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Abstract

Unsupervised domain adaptation (UDA) adapts a model from a labeled source domain
to an unlabeled target domain in a one-off way. Though widely applied, UDA faces a
great challenge whenever the distribution shift between the source and the target is large.
Gradual domain adaptation (GDA) mitigates this limitation by using intermediate domains
to gradually adapt from the source to the target domain. In this work, we first theoretically
analyze gradual self-training, a popular GDA algorithm, and provide a significantly improved
generalization bound compared with Kumar et al. (2020). Our theoretical analysis leads
to an interesting insight: to minimize the generalization error on the target domain, the
sequence of intermediate domains should be placed uniformly along the Wasserstein geodesic
between the source and target domains. The insight is particularly useful under the situation
where intermediate domains are missing or scarce, which is often the case in real-world
applications. Based on the insight, we propose Generative Gradual DOmain Adaptation
with Optimal Transport (GOAT), an algorithmic framework that can generate intermediate
domains in a data-dependent way. More concretely, we first generate intermediate domains
along the Wasserstein geodesic between two given consecutive domains in a feature space,
then apply gradual self-training to adapt the source-trained classifier to the target along the
sequence of intermediate domains. Empirically, we demonstrate that our GOAT framework
can improve the performance of standard GDA when the given intermediate domains are
scarce, significantly broadening the real-world application scenarios of GDA. Our code is
available at https://github.com/uiuctml/GOAT.

Keywords: Gradual Domain Adaptation, Distribution Shift, Optimal Transport, Out-of-
distribution Generalization

1. Introduction

Modern machine learning models suffer from data distribution shifts across various settings
and datasets (Gulrajani and Lopez-Paz, 2021; Sagawa et al., 2021; Koh et al., 2021; Hendrycks
et al., 2021; Wiles et al., 2022), i.e., trained models may face a significant performance drop
when the test data come from a distribution largely shifted from the training data distribution.
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Figure 1: A schematic diagram comparing Unsupervised Domain Adaptation (UDA) vs.
Gradual Domain Adaptation (GDA), using the example of Rotated MNIST. In GDA, given
labeled data from a source domain, models are adapted to the target domain, with the help
of unlabeled data from intermediate domains gradually shifting from the source to target.

Unsupervised domain adaptation (UDA) is a promising approach to address the distribution
shift problem by adapting models from the training distribution (source domain) with
labeled data to the test distribution (target domain) with unlabeled data (Ganin et al., 2016;
Long et al., 2015; Zhao et al., 2018; Tzeng et al., 2017). Typical UDA approaches include
adversarial training (Ajakan et al., 2014; Ganin et al., 2016; Zhao et al., 2018), distribution
matching (Zhang et al., 2019; Tachet des Combes et al., 2020; Li et al., 2021, 2022), optimal
transport (Courty et al., 2016, 2017), and self-training (aka pseudo-labeling) (Liang et al.,
2019, 2020; Zou et al., 2018, 2019; Wang et al., 2022a). However, as the distribution shifts
become large, these UDA algorithms suffer from significant performance degradation (Kumar
et al., 2020; Sagawa et al., 2021; Abnar et al., 2021; Wang et al., 2022a). This empirical
observation is consistent with theoretical analyses (Ben-David et al., 2010; Zhao et al., 2019a;
Tachet des Combes et al., 2020), which indicate that the expected test accuracy of a trained
model in the target domain degrades as the distribution shift becomes larger.

When facing a large data distribution shift, our key strategy is the classic divide-and-
conquer : breaking the large shift into pieces of smaller shifts, resolving each piece with
classic UDA approaches, and then combining all the intermediate solutions to recover a
solution to the original data-shift problem (Figure 2). Concretely, the data distribution shift
between the source and target can be divided into pieces with intermediate domains bridging
the two (i.e., the source and target). This methodology of leveraging intermediate data to
tackle large distribution shift is known as gradual domain adaptation (GDA) (Kumar et al.,
2020; Abnar et al., 2021; Chen and Chao, 2021; Gadermayr et al., 2018; Wang et al., 2020;
Bobu et al., 2018; Wulfmeier et al., 2018; Wang et al., 2022a).

In the setting of GDA, where unlabeled intermediate data is available to the learner, Ku-
mar et al. (2020) proposed a simple yet effective algorithm, gradual self-training (GST),
which applies self-training consecutively along the sequence of intermediate domains towards
the target. Kumar et al. (2020) also proved an upper bound on the target error of GST,
but it is pessimistic and unrealistic in practice. In particular, given source error ε0 and T
intermediate domains each with n unlabelled data, the bound of Kumar et al. (2020) scales
as eO(T )

(
ε0 + O

(√
log(T )/n

))
, which grows exponentially in T . This indicates that the

more intermediate domains for adaptation, the worse performance that gradual self-training
would obtain in the target domain. In contrast, people have empirically observed that a
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Figure 2: An illustration of the divide-and-conquer strategy to address large data distribution
shift (best viewed in color). The distribution shift between the source and target is divided
into T − 1 smaller pieces with (given or generated) unlabeled intermediate data. The model
ht is gradually adapted in each step to reach the final solution.

relatively large T is beneficial for gradual domain adaptation (Abnar et al., 2021; Chen and
Chao, 2021). On the other hand, despite its simplicity, the self-training algorithm already
exhibits some structures of the continual changing distributions:

Observation 1 As the number of intermediate domains T increases, the accumulated error
of the self-training algorithm also increases proportionally, due to the lack of ground-truth
labels and the use of pseudo-labels.

Observation 2 As the number of intermediate domains T increases, by using the pseudo-
labels, the effective sample size used by the self-training algorithm scales as O(nT ).

Clearly, there is a fundamental tradeoff in the number of intermediate domains T on
the error of the self-training algorithm over the sequence of distributions. The existing
generalization bound given by Kumar et al. (2020) does not characterize this phenomenon.
Furthermore, due to the exponential scaling factor, this upper bound becomes vacuous when
T is only moderately large. Based on the above two observations and the sharp gap between
existing theory and empirical observations of gradual domain adaptation, we attempt to
address the following important and fundamental questions:

For gradual domain adaptation, given the source domain and target domain, how
does the number of intermediate domains impact the target generalization error?
Is there an optimal choice for this number? If yes, then how to construct the
optimal path of intermediate domains?

To answer these questions, we first carry out a novel theoretical analysis on gradual
self-training (Kumar et al., 2020), then present a practical algorithm accordingly, which
significantly outperforms vanilla gradual self-training. For the theoretical analysis, our
setting is more general than that of Kumar et al. (2020), in the sense that i) we have a milder
assumption on the distribution shift, ii) we put almost no restriction on the loss function,
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Table 1: Comparison between our theoretical analysis and Kumar et al. (2020). Our analysis is
applicable to a more general setting and the generalization error bound is exponentially tighter in
terms of the dependency on T .

Kumar et al. (2020) Our Result

Applicable Loss Functions Ramp loss All ρ−Lipschitz losses
Applicable Distance Metrics ∞−Wasserstein metric All p−Wasserstein metrics

Generalization Error Bound eO(T )
(
ε0 +O

(√
log(T )/n

))
ε0+O

(
T∆+ T√

n

)
+Õ

(
1√
nT

)

and iii) our technique applies to all the p-Wasserstein distance metrics. As a comparison,
existing analysis is restricted to ramp loss1 and only applies to the∞-Wasserstein metric. At
a high level, we first focus on analyzing a pair of consecutive domains, and upper bound the
error difference of any classifier over domains bounded by their p-Wasserstein distance; then,
we telescope this lemma to the entire path over a sequence of domains, and finally obtain
an error bound for gradual self-training: ε0+O

(
T∆+ T√

n

)
+Õ

(
1√
nT

)
, where ∆ is the average

p-Wasserstein distance between consecutive domains. We summarize the improvement of
our analysis compared with Kumar et al. (2020) in Table 1.

Interestingly, our bound indicates the existence of an optimal choice of T that minimizes
the generalization error, which could explain the success of moderately large T used in
practice. Notably, the T∆ in our bound could be interpreted as the length of the path
of intermediate domains bridging the source and target, suggesting that one should also
consider minimizing the path length T∆ in practices of gradual domain adaptation. For
example, given fixed source and target domains, the path length T∆ is minimized as the
intermediate domains are distributed along the Wasserstein geodesic between the source
domain and target domain.

The above insight is particularly helpful under the situation where intermediate domains
are missing or scarce, which is often the case in real-world applications. It inspires a natural
method to generate more intermediate domains useful for GDA. Based on this finding, we
propose Generative Gradual Domain Adaptation with Optimal Transport (GOAT). At a
high-level, GOAT contains the following steps:

i Generate intermediate domains (zt in Figure 2) between each pair of consecutive given
domains along the Wasserstein geodesic in a feature space.

ii Apply gradual self-training (GST) over the sequence of given and generated domains.
This produces a sequence of models ht and pseudo-labels ỹt as demonstrated in Figure 2.

Empirically, we conduct experiments on Rotated MNIST, Color-Shift MNIST, Portraits
(Ginosar et al., 2015) and Cover Type (Blackard and Dean, 1999), four benchmark datasets
commonly used in the literature of GDA. The experimental results show that our GOAT
significantly outperforms vanilla GDA, especially when the number of given intermediate
domains is small. The empirical results also confirm the theoretical insights: i) when the

1Ramp loss can be seen as a truncated hinge loss so that it is bounded and more amenable for technical
analysis.
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distribution shift between a pair of consecutive domains is large, one can generate more
intermediate domains to further improve the performance of GDA; ii) there exists an optimal
choice for the number of generated intermediate domains.

2. Preliminaries

Notation X ,Y denote the input and the output space, and X,Y denote random variables
taking values in X ,Y . In this work, each domain has a data distribution µ over X ×Y , thus
it can be written as µ = µ(X,Y ). When we only consider samples and disregard labels, we
use µ(X) to refer to the sample distribution of µ over the input space X .

