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Abstract

Principal component analysis (PCA) is a widely employed statistical tool used primarily
for dimensionality reduction. However, it is known to be adversely affected by the presence
of outlying observations in the sample, which is quite common. Robust PCA methods
using M-estimators have theoretical benefits, but their robustness drop substantially for
high dimensional data. On the other end of the spectrum, robust PCA algorithms solv-
ing principal component pursuit or similar optimization problems have high breakdown,
but lack theoretical richness and demand high computational power compared to the M-
estimators. We introduce a novel robust PCA estimator based on the minimum density
power divergence estimator. This combines the theoretical strength of the M-estimators
and the minimum divergence estimators with a high breakdown guarantee regardless of
data dimension. We present a computationally efficient algorithm for this estimate. Our
theoretical findings are supported by extensive simulations and comparisons with existing
robust PCA methods. We also showcase the proposed algorithm’s applicability on two
benchmark data sets and a credit card transactions data set for fraud detection.

Keywords: Robust PCA, Eigen Decomposition, Matrix Factorization, Density Power
Divergence, Breakdown Point

1. Introduction

The classical problem of finding the principal components aims to approximate the covari-
ance structure of a high dimensional sample of many features by the covariance structure
of a lower dimensional sample of “principal components”, obtained as linear combinations
of the original feature variables. Mathematically, starting with an independent and identi-
cally distributed (i.i.d.) sample X1,X2, . . .Xn, where each Xi ∈ Rp, and a scale measure
Sn(y1, . . . yn) to measure the dispersion in a univariate sample {y1, . . . yn}, the first eigenvec-
tor associated with the principal components is defined as the unit length vector maximizing
the function

v → Sn(vᵀX1, . . .v
ᵀXn); v ∈ Rp. (1)

Similarly, assuming that the first (k−1) eigenvectors v̂1, v̂2, . . . v̂k−1 has already been found,
one can obtain the subsequent k-th eigenvector as the unit vector maximizing the same
function given in Eq. (1), but under the set of restrictions vᵀv̂i = 0 for all i = 1, . . . (k− 1).
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The corresponding eigenvalues are defined as the maximum values of the scale function, i.e.,

λ̂k = Sn(v̂ᵀkX1, . . . v̂
ᵀ
kXn).

In essence, principal component analysis (PCA) takes input n observations of dimension
p, where p is presumably very large, and outputs a set of pairs {(λ̂k, v̂k) : k = 1, 2, . . . r}
where r is a pre-specified number of components, generally much smaller compared to both
n and p. For each k, the former of the pair λ̂k denotes the maximum variability expressed
by the k-th principal component, and the latter of the pair v̂k denotes the direction along
which this maximum variability can be found in the given i.i.d. sample. The k-th principal
component is then defined by the variable obtained from projecting the observations along
the k-th eigenvector scaled by the k-th eigenvalue, i.e., {λ̂kv̂ᵀkXi : i = 1, . . . n}.

Since a small number of principal components can explain most of the variation present
in the random sample, it is primarily used for the purpose of dimensionality reduction. PCA
provides a simple method of visualizing any high-dimensional data by plotting the first two
or three principal components, and subsequently one can identify potential outliers (Locan-
tore et al., 1999). Jolliffe (2002) also provides an application of PCA for variable selection
in the regression context. In machine learning and pattern recognition, PCA has been used
abundantly for both supervised and unsupervised paradigms (Vathy-Fogarassy and Abonyi,
2013). PCA has also found its applications across many disciplines ranging from multi-
sensor data fusion (Lock et al., 2013), signal processing, image compression (Bouwmans
et al., 2018), video event detection (Roy et al., 2024) to material and chemical sciences (Bro
and Geladi, 2005). The readers are referred to see Sanguansat (2012) and the references
therein for further details on the multitude of applications of PCA.

In the classical PCA, the scale estimator Sn(y1, y2, . . . yn) is chosen to be the square
root of the sample variance. As a result, the eigenvalues and the eigenvectors of the sam-
ple covariance matrix of X1, . . .Xn become the solution to the aforementioned principal
components problem. It is well known that the sample covariance matrix is very sensitive
to outliers, hence the principal components resulting from classical PCA also suffer from
the presence of outlying observations in the data (Hubert et al., 2005; Candès et al., 2011).
In the context of the high dimensional data sets pertaining to the above applications, it is
very challenging to locate these outlying observations beforehand in order to discard them.
Thus, any practitioner relying solely on the classical PCA to interpret multivariate data
may end up with a distorted visualization of the data, false detection of outliers, and a
wrong conclusion about the data. Several robustified versions of PCA have been proposed
to date to provide reliable estimates of the principal components even under the presence
of outlying observations (Jolliffe, 2002). A brief discussion of the existing literature in this
area is provided in the following subsection.

1.1 Existing Literature

Most of the early literature to derive a robust principal component analysis (RPCA) followed
one of the two primary approaches. The first class of estimators estimated the principal
components robustly from the eigenvalues and the eigenvectors of a robust covariance ma-
trix of the sample. Notable among this class of estimators are those due to Maronna (1976)
and Campbell (1980), where the authors create affine-equivariant principal component es-
timates from robust M-estimators of the covariance matrix. Devlin et al. (1981) proposed
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to use minimum covariance determinant (MCD) estimator and minimum volume ellipsoid
(MVE) estimator (Rousseeuw, 1985) for this purpose due to their high breakdown compared
to the M-estimators.

The other approach considered robustifying PCA by using a robust scale function Sn
in Eq. (1). This idea was first presented by Li and Chen (1985) and was further developed
later by Croux and Ruiz-Gazen (1996) where they considered the median absolute deviation
about sample median as the scale function. Various theoretical properties like the influence
function, asymptotic distribution and the breakdown point of this estimator have also been
established in the literature (Croux and Haesbroeck, 2000; Croux and Ruiz-Gazen, 2005).
These estimators and their variants primarily restricted their attention to the elliptically
symmetric family of distributional models, i.e., the random observations Xi for i = 1, 2 . . . n
were assumed to follow a density function of the form

f(x) ∝ g
(
(x− µ)ᵀΣ−1(x− µ)

)
, (2)

where g : R+ → R is a known function governing the shape of the density. It turns out
that under this model, E(Xi) = µ and E ((Xi − µ)(Xi − µ)ᵀ) = Σ (Based on the usual
notation for elliptically symmetric family, the variance of Xi is kgΣ where kg is a constant
depending on the function g, but we assume that such kg is included in the dispersion
matrix Σ itself by modifying the function g appropriately). Even though these statistical
RPCA approaches guarantee the highest possible asymptotic breakdown point of 1/2, they
show low asymptotic efficiency and sometimes large bias even at considerably lower levels
of contaminations than their breakdowns (Fishbone and Mili, 2023).

Recent advances in the area of RPCA view the estimation of the principal components
in a different light through the guise of the factor model. Wright et al. (2009) define the
RPCA problem as the problem of recovering L from the unknown decomposition of the
data matrix X = L+S, where L is a low rank matrix and S is a sparse noise component.
The direct solution to this problem would consider the optimization problem

min
L,S

Rank (L) + γ‖S‖0, (3)

subject to the restriction that ‖S‖0 ≤ k and X = L + S, for a predetermined value of k.
Here, ‖A‖0 denotes the L0-norm of the matrix A, i.e., the number of the nonzero entries
of A and γ is a tuning parameter to control the balance between the rank of L and the
sparsity of S. As noted in Candès et al. (2011), the classical PCA seeks the best low-rank
component L in terms of minimizing the usual Euclidean L2 norm, i.e., it is related to the
optimization problem minL ‖X−L‖2 subject to the restriction that Rank (L) ≤ k. However,
the problem in Eq. (3) is notoriously difficult to solve, hence Wright et al. (2009) and Candès
et al. (2011) considered the convex optimization problem minL,S ‖L‖∗+γ‖S‖1 where ‖L‖∗
is the nuclear norm of the matrix L, i.e., the sum of its singular values and ‖S‖1 is the
L1 norm of the matrix S. Various algorithmic techniques like principal component pursuit
(PCP) method (Candès et al., 2011), augmented Lagrange multiplier (ALM) method (Lin
et al., 2010) and alternating projection (AltProj) algorithm (Cai et al., 2019) have been
developed to solve this optimization problem efficiently. This new approach radically differs
from the traditional statistical methods: these methods are non-parametric in nature and
assume that the data matrix X is non-stochastic, rather the only source of randomness
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comes from the positions of the nonzero entries of the sparse matrix S. The convergence
and correctness guarantees of these methods are then provided based on the bounds on
the entries of these matrices L and S directly. This exact decomposition is often far from
practical applications as every entry of the data matrix X is subject to measurement errors.
To mitigate this, Zhou et al. (2010) considered the decomposition

X = L+ S +E, (4)

where E is a dense perturbation matrix (such as matrix with i.i.d. mean zero and ho-
moscadastic entries). Although such a decomposition is considered, the analysis of the
algorithm still assumed X to be deterministic and considered ‖E‖2 ≤ δ, a prespecified level
of noise variance to maintain a high signal-to-noise ratio.

1.2 Connection between RPCA Approaches and Our Contributions

The two existing RPCA approaches, one based on the maximization of the scale function as
in Eq. (1) and another based on the minimization of objective function Eq. (3) with matrix
decomposition, are usually not equivalent except for the trivial cases of classical PCA. In
this paper, we consider a combination of both approaches by taking the decomposition given
in Eq. (4) but with stochastic modelling of the data matrix X. We assume that the rows of
the data matrix X, namely X1, . . .Xn are i.i.d. observations generated from an elliptically
symmetric family of distributions having a density function of the form as in Eq. (2). Clearly,
the sample observations can be expressed as Xi = µ + Σ1/2Zi, for i = 1, 2, . . . n, where
Zi are i.i.d. random variables with E(Zi) = 0 and E(ZiZ

ᵀ
i ) = Ip, the identity matrix of

order p. The density function of the random variable Zi depends on the specific form of
the g function. Then, incorporating the eigendecomposition of Σ =

∑p
k=1 γkvkv

ᵀ
k (with

γ1 ≥ γ2 · · · ≥ γp), we can rewrite the data matrix as

X = 1nµ
ᵀ +

p∑
k=1

√
γkZvkv

ᵀ
k, (5)

where 1n denotes the n-length column vector with all elements equal to 1 and Z is the n×p
matrix whose i-th row is equal to Zᵀ

i . Denoting uk = Zvk/
√
n for k = 1, 2, . . . p, one can

easily see that uks form a set of orthonormal vectors in expectation, i.e., E(uᵀ
kul) = δkl,

the Kronecker delta function. This enables us to rewrite Eq. (5) as

X = 1nµ
ᵀ +

r∑
k=1

√
nγkukv

ᵀ
k +

p∑
k=(r+1)

√
nγkukv

ᵀ
k, (6)

for some prespecified rank r. Ignoring the location, the rest of the decomposition is X =
L +E which is a subset of the model given in Eq. (4) without any sparse component. In
the presence of outlying observations in the data matrix X, the resulting error matrix E
will contain occasional spikes which can be separated into the sparse component S giving
rise to the decomposition in Eq. (4). Connecting the low rank matrix L in Eq. (4) to the
sum

∑r
k=1

√
nγkukv

ᵀ
k in Eq. (6), it is now evident that maximizing the scale function of

Eq. (1) would result in the eigenvectors vks which are the right singular vectors of the
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L matrix. This provides a connection between the two approaches when the rows of the
data matrix are i.i.d. observations from an elliptically symmetric family of distributions.
Thus, in this paper, we propose a fast, scalable novel robust PCA algorithm based on the
popular minimum density power divergence estimation (MDPDE) approach (Basu et al.,
1998) for the aforementioned setup along with a decomposition as in Eq. (6). The major
contributions of this paper are as follows:

1. We propose a novel robust PCA estimator (to be henceforth called rPCAdpd) based
on the popular MDPDE, which allows balancing the robustness and efficiency in
estimation by simply tuning a robustness parameter α and is able to work under a
general decomposition model as in Eq. (4).

2. We propose a fast, parallelizable iterative algorithm to obtain the rPCAdpd esti-
mate based on alternating regression; this contrasts with the existing robust PCA
algorithms which do not scale well due to large matrix inversion steps.

3. We also derive various theoretical properties such as equivariance,
√
n-consistency and

asymptotic distribution of the proposed rPCAdpd estimator akin to the widely used
robust M-estimators. There exists little literature on the theoretical behaviour of the
existing PCP methods and often the asymptotic distributions of these estimators are
non-Gaussian (Bickel et al., 2018).

4. We also theoretically demonstrate the robustness of the proposed rPCAdpd estimator
by demonstrating that its influence function is bounded, and by deriving a lower bound
of its asymptotic breakdown point which is independent of the data dimension p but
only a function of the robustness tuning parameter α. This ensures the scalability of
the proposed rPCAdpd estimator for arbitrarily high dimensional random samples.

5. We corroborate our theoretical findings with extensive simulations. For all the sim-
ulation setups considered, rPCAdpd performs better (and sometimes closely on par)
than the existing RPCA algorithms.

6. We also compare the performances of the existing robust PCA algorithms with the
rPCAdpd for a few benchmark data sets, and demonstrate how the estimator can be
used to detect fraudulent transactions for a credit card transactions data set.

