issue in many modern, high dimensional, and massive data
sets, for which a large number of variables are considered and many questions naturally
emerge, either simultaneously or sequentially. Recent statistical inference has thus turned
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to designing methods that guard against false discoveries and selection effect, see Cui et al.
(2021); Robertson et al. (2023) for recent reviews on that topic. A key quantity is typically
the false discovery proportion (FDP), that is, the proportion of false discoveries within the
selection (Benjamini and Hochberg, 1995).

Among classical methods, finding confidence bounds on the FDP that are valid after a
user data-driven selection (‘post hoc’ FDP bounds), has retained attention since the seminal
works of Genovese and Wasserman (2004, 2006); Goeman and Solari (2011). The strategy
followed by these works is to build confidence bounds valid uniformly over all selection sub-
sets, which de facto provides a bound valid for any data-driven selection subset. A number
of such FDP bounds have been proposed since, either based on a ‘closed testing’ paradigm
(Hemerik et al., 2019; Goeman et al., 2019, 2021; Vesely et al., 2023), a ‘reference family’
(Blanchard et al., 2020; Durand et al., 2020), or a specific prior distribution in a Bayesian
framework (Perrot-Dockès et al., 2023). It should also be noted that methods providing
bounds valid uniformly over some particular selection subsets can also be used to provide
bounds valid on any subsets by using an ‘interpolation’ technique, see, e.g., Blanchard et al.
(2020). This is the case for instance for bounds based upon an empirical distribution func-
tion confidence band, as investigated by Meinshausen and Bühlmann (2005); Meinshausen
(2006); Meinshausen and Rice (2006); Dümbgen and Wellner (2023). Loosely, we will refer
to such (potentially partial) FDP bounds as FDP confidence envelopes in the sequel.

Recently, finding FDP confidence envelopes has been extended to different contexts of
interest in Katsevich and Ramdas (2020) (KR below for short), including knockoffs (Barber
and Candès, 2015; Candès et al., 2018) and online multiple testing (Aharoni and Rosset,
2014). For this, their bounds are tailored on particular nested ‘paths’, and employ accurate
martingale techniques. In addition, Li et al. (2024) have recently investigated specifically
the case of the knockoffs setting by using a ‘joint’ k-FWER error rate control (see also
Genovese and Wasserman, 2006; Meinshausen, 2006; Blanchard et al., 2020), possibly in
combination with closed testing.

1.2 New insight: m-consistency

The main thrust of this paper is to look at FDP confidence envelopes from the angle of a
particular property that we call m-consistency (m denoting the number of hypotheses under
consideration). First, recall that the false discovery rate (FDR) is the expectation of the
FDP, which is a type I error rate measure with increasing popularity since the seminal work
of Benjamini and Hochberg (1995). Informally, an FDP confidence envelope is m-consistent,
in relation to a given reference FDR-controlling selection procedure, if the envelope value for
the set output by that procedure converges to (or below) the corresponding nominal FDR
value, at least asymptotically when the total number m of hypotheses tends to infinity. This
property is important for several reasons:

• FDR controlling procedures output particular selection sets that are widely used in
practice. Hence, it is very useful to provide an accurate FDP confidence bound for
these particular rejection sets. This is the case for instance for the commonly used
Benjamini-Hochberg (BH) procedure at a level α for which the FDP bound should be
close to α, at least in ‘favorable’ cases;
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Consistent FDP envelopes

• a zoo of FDP confidence envelopes have been proposed in previous literature, and
we see m-consistency as a principled way to discard some of them while putting the
emphasis on others;

• searching for m-consistency can also lead to new bounds that are accurate for a
moderate sample size.

It turns out that most of the existing FDP bounds, while being accurate in certain
regimes, are not m-consistent with respect to classical FDR controlling procedures. In
particular, this is the case for the Simes bound (Simes, 1986) and those of Katsevich and
Ramdas (2020) with respect to the BH procedure, because of a an incompressible constant
factor (larger than 1) in front of the FDP estimate. The present paper proposes to fill
this gap by introducing new envelopes that are m-consistent. In a nutshell, we replace
the constant in front of the FDP estimate by a function that tends to 1 in an asymptotical
regime under broad conditions including sparse asymptotical settings (i.e., the proportion of
false null hypotheses tends to 0). We stress that this notion of m-consistency only concerns a
vanishing gap between the FDP bound and the FDR nominal level of a reference procedure.
It does not require that the individual tests are consistent in the usual sense, i.e. we do not
assume that they reject a false null hypothesis with probability tending to 1; nor does it
require that the reference procedure has full asymptotic power.

Let us emphasize again that the envelopes developed in this work have coverage holding
in a non-asymptotical sense. Here, m-consistency means that on top of this strong non-
asymptotical guarantee, the FDP bound satisfies an additional sharpness condition in an
asymptotical sense and for some scenarios of interest, including sparse ones.

1.3 Settings

Following Katsevich and Ramdas (2020), we consider the three following multiple testing
settings for which a ‘path’ means a (possibly random) nested sequence of candidate rejection
sets:

• Top-k: the classical multiple testing setting where the user tests a finite number m of
null hypotheses and observes simultaneously a family of corresponding p-values. This
is the framework of the seminal paper of Benjamini and Hochberg (1995) and of the
majority of the follow-up papers. In that case, the path is composed of the hypotheses
corresponding to the top-k most significant p-values (i.e. ranked in increasing order),
for varying k.

• Pre-ordered: we observe p-values for a finite set of cardinal m of null hypotheses,
which are a priori arranged according to some ordering. In that setting, the signal
(if any) is primarily carried by the ordering: alternatives are expected to be more
likely to have a small rank. Correspondingly the path in that case is obtained by
p-value thresholding (for fixed threshold) of the first k hypotheses w.r.t. that order,
for varying k. A typical instance is the knockoffs setting (Barber and Candès, 2015;
Candès et al., 2018), where the null hypotheses come from a high-dimensional linear
regression model and one wants to test whether each of the m variables is associated
with the response. The ordering is data-dependent and comes from an ancillary
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statistic independent of the tests themselves, so that one can argue conditionally and
consider the ordering (and path) as fixed.

• Online: the null hypotheses come sequentially, and there is a corresponding potentially
infinite stream of p-values. An irrevocable decision (reject or not) has to be taken in
turn for each new hypothesis, depending on past observations only. The path is
naturally defined according to the set of rejections until time t, for varying t. It is
markedly different from the pre-ordered setting because decisions are irrevocable and
the set of nulls is not a pre-specified finite set.

Let us introduce notation that encompasses the three settings mentioned above: the set
of hypotheses is denoted by H (potentially infinite), the set of null hypotheses H0 is an
unknown subset of H, and a path Π = (Rk, k ≥ 1) (with convention R0 = ∅) is an ordered
sequence of nested subsets of H that depends only on the observations. A confidence
envelope is a sequence (FDPk, k ≥ 1) (with convention FDP0 = 0) of random variables
valued in [0, 1], depending only on the observations, such that, for some pre-specified level
δ, we have

P
(
∀k ≥ 1,FDP(Rk) ≤ FDPk

)
≥ 1− δ, (1)

where FDP(Rk) = |Rk∩H0|
|Rk|∨1 is the FDP of the set Rk. In (1), the guarantee is non-asymptotic

and uniform in k, which means that it corresponds to confidence bounds valid uniformly
over the subsets of the path. Also, the distribution P is relative to the p-value model, which
will be specified further on and depends on the considered framework.

Remark 1 (Interpolation). Any FDP confidence envelope of the type (1) also leads to a
post hoc FDP bound valid uniformly for all R ⊂ H: specifically, by using the interpolation
method (see, e.g., Blanchard et al., 2020; Goeman et al., 2021; Li et al., 2024), if (1) holds

then the same property also holds with the sharper bound (F̃DPk, k ≥ 1) given by

F̃DPk =
mink′≤k

{
|Rk| − |Rk′ |+ |Rk′ |FDPk′

}
|Rk| ∨ 1

≤ FDPk, (2)

due to the fact that the number of false positives in Rk is always bounded by the number of
false positives in Rk′ ⊂ Rk plus the number of elements of Rk \Rk′.

Particular subsets of Π = (Rk, k ≥ 1) that are of interest are those controlling the FDR.
Given a nominal level α, a ‘reference’ procedure chooses a data-dependent k̂α such that
E
[
FDP(Rk̂α)

]
≤ α. Depending on the setting, we consider different reference procedures:

• Top-k setting: the reference FDR controlling procedure is the Benjamini-Hochberg
(BH) step-up procedure, see Benjamini and Hochberg (1995);

• Pre-ordered setting: the reference procedure is the Lei-Fithian (LF) adaptive Selective
sequential step-up procedure, see Lei and Fithian (2016) (itself being a generalization
of the procedure of Li and Barber, 2017);

• Online setting: the reference procedure is the (LORD) procedure, see Javanmard and
Montanari (2018) and more precisely the improved version of Ramdas et al. (2017).
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As announced, for all these procedures, the expectation of the FDP (that is, the FDR) is
guaranteed to be below α. Additionally, in many scenarios considered as prototypical in
the literature, it has been established that the FDP of a reference procedure concentrates
around its expectation as the number of tested hypotheses m tends to infinity, see, e.g.,
Genovese and Wasserman (2004); Neuvial (2008, 2013). In such a situation, it is thus
natural to expect that a confidence envelope on the FDP should asymptotically converge
to (or below) the target level α when applied to a reference procedure.

This motivates, in complement to the non-asymptotic control (1), the introduction of
a notion of m-consistency of an FDP envelope in relation to a reference procedure and a
sequence of models, as follows.

Definition 2 (m-consistency). Let δ, α ∈ (0, 1) be fixed. For each m ≥ 1, let be

• P(m) a multiple testing distribution model over the set of null hypotheses H(m) =

{1, . . . ,m} and a set of true null hypotheses H(m)
0 ⊂ H(m) (denote H(m)

1 = H(m) \
H(m)

0 );

• Π(m) = (R
(m)
k , k ≥ 1) a possibly random path of nested subsets of H(m);

• (FDP
(m)
k , k ≥ 1) a confidence envelope at level 1−δ over that path, i.e. satisfying (1);

• k̂(m)
α a procedure choosing a rejection set from the path Π(m) with guaranteed FDR

control at level α, i.e. satisfying E(m)
[
FDP

(
R

(m)

k̂
(m)
α

)]
≤ α.

Then the confidence envelope is said to be m-consistent with respect to the sequence (P(m),m ≥
1) and to the FDR controlling procedure R

(m)

k̂
(m)
α

∈ Π(m) at level α if for all ε > 0,

lim
m→∞

P(m)
(

FDP
(m)

k̂
(m)
α
− α ≥ ε

)
= 0. (3)

When applying this definition with respect to the reference procedures described above
(BH/LF/LORD), we will speak about BH/LF/LORD m-consistency for short. In addition,
in the above definition, P(m) stands for a multiple testing model with m hypotheses that is
to be specified. We will be interested in standard model sequences that represent relevant
practical situations, and in particular sparse cases where only a vanishing proportion of null
hypotheses are false when m tends to infinity. The above definition applies transparently
for the two first considered settings (top-k and pre-ordered). Note that due to (1), we have

P
(
∀α ∈ (0, 1),FDP(Rk̂α) ≤ FDPk̂α

)
≥ 1− δ. (4)

Hence, (3) comes as an asymptotical accuracy guarantee in addition to the non-asymptotical
coverage property (4). The uniformity in α in (4) allows for choosing α in a post hoc manner,
while maintaining the false discovery control, that is, for any data-dependent choice of α̂,
FDP(Rk̂α̂) ≤ FDPk̂α̂ with probability at least 1 − δ. For m-consistency, a similar (but
weaker) α-uniformity property can be obtained, see Remark 4 below.

In the third setting (online), the definition applies in the following sense: (3) reads
formally as

lim
m→∞

P(∞)
(
FDPm − α ≥ ε

)
= 0. (5)
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Here, the distribution of the data P(m) does not depend on m and corresponds to P(∞) the

joint distribution of the countable sequence of observations. The path Π(m) = (R
(m)
k , k ≥

1) = (Rk, k ≥ 1) does not depend on m and corresponds to the sequence of rejections along

the time. Also, k̂
(m)
α = m in that setting, that is, the bound is built for Rk for k = m.

In contrast with the two first settings, the procedure of interest is represented by the path

itself rather than by some particular choice k̂
(m)
α of k.

Remark 3. A notion of consistency for FDP bounds has been introduced by Goeman et al.
(2019, Section 7). In our terminology their notion could be dubbed (n,m)-consistency, as
both the number of hypotheses m and a parameter n modelizing signal-to-noise ratio (e.g.,
size of the underlying sample, or signal strength) grow to infinity. The authors consider the
following scenario:

• the bound is considered on any set Sm such that, conditional to their index being in
the set Sm, the p-values are independently drawn from a mixture

γUnif[0, 1] + (1− γ)Q1,n. (6)

• Q1,n approaches a Dirac δ1 distribution as n→∞. (Individual test consistency under
the alternative)

• |Sm| remains lower bounded by a linear function of m.

Under these assumptions the authors show that the Simes-based closed testing bound for Sm
is consistent, in the sense that it converges asymptotically to γ. The above assumptions

allow, in the non-sparse case, to take Sm = H(m)
1 and further conclude to the consistency

of the bound for any rejection set of size growing linearly with m.
The notion considered in the present work is of a different nature, as at least one of the
above assumptions is not met in the typical scenarios we will consider:

• in the non-sparse setting, we do not require individual test consistency and consider
fixed signal strength.

• in the sparse setting, we consider growing signal strength as m → ∞, which implies
individual test consistency but in a way that is only sightly above the threshold of

global signal detectability. In such a scenario
∣∣H(m)

1

∣∣ does not grow linearly with m
and neither do the size of rejections sets |Sm| of interest.

• we evaluate the bound on rejection sets from reference procedures that do not follow
the posited mixture distribution (6). For example, conditional to being rejected by BH
the p-values do not follow a Uniform/Alternative independent mixture distribution.