2.1 Problem Setup

Binary Classification In the theoretical anlysis, we focus on binary classification with
labels {−1, 1}. Also, we consider Y as a compact space in R.

Gradually shifting distributions We have T+1 domains indexed by {0, 1, ..., T}, where
domain 0 is the source domain, domain T is the target domain and domain 1, . . . , T−1
are the intermediate domains. These domains have distributions over X × Y, denoted as
µ0, µ1, . . . , µT .

Classifier and Loss Consider the hypothesis class as H and the loss function as `. We
define the population loss of classifier h ∈ H in domain t as

εt(h) ≡ εµt(h) , Eµt [`(h(X), Y )] = EX,Y∼µt [`(h(X), Y )]

Unsupervised Domain Adaptation (UDA) In UDA, we have a source domain and a
target domain. During the training stage, the learner can access m labeled samples from
the source domain and n unlabeled samples from the target domain. In the test stage, the
trained model will then be evaluated by its prediction accuracy on samples from the target
domain. The objective for UDA is to find the classifier h? which minimizes the loss on the
target domain

h? = arg min
h∈H

EX,Y∼µt [`(h(X), Y )]. (1)

Gradual Domain Adaptation (GDA) Most UDA algorithms adapt models from the
source to target in a one-step fashion, which can be challenging when the distribution shift
between the two is large. Instead, in the setting of GDA, there exists a sequence of additional
T − 1 unlabeled intermediate domains bridging the source and target. We denote the
underlying data distributions of these intermediate domains as µ1(X,Y ), . . . , µT−1(X,Y ),
with µ0(X,Y ) and µT (X,Y ) being the source and target domains, respectively. In this case,
for each domain t ∈ {1, . . . , T}, the learner has access to St, a set of n unlabeled data drawn
i.i.d. from µt(X). Same as UDA, the goal of GDA is still to make accurate predictions on
test data from the target domain (Eq. 1), while the learner can train over m labeled source
data and nT unlabeled data from {St}Tt=1. To contrast the setting of UDA and GDA, we
provide an illustration in Fig. 1 that compares UDA with GDA, using the Rotated MNIST
dataset as an example.
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We make a mild assumption on the input data below, which can be easily achieved by
data preprocessing. This assumption is common in machine learning theory works (Cao and
Gu, 2019; Arora et al., 2019; Rakhlin and Sridharan, 2014).

Assumption 1 (Bounded Input Space) Consider the input space X is compact and
bounded in the d-dimensional unit L2 ball, i.e., X ⊆ {x ∈ Rd : ‖x‖2 ≤ 1}.

This assumption effectively normalizes the input space and eliminates explicit dependence
on the input dimension d from our bounds2.

To quantify distribution shifts between domains, we adopt the well-known Wasserstein
distance metric in the Kantorovich formulation (Kantorovich, 1939), which is widely used in
the optimal transport literature (Villani, 2009).

Definition 1 (p-Wasserstein Distance) Consider two measures µ and ν over S ⊆ Rd.
For any p ≥ 1, given a distance metric d, their p-Wasserstein distance is defined as

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
S×S

d(x, y)p dγ(x, y)

)1/p

(2)

where Γ(µ, ν) is the set of all measures over S×S with marginals equal to µ and ν respectively.

In this paper, we consider p as a preset constant satisfying p ≥ 1. Then, we can use the
p-Wasserstein metric to measure the distribution shifts between consecutive domains.

Definition 2 (Distribution Shifts) For t = 1, . . . , T , denote

∆t = Wp(µt−1, µt) (3)

Then, we define the average of distribution shifts between consecutive domains as

∆ =
1

T

T∑
t=1

∆t (4)

Remarks on Wasserstein Metrics The p-Wasserstein metric has been widely adopted
in many sub-areas of machine learning, such as generative models (Arjovsky et al., 2017;
Tolstikhin et al., 2018) and domain adaptation (Courty et al., 2014, 2016, 2017; Redko et al.,
2019). Most of these works use p = 1 or 2, which is known to be good at quantifying many
real-world data distributions (Peyré et al., 2019). However, the analysis in Kumar et al.
(2020) only applies to p =∞, which is uncommon in practice and can lead to a loose upper
bound due to the monotonicity property of Wp. Since W∞ distance focuses on the maximum
transportation cost between the measures, it is more prone to unboundedness, making it a
less robust choice compared with W1 and W2.

2.2 Gradual Self-Training

The vanilla self-training algorithm (denoted as ST) adapts classifier h with empirical risk
minimization (ERM) over pseudo-labels generated on an unlabelled dataset S, i.e.,

h′ = ST(h, S) = arg min
f∈H

∑
x∈S

`(f(x), h(x)) (5)

2If we instead assumed ‖x‖2 ≤
√
d, which would correspond to X ⊆ [0, 1]d, the constant B in Assumption 4

would gain a factor of
√
d.
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where h(x) represents pseudo-labels provided by the trained classifier h, and h′ is the new
classifier fitted to the pseudo-labels. The technique of hard labelling (i.e., converting h(x) to
one-hot labels) is used in some practices of self-training (Xie et al., 2020; Van Engelen and
Hoos, 2020), which can be viewed as adding a small modification to the loss function `.

Gradual self-training (Kumar et al., 2020), applies self-training to the intermediate
domains and the target domain successively, i.e., for t = 1, . . . , T ,

ht = ST(ht−1, St) = arg min
f∈H

∑
x∈St

`(f(x), ht−1(x)) (6)

where h0 is the model fitted on the source data. hT is the final trained classifier that is
expected to enjoy a low population error in the target domain, i.e., εT .

Intuitively, one can expect that when the distribution shift between each consecutive
pair of intermediate domains is large, the quality of the pseudo-labels obtained from the
previous classifier can degrade significantly, hence hurting the final target generalization.
This scenario is particularly relevant when the number of given intermediate domains is
relatively small.

3. Theoretical Analyses

In this section, we theoretically analyze gradual self-training under assumptions more relaxed
than Kumar et al. (2020), and obtain a significantly improved error bound. Our theoretical
analysis is roughly split into two steps: i) we focus on a pair of arbitrary consecutive domains
with bounded distributional distance, and upper bound the prediction error difference of any
classifier in the two domains by the distributional distance (Lemma 1); ii) we view gradual
self-training from an online learning perspective, and adopt tools in the online learning
literature to analyze the algorithm together with results of step (i), leading to an upper
bound (Theorem 1) of the target generalization error of gradual self-training. Notably, our
bound provides several profound insights on the optimal path of intermediate domains used
in gradual domain adaptation (GDA), and also sheds light on the design of GDA algorithms.
The proofs of all theoretical statements are provided in Appendix A.

3.1 Error Difference over Distribution Shift

Intuitively, gradual domain adaptation (GDA) splits the large distribution shift between the
source domain and target domain into smaller shifts that are segmented by intermediate
domains. Thus, in the view of reductionism (Anderson, 1972), one should understand what
happens in a pair of consecutive domains in order to comprehend the entire GDA mechanism.

To start, we adopt three assumptions from the prior work (Kumar et al., 2020)3.

Assumption 2 (R-Lipschitz Classifier) We assume each classifier h ∈ H is R-Lipschitz
in `2 norm, i.e., ∀x, x′ ∈ X ,

|h(x)− h(x′)| ≤ R‖x− x′‖2

3Assumption 3 is not explicitly made by Kumar et al. (2020). Instead, they directly assume the loss
function to be ramp loss, which is a more strict assumption than our Assumption 3.
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Assumption 3 (ρ-Lipschitz Loss) We assume the loss function ` is ρ-Lipschitz, i.e.,
∀y, y′ ∈ Y,

|`(y, ·)− `(y′, ·)| ≤ ρ‖y − y′‖2 (7)

|`(·, y)− `(·, y′)| ≤ ρ‖y − y′‖2 (8)

Assumption 4 (Bounded Model Complexity) 4 We assume the Rademachor complex-
ity (Bartlett and Mendelson, 2002), R, of the hypothesis class, H, is bounded for any
distribution µ considered in this paper. That is, for some constant B > 0,

Rn(H;µ) = E

[
sup
h∈H

1

n

n∑
i=1

σih(xi)

]
≤ B√

n
(9)

where the expectation is w.r.t. xi ∼ µ(X) and σi ∼ Uniform({−1, 1}) for i = 1, . . . , n.

With these assumptions, we can bound the population error difference of a classifier
between a pair of shifted domains in the following proposition. The proof is in Appendix A.1.

Lemma 1 (Error Difference over Shifted Domains) Consider two arbitrary measures
µ, ν over X × Y. Then, for arbitrary classifier h and loss function ` satisfying Assumption
2, 3, the population loss of h on µ and ν satisfies

|εµ(h)− εν(h)| ≤ ρ
√
R2 + 1 Wp(µ, ν) (10)

where Wp is the Wasserstein-p distance metric and p ≥ 1.

Eq. (6) depicts each iteration of gradual self-training with an past classifier ht and a
new one ht+1, which are fitted to St and St+1, respectively. Naturally, one might be curious
about how well the performance of ht+1 in domain t+1 is compared with ht in domain t.
We answer this question as follows, with proof in Appendix A.2.

