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Abstract

We consider the problem of clustering grouped data with possibly non-exchangeable
groups whose dependencies can be characterized by a known directed acyclic graph. To
allow the sharing of clusters among the non-exchangeable groups, we propose a Bayesian
nonparametric approach, termed graphical Dirichlet process, that jointly models the
dependent group-specific random measures by assuming each random measure to be
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distributed as a Dirichlet process whose concentration parameter and base probability
measure depend on those of its parent groups. The resulting joint stochastic process
respects the Markov property of the directed acyclic graph that links the groups. We
characterize the graphical Dirichlet process using a novel hypergraph representation as
well as the stick-breaking representation, the restaurant-type representation, and the
representation as a limit of a finite mixture model. We develop an efficient posterior
inference algorithm and illustrate our model with simulations and a real grouped
single-cell data set.

Keywords: Bayesian nonparametrics, clustering, directed acyclic graph, family-owned
restaurant process, non-exchangeable groups

1. Introduction

This article considers clustering of grouped data where the groups are non-exchangeable.
We are interested in settings where the data are partially exchangeable (de Finetti, 1938),
which entails the exchangeability of the observations within each group but not across
the groups, (see Kallenberg, 2005 for an extensive bibliography). We consider dependent
group–specific random probability measures, thereby allowing the borrowing of information
across non-exchangeable groups. We represent the dependencies among groups through
a known directed acyclic graph (DAG) with nodes denoting groups and directed edges
denoting the group dependencies. Such data are abundant in many areas such as genomics.
For example, our motivating application is a single-cell RNA-sequencing (scRNA-seq) study
that aimed to investigate intestinal stem cell differentiation processes in mice with colorectal
cancer. The experiments started from a baseline group where the mice were genetically
wild-type, fed with a normal diet, and treated with no cancer therapy (placebo). Then
to understand the main effects of genotype, diet, and cancer therapy on colonic crypt and
tumor niche cell composition, the experimenters introduced three new groups of mice, each
differing from the baseline group by exactly one factor (Apc knock-out, a high-fat diet, or
a new cancer treatment AdipoRon). To determine the two-way interaction effects, three
additional groups of mice were studied, each of which differed from the baseline group
by two factors (e.g., mice with Apc knock-out, a high-fat diet, and no cancer treatment).
Lastly, for a three-way interaction, they introduced the eighth group of mice with Apc
knock-out, a high-fat diet, and the new treatment AdipoRon. The progression of these
experiments from baseline to the study of main effects, two-way interactions, and three-
way interactions manifests the non-exchangeability of the experimental groups (e.g., the
baseline group is expected to be more similar to the “main effect” groups than the “three-
way interaction” group). With this grouped scRNA-seq data set, our goal is to cluster
cells based on gene expression at the single-cell level within each experimental group while
allowing information to be shared across these non-exchangeable groups with a novel DAG-
based Bayesian nonparametric model.

Our proposed model extends beyond the specific motivating problem previously
discussed. Grouped data can emerge across various disciplines, where the groups exhibit
inherent non-exchangeability. Furthermore, the dependencies among the groups can be
naturally represented through a known DAG. The first example is time-series data. One
might be interested in clustering stocks based on daily prices for each year. Each calendar
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Figure 1: DAG for AR2.
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Figure 2: Family tree with three generations. Males are depicted with the color blue and
females with red.

year is then a group. The groups naturally have time dependence (i.e., one does not
expect the clustering of stocks to change dramatically in consecutive years), which may be
represented by an autoregressive (AR) model. AR model is one type of DAG model; see
Figure 1 for the underlying DAG of AR(2). The second example arises in family tree
(Figure 2, another type of DAG). For example, it may be of interest to study the
evolution of the gene expressions of a family of three generations to understand how the
expression patterns change with the generations. Clustering the gene expression of the
family members, where the dependencies between the members (each family member
constitutes a group) are naturally explained by the underlying tree, may provide valuable
information to the understanding of phenotypic features and/or disease progression (e.g.,
hemophilia, cancer, etc.).

The Dirichlet process (DP, Ferguson, 1973) and its variations (De Blasi et al., 2013;
Barrios et al., 2013) have been the backbone of numerous model-based Bayesian
nonparametric clustering methods (Hjort et al., 2010; Müller et al., 2015). The DP,
DP (α0, G0), is a probability measure on probability measures, where α0 > 0 is the
concentration parameter and G0 is a base probability measure. There have been extensive
studies on DP mixture models (Antoniak, 1974; Escobar and West, 1995; MacEachern and
Müller, 1998), which enable clustering without having to fix the number of clusters a
priori. When there are groups present in the data, naively, one could consider either a
separate DP mixture model for each group on one extreme or a single DP mixture model
ignoring the groups on the other extreme. However, it is often desirable to identify
group-specific clusters while allowing the groups to be linked so that clusters are
comparable across groups. Given the goal of clustering the observations within each
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group, consider a set of random probability measures, Gj , one for each group j, where
each Gj is distributed as DP (α0j , G0j) with group-specific concentration parameter α0j

and base probability measure G0j . Many methods have been proposed to link these
group-specific DPs to induce dependencies through the parameter α0j and/or G0j

(Cifarelli and Regazzini, 1978; Mallick and Walker, 1997; Kleinman and Ibrahim, 1998;
Müller et al., 2004). Perhaps one of the most well-known methods is the hierarchical
Dirichlet process (HDP, Teh et al., 2006), which falls in the general framework of
dependent DP (MacEachern, 1999, 2000) and assumes each group-specific Gj is
distributed as DP (α0, G0) where α0 is the shared concentration parameter and G0 is the
shared base probability measure for all groups. They further assume that G0 follows
another DP, G0 ∼ DP (γ,H). Since draws from a DP are discrete with probability one
(Sethuraman, 1994), the base measure G0 is almost surely discrete, which ensures that the
group-specific probability measure Gj shares the same set of atoms. The corresponding
HDP mixture model is thus capable of identifying group-specific clusters while borrowing
strength across groups. By construction, HDP mixture model assumes that both the
observations within each group and the groups are exchangeable. Recently, several
authors have proposed hierarchies of discrete probability measures extending beyond the
hierarchical Dirichlet process (Teh, 2006; Thibaux and Jordan, 2007; Zhou, 2016;
Tillinghast et al., 2022). See Teh and Jordan, 2010; Foti and Williamson, 2013 for a
summary of non-exchangeable priors for Bayesian nonparametric models. Furthermore,
Camerlenghi et al., 2019b provides a distribution theory for the entire class of hierarchical
processes. A similar approach with a different scope, the nested DP (Rodŕıguez et al.,
2008), assumes Gj follows a DP-distributed random probability measure with another DP
as the base measure, Gj ∼ Q and Q ∼ DP (α0, DP (γ,H)). The nested structure allows for
the clustering of groups but restricts the clusters of observations within each group to be
either identical or completely unrelated across groups. Models based on the nested DP
have been widely employed in various contexts (Rodriguez and Dunson, 2014; Graziani
et al., 2015; Zuanetti et al., 2018). However, similarly to HDP, nested DP also assumes
both the observations within each group and the groups to be exchangeable. Moreover,
the nested DP is known to suffer from a degeneracy property (Camerlenghi et al.,
2019a)–two distributions sharing even one atom in their support are automatically
assigned to the same cluster. Several recent works (Beraha et al., 2021; Lijoi et al., 2022;
Bi and Ji, 2023) have been proposed to take advantage of the cluster-sharing feature of
the HDP and the group-clustering feature of the nested DP. In contrast to methods
relying on the HDP or its variants, some other works rely on models with additive
structure or common atoms (Camerlenghi et al., 2019a; Chandra et al., 2023; Denti et al.,
2023; D’Angelo et al., 2023; D’Angelo and Denti, 2024). Dependent DP has also been
extensively used to model random distributions with various other types of dependencies
such as spatial and temporal dependencies (Iorio et al., 2004; De Iorio et al., 2009; Dunson
and Herring, 2005; Gelfand et al., 2005; Griffin and Steel, 2006; Nieto-Barajas and
Contreras-Cristán, 2014; Dahl et al., 2017); see Quintana et al., 2020 for a recent review of
different dependent DPs.

In this paper, we are interested in modeling a set of group-specific random
distributions of which the (conditional) dependencies can be characterized by a DAG
whose nodes represent the groups. More precisely, we assume that the joint distribution of
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the set of group-specific random distributions factorizes with respect to a DAG and,
therefore, respects its Markov property (i.e., conditional independencies). We call such
graph-dependent DP, the graphical Dirichlet process (GDP). Using GDP as a mixing
distribution, the GDP mixture model gives rise to group-specific clusters, which depend
directly on their Markov blanket. As an illustration, for a grouped data with six groups,
whose dependencies are shown by the underlying DAG in Figure 3a, the corresponding
group-specific distributions are shown in Figure 3b. Clearly, the distributions
corresponding to the different groups are similar to their parents. In particular, the
distribution of group 6 resembles its parents (group 3 and 4) and is different from the
group 5 even though they share a parent (group 3). However, all groups share some or all
of the components of the ancestor group (group 1), highlighting the sharing feature of the
proposed GDP.

1

32 4

5 6

(a) The DAG denoting dependency between the groups.
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(b) The underlying distributions for the groups.

Figure 3: Sharing of features by GDP.
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The known flexibility of DAG in representing conditional dependencies renders the
generality of the proposed GDP for modeling dependent random distributions and
group-specific clusters beyond exchangeable groups. The use of DAGs in Bayesian
nonparametrics has been considered in recent literature. Dey et al., 2022 proposed a
graphical Gaussian process to parsimoniously model multivariate spatial data by
incorporating conditional independencies among variables encoded by a DAG. Gu and
Dunson, 2023 proposes a pyramid-shaped deep latent variable model for categorical data
using a DAG to represent the layer-wise latent conditional dependency structure. These
works showcased the usefulness of DAGs through their factorization in Bayesian
nonparametric models. We also exploit such factorization in this paper but our model is
significantly different from theirs in both approaches and scopes. For example, their
graphs link variables whereas ours link groups, and they focus on the modeling of
multivariate spatial fields or generative models for categorical data whereas we focus on
clustering non-exchangeable grouped data. The proposed GDP is a general model. The
well-known HDP is a special case of GDP with a specific type of DAG–a fork, i.e., one
parent node and many children nodes (detailed in Section 3.1); see Figure 4a. Several
existing works on time-evolving topic models can also be reformulated using a DAG to
capture the time-dependency structure (Srebro and Roweis, 2005; Ren et al., 2008; Zhang
et al., 2010). Furthermore, the tree-structured HDP (Figure 2) considered by Alam et al.,
2019 is a special case of our proposed GDP.

In this paper, we will characterize the proposed GDP by a novel hypergraph
representation, which uses the fact that Dirichlet distribution/process is a normalized
gamma distribution/process. We will also provide several other representations analogous
to those for the HDP, i.e., a stick-breaking representation, a restaurant-type
representation, and a representation as an infinite limit of a finite mixture model. We
develop efficient posterior sampling based on the SALTSampler (Director et al., 2017) and
a Blocked Gibbs sampler for DP/HDP (Ishwaran and James, 2001; Das et al., 2024).
Simulations and the motivating grouped single-cell data are used to demonstrate our
method. In summary, our main contribution is three-fold. We propose a general Bayesian
nonparametric approach, GDP, to incorporate non-exchangeable group dependencies for
clustering. Second, we provide several characterizations of GDP, each providing a different
perspective. Furthermore, we develop a Metropolis-within-blocked-Gibbs sampler for
posterior inference. Since HDP is a special case of GDP, this also contributes to a new
sampler for HDP. The difficulty of sampling the global weights for HDP is mitigated by
using the specialized proposal of SALTSampler (Director et al., 2017).

The remainder of the paper is organized as follows. Section 2 provides a brief overview
of some preliminaries needed for the remainder of the paper. Section 3 introduces the
proposed GDP and the corresponding nonparametric mixture model. We introduce the
hyperpriors of our model and also present two lemmas, which are the backbone of our main
result in Theorem 3. In Section 4, we present different representations of the proposed
GDP. In Section 5, we provide simulations to illustrate our method. Section 6 presents
a real data analysis using the proposed method on the motivating single-cell data. The
paper concludes with a brief discussion in Section 7. The source codes used for the analysis,
including those for simulations and real data, can be found in the repository https://

github.com/Arhit-Chakrabarti/GDPSamp.
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(b) GDP for DAG with a unique root node.