Thus, in the scenarios we will focus on, some ambiguity is asymptotically remaining and
one cannot expect full asymptotic signal identifiability. In fact, we show (see Section 2.8)
that in such a scenario, the Simes-based closed testing bound is not m-consistent in general.
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1.4 Contributions

Our findings are as follows:

• In each of the considered settings (top-k, pre-ordered, online), we provide new (non-
asymptotical) FDP confidence envelopes that are m-consistent under general condi-
tions, including sparse configurations, see Proposition 10, Corollary 13 (top-k), Propo-
sition 21, Corollary 24 (pre-ordered) and Proposition 30, Corollary 33 (online). Table 1
provides a summary of the considered procedures in the different contexts, including
the existing and new ones. It is worth noting that in the top-k setting, the envelope
based on the DKW inequality (Massart, 1990) is consistent under moderate sparsity
assumptions only, while the new envelope based on Wellner’s inequality (Shorack and
Wellner, 2009) covers the whole sparsity range (Corollary 13).

• As a byproduct, our results provide (non-asymptotical) confidence bounds on the
FDP for standard FDR-controlling procedures, that are also asymptotically sharp (m-
consistency) and for which a data-driven choice of the level α is allowed. In particular,
in the top-k setting, this gives a new sharp confidence bound for the achieved FDP of
the BH procedure while tuning the level from the same data, see (19) below.

• In the top-k setting, we also theoretically show that the Simes bound can be m-
inconsistent, even after applying a closed-testing improvement (Goeman and Solari,
2011), see Section 2.8. Hence, closed-testing does not solve the m-inconsistency issue
in itself. Also, we develop adaptive versions of our bounds (for which the proportion
of null hypotheses is simultaneously estimated), which can be seen as an improvement
stage that is less computationally demanding than closed-testing, while bringing al-
ready a large part of the latter’s improvement when combined with the interpolation
technique of Remark 1, see Section D.2.

• In the pre-ordered setting, including the ‘knockoff’ case, we introduce new envelopes,
called ‘Freedman’ and ‘KR-U’, which are the two first (provably) m-consistent con-
fidence bounds in that context to our knowledge. This is an important contribution
since the knockoff method is one of the leading methodologies in the covariate testing
literature of the last decade. In addition, KR-U is shown to behave suitably, even for
moderate sample size, see Section 5.

• In the online setting, the new envelopes, called ‘Freedman’ and ‘KR-U’, provide an
additional information on the LORD procedure via an FDP upper-envelope uniformly
valid along time, and converging to the prescribed level α on the long run, see Fig-
ure 9.

• Our study is based on dedicated tools of independent interest, based on uniform ver-
sions of classical deviation inequalities, see Corollary 6 (Wellner’s inequality), Corol-
lary 42 (Freedman’s inequality). Both can be seen as a form of ‘stitching’ together
elementary inequalities, see Howard et al. (2021) for recent developments of this prin-
ciple. In addition, the Freedman-type bounds in the pre-ordered and online settings
are both based on a single martingale-type result, see Theorem 38.
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Simes DKW KR Wellner (new) Freedman (new) KR-U (new)

Top-k No Yes No Yes
Pre-ordered No Yes Yes

Online No Yes Yes

Table 1: m-consistency property (Yes or No) for different envelopes, depending on the
considered contexts. ‘m-consistent’ means consistent at least in a particular (reasonable)
configuration and with respect to the corresponding reference procedure BH/LF/LORD.
Blank means undefined in that context.

Remark 4 (α-uniform m-consistency). In the top-k and pre-ordered setting, it is possible
to show slightly more than the convergence (3), namely we can aim for

P(m)

(
sup

α∈[α0,1)

{
FDP

(m)

k̂
(m)
α
− α

}
≥ ε

)
= o(1),

for any fixed α0 ∈ (0, 1). More precisely, we can easily show that this α-uniform m-
consistency property can be obtained in Corollaries 13 and 24 below by monotonicity of
the reference procedure. This allows to account for possible ‘data snooping’ from the user,
that is, the consistency property also holds for α = α̂ possibly depending on the data, pro-
vided that it is larger than some α0 > 0. However, for the online setting, such uniformity
is out of reach since the full path itself already depends on α.

Remark 5 (FDP concentration and m-consistency). Given the FDR control and (3), in
cases where the FDP of the reference procedure concentrates around its expectation as m
grows (Genovese and Wasserman, 2004; Neuvial, 2008, 2013), we expect that bounds of
the form α + ∆m,α,δ with ∆m,α,δ = o(1) should hold in the sense of Definition 2, and thus
m-consistent bounds can be built. In such situations, using m-inconsistent bounds (such as
the Simes bound in the top-k setting) is questionable.

2. Results in the top-k case

2.1 Top-k setting

We consider the classical multiple setting where we observem independent p-values p1, . . . , pm,
testing m null hypotheses H1, . . . ,Hm. The set of true nulls is denoted by H0, which is of
cardinal m0 and we denote π0 = m0/m ∈ (0, 1). We assume that the p-values are uniformly
distributed under the null, that is, for all i ∈ H0, pi ∼ U(0, 1).

We consider here the task of building a (1 − δ)-confidence envelope (1) for the top-k
path

Rk = {1 ≤ i ≤ m : pi ≤ p(k)}, k = 1, . . . ,m. (7)

A rejection set of particular interest is the BH rejection set, given by Rk̂α where

k̂α = max
{
k ∈ N : F̂DPk ≤ α

}
, F̂DPk = mpk/k, (8)

(with the convention R0 = ∅).
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2.2 Existing envelopes

Let us first review the prominent confidence envelopes that have been considered in the
literature. Let U1, . . . , Un be n ≥ 1 i.i.d. uniform random variables. For δ ∈ (0, 1), each of
the following (uniform) inequalities holds with probability at least 1− δ:

• Simes (1986) (or Robbins, 1954): for all t ∈ (0, 1), n−1
∑n

i=1 1{Ui ≤ t} ≤ t/δ.

• DKW (Massart, 1990): for all t ∈ (0, 1), n−1
∑n

i=1 1{Ui ≤ t} ≤ t+
√

log(1/δ)/2n−1/2.

• KR (Katsevich and Ramdas, 2020) (for δ ≤ 0.31), for all t ∈ (0, 1), n−1
∑n

i=1 1{Ui ≤ t} ≤
log(1/δ)

log(1+log(1/δ))(1/n+ t).

Taking (U1, . . . , Un) = (pi, i ∈ H0), n = m0, and t = p(k) in the bounds above gives the
following confidence envelopes (in the sense of (1)) for the top-k path: for k ∈ {1, . . . ,m},

FDP
Simes

k := 1 ∧
mp(k)

kδ
; (9)

FDP
DKW

k := 1 ∧

(
mp(k)

k
+
m1/2

√
0.5 log 1/δ

k

)
; (10)

FDP
KR

k := 1 ∧
(

log(1/δ)

log(1 + log(1/δ))

(mp(k)

k
+ 1/k

))
, (11)

the last inequality requiring in addition δ ≤ 0.31. Note that we can slightly improve these
bounds by taking appropriate integer parts, but we will ignore this detail further on for the
sake of simplicity.

2.3 New envelope

In addition to the above envelopes, this section presents a new one deduced from a new
‘uniform’ variation of Wellner’s inequality (recalled in Lemma 44). Let us first define the
function

h(λ) = λ(log λ− 1) + 1, λ > 1. (12)

Lemma 43 gathers some properties of h, including explicit accurate bounds for h and h−1.

Proposition 6 (Uniform version of Wellner’s inequality). Let U1, . . . , Un be n ≥ 1 i.i.d.
uniform random variables and κ = π2/6. For all δ ∈ (0, 1), we have with probability at least
1− δ,

∀t ∈ (0, 1), n−1
n∑
i=1

1{Ui ≤ t} ≤ t h−1

(
log(κ/δ) + 2 log(dlog2(1/t)e)

ng(t)

)
, (13)

for g(t) = 2−dlog2(1/t)e/(1− 2−dlog2(1/t)e) ≥ t/2 and h(·) defined by (12). In particular, with
probability at least 1− δ,

∀t ∈ (0, 1), n−1
n∑
i=1

1{Ui ≤ t} ≤ t h−1

(
2 log(κ/δ) + 4 log(1 + log2(1/t))

nt

)
. (14)
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The proof of Proposition 6 is given in Section A.1. It immediately leads to the following
result.

Theorem 7. In the top-k setting of Section 2.1, the following quantity is a (1−δ)-confidence
envelope in the sense of (1) for the top-k path:

FDP
Well

k := 1 ∧

(
mp(k)

k
h−1

(
2 log(κ/δ) + 4 log

(
1 + log2(1/p(k))

)
mp(k)

))
, (15)

with κ = π2/6.

Proof We use (14) for (U1, . . . , Un) = (pi, i ∈ H0), n = m0, and t = p(k). We conclude by
using m0 ≤ m and the monotonicity property of Lemma 43.

Remark 8. Denoting by Fn(t) the RHS of (14), we can easily check

sup
t∈((log logn)/n,1)

(
√
n

Fn(t)− t√
t log(1 + log2(1/t))

)
= O(1),

with a constant possibly depending on δ. The iterated logarithm in the denominator is known
from classical asymptotic theory (convergence to a Brownian bridge) to be unimprovable for
a uniform bound in the vicinity of 0; in this sense the above is a ‘finite law of the iterated
logarithm (LIL) bound’ (Jamieson et al., 2014).

2.4 FDP confidence bounds for BH and m-consistency

Applying the previous bounds for the particular BH rejection sets Rk̂α (see (8)) leads to
the following result.

Corollary 9. In the top-k setting of Section 2.1, for any α, δ ∈ (0, 1), the following quan-
tities are (1 − δ)-confidence bounds for FDP(Rk̂α), the FDP of the BH procedure at level
α:

FDP
Simes

α := 1
{
k̂α ≥ 1

}
∧ (α/δ); (16)

FDP
DKW

α := 1
{
k̂α ≥ 1

}
∧

(
α+

m1/2
√

0.5 log 1/δ

1 ∨ k̂α

)
; (17)

FDP
KR

α := 1
{
k̂α ≥ 1

}
∧
(

log(1/δ)

log(1 + log(1/δ))

(
α+ 1/(1 ∨ k̂α)

))
; (18)

FDP
Well

α := 1
{
k̂α ≥ 1

}
∧

α h−1

2 log(κ/δ) + 4 log
(

1 + log2

(
m

α(1∨k̂α)

))
α(1 ∨ k̂α)

, (19)

where κ = π2/6, k̂α denotes the number of rejections of the BH procedure (8) at level α,
and where the KR bound requires in addition δ ≤ 0.31. Moreover, these bounds are also
valid uniformly in α ∈ (0, 1), in the sense that

P(∀α ∈ (0, 1),FDP(Rk̂α) ≤ FDP
Method

α ) ≥ 1− δ, Method ∈ {Simes,DKW,KR,Well},

and thus also when using a post hoc choice α = α̂ of the level.

10



Consistent FDP envelopes

Proof For (19), we use (14) for (U1, . . . , Un) = (pi, i ∈ H0), n = m0, and t = α(1∨k̂α)/m.

Let us now consider the m-consistency property (3), by using BH as reference procedure.
Among the four above bounds, it is apparent that Simes and KR are not BH m-consistent,
because of the constant in front of α; namely, for all m,

FDP
Simes

α ∧ FDP
KR

α ≥ (1 ∧ (cα)) ∧ 1
{
k̂α ≥ 1

}
,

for some constant c > 1, which implies the BH m-inconsistency for a sequence of model
such that k̂α ≥ 1 with an asymptotically non-null probability. By contrast, FDP

DKW

α and
FDP

Well

α are BH m-consistent in the following sense.

Proposition 10. Let us consider any model sequence P(m) in the top-k setting and denote
by k̂α the number of nulls rejected by the BH procedure at level α. Then the following
envelopes are BH m-consistent in the sense of (3):

• FDP
DKW

α if m1/2/k̂α = oP (1);

• FDP
Well

α if (log logm)/k̂α = oP (1).

The latter result means that the BH procedure at level α should make enough rejections
in order to provide m-consistency. In the two-group model of (Efron et al., 2001) with a
fixed proportion of alternatives in (0, 1) (that is, a “dense” case), under some assumptions
on the alternative distribution, and assuming α above a critical value, Chi (2007) showed
that k̂α is asymptotically of the order of m and thus the DKW and Wellner bounds are
both m-consistent. Another exemple, including sparse situations, is considered in the next
section.

2.5 BH m-consistency in a prototypical model

Definition 11. The sparse one-sided Gaussian location model of parameter m, b, c, β, de-

noted as P
(m)
b,c,β, is defined as follows: pi = Φ(Xi), 1 ≤ i ≤ m, the Xi’s are independent,

with Xi ∼ N (0, 1) for i ∈ H0 and Xi ∼ N (µm, 1) otherwise, for µm =
√

2β logm+ b, b > 0,
and m1 = |H1| = bcm1−βc, c ∈ (0, 1), β ∈ [0, 1).

Note that β = 0 is the dense case for which the alternative mean µm = b > 0 is a fixed
quantity, which means that the individual tests do not have full power1, even asymptotically
w.r.t. m. By contrast, β > 0 corresponds to the sparse case, for which µm =

√
2β logm+ b

tends to infinity. In both cases, the magnitude of alternative means is defined to be on
the ‘edge of detectability’ where the BH procedure has some non-trivial power, see Bogdan
et al. (2011); Neuvial and Roquain (2012); Abraham et al. (2021) for instance.

Theorem 12. Let α ∈ (0, 1). In the above one-sided Gaussian location model P
(m)
b,c,β, the

number of rejections k̂α of the BH procedure is such that, as m grows to infinity,

P
(m)
b,c,β(t∗m ≤ αk̂α/m ≤ t]m) ≥ 1− 2e−dm1 , for m1/m . t∗m ≤ t]m . m1/m, (20)

1. This setting is in sharp contrast with Goeman et al. (2019, Section 7) which assumed asymptotical full
power for the individual tests and the dense case, see also Remark 3.