Proposition 1 (The stability of the ST algorithm) Consider two arbitrary measures
µ, ν, and denote S as a set of n unlabelled samples i.i.d. drawn from µ. Suppose h ∈ H is
a pseudo-labeler that provides pseudo-labels for samples in S. Define ĥ ∈ H as an ERM
solution fitted to the pseudo-labels,

ĥ = arg min
f∈H

∑
x∈S

`(f(x), h(x)) (11)

Then, for any δ ∈ (0, 1), the following bound holds true with probability at least 1− δ,

∣∣εµ(ĥ)−εν(h)
∣∣≤ O(Wp(µ, ν)+

ρB+
√

log 1
δ√

n

)
(12)

Comparison with Kumar et al. (2020) The setting of Kumar et al. (2020) is more
restrictive than ours. For example, its analysis is specific to ramp loss (Huang et al., 2014),
a rarely used loss function for binary classification. Kumar et al. (2020) also studies the

4This assumption is actually reasonable and not strong. For example, under Assumption 1 and 2, linear
models directly satisfy (9), as proved in (Kumar et al., 2020; Liang, 2016).
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error difference over consecutive domains, and prove a multiplicative bound (in Theorem 3.2
of Kumar et al. (2020)), which can be re-expressed in terms of our notations and assumptions
as

εµ(ĥ) ≤ 2

1−R∆∞
εν(h)+ε∗µ+O

(ρB+
√

log 1
δ√

n

)
(13)

where ε∗µ , minf∈H εµ(f) is the optimal error ofH in µ, and ∆∞ , maxy∈{−1,1}(W∞(µ(X|Y =
y), ν(X|Y = y))) can be seen as an analog to the Wp(µ, ν) in (12). Kumar et al. (2020)
assumes 1 − R∆∞ > 0, thus the error εν(h) is increased by the factor 2

1−R∆∞
> 1 in

the above error bound of εµ(ĥ). This leads to a target domain error bound exponential
in T (Corollary 3.3. of Kumar et al. (2020)) when one applies (13) to the sequence of
domains iteratively in gradual self-training (i.e., Eq. (6)). In contrast, our (12) indicates
εµ(ĥ) ≤ εν(h) + other terms, which increases the error εν(h) in an additive way, leading to
a target domain error bound linear in T .

Remarks on Generality Lemma 1 and Proposition 1 are not restricted to gradual
domain adaptation. Of independent interest, they can be leveraged as useful theoretical tools
to handle distribution shifts in other machine learning problems, including unsupervised
domain adaptation, transfer learning, out-of-distribution (OOD) robustness, and group
fairness.

3.2 An Online Learning View of GDA

One can naively apply Proposition 1 to gradual self-training over the sequence of domains
(i.e., Eq. (6)) iteratively and obtain an error bound of the target domain as

εT (hT ) ≤ ε0(h0) +O
(
T∆+T

ρB+
√

log 1
δ√

n

)
(14)

Obviously, the larger T , the higher the error bound becomes (this holds even if one assumes
T∆ ≤ constant for fixed source and target domains). However, this contradicts with
empirical observations that a moderately large T is optimal (Kumar et al., 2020; Abnar
et al., 2021; Chen and Chao, 2021).

To resolve this discrepancy, we take an online learning view of gradual domain adaptation,
which allows us to obtain a more optimistic error bound. Specifically, we consider the domains
t = 0, . . . , T arriving sequentially to the model. This process can be formalized as follows.
For each domain t = 0, . . . , T :

1. Observe unlabeled data St = {xti}ni=1 from domain µt.

2. If t = 0 (source domain), use true labels. Otherwise, generate pseudo-labels ŷti =
ht−1(xti) using the previous model ht−1.

3. Update the model: ht = arg minf∈H
∑n

i=1 `(f(xti), ŷ
t
i).

This online learning perspective allows us to leverage tools from sequential learning
theory, particularly the framework of Rakhlin et al. (2015), which views online binary
classification as a process on a complete binary tree. By applying this view, we can utilize
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results on sequential Rademacher complexity (Definition 4) and the discrepancy measure
between distributions (Definition 5). The key advantage of this approach is that it enables
us to obtain bounds that depend on the total number of samples nT , rather than just T as
in the naive approach. Specifically, terms of order O(

√
1/T ) in the naive bound become

O(
√

1/nT ) in our improved bound. Moreover, this view allows us to better characterize
how the error accumulates across domains, leading to the improved linear dependence on T
in our final bound (Theorem 1), compared to the exponential dependence in previous work
(Kumar et al., 2020).

To proceed, certain structural assumptions and complexity measures are necessary. For
example, VC dimension (Vapnik, 1999) and Rademacher complexity (Bartlett and Mendel-
son, 2002) are proposed for supervised learning. Similarly, in online learning, Littlestone
dimension (Littlestone, 1988), sequential covering number (Rakhlin et al., 2010) and sequen-
tial Rademacher complexity (Rakhlin et al., 2010, 2015) are developed as useful complexity
measures. To study gradual self-training in an online learning framework, we adopt the
framework of Rakhlin et al. (2015), which views online binary classification as a process in
the structure of a complete binary tree and defines the sequential Rademacher complexity
upon that.

Definition 3 (Complete Binary Trees) We define two complete binary trees X ,Y , and
the path σ in the trees:

X , (X0, ...,XT ), a sequence of mappings with Xt : {±1}t → X for t = 0, ..., T .
Y , (Y0, ...,YT ), a sequence mappings with Yt : {±1}t → Y for t = 0, ..., T .
σ = (σ0, ..., σT ) ∈ {±1}t, a path in X or Y .

Definition 4 (Sequential Rademacher Complexity) Consider σ as a sequence of
Rademacher random variables and a t-dimensional probability vector qt = (q0, ..., qt−1), then
the sequential Rademacher complexity of H is

Rseq
t (H) = sup

X ,Y
Eσ

[
sup
h∈H

t−1∑
τ=0

στqτ `
(
h(Xτ (σ)),Yτ (σ)

)]

To better understand this measure, we present examples of two common model classes5,
which are provided in Rakhlin and Sridharan (2014).

Example 1 (Linear Models) For the linear model class that is R-Liphschtiz, i.e., H =
{x→ w>x : ‖w‖2 ≤ R}, we have Rseq

t (H) ≤ R√
t

for t ∈ Z+.

Example 2 (Neural Networks) Consider H as the hypothesis class of R-Lipschitz L-
layer fully-connected neural nets with 1-Lipschitz activation function (e.g., ReLU, Sigmoid,

TanH). Then, its sequential Rademacher complexity is bounded as Rseq
t (H) ≤ O

(
R

√
(log t)3(L−1)

t

)
for t ∈ Z+.

5The probability vector qt is taken to be uniform in these cases.
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Besides the model complexity measure, we also adopt a measure of discrepancy among
multiple data distributions, which is proposed in works of online learning for time-series
data (Kuznetsov and Mohri, 2014, 2015, 2016, 2017, 2020).

Definition 5 (Discrepancy Measure) For any t-dimensional probability vector qt =
(q0, ..., qt−1), the discrepancy measure disc(qt) is defined as

disc(qt) = sup
h∈H

(
εt−1(h)−

t−1∑
τ=0

qτ · ετ (h)

)
(15)

Intuitively, this discrepancy measure quantifies the maximum difference between the
error of a hypothesis on the last domain (εt−1(h)) and a weighted average of its errors on all
previous domains (

∑t−1
τ=0 qτ · ετ (h)). This measure captures how much the “difficulty” of the

learning problem can change across domains. In the context of gradual domain adaptation, a
small discrepancy suggests that the domains are changing gradually, making it easier for the
model to adapt. Conversely, a large discrepancy indicates significant shifts between domains,
which could make adaptation more challenging. The supremum over H in the definition
ensures that we’re considering the worst-case scenario across all possible hypotheses in our
model class. This conservative approach helps us derive bounds that hold regardless of
which specific hypothesis our learning algorithm might choose.

We can further bound this discrepancy in our setting (defined in Sec. 2) as follows. The
proof is in Appendix A.3.

Lemma 2 (Discrepancy Bound) With Lemma 1, the discrepancy measure (15) can be
upper bounded as

disc(qt) ≤ ρ
√
R2 + 1

t−1∑
τ=0

qτ (t− τ − 1)∆ (16)

With qt = q∗t = (1
t , ...,

1
t ), this upper bound can be minimized as

disc(q∗t ) ≤ ρ
√
R2 + 1 t∆/2 = O(t∆) (17)

3.3 Generalization Bound for Gradual Self-Training

With our results obtained in Section 3.1 and tools introduced in Section 3.2, we can prove
a generalization bound for gradual self-training within online learning frameworks such
as Kuznetsov and Mohri (2016, 2020). However, if we use these frameworks in an off-the-shelf
way, the resulting generalization bound will have multiple terms with dependence on T and
no dependence on n (the number of samples per domain), since these online learning works
do not care about the data size of each domain. This will cause the resulting bound to be
loose in terms of n. To resolve this, we come up with a novel reductive view of the learning
process of gradual self-training, which is more fine-grained than the original view in Kumar
et al. (2020). This reductive view enables us to make the generalization bound to depend on
n in an intuitive way, which also tightens the final bound. We defer explanations of this
view to Appendix A.4 along with the proof of Theorem 1.

Finally, we prove a generalization bound for gradual self-training that is much tighter
than that of Kumar et al. (2020).
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Theorem 1 (Generalization Bound for Gradual Self-Training) For any δ ∈ (0, 1),
the population loss of gradually self-trained classifier hT in the target domain is upper bounded
with probability at least 1− δ as

εT (hT ) ≤
T∑
t=0

qtεt(ht) + ‖qn(T+1)‖2
(

1+O
(√

log(1/δ)
))

+disc(qT+1)+O
(√

log TRseq
n(T+1)(` ◦ H)

)
(18)

For the class of neural nets considered in Example 2,

εT (hT ) ≤ ε0(h0) +O
(
T∆+

T√
n

+T

√
log 1/δ

n
+

1√
nT

+

√
(log nT )3L−2

nT
+

√
log 1/δ

nT

)
(19)

Remark The bound in Eq. (19) is rather intuitive6: the first term ε0(h0) is the source error
of the initial classifier, and T∆ corresponds to the total length of the path of intermediate
domains connecting the source domain and the target domain. The asymptotic O(T/

√
n)

term is due to the accumulated estimation error of the pseudo-labeling algorithm incurred at
each step. The O(1/

√
nT ) term characterizes the overall sample size used by the algorithm

along the path, i.e., the algorithm has seen n samples in each domain, and there are T total
domains that gradual self-training runs on.

Comparison with Kumar et al. (2020) Using our notation, the generalization bound
of Kumar et al. (2020) can be re-expressed as

εT (hT ) ≤ eO(T )

(
ε0(h0)+O

( 1√
n

+

√
log T

n

))
, (20)

which grows exponentially in T as a multiplicative factor. In contrast, our bound (19) grows
only additively and linearly in T , achieving an exponential improvement compared with the
bound of Kumar et al. (2020) shown in (20).