Figure 4: Schematic illustration of HDP and GDP. HDP is a special case of GDP when the DAG
is a fork.

2. Preliminaries

2.1 Directed Acyclic Graph

We first provide a brief background on DAG. Let D = (V,E) be a DAG consisting of a set
of nodes V = {1, 2, . . . , p} and a set of directed edges E ⊂ V ×V that does not contain any
directed cycles. We denote a directed edge from the node i to node j by j ← i and call i a
parent of j. A node without parents is called a root. For a DAG, there exists at least one
root. Let Y = {Y1, . . . , Yp} be a set of random variables. Every node j ∈ V represents a
random variable Yj ; later in this paper, Yj will be a random probability measure. In a DAG
model, also known as a Bayesian network, the probability distribution P(Y ) is assumed
to factorize over D, P(Y ) =

∏p
j=1 P(Yj | Ypa(j)), where pa(j) = {k ∈ V |j ← k} denotes

the collection of parents of node j. This DAG factorization implies that the distribution
P respects the conditional independence relationships encoded by the graph D via the
notion of d-separation (Pearl, 2009); and vice versa. For instance, any node is conditional
independent of its non-descendants given its parents, i.e., Yj ⊥ Ynd(j)|Ypa(j) for any j ∈ V
where ⊥ denotes independence, nd(j) = V \de(j)\{j} denotes the non-descendants of node
j, and de(j) = {k ∈ V |k ← · · · ← j} denotes the descendants of node j. A Markov
blanket of any node j from V is any subset V1 of V such that Yj ⊥ YV \V1 |YV1 . In other
words, V1 contains all the information in V about the node j. DAG models are convenient
tools to parsimoniously specify a multivariate distribution through its conditionals, which
is especially useful in this paper for specifying a multivariate distribution of a set of random
probability measures.
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2.2 Infinite Mixture Model

Next, we present a brief overview of infinite mixture models for a single population, the DP
mixture model, and for multiple exchangeable populations, the HDP mixture model.

2.2.1 Dirichlet Process Mixture Model

For a single population, let xi denote the ith realization of a random variable X. We
consider a mixture model,

θi | G
iid∼ G,

xi | θi
ind∼ F (θi),

(1)

where F (θi) denotes the distribution of xi parameterized by θi. The parameters θi’s are
conditionally independent given the prior distribution G. In a DP mixture model, G is
assigned a DP prior, G ∼ DP (α0, G0) with concentration α0 and base probability measure
G0.

Sethuraman, 1994 presented the stick-breaking representation of the DP based on
independent sequences of i.i.d. random variables (π′k)

∞
k=1 and (φk)

∞
k=1, which is given by,

π′k | α0
iid∼ Beta(1, α0), φk | G0

iid∼ G0, (2)

πk = π′k

k−1∏
l=1

(1− π′l), G =
∞∑
k=1

πkδφk , (3)

where δφ is a point mass at φ and φk’s are called the atoms of G. The sequence of random
weights π = (πk)

∞
k=1 constructed from Eq. (2) and Eq. (3) satisfies

∑∞
k=1 πk = 1 with

probability one. The random probability measure on the set of integers is denoted by
π ∼ GEM(α0) for convenience where GEM stands for Griffiths, Engen and McCloskey
(Pitman, 2002). It is clear from Equation (1) and Equation (3) that θi takes the value
φk with probability πk. Let zi be a categorical variable such that zi = k if θi = φk. An
equivalent representation of a Dirichlet process mixture is given by,

π | α0 ∼ GEM(α0), zi | π
iid∼ π,

φk | G0
iid∼ G0, xi | zi, (φk)∞k=1

ind∼ F (φzi).
(4)

2.2.2 Hierarchical Dirichlet Process Mixture Model

Suppose observations are now organized into multiple exchangeable groups. Let xji denote
the observation i from group j and θji denote the parameter specifying the mixture
component associated with the corresponding observation. Let F (θji) denote the
distribution of xji given θji and Gj denote a prior distribution for θji. The group-specific
mixture model is given by,

θji | Gj
ind∼ Gj ,

xji | θji
ind∼ F (θji).

(5)

As with the DP mixture model, when the random measures Gj ’s are assigned an HDP prior,

G0 | γ,H ∼ DP (γ,H),

Gj | α0, G0 ∼ DP (α0, G0),
(6)
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the corresponding mixture model is referred to as the HDP mixture model. The global
random probability measure G0 is distributed as a DP with concentration parameter γ and
base probability measure H. The group-specific random measures Gj ’s are conditionally
independent given G0 and hence are exchangeable (de Finetti, 1938). They are distributed
as DP with the base measure G0 and some concentration parameter α0. The probability
model (5) along with (6) completes the specification of an HDP mixture model. Because
DP-distributed G0 is almost surely discrete, the atoms of Gj ’s and hence the group-specific
clusters are necessarily shared across groups.

3. Graphical Dirichlet Process

When groups are non-exchangeable (e.g., due to study design), the joint distribution of Gj ’s
specified by (6) may not be appropriate. Our approach to the problem of sharing clusters
among non-exchangeable groups is through specifying a general joint distribution of Gj ’s
that respect the Markov property of a DAG D that links the groups. We assume that the
underlying DAG D is known and we define the appropriate prior on the nodes of the DAG
and refer to the resulting stochastic process on the graph as the graphical Dirichlet process
(GDP). We show how this prior can be used in the non-exchangeable grouped mixture
model setting.

3.1 The Proposed GDP

Let the nodes V of DAG D = (V,E) now represent the group-specific random probability
measures Gj ’s. The edges E represent the conditional dependence of Gj ’s. Then the joint
distribution of the random probability measures follows the DAG factorization
P(G1, . . . , Gp|D) =

∏p
j=1 P(Gj | Gpa(j)), where Gpa(j) is the set of random probability

measures indexed by the parents pa(j) of node j. For convenience, we assume D has a
unique root; see Figure 4b. This assumption does not diminish the generality of our
approach as a DAG with multiple roots can always be converted, without losing any
conditional dependencies, to a DAG with a unique root by simply augmenting the DAG
with a hidden common parent of the roots; that hidden common parent becomes the
unique root of the new DAG (Figure 5). The augmentation only changes the Markov
blanket of the original root nodes. Specifically, the Markov blanket of any original root
node is simply augmented with the hidden parent node. As the Markov blanket of any
other node remains unchanged, the distributions of all other nodes remain the same, and
hence this augmentation does not alter the conditional dependencies of the original DAG.

Let us introduce a few terms before describing the proposed GDP. We denote the root
node, which may be hidden, as the layer 0 of DAG D. The child nodes of the root node
are termed as the layer-1 nodes, and we assume that there are l1 of them. Similarly, we
assume that there are a total of l2 child nodes from the layer-1 nodes, which we refer to as
the layer-2 nodes. We assume that there are K layers in the given DAG D and at any layer
k, there are lk nodes. The total number of non-root nodes is

∑K
k=1 lk = p. We define the

concentration parameters and random measures of node j in the layer k of DAG D as α
(k)
j

and G
(k)
j , j = 1, . . . , lk. We denote by an(k,l)(j) the collection of generation-l ancestors

of node j in layer k of the DAG. For example, an(k,1)(j) denotes the parents (generation-1
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ancestors) of the node j in layer k, and an(k,2)(j) denotes the collection of the parents of the
nodes in an(k,1)(j) or in other words, an(k,2)(j) denotes the collection of “grand-parents”
(generation-2 ancestors) of node j in layer k of the DAG.
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Figure 5: DAG augmented with a hidden root G
(0)
1 , indicated by the dashed arrows. The

original root nodes are G
(1)
1 , . . . , G

(1)
l1

.

We define GDP recursively from layer 0, the root node,

G
(0)
1 | α

(0)
1 , G0 ∼ DP

(
α
(0)
1 , G0

)
, (7)

where G0 is a fixed base probability measure. Then the distribution of the random
probability measure of node j in layer k of DAG D conditional on the concentration
parameters and random probability measures of its parent nodes is given by,

G
(k)
j | α

(k)
j , {G(k−1)

l : l ∈ an(k,1)(j)} ∼ DP

α(k)
j ,

∑
l∈an(k,1)(j)

π
(k)
jl G

(k−1)
l

 , (8)

for j = 1, 2, . . . , lk. In other words, node j in layer k of the DAG is distributed according to

a DP with its own concentration parameter α
(k)
j and its base distribution being a weighted

average of the random probability measures of its parents in layer k − 1 of the DAG,

{G(k−1)
l : l ∈ an(k,1)(j)}, where the weights are given by {π(k)jl : l ∈ an(k,1)(j)}, which

have a unit sum
∑

l∈an(k,1)(j) π
(k)
jl = 1. Moreover, from the Markov properties of DAG D,

G
(k)
j1

and G
(k)
j2

are conditionally independent given their parents, {G(k−1)
l : l ∈ an(k,1)(j1)}

and/or {G(k−1)
l : l ∈ an(k,1)(j2)}, and G

(k)
j is conditionally independent of all other random

probability measures given its Markov blanket.

We remark that HDP is a special case of the proposed GDP with a specific DAG, fork-
DAG (Figure 4a). Using the notations introduced, a fork-DAG is a DAG with a unique
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root node and only one layer of l1 child nodes. With this specific DAG, the GDP is given
by

G
(0)
1 | α

(0)
1 , G0 ∼ DP

(
α
(0)
1 , G0

)
,

G
(1)
j | α

(1)
j , G

(0)
1 ∼ DP

(
α
(1)
j , G

(0)
1

)
, j = 1, 2, . . . , l1,

which is clearly an HDP.

3.2 GDP Mixture Model

To cluster observations that are organized into possibly non-exchangeable groups, we use
the proposed GDP in Section 3.1 as a mixing distribution of a mixture model. Letting
j index the groups and i index the observations within each group, we assume that the
observations xj1, xj2, . . . , xjnj are exchangeable within each group j but the groups may not
be exchangeable. We assume that each observation within a group is drawn independently
from the mixture model (5) and Gj ’s follow the GDP (7) and (8).

3.3 Hyperpriors

We assign a Dirichlet prior on the weights {π(k)jl : l ∈ an(k,1)(j)} in (8),

{π(k)jl : l ∈ an(k,1)(j)} ∼ Dir
(
{α(k−1)

l : l ∈ an(k,1)(j)}
)
, (9)

where the parameters {α(k−1)
l : l ∈ an(k,1)(j)} correspond to the concentration parameters

of the parents (generation-1 ancestors) of node j. Since the concentration parameter of a
DP relates to its precision (inverse-variance), assuming a Dirichlet prior for the mixture
weights of any node with Dirichlet parameters proportional to the precisions of the parent
nodes is a natural choice. This gives more “weightage” to a parent node with a higher
precision as opposed to a parent node with a lower precision.

The other distributional consideration that significantly simplifies the distribution of
the random measure of any particular node is by considering a gamma-DAG distribution

on the concentration parameters α
(k)
j ’s, which, like the distribution of G

(k)
j ’s, also respects

the same Markov property of DAG D. Specifically, we assume that

α
(0)
1 | α0 ∼ Gamma(α0, 1),

α
(k)
j | {α

(k−1)
l : l ∈ an(k,1)(j)} ∼ Gamma

 ∑
l∈an(k,1)(j)

α
(k−1)
l , 1

 , j = 1, 2, . . . , lk.
(10)

In other words, the concentration parameter of the root node follows a gamma distribution
with a fixed shape α0 and a unit rate. The concentration parameter at any level of the
DAG follows a conditionally gamma distribution with the shape parameter equal to the
sum of the shape parameters of its parents. Such a choice of Gamma hyperprior on the
concentration parameters of bottom level DPs of HDP have been considered in Williamson
et al., 2013. We extend such a construction for the more general framework of our proposed
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GDP. In the next section, we will see how our choice of hyperpriors and hyperparameters
leads to several compact representations of the proposed GDP, which requires two lemmas.
The first lemma is Lemma 3.1 from Sethuraman, 1994, which we state here.