The rest of the paper is structured as follows: our proposed rPCAdpd estimator is
described in detail in Section 2.1 when the model family is elliptically symmetric. In Sec-
tion 2.2, we derive a computationally efficient iterative technique to obtain the rPCAdpd
estimator using the solution to an alternating regression problem. Section 3 describes
the necessary theoretical results regarding the convergence of the algorithm, equivariance
properties, consistency and asymptotic distribution of the estimator. All of these theoret-
ical results are then corroborated by extensive simulation studies in Section 4, where we
compare the performance of the rPCAdpd estimator with several existing robust PCA al-
gorithms. Finally, in Section 5, we demonstrate the practical applicability of the proposed
estimator for two popular benchmark data sets (namely the Car data set and Octane data
set in Hubert et al. (2005)) and a Credit Card Fraud Detection data set. For streamlining
the presentation, the proofs of all of the theoretical results are deferred till the Appendix.
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2. The rPCAdpd Estimator

Before proceeding with the description of the proposed rPCAdpd estimator, we introduce
some notations to be used throughout the paper unless otherwise specified. Let, for a matrix
A, Diag (A) denote the vector comprising the diagonal elements of A. The notations In
and 1n denote the n × n-size identity matrix and n-length vector of 1s respectively. The
transpose, rank and the trace of a matrixA will be denoted asAᵀ, Rank (A) and Trace (A).
For any two matrices A and B, their usual matrix product will be denoted as AB and
the Kronecker product will be denoted as A⊗B. We shall use the symbol ‖x‖2 and ‖A‖2
to denote the usual Euclidean norm of a vector x and the Frobenius norm of the matrix
A respectively. The notation fθ(x) will denote a generic symbol of the probability density
function of a random variable X following a distribution parametrized by θ and evaluated
at a point x. The expectation and the covariance operator will be denoted by E(·) and
Var(·) respectively.

2.1 Description of the rPCAdpd Estimator

Let X1, . . .Xn be a p-variate sample such that each of the observations Xi follows an
elliptically symmetric family of distributions with a density function of the form

fθ(x) = c−1
g det(Σ)−1/2 exp

[
g

(
xᵀ

p∑
k=1

γ−1
k vkv

ᵀ
kx

)]
, (7)

where Σ =
∑p

k=1 γkvkv
ᵀ
k is the eigendecomposition of the dispersion matrix. The parameter

θ = (γ1, . . . γp,η) in Eq. (7) consists of the eigenvalues γ1, . . . γp of the dispersion matrix
Σp×p and the parameter η parametrizing the eigenvectors v1, . . .vk residing in the Stiefel
manifold Sp(p−1), i.e., the space of all p×p orthogonal matrices. The connection between this

natural parameter η and the eigenvectors has been discussed in detail in Roy et al. (2024).
Here, g : R+ → R is a scalar function that parametrizes the family of distribution and
is assumed to be known. For instance, the multivariate Gaussian family of distributions
corresponds to g(x) = (−x/2). The quantity cg is a fixed constant depending on the
choice of the function g. Note that, since the principal components primarily deal with the
variance structure of the data, the location parameter µ = E(Xi) is a nuisance parameter,
hence it is assumed to be a known constant. Without the loss of generality, we take this
known location parameter equal to 0, otherwise, one may treat Y i = Xi − µ as the i.i.d
sample under consideration. However, for all practical purposes when it is unknown, one
can substitute µ by any consistent robust estimate of the location parameter (some choices
will be described later in Section 2.3). We shall show later in Section 3 that the choice of
this location estimator does not affect the asymptotic properties of the robust estimator of
θ we will propose.

Based on the above formulation, we shall use the popular minimum density power
divergence estimator (MDPDE) to estimate these parameters in θ. As shown in several
studies (Basu et al., 1998; Ghosh and Basu, 2013), the MDPDE is robust and highly efficient
in inference and provides a smooth bridge between the efficient yet non-robust maximum
likelihood estimator and the robust but less efficient minimum L2 distance estimator. Basu
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et al. (1998) introduced the density power divergence between two densities g and f as

dα(h, f) =

∫
f1+αdx−

(
1 +

1

α

)∫
fαhdx+

1

α

∫
h1+αdx, α > 0 (8)

which provides a smooth bridge between the Kullback Leibler divergence (α → 0) and
the L2 distance (α = 1) between h and f via the robustness tuning parameter α. Given
the true distribution H with density h and a parametric model family of distributions
F = {Fθ : θ ∈ Θ} with corresponding densities fθ, the MDPD functional T (H) is defined as
the value of the parameter θ ∈ Θ such that dα(h, fθ) is minimized. Using the same objective
function for MDPDE and substituting the empirical measure of the sample observations
instead of the true distribution H, our proposed estimator of robust principal components
turns out to be the solution to the optimization problem

θ̂ = arg min
θ∈Θ

∫
f1+α
θ (x)dx−

(
1 +

1

α

)
1

n

n∑
i=1

fαθ (Xi), (9)

where fθ(x) is as given in Eq. (7) and the parameter space Θ = (R+)p × S where S is the
parameter space for η. Combining Eq. (7) and Eq. (9), we can recover MDPDE as

θ̂ = arg min
θ∈Θ

c−αg

p∏
k=1

γ
−α/2
k

[
c(1+α)g

cg
−
(

1 +
1

α

)
1

n

n∑
i=1

eαg(X
ᵀ
i

∑p
k=1 γ

−1
k vk(η)vᵀk(η)Xi)

]
. (10)

We refer to this as the rPCAdpd estimator of the principal components under the general
elliptically symmetric family of distributions. The existence and the uniqueness of this
estimator has been proved later in Sections 3.1-3.2. This estimator assumes the description
of the model family through the specification of the completely known function g(·). In
particular, when g(x) = (−x/2), i.e., the model family is a p-variate Gaussian distribution,
then the corresponding optimization problem in Eq. (10) becomes

θ̂ = arg min
θ∈Θ

(2π)−αp/2
p∏

k=1

γ
−α/2
k

[
(1 + α)−p/2−

(
1 +

1

α

)
1

n

n∑
i=1

e−
α
2 (Xᵀ

i

∑p
k=1 γ

−1
k vk(η)vᵀk(η)Xi)

]
. (11)

2.2 Algorithm for Efficient Computation of the rPCAdpd Estimator

Clearly, if the minimization given in Eq. (10) was to be performed on the entries of the
dispersion matrix to obtain a robust estimate of covariance directly, it would be difficult
to restrict the optimization space to the space of all positive definite matrices. Thus, the
optimization is deliberately made with respect to the eigenvectors and the eigenvalues of
the dispersion matrix to ensure that the estimated dispersion matrix remains positive def-
inite and symmetric. While it is easy to optimize the objective function in Eq. (10) with
respect to the eigenvalues, it still remains computationally expensive to solve it for the
eigenvectors since one has to perform an optimization over the non-convex Stiefel mani-
fold Spp−1. Although there exist some efficient optimization algorithms on the Riemannian
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manifold as proposed by Wen and Yin (2013); Jiang and Dai (2015); Li et al. (2020),
these general-purpose optimization techniques require complicated iteration steps via Cay-
ley transformation and curvilinear searches. To circumvent this direct optimization, we
apply a procedure similar to the alternating regression approach of the rSVDdpd algorithm
by Roy et al. (2024).

We start by assuming that the unknown location parameter µ is already estimated using
a robust consistent estimator of the location. For our purpose, we use the L1-median as the
location estimator; however, in Section 2.3, we shall describe some alternative choices that
may be used. In the decomposition of Eq. (4), we assume that elements of the error matrix
E are independent and identically distributed. For instance, when the model densities
fθ follow a multivariate Gaussian distribution (or multivariate t-distribution), the entries
of E follow approximately univariate Gaussian distribution (or univariate t-distribution)
respectively. The sparse matrix S has a few nonzero entries, which may be regarded as
outlying observations in the original data matrix X at the corresponding places. This is a
classic setup for robust statistical inference, hence the MDPDE approach can be directly
used to tackle this estimation problem. For ease of explanation, in the following text, we
develop the proposed algorithm assuming the particular model of Gaussian distribution as
in Eq. (11). However, the same algorithm can be modified to fit any choice of g(·) in Eq. (10)
using its univariate analogous distribution.

To estimate the principal components robustly, we perform a robust singular value
decomposition of the centred data matrix using an iterative algorithm rSVDdpd (Roy et al.,
2024). To illustrate the approach, we rewrite the decomposition model of Eq. (4) as

Xij = µj +

r∑
k=1

ukiβkj + εij = µj +

r∑
k=1

αkivkj + εij , i = 1, . . . n; j = 1, . . . p, (12)

where βkj = λkvkj , αki = λkuki, uki is the i-th coordinate of uk, vkj is the j-th coordinate of
vk and r is the rank of the low-rank component L. For a fixed choice of j and known value
of r and uks (for k = 1, . . . r), Eq. (12) simply denotes a linear regression problem with
intercept µj and r slope coefficients β1j , . . . βrj . Let, µ̂j be the robust consistent estimator

of µj . Also, let (û
(t)
ki , v̂

(t)
kj , λ̂

(t)
k , (σ̂

2)(t)) be the estimates at the t-th iteration of the algorithm

and β̂
(t)
kj and α̂

(t)
ki be defined accordingly. The iteration rule for the rSVDdpd algorithm is

then defined by the system of equations(
β̂

(t+1)
1j , . . . β̂

(t+1)
rj

)
= arg min

β1j ,...βrj

1

n

n∑
i=1

V
(
Xij ; û

(t)
ki , βkj , (σ̂

2)(t)
)
,

(
α̂

(t+1)
1i , . . . α̂

(t+1)
ri

)
= arg min

α1i,...αri

1

p

p∑
j=1

V
(
Xij ;αki, v̂

(t+1)
kj , (σ̂2)(t)

)
,

(σ̂2)(t+1) = arg min
σ2

1

np

n∑
i=1

p∑
j=1

V
(
Xij ; α̂

(t)
ki , v̂

(t+1)
kj , σ2

)
.

(13)

where

V (y; c, d, σ2) =
1

(2π)α/2σα

[
1√

1 + α
−
(

1 + α

α

)
exp

{
−α(y − cd)2

2σ2

}]
,
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with α being the robustness tuning parameter as in Eq. (10). In between these steps the

vectors (α̂
(t)
k1 , . . . α̂

(t)
kn)ᵀ and (β̂

(t)
k1 , . . . β̂

(t)
kp )ᵀ are normalized accordingly to produce unit vectors

û
(t)
k = (û

(t)
k1 , . . . , û

(t)
kn)ᵀ and v̂

(t)
k = (v̂

(t)
k1 , . . . , v̂

(t)
kr )ᵀ, and the norm of the β-vector is regarded

as the estimate λ̂
(t)
k , the k-th singular value at t-th step of the iteration.

We repeat these alternating steps until convergence. Using the converged estimates

from the rSVDdpd procedure as in Roy et al. (2024), the unit vector v̂
(∞)
k and the quantity

(λ̂
(∞)
k )2/n are outputted as the k-th eigenvector and k-th eigenvalue corresponding to the

principal components of the i.i.d. sample X1, . . .Xn respectively. We shall call this entire
procedure as the robust principal component analysis using the density power divergence
(rPCAdpd) algorithm.

2.3 Choice of the Robust Location Estimator

There are several choices for the robust estimators of the location for the rPCAdpd algo-
rithm. We shall discuss only a few of these estimators which are quick and simple since the
primary focus is to estimate the principal components. As we will show later in Section 3,
the asymptotic properties of the estimated principal components are free of the choice of this
location estimator, as long as the location estimator is robust and asymptotically consistent.

Naturally, we may want to use the MDPDE (Basu et al., 1998) for a normal location
model family, extended to a multivariate setup. However, estimating the location parameter
in this way would force us to estimate the unknown dispersion matrix Σ as well, which
is already taken care of using the rPCAdpd algorithm. Also, as will be discussed later in
Section 3.3, this multivariate MDPDE does not satisfy the desirable orthogonal equivariance
property, and in particular, the permutation equivariance property. So instead, we can
resort to a coordinate-wise MDPDE under the normal location model family. In this case,
the coordinates of the estimated location vector satisfy

µ̂j = arg min
µ

min
σ

1

(2π)α/2σα

[
1√

1 + α
−
(

1 + α

α

)
1

n

n∑
i=1

exp

{
−α(Xij − µ)2

2σ2

}]
, j = 1, . . . p,

where α is the robustness parameter lying between 0 and 1, Xij is the j-th coordinate
of Xi. This coordinate-wise MDPDE still retains its robustness properties while being
permutation and scale equivariant, but it still does not satisfy orthogonal equivariance for
general orthogonal matrices.

Alternative choices of a robust and consistent estimator of the location parameter would
include the L1 median (Vardi and Zhang, 2000), coordinate-wise median or any M -estimator
for location (Huber, 1964). The L1 median possesses the desirable orthogonal equivariance
property. Based on extensive simulation studies, we have found that L1 median fits our
purpose and provides a desirable balance between speed (computational advantage) and
accuracy (robustness and efficiency), and hence it is chosen to be used as a robust location
estimator during the rPCAdpd algorithm for all our subsequent studies.

9



Roy, Basu and Ghosh

2.4 Choices of Hyperparameters

The two hyperparameters associated with the rPCAdpd estimator are the rank of the L
matrix, i.e., the number of significant eigenvalues or the number of principal components
to output, and the robustness parameter α in the objective function (9).

To determine the rank of the matrix L, we robustly estimate all the min(n, p) eigenvalues
and the corresponding eigenvectors using the rPCAdpd algorithm. Subsequently, we select
a rank r ≤ min(n, p), ensuring that the first r eigenvalues and corresponding eigenvectors
can account for a proportion of variation of at least (1 − δ). Common choices for δ are
typically 0.1 or 0.25. Thus, the rank of the matrix L is estimated as

r̂ = min

{
1 ≤ r ≤ min(n, p) :

∑r
k=1 γ̂

(α)
k∑min(n,p)

k=1 γ̂
(α)
k

> (1− δ)

}
,

where γ̂
(α)
k is the k-th eigenvalue as estimated by rPCAdpd method with robustness pa-

rameter α. Similar criteria have been used to determine the number of significant principal
components by many authors (He et al., 2012; Xu et al., 2012).