3.4 Optimal Path of Gradual Self-Training

It is worth pointing out that our generalization bound in Theorem 1 applies to any path
connecting the source domain and target domain with T steps, as long as µ0 is the source
domain and µT is the target domain. In particular, if we define ∆max to be an upper bound7

on the average Wp distance between any pair of consecutive domains along the path, i.e.,

∆max ≥ 1
T

∑T
t=1Wp(µt−1, µt), and let P to be the collection of paths with T steps connecting

µ0 and µT :

P := {(µt)Tt=0 |
1

T

T∑
t=1

Wp(µt−1, µt) ≤ ∆max} ,

then we can extend the generalization bound in Theorem 1:

εT (hT ) ≤ ε0(h0)+ inf
P
Õ
(
T∆max+

T√
n

+

√
1

nT

)
(21)

6Eq. (19) is derived from Eq. (18) by substituting the expression for Rseq
n(T+1)(` ◦ H) from Example 2.

7Need to be large enough to ensure that P is non-empty.
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Source Domain

Target Domain

Intermediate Domains

Figure 3: An illustration of the optimal path in gradual domain adaptation, with a detailed
explanation in Sec. 3.4. The orange path is the geodesic connecting the source domain and
target domain.

Minimizing the RHS of the above upper bound w.r.t. T (the proof is provided in Ap-
pendix A.6), we obtain the optimal choice of T on the order of

Õ

((
1

1 + ∆max
√
n

)2/3
)
. (22)

However, the above asymptotic optimal length may not be achievable, since we need to
ensure that T∆max is at least the length of the geodesic connecting the source domain and
target domain. To this end, define L to be the Wp distance between the source domain and
target domain, we thus have the optimal choice T ∗ as

T ∗ = max

{
L

∆max
, Õ

((
1

1 + ∆max
√
n

)2/3
)}

. (23)

Intuitively, the inverse scaling of T ∗ and ∆max suggests that, if the average distance between
consecutive domains is large, it is better to take fewer intermediate domains.

Illustration of the Optimal Path To further illustrate the notion of the optimal path
connecting the source domain and target domain implied by our theory, we provide an
example in Fig. 3. Consider the metric space induced by Wp over all the joint distributions
with finite p-th moment, where both the source and target could be understood as two
distinct points. In this case, there are infinitely many paths of step size T connecting the
source and target, such that the average pairwise distance is bounded by ∆max. Hence, one
insight we can draw from Eq. (21) is that: if the learner could construct the intermediate
domains, then it is better to choose the path that is as close to the geodesic, i.e., the shortest
path between the source and target (under Wp), as possible. This key observation opens a
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broad avenue forward toward algorithmic designs of gradual domain adaptation to construct
intermediate domains for better generalization performance in the target domain.

4. Generative Gradual Domain Adaptation with Optimal Transport

Inspired by the theoretical results, in this section, we present our algorithm to automatically
generate a series of intermediate domains between any pair of consecutive given domains,
with the hope that when applied to the sequence of generated intermediate domains, GST
could lead to better target generalization. Before presenting the proposed algorithm, we
first formally introduce several notions that will be used in the design of our algorithm.

The optimal transport problem was initially formalized by Monge (1781), and Kantorovich
(1939) further relaxed the deterministic nature of Monge’s problem formulation. In this part,
we adopt Kantorovich’s formulation of optimal transport (Kantorovich, 1939), which aims
at finding the optimal coupling that minimizes a total transport cost.

Definition 6 (Optimal Coupling) Given measures µ, ν over X and a lower semi-continuous
cost function8 c : X × X 7→ [0,∞), the optimal transport coupling γ∗ is the one that attains
the infimum of the total transport cost:

inf
γ∈Γ(µ,ν)

∫
X×X

c(x, x′)dγ(x, x′) . (24)

where Γ(µ, ν) is the set of all probability measures on X × X with marginals as µ, ν.

One can create a path of measures that interpolates the given two, and the theory of
optimal transport can help us find the optimal path that minimizes the path length measured
under the Wasserstein metric, i.e., the sum of Wasserstein distances between each pair of
consecutive measures along the path. This optimal path is termed the Wasserstein geodesic,
which is formally defined below.

Definition 7 (Wasserstein Geodesic) Given two measures ν0, ν1 over X and an optimal
coupling γ?. Let ] denote the push-forward operator on measures. Then, a (constant-speed)
Wasserstein geodesic between ν0, ν1 under Euclidean metric can be defined by the path
P(ν0, ν1) := {(gt)]γ? : t ∈ [0, 1]}, where gt(x, y) = (1− t)x+ ty.

4.1 Motivations

The target domain error bound of gradual self-training, i.e., Eq. (19), has a dominant term
T∆, which can be interpreted as the length of the path of intermediate domains connecting
the source and target. Interestingly, we find that this path is related to the Wasserstein
geodesic between the source µ0 and target µT , and we formalize our findings as follows.

Proposition 2 (Path Length of Intermediate Domains) For arbitrary intermediate
domains µ1, . . . , µT−1, the following inequality holds,

T∆ =
T∑
t=1

Wp(µt−1, µt) ≥Wp(µ0, µT ), (25)

8The existence of an optimal transport plan is contingent on the cost being lower semi-continuous. See,
e.g., Proposition 2.1 from Villani (2021).
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where the equality is obtained if and only if the intermediate domains µ1, . . . , µT−1 sequentially
fall along the Wasserstein geodesic between µ0 and µT .

Without explicit access to the intermediate domains, gradual domain adaptation cannot
be applied. Interestingly, Proposition 2 sheds light on the task of intermediate domain
generation to bridge this gap: the generated intermediate domains should fall on or close to
the Wasserstein geodesic in order to minimize the path length.

Note that in GDA, we cannot directly measure ∆ since it requires access to the joint
distributions of the intermediate domains, whereas only unlabeled data are available to
us. In order to bridge the gap, in this paper, we make the following assumption of the
intermediate domains.

Assumption 5 (Feature Space) There exists a feature space Z such that the covariate
shift assumption holds over Z. Specifically, the conditional distribution of Y given the feature
Z is invariant across all the intermediate domains, i.e., for any two domains i and j with
i 6= j, µi(Y |Z) = µj(Y |Z).

Note that covariate shift is one of the most common assumptions in the literature of
domain adaptation (Ben-David et al., 2007; Adel et al., 2017; Arjovsky et al., 2019; Redko
et al., 2019; Zhao et al., 2019b; Rosenfeld et al., 2020; Wang et al., 2022b). It is one way
to ensure that the knowledge contained in different domains are inherently relevant such
that the success of domain adaptation is possible (Zhang et al., 2013). It has been widely
applied in various applications, including computer vision (Adel et al., 2017; Arjovsky et al.,
2019; Redko et al., 2019; Zhao et al., 2019b), natural language processing (Ash et al., 2016),
and robot control (Akiyama et al., 2010; Sugiyama, 2013). Under this assumption, the
Wasserstein distance between the joint distance Wp (µt−1(Z, Y ), µt(Z, Y )) reduces to the
one between the marginal feature distribution Wp (µt−1(Z), µt(Z)).

4.2 Computation with Optimal Transport

From Definition 7, we know that one has to solve an optimal transport problem to generate
intermediate domains along the Wasserstein geodesic. As a first step, we consider the optimal
transport between a source domain and a target domain.

Solve Optimal Transport with Linear Programming In unsupervised domain adap-
tation (UDA), the source and target domains have finite training data. Hence, we can
consider the measures of the source and target to be discrete, i.e., µ0 and µT only have
probability mass over the finite training data points. More formally, denoting the source
dataset as S0 = {x0i}mi=1 and target dataset as ST = {xTj}ni=1, the empirical measures µ0

and µT can be expressed as

µ0 =
1

m

m∑
i=1

δ(x0i) , µT =
1

n

n∑
j=1

δ(xTj), (26)

where δ(x) represents the Dirac delta distribution at x (Dirac et al., 1930). Under the
discrete case, the push-forward operator T ∗ that pushes µ0 forward to µT can be obtained
by solving a linear program (Peyré et al., 2019).
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Proposition 3 Consider µ0 over source data {x0i}mi=1 and µT over target data {xTj}ni=1.
Given a transport cost function c : X × X 7→ [0,∞), there exists a randomized optimal
transport map (induced from the optimal coupling γ∗), T ∗, which satisfies T ∗] µ0 = µT .
Furthermore, for i ∈ [m], T ∗ maps x0i as follows,

T ∗] δ(x0i) =

n∑
j=1

γ∗ijδ(xTj), (27)

where γ∗ ∈ Rm×n≥0 is the optimal transport plan, a non-negative matrix of dimension m× n.
The plan γ∗ can be obtained by solving the following linear program,

γ∗ = arg min
γ∈Rm×n≥0

∑
i,j

γi,jc(x0i, xTj) (28)

s.t. γ1n =
1

m
1m and γT1m =

1

n
1n

Generating Intermediate Domains with Optimal Transport Proposition 3 demon-
strates that one can use linear programming (LP) to solve the optimal transport problem
between a source dataset and a target dataset. With the optimal transport plan γ∗, one
can leverage Definition 7 to generate intermediate domains along the Wasserstein geodesic.
Specifically, for t = 1, . . . , T − 1, the measure of the intermediate domain t can be obtained
by the following push-forward

µt=

(
T−t
T

Id +
t

T
T ∗
)
]

µ0=
1

m

∑
i,j

γ∗ijδ

(
T−t
T

x0i+
t

T
xTj

)
(29)

Intuitively, µt can be interpreted as a discrete measure over nγ∗ data points with data
weights assigned by γ∗ij , where nγ∗ :=

∑
i,j 1[γij > 0] is the number non-zero entries in the

matrix γ∗.