Lemma 1 (Sethuraman, 1994) Let α1 = (α11, α12, . . . , α1k) and α2 =
(α21, α22, . . . , α2k) be k-dimensional vectors with αij > 0 ∀ j = 1, 2, . . . , k, i = 1, 2. Let X1

and X2 be independent k-dimensional random vectors distributed as Dirichlet distribution
with parameters α1 and α2, respectively. Let α1· =

∑k
j=1 α1j and α2· =

∑k
j=1 α2j. Let

π be independent of X1 and X2 and have a beta distribution Beta (α1·, α2·). Then the
distribution of πX1 + (1− π)X2 is the Dirichlet distribution with parameter α1 +α2.

The proof is provided in Section B of the Appendix for completeness. The next lemma is
an immediate extension of Theorem 1 for more than two independent Dirichlet distributed
random vectors. As the Dirichlet distribution is a multivariate analog of the beta
distribution, by considering a Dirichlet distribution on the weights, we arrive at a similar
result. This lemma is a finite-dimensional version of Theorem 1 of Williamson et al., 2013,
which essentially states that a finite Dirichlet mixture of DPs is, in turn, a DP with its
concentration parameter being the sum of the concentration parameters of the component
DPs, and the base measure being a weighted mixture of the corresponding mixing base
measures.

Lemma 2 Let α1,α2, . . . ,αL be k-dimensional vectors where αi = (αi1, . . . , αik) with
αij > 0 ∀ j = 1, 2, . . . , k, i = 1, 2, . . . , L. Let X1,X2, . . . ,XL be independent
k-dimensional random vectors distributed as Dirichlet distribution with parameters
α1,α2, . . . ,αL, respectively. Let αi· =

∑k
j=1 αij , i = 1, 2, . . . , L. Let π = (π1, π2, . . . , πL)

be independent of X1,X2, . . . ,XL and have a Dirichlet distribution Dir (α1·, α2·, . . . , αL·).
Then the distribution of

∑L
i=1 πiXi is the Dirichlet distribution with parameter

∑L
i=1αi.

The proof is provided in Section B of the Appendix, which uses the fact that Dirichlet
distribution is normalized gamma distribution. This lemma will be used to prove the
hypergraph representation of GDP in the next section.

4. Representations of the Graphical Dirichlet Process

In this section, we characterize the proposed GDP through (i) the hypergraph
representation, (ii) the stick-breaking representation, (iii) the restaurant-type process
representation, and (iv) the limit of finite mixture representation.
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4.1 The Hypergraph Representation

The GDP, along with the hyperpriors on the concentration parameters and mixture weights,
can be represented hierarchically as,

α
(0)
1 | α0 ∼ Gamma (α0, 1) ,

G
(0)
1 | α

(0)
1 , G0 ∼ DP

(
α
(0)
1 , G0

)
,

α
(k)
j | {α

(k−1)
l : l ∈ an(k,1)(j)} ∼ Gamma

 ∑
l∈an(k,1)(j)

α
(k−1)
l , 1

 ,

{π(k)jl : l ∈ an(k,1)(j)} | {α(k−1)
l : l ∈ an(k,1)(j)} ∼ Dir

(
{α(k−1)

l : l ∈ an(k,1)(j)}
)
,

G
(k)
j | α

(k)
j , {G(k−1)

l : l ∈ an(k,1)(j)} ∼ DP

α(k)
j ,

∑
l∈an(k,1)(j)

π
(k)
jl G

(k−1)
l

 ,

(11)

for j = 1, 2, . . . , lk and k = 1, . . . ,K.

The hyperparameters of the GDP consist of the base probability measure G0 and the

concentration parameter α0. The probability measure G
(0)
1 of the root node varies around

the base measure G0 with the amount of variability governed by α
(0)
1 , which in turn is

governed by the hyperparameter α0. We now present a novel hypergraph representation
of GDP, which simplifies the graph-based distribution. The representation follows from
the gamma-DAG distribution on the concentration parameters and standard properties of
Dirichlet distribution.

Theorem 3 (Hypergraph Representation) Consider a DAG D that has K layers and
lk distinct nodes in layer k for k = 1, . . . ,K. Under model (11), the distribution of the

random measure G
(k)
j of node j in layer k of DAG D can be equivalently represented as,

G
(k)
j | α

(k)
j , H

(k,k)
j ∼ DP

(
α
(k)
j , H

(k,k)
j

)
,

H
(k,k)
j | {α(k−1)

l : l ∈ an(k,1)(j)}, H(k,k−1)
j ∼ DP

 ∑
l∈an(k,1)(j)

α
(k−1)
l , H

(k,k−1)
j

 ,

H
(k,k−1)
j | {α(k−2)

l : l ∈ an(k,2)(j)}, H(k,k−2)
j ∼ DP

 ∑
l∈an(k,2)(j)

α
(k−2)
l , H

(k,k−2)
j

 ,

...

H
(k,2)
j | {α(1)

l : l ∈ an(k,k−1)(j)}, G(0)
1 ∼ DP

 ∑
l∈an(k,k−1)(j)

α
(1)
l , G

(0)
1

 .

The proof is provided in the Appendix A. In words, Theorem 3 essentially states the

following. The distribution of G
(k)
j is a DP with a hidden base measure H

(k,k)
j and the
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concentration parameter α
(k)
j . The hidden base measure H

(k,k)
j , in turn, is again a DP with

base measure H
(k,k−1)
j and concentration parameter being the sum of the concentration

parameters of the generation-1 ancestors of G
(k)
j . Recursively, the hidden base measure

H
(k,k−1)
j is a DP with base measure H

(k,k−2)
j and the concentration parameter being the

sum of the concentration parameters of the generation-2 ancestors. This distributional
pattern continues in a hierarchical fashion. Through k− 1 hidden base measures, any node

in layer k can be seen to depend on the root node G
(0)
1 through its ancestral relationships.

We call the representation of GDP in Theorem 3 as the hypergraph representation because

one can view H
(k,k−a)
j for a = 0, . . . , k − 2 as a hypernode that contains all the sufficient

information from generation-(a+1) ancestors of G
(k)
j . We provide in Figure 6 an illustrative

example of the hypergraph representation showing how the hypernodes contain all the
ancestral information. From Figure 6a, we can see that the distribution of G6 depends on
the distribution of its parents, G2 and G3. We refer to H2, consisting of {G2, G3}, as a
hypernode. Hypernode H2 contains all the information about the parents of G6. Loosely
speaking, the information of the root node G1 (e.g., its atoms) is passed to G6 through H2.
Similarly, H3, being the hypernode of {G3, G4}, contains all the information about G7 from
its parent nodes allowing the flow of information from the root node (see Figure 6b). For
node G8, we have two levels of hypernodes–H4 denotes the first layer and consists of the
parents of G8, and H∗ denotes the second layer and consists of generation-2 ancestors of
G8. Thus, hypernodes H4 and H∗ carry all the information from the root node G1 to G8

as illustrated in Figure 6c.

G0

G1

G3G2

H2

G4

G5 G6 G7

G8

(a)

G0

G1

G3G2 G4

H3

G5 G6 G7

G8

(b)

G0

G1

G3G2 G4 H∗

G5 G6 G7 H4

G8

(c)

Figure 6: Illustration of hypernodes (represented by dashed ovals) of the DAG for our
motivational problem. (a) Hypernode H2 consists of the generation-1 ancestors
(i.e., G2 and G3) of node G6. (b) Hypernode H3 consists of the generation-
1 ancestors (i.e., G3 and G4) of node G7. (c) Hypernode H4 consists of the
generation-1 ancestors (i.e., G5, G6, and G7) of node G8. Hypernode H∗ consists
of the generation-2 ancestors (i.e., G2, G3, and G4) of node G8.

We will exploit this representation to derive the stick-breaking representation and the
limit of finite mixture representation of the proposed GDP in the next subsections.
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4.2 The Stick-Breaking Representation

Given that the random measure G
(0)
1 of the root node is distributed as a DP, it can be

expressed using a stick-breaking representation,

G
(0)
1 =

∞∑
l=1

β
(0)
1l δφl , (12)

where φl
iid∼ G0 and β

(0)
1 =

(
β
(0)
1l

)∞
l=1
∼ GEM

(
α
(0)
1

)
are mutually independent. We

interpret β
(0)
1 as a probability measure on the positive integers. Since G

(0)
1 has support at

the atoms φ = (φl)
∞
l=1, each G

(k)
j necessarily has support at these atoms as well and hence

can be expressed as,

G
(k)
j =

∞∑
l=1

β
(k)
jl δφl . (13)

As with Theorem 3, the stick-breaking weights depend hierarchically on a set of hidden

weights. Letting β
(k)
j =

(
β
(k)
jl

)∞
l=1

be the stick-breaking weights for node j in layer k of

DAG D and letting ν
(k,m)
j =

(
ν
(k,m)
jl

)∞
l=1

,m = 2, . . . , k be their hidden weights, we have

the following corollary.

Corollary 4 (Stick-Breaking Representation) Consider a DAG D that has K layers

and lk distinct nodes in layer k for k = 1, . . . ,K. The stick-breaking weights β
(k)
j of node j

at layer k of DAG D can be represented as

β
(k)
j | α(k)

j ,ν
(k,k)
j ∼ DPZ+

(
α
(k)
j ,ν

(k,k)
j

)
,

ν
(k,k)
j | {α(k−1)

l : l ∈ an(k,1)(j)},ν(k,k−1)j ∼ DPZ+

 ∑
l∈an(k,1)(j)

α
(k−1)
l ,ν

(k,k−1)
j

 ,

ν
(k,k−1)
j | {α(k−2)

l : l ∈ an(k,2)(j)},ν(k,k−2)j ∼ DPZ+

 ∑
l∈an(k,2)(j)

α
(k−2)
l ,ν

(k,k−2)
j

 ,

...

ν
(k,2)
j | {α(1)

l : l ∈ an(k,k−1)(j)},β(0)
1 ∼ DPZ+

 ∑
l∈an(k,k−1)(j)

α
(1)
l ,β

(0)
1

 ,

where DPZ+(a,η) denotes the random probability measure on the positive integers
distributed as a Dirichlet process with the concentration parameter a > 0 and base measure
on the positive integers, η.

The proof of this corollary directly follows from the hypergraph representation of
Theorem 3 and is hence omitted. We call this representation the stick-breaking

representation where ν
(k,k)
j is interpreted as a hidden probability measure on the set of
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positive integers corresponding to the first hidden layer. Each hidden layer of
stick-breaking weights depend hierarchically on its previous hidden layer, denoted by

ν
(k,k−1)
j , ν

(k,k−2)
j , and so on, and finally on the weights β

(0)
1 of the root node.

4.3 The Family-Owned Restaurant Process Representation

DP and HDP have the well-known Chinese restaurant process and franchise
representations. Here, we provide a culinary analog for the proposed GDP. We refer to
this process as the family-owned restaurant process as it is customary to use familial
relationships to describe the relationships between nodes in a DAG. The metaphor is as
follows. An original restaurant is opened by the ancestor of a family (the root node),
which serves some dishes from a global menu containing an infinite number of dishes. The
descendants of the ancestor open their own respective restaurants, which serve some of the
dishes already being served in the restaurants owned by their parents and possibly some
new dishes from the global menu. At each table of the original restaurant, one dish is
ordered from the menu by the first customer occupying the table, and the dish is shared
by all the other customers who sit at that table. Any subsequent customer may either join
an occupied table and share the dish being served at that table or open a new table with a
new dish from the menu. In restaurants other than the original restaurant, however, the
first customer might choose to select a dish being served at one of the tables of its parent
restaurant or order a new dish from the menu. Since the hypergraph representation of
GDP involves hypernodes with hidden probability measures, we introduce a notation for
the number of tables serving a dish in any restaurant and demarcate them with the
notation for the number of tables serving the dish in the hypernodes, which we refer to as
hyper-restaurants.