Applying the general result pertaining to the asymptotic breakdown of the MDPDE
as in Roy et al. (2023), the asymptotic breakdown of the rPCAdpd estimator turns out
to be at least α/(1 + α). We discuss this in detail later in Section 3.6. Clearly, as α
increases to 1, one approaches the highest possible breakdown 1/2, by sacrificing some
efficiency in estimation. On the other hand, the efficiency is most when α → 0, but the
breakdown becomes unacceptably low for the rPCAdpd algorithm to be of any use as a
robust PCA estimator in that case. Therefore, there must be a balance between robustness
and efficiency with an adaptive optimal choice of α ∈ [0, 1]. Since we use the rSVDdpd
procedure to obtain the estimate of the singular values from which we obtain the robust
estimates of the principal components, we follow the same criterion as introduced by Roy
et al. (2024). The authors consider that the optimal choice of the robustness parameter is
the minimizer of a conditional MSE criterion

(n+p)(σ̂(α))2

(
1 +

α2

1 + 2α

)3/2

+
1

r

r∑
k=1

‖λ̂(α)
k â

(α)
k −λ̂

(1)
k â

(1)
k ‖

2
2+

1

r

r∑
k=1

‖λ̂(α)
k b̂

(α)

k −λ̂
(1)
k b̂

(1)

k ‖22,

where λ̂
(α)
k , â

(α)
k , b̂

(α)

k are the estimates of k-th singular value and vectors as obtained by the
rSVDdpd procedure with robustness parameter α.

3. Theoretical Properties

In this section, we explore various theoretical properties of the rPCAdpd estimator. First,
we show the existence and the uniqueness of the estimator and that the proposed iterative
algorithm converges to the estimator for any finite n. Next, we prove various equivariance
properties, and asymptotic consistency, following which we derive the asymptotic distri-
bution of the robust eigenvalues and eigenvectors estimated by the rPCAdpd estimator.
Finally, we derive the influence function and asymptotic breakdown point of the estimator
to demonstrate its robustness properties. All of these theoretical results hold for any location
estimator that is robust, asymptotically consistent and equivariant under the orthogonal
transformation (like L1-median), used in the rPCAdpd algorithm.
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3.1 Existence of the Estimator

We start by writing the objective function in Eq. (10) as a function of the individual term
of the parameter vector θ as

Q(γ1, . . . , γp,η) =

p∏
k=1

γ
−α/2
k

[
c(1+α)g

cg

−
(

1 +
1

α

)
1

n

n∑
i=1

exp

{
αg

(
(Xi − µ̂)ᵀ

p∑
k=1

γ−1
k vk(η)vk(η)ᵀ(Xi − µ̂)

)}]
. (14)

where µ̂ is a robust consistent estimate of the location including those described in Sec-
tion 2.3. The following result establishes the existence of the rPCAdpd estimator.

Theorem 1 If the generating function g : [0,∞) → R of the elliptically symmetric family
of distributions is a decreasing continuous function, then for a sufficiently large number
of sample observations n, there exists a minimum of the objective function Q(·) given in
Eq. (14) with probability tending to 1.

For instance, when the model family is p-variate t-distribution with ν degrees of freedom,
then g(x) turns out to be −ν+p

2 log(1 + x/ν), which is a decreasing continuous function,
hence the rPCAdpd estimator exists for the multivariate t-distribution family.

3.2 Convergence of the Algorithm

Once the existence of the rPCAdpd estimator is established, the convergence of the algo-
rithm follows directly from the convergence of the rSVDdpd procedure as presented in Roy
et al. (2024). Observe that, the iterations in Eq. (13) monotonically decrease the value of
objective function Q(γ1, . . . , γp,η), which is also continuous in its arguments. Since Theo-

rem 1 asserts the existence of the minimizer, it means that the sequence Q(γ̂
(t)
1 , . . . , γ̂

(t)
p , η̂(t))

(where γ̂
(t)
1 and η̂(t) denote the estimated parameters at t-th iteration) is bounded below.

Then an application of the monotone convergence theorem combined with the uniqueness
of the rSVDdpd estimator asserts the convergence of the rPCAdpd estimator.

3.3 Orthogonal Equivariance

As mentioned in Rousseeuw (1985), orthogonal equivariance is one of the fundamental
properties that an estimator of the principal components should possess. Let, Y 1, . . .Y n

be a transformed sample Y i = aPXi + b for i = 1, 2, . . . n, where P p×p is an orthogonal
matrix, a ∈ (0,∞) and b is a p-length vector. Then, an orthogonally equivariant esti-
mator Tλ(X1, . . .Xn) of an eigenvalue should satisfy Tλ(Y 1, . . .Y n) = a2Tλ(X1, . . .Xn).
Similarly, for an orthogonally equivariant estimate Tv(X1, . . .Xn) of the corresponding
eigenvector, it satisfies Tv(Y 1, . . .Y n) = PTv(X1, . . .Xn). For any orthogonal equivari-
ant estimate of the principal components, both of these two conditions should hold for all
eigenvalues and their corresponding eigenvectors.

Since our primary focus is on the principal components, we will assume that the robust
estimator of the location parameter is orthogonally equivariant. The choice of L1-median
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as a robust estimator of location satisfies this property. Given the orthogonal equivariance
property of the location estimator, it follows that the resulting rPCAdpd estimator also
satisfies the same.

Theorem 2 The rPCAdpd estimators of the eigenvalues and eigenvectors are equivariant
under the transformation

Y i = aPXi + b, i = 1, 2, . . . n, (15)

where P p×p is an orthogonal matrix, a ∈ (0,∞) and b is a p-length vector provided that the
location estimator used in the rPCAdpd procedure also satisfy same equivariance property.

Corollary 3 As in the case of the rSVDdpd estimator discussed in Roy et al. (2024), the
rPCAdpd estimator also satisfies scale and permutation equivariance. This follows from
the observation that both are special cases of the transformation mentioned in Eq. (15). In
particular, with P = Ip, we get scale equivariance. If a = 1 and P is a permutation matrix,
then permutation equivariance follows.

3.4 Consistency and Asymptotic Distribution

One of the integral components of the proposed rPCAdpd estimator is the MDPDE. As
shown in Basu et al. (1998), the MDPDE, being an M-estimator and a minimum distance
estimator, enjoys a vast set of nice asymptotic properties including consistency and asymp-
totic normality. In this subsection, we will investigate how these properties carry over to
the special scenario of principal component estimation under elliptically symmetric models.
Thus, throughout this entire subsection, unless otherwise specified, we will consider the
setup that the sample observations X1, . . .Xn are i.i.d. random variables from a p-variate
elliptically symmetric distribution with unknown mean µ∗ and unknown dispersion matrix
Σ∗, having density function

fθ∗(x) = c−1
g det(Σ∗)−1/2eg((x−µ∗)ᵀ(Σ∗)−1(x−µ∗)), x ∈ Rp, (16)

where g is the characterizing function of the elliptically symmetric family of distributions.
The covariance matrix Σ∗ is assumed to have an eigendecomposition Σ∗ =

∑p
k=1 γ

∗
kv
∗
k(v
∗
k)

ᵀ

where γ∗k ≥ 0 are eigenvalues and v∗ks are the corresponding eigenvectors of the covariance
matrix. We wish to estimate the parameter of interest θ∗ = (γ∗1 , . . . γ

∗
p ,η

∗), comprising of
the eigenvalue γ∗1 , . . . γ

∗
p and the natural parameter η∗ parametrizing the eigenvectors in the

Stiefel manifold Sp(p−1). The location parameter µ∗ is a nuisance parameter in this setup.

Following the footsteps of Basu et al. (1998), we consider the following quantities

ξθ =

∫
uθf

(1+α)
θ , Jθ =

∫
uθu

ᵀ
θf

(1+α)
θ , Kθ =

∫
uθu

ᵀ
θf

(1+2α)
θ − ξθξ

ᵀ
θ,

which are essential for obtaining different asymptotic properties of the MDPDE. Here, fθ(x)
denotes the same family of distributions as in Eq. (16) at parameter θ and the corresponding
score function is denoted by uθ(x) = ∂

∂θ log(fθ(x)). To calculate all of these quantities, we
will resort to the following assumptions.
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(A1) The generating function g(·) for the elliptically symmetric family of distributions is
thrice differentiable and the third order derivative is continuous.

(A2) The true eigenvalues γ∗1 , . . . , γ
∗
p are distinct.

(A3) The functions s2g′(s)eg(s), s4(g′(s))2eg(s), s4g′′(s)eg(s) and s4g′′′(s)eg(s) are uniformly
bounded above by some constant M∗ for any s ≥ 0, where g′(s), g′′(s) and g′′′(s)
denotes the first, second and third order derivatives of g.

Assumptions (A1) and (A3) are similar in spirit to the assumptions (R1) and (R2) of Ghosh
and Basu (2013), which in turn imply the assumptions (A1)-(A5) of Basu et al. (1998). One
of the standard regularity conditions for such asymptotic results is the exchangeability of

the differentiation and integral signs, i.e., the integral
∫
f

(1+α)
θ (z)dz should be differentiable

with respect to θ for any α ∈ [0, 1] and the derivative can be taken under the integral
sign. However, this fact follows as a consequence of assumption (A1) for the elliptically
symmetric family of distributions. Assumption (A2) makes the calculation simpler, but it
is not strictly necessary to establish the asymptotic properties of the proposed estimator.
However, it is also known that the set of random matrices with i.i.d. entries with a repeated
eigenvalue is negligible (Tao, 2012). Kumar and Ahmed (2017) verify similar conclusions
for a broader range of distribution of random matrices using numerical simulations. Thus,
assumption (A2) holds for almost all positive definite matrices Σ∗.

We begin with two generic lemmas describing the quantity ξθ and Jθ as a function of
the integral of the model density function and its derivatives. These lemmas are generic;
they are applicable in any MDPDE setup, not only in particular to RPCA.

Lemma 4 Let, cα(θ) =
∫
f

(1+α)
θ (x)dx. Then under the assumption of thrice differentia-

bility of fθ(x) and the exchangeability of the differentiation and integral signs,

ξθ = (1 + α)−1cα(θ)
∂

∂θ
log(cα(θ)).

Lemma 5 Under the assumption of thrice differentiability of fθ(x) and the exchangeability
of the differentiation and integral signs,

Jθ =
cα(θ)

(1 + α)2

(
ih(θ) +

(
∂

∂θ
log(cα(θ))

)(
∂

∂θ
log(cα(θ))

)ᵀ)
(17)

where ih(θ) is the expected Fisher information matrix for a single observation x following

the density function hθ(x) = c−1
α (θ)f

(1+α)
θ (x).

Before proceeding with the computation of these quantities ξθ,Jθ and Kθ for the
particular setup of the rPCAdpd estimator, we recognize that the estimation of the principal
components is essentially a two-step procedure. In the first step, we use a consistent robust
estimator µ̂ to estimate the location parameter µ∗. In the next step, the rSVDdpd procedure
was used to obtain the MDPDE of θ using the model family densities fθ(x) as in Eq. (16)
by replacing µ∗ with its estimate µ̂ from the first step. Therefore, in the following, we
compute the quantities ξθ,Jθ and Kθ conditional on the value of µ̂, which will lead to the
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conditional asymptotic distribution of θ̂ (The proof of which is described in Appendix A.8).
However, as we shall show later in Theorem 10, this conditional distribution turns out to be
free of µ̂, hence the unconditional asymptotic distribution of θ̂ will also remain the same.

We start by using Lemma 4 in combination with Assumption (A2) for our specific use
case. To compactly write ξθ∗ , we introduce the diagonal matrix Γp×p with nonzero entries
γ∗1 , . . . γ

∗
p .

Corollary 6 If fθ(x) is a density function belonging to an elliptically symmetric family
of distributions with generating function g(·) as given in Eq. (16), then under assump-
tions (A1)-(A3) when the location parameter µ∗ is a fixed quantity,

ξθ∗ =
c(1+α)g

(1 + α)(cg)(1+α)

p∏
k=1

(γ∗k)−α/2

[
−α

2
Diag

(
Γ−1

)
0

]
.

The quantity Jθ∗ for the current setup can be expressed similarly.

Corollary 7 If fθ(x) is a density function belonging to an elliptically symmetric family
of distributions with generating function g(·) as given in Eq. (16), then under assump-
tions (A1)-(A3) when the location parameter µ∗ is a fixed quantity,

Jθ∗ =
c(1+α)g

(1 + α)2c
(1+α)
g

p∏
k=1

(γ∗k)−α/2
[
ih(γ,γ) + α2

4

(
Diag

(
Γ−1

)) (
Diag

(
Γ−1

))ᵀ
ih(γ,η)

ih(γ,η)ᵀ ih(η,η)

]
.

The quantities ih(·, ·) are given by the following formulae

ih(γ,γ) = −1

4

(
Diag

(
Γ−1

)) (
Diag

(
Γ−1

))ᵀ
+ Γ−2V ᵀA4((1 + α)g)V Γ−2,

ih(γ,η) = −2Γ−2V ᵀ(Ip ⊗ Γ−1)A4((1 + α)g)Gᵀ,

ih(η,η) = 4G(Ip ⊗ Γ−1)A4((1 + α)g)(Ip ⊗ Γ−1)ᵀGᵀ.

where

Q(x) = xᵀ
p∑

k=1

(γ∗k)−1v∗k(v
∗
k)

ᵀx,

V p2×p =


v∗1 0 . . . 0
0 v∗2 . . . 0
...

...
. . .

...
0 0 . . . v∗p

 ,
Gp(p+1)/2×p2 =

[
∂v1

∂η
|η=η∗

∂v2

∂η
|η=η∗ . . .

∂vp
∂η
|η=η∗

]ᵀ
,

and A4(g) be the p2×p2 matrix comprising of the partitions A4(g;v∗i ,v
∗
j ) for i, j = 1, 2, . . . p,

where

A4(g;u,v) =

∫ (
g′(Q(x))

)2
xxᵀuvᵀxxᵀC−1

g exp(g(Q(x)))dx.
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For the particular setup of principal components for the elliptically symmetric family,
the assumptions (A1)-(A3) indicate all the necessary assumptions (A1)-(A5) of Basu et al.
(1998). Thus, we can readily use Theorem 2.2 of the same to establish the asymptotic
properties such as consistency and the asymptotic normality of the converged rPCAdpd
estimator of the principal components. However, since the quantities ξθ,Jθ are obtained for
a fixed value of µ̂, the resulting asymptotic normal distribution is also obtained conditional
on the values of µ̂. However, the conditional asymptotic distribution is independent of
µ̂, hence the unconditional distribution also turns out to be the same. For the technical
details, one may refer to Appendix A.8.