Space Complexity Clearly, one needs to store the optimal transport plan matrix γ∗ ∈
Rm×n≥0 , in order to generate intermediate domains with (29). Thus, the space complexity
appears to be O(mn). However, by leveraging the theory of linear programming, one can
show that the maximum number of non-zero elements of the solution γ∗ to the LP (28) is at
most m+n− 1 (Peyré et al., 2019). Thus, the space complexity can be reduced to O(m+n)
when using a sparse matrix format to store γ∗.

Time Complexity For simplicity, let us consider m = n. Then, the time complexity of
solving the LP (28) is known to be O(n3 log(n)) (Cuturi, 2013; Pele and Werman, 2009).

4.3 Proposed Algorithm

We present our proposed algorithm in Algorithm 1. Notice that Algorithm 1 directly
generates intermediate domains between the source and target domains. However, in practice,
there might be a few given intermediate domains that can be used by GDA. In this case, one
can simply treat each pair of consecutive domains as a source-target domain pair, and apply
Algorithm 1 iteratively to the pairs of consecutive given domains from the source to target.

Next, we explain the key designs of the proposed algorithm.
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Algorithm 1 Generative Gradual Domain Adaptation with Optimal Transport (GOAT)

Require: SX0 = {x0i}mi=1, SXT = {xT i}ni=1; Encoder E ; Source-trained classifier h0

Encode: SZ0 ={z0i=E(x0i)}mi=1, S
Z
T ={zTj=E(xTj)}nj=1

Optimal Transport (OT): Solve for the OT plan γ∗ ∈ Rm×n≥0 between SZ0 and SZT
Cutoff: Use a cutoff threshold to keep O(n+m) elements of γ∗ above the threshold and
zero out the rest //Only applies to the entropy-regularized version of OT

Intermediate Domain Generation:
for t = 1, . . . , T do

Initialize an empty set SZt
for each non-zero element γ∗ij of γ∗ do

z ← T−t
T z0i + t

T zTj
Add (z, γ∗ij) to St

end for
end for
Gradual Domain Adaptation:
for t = 1, . . . , T do
ht=ST(ht−1, St) //Can also apply sample weights to losses based on γ∗ij

end for
output Target-adapted classifier hT

4.3.1 Fast Computation of Optimal Transport (OT)

The super-cubic time complexity of solving the LP in (28) essentially prevents this optimal
transport approach from being scaled up to large datasets. To remedy this issue, we propose
to solve an approximate objective of the OT problem (28) when it takes too long to solve the
original OT exactly. Specifically, we add an entropic regularization term to the objective (28),
turning it to be strictly convex, and the time complexity of solving this regularized objective
is reduced to nearly O(n2) from the original O(n3 log n) (Cuturi, 2013; Dvurechensky et al.,
2018). However, the solution to this regularized objective, i.e., the OT plan γ∗, is not
guaranteed to have at most n + m − 1 elements anymore. Thus, the space complexity
increases to O(mn) from O(m+n). In light of this challenge, we design a cutoff trick to zero
out entries of tiny magnitude in γ∗ (see details in Algo. 1), reducing the space complexity
back to O(m+ n). More details regarding this part are provided in Appendix C.

Note that beyond the Sinkhorn algorithm, several alternative approaches enhance the
efficiency of OT computation. For instance, the Greenkhorn algorithm (Altschuler et al., 2017)
improves the performance of the Sinkhorn algorithm, with a complexity of Õ(n2/ε2), where
ε is the desired accuracy. Additionally, Low-rank Optimal Transport (LOT) (Forrow et al.,
2019; Scetbon et al., 2021, 2022) approaches the problem by reducing the size of measures
before solving OT. This method specifically seeks couplings of low rank, which significantly
reduces computational demands. Another approach, sliced-Wasserstein distance (Bonneel
et al., 2015; Kolouri et al., 2019), involves computing linear projection of high-dimensional
distributions to one-dimensional distributions, then averaging the resulting Wasserstein
distances, which can be computed using closed-form formulas. Given the varied applicability
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(a) Input-space generation. (b) Feature-space generation.

Figure 4: Samples from generated intermediate domains.
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Figure 5: Illustration of the intermediate domain generation in GOAT. (a) without any given
intermediate domain, (b) with one given intermediate domain.

and use cases of these methods, we recommend that practitioners select the OT algorithm
that best suits their specific needs.

4.3.2 Intermediate Domain Generation in Feature Space

The intermediate domain generation approach described above directly generates data in
the input space X . However, the generation does not have to be restricted to the input
space. One can show that with a Lipschitz continuous encoder E : X 7→ Z mapping inputs
to the feature space Z (i.e., z ← E(x) for any input x), the order of the generation bound
(19) stays the same9 (the proof is in Appendix B).

Feature Space vs. Input Space We use an encoder by default in Algorithm 1, since
we empirically observe that directly generating intermediate domains in the input space
is usually sub-optimal (see Figure 6a for a detailed analysis). To give the readers an
intuitive understanding, we provide a demo of Rotated MNIST in Figure 4: if we apply the

9Some terms in the bound get multiplied by a factor of the Lipschitz constant of E .
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intermediate domain generation of Algorithm 1 in the input space, the generated data do
not approximate the digit rotation well; when applying the algorithm in the latent space of
a VAE (fitted to the source and target data), the generated data (obtained by the decoder
of the VAE) captures the digit rotation accurately.

Figure 5a explains this superiority of the feature space over the input space with a
schematic diagram: the input-space Wasserstein geodesic can not well approximate the
ground-truth distribution shift (e.g., rotation) due to the linearity of push-forward operators
under the Euclidean metric; with a proper encoder E , the feature-space Wasserstein geodesic
can capture the distribution shift more accurately.

Leveraging the Given Intermediate Domain(s) With a given intermediate domain,
we generate intermediate domains with GOAT between the two pairs of consecutive domains,
respectively. Figure 5b shows that this approach can make the generated domains closer
to the ground-truth path of distribution shift, explaining why GOAT benefits from given
intermediate domains.

Gradual Domain Adaptation (GDA) on Generated Intermediate Domains With
the generated data of intermediate domains, one can run the GDA algorithm consecutively
over the source-intermediate-target domains in the feature space. As for the choice of GDA
algorithm, we adopt Gradual Self-Training (GST) (Kumar et al., 2020), mainly due to
its simplicity. Nevertheless, one can freely apply any other GDA algorithm on top of the
generated domains.

5. Experiments

Our goal of the experiment is to demonstrate the performance gain of training on generated
intermediate domains in addition to given domains. We compare our method with gradual
self-training (Kumar et al., 2020), which only self-trains a model along the sequence of given
domains iteratively. In Sec. 5.4, we further analyze the choices of encoder E and transport
plan γ∗ used by Algorithm 1. More details of our experiments are provided in Appendix D.

5.1 Datasets

Rotated MNIST A semi-synthetic dataset built on the MNIST dataset (LeCun and
Cortes, 1998), with 50K images as the source domain and the same 50K images rotated by
45 degrees as the target domain. Intermediate domains are evenly distributed between the
source and target.

Color-Shift MNIST We normalize the pixel values of MNIST to be in [0, 1]. We use
50K images as the source domain and the same 50K images with pixel values shifted by 1
as the target domain, i.e., the target pixel values are shifted to be in [1, 2]. Intermediate
domains are also evenly distributed.

Portraits (Ginosar et al., 2015) A real-world gender classification image dataset con-
sisting of portraits of high school seniors from 1905 to 2013. Following Kumar et al. (2020),
the dataset is sorted chronologically and split into a source domain (first 2000 images), 7
intermediate domains (next 14000 images), and a target domain (last 2000 images).
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Cover Type (Blackard and Dean, 1999) A tabular dataset aiming at predicting the
forest cover type at certain locations given 54 features. Following Kumar et al. (2020), we
sort the data by the distance to water body in ascending order, splitting the data into a
source domain (first 50K data), 10 intermediate domains (each with 40K data) and a target
domain (final 50K data).

5.2 Implementation

Our code is built in PyTorch (Paszke et al., 2019), and our experiments are run on NVIDIA
RTX A6000 GPUs. For Rotated MNIST, Color-Shift MNIST and Portraits, we use a
convolutional neural network (CNN) of 4 convolutional layers of 32 channels followed by 3
fully-connected layers of 1024 hidden neurons, with ReLU activation. For Cover Type, we
use a multi-layer perceptron (MLP) of 3 hidden layers with 256 hidden neurons. We also
adopt common practices of Adam optimizer (Kingma and Ba, 2015), Dropout (Srivastava
et al., 2014), and BatchNorm (Ioffe and Szegedy, 2015). To calculate the optimal transport
plan between the source and target, we use the Earth Mover Distance solver from (Flamary
et al., 2021). The number of generated intermediate domains is a hyperparameter, and we
show the performance for 1,2,3 or 4 generated domains between each pair of consecutive
given domains. Following practices (Kumar et al., 2020), in self-training, we filter out the
10% data where the model’s prediction is least confident at.

When implementing of GOAT (Algorithm 1), we take the first two conv layers as the
encoder E , and treat the layers after them as the classifier h. Sec. 5.4 explains this choice.

Notes on number of generated domain Although Eq. (23) shows the relationship
between the optimal number of domains and source-target distance, it is still unclear what
exact number should be chosen. To solve the problem, one can use a heuristic hyperparameter
tuning approach. Specifically, a subset of the target set with highly confident pseudo-labels
can be used as a validation set. Then, with all other components of the algorithm fixed, one
can evaluate the performance using different numbers of domains on the target validation
set and select the (empirically) optimal number of intermediate domains. However, as
subsequent sections will demonstrate, the hyperparameter tuning stage is generally not
necessary for the success of GOAT. Instead, our findings indicate that GOAT’s performance
is robust across varying numbers of domains.