As before, assume that there are K generations in the family and there are lk different
restaurants in generation k. The restaurants correspond to the nodes of DAG D. The

customers coming in restaurant j of generation k correspond to parameters θ
(k)
ji . Let

φ1, φ2, . . . , φL denote i.i.d. random variables distributed according to the base distribution
G0, which are dishes from the global menu. To maintain a count of customers and tables,

we introduce two notations. We use the notation n
(k)
jt to denote the number of customers

at table t in the restaurant j of generation k and the notation m
(k)
jl to denote the number

of tables in the restaurant j of generation k that serve dish l. Marginal counts are

represented by dots at the appropriate indices. For example, m
(k)
j· denotes the count of all

the tables (regardless of what dishes being served) in the restaurant j of generation k. We

introduce the notation ψ
(k,k)
jt to denote the dish served at table t in restaurant j of

generation k, chosen from the corresponding layer-1 hyper-restaurant (H
(k,k)
j ).

We integrate out random measures
{
G

(k)
j , H

(k,k)
j , H

(k,k−1)
j , . . . , G

(0)
1

}
sequentially. First,

we find the conditional distribution of θ
(k)
ji given θ

(k)
j1 , θ

(k)
j2 , . . . , θ

(k)
j,i−1, α

(k)
j , and H

(k,k)
j with

G
(k)
j integrated out,

θ
(k)
ji | θ

(k)
j1 , θ

(k)
j2 , . . . , θ

(k)
j,i−1, α

(k)
j , H

(k,k)
j ∼

m
(k)
j·∑
t=1

n
(k)
jt

i− 1 + α
(k)
j

δ
ψ
(k,k)
jt

+
α
(k)
j

i− 1 + α
(k)
j

H
(k,k)
j , (14)
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We let ψ
(k,k−1)
jt to denote the dish served at table t in the layer-1 hyper-

restaurant corresponding to restaurant j of generation k, chosen from the dishes

served in the layer-2 hyper-restaurants (H
(k,k−1)
j ). Integrating out the hidden

measure from the current layer H
(k,k)
j , the conditional distribution of ψ

(k,k)
jt given

ψ
(k,k−1)
j1 , ψ

(k,k−1)
j2 , . . . , ψ

(k,k)
j1 , . . . , ψ

(k,k)
j,t−1, {α

(k−1)
l : l ∈ an(k,1)(j)}, and the hidden measure

from the previous layer, H
(k,k−1)
j is given by,

ψ
(k,k)
jt | ψ(k,k−1)

j1 , ψ
(k,k−1)
j2 , . . . , ψ

(k,k)
j1 , . . . , ψ

(k,k)
j,t−1, {α

(k−1)
l : l ∈ an(k,1)(j)}, H(k,k−1)

j

∼
M

(k,k−1)
j∑
l=1

m
(k,k−1)
jl

m
(k,k−1)
j· +

∑
l∈an(k,1)(j) α

(k−1)
l

δ
ψ
(k,k−1)
jl

+

∑
l∈an(k,1)(j) α

(k−1)
l

m
(k,k−1)
j· +

∑
l∈an(k,1)(j) α

(k−1)
l

H
(k,k−1)
j ,

(15)

where the notation m
(k,k−1)
jl denotes the number of tables in layer-1 hyper-restaurant,

corresponding to restaurant j of generation k serving the dish l. We denote by

M
(k,k−1)
j the number of dishes served in the layer-1 hyper-restaurants and by m

(k,k−1)
j· the

total number of tables in the layer-1 hyper-restaurant, corresponding to the restaurant

j of generation k. Similarly, integrating out the measure H
(k,k−1)
j and introducing

the next layer of variables ψ
(k,k−2)
jt , the conditional distribution of ψ

(k,k−1)
jt given

ψ
(k,k−2)
j1 , ψ

(k,k−2)
j2 , . . . , ψ

(k,k−1)
j1 , . . . , ψ

(k,k−1)
j,t−1 , {α(k−2)

l : l ∈ an(k,2)(j)}, and the hidden

measure from the previous layer H
(k,k−2)
j is given by,

ψ
(k,k−1)
jt | ψ(k,k−2)

j1 , ψ
(k,k−2)
j2 , . . . , ψ

(k,k−1)
j1 , . . . , ψ

(k,k−1)
j,t−1 , {α(k−2)

l : l ∈ an(k,2)(j)}, H(k,k−2)
j

∼
M

(k,k−2)
j∑
l=1

m
(k,k−2)
jl

m
(k,k−2)
j· +

∑
l∈an(k,2)(j) α

(k−2)
l

δ
ψ
(k,k−2)
jl

+

∑
l∈an(k,2)(j) α

(k−2)
l

m
(k,k−2)
j· +

∑
l∈an(k,2)(j) α

(k−2)
l

H
(k,k−2)
j .

(16)

As in the stick-breaking representation, we can recursively integrate out hidden

measures and eventually arrive at the conditional distribution of ψ
(k,2)
jt given

ψ
(0)
j1 , ψ

(0)
j2 , . . . , ψ

(k,2)
j1 , . . . , ψ

(k,2)
j,t−1, {α

(1)
l : l ∈ an(k,k−1)(j)}, and the probability measure of

the root node G
(0)
1 ,

ψ
(k,2)
jt | ψ(0)

j1 , ψ
(0)
j2 , . . . , ψ

(k,2)
j1 , . . . , ψ

(k,2)
j,t−1, {α

(1)
l : l ∈ an(k,k−1)(j)}, G(0)

1

∼
M

(k,1)
j∑
l=1

m
(k,1)
jl

m
(k,1)
j· +

∑
l∈an(k,k−1)(j) α

(1)
l

δ
ψ
(0)
jl

+

∑
l∈an(k,k−1)(j) α

(1)
l

m
(k,1)
j· +

∑
l∈an(k,k−1)(j) α

(1)
l

G
(0)
1 , (17)

and the conditional distribution of ψ
(0)
jt given ψ

(0)
j1 , . . . , ψ

(0)
j,t−1, α

(0)
1 , and the base measure

G0,

ψ
(0)
jt | ψ

(0)
j1 , . . . , ψ

(0)
j,t−1, α

(0)
1 , G0 ∼

L∑
l=1

m
(0)
l

m
(0)
· + α

(0)
1

δφl +
α
(0)
1

m
(0)
· + α

(0)
1

G0, (18)
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where m
(0)
l denotes the number of tables in the original restaurant serving dish l and m

(0)
·

denotes the total number of tables in the original restaurant. Note that (18) corresponds
to the case where the root node is hidden (the same as in HDP). When the root node is
not hidden, a similar formula can be derived, which is omitted for simplicity.

4.4 The Infinite Limit of Finite Mixture Model

The GDP mixture model can be derived as the infinite limit of a finite mixture model. Let
us denote the observations and the mixture component indicator from node j in layer k

of DAG D by x
(k)
ji and z

(k)
ji , respectively. Suppose β

(0)
1 is the vector of mixing weights for

the root node. Denoting by β
(k)
j the mixing weights of node j in layer k and by ν

(k,m)
j

the corresponding mixing weights for the hidden layer m, with m = 2, . . . , k, we consider a
finite mixture version of the proposed GDP,

β
(0)
1 | α(0)

1 ∼ Dir
(
α
(0)
1 /L, . . . , α

(0)
1 /L

)
,

ν
(k,2)
j | {α(1)

l : l ∈ an(k,k−1)(j)},β(0)
1 ∼ Dir

 ∑
l∈an(k,k−1)(j)

α
(1)
l

(
β
(0)
11 , . . . , β

(0)
1L

) ,

...

ν
(k,k)
j | {α(k,k−1)

l : l ∈ an(k,1)(j)},ν(k,k−1)
j ∼ Dir

 ∑
l∈an(k,1)(j)

α
(k−1)
l

(
ν
(k,k−1)
j1 , . . . , ν

(k,k−1)
jL

) ,

β
(k)
j | α(k)

j ,ν
(k,k)
j ∼ Dir

(
α
(k)
j

(
ν
(k,k)
j1 , . . . , ν

(k,k)
jL

))
,

φl | G0 ∼ G0,

z
(k)
ji | β

(k)
j ∼ β(k)

j ,

x
(k)
ji | z

(k)
ji , (φl)

L
l=1 ∼ F

(
φ
z
(k)
ji

)
. (19)

The distribution of this finite mixture model approaches the GDP mixture model as L→∞. Refer
to Section C of the Appendix for the proof. Based on this finite mixture model approximation with
a large enough truncation level L, we develop an efficient posterior inference procedure of our model
using a Metropolis-within-blocked-Gibbs sampler with a specialized proposal (Director et al., 2017);
see Section D of the Appendix for details.

5. Simulations

Our simulations are designed to mimic the motivating application where we have 8 experimental
groups, whose relationships are represented by the DAG in Figure 7.

We generated data within each of the 8 groups from a four-component mixture of bivariate
Gaussian distributions with different covariance matrices for each group. We drew the DP
concentration parameters αj ’s for the different groups from their prior distribution (10) respecting
the DAG in Figure 7 with α0 = 5. The weights of the finite mixture model corresponding to the
different groups were drawn using (19) and the same DAG. The true cluster indicators of each group
were sampled from a multinomial distribution with probabilities equal to the mixture weights. Using
these true cluster indices for each group, samples were drawn from the Gaussian distribution with
the cluster-specific mean and group-specific covariance matrix, given in Tables 4 and 5, respectively,
in Section E of the Appendix. Refer to the same section in the Appendix for more details on our
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Figure 7: The DAG of experimental groups.

simulation strategy. In our Gibbs sampler, the truncation level of the finite mixture model was set to
L = 10, and the base measure for GDP, G0, was specified as the normal-inverse-Wishart distribution,
NIW(0, 0.01, I2, 2). Upon the completion of the Gibbs sampler, the clusters were estimated by using
the least squares criterion (Dahl, 2006), and they were compared with the true cluster labels for
evaluation. We considered various sample sizes in each group, which are summarized in Table 1. In
all cases, we ran 15,000 iterations of our Gibbs sampler and after discarding the first 5,000 samples
as burn-in, we retained every 10th iteration of posterior samples.

Sample sizes Groups
1 2 3 4 5 6 7 8

small 40 30 30 35 25 30 25 30
moderate 80 70 70 75 83 88 92 88

large 150 160 180 170 155 175 185 145
unbalanced 350 30 40 45 25 25 35 35

Table 1: The sample sizes for the different groups that were used to simulate the data.

The clustering results of GDP for small and unbalanced sample sizes are visualized in Figure 8.
The remaining clustering plots are shown in Appendix E. Across different sample sizes, the proposed
GDP was able to identify the clusters within each group with very good accuracy and was able to
link clusters across non-exchangeable groups.

We also looked at the clustering performance of GDP under a more difficult scenario. The
simulation details and clustering results are shown in Appendix E. Since HDP is a special case of
the proposed GDP, we compared the two methods for this difficult scenario. We also compared the
clustering performance of GDP with k-means, a widely used non-Bayesian clustering technique. The
number of clusters in k-means was taken to be the truncation level of our GDP. All simulations were
replicated 50 times.

GDP significantly outperformed both HDP and k-means. For example, the boxplots of adjusted
Rand indices (Hubert and Arabie, 1985; higher is better) for the different methods are shown
in Figure 9. It is evident that the adjusted Rand indices of GDP were almost uniformly higher
than those of HDP because HDP was not able to handle non-exchangeable groups. Similarly, the
higher adjusted Rand indices of GDP indicated its superior clustering performance over the k-means
algorithm. Moreover, k-means algorithm does not allow sharing of relevant clusters across the groups.
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Figure 8: Clustering performance of GDP for different sample sizes. The colors indicate
the estimated clusters by GDP. Adjusted Rand index is reported at the top of
each panel.

20



Graphical Dirichlet Process for Clustering Non-Exchangeable Grouped Data

We further explored additional simulations for grouped data characterized by dependencies that
can be represented by a known DAG, beyond those that mimick our motivational application.
Specifically, we investigated time-dependent grouped data, which can be represented using an
autoregressive (AR) model. Such an AR model may be analyzed using the GDP. The proposed
model, simulation details, and clustering results for various number of time points (groups) are
shown in Appendix Section F. In summary, our model was able to identify the clusters within each
group and link them across groups with good accuracy.
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Figure 9: The boxplots of the adjusted Rand indices for GDP, HDP, and k-means for all
sample sizes.