11
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for some constant d > 0 (depending on α, β, b), where t∗m ∈ (0, 1) is the unique solution

of Gm(t) = 2t/α, t]m ∈ (0, 1) is the unique solution of Gm(t) = 0.5t/α, and where Gm(t) =

(m0/m)t+ (m1/m)Φ(Φ
−1

(t)− µm), with Φ(z) = P(Z ≥ z), z ∈ R.

Theorem 12 is proved in Section A.2. It implies k̂α �P
(m)
b,c,β

m1−β, which leads to the

following result.

Proposition 13. Let us consider the sequence of sparse one-sided Gaussian location models

(P
(m)
b,c,β,m ≥ 1) with fixed parameters b ∈ R, c ∈ (0, 1) and a sparsity parameter β ∈ [0, 1),

as defined above. Then we have for all α ∈ (0, 1),

FDP
DKW

α − α �
P

(m)
b,c,β

m−1/2+β;

FDP
Well

α − α �
P

(m)
b,c,β

√
log log(m)m−1/2+β/2,

where um �P vm stands for um = OP (vm) and vm = OP (um). In particular, concerning

the BH m-consistency (3) for the model sequence (P
(m)
b,c,β,m ≥ 1):

• the DKW bound (10),(17) is m-consistent when β < 1/2 but fails to be for β ≥ 1/2;

• the Wellner bound (15),(19) is m-consistent for any arbitrary β ∈ (0, 1).

Corollary 13 shows the superiority of the Wellner bound on the DKW bound for achiev-
ing the m-consistency property on a particular sparse sequence models: while the DKW
bound needs a model dense enough (β < 1/2), the Wellner bound covers the whole sparsity
range β ∈ (0, 1).

2.6 Adaptive envelopes

Let us consider the following upper-bounds for m0:

m̂Simes
0 := m ∧ inf

t∈(0,δ)

Vt
1− t/δ

; (21)

m̂DKW
0 := m ∧ inf

t∈(0,1)

(
C1/2

2(1− t)
+

√
C

4(1− t)2
+

Vt
1− t

)2

; (22)

m̂KR
0 := m ∧ inf

t∈(0,1/C′)

C ′ + Vt
1− C ′t

; (23)

m̂Well
0 := m ∧ inf

t∈(0,1)

(√
tCt

2(1− t)2
+

√
Ct

2(1− t)2
+

Vt
1− t

)2

, (24)

where Vt =
∑m

i=1 1{pi > t}, C = log(1/δ)/2, C ′ = log(1/δ)
log(1+log(1/δ)) , Ct = 2 log(κ/δ) +

4 log(1 + log2(1/t)), κ = π2/6. Since Vt/(1−t) corresponds to the so-called Storey estimator
Storey (2002), these four estimators can all be seen as Storey-type confidence bounds, each
including a specific deviation term that takes into account the probability error δ. Note
that m̂DKW

0 was already proposed in Durand et al. (2020).

12
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Proposition 14. In the top-k setting of Section 2.1, the envelopes defined by (9), (10),
(11) and (15) with m replaced by the corresponding bound m̂Simes

0 (21), m̂DKW
0 (22), m̂KR

0

(23) or m̂Well
0 (24), respectively, are also (1− δ)-confidence envelopes in the sense of (1) for

the top-k path.

We can easily check that these four adaptive envelopes all uniformly improve their own
non-adaptive counterpart. The proof of Proposition 14 is provided in Section A.3.

Remark 15. In practice, the bounds m̂Simes
0 (21), m̂DKW

0 (22), m̂KR
0 (23) or m̂Well

0 (24) can
be computed by taking an infimum over t = p(k), 1 ≤ k ≤ m and by replacing Vt by m− k.

Applying Proposition 14 for the BH procedure, this gives rise to the following adaptive
confidence bounds.

Corollary 16. In the top-k setting of Section 2.1, for any α, δ ∈ (0, 1), the following
quantities are (1− δ)-confidence bounds for the FDP of the BH procedure at level α:

FDP
Simes-adapt

α := 1 ∧ α(m̂Simes
0 /m)/δ; (25)

FDP
DKW-adapt

α := 1 ∧
(
α(m̂DKW

0 /m) +
(m̂DKW

0 )1/2
√

0.5 log 1/δ

1 ∨ k̂α

)
; (26)

FDP
KR-adapt

α := 1 ∧
(

log(1/δ)

log(1 + log(1/δ))

(
α(m̂KR

0 /m) + 1/(1 ∨ k̂α)
))

; (27)

FDP
Well-adapt

α := 1 ∧

α(m̂Well
0 /m) h−1

2 log(κ/δ) + 4 log
(

1 + log2

(
m

α(1∨k̂α)

))
α(1 ∨ k̂α)m̂Well

0 /m

, (28)

where κ = π2/6, k̂α denotes the number of rejections of BH procedure (8) at level α, and
where the KR-adapt bound requires in addition δ ≤ 0.31. Moreover, these bounds are also
valid uniformly in α ∈ (0, 1) and thus also when using a post hoc choice α = α̂ of the level.

Proof For (28), we use (14) for (U1, . . . , Un) = (pi, i ∈ H0), n = m0, t = α(1∨ k̂α)/m, and
the fact that m0 ≤ m̂Well

0 on the considered event by the proof in Section A.3. The other
bounds are proved similarly.

13
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2.7 Interpolated bounds

According to Remark 1, the coverage (1) is still valid after the interpolation operation given
by (2). As a result, the above confidence envelopes can be improved as follows:

F̃DP
Simes

k := min
k′≤k
{k − k′ + k′ ∧ (mp(k′)/δ)}/k; (29)

F̃DP
DKW

k := min
k′≤k
{k − k′ + k′ ∧ (mp(k′) +m1/2

√
0.5 log 1/δ)}/k; (30)

F̃DP
KR

k := min
k′≤k

{
k − k′ + k′ ∧

(
log(1/δ)

log(1 + log(1/δ))

(
mp(k′) + 1

))}
/k; (31)

F̃DP
Well

k := min
k′≤k

{
k − k′ + k′ ∧

(
mp(k′) h

−1

(
2 log(κ/δ) + 4 log

(
1 + log2(1/p(k′))

)
mp(k′)

))}
/k,

(32)

respectively. When applied to BH rejection set, this also provides new confidence bounds

F̃DP
Simes

α , F̃DP
DKW

α , F̃DP
KR

α , F̃DP
Well

α , that can further be improved by replacing m by the
corresponding estimator m̂0.

2.8 Comparison to closed testing based on Simes local tests

Our bounds can be further improved by using a closed-testing approach (Goeman and
Solari, 2011) (see Lemma 6 of Goeman et al., 2021 for an explicit formula). It is legitimate
to ask if the m-inconsistency of the Simes bound is still true with this refinement. The
following result establishes that, as expected, the closed-testing version of Simes bound is
still m-inconsistent. It uses the top-k setting of Section 2.1, for which we added random
effects for the true/false null hypotheses (two-group model of Efron et al., 2001).

Proposition 17. Consider an i.i.d. mixture model P
(m)
π0,G

of m independent p-values with
proportion of nulls π0 and marginal CDF independent of m given by

F (t) = π0t+ (1− π0)G(t),

with G the cdf of an (alternative) distribution having continuous decreasing density g on
[0, 1] (so that g(0) > 1). Then if α, δ are such that

0 < δ <
1

π0 + (1− π0)g(0)
< α < 1,

the Simes-based closed testing bound2 at level δ is not BH(α)-m-consistent in the model

P
(m)
π0,G

, but FDP
DKW

α and FDP
Well

α are.

Since closed testing bounds are by essence more accurate than adaptive/interpolated
ones, Proposition 17 also shows that the versions (25) and (29) of the Simes bound are not
BH-m-consistent. Also, numerical experiments suggest that the improvement brought by
closed testing is only modest when compared to the adaptive interpolated versions of our
bounds (see Section D.2), which are less computationally demanding.

2. See Goeman and Solari (2011); Goeman et al. (2019) for a formal definition and useful formulations.
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3. Results in the pre-ordered case

In this section, we build m-consistent envelopes in the case where the p-values are ordered
a priori, which covers the famous ‘knockoff’ case.

3.1 Pre-ordered setting

Let π : {1, . . . ,m} → {1, . . . ,m} be some ordering of the p-values that is considered as
given and deterministic (possibly coming from independent data). The pre-ordered setting
is formally the same as the one of Section 2.1, except that the p-value set is explored
according to π(1), π(2), . . . , π(m). The rationale behind this is that the alternative null
hypotheses H1 = {1, . . . ,m}\H0 are implicitly expected to be more likely to have a small
rank in the ordering π (although this condition is not needed for the future controlling
results to hold).

Formally, the considered path is

Rk = {π(i) : 1 ≤ i ≤ k, pπ(i) ≤ s}, k = 1, . . . ,m, (33)

for some fixed additional threshold s ∈ (0, 1] (possibly determined from independent data)
and can serve to make a selection. The aim is still to find envelopes (FDPk)k satisfying
(1) for this path while being m-consistent. To set up properly the consistency, we should
consider an FDR controlling procedure that is suitable in this setting. For this, we consider
the Lei Fithian (LF) adaptive Selective sequential step-up procedure (Lei and Fithian,
2016). The latter is defined by Rk̂α where

k̂α = max
{
k ∈ {0, . . . ,m} : F̂DPk ≤ α

}
, F̂DPk =

s

1− λ
1 +

∑k
i=1 1

{
pπ(i) > λ

}
1 ∨

∑k
i=1 1

{
pπ(i) ≤ s

} , (34)

where λ ∈ [0, 1) is an additional parameter. The ‘knockoff’ setting of Barber and Candès
(2015) can be seen as a particular case of this pre-ordered setting, where the p-values are
independent and binary, the ordering is independent of the p-values and s = λ = 1/2. The
LF procedure reduces in that case to the classical Barber and Candès (BC) procedure.

3.2 New confidence envelopes

The first envelope is as follows.

Theorem 18. Consider the pre-ordered setting of Section 3.1 with s ∈ (0, 1]. For all
δ ∈ (0, 1), λ ∈ [0, 1), the following is a (1− δ)-confidence envelope for the ordered path (33)
in the sense of (1):

FDP
Freed

k := 1 ∧
s

1−λ
∑k

i=1 1
{
pπ(i) > λ

}
+ ∆(νk)∑k

i=1 1
{
pπ(i) ≤ s

} , k ≥ 1, (35)

where ∆(u) = 2
√
εu
√

(u ∨ 1) + 1
2εu, εu = log((1 + κ)/δ) + 2 log(1 + log2(u ∨ 1)), u > 0,

κ = π2/6 and ν = s(1 + min(s, λ)/(1− λ)).
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The proof of Theorem 18 is a direct consequence of a more general result (Theorem 38),
itself being a consequence of a uniform version of Freedman’s inequality (see Section B.2).

The second result is based on the KR envelope (Katsevich and Ramdas, 2020):

FDP
KR

k := 1 ∧

(
log(1/δ)

a log(1 + 1−δB/a
B )

a+ s
1−λ

∑k
i=1 1

{
pπ(i) > λ

}
1 ∨

∑k
i=1 1

{
pπ(i) ≤ s

} )
, (36)

where a > 0 is some parameter, B = s/(1− λ) and it is assumed λ ≥ s. While the default
choice in KR is a = 1, we can build up a new envelope by taking a union bound over
a ∈ N\{0}:

Theorem 19. Consider the pre-ordered setting of Section 3.1 with s ∈ (0, 1]. For all
δ ∈ (0, 1) and λ ∈ [s, 1], the following is a (1 − δ)-confidence envelope for the ordered path
(33) in the sense of (1):

FDP
KR-U

k := 1 ∧ min
a∈N\{0}

 log(1/δa)

a log(1 + 1−δB/aa
B )

a+ s
1−λ

∑k
i=1 1

{
pπ(i) > λ

}
1 ∨

∑k
i=1 1

{
pπ(i) ≤ s

}
, k ≥ 1, (37)

for δa = δ/(κa2), a ≥ 1, for B = s/(1− λ), κ = π2/6.

The envelope (37) is less explicit than (35) but has a better behavior in practice, as we
will see in the numerical experiments of Section 5.

3.3 Confidence bounds for LF and m-consistency

Recall that the LF procedure (34) is the reference FDR-controlling procedure in this setting.
Applying the above envelopes for the LF procedure gives the following confidence bounds.

Corollary 20. In the pre-ordered setting of Section 3.1 with a selection threshold s ∈ (0, 1],
for any α, δ ∈ (0, 1), λ ∈ [s, 1] the following quantities are (1− δ)-confidence bounds for the
FDP of the LF procedure with parameters s, λ at level α:

FDP
KR

α := 1 ∧

(
log(1/δ)

log(1 + 1−δB
B )

(α+ 1/(1 ∨ r̂α))

)
; (38)

FDP
Freed

α := 1 ∧
(
α+ ∆(νk̂α)/(1 ∨ r̂α)

)
(39)

FDP
KR-U

α := 1 ∧ min
1≤a≤1∨r̂α

 log(1/δa)

a log(1 + 1−δB/aa
B )

(α+ a/(1 ∨ r̂α))

, (40)

for ν = s(1 + s/(1 − λ)), B = s/(1 − λ), δa = δ/(κa2), a ≥ 1, κ = π2/6, ∆(·) defined in

Theorem 18 and where k̂α is as in (34) and r̂α =
∑k̂α

i=1 1
{
pπ(i) ≤ s

}
denotes the number of

rejections of LF procedure at level α. In addition, these bounds are also valid uniformly in
α ∈ (0, 1) in the sense that

P(∀α ∈ (0, 1),FDP(Rk̂α) ≤ FDP
Method

α ) ≥ 1− δ, for Method ∈ {KR,Freed,KR-U},

and thus also when using a post hoc choice α = α̂ of the level.
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Proof This is direct by applying (36) (a = 1), (35) and (37) to the rejection set Rk̂α .