5.3 Empirical Results

Comparison with UDA methods We first empirically validate our claim that the
traditional one-off UDA methods do not work well on datasets with large distribution shifts.
Here, we compare GDA methods with three popular UDA methods: DANN (Ganin et al.,
2016), DeepCoral (Sun and Saenko, 2016) and DeepJDOT (Damodaran et al., 2018). These
UDA methods do not have mechanisms to incorporate additional unlabeled data during
training, so we use the source and target data as in the conventional UDA framework. In
contrast, GDA methods such as GST and our GOAT have the capability to incorporate
intermediate domains with unlabeled data. For illustration, we use two given intermediate
domains for both GDA algorithms. It is important to note that under this setting, the
amount of labeled data used in UDA and GDA is identical. We report the comparison in
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Table 2: GDA methods outperform one-off UDA methods on datasets with large distribution shifts.

Rotated MNIST Color-Shift MNIST Portraits Cover Type

DANN (Ganin et al., 2016) 44.6±2.3 56.5±3.2 73.8±1.5 63.3±1.6
DeepCoral (Sun and Saenko, 2016) 49.6±1.8 63.5±2.1 71.9±1.3 66.8±1.5

DeepJDOT (Damodaran et al., 2018) 51.6±2.1 65.8±2.7 72.5±1.3 67.0±1.2

GST (2 given domains) 61.6±2.1 67.6±4.8 77.0±1.3 66.9±1.4
GOAT (2 given domains) 70.3± 2.4 90.3±1.4 79.9±1.2 69.8±1.4

Table 3: Accuracy (%) on Rotated MNIST.

# Given # Generated Domains of GOAT

Domains 0 (GST) 1 2 3 4

0 50.3±0.7 48.5±2.2 47.2±1.7 48.2±2.7 47.5±2.8
1 56.3±1.9 55.2±2.6 54.6±1.6 57.1±2.2 56.2±1.9
2 61.6±2.1 68.0±1.4 67.0±2.2 68.1±2.2 70.3±2.4
3 66.3±2.0 74.0±1.1 74.4±1.8 73.2±2.0 74.0±2.3
4 75.5±2.0 83.8±2.0 84.0±1.6 86.4±2.0 82.7±1.8

Table 4: Accuracy (%) on Color-Shift MNIST.

# Given # Generated Domains of GOAT

Domains 0 (GST) 1 2 3 4

0 40.5±5.5 54.4±6.9 63.2±4.1 75.7±3.8 79.1±3.0
1 54.2±5.9 74.7±5.3 79.5±2.9 79.3±3.4 85.3±3.8
2 67.6±4.8 78.3±3.4 84.8±2.5 89.0±1.5 90.3±1.4
3 73.9±7.6 80.9±6.9 87.4±4.2 90.7±2.3 90.4±1.5
4 77.4±7.2 84.4±4.6 91.8±1.8 91.0±1.8 91.3±1.2

Table 5: Accuracy (%) on Portraits.

# Given # Generated Domains of GOAT

Domains 0 (GST) 1 2 3 4

0 73.3±1.3 74.0±1.3 73.5±2.2 73.6±2.5 74.2±2.5
1 74.5±1.6 76.4±1.3 75.5±2.6 76.8±1.5 74.7±1.7
2 77.0±1.3 77.4±2.1 79.4±2.4 79.9±1.2 77.2±0.9
3 80.7±2.3 80.9±1.6 81.8±1.3 82.3±1.3 81.3±1.5
4 82.0±1.4 82.8±1.5 83.6±1.5 82.4±1.4 81.8±1.6

Table 6: Accuracy (%) on Cover Type.

# Given # Generated Domains of GOAT

Domains 0 (GST) 1 2 3 4

0 63.0±2.3 64.2±2.2 65.0±2.4 66.2±2.1 66.5±2.0
1 65.9±2.1 68.5±2.0 68.4±1.5 69.1±1.5 69.1±1.5
2 66.9±1.4 68.9±1.6 68.4±2.1 69.3±1.1 69.8±1.4
3 66.9±1.3 68.3±1.4 69.9±1.8 68.0±1.5 68.8±1.1
4 67.7±1.7 69.6±2.1 68.1±2.0 69.7±1.2 69.4±2.0

Table 2. The results demonstrate the advantage of the GDA methods over traditional UDA
approaches, as GDA methods consistently outperform UDA methods with various types of
distribution shifts. GOAT further improves the performance on top of GST, with a detailed
discussion in subsequent paragraphs.

Comparison with Gradual Self-Training We empirically compare our proposed
GOAT with Gradual Self-Training (GST) (Kumar et al., 2020). The results on Rotated
MNIST, Color-Shift MNIST, Portraits and Cover Type are shown in Tables 3 to 6. Each
experiment is run 5 times with 95% confidence interval reported. The leftmost column
corresponds to the performance of GST only on given intermediate domains, which is
equivalent to GOAT without any generated intermediate domain.

In Tables 3 to 6, the rows (“# Given Domains”) indicate the number of given intermediate
domains. The columns (“# Generated domains of GOAT”) represent the number of generated
intermediate domains between each pair of consecutive given domains (e.g., between the
source domain and the first ground-truth intermediate domain, or between the i-th and
(i+ 1)-th ground-truth intermediate domains). For instance, in the case of “# given domains
= 3” and “# generated domains = 3”, we have 5 ground-truth domains (source, target and 3
intermediate domains) and 4× 3 = 12 generated domains (since there are 4 pairs of adjacent
domains along the sequence of 5 ground-truth domains), leading to 17 domains in total.
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Table 7: Comparison with CoVi (Na et al., 2022) on vision datasets.

# Given Rotated MNIST Color-Shift MNIST Portraits
Domains GST CoVi GOAT GST CoVi GOAT GST CoVi GOAT

0 50.3±0.7 48.4±2.1 48.5±2.2 40.5±5.5 40.0±5.2 79.1±3.0 73.3±1.3 73.7±3.5 74.2±2.5
1 56.3±1.9 57.2±1.8 57.1±2.2 54.2±5.9 59.4±5.7 85.3±3.8 74.5±1.6 75.3±1.8 76.8±1.5
2 61.6±2.1 64.2±3.4 70.3±2.4 67.6±4.8 77.6±7.6 90.3±1.4 77.0±1.3 79.8±3.0 79.9±1.2
3 66.3±2.0 71.4±1.9 74.4±1.8 73.9±7.6 86.4±4.7 90.4±1.5 80.7±2.3 82.3±1.4 82.3±1.3
4 75.5±2.0 80.7±3.4 86.4±2.0 77.4±7.2 90.9±4.0 91.3±1.2 82.0±1.4 83.1±1.9 83.6±1.5

Results: i) From the columns of Tables 3 to 6, we can observe that the performance
of GOAT monotonically increases with more given intermediate domains, indicating that
GOAT indeed benefits from given intermediate domains. ii) From the rows of Tables 3
to 6, we can see that with a fixed number of given domains, our GOAT can consistently
outperform Gradual Self-Training (GST). The only exception is the case of Rotated MNIST
without any given intermediate domain, which might be due to the challenge illustrated in
Fig. 5(a). Overall, the empirical results shown in these tables demonstrate that our GOAT
can consistently improve gradual self-training (GST) with generated intermediate domains
when only a few given intermediate domains are available.

Comparison on Intermediate Domain Generation In unsupervised domain adap-
tation (UDA), various algorithms have been developed to generate intermediate domains
to facilitate adaptation, such as Gong et al. (2019); Na et al. (2021, 2022). Among these,
CoVi (Na et al., 2022) stands out for its exceptional (state-of-the-art) performance on UDA
benchmarks. CoVi utilizes MixUp (Zhang et al., 2018) to generate synthetic data that
are used to adapt models, and it also employs techniques of contrastive learning, entropy
maximization and label consensus. In the GDA setting, it is applied in a similar manner
as GST, where the adaptation is done sequentially on two adjacent domains, from the
source to the target. To ensure a fair comparison, we fix the network structure and training
recipe of CoVi to match the implementation of our GOAT, and present the results with
95% confidence intervals over 5 random seeds. Since CoVi is a vision-specific model, we
conduct the comparison on the three vision datasets: Rotated MNIST, Color-Shift MNIST
and Portraits. The results are reported in Table 7. Our proposed algorithm, GOAT,
demonstrates comparable or superior performance to CoVi across all numbers of given
domains (0,1,2,3,4). This indicates that our algorithm is indeed powerful at i) generating
high-quality intermediate domains useful for gradual domain adaptation and ii) utilizing
given (ground-truth) intermediate domains.

5.4 Ablation Studies

Choice of Encoder (E) Here, we study how the choice of the encoder (i.e., feature space)
affects the performance of GOAT. Since we use a CNN, we can take each network layer as
the feature space. Specifically, we consider the four convolutional layers and input space
as candidate choices for the encoder. Once choosing a layer, we take all layers before it
(including itself) as the encoder. In this ablation study, we use Rotated MNIST dataset
with 2 given intermediate domains, and let GOAT generate 4 intermediate domains between
consecutive given domains. From Fig. 6a, we can observe that directly applying GOAT
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Figure 6: Ablation studies on Rotated MNIST with 2 given intermediate domains. (a) Different
neural net layers as encoders for the intermediate domain generation of GOAT. One can see that
input space is not suitable for intermediate domain generation, and the second convolutional layer
(Conv-2) is optimal. (b) Different transport plans for the intermediate domain generation of GOAT.
Obviously, our optimal transport (OT) plan significantly outperforms the baseline transport plans
(Random & Uniform), and its performance is even close to the oracle.

in the input space performs significantly worse than the optimal choice, Conv-2 (i.e., the
second convolutional layer). This result justifies our use of an encoder for intermediate
domain generation (instead of directly generating in the input space). Notably, Fig. 6a shows
that deeper layers are not always better, showing a clear increase-then-decrease accuracy
curve. Hence, we keep using Conv-2 as the encoder for GOAT in all experiments.