6. Real Data Analysis

With the advancement of next-generation sequencing techniques in recent years, it is now possible to
molecularly characterize individual cells, which may provide valuable insights into complex biological
systems, ranging from cancer genomics to diverse microbial communities (Hwang et al., 2018).
Colorectal cancer is the third most common type of cancer after breast and lung cancers. It is
known that the mutation of tumor-suppressor gene Apc is an initial step in most colorectal tumors
(Morin et al., 1997). In addition, numerous studies have been conducted to understand the effect of
high-fat vs low-fat diet on gene expressions (Jump and Clarke, 1999; Bouchard-Mercier et al., 2013;
Fan et al., 2020). We are motivated by a study that aimed to investigate how diet, genotype, and
treatment with a new cancer prevention drug (AdipoRon) against placebo interacted to influence
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the expression of genes in intestinal crypt and tumor cells. The experiments started from a baseline
group where the mice were genetically wild-type, fed with a normal diet, and treated with placebo.
Then to understand the main effects of genotype, diet, and cancer treatment on stem cell gene
expression, the experimenters introduced three new groups of mice, each differing from the baseline
group by exactly one factor (Apc knock-out, high-fat diet, or new cancer treatment AdipoRon).
To determine the two-way interaction effects, three additional groups of mice were studied, each of
which differed from the baseline group by two factors (e.g., mice with Apc knock-out, high-fat diet,
and placebo). Lastly, for a three-way interaction, the experimenters introduced the eighth group of
mice with Apc knock-out, a high-fat diet, and the new treatment AdipoRon. By design, these 8
experimental groups are non-exchangeable and their relationships can be delineated by the DAG in
Figure 7. The goal of this analysis is to identify potential intestinal molecular subtypes within each
experimental group while allowing information to be shared across these non-exchangeable groups
with the proposed GDP model. For illustration, we randomly sampled 100 cells from each of the
eight groups. The scRNA-seq data were pre-processed following standard procedure as outlined by
Hao et al. (2021) using the R package Seurat. The data was log-normalized and scaled such that
the mean expression across cells was 0 and the variance across cells was 1. As a common practice
in single-cell data analyses, the uniform manifold approximation and projection (UMAP) (McInnes
et al., 2018) was used to reduce the data to two dimensions. We considered the truncation level,
L = 30, and the same base probability measure, G0, as in the simulations. Furthermore, we have
considered several choices of the truncation level of the GDP, which shows our method is relatively
robust for L ≥ 30; see Appendix G for details. We ran four parallel chains of the Gibbs sampler
for 50, 000 iterations. To monitor the convergence of the sampler, we drew the traceplots of the
log-likelihood for each of the four chains, after discarding the initial 35, 000 samples and thinning
the samples by a factor of 15, which indicated no lack of convergence of our sampler. We pooled
the Monte Carlo samples across different chains for posterior inference. We compared the clustering
performance with that obtained from HDP on the same data.

The estimated clusters from GDP and HDP are shown in Figures 10a and 10b, respectively. As
shown in Table 3 in Section D of the Appendix, group 1 is the wild-type group receiving the placebo
and a normal diet. Each of group 2, 3, and 4 are obtained from group 1 by changing the three
factors one at a time, and hence shares some similar clusters with group 1. Group 4 is similar to
the baseline group 1 but with the Apc gene knocked out. The corresponding clustering plot (Figure
10a) of GDP indicates that the Apc knock-out group seems to exhibit more heterogeneity of cells
(suggesting possibly new cellular subtypes) as compared to the wild-type group. Group 5 is the
Apc knock-out group receiving a high-fat diet and the placebo. The clustering plot shows some
resemblance with its parent groups (groups 2 and 4) but with the absence of some parental clusters.
Groups 6 and 7 show similar clustering patterns, indicating possibly similar impact of changing the
corresponding factors from their parent groups. Groups 7 and 8 correspond to the Apc knock-out
group receiving the new treatment and fed with a normal and high-fat diet, respectively. It can be
seen that the high-fat diet group appears to have greater molecular heterogeneity than the normal
diet group. The Figure 10b, on the other hand, clearly shows that HDP fails to capture meaningful
clusters across the non-exchangeable groups, i.e., some points that seemingly belong to the same
cluster are assigned different labels across groups. To quantify the difference between GDP and
HDP, we computed several internal clustering validation measures; see Liu et al., 2010 for a review
of several such measures. Table 2 compares the Calinski-Harabasz, Davies–Bouldin, and Silhouette
Index between GDP and HDP. Clearly, all of them indicate the superior clustering performance of
GDP over HDP.

7. Discussion

We have introduced the GDP as a graph-based stochastic process for modeling dependent random
measures that are linked by a DAG. We have also introduced the corresponding infinite mixture
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(a) Clustering plot for different groups by GDP.
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(b) Clustering plot for different groups by HDP.

Figure 10: Clustering of the group-specific single-cell data whose dimensions are reduced
to 2 by UMAP by (a) GDP and (b) HDP.
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Calinski-Harabasz Index Davies–Bouldin Index Silhouette Index

GDP 418.518 1.559 0.198
HDP 225.327 4.868 -0.044

Table 2: Different measures of internal clustering for GDP and HDP. Higher values of
Calinski-Harabasz Index and Silhouette Index indicates better clustering. Lower
values of Davies–Bouldin Index indicate well separated clusters.

model and presented how the GDP mixture model can be used for clustering grouped data with non-
exchangeable groups. We provided different representations of the GDP including a novel hypergraph
representation of the original process. The posterior inference was relatively straightforward. We
illustrated our method using both simulations and an application to a real grouped scRNA-seq data
set.

There are a few possible future directions for this work. First, it may be possible to replace the
DAG in our GDP with an undirected or chain graph. The challenge is to define the joint distribution
over a set of random measures given the graph where the convenient DAG factorization no longer
applies. Second, it may also be possible to learn the DAG structure instead of assuming it is known,
which may require independent realizations of the GDP. In theory, if there are replicates from the
underlying joint distribution of random probability measures, it is possible to identify the underlying
DAG up to its Markov equivalent class. In that case, we can either consider a uniform prior for DAG
D, p(D) ∝ 1 or a prior that penalizes the graph complexity, p(D) ∝ θ|D| where θ ∈ (0, 1) and |D| is
the number of edges in D. Then the posterior inference can be carried out by searching the DAG
space via MCMC with edge addition, deletion, and reversal moves; see e.g., Section 2.4 of Choi et al.
(2020). For multivariate data, a DAG may be uniquely identifiable under certain conditions such as
non-Gaussianity (Shimizu et al., 2006). In the proposed construction of the GDP, we have assumed
that the random probability measures corresponding to each node is non-Gaussian, i.e., a Dirichlet
process. Therefore, it might be possible to extend the ideas of Shimizu et al., 2006 in our setup,
replacing random variables corresponding to each node with random probability measures for the
unique identifiability of the underlying DAG. Third, the proposed construction of the GDP can be
extended for other processes including the Pitman-Yor process and more generally the completely
random measures and normalized random measures. For the proposed Graphical Dirichlet Process,
we have assumed that Gj is a Dirichlet Process with the base measure being a weighted mixture of
the measures of the corresponding parent nodes ({Gl : l ∈ pa(j)}), i.e., Gj | αj , {Gl : l ∈ pa(j)} ∼
DP

(
αj ,
∑
l∈pa(j) πjlGl

)
. This can, by construction, be replaced by the Pitman-Yor process i.e.,

Gj | αj , σj , {Gl : l ∈ pa(j)} ∼ PY
(
αj , σj ,

∑
l∈pa(j) πjlGl

)
, where PY(a, b, π) denotes a Pitman-Yor

process with concentration parameter a, discount parameter b > −a, and base measure π, which
leads to a Graphical Pitman-Yor Process. Alternatively, one may consider a Graphical Gamma

Process by assuming Gj | αj , {Gl : l ∈ pa(j)} ∼ ΓP
(
αj ,
∑
l∈pa(j) πjlGl

)
, where ΓP (a, π) is a

Gamma process with concentration parameter a, and base measure π. One caveat though is that
the proposed hypergraph representation of the proposed GDP (Theorem 3) relies on the fact that
a Dirichlet mixture of DPs is a DP. Therefore, for other processes, to get an equivalent hypergraph
representation the choice of the hyperpriors must be redesigned, which could be an interesting future
direction..
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Appendix A. Proof of the Hypergraph Representation

We prove Theorem 3 (the hypergraph representation of the proposed GDP) of the main manuscript
in the case of our motivational problem where we have 8 groups. Note that the proof for any general
DAG follows in a similar fashion by repeated application of the two lemmas in Section 3.3 of the
main manuscript and properties of gamma and Dirichlet distributions, which, however, requires
more involved bookkeeping of the corresponding random distributions and hence is omitted. Our
proof also illustrates how the random distribution of any particular node of the DAG is related to
the root node through a number of hidden random measures, which shows the clustering property of
our model. In our motivating example, each group corresponds to a combination of treatment, diet,
and genotype, as summarized in Table 3 in Section D of the Appendix. The underlying DAG for the
problem is given in Figure 7 of the main manuscript where group 1 is the root node, groups 2-4 are the
layer-1 nodes, groups 5-7 are the layer-2 nodes, and group 8 is the layer-3 node. For ease of notation,

instead of using G
(0)
1 and α

(0)
1 to denote the random measure and the concentration parameter of the

root node, we use simply G1 and α1 instead; similarly for all the other nodes. Using these simplified
notations, Figures 11a and 11b show the relationships among the group-specific random measures
and concentration parameters according to Figure 7 of the main manuscript.

G0

G1

G3G2 G4

G5 G6 G7

G8

(a)

α0

α1

α3α2 α4

α5 α6 α7

α8

(b)

Figure 11: The DAG of the (a) random measures Gj ’s and (b) concentration parameters
αj ’s.

The proposed GDP mixture model for this problem is given hierarchically as,

α1 ∼ Gamma(α0, 1), G1 ∼ DP (α1, G0),
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αj ∼ Gamma(α1, 1), j = 2, 3, 4, Gj ∼ DP (αj , G1), j = 2, 3, 4,

α5 ∼ Gamma(α2 + α4, 1), G5 ∼ DP (α5, π1G2 + (1− π1)G4),

π1 ∼ Beta(α2, α4),

α6 ∼ Gamma(α2 + α3, 1), G6 ∼ DP (α6, π2G2 + (1− π2)G3),

π2 ∼ Beta(α2, α3),

α7 ∼ Gamma(α3 + α4, 1), G7 ∼ DP (α7, π3G3 + (1− π3)G4),

π3 ∼ Beta(α3, α4),

α8 ∼ Gamma(α5 + α6 + α7, 1), G8 ∼ DP (α8, γ1G5 + γ2G6 + γ3G7),

γ = (γ1, γ2, γ3) ∼ Dir(α5, α6, α7),

θji | Gj
ind∼ Gj ,

xji | θji
ind∼ F (θji), i = 1, . . . , nj , j = 1, . . . , 8. (20)

Now, from Theorem 3, we have the following hypergraph representation, which we are going to
prove,

α1 ∼ Gamma(α0, 1), G1 ∼ DP (α1, G0),

αj ∼ Gamma(α1, 1), j = 2, 3, 4, Gj ∼ DP (αj , G1), j = 2, 3, 4,

α5 ∼ Gamma(α2 + α4, 1), G5 ∼ DP (α5, H1)

H1 ∼ DP (α2 + α4, G1),

α6 ∼ Gamma(α2 + α3, 1), G6 ∼ DP (α6, H2),

H2 ∼ DP (α2 + α3, G1),

α7 ∼ Gamma(α3 + α4, 1), G7 ∼ DP (α7, H3),

H3 ∼ DP (α3 + α4, G1),

α8 ∼ Gamma(α5 + α6 + α7, 1), G8 ∼ DP (α8, H4),

H4 ∼ DP (α5 + α6 + α7, H
∗),

H∗ ∼ DP (2(α2 + α3 + α4), G1),

θji | Gj
ind∼ Gj ,

xji | θji
ind∼ F (θji), i = 1, . . . , nj , j = 1, . . . , 8.