Theorem 8 Suppose the Assumptions (A1)-(A3) hold, α ∈ [0, 1], and the location esti-
mator µ̂ is consistent for µ∗. Then as the sample size n → ∞, there exists a sequence of
converged rPCAdpd estimator θ̂ = (γ̂1, . . . γ̂p, η̂) as in Eq. (10) satisfying the following,

1. The estimated eigenvalue γ̂j is
√
n-consistent for γ∗j for j = 1, 2, . . . p.

2. Similarly, the corresponding estimated eigenvector v̂j is also
√
n-consistent for the

true eigenvector v∗j for j = 1, 2, . . . p.

Remark 9 The consistency of v̂j for v∗j follows from the fact that η̂ is consistent for η∗ and
the parameter η is simply a parametrization of the Stiefel manifold, hence each of v1, . . .vp
is a continuous and smooth function of η.

Theorem 10 Suppose that the Assumptions (A1)-(A3) hold, α ∈ [0, 1], and the location
estimator µ̂ is consistent for µ∗. Then there exists a sequence of converged rPCAdpd estima-
tor θ̂ = (µ̂, γ̂1, . . . γ̂p,η) as defined in Eq. (10) for the general elliptically symmetric family
such that after proper centering and scaling, it has an asymptotic normal distribution as
n→∞. In particular, √

nJθ∗K
−1/2
θ∗

(
θ̂ − θ∗

)
converges in distribution to a standard normal random variable as n→∞. Here,

Jθ∗ =
c(1+α)g

(1 + α)2c
(1+α)
g

[
J11 J12

Jᵀ
12 J22

]
,

J11 =
(α2 − 1)

4

(
Diag

(
Γ−1

)) (
Diag

(
Γ−1

))ᵀ
+ Γ−2V ᵀA4((1 + α)g)V Γ−2,

J12 = −2Γ−2V ᵀ (Ip ⊗ Γ−1
)
A4((1 + α)g)Gᵀ,

J22 = 4G
(
Ip ⊗ Γ−1

)
A4((1 + α)g)

(
Ip ⊗ Γ−1

)ᵀ
Gᵀ,

and

Kθ∗ =
c(1+2α)g

(1 + 2α)2c
(1+2α)
g

[
K11 K12

Kᵀ
12 K22

]
−

c2
(1+α)g

(1 + α)2c
(2+2α)
g

[
α2

4 Diag
(
Γ−1

)
Diag

(
Γ−1

)ᵀ
0

0 0

]
,

K11 =
(4α2 − 1)

4

(
Diag

(
Γ−1

)) (
Diag

(
Γ−1

))ᵀ
+ Γ−2V ᵀA4((1 + 2α)g)V Γ−2,

K12 = −2Γ−2V ᵀ (Ip ⊗ Γ−1
)
A4((1 + 2α)g)Gᵀ,

K22 = 4G
(
Ip ⊗ Γ−1

)
A4((1 + 2α)g)

(
Ip ⊗ Γ−1

)ᵀ
Gᵀ.
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It is worthwhile to note that while the true eigenvalues γ∗1 , . . . , γ
∗
p is in decreasing order,

the estimated eigenvalues γ̂1, . . . , γ̂p may not be. If two eigenvalues γ∗i and γ∗i+1 are close to
each other, it is possible that the corresponding estimates satisfy γ̂i+1 > γ̂i. Thus, one may
be interested in finding out the asymptotic distribution of the order statistics of estimated
eigenvalues. However, because of the presence of strong correlation between the estimated
eigenvalues, it is difficult to obtain a tractable closed form of this distribution. It is only
possible to derive some probabilistic bounds on the extreme eigenvalues using the methods
described in Ross (2010).

One may also be interested in the special case when the underlying elliptically sym-
metric distribution is assumed to be Gaussian. Formally, if we consider that the sample
observations X1, . . .Xn are distributed according to a p-variate normal distribution with
unknown mean µ∗ and unknown dispersion matrix Σ∗ =

∑p
k=1 γ

∗
kv
∗
k(v
∗
k)

ᵀ, then it follows
that under the same set of assumptions, one can establish the following corollary.

Corollary 11 Suppose that the Assumptions (A1)-(A3) hold, α ∈ [0, 1] and the location
estimator µ̂ is consistent for µ∗. Then there exists a sequence of converged rPCAdpd esti-
mator θ̂ = (γ̂1, . . . γ̂p,η) as in Eq. (11) for the Gaussian model family of distributions, such
that it satisfies the following as the sample size n→∞,

1. The eigenvalues γ̂j is consistent for γ∗j and v̂j is consistent for v∗j for j = 1, 2, . . . p.

2. The scaled and centred estimated principal component eigenvalues

√
n

 γ̂1

. . .
γ̂p

−
γ∗1. . .
γ∗p


has an asymptotic p-variate normal distribution with mean 0 and dispersion matrix

(1 + α)p+4

(1 + 2α)p/2
M−1

(
A1(α)Diag

(
Γ−1

)
Diag

(
Γ−1

)ᵀ
+

1

2(1 + 2α)2
Γ−2

)
M−1,

where

M =

(
α2

4
Diag

(
Γ−1

)
Diag

(
Γ−1

)ᵀ
+

1

2
Γ−2

)
, A1(α) = α2

[
1

(1 + 2α)2
− (1 + 2α)p/2

4(1 + α)p+2

]
.

3. The scaled and centered estimated η̂ corresponding to the principal component eigen-
vectors, i.e.,

√
n(η̂ − η∗) has an asymptotic normal distribution with mean 0 and

dispersion matrix

(1 + α)p+4

(1 + 2α)2+p/2

(
p∑

k=1

p∑
l=1

(
1−

γ∗k
γ∗l

)
Gk(v

∗
l )(v

∗
k)

ᵀGᵀ
l

)−1

,

where Gk =
∂vk
∂η
|η=η∗, the matrix corresponding of the gradients of the eigenvector

vk with respect to its natural parametrization η.
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4. The rPCAdpd estimate of the eigenvalues (γ̂1, . . . , γ̂p) and estimate of the eigenvectors
(v̂1, . . . v̂p) are asymptotically independent.

Remark 12 The independence of the rPCAdpd estimate of eigenvalues and eigenvectors
can enable one to create confidence intervals for the eigenvalues and eigenvectors separately.
To create the asymptotic confidence interval for the eigenvalues, the knowledge of the corre-
sponding estimates of eigenvalues is sufficient. In contrast, the asymptotic confidence band
for eigenvectors require both the eigenvalues and the eigenvectors.

Remark 13 The density power divergence introduced in Basu et al. (1998) becomes the
same as the Kullback-Leibler divergence between the true density and the model density
fθ(·) as α → 0. Thus, for α → 0, the estimating equations for the MDPDE turn out to be
equivalent to the estimating equations corresponding to the log-likelihood. Consequently, the
MDPDE coincides with the maximum likelihood estimator as α→ 0. From Corollary 11 it
then follows that the maximum likelihood estimates (MLE) of the eigenvalues of the covari-
ance matrix under the Gaussian distribution are asymptotically normal with mean γj and
covariance 2γ2

j /n and are asymptotically independent. This result has been well established
in the literature; see Girshick (1939) for references. A similar result for the asymptotic
distribution of the MLE of eigenvectors was derived by Anderson (1963). Results on the
asymptotic independence between the MLE of the eigenvalues and eigenvectors were also
derived by Tyler (1981) for a general setup with repeated eigenvalues. The Corollary 11 can
be seen as a generalization of these results.

Remark 14 In contrast to Remark 13, for α = 1, the form of density power divergence
becomes same as the L2 distance between the true density and the model density fθ(x). If
we denote the minimum L2 distance estimator of the eigenvalues by γ̃ = (γ̃1, . . . γ̃p)

ᵀ and
the true eigenvalues by γ∗ =

(
γ∗1 , . . . γ

∗
p

)ᵀ
, then

√
n(γ̃ − γ∗) d−→ Np (0,V2) ,

as n→∞. Here,
d−→ denotes the convergence in law. The asymptotic covariance matrix is

given by

V2 =
2(p+8)

3(p/2)
M−1

1

((
1

9
− 3(p/2)

2(p+4)

)
Diag

(
Γ−1

)
Diag

(
Γ−1

)ᵀ
+

1

18
Γ−1

)
M−1

1 ,

where M1 =
(
Diag

(
Γ−1

)
Diag

(
Γ−1

)ᵀ
+ 2Γ−2

)
. Since the quantity 2(x+4)

3(x/2)

(
1
9 −

3(x/2)

2(x+4)

)
in-

creases exponentially fast as x increases, the variance of the minimum L2-distance estimator
increases exponentially with increase in the dimension p. This shows that by using the highly
robust minimum L2 distance estimator to obtain the principal components, one sacrifices
considerable efficiency in estimation.

3.5 Influence Function Analysis

The influence function is a local measure of the sensitivity and robustness of an estima-
tor (Hampel et al., 2011). In this section, we investigate the influence function of the
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rPCAdpd estimator for the Gaussian model family of distributions. For this particular
choice, the asymptotic independence of the eigenvalues and the eigenvectors as shown in
Theorem 11 helps in deriving the influence functions quite nicely. Let us assume that instead
of the true distribution Φθ∗(x), the observations Xis come from a contaminated distribu-
tion Gε(x) = (1− ε)Φθ∗(x) + εδy(x), where δy(·) is the degenerate distribution at y ∈ Rp.
Let φθ∗(x) be the density function corresponding to the Gaussian distribution function
Φθ∗(x). Then the influence of this contamination on the estimated principal components
can be readily obtained from the influence function derived in Basu et al. (1998). Due to
the asymptotic independence, the influence functions for the estimators of the eigenvalues
and the eigenvectors can be separately obtained along with an application of the chain rule
to incorporate the influence of the robust location estimator. It turns out that

Iα(Φθ∗ ,γ;y) =
4(1 + α)2

Cα

[
α2Diag

(
Γ−1

)
Diag

(
Γ−1

)ᵀ
+ 2Γ−2

]−1


uγ∗1 (y)

...
uγ∗p (y)

φαθ∗(y)I(Φθ∗ , µ̂;y)−

ξγ∗1...
ξγ∗p


 ,

Iα(Φθ∗ ,η;y) = −(1 + α)2

Cα

[
p∑

k=1

GkΣ
∗Gᵀ

k

γ∗k

]−1 p∑
k=1

Gk
γ∗k

(y −µ∗)(y −µ∗)ᵀv∗kφαθ(y)I(Φθ∗ , µ̂;y).

Here, uγ∗j (y) denotes the score function with respect to the j-th eigenvalue γ∗j evaluated at

the contaminating point y and I(Φθ∗ , µ̂;y) is the influence function of the location estimator
µ̂ at y. We assume that the location estimator µ̂ is robust and hence has a bounded influence
function, which is true for the L1-median. To show that both the above influence functions
are bounded, one may note that the exponential quantity e−α(y−µ∗)ᵀ(Σ∗)−1(y−µ∗)/2 present

in the Gaussian density φθ∗(y) is bounded below by e
−α‖y−µ∗‖2/2γ∗

(p) and bounded above

by e
−α‖y−µ∗‖2/2γ∗

(1) , where γ∗(1) and γ∗(p) are the largest and the smallest eigenvalues of Σ∗

respectively. Now the boundedness of the influence function follows from assumption (A3),
which can be easily verified for g(x) = −x/2 corresponding to the Gaussian distribution.
Thus, if the location estimator µ̂ is B-robust, the rPCAdpd estimator is also B-robust
qualifying for one of the primary requirements for a robust estimator.

3.6 Breakdown Point Analysis

The breakdown point of an estimator is another accepted measure of the robustness of an
estimator besides the influence function which measures the highest level of contamination
that an estimator can tolerate (Hampel, 1971). Given the true distribution H, Ghosh
and Basu (2013) consider the asymptotic breakdown point of an MDPDE functional T
as the largest value of ε such that there exists a sequence of distributions {Km} with
|T (Hε,m)− T (H)| → ∞ as m→∞ where

Hε,m = (1− ε)H + εKm. (18)

However, such a definition makes sense only for the location estimators. For general estima-
tors, Maronna et al. (2019) define the breakdown of a functional T for ε-level contamination
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if T (Hε,m) → θ∞ as m → ∞ where θ∞ ∈ ∂Θ, the boundary of parameter space Θ. In the
case of the rPCAdpd estimator of eigenvalues and corresponding eigenvectors, the boundary
of the parameter space Θ = (R+)p × S is

∂Θ = {(γ1, . . . γp,η) : η ∈ S, and there exists k ∈ {1, . . . p} with γk ∈ {0,∞}} ,

indicating that the breakdown can happen when any of the estimated eigenvalues either
explodes to infinity or implodes to 0.

Since the rPCAdpd algorithm is composed of two steps: location estimation and eigen-
value and eigenvector estimation using the rSVDdpd procedure, the asymptotic breakdown
of the entire procedure is the minimum of the asymptotic breakdown of these individual
procedures. It is well known that the robust L1-median (used as the location estimator
in our entire study) has an asymptotic breakdown point of 1/2. Also, under fairly general
conditions, Roy et al. (2023) showed that the robust MDPDE has a breakdown point at
least α/(1 + α), where α is the robustness parameter with α ∈ [0, 1]. Hence, the resulting
rPCAdpd estimator has an asymptotic breakdown at least α/(1 + α), which is also free of
the dimension p, demonstrating the scalability aspect of the proposed estimator.

Let, the distributions Hε,m, H and Km mentioned in the contamination model (18) have
densities hε,m, h and km respectively. In Roy et al. (2023), the authors derive a lower bound
of the breakdown point of the MDPDE in general under the following set of assumptions.