Let us now study the consistency property (3). It is apparent that KR is never LF
m-consistent: namely, for all m ≥ 1,

FDP
KR

α ≥ 1 ∧ cα,

for some constant c > 1. By contrast, FDP
Freed

α is LF m-consistent if ∆(νm)/r̂α tends to 0
in probability, that is, (m log logm)1/2/r̂α = oP (1). For FDP

KR-U

α , we always have

FDP
KR-U

α ≤ log(1/δâ)

â log(1 +
1−δB/ââ

B )

(
α+ 1/(1 ∨ r̂α)1/2

)

by considering â = b(1 ∨ r̂α)1/2c. By Lemma 45, this provides consistency (3) as soon as
1/r̂α = oP (1). This is summarized in the next result.

Proposition 21. Let us consider any model sequence P(m) in the pre-ordered setting and
denote the rejection number of the LF procedure at level α by r̂α. Then the following
envelopes are LF m-consistent in the sense of (3):

• FDP
Freed

α if (m log logm)1/2/r̂α = oP (1);

• FDP
KR-U

α if 1/r̂α = oP (1).

The latter result means that the LF procedure at level α should make enough rejections
in order to provide m-consistency. This is exemplified in a particular model in the next
section.

3.4 LF m-consistency in the generalized VCT model

We provide here a model example where conditions of Proposition 21 are satisfied. We
consider the varying coefficient two-groups (VCT) model of Lei and Fithian (2016), that
we generalize to the possible sparse case.

Here, without loss of generality we assume that the ordering π is identity, that is, π(i) = i
for all i ∈ {1, . . . ,m}. Below, with some abuse, the notation π will be re-used to stick with
the notation of Lei and Fithian (2016).

Definition 22. Let m be a positive integer, β (sparsity parameter) a real in [0, 1), F0, F1

two c.d.f.s on [0, 1] with F0(t) ≤ t for all t ∈ [0, 1], and π : [0,∞)→ [0, 1) some measurable
function (instantaneous signal probability function) with π(0) > 0 and π(x) = π(1) for
x ≥ 1.

The generalized VCT model of parameters m,π, β, F0, F1, denoted as P
(m)
π,β,F0,F1

, is the
p-value mixture model where (pk, Hk) ∈ [0, 1] × {0, 1}, 1 ≤ k ≤ m, are independent and
generated as follows:

• the variables Hk, 1 ≤ k ≤ m, are independent and P(Hk = 1) = πm(k/m), 1 ≤ k ≤ m,
with πm(x) = π(mβx), x ≥ 0;
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• conditionally on H1, . . . ,Hk, the p-values pk, 1 ≤ k ≤ m, are independent, with
pk | {Hk = i} ∼ Fi, 1 ≤ k ≤ m, i ∈ {0, 1}.

We denote Π(t) := t−1
∫ t

0 π(s)ds, with Π(0) = π(0) and

Πm(t) := t−1

∫ t

0
πm(s)ds = t−1

∫ t

0
π(mβs)ds = m−βt−1

∫ mβt

0
π(s)ds = Π(mβt)

the expected fraction of signal before time mt. We also let π1 := Πm(1) =
∫ 1

0 πm(s)ds =
m−βΠ(1) the overall expected fraction of signal. We consider the asymptotic where m tends
to infinity and F0, F1 are fixed.

When β = 0, πm, Πm are fixed and we recover the dense VTC model introduced in Lei
and Fithian (2016) (also noting that we are slightly more general because F0 is possibly
non-uniform and F1 not concave). The above formulation can also handle the sparse case
for which β ∈ (0, 1) and the probability to generate a signal is shrunk to 0 by a factor
mβ. For instance, if π(1) = 0, the model only generates null hypotheses and corresponding
p-values pk+1, . . . , pm for k ≥ m1−β.

We now analyze the asymptotic behavior of the number of rejections of the LF proce-
dure. By following the same heuristic as in Lei and Fithian (2016) (which is justified by a
concentration argument), we have from (34) that for k = bmtc,

F̂DPk =
s

1− λ
1 +

∑k
i=1 1{pi > λ}

1 ∨
∑k

i=1 1{pi ≤ s}

≈ s

1− λ

(∑k
i=1(1− πm(i/m))

)
(1− F0(λ)) +

(∑k
i=1 πm(i/m)

)
(1− F1(λ))(∑k

i=1(1− πm(i/m))
)
F0(s) +

(∑k
i=1 πm(i/m)

)
F1(s)

≈
1 + Πm(t)

(
1−F1(λ)

1−λ − 1
)

1 + Πm(t)
(
F1(s)
s − 1

) = FDP∞(mβt),

by assuming F0(s) = s, F0(λ) = λ, F1(s) > s, F1(λ) > λ and by letting

FDP∞(t) =
1 + Π(t)

(
1−F1(λ)

1−λ − 1
)

1 + Π(t)
(
F1(s)
s − 1

) , t ≥ 0. (41)

By (34), the quantity k̂α/m
1−β should be asymptotically close to

t∗α = max{t ∈ [0,+∞) : FDP∞(t) ≤ α}, (42)

with the convention t∗α = +∞ if the set is not upper bounded. We should however ensure
that the latter set is not empty. For this, we let

α =
1 + π(0)

(
1−F1(λ)

1−λ − 1
)

1 + π(0)
(
F1(s)
s − 1

) . (43)
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Hence, r̂α =
∑k̂α

i=1 1{pi ≤ s}, the number of rejections of the LF procedure, should be close

to
(∑k̂α

i=1(1− πm(i/m))
)
F0(s) +

(∑k̂α
i=1 πm(i/m)

)
F1(s) & k̂αs ≈ m1−βt∗αs. This heuristic

is formalized in the next result.

Theorem 23. Consider a generalized VCT model P
(m)
π,β,F0,F1

with parameters β, π, F0, F1

(see Definition 22) and the LF procedure with parameter s, λ (see (34)), with the assump-
tions:

(i) Π : t ∈ [0,∞)→ R+ is continuous, decreasing, and L-Lipschitz;

(ii) F0(s) = s, F0(λ) = λ, F1(s) > s, F1(λ) > λ;

(iii) α > α where α is defined by (43).

Let α′ = (α+α)/2 ∈ (α, α), t∗α′ ∈ (0,+∞] given by (42), t∗m = t∗α′ ∧mβ and let a ≥ 1 be an

integer a ≤ m1−βt∗m such that r = 4
a1/4

(
1
s + 1

1−λ

)
is small enough to provide r ≤ (α−α)/4.

Then the number of rejections r̂α =
∑k̂α

i=1 1{pi ≤ s} of the LF procedure (34) is such that

P
(m)
π,β,F0,F1

(r̂α < r∗m) ≤ 2(2 + a1/2)e−2a1/2 , r∗m = bm1−βt∗mcs/2. (44)

In particular, choosing a = 1 + b(logm)2c, we have as m grows to infinity, m1−β/r̂α =
OP (1).

Theorem 23 is proved in Section A.5. Condition (ii) is more general that in Lei and
Fithian (2016) and allows to handle binary p-values, like in the ‘knockoffs’ situation (for
which F0 and F1 are not continuous). The condition (iii) was overlooked in Lei and Fithian
(2016), but it is needed to ensure the existence of t∗α. It reads equivalently

π(0) >
1− α

1− 1−F1(λ)
1−λ + α

(
F1(s)
s − 1

) , (45)

which ensures that the probability to generate a false null hypothesis is sufficiently large
at the beginning of the p-value sequence, with a minimum amplitude function of F1(s) and

F1(λ). Note that in the ‘knockoffs’ case where s = λ = 1/2, we have α = 1−π(0)M
1+π(0)M , where

M = 2F1(1/2) − 1 > 0 can be interpreted as a ‘margin’. Hence, the critical level α is
decreasing in π(0)M . Hence, the setting is more favorable either when π(0) increases, or
when the margin M increases.

Corollary 24. Consider the sequence of generalized VCT models (P
(m)
π,β,F0,F1

,m ≥ 1) defined
above. Assume that the parameters π, β, F0, F1 satisfy the assumptions of Theorem 23. Then

the consistency (3) holds for the sequence (P
(m)
π,β,F0,F1

,m ≥ 1) and for any LF procedure using
λ ≥ s in either of the two following cases:

• for the KR-U envelope (37) and the corresponding bound (40).

• for the Freedman envelope (35) and the corresponding bound (39) if either λ = s or
β < 1/2;
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Proof This is a direct consequence of Theorem 23 because m1−β/r̂α = OP (1) in that
context and r̂α is nondecreasing in α. To see why the Freedman envelope is consistent

when λ = s, we note that in this case k̂α =
∑k̂α

i=1 1
{
pπ(i) ≤ s

}
+
∑k̂α

i=1 1
{
pπ(i) > λ

}
≤

(1 + αs/(1− λ))(1 ∨ r̂α), hence the quantity ∆(νk̂α)/(1 ∨ r̂α) is oP (1) as 1/r̂α = oP (1).

Remark 25. Similarly to Section 2.7 in the top-k setting, the bounds KR, Freedman and
KR-U can be improved by performing the interpolation operation (2) in the pre-ordered
setting.

4. Results in the online case

4.1 Online setting

We consider an infinite stream of p-values p1, p2, . . . testing null hypotheses H1, H2, . . . ,
respectively. In the online setting, these p-values come one at a time and a decision should
be made at each time immediately and irrevocably, possibly on the basis of past decisions.

The decision at time k is to reject Hk if pk ≤ αk for some critical value αk only depending
on the past decisions. An online procedure is thus defined by a sequence of critical values
A = (αk, k ≥ 1), that is predictable in the following sense

αk+1 ∈ Gk = σ(1{pi ≤ αi}, i ≤ k), k ≥ 1.

A classical assumption is that each null p-value is super-uniform conditionally on past
decisions, that is,

P(pk ≤ x | Gk) ≤ x, k ∈ H0, (46)

where H0 = {k ≥ 1 |Hk = 0}. Condition (46) is for instance satisfied if the p-values are all
mutually independent and marginally super-uniform under the null.

For a fixed procedure A, we consider the path

Rk = {1 ≤ i ≤ k : pi ≤ αi}, k ≥ 1. (47)

We will also denote

R(k) = |Rk| =
k∑
i=1

1{pi ≤ αi}, k ≥ 1, (48)

the number of rejections before time k of the considered procedure. A typical procedure
controlling the online FDR is the LORD procedure

αk = W0γk + (α−W0)γk−τ1 + α
∑
j≥2

γk−τj , (49)

where W0 ∈ [0, α], each τj is the first time with j rejections, (γk)k is a non-negative (‘spend-
ing’) sequence with

∑
k≥0 γk ≤ 1 and γk = 0 for k < 0. The latter has been extensively

studied in the literature (Foster and Stine, 2008; Aharoni and Rosset, 2014; Javanmard
and Montanari, 2018), and further improved by Ramdas et al. (2017). Under independence
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of the p-values and super-uniformity of the p-values under the null, the LORD procedure
controls the online FDR in the sense of

sup
k≥1

E[FDP(Rk)] ≤ α,

see Theorem 2 (b) in Ramdas et al. (2017). Here, we consider the different (and somehow
more demanding) task of finding a bound on the realized online FDP, by deriving confidence
envelopes (1). Note that this will be investigated for any online procedure and not only
for LORD, see Section 4.2. Also, we will study the consistency of the envelope for any
LORD-type procedure in Section 4.3.

4.2 New confidence envelopes

The first envelope is a consequence of the general result stated in Theorem 38.

Theorem 26. In the online setting described in Section 4.1, consider any online procedure
A = (αk, k ≥ 1) and assume (46). Then for any δ ∈ (0, 1), the following is a (1 − δ)-
confidence envelope for the path (47) in the sense of (1):

FDP
Freed

A,k := 1 ∧

∑k
i=1 αi + ∆

(∑k
i=1 αi

)
1 ∨R(k)

, k ≥ 1, (50)

where R(k) is given by (48), ∆(u) = 2
√
εu
√
u ∨ 1+1

2εu, εu = log((1+κ)/δ)+2 log(1 + log2(u ∨ 1)),
u > 0 and κ = π2/6.

Proof We apply Theorem 38 in the online setting for λ = 0 (and further upper-bounding
each term 1

{
pπ(i) > 0

}
by 1), π(k) = k, because (66) is satisfied by (46).

Next, the envelope of Katsevich and Ramdas (2020) is as follows

FDP
KR

A,k := 1 ∧

(
log(1/δ)

a log(1 + log(1/δ)/a)

a+
∑k

i=1 αi
1 ∨R(k)

)
, (51)

for some parameter a > 0 to choose. While the default choice in Katsevich and Ramdas
(2020) is a = 1, applying a union w.r.t. a ∈ N\{0} provides the following result.

Theorem 27. In the online setting described in Section 4.1 such that (46) is satisfied, and
for any online procedure A = (αk, k ≥ 1), for any δ ∈ (0, 1), the following is a (1 − δ)-
confidence envelope for the path (47) in the sense of (1):

FDP
KR-U

A,k := 1 ∧ min
a∈N\{0}

{
log(1/δa)

a log(1 + log(1/δa)/a)

a+
∑k

i=1 αi
1 ∨R(k)

}
, k ≥ 1, (52)

where R(k) is given by (48), δa = δ/(κa2), a ≥ 1, for κ = π2/6.

Remark 28. Note that in the online setting, the obtained guarantee (1) is not uniform in
the procedure A (in contrast with the envelopes in top-k and preordered cases which were
uniform in k and thus also in the cut-off procedure).
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4.3 Confidence envelope for LORD-type procedures and m-consistency

We now turn to the special case of online procedures satisfying the following condition:

k∑
i=1

αi ≤ α(1 ∨R(k)), k ≥ 1. (53)

Classically, this condition is sufficient to control the online FDR (if the p-values are inde-
pendent and under an additional monotonicity assumption), see Theorem 2 (b) in Ramdas
et al. (2017). In particular, it is satisfied by LORD (49).