(21)

Proof
Note that the random measures G2, G3, and G4 are the layer-1 nodes. Their relationships to

the root node G1 are the same as those in an HDP. We shall consider the relationships of the
random measures of the layer-2 and layer-3 nodes (i.e., G5, G6, G7, and G8) to the root node. Let
H1 = π1G2 + (1 − π1)G4 where G2 ∼ DP (α2, G1) and G4 ∼ DP (α4, G1) independently. Let
A1, A2, . . . , Ar be a finite measurable partition of the sample space Θ. Then by the definition of DP,
we have

(G2(A1), G2(A2), . . . , G2(Ar)) ∼ Dir (α2G1(A1), α2G1(A2), . . . , α2G1(Ar)) ,

(G4(A1), G4(A2), . . . , G4(Ar)) ∼ Dir (α4G1(A1), α4G1(A2), . . . , α4G1(Ar)) ,

which are conditionally independent given α2, α4 and G1. As π1 ∼ Beta(α2, α4) independently of
G2 and G4, using Theorem 1, we have that, given α2, α4 and G1,

π1 (G2(A1), . . . , G2(Ar)) + (1− π) (G4(A1), . . . , G4(Ar))
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∼ Dir((α2 + α4)(G1(A1), . . . , G1(Ar)))

⇒ (H1(A1), . . . ,H1(Ar)) | α2, α4, G1 ∼ Dir((α2 + α4)(G1(A1), . . . , G1(Ar)))

⇒ H1 | α2, α4, G1 ∼ DP (α2 + α4, G1)

Thus, we have

G5 | H1, α5 ∼ DP (α5, H1),

H1 | α2, α4, G1 ∼ DP (α2 + α4, G1). (22)

Similarly, the other layer-2 measures G6 and G7 have the following representations:

G6 | H2, α6 ∼ DP (α6, H2),

H2 | α2, α3, G1 ∼ DP (α2 + α3, G1), (23)

and,

G7 | H3, α7 ∼ DP (α7, H3),

H3 | α3, α4, G1 ∼ DP (α3 + α4, G1), (24)

where H2 = π2G2 + (1− π2)G3 and H3 = π3G3 + (1− π3)G4.
Let H4 = γ1G5 + γ2G6 + γ3G7 and γ = (γ1, γ2, γ3) ∼ Dir(α5, α6, α7). Since G5, G6, and G7 are

conditionally independent given G2, G3, and G4, they are also independent given H1, H2, and H3.
Therefore, we have,

G5 | α5, H1 ∼ DP (α5, H1),

G6 | α6, H2, ∼ DP (α6, H2),

G7 | α7, H3 ∼ DP (α7, H3).

For any finite measurable partition A1, A2, . . . , Ar of Θ, from Theorem 2, we have

(H4(A1), . . . ,H4(Ar)) | α5, α6, α7, H1, H2, H3

= γ1 (G5(A1), . . . , G5(Ar)) + γ2 (G6(A1), . . . , G6(Ar)) + γ3 (G7(A1), . . . , G7(Ar))

∼ Dir ((α5H1 + α6H2 + α7H3) (A1), . . . , (α5H1 + α6H2 + α7H3) (Ar))

≡ Dir
(
α∗
((α5

α∗
H1 +

α6

α∗
H2 +

α7

α∗
H3

)
(A1), . . . ,

(α5

α∗
H1 +

α6

α∗
H2 +

α7

α∗
H3

)
(Ar)

))
≡ Dir (α∗ (H∗(A1), . . . ,H∗(Ar)))

⇒ H4 | α∗, H∗ ∼ DP (α∗, H∗), (25)

where α∗ = α5+α6+α7 and H∗ = α5

α∗H1+ α6

α∗H2+ α7

α∗H3. Note that α5, α6, and α7 are independent
gamma random variables conditionally on α2, α3, α4 with shape parameters α2 + α4, α2 + α3, and
α3 + α4, respectively. Thus,(α5

α∗
,
α6

α∗
,
α7

α∗

)
| α2, α3, α4 ∼ Dir(α2 + α4, α2 + α3, α3 + α4) (26)

Thus, given G1, G2, G3, G4, α2, α3, α4, and from Eqs. (22–24), and Eq. (26), using Theorem 2 and
using a similar measurable finite partition of Θ argument, we have,

H∗ | α2, α3, α4, G1 ∼ DP (2(α2 + α3 + α4), G1), (27)

which completes the proof.
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Appendix B. Proof of Lemma 1 and Lemma 2

B.1 Proof of Lemma 1

Lemma 1 (Sethuraman, 1994) Let α1 = (α11, α12, . . . , α1k) and α2 = (α21, α22, . . . , α2k) be
k-dimensional vectors with αij > 0 ∀ j = 1, 2, . . . , k, i = 1, 2. Let X1 and X2 be independent
k-dimensional random vectors distributed as Dirichlet distribution with parameters α1 and α2,
respectively. Let α1· =

∑k
j=1 α1j and α2· =

∑k
j=1 α2j. Let π be independent of X1 and X2 and

have a beta distribution Beta (α1·, α2·). Then the distribution of πX1 + (1− π)X2 is the Dirichlet
distribution with parameter α1 +α2.

Proof Let Ti
ind∼ Gamma (α1i, λ) , i = 1, 2, . . . , k and Si

ind∼ Gamma (α2i, λ) , i = 1, 2, . . . , k

independently of Ti, where λ > 0. Let T =
∑k
i=1 Ti and S =

∑k
i=1 Si. We know from the

reproductive property of independent gamma distributions that T ∼ Gamma
(∑k

i=1 α1i, λ
)
≡

Gamma (α1·, λ) and S ∼ Gamma
(∑k

i=1 α2i, λ
)
≡ Gamma (α2·, λ) independently of T . Define

X1 :=

(
T1
T
,
T2
T
, . . . ,

Tk
T

)
, X2 :=

(
S1

S
,
S2

S
, . . . ,

Sk
S

)
, and π :=

T

T + S
.

It is easy to see that X1 ∼ Dir(α11, . . . , α1k) is independent of X2 ∼ Dir(α21, . . . , α2k), and that
π ∼ Beta (α1·, α2·). We now need to show that π as defined above is indeed independent of X1

and X2 as required by the lemma. For any fixed α11, . . . , α1k, we have that
∑k
i=1 Ti is a complete

and sufficient statistic for λ. Because X1 ∼ Dir(α11, . . . , α1k) is ancillary for λ, by the Basu’s

theorem (Basu, 1955), we have that X1 is independent of
∑k
i=1 Ti = T . Furthermore, due to the

independence of Si and Ti, i = 1, . . . , k, X1 is independent of S, and, therefore, X1 is independent
of π = T

T+S . Similarly, X2 is also independent of π. Then,

πX1 + (1− π)X2 =
T

T + S

(
T1
T
,
T2
T
, . . . ,

Tk
T

)
+

S

T + S

(
S1

S
,
S2

S
, . . . ,

Sk
S

)
=

(
T1 + S1

T + S
,
T2 + S2

T + S
, . . . ,

Tk + Sk
T + S

)
∼ Dir (α1 +α2) ,

because Ti + Si
ind∼ Gamma(α1i + α2i, λ) i = 1, 2, . . . , k and T + S ∼ Gamma(α1· + α2·, λ).

B.2 Proof of Lemma 2

Lemma 2 Let α1,α2, . . . ,αL be k-dimensional vectors where αi = (αi1, . . . , αik) with αij >
0 ∀ j = 1, 2, . . . , k, i = 1, 2, . . . , L. Let X1,X2, . . . ,XL be independent k-dimensional random
vectors distributed as Dirichlet distribution with parameters α1,α2, . . . ,αL, respectively. Let αi· =∑k
j=1 αij , i = 1, 2, . . . , L. Let π = (π1, π2, . . . , πL) be independent of X1,X2, . . . ,XL and have

a Dirichlet distribution Dir (α1·, α2·, . . . , αL·). Then the distribution of
∑L
i=1 πiXi is the Dirichlet

distribution with parameter
∑L
i=1αi.

Proof The proof is similar to that of Appendix B.1. By noting that

π ∼ Dir (α1·, α2·, . . . , αL·)
d
=

(
γ1
γ
,
γ2
γ
, . . . ,

γL
γ

)
,

where γi
ind∼ Gamma(αi·, λ), i = 1, 2, . . . , L and γ =

∑L
i=1 γi ∼ Gamma

(∑L
i=1 αi·, λ

)
. The

remaining proof follows from standard properties of Dirichlet distributions and mimics the proof of
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Appendix B.1.

Appendix C. Proof of the Infinite Limit of Finite Mixture Model

The GDP mixture model can be derived as the infinite limit of a finite mixture model. Let us denote
the observations and the mixture component indicator from node j in layer k of DAG D by x

(k)
ji and

z
(k)
ji , respectively. Let β

(0)
1 be the vector of mixing weights for the root node. Denoting by β

(k)
j the

mixing weights of node j in layer k and by ν
(k,m)
j the corresponding mixing weights for the hidden

layer m, with m = 2, . . . , k, we have

β
(0)
1 | α(0)

1 ∼ Dir
(
α
(0)
1 /L, . . . , α

(0)
1 /L

)
,

ν
(k,2)
j | {α(1)

l : l ∈ an(k,k−1)(j)},β(0)
1 ∼ Dir

 ∑
l∈an(k,k−1)(j)

α
(1)
l

(
β
(0)
11 , . . . , β

(0)
1L

) ,

...

ν
(k,k)
j | {α(k,k−1)

l : l ∈ an(k,1)(j)},ν(k,k−1)
j ∼ Dir

 ∑
l∈an(k,1)(j)

α
(k−1)
l

(
ν
(k,k−1)
j1 , . . . , ν

(k,k−1)
jL

) ,

β
(k)
j | α(k)

j ,ν
(k,k)
j ∼ Dir

(
α
(k)
j

(
ν
(k,k)
j1 , . . . , ν

(k,k)
jL

))
,

φl | G0 ∼ G0,

z
(k)
ji | β

(k)
j ∼ β(k)

j ,

x
(k)
ji | z

(k)
ji , (φl)

L
l=1 ∼ F

(
φ
z
(k)
ji

)
.

(28)

Proof Consider the random probability measure

G
(0)L
1 =

L∑
l=1

β
(0)
1l δφl .

Ishwaran and Zarepour, 2002 shows that for every measurable function g, integrable with respect to

G0, we have, given α
(0)
1 , as L→∞∫

g(θ)dG
(0),L
1 (θ)

D→
∫
g(θ)dG

(0)
1 (θ).

Further, consider

G
(k)L
j =

L∑
l=1

β
(k)
jl δφl ,

H
(k,m)L
j =

L∑
l=1

ν
(k,m)
jl δφl , m = 2, . . . , k.

Let (A1, . . . , Ar) be a measurable partition of the sample space Θ. Let Kt = {l = 1, . . . , L :
φl ∈ At}, t = 1, . . . , r, where r ≤ L. Assuming that G0 is non-atomic, the φl’s are distinct with
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probability one, implying that any partition of {1, . . . , L} corresponds to some partition of Θ. Thus,

as β
(k)
j | α(k)

j ,ν
(k,k)
j ∼ Dir

(
α
(k)
j

(
ν
(k,k)
j1 , . . . , ν

(k,k)
jL

))
, from the properties of Dirichlet distribution,

we have,

(
G

(k)L
j (A1), . . . , G

(k)L
j (Ar)

)
=

(∑
l∈K1

β
(k)
jl , . . . ,

∑
l∈Kr

β
(k)
jl

)

∼ Dir

(
α
(k)
j

∑
l∈K1

ν
(k,k)
jl , . . . , α

(k)
j

∑
l∈Kr

ν
(k,k)
jl

)
.

Thus,

G
(k)L
j | α(k)

j , H
(k,k)L
j ∼ DP

(
α
(k)
j , H

(k,k)L
j

)
.

Similarly,

H
(k,k)L
j | {α(k−1)

l : l ∈ an(k,1)(j)}, H(k,k−1)L
j ∼ DP

 ∑
l∈an(k,1)(j)

α
(k−1)
l , H

(k,k−1)L
j

 ,

H
(k,k−1)L
j | {α(k−2)

l : l ∈ an(k,2)(j)}, H(k,k−2)L
j ∼ DP

 ∑
l∈an(k,2)(j)

α
(k−2)
l , H

(k,k−2)L
j

 ,

...

H
(k,2)L
j | {α(1)

l : l ∈ an(k,k−1)(j)}, G(0)L
1 ∼ DP

 ∑
l∈an(k,k−1)(j)

α
(1)
l , G

(0)L
1

 .