(BP1)
∫

min{fθ(x), km(x)}dx → 0 uniformly as m → ∞ and θ is bounded away from the
boundary ∂Θ.

(BP2)
∫

min{h(x), fθm(x)}dx → 0 as m → ∞ if θm → θ∞ where θ∞ is some point on the
boundary ∂Θ.

(BP3) The model densities fθ and the contaminating densities km are uniformly L1+α-
integrable. Mathematically, supθ∈ΘMfθ and supmMkm exist and are finite.

(BP4) Mfθm
≥ Mkm for all m ≥ M for sufficiently large M for any θm → θ∞ where θ∞ is

some point on the boundary ∂Θ and Mf =
∫
f1+α(x)dx.

Assumptions (BP1)-(BP3) are quite standard assumptions for breakdown analysis. To

verify assumption (BP4) for our setup, we note that Mfθm
=

c(1+α)g
cg

∏p
k=1 γ

−α/2
k,m where

{γk,m} is the sequence of eigenvalues in θm. Clearly, when {θm} tends to a point on the
boundary of the parameter space, for some k = 1, . . . p, either γk,m → 0 or γk,m → ∞ as
m→∞. Since α > 0, either Mfθm

→∞ or Mfθm
→ 0 as m→∞. When Mfθm

increases to
∞, Assumption (BP4) holds trivially. When Mfθm

decreases to 0, Assumption (BP4) holds
if Mkm decreases to 0 at a faster rate than Mfθm

. To ensure this, one such particular choice
would be to restrict the contaminating distribution to any elliptically symmetric family of
distributions with a singular dispersion matrix, implying that the high dimensional data
have outlying values not all of the p-coordinates. Such outliers are more common when p
is large; data with outlying values in all of the p-coordinates rarely show up for almost all
practical purposes. Thus, we have the following corollary.

Corollary 15 Under the assumptions (BP1)-(BP4), if the true density belongs to the model
family of elliptically symmetric distributions, then the rPCAdpd estimator has a breakdown
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point at least as large as α/(1 +α) for α ∈ [0, 1], provided that the robust location estimator
used has an asymptotic breakdown point larger than α/(1 + α).

Remark 16 Corollary 15 shows that by tuning the parameter α, one can change the break-
down point of the rPCAdpd estimator irrespective of the dimension p of the data. Also, note
that as α→ 0, the lower bound of the breakdown becomes 0 suggesting a lack of robustness,
while for α = 1, one would get the highest possible breakdown 1/2.

Note that, Corollary 15 is in contrast to the breakdown point result obtained by Maronna
(1976) for an affine equivariant M-estimator, which states that an affine equivariant M-
estimator has a breakdown point at most 1/(p + 1) where p is the dimensionality of the
data. As explained in Basu et al. (1998), the MDPDE is a special case of the M-estimator,
and also we showed the orthogonal equivariance property of the rPCAdpd estimator in
Section 3.3. This discrepancy holds because the classes of the M-estimator differs from
the classes of minimum divergence estimators in which MDPDE belongs. In particular,
Maronna (1976) considered the estimators given as the solution to the system of equations

n∑
i=1

u1

(
(Xi − µ)ᵀΣ−1(Xi − µ)

)
(Xi − µ) = 0,

n∑
i=1

u2

(
(Xi − µ)ᵀΣ−1(Xi − µ)

)
(Xi − µ)(Xi − µ)ᵀ = Σ,

where u1(s) and u2(s) are suitable nonincreasing functions for s ≥ 0. On the other hand,
denoting Σ =

∑p
k=1 γkvkv

ᵀ
k, the estimating equations for MDPDE turn out to be

n∑
i=1

exp
(
−0.5α(Xi − µ)ᵀΣ−1(Xi − µ)

)
(Xi − µ) = 0,

n∑
i=1

exp
(
−0.5α(Xi − µ)ᵀΣ−1(Xi − µ)

)
((Xi − µ)(Xi − µ)ᵀ −Σ) = 0,

under the Gaussian model as in Eq. (11). Therefore, the breakdown point results provided
by Maronna (1976) do not apply to our proposed rPCAdpd estimator. This independence
of the dimension p in the lower bound of the breakdown implies that in contrast to the
classical M-estimator (Maronna, 1976), the rPCAdpd estimator can still remain useful for
estimating principal components robustly in arbitrarily high dimensional data.

4. Simulation Studies

In this section, we perform a principal component analysis for data matrices with vary-
ing levels of contamination using the existing robust PCA algorithms and our proposed
rPCAdpd algorithm. Among the plethora of existing RPCA methods, we take the clas-
sical PCA (Jolliffe, 2002), spherical and elliptical PCA (LOC) (Locantore et al., 1999),
ROBPCA algorithm by Hubert et al. (2005), projection pursuit based methods Proj and
Grid (Croux and Ruiz-Gazen, 2005), robust PCA using robust covariance matrix estimation
(RobCov) (Todorov and Filzmoser, 2010), principal component pursuit (PCP) algorithm
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by Candès et al. (2011) and Gmedian based robust principal component analysis (Gmed)
by Cardot and Godichon-Baggioni (2017), for comparison purposes. We have performed
the simulations with several variants of the rPCAdpd algorithm differing only in the loca-
tion estimator used. Based on empirical performance, we have seen that L1-median as a
location estimator provides a desirable balance between robustness, efficiency and compu-
tational complexity, hence it is the only variant demonstrated in the results described in
this section.

4.1 Simulation Settings

In the simulation experiments, we consider a data matrix comprised of i.i.d. rows. The rows
Xi are generated as Xi = (1− δi)X̃i + δiεi for i = 1, 2, . . . n. The uncontaminated sample

X̃i is normally distributed with zero mean vector and a dispersion matrix Σ whose elements
are given by Σij = min(i, j)/p for i, j = 1, 2, . . . p. This setup is similar to the one described
in Cardot and Godichon-Baggioni (2017) and can be regarded as a discretized version of a
Brownian motion within the unit (0, 1) interval. The random variables δi which control the
level of contamination are i.i.d. Bernoulli random variable with success probability δ. The
contaminating variable εis are chosen to possess different features compared to X̃i, and in
this regard, we feel that the choice of the distribution of outliers as given in Cardot and
Godichon-Baggioni (2017) is too restrictive. In comparison, Hubert et al. (2005) consider
outliers that have changes in both mean and variance components separately, and hence we
choose to work with them. In summary, we consider the following simulation scenarios.

(S1) δ = 0, i.e., only pure data is present and there is no contamination.

(S2) Here a proportion of elements are contaminated. The contaminating variable εis are
i.i.d. p-variate normal random variables with mean µ(f1) and variance Σ/f2. The
mean vector µ(f1) is a p-length vector where 10% of the entries are equal to f1 while
the rest of the entries are equal to 0.

(S2a) Here, f1 = 3, f2 = 1 and δ = 0.1. Therefore, on average 10% of the data will be
contaminated.

(S2b) Here, f1 = 3, f2 = 1 and δ = 0.2. Therefore, on average 20% of the data will be
contaminated.

(S2c) Analogous to (S2a) but with f2 = 5.

(S2d) Analogous to (S2b) but with f2 = 5.

(S3) This is similar to simulation scenario (S2) but the contaminating variable εis are i.i.d.
p-variate t-distribution with 5 degrees of freedom with dispersion matrix Σ/f2 and a
non-centrality parameter µ(f1). This is used to understand the behaviour of the PCA
algorithms for heavy-tailed contaminating variables.

(S3a) f1 = 3, f2 = 1 and δ = 0.1.

(S3b) f1 = 3, f2 = 1 and δ = 0.2.

(S3c) f1 = 3, f2 = 5 and δ = 0.1.

(S3d) f1 = 3, f2 = 5 and δ = 0.2.
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In each of the above simulation scenarios, we consider five different situations with the num-
ber of samples n = 50 but with different dimensions ranging from very small to moderately
large (p = 10, 25, 50, 100, 250). Based on B = 1000 repetitions of each exercise, we obtained
an estimate of bias and mean absolute error (MAE) of the estimated eigenvalues as

Biask =
1

B

B∑
b=1

γ̂
(b)
k − γk, MAEk =

1

B

B∑
b=1

∣∣∣γ̂(b)
k − γk

∣∣∣ ,
where γ̂

(b)
k , γk respectively denote the estimate and the true k-th eigenvalue for the b-th

sample. Similarly, to measure discrepancy in the estimated eigenvalues we look at the
Subspace Recovery Error (SRE) given by

SRE =
1

B

B∑
b=1

2
(
r − Trace

(
P̂ bP

))
,

where P̂ b =
∑r

k=1 v̂
(b)
k (v̂

(b)
k )ᵀ is the projection matrix onto the span of the estimated eigen-

vectors corresponding to the largest r eigenvalues from b-th sample, and P =
∑r

k=1 vkv
ᵀ
k be

the corresponding projection matrix from the true eigenvectors. In each of these simulation
scenarios, we keep the choice of r = 5 fixed, as more than 90% of the variability can be
explained by the first 5 principal components.

4.2 Simulation Results

The simulation results from the aforementioned algorithms are demonstrated in Tables 1-
9. We denote the rPCAdpd estimator with L1-median as the location estimator in these
tables as the DPD method, with the robustness parameter shown in parenthesis. Also,
the RobCov algorithm (Todorov and Filzmoser, 2010) uses MCD-based robust covariance
estimation for RPCA. Thus, it is inapplicable when variables outnumber samples (n ≤ p),
and those entries are marked as NA in these tables.

Table 1 presents metrics for various PCA algorithms in setup (S1). For uncontaminated
data, classical PCA outperforms all robust methods across all metrics. Gmed and ROBPCA
exhibit relatively less efficiency loss. However, the proposed rPCAdpd consistently outper-
forms both under any α ∈ [0, 1] and regardless of the location estimator used. Increasing α
escalates efficiency loss moderately compared to other methods. Although the L1-median is
quite inefficient (Huber, 2004; Hampel et al., 2011), its strong robustness properties allow
rPCAdpd to achieve extremely low MAE.

Tables 2 and 3 respectively show results for setups (S2a) and (S2b) differing in contam-
ination level. As the level of contamination increases, classical PCA worsens as expected,
spherical PCA (Locantore et al., 1999) yields biased estimates for large number of vari-
ables (large p), and the projection pursuit-based methods also perform poorly under the
considered simulation scenarios. The ROBPCA algorithm by Hubert et al. (2005) and the
Gmedian algorithm by Cardot and Godichon-Baggioni (2017) stand out to be the most
promising among the existing methods. However, Gmedian algorithm suits applications
where the outlying distribution and the true distribution have the same theoretical mean
but a different covariance structure. In contrast, the ROBPCA algorithm works well with
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Metric p Classical LOC ROBPCA Proj RobCov Grid Gmed PCP
DPD

(0.25)
DPD
(0.5)

DPD
(0.75)

DPD
(1)

Bias

10 0.059 0.723 0.194 0.229 0.431 0.416 0.043 1.066 0.06 0.062 0.065 0.068
25 0.019 2.175 0.227 0.362 0.336 0.807 0.079 2.45 0.017 0.013 0.01 0.008
50 0.031 4.572 0.519 0.467 NA 1.414 0.177 4.729 0.026 0.017 0.007 0.017
100 0.194 9.366 0.944 1.058 NA 2.827 0.314 9.387 0.201 0.216 0.233 0.254
250 0.154 23.76 2.847 2.239 NA 6.906 0.644 23.301 0.184 0.236 0.295 0.359

MAE

10 17.919 72.334 26.756 33.798 45.663 50.391 19.122 106.477 17.921 17.936 17.981 18.054
25 38.106 217.462 50.069 75.426 49.757 123.166 40.445 244.951 38.25 38.485 38.814 39.252
50 73.085 457.212 110.189 137.425 NA 240.293 84.614 472.875 73.126 73.225 73.489 73.803
100 143.086 936.571 200.658 263.141 NA 381.432 154.736 938.685 143.426 144.012 144.595 145.234
250 395.183 2375.96 536.355 731.985 NA 1010.852 434.823 2330.092 395.893 396.863 397.827 396.641

SRE

10 1 1.347 1.172 1.677 1.429 2.498 1.126 1.188 0.99 0.983 0.99 0.995
25 0.829 1.417 1.028 1.76 1.127 3.573 1.004 1.136 0.833 0.84 0.845 0.872
50 0.766 1.336 0.959 1.653 NA 4.038 0.931 0.871 0.766 0.771 0.795 0.818
100 0.836 1.459 0.985 1.587 NA 3.313 1.045 0.923 0.84 0.847 0.857 0.872
250 0.828 1.268 0.927 1.494 NA 3.265 0.939 0.899 0.828 0.832 0.84 0.859

Table 1: Estimated Bias, Mean Absolute Error and Subspace Recovery Error (SRE) for
different PCA algorithm for simulation scenario (S1)

Metric p Classical LOC ROBPCA Proj RobCov Grid Gmed PCP
DPD

(0.25)
DPD
(0.5)

DPD
(0.75)

DPD
(1)

Bias

10 0.158 0.74 0.22 0.205 0.44 0.458 0.08 1.065 0.15 0.08 0.017 0.009
25 0.304 2.183 0.386 0.416 0.459 1.046 0.152 2.452 0.281 0.097 0.023 0.025
50 0.874 4.585 0.807 1.074 NA 2.308 0.274 4.724 0.792 0.248 0.121 0.129
100 1.627 9.382 1.41 1.63 NA 4.246 0.433 9.386 1.445 0.251 0.111 0.132
250 4.567 23.777 3.114 4.573 NA 11.98 1.471 23.303 4.134 0.866 0.718 0.777

MAE

10 29.382 74.012 30.359 37.423 47.943 59.314 24.69 106.383 30.81 24.729 18.938 18.165
25 62.13 218.321 62.944 83.99 61.246 141.267 56.95 245.214 63.996 47.073 39.385 39.137
50 138.901 458.488 124.057 163.26 NA 305.897 111.013 472.415 145.313 95.448 82.258 82.154
100 258.437 938.246 213.108 296.41 NA 495.19 211.008 938.639 268.129 155.77 140.017 139.704
250 693.852 2377.669 558.396 729.947 NA 1311.666 545.383 2330.337 709.073 398.446 380.915 383.593

SRE

10 1.779 1.875 1.056 2.016 1.405 2.697 1.843 1.171 1.787 1.46 1.063 1.005
25 2.135 2.322 1.063 2.243 1.076 3.774 2.197 1.152 2.137 1.261 0.872 0.852
50 2.185 2.43 0.998 2.2 NA 4.395 2.263 0.924 2.172 1.145 0.847 0.871
100 2.251 2.482 1.084 2.3 NA 3.544 2.351 0.986 2.228 1.075 0.898 0.901
250 2.231 2.504 0.991 2.229 NA 3.599 2.317 0.912 2.196 0.936 0.869 0.882

Table 2: Estimated Bias, Mean Absolute Error and Subspace Recovery Error (SRE) for
different PCA algorithm for simulation scenario (S2a)

significant changes in mean between outlying distribution and true distribution. The pro-
posed rPCAdpd algorithm, suited for similar scenarios with changes in mean, surpasses
ROBPCA at high robustness parameter α, and is significantly better in high dimensions.
The PCP algorithm (Candès et al., 2011) has consistent results across setups (S1), (S2a),
and (S2b). This is due to the fact that the error comes only from the perturbation matrix E
in Eq. (4), which is inestimable by the PCP method. Table 4 and 5 summarises the results
obtained for scenario (S2c) and (S2d). These results closely mirror those in scenarios (S2a)
and (S2b) respectively.