Corollary 29. In the online setting described in Section 4.1, consider any online procedure
A = (αk, k ≥ 1), satisfying (53) for some α ∈ (0, 1), and assume (46). Then for any
δ ∈ (0, 1), the following quantities are (1−δ)-confidence bounds for the FDP of the procedure:
for all k ≥ 1,

FDP
KR

α,k := 1 ∧
(

log(1/δ)

log(1 + log(1/δ))
(α+ 1/(1 ∨R(k))

)
; (54)

FDP
Freed

α,k := 1 ∧
(
α+

∆(α(1 ∨R(k)))

1 ∨R(k)

)
, k ≥ 1; (55)

FDP
KR-U

α,k := 1 ∧min
a≥1

{
log(1/δa)

a log(1 + log(1/δa)/a)
(α+ a/(1 ∨R(k))

}
, (56)

for δa = δ/(κa2), a ≥ 1, κ = π2/6, ∆(·) defined in Theorem 27 and where R(k) is given by
(48).

Proof This is direct by applying (51) (a = 1), (55) and (56) and by using the inequality
(53) in the corresponding bound.

Let us now consider these bounds for the LORD procedure (49), and study the LORD
m-consistency property for each envelope FDPα,k, k ≥ 1: for all ε > 0,

lim
k→∞

P
(
FDPα,k − α ≥ ε

)
= 0. (57)

where the asymptotics is when the time k tends to infinity.
Clearly, we have FDP

KR

α ≥ 1 ∧ (cα) for all k ≥ 1, where c > 1 is a constant. Hence,
the KR envelope is not LORD m-consistent. By contrast, it is apparent that both the
Freedman envelope and the uniform KR envelope are LORD m-consistent provided that
1/R(k) = oP (1) as k tends to infinity (consider a =

√
1 ∨R(k) and use Lemma 45 for the

KR-U envelope). This is summarized in the next result.

Proposition 30. Let us consider any online model P for which (46) is satisfied and
the LORD procedure at level α which rejects R(k) nulls at time k, then the envelopes
(FDP

Freed

α,k , k ≥ 1) and (FDP
KR-U

α,k , k ≥ 1) are LORD m-consistent in the sense of (57) pro-
vided that 1/R(k) = oP (1) as k tends to infinity.

The latter result means that the LORD procedure at level α should make enough re-
jections in order m-consistency to be guaranteed. This condition is met in classical online
models, as the next section shows.
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4.4 LORD m-consistency in a vanilla online model

Definition 31. The online one-sided Gaussian mixture model of parameters π1, F1, denoted
by Pπ1,F1, is given by the i.i.d. p-value stream (pk, Hk) ∈ [0, 1]× {0, 1}, k ≥ 1, with

• P(Hk = 1) = π1 for some fixed π1 ∈ (0, 1);

• p-values are uniform under the null: pk |Hk = 0 ∼ U(0, 1);

• p-values have the same alternative distribution: pk |Hk = 1 ∼ F1, where F1 is the c.d.f.
corresponding to the one-sided Gaussian problem, that is, F1(x) = Φ̄(Φ̄−1(x) − µ),
x ∈ [0, 1], for some µ > 0.

Here, we make no sparsity assumption: π1 is assumed to be constant across time. This
will ensure that the online procedure maintains a chance to make discoveries even when the
time grows to infinity.

Theorem 32. Consider the one-sided Gaussian online mixture model and the LORD pro-
cedure with W0 ∈ (0, α) and a spending sequence γk = 1

k(log(k))γ , γ > 1. Then its rejection

number R(k) at time k satisfies: for all a ∈ (0, 1), k ≥ 1,

P(R(k) < k1−a) ≤ ck−a, (58)

where c is some constant only depending on α ,W0, γ, µ and π1. In particular, k1−a/R(k) =
OP (1) when k tends to infinity, for any a > 0.

Theorem 32 is proved in Section A.6.

Corollary 33. Consider the online one-sided Gaussian mixture model Pπ1,F1 defined above
and the LORD procedure with W0 ∈ (0, α) and a spending sequence γk = 1

k(log(k))γ , k ≥ 1

for γ > 1. Then both the Freedman envelope (55) and the uniform KR envelope (56) are
consistent in the sense of (57) for the model Pπ1,F1.

Proof This is a direct consequence of Theorem 32, which provides that k1/2/R(k) =
OPπ1,F1

(1) when k tends to infinity.

Remark 34. Similarly to Section 2.7 in the top-k setting, the bounds KR, Freedman and
KR-U can be improved by performing the interpolation operation (2) in the online setting.

5. Numerical experiments

In this section, we illustrate our findings by conducting numerical experiments3 in each of
the considered settings: top-k, pre-ordered and online. Throughout the experiments, the
default value for δ is 0.25 and the default number of replications to evaluate each FDP
bound is 1000.

23



Iqraa Meah, Gilles Blanchard and Etienne Roquain

α = 0.05 α = 0.1

α = 0.15 α = 0.2

Figure 1: Top-k dense case (π0 = 0.5, µ = 1.5).

5.1 Top-k

Here, we consider the top-k setting of Section 2.1, for alternative p-values distributed

as F1(x) = Φ(Φ
−1

(x) − µ) (one-sided Gaussian location model), and for different values
of µ and of π0. To investigate the consistency property, we take m varying in the range
{10i, 2 ≤ i ≤ 6}, and we consider the FDP bounds FDP

Simes

α (16), FDP
DKW

α (17), FDP
KR

α

(18), FDP
Well

α (19) for α ∈ {0.05, 0.1, 0.15, 0.2}. We also add for comparison the hybrid
bound

FDP
Hybrid

α,δ := min
(

FDP
KR

α,δ/2,FDP
Well

α,δ/2

)
,

which also provides the correct coverage while being close to the best between the Wellner
and KR bounds.

Figure 1 displays boxplots of the different FDP bounds in the dense case for which
π0 = 1/2, µ = 1.5. When m gets large, we clearly see the inconsistency of the bounds Simes,
KR and the consistency of the bounds Wellner, Hybrid, DKW, which corroborates the

3. All our numerical experiments are reproducible from the code provided in the repository
https://github.com/iqm15/ConsistentFDP.
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Figure 2: Top-k sparse case π0 = 1 − 0.5m−0.25, µ =
√

2 log(m) (left) π0 = 1 − 0.5m−0.55,

µ = 10 (larger than
√

2 log(106)) (right), α = 0.2.

theoretical findings (Corollary 13). In sparser scenarios, Figure 2 shows that the consistency
is less obvious for the Wellner and Hybrid bounds and gets violated for the DKW bound
when m1 ∝ m0.55, as predicted from Corollary 13 (regime β ≥ 1/2). Overall, the new
bounds are expected to be better as the number of rejections gets larger and KR bounds
remain better when the number of rejections is expected to be small. The hybrid bound
hence might be a good compromise for a practical use.

The adaptive versions of the bounds (Section 2.6) are displayed on Figure 3. By compar-
ing the left and the right panels, we see that the uniform improvement can be significant,
especially for the Wellner and DKW bounds. By contrast, the improvement for KR is
slightly worse. This can be explained from Figure 4, that evaluates the quality of the dif-
ferent π0 estimators. DKW, which is close to an optimized Storey-estimator, is the best,
followed closely by the Wellner estimator.

Non adaptive Adaptive

Figure 3: Top-k dense case with nonadaptive bounds (left) and adaptive bounds (right)
(π0 = 0.5, α = 0.2).
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Figure 4: Boxplots of the estimators π̂0 in the top-k dense case (π0 = 0.5, α = 0.2).

Remark 35. For clarity, the bounds are displayed without the interpolation improvement
(2) (for top-k and preordered). The figures are reproduced together with the interpolated
bounds in Appendix D for completeness. In a nutshell, the interpolation operation improves
significantly the bounds mainly when they are not very sharp (typically small m or very
sparse scenarios). Hence, while it can be useful in practice, interpolation does not seem
particularly relevant to study the consistency phenomenon.

5.2 Pre-ordered

We consider data generated as in the pre-ordered model presented in Section 3.1 and
more specifically as in the VCT model of Section 3.4. The trueness/falseness of null hy-
potheses are generated independently, and the probability of generating an alternative is
decreasing with the position 1 ≤ k ≤ m, and is given by π(mβ−1k), where π : [0,∞)→ [0, 1)
is some function (see below) and β ∈ [0, 1) is the sparsity parameter. Once the process of
true/false nulls is given, the p-values are generated according to either:

• LF setting: π(t) = π1e
−bt b

1−e−b , t ≥ 0, so that Π(1) = π1. Here π1 is equal to 0.4
and b, measuring the quality of the prior ordering, is equal to 2. In addition, the
alternative p-values are one-sided Gaussian with µ = 1.5. Note that this is the setting
considered in the numerical experiments of Lei and Fithian (2016).
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α = 0.05 α = 0.1

α = 0.15 α = 0.2

Figure 5: Preordered dense (β = 0) LF setting with LF procedure (s = 0.1α, λ = 0.5).

• Knockoff setting: π(t) = 1/2 + (0 ∨ 1/2( z−tz−1)), t ≥ 0, with z > 1 a parameter that
determines how slowly the probability of observing signal deteriorates, taken equal
to 30. Then, the binary p-values are as follows: under the null pi = 1/2 or 1 with
equal probability. Under the alternative, pi = 1/2 with probability 0.9 and pi = 1
otherwise.

In both settings, the dense (resp. sparse) case refers to the sparsity parameter value β = 0
(resp. β = 0.25).

We consider the bounds FDP
KR

α (38), FDP
Freed

α (39) and FDP
KR-U

α (40) for the LF pro-
cedure across different values of (λ, s) ∈ {(1/2, 0.1α), (1/2, 1/2)}, m ∈ {10i, 2 ≤ i ≤ 6}, and
α ∈ {0.05, 0.1, 0.15, 0.2}. The procedure LF with (λ, s) = (1/2, 1/2) is referred to as the
Barber and Candès (BC) procedure.

Figure 5 displays the boxplots of these FDP bounds for the LF procedure with (λ, s) =
(1/2, 0.1α) in the LF setting with β = 0 (dense case). It is apparent that KR is not
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α = 0.05 α = 0.1

α = 0.15 α = 0.2

Figure 6: Preordered sparse (β = 0.25) LF setting with LF procedure (s = 0.1α, λ = 0.5).

α = 0.15 α = 0.2

Figure 7: Pre-ordered dense (β = 0) knockoff setting with BC procedure (i.e., LF procedure
with s = λ = 0.5).

consistent, while the new bounds Freedman and KR-U are. Also, the bound KR-U is overall
the best, losing almost nothing w.r.t. KR when the number of rejections is very small (say
m = 100 and α = 0.05 or 0.1) and making a very significant improvement otherwise.

28



Consistent FDP envelopes

α = 0.15 α = 0.2

Figure 8: Pre-ordered sparse (β = 0.25) knockoff setting with BC procedure (i.e., LF
procedure with s = λ = 0.5).

Similar conclusions hold for the case of BC procedure, see Figure 7. Next, to stick with a
very common scenario, we also investigate the sparse situation where the fraction of signal
is small in the data, see Figures 6 and 8. As expected, while the conclusion is qualitatively
the same, the rejection number gets smaller so that the consistency is reached for largest
values of m (i.e., the convergence is ‘slowed down’).

5.3 Online

We now consider the online case, by applying our method to the real data example coming
from the International Mice Phenotyping Consortium (IMPC) (Muñoz-Fuentes et al., 2018),
which is a consortium interested in the genotype effect on the phenotype. This data is
collected in an online fashion for each gene of interest and is classically used in online
detection works (see Ramdas et al. (2017) and references therein).

Figure 9 displays the FDP time-wise envelopes k 7→ FDP
KR

α,k (54), k 7→ FDP
Freed

α,k (55) and

k 7→ FDP
KR-U

α,k (56), for the LORD procedure (49) (W0 = α/2 with the spending sequence
γk = k−1.6, k ≥ 1). As we can see, the Freedman and KR-U envelopes both tend to the
nominal level α, as opposed to the KR envelope, which is well expected from the consistency
theory. In addition, KR-U seems to outperform the Freedman envelope and while KR is
(slightly) better than KR-U in the initial segment of the process (k < 300), we can see that
KR-U gets rapidly more accurate.

5.4 Comparison to Li et al. (2024)

In this section, we compare the performances of the KR-U bound with respect to the
recent bounds proposed in Li et al. (2024). For this, we reproduce the high dimensional
Gaussian linear regression setting of Section 5.1 (a) therein, which generates binary p-
values by applying the fixed-X ‘sdp’ knockoffs and the signed maximum lambda knockoff
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Figure 9: Online FDP envelopes for LORD applied on IMPC data for four values of α ∈
{0.05, 0.1, 0.15, 0.2} (horizontal black bars). The interpolated bounds are displayed for each
procedure as a gray dashed line.

statistic of Barber and Candès (2015). Doing so, the p-values follow the preordered setting
of Section 3.1 and thus our bounds are non-asymptotically valid (note however that the
p-values do not follow strictly speaking the VCT model of Section 3.4). To be more specific,
the considered Gaussian linear model Y ∼ N (Xβ, In) is obtained by first generating X
and β as follows: the correlated design matrix X of size n × m is obtained by drawing
n = 1500 i.i.d. samples from the multivariate m-dimensional distribution Nm(0,Σ) where
Σi,j = 0.6|i−j|, 1 ≤ i, j ≤ m; the signal vector β ∈ Rm is obtained by first randomly
sampling a subset of {1, . . . ,m} of size bπ1mc for the non-zero entries of β and then by
setting all non-zero entries of β equal to a/

√
n for a given amplitude a > 0.
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Figure 10: Comparing the envelope F̃DP
KR-U

k , k ≥ 1 given by (2)-(37) (s = λ = 0.5) to
those of Li et al. (2024) in the Gaussian linear regression setting of Section 5.4 for m = 1000
(see text for more details).