Choice of Transport Plan (γ∗) In our Algorithm 1, the data generated along the
Wasserstein geodesic are essentially linear combinations of data from the pair of given
domains, with weights (for each combination) assigned by the optimal transport (OT) plan
γ∗. To validate that the performance gain of GOAT indeed comes from the Wasserstein
geodesic estimation instead of just linear combinations, we conduct an ablation study on
GOAT in Rotated MNIST with 2 given intermediate domains. Specifically, we consider
four approaches to provide the transport plan γ∗: i) a random transport plan (weights are
sampled from a uniform distribution), ii) a uniform transport plan (weights are the same
for all combinations), iii) the optimal transport (OT) plan provided by Algorithm 1, iv)
the oracle transport plan10, which is the ground-truth transport plan in this study. For a
fair comparison, when constructing the random and uniform plans, we ensure the number
of non-zero elements is the same as that of the oracle plan (i.e., keeping the number of
generated data the same). See more details in Appendix D.

From Fig 6b, we observe that, in general, the random and uniform plans do not obtain
non-trivial performance gain compared with the baseline, the vanilla Gradual Self-Training
(GST) without any generated domain. In contrast, our OT plan is significantly better and
achieves similar performance as the oracle, demonstrating the high quality of the OT plan
and justifying our algorithm design with the Wasserstein geodesic.

10The target data of the Rotated MNIST dataset are obtained by rotating training data. Thus there is a
one-to-one mapping between source and target data. The oracle plan is built from the one-to-one mapping,
i.e., an element γ∗ij is non-zero if and only if x0i is rotated to xTj .
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6. Conclusion

In this work, we study gradual domain adaptation. On the theoretical side, we provide
a significantly improved analysis for the generalization error of the gradual self-training
algorithm, under a more general setting with relaxed assumptions. In particular, compared
with existing results, our bound provides an exponential improvement on the dependency
of the step size T , as well as a better sample complexity of O(1/

√
nT ), as opposed to

O(1/
√
n) as in the existing work. Based on the theoretical insight, we propose a novel

algorithmic framework, Generative Gradual Domain Adaptation with Optimal Transport
(GOAT), which automatically generates intermediate domains along the Wasserstein geodesic
(between consecutive given domains) and applies GDA on the generated domains. Empirically,
we show that GOAT can significantly outperform vanilla GDA when the given intermediate
domains are scarce. Essentially, our GOAT is a promising framework that augments GDA
with generated intermediate domains, leading GDA to be applicable to more real-world
scenarios.
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Nicolas Courty. Deepjdot: Deep joint distribution optimal transport for unsupervised
domain adaptation. In Proceedings of the European conference on computer vision (ECCV),
pages 447–463, 2018.

Paul Adrien Maurice Dirac et al. The principles of quantum mechanics. Oxford university
press, 1930.

Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal
transport: Complexity by accelerated gradient descent is better than by sinkhorn’s
algorithm. In International conference on machine learning, pages 1367–1376. PMLR,
2018.
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International Conference on Machine Learning, pages 9344–9354. PMLR, 2021.
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Appendix A. Proof

A.1 Proof of Lemma 1

Lemma 1 (Error Difference over Shifted Domains) Consider two arbitrary measures
µ, ν over X × Y. Then, for arbitrary classifier h and loss function ` satisfying Assumption
2, 3, the population loss of h on µ and ν satisfies

|εµ(h)− εν(h)| ≤ ρ
√
R2 + 1 Wp(µ, ν) (10)

where Wp is the Wasserstein-p distance metric and p ≥ 1.

Proof The population error difference of h over the two domains (i.e., µ and ν is

|εµ(h)− εν(h)| =
∣∣Ex,y∼µ[`(h(x), y)]− Ex′,y′∼ν [`(h(x′), y′)]

∣∣
=

∣∣∣∣∫ `(h(x), y)dµ−
∫
`(h(x′), y′)dν

∣∣∣∣ (30)

Let γ be an arbitrary coupling of µ and ν, i.e., it is a joint distribution with marginals
as µ and ν. Then, (30) can be re-written and bounded as

|εµ(h)− εν(h)| =
∣∣∣∣∫ `(h(x), y)dµ−

∫
`(h(x′), y′)dγ

∣∣∣∣ (31)

(triangle inequality) ≤
∫ ∣∣∣∣`(h(x), y)−

∫
`(h(x′), y′)

∣∣∣∣ dγ (32)

(` is ρ-Lipschitz) ≤
∫
ρ
(
‖h(x)− h(x′)‖+ ‖y − y′‖

)
dγ (33)

(h is R-Lipschitz) ≤
∫
ρR‖x− x′‖+ ρ‖y − y′‖dγ (34)

(R > 0) ≤
∫
ρ
√
R2 + 1

(
‖x− x′‖+ ‖y − y′‖

)
dγ (35)

Since γ is an arbitrary coupling, we know that

|εµ(h)− εν(h)| ≤ inf
γ

∫
ρ
√
R2 + 1

(
‖x− x′‖+ ‖y − y′‖

)
dγ (36)

= ρ
√
R2 + 1W1(µ, ν) (37)

Since the Wasserstein distance Wp is monotonically increasing for p ≥ 1, we have the
following bound,

|εµ(h)− εν(h)| ≤ ρ
√
R2 + 1W1(µ, ν) ≤ ρ

√
R2 + 1Wp(µ, ν) (38)

A.2 Proof of Proposition 1

Proposition 1 (The stability of the ST algorithm) Consider two arbitrary measures
µ, ν, and denote S as a set of n unlabelled samples i.i.d. drawn from µ. Suppose h ∈ H is
a pseudo-labeler that provides pseudo-labels for samples in S. Define ĥ ∈ H as an ERM
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solution fitted to the pseudo-labels,

ĥ = arg min
f∈H

∑
x∈S

`(f(x), h(x)) (11)

Then, for any δ ∈ (0, 1), the following bound holds true with probability at least 1− δ,

∣∣εµ(ĥ)−εν(h)
∣∣≤ O(Wp(µ, ν)+

ρB+
√

log 1
δ√

n

)
(12)

Proof Define ε̂µ(h) := 1
|S|
∑

x∈S `(h(x), y) as the empirical loss over the dataset S, where S

consists of samples i.i.d. drawn from µ(X) and y is the ground truth label of x.

Then, we have the following sequence of inequalities:

(Use Lemma A.1 of Kumar et al. (2020)) εµ(h) ≤ ε̂µ(ĥ) +O

(
Rn(` ◦ H) +

√
log(1/δ)

n

)
(

since h(x) = ĥ(x) ∀x ∈ S
)

= ε̂µ(h) +O

(
Rn(` ◦ H) +

√
log(1/δ)

n

)

(Use Lemma A.1 of Kumar et al. (2020) again) ≤ εµ(h) +O

(
2Rn(` ◦ H) + 2

√
log(1/δ)

n

)
(By Lemma 1) ≤ εν(h) + ρ

√
R2 + 1Wp(µ, ν)

+O

(
Rn(` ◦ H) +

√
log(1/δ)

n

)
(By Talagrand’s lemma with Assumption 3,4) ≤ εν(h) + ρ

√
R2 + 1Wp(µ, ν)

+O

(
ρB√
n

+

√
log(1/δ)

n

)

≤ εν(h) +O

(
Wp(µ, ν) +

ρB√
n

+

√
log(1/δ)

n

)
For the step using Talagrand’s lemma (Talagrand, 1995), the proof of Lemma A.1 of Ku-

mar et al. (2020) also involves an identical step, thus we do not replicate the specific details
here.

A.3 Proof of Lemma 2

Lemma 2 (Discrepancy Bound) With Lemma 1, the discrepancy measure (15) can be
upper bounded as

disc(qt) ≤ ρ
√
R2 + 1

t−1∑
τ=0

qτ (t− τ − 1)∆ (16)

With qt = q∗t = (1
t , ...,

1
t ), this upper bound can be minimized as

disc(q∗t ) ≤ ρ
√
R2 + 1 t∆/2 = O(t∆) (17)
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Domain 1 Domain 2

 Target domain Source domain

Figure 7: Our reductive view of gradual self-training that is helpful to Theorem 1.

Proof Within our setup of gradual self-training,

disc(qt) = sup
h∈H

(
εt−1(h)−

t−1∑
τ=0

qτ · ετ (h)

)

= sup
h∈H

(
t−1∑
τ=0

qτ (εt−1(h)− ετ (h))

)

≤ sup
h∈H

(
t−1∑
τ=0

qτ |εt−1(h)− ετ (h)|

)

(By Lemma 1) ≤ ρ
√
R2 + 1

t−1∑
τ=0

qτ · (t− τ − 1)∆

With qt = q∗t = (1
t , ...,

1
t ), this bound becomes

disc(q∗t ) ≤ ρ
√
R2 + 1

t−1∑
τ=0

qτ · (t− τ − 1)∆ = ρ
√
R2 + 1

t

2
∆ = O(t∆)

and it is trivial to show that this upper bound is smaller than any other qt with qt 6= q∗t .

A.4 Proof of Theorem 1

Theorem 1 (Generalization Bound for Gradual Self-Training) For any δ ∈ (0, 1),
the population loss of gradually self-trained classifier hT in the target domain is upper bounded
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with probability at least 1− δ as

εT (hT ) ≤
T∑
t=0

qtεt(ht) + ‖qn(T+1)‖2
(

1+O
(√

log(1/δ)
))

+disc(qT+1)+O
(√

log TRseq
n(T+1)(` ◦ H)

)
(18)

For the class of neural nets considered in Example 2,

εT (hT ) ≤ ε0(h0) +O
(
T∆+

T√
n

+T

√
log 1/δ

n
+

1√
nT

+

√
(log nT )3L−2

nT
+

√
log 1/δ

nT

)
(19)

A Reductive View of the Learning Process of Gradual Self-Training If we directly
apply Corollary 2 of Kuznetsov and Mohri (2020), we can obtain a generalization bound as

εµT (h) ≤
T∑
t=0

qtεµt(h) + disc(qT+1) + ‖qT+1‖2 + 6M
√

4π log TRseq
T (` ◦ H)

+M‖qT+1‖2

√
8 log

1

δ

≤
T∑
t=0

qtεµt(h) +O(T∆) +O(
1√
T

) + 6M
√

4π log TRseq
T (` ◦ H) +O(

√
log 1

δ

T
) (39)

where M is an upper bound on the loss (Lemma 3 proves such a M exists), and the last
inequality is obtained by setting qT+1 = q∗T+1 = ( 1

T+1 , . . . ,
1

T+1).
A typical generalization bound involves terms with dependence on N (the training set

size), usually in the form O(
√

1
N ), and these terms vanish in the infinite-sample limit (i.e.,

N → ∞). These terms also appear in standard generalization bounds of unsupervised
domain adaptation (Ben-David et al., 2007; Zhao et al., 2019a), where N becomes the
number of available unlabelled data in the target domain.