In scenarios (S3a)-(S3d), the contaminating distribution changes to t-distribution with
5 degrees of freedom with a heavy tail. In these scenarios, ROBPCA (Hubert et al., 2005),
Gmedian (Cardot and Godichon-Baggioni, 2017) algorithm and the proposed rPCAdpd
methods perform closely. In (S3a), the rPCAdpd method excels for large values of α. As
the contamination rises to 20%, as shown in Table 7, all of the chosen algorithms show a
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Metric p Classical LOC ROBPCA Proj RobCov Grid Gmed PCP
DPD

(0.25)
DPD
(0.5)

DPD
(0.75)

DPD
(1)

Bias

10 0.321 0.757 0.381 0.429 0.589 0.757 0.14 1.065 0.329 0.281 0.138 0.067
25 0.553 2.198 0.368 0.635 1.004 1.344 0.235 2.451 0.568 0.364 0.073 0.036
50 1.467 4.602 0.829 1.796 NA 3.221 0.583 4.617 1.48 0.97 0.323 0.182
100 2.66 9.414 1.028 2.692 NA 6.019 1.235 9.159 2.766 2.005 0.533 0.2
250 7.033 23.805 3.245 8.006 NA 15.969 2.746 22.799 7.089 4.447 1.446 0.299

MAE

10 41.99 75.693 43.08 52.712 60.646 82.448 30.185 106.511 45.196 42.803 29.261 22.409
25 85.197 219.781 63.246 93.376 112.498 165.495 65.545 245.114 90.83 74.713 45.453 41.413
50 194.589 460.223 130.581 236.929 NA 406.956 144.635 462.199 209.841 172.386 110.373 96.321
100 364.678 941.397 221.517 400.614 NA 665.195 267.786 916.897 394.475 317.498 173.981 142.885
250 957.207 2380.505 518.404 1066.532 NA 1696.499 658.65 2283.607 1060.277 838.361 545.85 432.927

SRE

10 1.812 2.049 1.109 2.346 1.424 2.886 1.889 1.197 1.811 1.774 1.405 1.111
25 2.14 2.422 1.021 2.645 2.212 4.19 2.26 1.276 2.152 1.832 1.111 1.03
50 2.219 2.472 1.02 2.828 NA 4.985 2.314 2.265 2.24 1.819 1.201 1.049
100 2.227 2.453 1.043 2.868 NA 3.86 2.326 2.272 2.242 1.868 1.153 1.007
250 2.249 2.549 1.066 2.976 NA 3.901 2.362 2.302 2.262 1.767 1.16 1.007

Table 3: Estimated Bias, Mean Absolute Error and Subspace Recovery Error (SRE) for
different PCA algorithm for simulation scenario (S2b)

Metric p Classical LOC ROBPCA Proj RobCov Grid Gmed PCP
DPD

(0.25)
DPD
(0.5)

DPD
(0.75)

DPD
(1)

Bias

10 0.215 0.746 0.166 0.159 0.396 0.434 0.161 1.065 0.234 0.131 0.112 0.11
25 0.328 2.182 0.249 0.305 0.604 1.168 0.286 2.458 0.335 0.127 0.112 0.105
50 0.855 4.592 0.139 0.494 NA 2.04 0.845 4.745 0.944 0.356 0.348 0.347
100 1.793 9.394 0.152 1.086 NA 3.896 1.713 9.403 1.861 0.858 0.8 0.775
250 3.839 23.786 1.204 2.871 NA 10.833 3.264 23.392 4.119 1.396 1.331 1.275

MAE

10 29.127 74.586 28.237 32.563 44.906 57.255 25.461 106.444 31.154 22.089 19.424 19.468
25 60.747 218.249 56.479 76.163 87.508 156.242 60.369 245.818 64.18 44.461 42.378 42.696
50 129.217 459.232 99.63 149.773 NA 314.016 127.928 474.518 140.922 83.036 82.464 81.935
100 253.278 939.405 195.978 280.408 NA 510.712 251.441 940.342 266.573 163.12 158.681 158.084
250 633.745 2378.584 496.981 745.615 NA 1303.445 623.223 2339.228 676.812 398.135 394.581 395.265

SRE

10 1.815 2.014 1.099 2.118 1.485 2.823 1.87 1.194 1.821 1.159 1 0.997
25 2.167 2.43 1.013 2.408 2.127 4.035 2.261 1.151 2.064 0.992 0.888 0.902
50 2.221 2.47 1.043 2.531 NA 4.64 2.328 1.03 2.101 0.983 0.971 0.969
100 2.242 2.472 1.028 2.531 NA 3.721 2.34 0.96 1.942 0.918 0.882 0.893
250 2.251 2.515 0.963 2.535 NA 3.702 2.379 0.906 2.019 0.882 0.869 0.897

Table 4: Estimated Bias, Mean Absolute Error and Subspace Recovery Error (SRE) for
different PCA algorithm for simulation scenario (S2c)

significant increase in MAE. However, the proposed estimator maintains a low bias for all
components even for large p relative to n, consistent with its theoretical breakdown point
behaviour as pointed out in Section 3.6.

In essence, the proposed rPCAdpd algorithm excels at detecting and removing low-
variance, different-location contaminating components, compared to the primary data dis-
tribution component. In all other cases, its performance is closely comparable to the exist-
ing algorithms. Also, across all of the simulation setups considered, the proposed rPCAdpd
algorithm yields significantly better estimates of principal components than the existing
algorithms when the dimension of the data p is large, which is also theoretically justified
by its dimension-independent asymptotic breakdown point.

24



Robust Principal Component Analysis using Density Power Divergence

Metric p Classical LOC ROBPCA Proj RobCov Grid Gmed PCP
DPD

(0.25)
DPD
(0.5)

DPD
(0.75)

DPD
(1)

Bias

10 0.318 0.795 0.143 0.351 0.624 0.732 0.238 1.066 0.381 0.223 0.171 0.173
25 0.673 2.244 0.251 0.785 0.76 1.607 0.491 2.464 0.741 0.485 0.329 0.33
50 1.558 4.655 0.258 1.328 NA 3.931 0.893 4.662 1.873 1.132 0.747 0.738
100 3.048 9.455 0.55 2.703 NA 7.156 1.806 9.224 3.675 2.412 1.444 1.409
250 7.077 23.848 0.789 7.754 NA 18.827 4.491 22.946 8.81 5.079 3.244 3.285

MAE

10 37.458 79.459 29.663 51.391 69.393 83.281 30.899 106.478 43.167 30.213 23.255 21.96
25 83.302 224.442 56.003 114.552 109.815 199.736 68.858 246.374 92.75 66.028 50.217 48.364
50 183.396 465.533 100.959 222.596 NA 473.89 139.529 466.556 216.876 143.9 100.715 96.639
100 365.033 945.488 194.688 453.592 NA 787.951 276.815 923.643 438.872 299.393 204.371 195.749
250 896.782 2384.753 491.336 1154.62 NA 2015.285 682.064 2297.192 1077.574 670.359 488.388 482.877

SRE

10 1.882 2.106 1.159 2.529 2.221 3.09 1.991 1.205 1.886 1.491 1.214 1.174
25 2.136 2.387 1.094 2.75 2.318 4.552 2.209 1.261 2.132 1.539 1.164 1.125
50 2.233 2.506 0.978 2.915 NA 5.408 2.323 2.272 2.274 1.523 1.09 1.035
100 2.225 2.532 0.982 2.926 NA 4.051 2.33 2.274 2.25 1.514 1.066 1.002
250 2.256 2.479 0.933 2.907 NA 4.143 2.344 2.3 2.265 1.346 0.972 0.937

Table 5: Estimated Bias, Mean Absolute Error and Subspace Recovery Error (SRE) for
different PCA algorithm for simulation scenario (S2d)

Metric p Classical LOC ROBPCA Proj RobCov Grid Gmed PCP
DPD

(0.25)
DPD
(0.5)

DPD
(0.75)

DPD
(1)

Bias

10 0.212 0.743 0.23 0.263 0.429 0.519 0.05 1.066 0.2 0.138 0.082 0.064
25 0.534 2.185 0.403 0.494 0.412 1.09 0.127 2.452 0.515 0.324 0.247 0.247
50 1.218 4.58 1.018 0.997 NA 2.249 0.296 4.717 1.159 0.715 0.493 0.455
100 2.39 9.389 1.431 1.876 NA 4.388 0.597 9.372 2.218 1.201 0.873 0.857
250 5.09 23.783 2.675 2.997 NA 9.718 1.631 23.309 4.503 1.83 1.424 1.451

MAE

10 32.656 74.327 30.411 42.304 48.105 66.025 24.609 106.512 34.086 29.286 23.804 21.794
25 76.302 218.539 58.718 82.371 62.299 144.168 53.57 245.173 78.951 61.355 54.034 54.426
50 160.631 458.022 131.667 166.613 NA 302.974 113.246 471.68 166.973 127.601 105.154 100.407
100 303.042 938.894 218.99 303.707 NA 503.095 218.692 937.193 314.138 220.16 188.221 189.425
250 815.964 2378.289 589.99 858.143 NA 1279.957 662.041 2330.966 817.858 559.381 515.87 516.502

SRE

10 1.822 1.882 1.152 1.945 1.537 2.698 1.822 1.155 1.818 1.636 1.292 1.158
25 2.154 2.272 1.003 2.128 1.048 3.757 2.185 1.142 2.155 1.4 1.054 1.053
50 2.204 2.368 1.017 2.152 NA 4.395 2.287 0.978 2.206 1.423 0.961 0.919
100 2.251 2.475 1.02 2.279 NA 3.587 2.311 1.01 2.23 1.282 0.951 0.955
250 2.264 2.521 1.072 2.202 NA 3.525 2.343 1.015 2.16 1.165 0.98 0.98

Table 6: Estimated Bias, Mean Absolute Error and Subspace Recovery Error (SRE) for
different PCA algorithm for simulation scenario (S3a)

5. Real Data Analysis

In this section, we demonstrate applications of the proposed rPCAdpd estimator on three
real-life data sets. The first two data sets, namely the Car data set and the Octane data
set are popular benchmark data sets used to compare performances of different RPCA
algorithms (see Hubert et al. (2005) for details). We also consider a novel Credit Card
Fraud Detection data set to demonstrate how the proposed robust PCA estimator can
serve as a preliminary preprocessing step to identify fraudulent transactions using credit
cards before applying binary classification algorithms.