First, in the spirit of Figure 3 in Li et al. (2024), we display in Figure 10 the envelope

(F̃DP
KR-U

k , k ≥ 1) given by the interpolation (2) of the envelope (FDP
KR-U

k , k ≥ 1) defined
by (37) (with s = λ = 1/2), and compare it to those obtained in Li et al. (2024) (namely,
KJI A/B/C/D) for π1 ∈ {0.1, 0.5}, a ∈ {15, 25}. We also set here δ = 0.05 to stick with
the choice of Li et al. (2024) (note that this requires to further calibrate the parameters of
their method according to this value of δ) and the number of replications is here only taken
equal to 10 for computational reasons. Markedly, the KR-U envelope becomes much better
than KR and is competitive w.r.t. KJI A/B/C/D, at least when k is moderately large. As
expected, the most favorable case for KR-U is when the signal has a large amplitude and
is dense.

Second, to stick with the consistency-oriented plots of the previous sections, we also
display the corresponding FDP bounds for the BC procedure at level α ∈ {0.15, 0.2} in
Figure 11. The conclusions are qualitatively similar.
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Figure 11: Comparing the FDP bound F̃DP
KR-U

k̂α for k̂α the BC procedure (34) (s = λ = 0.5)
to those of Li et al. (2024) with respect to α ∈ {0.15, 0.2} in the Gaussian linear regression
setting of Section 5.4 for m = 1000 (see text for more details).

6. Conclusion

The main point of this paper is to provide another point of view on FDP confidence bounds:
we introduced a notion of m-consistency, a desirable asymptotical property which should
act as a guiding principle when building such bounds, by ensuring that the bound is sharp
enough on particular FDR controlling rejection sets. Doing so, some previous bounds were
shown to be inconsistent, including the original KR bounds. While some other known FDP
confidence bounds, in particular based on the DKW inequality, are m-consistent under
certain assumptions, we have introduced new ones shown to satisfy this condition under
more general conditions (in particular high sparsity). New bounds based on the classical
Wellner/Freedman inequalities showed interesting behaviors, however simple modifications
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of KR bounds Hybrid/KR-U by ‘stitching’ have been shown to be the most efficient, both
asymptotically and for moderate sample size.

Overall, this work shows that m-consistency is a simple and fruitful criterion, and we
believe that using it will be beneficial in the future to make wise choices among the rapidly
increasing literature on FDP bounds.
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L. Dümbgen and J. A. Wellner. A new approach to tests and confidence bands for distri-
bution functions. The Annals of Statistics, 51(1):260–289, 2023.

G. Durand, G. Blanchard, P. Neuvial, and E. Roquain. Post hoc false positive control for
structured hypotheses. Scandinavian journal of Statistics, 47(4):1114–1148, 2020.

B. Efron, R. Tibshirani, J. D. Storey, and V. Tusher. Empirical Bayes analysis of a mi-
croarray experiment. J. Amer. Statist. Assoc., 96(456):1151–1160, 2001.

D. P. Foster and R. A. Stine. Alpha-investing: a procedure for sequential control of ex-
pected false discoveries. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 70(2):429–444, 2008.

D. A. Freedman. On tail probabilities for martingales. The Annals of Probability, pages
100–118, 1975.

C. Genovese and L. Wasserman. A stochastic process approach to false discovery control.
The annals of statistics, 32(3):1035–1061, 2004.

C. R. Genovese and L. Wasserman. Exceedance control of the false discovery proportion.
Journal of the American Statistical Association, 101(476):1408–1417, 2006.

J. J. Goeman and A. Solari. Multiple testing for exploratory research. Statistical Science,
26(4):584–597, 2011.

J. J. Goeman, R. J. Meijer, T. J. Krebs, and A. Solari. Simultaneous control of all false
discovery proportions in large-scale multiple hypothesis testing. Biometrika, 106(4):841–
856, 2019.

J. J. Goeman, J. Hemerik, and A. Solari. Only closed testing procedures are admissible for
controlling false discovery proportions. The Annals of Statistics, 49(2):1218 – 1238, 2021.

J. Hemerik, A. Solari, and J. J. Goeman. Permutation-based simultaneous confidence
bounds for the false discovery proportion. Biometrika, 106(3):635–649, 2019.

S. R. Howard, A. Ramdas, J. McAuliffe, and J. Sekhon. Time-uniform, nonparametric,
nonasymptotic confidence sequences. The Annals of Statistics, 49(2):1055 – 1080, 2021.

K. Jamieson, M. Malloy, R. Nowak, and S. Bubeck. Lil’UCB: An optimal exploration
algorithm for multi-armed bandits. In Conference on Learning Theory, pages 423–439.
PMLR, 2014.

A. Javanmard and A. Montanari. Online rules for control of false discovery rate and false
discovery exceedance. The Annals of statistics, 46(2):526–554, 2018.

E. Katsevich and A. Ramdas. Simultaneous high-probability bounds on the false discovery
proportion in structured, regression and online settings. The Annals of Statistics, 48(6):
3465–3487, 2020.

L. Lei and W. Fithian. Power of ordered hypothesis testing. In International conference on
machine learning, pages 2924–2932. PMLR, 2016.

34



Consistent FDP envelopes

A. Li and R. F. Barber. Accumulation tests for fdr control in ordered hypothesis testing.
Journal of the American Statistical Association, 112(518):837–849, 2017.

J. Li, M. H. Maathuis, and J. J. Goeman. Simultaneous false discovery proportion bounds
via knockoffs and closed testing. Journal of the Royal Statistical Society Series B: Sta-
tistical Methodology, 2024.

P. Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab.,
18(3):1269–1283, 1990.

N. Meinshausen. False discovery control for multiple tests of association under general
dependence. Scandinavian Journal of Statistics, 33(2):227–237, 2006.
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Appendix A. Proofs

A.1 Proof of Proposition 6

For j ≥ 1, let δj = δj−2, τj = 2−j and

Aj =

{
∀t ∈ [τj , 1], n−1

n∑
i=1

1{pi ≤ t} ≤ t λj

}
;

λj = h−1

(
log(1/δj)

nτj/(1− τj)

)
,

so that by Wellner’s inequality, we have P(Aj) ≥ 1−δj and with a union bound P(∩j≥1Aj) ≥
1− δπ2/6. Now let t ∈ (0, 1) and j0 = min{j ≥ 1 : t ≥ τj} = min{j ≥ 1 : j ≥ log2(1/t)},
so that j0 = dlog2(1/t)e ≥ 1. This yields

log(1/δj0) = log(1/δ) + 2 log(dlog2(1/t)e).

On the event ∩j≥1Aj , we have, since t ∈ [τj0 , 1] by definition,

n−1
n∑
i=1

1{pi ≤ t} ≤ t λj0 = th−1

(
log(1/δj0)

nτj0/(1− τj0)

)
= th−1

(
log(1/δ) + 2 log(dlog2(1/t)e)

ng(t)

)
,

because τj0 = 2−dlog2(1/t)e. The result then comes from replacing δ by δ6/π2.

A.2 Proof of Theorem 12

First let Fm(t) = Φ(Φ
−1

(t) − µm), Ψm(t) = Fm(t)/t and observe that Ψm is continuous

decreasing on (0, 1] with lim0 Ψm = +∞. This implies that t∗m, t
]
m ∈ (0, 1) as described in

the statement both exist, with

t∗m = Ψ−1
m (τm(α/2)), t]m = Ψ−1

m (τm(2α)), τm(α) =
m

m1

(
1

α
− m0

m

)
.
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We first establish

t∗m & m1/m (59)

t]m . m1/m. (60)

If β = 0, then m0/m = 1 − c, m1/m = c, µm = b, τm > 0, Fm(t) = Φ(Φ
−1

(t) − b),

Ψm(t) = Φ(Φ
−1

(t) − b)/t, τm(α) all do not depend on m. Hence, t∗m and t]m are both
constant, which establishes (59) and (60). Let us now turn to the sparse case, for which
β ∈ (0, 1). The inequality (60) follows from the upper bound

0.5t]m/α = Gm(t]m) ≤ t]m +m1/m.

For (59), the analysis is slightly more involved. We first prove that for m large enough

Φ
−1

(t∗m) ≤ µm − b. (61)

This will establish (59), since it implies Fm(t∗m) ≥ Fm(Φ(µm − b)) = Φ(−b) > 0 and also
t∗m = (τm(α/2))−1Fm(t∗m) & m1/m. On the one hand,

Ψm(Φ(µm − b)) =
Φ(−b)

Φ(µm − b)
≥ Φ(−b) µm − b

φ(µm − b)
= Φ(−b)mβ

√
2β logm

because µm − b =
√

2β logm and φ(µm − b) = m−β, and by using Φ(x) ≤ φ(x)/x for all
x > 0. On the other hand,

Ψm(t∗m) = τm(α/2) ≤ 2

α
mβ.

Hence, for m large enough, we have Ψm(Φ(µm − b)) ≥ Ψm(t∗m) = Ψm(Φ(Φ
−1

(t∗m))), which
in turn implies (61).

We now turn to prove the result (20) and follow for a classical concentration argument.
Let

Ĝm(t) = m−1
m∑
i=1

1{pi ≤ t}, t ∈ [0, 1],

so that Gm(t) = EĜm(t) for all t ∈ [0, 1]. Hence, for all t ∈ (0, 1),

P(αk̂α/m < t) ≤ P
(
Ĝm(t) ≤ t/α

)
= P

(
Ĝm(t)−Gm(t) ≤ t/α−Gm(t)

)
,

because αk̂α/m = max{t ∈ (0, 1) : Ĝm(t) ≥ t/α} by definition of k̂α. Applying this with
t = t∗m, this gives

P(αk̂α/m < t∗m) = P
(
Ĝm(t∗m)−Gm(t∗m) ≤ −Gm(t∗m)

)
≤ exp(−cmGm(t∗m)) ≤ exp(−Cm1Fm(t∗m)),
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for some constant C > 0, by applying Bernstein’s inequality. Since Fm(t∗m) ≥ Φ(−b) > 0,
this gives P(αk̂α/m < t∗m) ≤ e−dm1 for m large enough and some constant d > 0.

Next, for all t ∈ [t]m, 1), still applying Bernstein’s inequality,

P(αk̂α/m > t)

≤
m∑
k=1

1{αk/m > t}P
(
Ĝm(αk/m)−Gm(αk/m) ≥ k/m−Gm(αk/m)

)
≤

m∑
k=1

1{αk/m > t} exp

(
−m (k/m−Gm(αk/m))2

Gm(αk/m) + (1/3)(k/m−Gm(αk/m))

)
≤ m exp

(
−Cmt]m

)
,

because for all αk/m ≥ t]m, k/m − Gm(αk/m) ≥ Gm(αk/m) ≥ Gm(t]m) = 0.5t]m/α (given

the monotonicity of t 7→ Gm(t)/t). Applying this for t = t]m ∈ (0, 1), we obtain

P(αk̂α/m > t]m) ≤ e−dm1 ,

because t]m ≥ t∗m & m1/m. This proves the result.

A.3 Proof of Proposition 14

Let us prove it for the adaptive uniform Wellner envelope (the other ones being either
simpler or provable by using a similar argument). The idea is to prove that on an event
where the (non-adaptive) Wellner envelope (15) is valid, we also have m0 ≤ m̂Well

0 . The
result is implied just by monotonicity (Lemma 43).

For this, we come back to apply (14) with (U1, . . . , Un) = (pi, i ∈ H0), n = m0. Hence,
on an event with probability at least 1− δ, we have for all t ∈ (0, 1),

m−1
0

∑
i∈H0

1{pi ≤ t} ≤ t h−1

(
Ct
tm0

)
≤ t

(
1 +

√
Ct/(2tm0)

)2
,

where we apply an upper bound coming from Lemma 43. This gives

Vt/m0 ≥ 1− t
(

1 +
√
Ct/(2tm0)

)2
= 1− t−

√
2tCt/m0 − Ct/(2m0).

As a result, Vt ≥ m0(1−t)−
√

2tCtm0−Ct/2 and thus (1−t)m0−
√

2tCtm
1/2
0 −Ct/2−Vt ≤ 0,

which gives

m0 ≤

(√
2tCt +

√
2tCt + 4(1− t)(Ct/2 + Vt)

2(1− t)

)2

=

(√
tCt

2(1− t)2
+

√
Ct

2(1− t)2
+

Vt
1− t

)2

.

Since this is uniform in t, we can take the minimum over t, which gives the m0 confidence
bound m̂Well

0 .
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A.4 Proof of Proposition 17

Classically, the Simes-based closed testing bound on R = BH(α) is trivial (i.e. equal to |R|)
if the global intersection hypothesis [m] = {1, . . . ,m} is not rejected by the local Simes test,
that is, if min1≤k≤m(p(k)/k) > δ/m (Goeman and Solari, 2011). By the assumptions on G
(G is concave, G(0) = 0 and G has derivative g(0) at 0), we have G(t) ≤ min(1, g(0)t) for all
t ∈ [0, 1] and thus F (t) ≤ min(1, (π0 + (1− π0)g(0))t) for all t ∈ [0, 1]. Hence, the p-values
are stochastically lower bounded by a Unif[0, γ] variable, with γ = (π0 + (1 − π0)g(0))−1.
Let us denote Pγ the joint probability of i.i.d. Unif[0, γ] p-values. We therefore have

P

(
min
k

(p(k)/k) ≤ δ/m
)
≤ Pγ

(
min
k

(p(k)/k) ≤ δ/m
)

= Pγ

(
min
k

(γ−1p(k)/k) ≤ δ/(γm)

)
= δ/γ,

where the last equality is from Simes (1986), since under Pγ the rescaled p-values γ−1pk
are i.i.d. Unif[0, 1]. Thus, as soon as δ < γ, the Simes-based closed testing bound is trivial
with probability bounded away from 0 for all m, and thus cannot be m-consistent.

On the other hand, if α > γ, then there is a non-zero solution t∗ to the equation
F (t) = t/α (due to strict concavity of F , this solution is unique). It is well-known (see
Chi, 2007) that asymptotically as m→∞, the BH(α) rejection threshold will tend to t∗ in
probability. Therefore, k̂BH

α grows to infinity at a rate of order m in probability (in the sense
k̂BH
α �

P
(m)
π0,G

m by using the notation of Proposition 13), which by Proposition 10 implies

the BH(α)-consistency of FDP
DKW

α and FDP
Well

α .