By letting L → ∞, the marginal distribution that this finite mixture model induces on the

observations, x
(k)
j = (x

(k)
j1 , x

(k)
j2 , . . . ), approaches the proposed GDP mixture model.

Appendix D. Finite Mixture Model Approximation and Posterior
Inference

The posterior inference of the proposed GDP mixture model is carried out using a blocked Gibbs
sampler. For concreteness, we will present the finite mixture model approximation of the GDP for
our motivating example and posterior inference based on this approximation. In our motivating
application, we have 8 experimental groups. Each group corresponds to a combination of treatment,
diet, and genotype; see Table 3 where we use binary indicators to denote the genotype, the two
levels of diet, and the two treatment regimes. The design of the experiments naturally introduces
dependencies among the experimental groups, which are represented by the DAG in Figure 12,
where group 1 is the root node, groups 2-4 are the layer-1 nodes, groups 5-7 are the layer-2 nodes,

and group 8 is the layer-3 node. For ease of notation, instead of using G
(0)
1 and α

(0)
1 to denote

the random measure and the concentration parameter of the root node, we use simply G1 and α1

instead; similarly for all the other nodes.
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1

32 4

5 6 7

8

Figure 12: The DAG of experimental
groups.

Group Diet Treatment Genotype

1 0 0 0

2 1 0 0

3 0 1 0

4 0 0 1

5 1 0 1

6 1 1 0

7 0 1 1

8 1 1 1

Table 3: Each experimental group
corresponds to a combination
of diet, treatment, and genotype.
Diet = 1 corresponds to high-fat
diet and 0 corresponds to normal
diet, Treatment = 1 corresponds
to AdipoRon and 0 corresponds
to no therapy, Genotype = 1
corresponds to Apc knock-out
and 0 corresponds to wild type.
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Recall that from the main text, the finite truncation of the infinite mixture model representation
is given by,

β
(0)
1 | α(0)

1 ∼ Dir
(
α
(0)
1 /L, . . . , α

(0)
1 /L

)
,

ν
(k,2)
j | {α(1)

l : l ∈ an(k,k−1)(j)},β(0)
1 ∼ Dir

 ∑
l∈an(k,k−1)(j)

α
(1)
l

(
β
(0)
11 , . . . , β

(0)
1L

) ,

...

ν
(k,k)
j | {α(k,k−1)

l : l ∈ an(k,1)(j)},ν(k−1)
j ∼ Dir

 ∑
l∈an(k,1)(j)

α
(k−1)
l

(
ν
(k,k−1)
j1 , . . . , ν

(k,k−1)
jL

) ,

β
(k)
j | α(k)

j ,ν
(k,k)
j ∼ Dir

(
α
(k)
j

(
ν
(k,k)
j1 , . . . , ν

(k,k)
jL

))
,

φl | G0 ∼ G0,

z
(k)
ji | β

(k)
j ∼ β(k)

j ,

x
(k)
ji | z

(k)
ji , (φl)

L
l=1 ∼ F

(
φ
z
(k)
ji

)
.

(29)

Using the simplified notations for the group-specific random measures and concentration parameter,
from the finite truncation of the infinite mixture model representation from Equation (29), we have,
for this motivating problem,

α1 | α0 ∼ Gamma(α0, 1), β1 | α1 ∼ Dir(α1/L, . . . , α1/L),

α2 | α1 ∼ Gamma(α1, 1), β2 | α2,β1 ∼ Dir(α2 β1),

α3 | α1 ∼ Gamma(α1, 1), β3 | α3,β1 ∼ Dir(α3 β1),

α4 | α1 ∼ Gamma(α1, 1), β4 | α4,β1 ∼ Dir(α4 β1),

α5 | α2, α4 ∼ Gamma(α2 + α4, 1), β5 | α5,ν1 ∼ Dir(α5 ν1),

ν1 | α2, α4,β1 ∼ Dir ((α2 + α4)β1) ,

α6 | α2, α3 ∼ Gamma(α2 + α3, 1), β6 | α6,ν2 ∼ Dir(α6 ν2),

ν2 | α2, α3,β1 ∼ Dir ((α2 + α3)β1) ,

α7 | α3, α4 ∼ Gamma(α3 + α4, 1), β7 | α7,ν3 ∼ Dir(α7 ν3),

ν3 | α3, α4,β1 ∼ Dir ((α3 + α4)β1) ,

α8 | α5, α6, α7 ∼ Gamma(α5 + α6 + α7, 1), β8 | ν4, α8, ∼ Dir(α8 ν4),

ν4 | α5, α6, α7,η ∼ Dir ((α5 + α6 + α7)η) ,

η | α2, α3, α4,β1 ∼ Dir (2(α2 + α3 + α4)β1) ,

zji | βj
ind∼ Cat(1 : L,βj),

xji | zji, (φl)Ll=1
ind∼ F (φzji), i = 1, . . . , nj , j = 1, . . . , 8, (30)

where β1 = (β11, . . . , β1L), ν1 = (ν11, . . . , ν1L), ν2 = (ν21, . . . , ν2L), ν3 = (ν31, . . . , ν3L),
ν4 = (ν41, . . . , ν4L), and η = (η1, . . . , ηL). With the above distributional structure, Gibbs
sampling is straightforward. We use π(.) and π(. | −) to denote the prior distribution and
the conditional distribution, respectively, of the parameter specified in the argument. The full
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conditional distribution for the atoms is given by,

π({φl}Ll=1 | −) ∝
L∏
l=1


8∏
j=1

nj∏
i=1

F (xji | φl)1(zji=l)
π(φl)

 . (31)

The full conditional distributions for the latent cluster labels are given by,

P (zji = l | −) ∝ βjlF (xji | φl), l = 1, . . . , L, i = 1, . . . , nj j = 1, . . . , 8. (32)

The full conditional distribution for the stick-breaking weights is given by,

π(β1 | −) ∝

∏L
l=1 β

m1l+
α1
L

1l

{
βα2

2l β
α3

3l β
α4

4l ν
α2+α4

1l να2+α3

2l να3+α4

3l η
2(α2+α3+α4)
l

}β1l

∏L
l=1 {Γ ((α2 + α4)β1l) Γ ((α2 + α3)β1l) Γ ((α3 + α4)β1l) Γ (2(α2 + α3 + α4)β1l)}

× 1∏L
l=1 {Γ (α2β1l) Γ (α3β1l) Γ (α4β1l)}

, (33)

where m1l =
∑n1

i=1 1(z1i = l), l = 1, . . . , L. The full conditionals for βj , j = 2, . . . , 8, are in closed
form,

π(βj | −) ∼ Dir(mj + αjβ1), where mj = (mj1, . . . ,mjL) and mjl =

nj∑
i=1

1(zji = l), l = 1, . . . , L.

(34)
By letting B(a) to denote the multivariate beta function, i.e., for a L-dimensional vector a =
(a1, . . . , aL) with ai > 0, we have,

B(a) =

∏L
l=1 Γ(al)

Γ(
∑L
l=1 al)

,

where Γ(·) is the gamma function. Then the full-conditional distribution of the hidden weights are
given by,

π(ν1 | −) ∝ 1

B(α5ν1)

L∏
l=1

{
βα5ν1l
5l ν

(α2+α4)β1l−1
1l

}
, (35)

π(ν2 | −) ∝ 1

B(α6ν2)

L∏
l=1

{
βα6ν2l
6l ν

(α2+α3)β1l−1
2l

}
, (36)

π(ν3 | −) ∝ 1

B(α7ν3)

L∏
l=1

{
βα7ν3l
7l ν

(α3+α4)β1l−1
3l

}
, (37)

π(ν4 | −) ∝ 1

B(α8ν4)

L∏
l=1

{
βα8ν4l
4l ν

(α5+α6+α7)ηl−1
4l

}
, (38)

π(η | −) ∝ 1

B((α5 + α6 + α7)η)

L∏
l=1

{
η
2(α2+α3+α4)β1l−1
l ν

(α5+α6+α7)ηl
4l

}
. (39)

The full conditionals for the concentration parameters are given by,

π(α1 | −) ∝ e−α1αα0−1
1 αα1

2 αα1
3 αα1

4

{Γ(α1)}3B((α1/L, . . . , α1/L)

L∏
l=1

β
α1
L

1l (40)
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π(α2 | −) ∝
e−α2αα1−1

2 αα2
5 αα2

6

[∏L
l=1

{
ββ1l

2l ν
β1l

1l ν
β1l

2l η
2β1l

l

}α2
]

Γ(α2)Γ(2(α2 + α3 + α4))∏L
l=1 {Γ(α2β1l)Γ((α2 + α4)β1l)Γ((α2 + α3)β1l)Γ(2(α2 + α3 + α4)β1l)}

, (41)

π(α3 | −) ∝
e−α3αα1−1

3 αα3
6 αα3

7

[∏L
l=1

{
ββ1l

3l ν
β1l

2l ν
β1l

3l η
2β1l

l

}α3
]

Γ(α3)Γ(2(α2 + α3 + α4))∏L
l=1 {Γ(α3β1l)Γ((α2 + α3)β1l)Γ((α3 + α4)β1l)Γ(2(α2 + α3 + α4)β1l)}

, (42)

π(α4 | −) ∝
e−α4αα1−1

4 αα4
5 αα4

7

[∏L
l=1

{
ββ1l

4l ν
β1l

1l ν
β1l

3l η
2β1l

l

}α4
]

Γ(α4)Γ(2(α2 + α3 + α4))∏L
l=1 {Γ(α4β1l)Γ((α2 + α4)β1l)Γ((α3 + α4)β1l)Γ(2(α2 + α3 + α4)β1l)}

, (43)

π(α5 | −) ∝
e−α5αα2+α4−1

5 αα5
8

[∏L
l=1 {β

ν1l
5l ν

ηl
4l }

α5

]
Γ(α5)∏L

l=1 {Γ(α5ν1l)Γ((α5 + α6 + α7)νl)}
, (44)

π(α6 | −) ∝
e−α6αα2+α3−1

6 αα6
8

[∏L
l=1 {β

ν2l
6l ν

ηl
4l }

α6

]
Γ(α6)∏L

l=1 {Γ(α6ν2l)Γ((α5 + α6 + α7)νl)}
, (45)

π(α7 | −) ∝
e−α7αα3+α4−1

7 αα7
8

[∏L
l=1 {β

ν3l
7l ν

ηl
4l }

α7

]
Γ(α7)∏L

l=1 {Γ(α7ν3l)Γ((α5 + α6 + α7)νl)}
, (46)

π(α8 | −) ∝
e−α8αα5+α6+α7−1

8

[∏L
l=1 β

α8ν4l
8l

]
Γ(α8)∏L

l=1 Γ(α8ν4l)
. (47)

Note that the full conditionals of αj , j = 1, . . . , 8, β1,ν1,ν2,ν3,ν4, and η are not standard
distributions that have direct samplers. We adopt a Metropolis-within-Gibbs strategy to sample
from their corresponding full conditional distributions. Since αj ’s are real-valued, sampling using
a Metropolis step is straightforward. However, the main bottleneck in sampling are the weights
β1,ν1,ν2,ν3,ν4 and η, which have a complex structure on the simplex. To mitigate this problem,
we use the SALTSampler (Director et al., 2017) for which the implementation is publicly available
as an R package.

Appendix E. Simulation details

Our simulations are designed to mimick the motivating application where we have 8 experimental
groups. See Table 3 for our experimental design represented in terms of binary indicators denoting
the levels of diet, treatment, and genotype. The corresponding DAG is given in Figure 12.

For our simulation study, we generated data within each of the 8 groups from a four-component
mixture of bivariate Gaussian distributions with different covariance matrices for each group. Taking
α0 = 5, we drew the concentration parameters for the different groups αj ’s, the mixture model
weights, βj ’s, νj ’s, and ηj , and the true cluster indicators zji’s for each of the different groups using
(30). Given the cluster indicators, the data were generated from the Gaussian distribution with the
true cluster-specific means φl’s given in Table 4 and the group-specific covariance matrices given in
Table 5. Note that within each group, the same covariance matrix was used for all clusters.