5.1 Car Data

The Car data set comprises n = 111 observations of cars with p = 11 variables, including
the length, width, and height of the car. This data set has served as a benchmark for various
robust PCA methods (Hubert et al., 2005; Croux et al., 2007). We utilize it to assess the
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Metric p Classical LOC ROBPCA Proj RobCov Grid Gmed PCP
DPD

(0.25)
DPD
(0.5)

DPD
(0.75)

DPD
(1)

Bias

10 0.454 0.756 0.376 0.415 0.509 0.749 0.172 1.065 0.478 0.399 0.283 0.207
25 0.957 2.198 0.529 0.828 1.049 1.596 0.363 2.448 0.968 0.817 0.523 0.416
50 2.053 4.603 0.829 1.571 NA 3.221 0.729 4.613 2.108 1.738 0.952 0.674
100 4.085 9.41 1.438 2.712 NA 5.838 1.174 9.136 4.235 3.121 1.585 1.015
250 10.553 23.793 5.036 8.705 NA 17.022 4.318 22.72 10.683 8.138 5.083 3.947

MAE

10 52.663 75.648 40.059 50.066 53.751 81.22 29.654 106.464 56.791 50.076 39.234 32.751
25 113.553 219.799 73.592 109.254 119.102 191.308 75.088 244.825 119.018 106.796 78.32 67.627
50 236.518 460.337 122.695 206.081 NA 411.252 144.926 461.708 249.263 218.761 141.867 114.571
100 492.217 941.042 244.944 399.289 NA 647.709 288.144 914.552 534.963 445.369 293.533 237.476
250 1175.092 2379.306 659.666 1087.267 NA 1791.531 725.623 2273.85 1231.25 1015.697 716.547 604.369

SRE

10 1.839 1.993 1.134 2.326 1.465 2.825 1.886 1.198 1.85 1.797 1.556 1.351
25 2.22 2.414 1.071 2.784 2.217 4.183 2.249 1.234 2.237 2.026 1.356 1.176
50 2.304 2.528 0.97 2.888 NA 4.909 2.358 2.287 2.312 2.149 1.43 1.196
100 2.286 2.491 1.034 2.838 NA 3.809 2.307 2.288 2.309 1.993 1.223 0.995
250 2.307 2.481 0.952 2.83 NA 3.847 2.34 2.308 2.317 1.997 1.348 1.172

Table 7: Estimated Bias, Mean Absolute Error and Subspace Recovery Error (SRE) for
different PCA algorithm for simulation scenario (S3b)

Metric p Classical LOC ROBPCA Proj RobCov Grid Gmed PCP
DPD

(0.25)
DPD
(0.5)

DPD
(0.75)

DPD
(1)

Bias

10 0.149 0.746 0.228 0.181 0.464 0.505 0.123 1.065 0.163 0.081 0.043 0.041
25 0.357 2.188 0.258 0.402 0.543 1.057 0.381 2.457 0.382 0.174 0.148 0.143
50 0.777 4.59 0.33 0.455 NA 2.011 0.676 4.738 0.823 0.296 0.265 0.253
100 1.517 9.387 0.667 1.276 NA 4.291 1.144 9.402 1.495 0.442 0.392 0.372
250 3.886 23.785 1.012 2.727 NA 9.358 3.513 23.383 3.883 1.464 1.386 1.359

MAE

10 25.443 74.609 32.294 37.131 50.803 64.494 22.821 106.453 26.557 19.682 15.649 15.393
25 59.571 218.815 53.687 74.807 76.628 147.007 60.024 245.654 65.782 44.871 42.176 41.994
50 133.973 459.029 108.565 159.38 NA 319.77 123.649 473.841 141.108 87.353 84.297 84.503
100 256.543 938.692 193.825 284.691 NA 496.1 225.919 940.223 263.121 159.77 154.23 154.083
250 676.504 2378.474 524.335 711.74 NA 1230.442 649.349 2338.346 678.719 435.267 427.714 430.439

SRE

10 1.796 2.006 1.052 2.079 1.468 2.768 1.872 1.144 1.788 1.286 0.952 0.958
25 2.141 2.342 0.981 2.397 1.775 3.969 2.211 1.186 2.057 0.994 0.861 0.87
50 2.179 2.418 0.954 2.389 NA 4.572 2.289 0.858 2.038 0.908 0.841 0.851
100 2.23 2.487 1.053 2.476 NA 3.66 2.315 0.929 1.983 0.899 0.849 0.883
250 2.254 2.555 0.999 2.479 NA 3.719 2.364 0.927 1.908 0.841 0.826 0.834

Table 8: Estimated Bias, Mean Absolute Error and Subspace Recovery Error (SRE) for
different PCA algorithm for simulation scenario (S3c)

performance of our proposed rPCAdpd method on outlier detection. For visual evaluation,
we adopt orthogonal and score distances as diagnostic metrics (Hubert et al., 2005).

Analysing screeplots for both rPCAdpd and the classical PCA for the Car data set
reveals that the first four principal components capture more than 90% of the variance.
We thus apply both algorithms to extract these components and compute orthogonal and
score distances for each observation. Figure 1 illustrates this diagnostic analysis. Classical
PCA identifies a cluster of influential points (observations 25, 30, 32, 34, and 36), which
are also detected by rPCAdpd estimator. These points share a value of (−2) for 4 of
the 11 variables: Rear.Hd, Rear.Seat, Rear.Shld, and Luggage. However, classical PCA
assigns low orthogonal distances to these outliers, indicating their good fit, thus inflating
distances for most points. Conversely, rPCAdpd assigns high orthogonal distances to these
outliers. Additionally, rPCAdpd identifies a different set of outliers (observations 102 −
107, 109), unnoticed by classical PCA, consistent with findings in Hubert et al. (2005). As
demonstrated in Figure 1, ROBPCA and Gmedian algorithms also spot such outliers.
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Metric p Classical LOC ROBPCA Proj RobCov Grid Gmed PCP
DPD

(0.25)
DPD
(0.5)

DPD
(0.75)

DPD
(1)

Bias

10 0.268 0.79 0.139 0.347 0.633 0.724 0.183 1.066 0.324 0.217 0.115 0.113
25 0.673 2.231 0.243 0.71 0.725 1.615 0.486 2.461 0.748 0.458 0.304 0.297
50 1.325 4.641 0.13 1.474 NA 3.602 0.709 4.649 1.669 0.934 0.522 0.481
100 2.772 9.436 0.101 2.798 NA 6.713 1.462 9.206 3.428 2.046 1.142 1.098
250 6.861 23.832 0.34 6.809 NA 17.565 3.587 22.922 8.555 5.192 3.156 2.813

MAE

10 35.048 79.01 31.374 49.556 67.262 81.659 27.681 106.519 39.974 32.114 20.677 19.517
25 83.555 223.086 58.178 105.35 112.409 201.416 70.421 246.107 91.476 65.052 49.229 46.971
50 179.148 464.061 112.288 227.737 NA 458.559 129.521 465.585 210.767 138.549 96.856 89.979
100 370.199 943.586 216.485 440.313 NA 738.531 272.546 921.936 430.631 287.974 191.931 187.771
250 908.806 2383.166 566.649 1118.667 NA 1918.17 688.634 2294.489 1054.348 709.767 492.689 450.457

SRE

10 1.849 2.045 1.084 2.42 2.053 3.117 1.955 1.026 1.851 1.608 1.225 1.16
25 2.145 2.383 0.948 2.836 2.283 4.553 2.233 1.077 2.134 1.409 1.04 0.965
50 2.235 2.495 0.983 2.951 NA 5.331 2.34 2.274 2.286 1.496 1.112 1.022
100 2.269 2.529 0.985 2.928 NA 3.971 2.351 2.311 2.296 1.503 1.01 0.953
250 2.28 2.506 1.039 3.009 NA 4.132 2.388 2.326 2.295 1.551 1.176 1.076

Table 9: Estimated Bias, Mean Absolute Error and Subspace Recovery Error (SRE) for
different PCA algorithm for simulation scenario (S3d)
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Figure 1: Diagnostic plots for the Car data set

5.2 Octane Data

The Octane data set, sourced from Esbensen et al. (2002), features spectroscopic data with
octane numbers derived from near-infrared (NIR) absorbance spectra of 39 gasoline samples.
Measurements span 226 electromagnetic radiation wavelengths (1102 nm to 1552 nm), each
of which gives rise to a feature. With 39 observations and 226 features, principal component
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Figure 2: Diagnostic plots for the Octane data set

analysis (PCA) is pivotal for dimension reduction and subsequent analysis. Six samples (25,
26, and 36− 39) contain additional alcohol, making them distinct (Hubert et al., 2005).

Similar to the Car data set, a screeplot analysis reveals that there are only 2 significant
principal components present in the Octane data set. However, the first principal value
estimated by the classical PCA (0.132) is several magnitudes higher than the first principal
value estimated by rPCAdpd (0.01075), which aligns with the estimates obtained from exist-
ing robust PCA algorithms (Hubert et al., 2005). Diagnostic plots in Figure 2 demonstrate
classical PCA’s failure to detect outliers, except observation 26, while rPCAdpd identifies
alcohol-mixed gasoline samples accurately. The ROBPCA algorithm also detects these out-
liers, with a similar score and orthogonal distances. However, the Gmedian algorithm labels
most of these points as orthogonal outliers only.

5.3 Credit Card Fraud Detection

Credit card fraud detection is a very challenging problem because of the specific nature
of transaction data and the labelling process. Most of the practical transaction data is
highly imbalanced, and the number of fraudulent transactions is far too less compared to
the extremely large number of valid transactions made on a day-to-day basis. There are
primarily two kinds of strategies to detect such fraudulent transactions: the first one models
the situation as a binary classification problem with some sampling procedures to counter
class imbalance, and the second approach assumes that the fraudulent transactions are
outliers in the data and applies an outlier detection algorithm. Many existing supervised
and unsupervised machine learning algorithms (Carcillo et al., 2018, 2021) employ outlier
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Figure 3: Diagnostic plots for the Credit Card data set for different robust PCA methods

detection to spot such fraudulent transactions. These methods often begin with a principal
component analysis (PCA) to reduce dimensions and training time for real-time application.

To this end, we anticipate that the proposed robust PCA algorithm will outperform clas-
sical PCA in dimensionality reduction and provide reliable principal component estimates.
We demonstrate this using the Credit Card Fraud Detection Data set from Le Borgne et al.
(2022). The data set encompasses 28 anonymized features over 284807 transactions, with
only 0.1% (492) being fraudulent. For demonstration, we randomly sample 5% of the data
set, including 19 fraudulent transactions. The first 5 principal components, explaining over
80% of variation, are retained for both classical and rPCAdpd algorithms. Diagnostic plots
in Figure 3 portray the outcomes, with red squares denoting fraudulent transactions. As
shown in Figure 3, the classical PCA method fails to separate most of the fraudulent trans-
actions, correctly identifying only 5 (in red). In contrast, the rPCAdpd algorithm separates
out 13 out of 19 outliers. Existing robust PCA methods such as ROBPCA and GMedian
spot 7 and 6 outliers respectively, which are better than classical PCA but at the cost of
many false positives (outliers without red squares). Thus, substituting classical PCA with
the robust rPCAdpd algorithm in the preprocessing or dimensionality reduction step of
this analysis can greatly enhance the results of the existing machine learning algorithms.
By doing so, valuable insights about fraudulent transactions can assist the existing outlier
detection and classification algorithms on the transformed, lower-dimensional data.
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6. Conclusion

As described in Section 1, a plethora of algorithms from an extensive range of disciplines use
principal component analysis. Unfortunately, with the emergence of the era of big data, it
has become increasingly difficult to check or validate the authenticity, trustworthiness and
overall correctness of the data. As a result, most of the input data to these algorithms are
highly susceptible of being contaminated by various forms of noise and outlying observations.
Since classical PCA is heavily affected by such outliers, several robust PCA algorithms have
been proposed in the last two decades. Many of these are not both fast and scalable. M-
estimation based techniques are computationally efficient to obtain, but their breakdown
point decays rapidly with the increase in dimension making it unacceptable for being used for
high dimensional data. On the other hand, MVE, MCD and other projection pursuit based
methods are highly scalable, but they are either computationally extremely intensive or lack
proper theoretical guarantees of consistency, asymptotic normality or bounded influence
function along with high breakdown. We believe that this paper will help to fill this gap
by providing a robust, scalable and efficient PCA estimator with the help of the popular
density power divergence. We demonstrate its various desirable theoretical properties in
the present work. It also has a dimension-free breakdown point making it attractive to be
used in arbitrarily high dimensional data analysis. Also, the robustness parameter α in
rPCAdpd can be tuned to provide a smooth bridge between efficiency in estimation and
robustness capabilities.

In all the data sets used to describe the practical applicability of the rPCAdpd, we esti-
mate the significant number of principal components to be extracted based on thresholding
the proportion of the variation explained by the first few principal components. However,
such a procedure would require the estimation of all principal components first and then
computing the proportion. From a computational point of view, it is highly beneficial to
estimate the rank of the low-rank matrix L first, and then proceed with the estimation of
principal components. We will investigate this direction in a future study.
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Appendix A. Proofs of the Results

A.1 Normalization constant of Elliptically Symmetric Families of Distributions

Here we show that the normalizing constant for the elliptically symmetric family of densities
is of the form cg det(Σ)1/2. To see this, we note that it can be expressed as

Cg =

∫
Rp

exp

[
g

(
(x− µ)ᵀ

p∑
k=1

γ−1
k vkv

ᵀ
k(x− µ)

)]
dx.

Let P be the p×p orthogonal matrix whose rows are the vectors vᵀk for k = 1, 2, . . . p. Then,
applying a change of variable z = P ᵀ(x− µ), we can rewrite the integral as

Cg =

∫
Rp

exp

[
g

(
p∑

k=1

γ−1
k z2

k

)]
dz,

where z = (z1, z2, . . . zp)
ᵀ. Finally, another change of variable with uk = zk/

√
γk for k =

1, 2, . . . p yields,

Cg =

∫
Rp

p∏
k=1

γ
1/2
k exp

[
g

(
p∑

k=1

u2
k

)]
du1du2 . . . dup = det(Σ)1/2cg,

where the constant cg is the integral it is replacing. Clearly, the term cg is free of the mean
µ and the dispersion Σ matrix, and hence is a constant depending only on the g function.

A.2 Proof of Theorem 1

First note that the eigenvectors vk lie in the Stiefel manifold of order p, which is a closed
and bounded subset of Rp, hence is compact.

Also, since g(x) is a continuous decreasing function, limx→∞ e
g(x) = 0. Otherwise if

limx→∞ e
g(x) = ε > 0, it implies that the integral

∫∞
0 eg(x) diverges by comparison test,

contradicting the existence of the elliptically symmetric probability density function.