A.5 Proof of Theorem 23

First note that FDP∞(t) is an decreasing function of Π(t) because 1−F1(λ)
1−λ < 1 < F1(s)

s , see
(41). Since Π(t) is decreasing from π(0) to π(1) = Π(+∞), we have that FDP∞ : [0,+∞)→
[α, α] is continuous increasing, where α =

(
1 + π(1)

(
1−F1(λ)

1−λ − 1
))

)/
(

1 + π(1)
(
F1(s)
s − 1

))
.

Hence, if α′ < α, we have 0 < t∗α′ < +∞, t∗m = t∗α′ for m large enough, and thus
FDP∞(t∗m) = α′. If α′ ≥ α, t∗α′ = +∞, t∗m = mβ and FDP∞(t∗m) ≤ α′. Both cases
are considered in what follows. Consider the events

Ω1 =

{
sup

a≤k≤m

∣∣∣∣∣k−1
k∑
i=1

1{pi > λ} − k−1
k∑
i=1

P(pi > λ)

∣∣∣∣∣ ≤ 1/a1/4

}
;

Ω2 =

{
sup

a≤k≤m

∣∣∣∣∣k−1
k∑
i=1

1{pi ≤ s} − k−1
k∑
i=1

P(pi ≤ s)

∣∣∣∣∣ ≤ 1/a1/4

}
.
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By Lemma 37, the event Ω1 ∩Ω2 occurs with probability larger than 1− 2(2 + a1/2)e−2a1/2 .
Let

e1 = 1 + Πm(m−βt∗m)

(
1− F1(λ)

1− λ
− 1

)
= 1 + Π(t∗m)

(
1− F1(λ)

1− λ
− 1

)
;

e2 = 1 + Πm(m−βt∗m)

(
F1(s)

s
− 1

)
= 1 + Π(t∗m)

(
F1(s)

s
− 1

)
,

be the numerator and denominator of FDP∞(t∗α′), so that e1/e2 = FDP∞(t∗m) ≤ α′. Let
k0 = bm1−βt∗mc ≤ m. Provided that k0 ≥ a, we have∣∣∣∣∣k−1

0

k0∑
i=1

P(pi > λ)− (1− λ)e1

∣∣∣∣∣ ≤
∣∣∣∣∣k−1

0

k0∑
i=1

πm(i/m)−Πm(m−βt∗m)

∣∣∣∣∣|(1− F1(λ))− (1− λ)|

≤

∣∣∣∣∣k−1
0

k0∑
i=1

πm(i/m)−Πm(k0/m)

∣∣∣∣∣+
∣∣∣Πm(k0/m)−Πm(m−βt∗m)

∣∣∣
≤ 1/a+ L/m1−β,

by applying Lemma 36 and using that Π(·) is L-Lipschitz. Similarly,∣∣∣∣∣k−1
0

k0∑
i=1

P(pi ≤ s)− se2

∣∣∣∣∣ ≤ 1/a+ L/m1−β.

We deduce that on Ω1 ∩ Ω2 and when k0 ≥ a, we have

F̂DPk0 ≤
e1 + 1

a(1−λ) + L
m1−β(1−λ)

+ 1
k0(1−λ) + 1

a1/4(1−λ)

1
as ∨

(
e2 − 1

as −
L

m1−βs
− 1

k0s
− 1

a1/4s

) ≤ e1 + r

e2 − r
≤ e1

e2
+ 4r,

provided that e2 ≥ 2r, because e1 ≤ 1, e2 ≥ 1, and by considering r as in the statement.
Since e1/e2 ≤ α′ ≤ α − 4r and e2 ≥ 1 ≥ 2r by assumption, we have F̂DPk0 ≤ α and

thus k̂α ≥ k0 on Ω1 ∩ Ω2. The result is proved by noting that r̂α =
∑k̂α

i=1 1{pi ≤ s} ≥∑k0
i=1 1{pi ≤ s} ≥ (e2 − r)k0s ≥ k0s/2 on this event.

Lemma 36. In the setting of Theorem 23, we have for all a ≥ 1, m ≥ a,

sup
a≤k≤m

∣∣∣∣∣k−1
k∑
i=1

πm(i/m)−Πm(k/m)

∣∣∣∣∣ ≤ 1/a. (62)

Proof First note that because πm is nonnegative continuous decreasing, we have for all
k ≥ 1,

(1/k)

k∑
i=1

πm(i/m) ≤ Πm(k/m) = (m/k)

∫ k/m

0
πm(s)ds ≤ (1/k)

k−1∑
i=0

πm(i/m).

Since πm(0) ≤ 1, the result is clear.

This following lemma is similar to Lemma 1 in Lei and Fithian (2016).
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Lemma 37. Let Xi ∼ B(pi), 1 ≤ i ≤ m, be independent Bernoulli variables for pi ∈ [0, 1],
1 ≤ i ≤ m. Then we have for all a ≥ 1 and m ≥ a,

P

(
sup

a≤k≤m

∣∣∣∣∣k−1
k∑
i=1

Xi − pi

∣∣∣∣∣ ≥ 1/a1/4

)
≤ (2 + a1/2)e−2a1/2 . (63)

Proof By Hoeffding’s inequality, we have for all x > 0,

P

(
sup

1≤k≤a

∣∣∣∣∣k−1
k∑
i=1

(Hi − πm(i/m))

∣∣∣∣∣ ≥ x
)
≤ 2

∑
k≥a

e−2kx2 =
2

1− e−2x2
e−2ax2 ≤ (2 + 1/x2)e−2ax2 .

We deduce the result by considering x = 1/a1/4.

A.6 Proof of Theorem 32

We get inspiration from the power analysis of Javanmard and Montanari (2018). Let
c = min(α −W0,W0). By definition (49), the LORD procedure makes (point-wise) more
rejections than the procedure given by the critical values

αT = cmax{γT−τj , j ≥ 0}, (64)

where, for any j ≥ 1, τj is the first time that the procedure makes j rejections, that is,

τj = min{t ≥ 0 : R(t) ≥ j} (τj = +∞ if the set is empty), (65)

(note that τ0 = 0) for R(T ) =
∑T

t=1 1{pt ≤ αt}. Let ∆j = τj − τj−1 the time between the
j-th rejection and the (j − 1)-th rejection. It is clear that (R(t))t≥1 is a renewal process
with holding times (∆j)j≥1 and jump times (τj)j≥1. In particular, the ∆j ’s are i.i.d. As a
result, we have for all r, k ≥ 1,

P(R(k) < r) ≤ P(τr ≥ k) = P(∆1 + · · ·+ ∆r ≥ k) ≤ rE∆1/k,

where

E∆1 =
∑
m≥1

P(∆1 ≥ m) =
∑
m≥1

m∏
`=1

(1−G(cγ`)) ≤
∑
m≥1

e−mG(cγm).

In addition, since G is concave,

G(x)

x
≥ g′(x) = π0 + π1c e

µΦ̄−1(x) ≥ ec′
√

2 log(1/x) ≥ (log(1/x))γ+2,

for x small enough and c, c′ > 0 some constants. This gives for large m ≥M , e−mG(cγm) ≤
e−cmγm(log(1/(cγm)))2+γ ≤ e−2 logm, for some M > 0, by the choice made for γm. As a result,

E∆1 ≤ C+
∑
m≥M

e−mG(cγm) ≤ C+
∑
m≥M

e−cmγm(log(1/(cγm)))γ+2 ≤ C+
∑
m≥1

e−2 logm = C+π2/6,

for some constant C > 0. This gives

P(R(k) < r) ≤ r(C + π2/6)/k.

and taking r = k1−a gives (58).
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Appendix B. Tools of independent interest

B.1 A general envelope for a sequence of tests

An important basis for our work is the following theorem, which has the flavor of Lemma 1
of Katsevich and Ramdas (2020), but based on a different martingale inequality, derived
from a Freedman type bound (see Section B.2). Also, while the pre-ordered and online
settings are different, this result can be applied to both settings.

Theorem 38. Consider a potentially infinite set of null hypotheses H1, H2, . . . for the
distribution P of an observation X, with associated p-values p1, p2, . . . (based on X). Con-
sider an ordering π(1), π(2), . . . (potentially depending on X) and a set of critical values
α1, α2, . . . (potentially depending on X). Let λ ∈ [0, 1) be a parameter and assume that
there exists a filtration

Fk = σ
(
(π(i))1≤i≤k, (1

{
pπ(i) ≤ αi

}
)1≤i≤k, (1

{
pπ(i) > λ

}
)1≤i≤k

)
, k ≥ 1,

such that for all k ≥ 2,

P(pπ(k) ≤ t | Fk−1, Hπ(k) = 0) ≤ t for all t ∈ [0, 1]. (66)

Then, for any δ ∈ (0, 1), with probability at least 1− δ, it holds

∀k ≥ 1,

k∑
i=1

(1−Hπ(i))1
{
pπ(i) ≤ αi

}
≤ V k,

for

V k =
k∑
i=1

(1−Hπ(i))1
{
pπ(i) > λ

} αi
1− λ

+ ∆

(
k∑
i=1

(1−Hπ(i))νi

)
, (67)

where ∆(u) = 2
√
εu
√
u ∨ 1 + 1

2εu, εu = log((1 + κ)/δ) + 2 log(1 + log2(u ∨ 1)), u > 0,
κ = π2/6. and νi = αi(1 + min(αi, λ)/(1− λ)), for i ≥ 1.

Proof By Lemma 39, we can apply Corollary 42 (it self coming from Freedman’s inequality)
with

ξi = (1−Hπ(i))

(
1
{
pπ(i) ≤ αi

}
− Fi(αi)

1
{
pπ(i) > λ

}
1− Fi(λ)

)
,

where Fi(αi) and Fi(λ) are defined by (69). First note that ξi ≤ 1 =: B almost surely. Let
us now prove

E(ξ2
i | Fi−1) ≤ (1−Hπ(i))νi. (68)

Indeed, assuming first αi ≤ λ, we have by (66),

E(ξ2
i | Fi−1) = (1−Hπ(i))

(
E(1

{
pπ(i) ≤ αi

}
| Fi−1) + (Fi(αi))

2 E(1
{
pπ(i) > λ

}
| Fi−1)

(1− Fi(λ))2

)
≤ (1−Hπ(i))(αi + α2

i /(1− λ)) = (1−Hπ(i))νi.
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which gives (68). Now, if αi > λ, still by (66),

E(ξ2
i | Fi−1) = (1−Hπ(i))

(
E(1

{
pπ(i) ≤ αi

}
| Fi−1) + (Fi(αi))

2 E(1
{
pπ(i) > λ

}
| Fi−1)

(1− Fi(λ))2

−2
Fi(αi)

1− Fi(λ)
E(1

{
λ < pπ(i) ≤ αi

}
| Fi−1)

)
= (1−Hπ(i))

[
Fi(αi) + (Fi(αi))

2/(1− Fi(λ))− 2Fi(αi)(Fi(αi)− Fi(λ))/(1− Fi(λ))
]

= (1−Hπ(i))Fi(αi)
[
1 + (2Fi(λ)− Fi(αi))/(1− Fi(λ))

]
≤ (1−Hπ(i))Fi(αi)

[
1 + Fi(λ)/(1− Fi(λ))

]
≤ (1−Hπ(i))νi,

which implies (68) also in that case. Finally, (68) is established, which yields

∀k ≥ 1, Sk ≤ 2
√
εk(δ)

√√√√ k∑
i=1

(1−Hπ(i))νi + 4εk(δ)

and thus (67).

Lemma 39. In the setting of Theorem 38, let

Fk(αk) = P(pπ(k) ≤ αk | Fk−1, Hπ(k) = 0), Fk(λ) = P(pπ(k) ≤ λ | Fk−1, Hπ(k) = 0) (69)

the process (Sk)k≥1 defined by

Sk =

k∑
i=1

(1−Hπ(i))

(
1
{
pπ(i) ≤ αi

}
− Fi(αi)

1
{
pπ(i) > λ

}
1− Fi(λ)

)
, k ≥ 1,

is a martingale with respect to the filtration (Fk)k≥1.

Proof First, Sk is clearly Fk measurable. Second, we have for all k ≥ 2,

E(Sk | Fk−1) = E

(
Sk−1 + (1−Hπ(k))

(
1
{
pπ(k) ≤ αk

}
− Fk(αk)

1
{
pπ(k) > λ

}
1− Fk(λ)

) ∣∣∣ Fk−1

)
= Sk−1 + (1−Hπ(k))(Fk(αk)− Fk(αk)) = Sk−1.

B.2 Uniform-Empirical version of Freedman’s inequality

We establish a time-uniform, empirical Bernstein-style confidence bound for bounded mar-
tingales. Various related inequalities have appeared in the literature, in particular in the
online learning community. The idea is based on ‘stitching’ together time-uniform bounds
that are accurate on different segments of (intrinsic) time. The use of the stitching princi-
ple has been further pushed and developed into many refinements by Howard et al. (2021),
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who also propose a uniform empirical Bernstein bound as a byproduct. The version given
here, based on a direct stitching of Freedman’s inequality, has the advantage of being self-
contained with an elementary proof (though the numerical constants may be marginally
worse than Howard et al.’s).

We first recall Freedman’s inequality in its original version (Freedman, 1975). Let
(ξi,Fi)i≥1 be a supermartingale difference sequence, i.e. E[ξi|Fi−1] ≤ 0 for all i. Define
Sn :=

∑n
i=1 ξi (then (Sn,Fn) is a supermartingale), and Vn :=

∑n
i=1 Var[ξi|Fi−1].

Theorem 40 (Freedman’s inequality; Freedman, 1975, Theorem 4.1). Assume ξi ≤ 1 for
all i ≥ 1. Then for all t, v > 0:

P[Sn ≥ t and Vn ≤ v for some n ≥ 1] ≤ exp(−ϕ(v, t)), (70)

where

ϕ(v, t) := (v + t) log

(
1 +

t

v

)
− t. (71)

We establish the following corollary (deferring the proof for now):

Corollary 41. Assume ξi ≤ 1 for all i ≥ 1. Then for all δ ∈ (0, 1) and v > 0:

P
[
Sn ≥

√
2v log δ−1 +

log δ−1

2
and Vn ≤ v for some n ≥ 1

]
≤ δ. (72)

Following the stitching principle applied to the above we obtain the following.