In our Gibbs sampler, the truncation level of the finite mixture model was set to L = 10,
and the base measure for GDP, G0, was specified as the normal-inverse-Wishart distribution,
NIW(0, 0.01, I2, 2). Upon the completion of the Gibbs sampler, the clusters were estimated by
using the least squares criterion (Dahl, 2006), and they were compared with the true cluster labels
for evaluation. We considered a variety of sample sizes as well as a case with very imbalanced design,
which are summarized in Table 6. In all cases, we ran 15,000 iterations of our Gibbs sampler and
after discarding the first 5,000 samples as burn-in, we retained every 10th iteration of posterior
samples.
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Cluster Mean

1 (-2, -5)
2 (0, 0)
3 (-3, 3)
4 (3, -3)

Table 4: True cluster-specific means.

Group Covariance

1

[
0.8 0.3
0.3 0.8

]
2

[
0.85 0.25
0.25 0.85

]
3

[
1 0.1

0.1 1

]
4

[
0.8 −0.1
−0.1 0.8

]
5

[
0.8 −0.2
−0.2 0.9

]
6

[
0.8 0
0 0.8

]
7

[
0.75 0.25
0.25 0.75

]
8

[
1.1 0.1
0.1 1.1

]
Table 5: True covariance matrices for different groups.

Group Sample sizes
small moderate large unbalanced

1 40 80 150 350
2 30 70 160 30
3 30 70 180 40
4 35 75 170 45
5 25 83 155 25
6 30 88 175 25
7 25 92 185 35
8 30 88 145 35

Table 6: The sample sizes for the different groups that were used to simulate the data.
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We presented the results of clustering for small sample sizes and unbalanced sample sizes in the
main manuscript. Figure 13 shows the results of clustering for moderate and large sample sizes in
each group.

We further considered the case, wherein the simulation scenario was difficult. We generated data
within each of the 8 groups from a ten-component mixture of bivariate Gaussian distributions with
different covariance matrices for each group. The choice of mixture model weights for the first fours
groups are summarized in Table 7.

Group Mixture weights βj
1 (0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100)>

2 (0.167, 0.167, 0.167, 0.167, 0.167, 0.056, 0.056, 0.056, 0.000, 0.000)>

3 (0.095, 0.095, 0.095, 0.000, 0.000, 0.143, 0.143, 0.143, 0.143, 0.143)>

4 (0.030, 0.030, 0.030, 0.182, 0.182, 0.182, 0.182, 0.182, 0.000, 0.000)>

Table 7: True group-specific mixture model weights.

The mixture weights for all other groups were taken to be the mean of the mixture weights of
their parent, e.g., the mixture weight for group 5 was the mean of the mixture weights of groups
2 and 4. The true cluster indicators zji’s for each of the different groups were drawn using (30)
and the true mixture weights. Given the cluster indicators, the data were generated from the
Gaussian distribution with the true cluster-specific means φl’s given in Table 8 and the group-
specific covariance matrices given in Table 5.

Cluster Mean

1 (-2.5, 0)
2 (0, 0)
3 (2.5, 0)
4 (2.5, -2.5)
5 (-3, -3)
6 (2, 2)
7 (-2, 5)
8 (5, 8)
9 (-5, -8)
10 (8, -8)

Table 8: True cluster-specific means.

In our Gibbs sampler, the truncation level of the finite mixture model was set to L = 20,
the hyperparameter α0 was taken to be 1, and the base measure for GDP, G0, was specified as
the normal-inverse-Wishart distribution, NIW(0, 0.01, I2, 2). Upon the completion of the Gibbs
sampler, the clusters were estimated by using the least squares criterion (Dahl, 2006), and they
were compared with the true cluster labels for evaluation. We again considered a variety of sample
sizes as summarized in Table 6. In all cases, we ran 25,000 iterations of our Gibbs sampler and after
discarding the first 15,000 samples as burn-in, considered thinning of the samples by a factor 10. The
clustering results are shown in Figure 14. Clearly, GDP was able to identify the overlapping clusters
within each group and link them across groups for all simulation scenarios with reasonable accuracy
as measured by the adjusted Rand indices (Hubert and Arabie, 1985) for each group (shown in the
plots).

In the main manuscript, we reported the boxplot of Adjusted Rand indices for 50 replicates.
Further investigation regarding the choice of α0 revealed no significant impact in clustering
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Figure 13: Clustering performance of GDP for additional sample sizes. The colors indicate
the estimated clusters by GDP. Adjusted Rand index is reported at the top of
each panel.
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Figure 14: Clustering performance of GDP for various sample sizes and difficult simulation
scenario. The colors indicate the estimated clusters by GDP. Adjusted Rand
index is reported at the top of each panel.
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performance. Figure 15 shows that boxplot of Adjusted Rand indices for 50 replicates, comparing
GDP, HDP, and k-means with α0 taken to be 6. In all situations, GDP uniformly out-performed
the other two methods.
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Figure 15: The boxplots of the Adjusted Rand indices for GDP, HDP, and k-means for all
sample sizes. In all simulations α0 was taken to be 6.

Appendix F. Additional simulations

In the main manuscript, we presented simulations to mimick the motivating application where we
have 8 experimental groups. However, there are several motivating applications of the proposed
GDP. One such example is time-series data. One might be interested in clustering stocks based on
daily prices for each year. Each calendar year is then a group. The groups naturally have time
dependence (i.e., one does not expect the clustering of stocks to change dramatically in consecutive
years), which may be represented by an autoregressive (AR) model. AR model is one type of DAG
model. Particularly, for an AR model with lag 1, the time dependencies can be represented by a
simple DAG (see Figure 16), which may be analyzed by the GDP. With this specific DAG (chain
DAG), the GDP is given by,

G1 | α1, G0 ∼ DP (α1, G0) , (48)

Gt | αt, Gt−1 ∼ DP (αt, Gt−1) , t = 2, . . . , T, (49)
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where T denotes the total number of observed time points. Let xti denote the observation i from
time point t and θti denote the parameter specifying the mixture component associated with the
corresponding observation. Let F (θti) denote the distribution of xti given θti and Gt denote a prior
distribution for θti. The group-specific mixture model is given by,

θti | Gt
ind∼ Gt,

xti | θti
ind∼ F (θti),

(50)

where Gt follows (48) and (49). The observations xt1, xt2, . . . , xtnt are exchangeable at each observed
time point t but the groups (formed at the different time points) are not exchangeable due to the
time-dependency between the groups. The corresponding GDP mixture model can be derived as the
infinite limit of a finite mixture model. Let us denote the mixture component associated with the
observation xti from time point t, by zti. Suppose β1 is the vector of mixing weights for the root node
(corresponding to time point t = 1). Denoting by βt the mixing weights of node t (corresponding
to time point t), we consider a finite mixture version of the proposed GDP,

α1 | α0 ∼ Gamma(α0, 1),

β1 | α1 ∼ Dir (α1/L, . . . , α1/L) ,

αt | αt−1 ∼ Gamma(αt−1, 1),

βt | αt,βt−1 ∼ Dir (αt (βt1, . . . , βtL)) ,

φl | G0 ∼ G0,

zti | βt ∼ βt,

xti | zti, (φl)Ll=1 ∼ F (φzti) , i = 1, . . . , nt, t = 1, . . . T. (51)

We considered simple simulation examples, where we analyzed time-dependent observations (Figure
16) for T = 10, 20, and 50 time points. We generated data within each of the T time points (groups)
from a five-component mixture of bivariate Gaussian distributions. Taking α0 = 15, we drew the
concentration parameters for the different groups αt’s, the mixture model weights, βt’s, and the
true cluster indicators zti’s for each of the different groups using (51). Given the cluster indicators,
the data were generated from the Gaussian distribution with the true cluster-specific means φl’s

given in Table 9 and the same covariance matrix

[
0.5 0.1
0.1 0.5

]
across clusters, which was assumed to

be known for simplicity. Furthermore, we considered 100 observations at each time point t, i.e.,
nt = 100, t = 1, . . . , T . In our Gibbs sampler, the truncation level of the finite mixture model
was set to L = 10, and the base measure for GDP, G0, was specified as the normal distribution,
N (0, 0.01−1I2). We ran our MCMC for 50, 000 iterations, discarded the first 35, 000 iterations as
burn-in, and retained every 15th posterior sample. Upon the completion of the Gibbs sampler, the
clusters were estimated by using the least squares criterion (Dahl, 2006), and they were compared
with the true cluster labels for evaluation. Figures 17 - 19 show the clustering plots for T = 10, 20,
and 50 time points respectively. Clearly, our model was able to identify the clusters within each
group and link them across groups (time points) with good accuracy as measured by adjusted Rand
indices (ARI) for each group (shown in the plots). Furthermore, the traceplots of the log-likelihood
showed no lack of convergence (Figure 20). Additionally, we considered 50 independent replications
to investigate the runtime of our MCMC for varying number of nodes, T . Figure 21 shows that the
runtime is approximately linear in the number of nodes T , for fixed truncation level L of the GDP.
We further compared the clustering performance for the time-dependent grouped data using HDP.
Figures 22 - 24 show the corresponding clustering plots corresponding to T = 10, 20, and 50 time
points respectively. As before, HDP fails to capture meaningful clusters across the non-exchangeable
groups, as indicated by the low ARI (shown in the plots).
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Cluster Mean

1 (-2, -5)
2 (0, 0)
3 (-3, 3)
4 (3, -3)
5 (8, 5)

Table 9: True cluster-specific means.
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Figure 16: The DAG denoting time-dependency.
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Figure 17: Clustering performance of time-dependent GDP for T = 10 time points.
Population t refers to the observed group at time point t. The colors indicate
the estimated clusters by GDP. Adjusted Rand index is reported at the top of
each panel.
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Figure 18: Clustering performance of time-dependent GDP for T = 20 time points.
Population t refers to the observed group at time point t. The colors indicate
the estimated clusters by GDP. Adjusted Rand index is reported at the top of
each panel.
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Figure 19: Clustering performance of time-dependent GDP for T = 50 time points.
Population t refers to the observed group at time point t. The colors indicate
the estimated clusters by GDP. Adjusted Rand index is reported at the top of
each panel.
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Figure 21: Runtime of time-dependent GDP for varying number of time points (nodes T ).
The truncation level of proposed GDP is fixed at L = 10. Boxplots show
variation across 50 independent replicates.
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Figure 22: Clustering performance of time-dependent data using HDP for T = 10 time
points. Population t refers to the observed group at time point t. The colors
indicate the estimated clusters by HDP. Adjusted Rand index is reported at the
top of each panel.
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Figure 23: Clustering performance of time-dependent data using HDP for T = 20 time
points. Population t refers to the observed group at time point t. The colors
indicate the estimated clusters by HDP. Adjusted Rand index is reported at the
top of each panel.
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Figure 24: Clustering performance of time-dependent data using HDP for T = 50 time
points. Population t refers to the observed group at time point t. The colors
indicate the estimated clusters by HDP. Adjusted Rand index is reported at the
top of each panel.
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Appendix G. Real Data Analysis plots

Sensitivity. To study the effect of the truncation level of GDP, we varied L = 10, 20, 30, and 50.
We considered 50 independent replications and studied the estimated number of clusters for the
different choices of the truncation level, L. The boxplots of the number of estimated clusters in
Figure 25a shows that our method is relatively robust with respect to the truncation level, especially
for L = 30, 50. Furthermore, Figure 25b shows that the runtime of our sampler is approximately
linear in the truncation level of GDP. These results led us to consider the truncation level L = 30 for
the real data analysis using GDP (the estimated number of clusters is well below 30), as reported
in the main manuscript.
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Figure 25: Robustness and scalability of GDP for various choices of truncation level (L) for
the real data over 50 independent replications.
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For our real data analysis, we ran four parallel chains of the Gibbs sampler for 50, 000 iterations.
The traceplots (Figure 26) of the log-likelihood for each of the four parallel chains of our sampler,
after discarding the initial 35, 000 samples and thinning the samples by a factor of 15 indicated no
lack of convergence of our sampler. Furthermore, the traceplots indicate the presence of local modes,
necessitating the need to concatenate posterior samples across these chains for more efficient and
reliable inference.
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Figure 26: Group-specific traceplots of log-likelihood for four parallel chains of our MCMC
for (a) GDP and (b) HDP.
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