Fixing µ ∈ Rp, let us now observe how the objective function Q behaves for extreme
values of the eigenvalues γ1, . . . γp. If γ1 → 0, then it follows that

lim
γ1→0

Q(γ1, . . . , γp,η) = lim
γ1→0

γ
−1/2
1

[
c(1+α)g

cg
− lim
x→∞

eg(x)

]
≥ 0,

since cg > 0 for any choice of g function by definition. On the other hand, if γ1 → ∞, the
quadratic form

(Xi − µ)ᵀ
p∑

k=1

γ−1
k vk(η)vk(η)ᵀ(Xi − µ)→ (Xi − µ)ᵀ

p∑
k=2

γ−1
k vk(η)vk(η)ᵀ(Xi − µ).
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Then by the strong law of large numbers, it follows that for sufficiently large n, with
probability 1,

1

n

n∑
i=1

exp

{
αg

(
(Xi − µ)ᵀ

p∑
k=2

γ−1
k vk(η)vk(η)ᵀ(Xi − µ)

)}

→ E

[
exp

{
αg

(
(X − µ)ᵀ

p∑
k=2

γ−1
k vk(η)vk(η)ᵀ(X − µ)

)}]

≥ E

[
exp

{
αg

(
(X − µ)ᵀ

p∑
k=1

γ−1
k vk(η)vk(η)ᵀ(X − µ)

)}]

=

∏p
k=1 γ

−1/2
k

cg

∫
Rp

exp

{
(1 + α)g

(
(x− µ)ᵀ

p∑
k=1

γ−1
k vk(η)vk(η)ᵀ(x− µ)

)}
dx

=
c(1+α)g

cg
,

where the inequality uses the fact that g is monotonically decreasing. Therefore, for suffi-
ciently large n, with probability 1, Q(γ1, . . . γp,η) increases to 0 as γ1 increases to∞. There-
fore, for any given ε > 0, there exists 0 < a1 < b1 <∞ such that Q(γ1, γ2, . . . γp) > (−ε) for
any γ1 6∈ [a1, b1]. Note that, since γ1 is chosen arbitrarily, the same conclusion also holds for
all other eigenvalues, possibly with different choices of ak and bk for k = 1, 2, . . . p. Letting,
ε = − inf Q(γ1, . . . γp,η)/2 (which is finite by continuity of Q and the limiting behaviour
described above) and considering the set K =

∏p
k=1[ak, bk]× S, we note that the infimum

of Q must exist within the set K. Since K is a compact subset of Rp, it follows by the
Extreme Value Theorem that the infimum must be attained. This proves the existence of
the rPCAdpd estimator for any arbitrary value of µ, including the location estimate µ̂.

A.3 Proof of Theorem 2

Let µ̂Y and µ̂X be the robust estimates of the location based on the sample Y 1, . . .Y n and
X1, . . .Xn respectively. Then by the orthogonal equivariance of the location estimator,
we have that µ̂Y = aPµ̂X + b. The equivariance property for the estimated eigenvalues
and eigenvectors by the rPCAdpd algorithm then follows from the observation that the
quadratic form of the transformed data can be expressed as

(Y i − µ̂Y )ᵀ

(
p∑

k=1

γ−1
k vkv

ᵀ
k

)
(Y i − µ̂Y )

= a(Xi − µ̂X)ᵀP ᵀ

(
p∑

k=1

γ−1
k vkv

ᵀ
k

)
(Xi − µ̂X)P a

= (Xi − µ̂X)ᵀ

(
p∑

k=1

(γk/a
2)−1P ᵀvkv

ᵀ
kP

)
(Xi − µ̂X).

It shows that, if rPCAdpd estimates of the eigenvalues for the sample X1, . . .Xp are γ∗k
for k = 1, 2, . . . p respectively, then the rPCAdpd estimate of the same for the transformed
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sample would be a2γ∗k . A similar conclusion can be drawn for the rPCAdpd estimate of
eigenvectors as well.

A.4 Proof of Lemma 4

Let, hθ(x) = c−1
α (θ)f

(1+α)
θ (x) be another density function. Note that

uhθ(x) =
∂

∂θ
log(hθ(x)) = − ∂

∂θ
log(cα(θ)) + (1 + α)uθ(x), (19)

where uθ(x) is the score function corresponding to fθ(x). Under the standard regularity
conditions, one can exchange the differentiation and the integral sign to obtain that the
expectation of the score function is equal to 0. Therefore,

0 =

∫
∂

∂θ
log(hθ(x))hθ(x)dx = − ∂

∂θ
log(cα(θ)) +

(1 + α)

cα(θ)
ξθ.

Interchanging the sides and solving for ξθ yields the result.

A.5 Proof of Lemma 5

Starting with the decomposition (19), it follows that

(
uhθ(x)

)(
uhθ(x)

)ᵀ
=

(
∂

∂θ
log(cα(θ))

)(
∂

∂θ
log(cα(θ))

)ᵀ

− 2(1 + α)uθ(x)

(
∂

∂θ
log(cα(θ))

)ᵀ

+ (1 + α)2uθ(x)uᵀθ(x).

Multiplying both sides with hθ(x) and integrating with respect to x yields

ih(θ) =

(
∇θcα(θ)

cα(θ)

)(
∇θcα(θ)

cα(θ)

)ᵀ

− 2

(
∇θcα(θ)

cα(θ)

)(
∇θcα(θ)

cα(θ)

)ᵀ

+
(1 + α)2

cα(θ)
Jθ,

where ∇θcα(θ) = ∂cα(θ)
∂θ . Solving for Jθ yields Eq. (17).

A.6 Proof of Corollary 6

Since the normalized density c−1
α (θ)f

(1+α)
θ also belongs to an elliptically symmetric class of

densities, it follows that

cα(θ) = c(1+α)g

p∏
k=1

(γk)
1/2c−(1+α)

g

p∏
k=1

(γk)
−(1+α)/2.

Putting this value and its derivative with respect to θ into Lemma 4 yields Corollary 6.
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A.7 Proof of Corollary 7

We start by defining a few notations as follows:

Q(x) = (x− µ∗)ᵀ
(

p∑
k=1

γ−1
k vkv

ᵀ
k

)
(x− µ∗),

A2(g) =

∫
g′(Q(x))(x− µ∗)(x− µ∗)ᵀc0(θ)−1 exp(g(Q(x)))dx,

A4(g;u,v) =

∫ (
g′(Q(x))

)2
(x− µ∗)(x− µ∗)ᵀuvᵀ(x− µ∗)(x− µ∗)ᵀ e

g(Q(x))

c0(θ)
dx.

Here, c0(θ) is the normalizing constant the normalizing constant for the elliptically sym-

metric density proportional to exp(g(Q(x)). Clearly, c0(θ) = cg
∏p
k=1 γ

1/2
k . All of these

quantities are well defined due to the Assumptions (A1) and (A3). Also, let Gk = ∂vk
∂η

denote the p(p + 1)/2 × p matrix whose columns are the gradients of the entries vkj for
j = 1, 2, . . . p, of vk with respect to the parameter η. One important aspect is to note the
quantities A2(g) and A4(g;u,v) are free of µ∗, which can be verified by a simple substitution
in the integral.

Starting with the identity

c0(θ) =

∫
exp (g(Q(x))) dx,

and differentiating both sides by γk and η respectively, we obtain the identities

γ−2
k vᵀkA2(g)vk = − 1

2γk
,

p∑
k=1

γ−1
k GkA2(g)vk = 0, (20)

both of which will be used later in the proof.

Let hθ(x) = c(1+α)(θ)−1e(1+α)g(Q(x)) be a density belonging to the same elliptically

symmetric family. Then, the score function uhθ(x) corresponding to hθ can be expressed as

uhθ(x) =

[
1
2Diag

(
Γ−1

)
− (1 + α)g′(Q(x))Γ−2V ᵀ(Ip ⊗ (x− µ)(x− µ)ᵀ)V

2(1 + α)g′(Q(x))G(Γ−1 ⊗ (x− µ)(x− µ)ᵀ)V 1p

]
. (21)

Using the expression for uhθ(x), we can further differentiate this with respect to the entries
of θ and take expectation. This leads to the Fisher Information matrix in the partitioned
form as follows,

ih(θ) =


ih(γ1, γ1) . . . ih(γ1, γp) ih(γ1,η)

...
. . .

...
...

ih(γp, γ1) . . . ih(γp, γp) ih(γp,η)
ih(γ1,η)ᵀ . . . ih(γp,η)ᵀ ih(η,η)

 ,
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where,

ih(γk, γl) =

(
∂q(1+α)g

∂γk

)(
∂q(1+α)g

∂γl

)
+

(
∂q(1+α)g

∂γk

)
γ−2
l vᵀlA2((1 + α)g)vl

+

(
∂q(1+α)g

∂γl

)
γ−2
k vᵀkA2((1 + α)g)vk +

vᵀkA4((1 + α)g;vk,vl)vl

γ2
kγ

2
l

= −
(
∂q(1+α)g

∂γk

)(
∂q(1+α)g

∂γl

)
+
vᵀkA4((1 + α)g;vk,vl)vl

γ2
kγ

2
l

, k, l = 1, 2, . . . p

ih(γk,η) = −2

(
∂q(1+α)g

∂γk

) p∑
k=1

γ−1
k GkA2((1 + α)g)vk −

2

γ2
k

p∑
l=1

γ−1
l vᵀkA4((1 + α)g;vk,vl)G

ᵀ
l

= − 2

γ2
k

p∑
l=1

γ−1
l vᵀkA4((1 + α)g;vk,vl)G

ᵀ
l , k = 1, . . . p

ih(η,η) = 4

p∑
k=1

p∑
l=1

γ−1
k γ−1

l GkA4((1 + α)g;vk,vl)G
ᵀ
l ,

where we use the identities (20). In all of the above expressions, the quantity qg denoted
the logarithm of the normalizing constant, i.e., qg = log(c0(θ)) and q(1+α)g = log(cα(θ)).
Finally, Corollary 7 follows from using Lemma 5.

A.8 Proof of the Theorem 10

The proof of the Theorem 10 closely resembles the proof of Theorem 3.1 of Ghosh and
Basu (2013). For brevity, we shall only indicate the modifications pertinent to the special
scenario of principal components. Given the location estimator µ̂, using the same notation
as in Ghosh and Basu (2013), we define

V (X,θ) =

p∏
k=1

γ
−α/2
k

[
c(1+α)g

cg
−
(

1 +
1

α

)
eαg((X−µ̂)ᵀ

∑p
k=1 γ

−1
k vk(η)vk(η)ᵀ(X−µ̂))

]
which are the summands in the objective function in Eq. (14). Now, conditional on µ̂, by
an application of the Law of Large Numbers, we have

1

n

n∑
i=1

∇V (Xi,θ
∗) | µ̂ P−→ 0, and,

1

n

n∑
i=1

∇2V (Xi,θ
∗) | µ̂ P−→ Jθ∗

where θ∗ is the true value of the parameters. Now, since the right-hand sides of both of

these are continuous functions of µ̂ and as µ̂
P−→ µ∗ (the true location parameter) due to

the consistency of the location estimator, it follows that the unconditional random variables
also converges in probability to the same value. As the support of the elliptically symmetric
family of distributions is assumed to be the entire space Rp, Jθ∗ becomes free of the choice
of location which makes this convergence possible. Now, one can replicate the proof for
consistency to show that the rPCAdpd estimator is consistent.

To prove the asymptotic normality, we need to show that Tn = 1√
n

∑n
i=1∇2V (Xi,θ

∗)

converges in distribution to a random variable Z following a multivariate normal distribu-
tion with mean 0 and variance Kθ∗ . Due to Portmanteau’s theorem, it is enough to show
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that for any bounded continuous function h, |E(h(Tn)) − E(h(Z))| → 0 as n → ∞. An
application of Lindeberg-Levy Central Limit Theorem and Portmanteau’s theorem yields
that as n→∞,

|E(h(Tn) | µ̂)− E(h(Z))| → 0.

Since E(h(Tn) | µ̂) is also a bounded and continuous function of µ̂, it follows that

E(h(Tn)) = E [E(h(Tn) | µ̂)]→ E [E(h(Z) | µ∗)] = E(h(Z)), as n→∞,

where the last equality follows due to the fact that both mean and the variance Kθ∗ of Z is
free of the choice of location µ∗. The rest of the proof follows as in Ghosh and Basu (2013).

A.9 Proof of the Corollary 11

The generating function for the Gaussian distribution in the elliptically symmetric family of
distributions is g(x) = (−x/2). It follows that g′(x) = −1/2 and the normalizing constant

Cg = (2π)p/2
∏p
k=1 γ

1/2
k . For ease of notation, we also define

cα =
C(1+α)g

Cg
= (2π)−αp/2(1 + α)−p/2

p∏
k=1

(γ∗k)−α/2.

Now, some standard calculation using properties of normal distribution and its quadratic
forms (Petersen and Pedersen, 2012) reveals that A2((1 + α)g) = (1 + α)Σ∗/4, and

A4((1 + α)g;u,v) =
1

4
[Σ∗ (uvᵀ + vuᵀ) Σ∗ + Trace (uvᵀΣ∗) Σ∗] .

In particular, for any k, l = 1, 2, . . . p,

A4((1 + α)g;v∗k,v
∗
l ) =

1

4
[Σ∗ ((v∗k)(v

∗
l )

ᵀ + (v∗l )(v
∗
k)

ᵀ) Σ∗ + Trace ((v∗k)(v
∗
l )

ᵀΣ∗) Σ∗]

=
1

4

[
γ∗kγ

∗
l ((v∗k)(v

∗
l )

ᵀ + (v∗l )(v
∗
k)

ᵀ) + 1{k=l}γ
∗
l Σ
∗] ,

where we use the fact that v∗k is an eigenvector of Σ∗ corresponding to the eigenvalue γ∗k .
Thus, it turns out that jh(µ∗,µ∗) = cα

(1+α)(Σ∗)−1, and

jh(γ∗k , γ
∗
l ) =

cα
4(1 + α)2γ∗kγ

∗
l

(
α2 + 21{k=l}

)
and jh(γ∗k ,η

∗) = 0, where we use the fact that Gkv
∗
k = 0. This equality follows from

differentiating both sides of the identity (v∗k)
ᵀ(v∗k) = 1 with respect to the parameter η at

η = η∗. Similarly, differentiating the identity (v∗k)
ᵀ(v∗l ) = 0 for k 6= l with respect to η

yields that Gkv
∗
l +Glv

∗
k = 0. Some lengthy calculation and an application of this identity

allows us to obtain

jh(η∗,η∗) =
cα

(1 + α)2

(
p∑

k=1

p∑
l=1

(
1−

γ∗k
γ∗l

)
Gk(v

∗
l )(v

∗
k)

ᵀGᵀ
l

)
.

A similar calculation may be performed to determine the entries of Kθ∗ . This completes
the proof of the corollary, with a direct application of Theorem 10.
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