Corollary 42. Assume ξi ≤ B for all i ≥ 1, where B is a constant. Put Ṽk := (Vk ∨ B2)
and κ = π2/6. Then for all δ ∈ (0, 1/(1 + κ)), with probability at least 1− (1 + κ)δ it holds

∀k ≥ 1 : Sk ≤ 2

√
Ṽkε(δ, k) +

1

2
Bε(δ, k),

where ε(δ, k) := log δ−1 + 2 log(1 + log2(Ṽk/B
2)).

Proof Denote v2
j := 2jB2, δj := (j ∨ 1)−2δ, j ≥ 0, and define the nondecreasing sequence

of stopping times τ−1 = 1 and τj := min
{
k ≥ 1 : Vk > v2

j

}
for j ≥ 0. Define the events for

j ≥ 0:

Aj :=

{
∃k ≥ 1 : Sk ≥

√
2v2
j log δ−1

j +
1

2
B log δ−1

j and Vk ≤ v2
j

}
,

A′j :=

{
∃k with τj−1 ≤ k < τj : Sk ≥ 2

√
Ṽkε(δ, k) +

1

2
Bε(δ, k)

}
.

From the definition of v2
j , δj , we have j = log2(v2

j /B
2) for j ≥ 1. For j ≥ 1, τj−1 ≤ k < τj

implies Ṽk = Vk, v
2
j−1 = v2

j /2 < Ṽk ≤ v2
j , and further

log δ−1
j = log δ−1 + 2 log log2(v2

j /B
2) ≤ ε(δ, k).
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Therefore it holds A′j ⊆ Aj . Furthermore, for j = 0, we have v2
0 = B2, δ0 = δ. Further, if

k < τ0 it implies Vk < B2 and therefore Ṽk = B2, thus ε(δ, k) = log δ−1. Hence

A′0 ⊆
{
∃k with k < τ0 : Sk ≥ 2

√
B2 log δ−1

0 +
1

2
B log δ−1

0

}
⊆
{
∃k ≥ 1 : Sk ≥

√
2v2

0 log δ−1
0 +

1

2
B log δ−1

0 and Vk ≤ v2
0

}
= A0.

Therefore, since by (72) it holds P[Aj ] ≤ δj for all j ≥ 0:

P
[
∃k ≤ n : Sk ≥ 2

√
Vkε(δ, k) +Bε(δ, k)

]
= P

[ ⋃
j≥0

A′j

]
≤ P

[ ⋃
j≥0

Aj

]
≤ δ

∑
j≥0

(j ∨ 1)−2 ≤ 3δ.

Proof [Proof of Corollary 41] It can be easily checked that ϕ(v, t) is increasing in t (for
v, t > 0). Thus Sn ≥ t⇔ ϕ(p, (Sn)+) ≥ ϕ(p, t). Since ϕ(v, 0) = 0, and limt→∞ ϕ(v, t) =∞,
it follows that for any δ ∈ (0, 1], there exists a unique real t(v, δ) such that ϕ(v, t(v, δ)) =
− log δ. It follows that (70) is equivalent to:

∀v > 0, ∀δ ∈ (0, 1] : P[Av,δ] ≤ δ, (73)

where
Av,δ := {ϕ(v, (Sn)+) ≥ − log δ and Tn ≤ v for some n ≥ 1}.

Observe that ϕ(v, t) = vh
(
v+t
v

)
, where h is the function defined by (12). Since h(λ) ≥

2(
√
λ−1)2 from Lemma 43, we deduce ϕ(v, t) ≥ 2(

√
v + t−

√
v)2 thus, whenever ϕ(v, (Sn)+) ≤

− log δ, we have: √
v + (Sn)+ ≤

√
v +

√
log δ−1

2
;

taking squares on both sides entails

Sn ≤
√

2v log δ−1 +
log δ−1

2
,

proving (72).

Appendix C. Auxiliary results

Lemma 43. The function h defined by (12) is increasing strictly convex from (1,∞) to
(0,∞), while h−1 is increasing strictly concave from (0,∞) to (1,∞). The functions h and
h−1 satisfy the following upper/lower bounds:

2(
√
λ− 1)2 ≤ h(λ) ≤ (λ− 1)2/2, λ > 1

1 +
√

2y ≤ h−1(y) ≤ (1 +
√
y/2)2, y > 0

45



Iqraa Meah, Gilles Blanchard and Etienne Roquain

In particular, h−1(y)−1 ≤
√

2y+O(y) as y → 0. In addition, for any c > 0, x ∈ (1,+∞) 7→
xh−1(c/x) is increasing.

Proof Clearly, h′ = log, which is positive and increasing on (1,∞). This gives the desired
property for h and h−1. Next, the bounds can be easily obtained by studying the functions
λ 7→ (λ − 1)2/2 − h(λ) and λ 7→ h(λ) − 2(

√
λ − 1)2. For the last statement, since h−1 is

strictly concave and h−1(0) = 1, we have that y ∈ (0,∞) 7→ (h−1(y) − 1)/y is decreasing.
Since y ∈ (0,∞) 7→ 1/y is also decreasing, this gives that y ∈ (0,∞) 7→ h−1(y)/y is decreas-
ing. This gives the last statement.
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Figure 12: Displaying h (left) and h−1 (right). Bounds of Lemma 43 are displayed in blue.

Lemma 44 (Wellner’s inequality, Inequality 2, page 415, with the improvement of Exercise
3 page 418 of Shorack and Wellner, 2009). Let U1, . . . , Un be n ≥ 1 i.i.d. uniform random
variables. For all λ ≥ 1, a ∈ [0, 1), we have

P

(
∃t ∈ [a, 1] : n−1

n∑
i=1

1{Ui ≤ t}/t ≥ λ

)
≤ e−nah(λ)/(1−a),

for h(·) defined by (12).

Lemma 45. The KR constants in (36) and (51) satisfy, as a→∞,

log(1/δa)

a log(1 + 1−δB/aa
B )

= 1 +O

(
log(a)

a

)
;

log(1/δa)

a log(1 + log(1/δa)/a)
= 1 +O

(
log(a)

a

)
,

where δa = cδ/a, c = π2/6 and the O(·) depends only on the constants δ > 0 and B > 0.
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α = 0.05 α = 0.1

α = 0.15 α = 0.2

Figure 13: Figure 1 where we have superposed in each case the (median of the) interpolated
bounds (star symbols). Top-k dense case (π0 = 0.5, µ = 1.5).

Appendix D. Additional experiments

D.1 Interpolated bounds

We reproduce here the figures of the numerical experiments in the top-k and preordered
settings, by adding the interpolated bounds. On each graph, the median of the generated
interpolated bound is marked by a star symbol, which is given in addition to the former
boxplot (of the non-interpolated bound). By doing so, we can evaluate the gain brought by
the interpolation operation in each case. Note that the interpolated bound is not computed
for m ≥ 105 for computational cost reasons.
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Figure 14: Figure 2 where we have superposed in each case the (median of the) interpolated
bounds (star symbols). Top-k sparse case π0 = 1 − 0.5m−0.25, µ =

√
2 logm (left) π0 =

1− 0.5m−0.55, µ =10 (right), α = 0.2.

Non adaptive Adaptive

Figure 15: Figure 3 where we have superposed in each case the (median of the) interpolated
bounds (star symbols). Top-k dense case with nonadaptive bounds (left) and adaptive
bounds (right) (π0 = 0.5, α = 0.2).

D.2 Closed testing bounds

Let us consider the top-k setting with m null hypotheses, and consider any nonnegative
sequence `i,k ∈ [0, 1], 1 ≤ i ≤ k, 1 ≤ k ≤ m. Let `i,k = `i,i for i > k ≥ 1 and `i,0 = 1.
Assume that `i,k ≥ `i,k′ for 1 ≤ k ≤ k′ ≤ m for all i ≥ 1. It includes the following cases:

• Simes: `i,k = δi/k;

• KR: `i,k = log(1+log(1/δ))
log(1/δ) i/k − 1/k, (for δ ≤ 0.31);

• DKW: `i,k = i/k −
√

log(1/δ)/2 k−1/2.
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α = 0.05 α = 0.1

α = 0.15 α = 0.2

Figure 16: Figure 5 where we have superposed in each case the (median of the) interpolated
bounds (star symbols). Preordered dense (β = 0) LF setting with LF procedure (s = 0.1α,
λ = 0.5).

Theorem 46 (Lemma 6 in Goeman et al. (2021)). In the top-k setting, consider any
sequence (`i,k)i,k as above and assume that for all S ⊂ H0, P(∃i ∈ {1, . . . , |S|} : p(i:S) ≤
`i,|S|) ≤ δ. Then the closed-testing FDP envelope

FDPk = min
1≤k′≤k

{ ∑
1≤j≤k

1
{
p(j) > `k′,m̂0

}
+ k′ − 1

}
/k; (74)

m̂0 = max{0 ≤ j ≤ m : for all i ∈ {1, . . . , j}, p(m−j+i) > `i,j} (75)

is valid in the sense of (1).

The form of the closed-testing FDP bound (74) turns out to coincide with the adaptive
interpolated bounds of Section 2.7 (improved by adding an integer part). This is exemplified
in the next result for the Simes sequence.

Lemma 47. Consider the Simes sequence `i,k = δi/k. Then, on the event where all p-values
are different from all thresholds `i,k, the closed-testing bound (74) is equal to

k ∧ min
1≤k′≤k

{k − k′ + k′ ∧ bm̂0p(k′)/δc},
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α = 0.05 α = 0.1

α = 0.15 α = 0.2

Figure 17: Figure 6 where we have superposed in each case the (median of the) interpolated
bounds (star symbols). Preordered sparse (β = 0.25) LF setting with LF procedure (s =
0.1α, λ = 0.5).

α = 0.15 α = 0.2

Figure 18: Figure 7 where we have superposed in each case the (median of the) interpolated
bounds (star symbols). Pre-ordered dense (β = 0) knockoff setting with BC procedure (i.e.,
LF procedure with s = λ = 0.5).
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α = 0.15 α = 0.2

Figure 19: Figure 8 where we have superposed in each case the (median of the) interpolated
bounds (star symbols). Pre-ordered sparse (β = 0.25) knockoff setting with BC procedure
(i.e., LF procedure with s = λ = 0.5).

Lemma 47 shows that, for the Simes threshold, the closed testing bound improves the
interpolated one only in the way m0 is estimated. The closed-testing m0 estimator (75)
is by essence more accurate than those that we proposed in Section 2.6, but is also more
computationally demanding. In addition, in our experiments, the improvement is modest
in general, as shown in Figure 20. We see the closed-testing versions of our bounds as
advisable when m is small, because the improvement seems to be the most significant in
that case while the complexity is still low. In addition, this figure also suggests that the
closed testing versions of Simes and KR bounds are m-inconsistent, which corroborates the
theoretical findings of Corollary 17 in the Simes case.

Proof Define U = {u(k′), 1 ≤ k′ ≤ k}, with u(k′) = bm̂0p(k′)/δc. We have

k ∧ min
1≤k′≤k

{k − k′ + k′ ∧ bm̂0p(k′)/δc} = k ∧ min
1≤k′≤k

{k − k′ + bm̂0p(k′)/δc}

= k ∧min
u∈U

{
k −

k∑
j=1

1
{
u(j) ≤ u

}
+ u
}

= k ∧min
u∈U

{ k∑
j=1

1
{
u(j) > u

}
+ u
}

= k ∧min
u∈U

{ k∑
j=1

1
{
u(j) ≥ u+ 1

}
+ u
}

= k ∧min
u∈U

{ k∑
j=1

1
{
m̂0p(j)/δ ≥ u+ 1

}
+ u
}

= k ∧ min
v∈U+1

{ k∑
j=1

1
{
p(j) ≥ vδ/m̂0

}
+ v − 1

}
.
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Fix now w ∈ {1, . . . , k}, and let us prove

k∑
j=1

1
{
p(j) ≥ wδ/m̂0

}
+ w − 1 ≥ k ∧ min

v∈U+1

{ k∑
j=1

1
{
p(j) ≥ vδ/m̂0

}
+ v − 1

}
. (76)

First observe that for all j ∈ {1, . . . , k},

p(j) ≥ wδ/m̂0 ⇔ m̂0p(j)/δ ≥ w ⇔ bm̂0p(j)/δc ≥ w ⇔ u(j) + 1 > w. (77)

Hence if for all v ∈ U + 1 we have v > w, (76) is satisfied. Otherwise, there is one v ∈ U + 1
such that v ≤ w and we can consider vw = max{v ∈ U + 1 : v ≤ w} the maximum
of the elements of U + 1 that are below w. From (77), we have for all j ∈ {1, . . . , k},
p(j) ≥ wδ/m̂0 ⇔ u(j) + 1 > vw ⇔ p(j) ≥ vwδ/m̂0, which means

∑k
j=1 1

{
p(j) ≥ wδ/m̂0

}
=∑k

j=1 1
{
p(j) ≥ vwδ/m̂0

}
and thus since w ≥ vw, the inequality (76) is also satisfied. This

establishes in any case

k ∧ min
v∈U+1

{ k∑
j=1

1
{
p(j) ≥ vδ/m

}
+ v − 1

}
= k ∧ min

1≤w≤k

{ k∑
j=1

1
{
p(j) ≥ wδ/m

}
+ w − 1

}
.

This gives the result.

α = 0.1 α = 0.2

Figure 20: Median of the adaptive bounds of Section 2.6 (plain circles), median of inter-
polated bounds of Section 2.7 (hollow star), and median of closed-testing bounds given by
(74) (asterix) in function of m ∈ {100, 1000, 10000}. The closed-testing is only computed
for Simes and KR bounds. The simulation setting is the same as the one used for the right
panel of Figure 3 (π0 = 0.5).
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