In the case of gradual domain adaptation, the total number of available unlabelled is

Tn, and we would expect Tn will appear in a form similar to O(
√

1
nT ), which vanishes in

the infinite-sample limit (i.e., nT →∞). However, the generalization bound (1) has terms

O(
√

1
T ) and O(

√
log 1

δ
T ), which does not vanish even with infinite data per domain, i.e.,

n→∞ (certainly results in Tn→∞).
We attribute this issue to the coarse-grained nature of online learning analyses such

as Kuznetsov and Mohri (2016, 2020), which do not take data size per domain into consider-
ation.

To address this issue, we propose a novel reductive view of the entire learning process of
gradual self-training, leading to a more fined-grained generalization bound than Eq. (39).

We draw a diagram to illustrate this reductive view in Fig. 7. Specifically, instead of
viewing each domain as the smallest element, we zoom in to the sample-level and view each
sample as the smallest element of the learning process. We view the gradual self-training
algorithm as follows: it has a fixed data buffer of size n, and each newly observed sample is
pushed to the buffer; the model updates itself by self-training once the buffer is full; after
the update, the buffer is emptied. Notice that this view does not alter the learning process
of gradual self-training.
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With this reductive view, the learning process of gradual self-training consists of nT
smallest elements (i.e., each sample is a smallest element), instead of T elements (i.e., each
domain is a smallest element) in the view of online learning works (Kuznetsov and Mohri,

2016, 2020). As a result, terms of order O
(√

1
T

)
in (39) becomes O

(√
1
nT

)
, and terms of

order O
(
T
n

)
also vanish as n→∞. Notably, the upper bounds on the terms

∑T
t=0 qtεµt(h)

and disc(qT+1) in (14) do not become larger with this view, since there is no distribution
shift within each domain (e.g., the learning process over the first n samples in Fig. 7 does
not involve any distribution shift, and the iteration n− 1 7→ n incurs a distribution shifts,
since the (n − 1)-th sample is in the first domain while the n-th sample is in the second
domain).

With this reductive view, we can finally obtain a tighter generalization bound for gradual
self-training without the issues mentioned previously.

Proof With the inductive view introduced above, we can improve the naive bound (39) to

εµT (hT ) ≤
T∑
t=0

n−1∑
i=0

qnt+iεµt(hT ) + disc(qn(T+1)) + ‖qn(T+1)‖2 + 6M
√

4π log nTRseq
nT (` ◦ H)

(40)

+M‖qn(T+1)‖2

√
8 log

1

δ

≤ 1

T + 1

T∑
t=0

εµt(hT ) + ρ
√
R2 + 1

T + 1

2
∆ +

1√
nT

+ 6M
√

4π log nTRseq
nT (` ◦ H)

+M

√
8 log 1/δ

nT

≤ εµ0(h0) +O

(
T∆ + T

√
log 1/δ

n
+

1√
nT

+ ρR

√
(log nT )7

nT
+

√
log 1/δ

nT

)
where qn(T+1) is taken as qn(T+1) = q∗n(T+1) = ( 1

n(T+1)), . . . , 1
n(T+1)). We used the following

facts when deriving the inequalities above:

• The first term of (40) has the following bound

T∑
t=0

n−1∑
i=0

qnt+iεµt(hT ) =
1

T + 1

T∑
t=0

εµt(hT )

≤ εµ0(h0) +O(T∆) +O

(
1√
n

+ T

√
log 1/δ

n

)
(41)

which is obtained by recursively apply Lemma 1 and Proposition 1 to each term in the
summation. For example, the last term in

∑T
t=0 εµt(hT ) can bounded by Proposition 1
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as follows

(By Proposition 1) εT (hT ) ≤ εµT−1(hT−1) +O

(
Wp(µT , µT−1) +

1√
n

+

√
log 1/δ

n

)
(Same as the above step) ≤ . . .

≤ εµ0(h0) +O(T∆ +O

(
T

√
log 1/δ

n

)
(42)

and the second last term can be bounded similarly with the additional help of Lemma 1

(By Lemma 1) εT−1(hT ) ≤ εµT (hT ) +O(Wp(µT , µT−1))

(Apply Eq. (42)) ≤ εµ0(h0) + T∆ +O

(
T

√
log 1/δ

n

)
All the rest terms (i.e., εT−2(hT ), . . . , ε0(hT )) can be bounded in the same way.

• The second term of (40) can be bounded by applying Lemma 2.

• The value of Rseq
nT (` ◦ H) can be bounded by combining Lemma 4 and Example 2.

A.5 Helper Lemmas

Lemma 3 (Bounded Loss) For any x ∈ X , y ∈ Y, h ∈ H, the loss `(x, y) is upper bounded
by some constant M , i.e., l(h(x), y) ≤M .

Proof Notice that i) the input x is bounded in a compact space, specifically, ‖x‖2 ≤ 1
(ensured by Assumption 1), ii) y lives in a compact space in R (defined in Sec. 2.1), iii) the
hypothesis h ∈ H is R-Lipschitz, and iv) the loss function ` is ρ-Lipschitz.

Combining these conditions, one can easily find that there exists a constant M such that
l(h(x), y) for any x ∈ X , y ∈ Y, h ∈ H.

Lemma 4 (Lemma 14.8 of Rakhlin and Sridharan (2014)) For ρ-Lipschitz loss func-
tion l, the sequential Rademacher complexity of the loss class ` ◦ H is bounded as

Rseq
T (` ◦ H) ≤ O(ρ

√
(log T )3)Rseq

T (H) (43)

Proof See Rakhlin and Sridharan (2014).

A.6 Derivation of the Optimal T

In Sec. 3.4, we show a variant of the generalization bound in (21) as

εT (hT ) ≤ ε0(h0)+ inf
P
Õ
(
T∆max+

T√
n

+

√
1

nT

)
(44)
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where ∆max is an upper bound on the average Wp distance between any pair of consecutive

domains along the path, i.e., ∆max ≥ 1
T

∑T
t=1Wp(µt−1, µt).

Given that T,∆max, n are all positive, we know there exists an optimal T = T ∗ that
minimizes the function

f(T ) := T∆max+
T√
n

+

√
1

nT
, (45)

and one can straightforwardly derive that

T ∗ =

(
1

2(1 + ∆max
√
n )

) 2
3

. (46)

Proof The derivative of f(T ) is

f ′(T ) = ∆max +
1√
n
− 1

2
√
n
T−

3
2 , (47)

and the second-order derivative of f(T ) is

f ′′(T ) =
3

4
√
n
T−

5
2 . (48)

Eq. (48) indicates that f(T ) is strictly convex in T ∈ (0,∞). Then, we only need to solve
for the equation

f ′(T ) = 0 (49)

as T ∈ (0,∞), which gives our the solution

T ∗ =

(
1

2(1 + ∆max
√
n )

) 2
3

. (50)

Appendix B. Theoretical Arguments

On Proposition 2 The inequality in (25) holds true since the Wasserstein distance metric
Wp is known to enjoy the property of triangle inequality. In (25), the equality is obtained
as the intermediate domains µ1, . . . , µT−1 sequentially fall along the Wasserstein geodesic
between µ0 and µT , since the geodesic is defined as the shortest path of distributions
connecting µ0 and µT under the Wp metric.

On Proposition 3 This linear program (LP) formulation of optimal transport is also
called Kantorovich LP in the literature. One can find details and proof of Kantorovich LP
in (Peyré et al., 2019).

On the Encoder With a ρE -Lipschitz continuous encoder E : X 7→ Z mapping inputs to
the feature space Z (i.e., z ← E(x) for any input x), the order of the generation bound (1)
stays the same. The reason is as follows: The bound (1) is linear in terms of ρh

11, which is
the Liphschitz constant of the classifier h; With the encoder E , one can effectively view the
whole encoder-classifier model as f : X 7→ Y such that f(x) = h(E(x)); Then, the Liphschitz

11The dependence on ρh is hidden with the big-O notation in (1)
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constant of f is obviously ρ = ρEρh since f is a composite function of h◦E ; Finally, replacing
h with f in the analysis, one can see that the order of the bound (1) stays the same, with
some terms getting multiplied by a factor of ρE (i.e., equivalent to replacing the term ρh
with ρ = ρEρh in the bound).

Appendix C. More Details on the Proposed Algorithm

To reduce the O(n3 log n) complexity of the exact OT calculation to O(n2), we can solve the
entropy-regularized OT problem Cuturi (2013) instead. Consider source data {x0i}mi=1 and
target data {xTj}ni=1, the entropy-regularized OT plan γ∗λ under the transport cost function
c is obtained by solving

γ∗λ = arg min
γ∈Rm×n≥0

∑
i,j

γi,jc(x0i, xTj) + λ
∑
i,j

γi,j log γi,j ,

s.t. γ1n =
1

m
1m and γT1m =

1

n
1n,

(51)

where λ is a regularization coefficient. The low computational complexity comes at the
cost of a dense optimal transport plan, i.e., γ∗λ is generally a dense matrix rather than a
sparse one12. Thus, O(mn) non-zero entries will be generated in γ∗λ, and this quadratic
space complexity becomes intractable for large datasets. To remedy this issue, we design
two methods to zero out insignificant entries in γ∗λ to reduce the space complexity:

1. Small-value cutoff. Although the transport plan γ∗λ resulted from entropy-regularized
OT is dense, most entries still have values close to 0. Those entries of tiny magnitude
can be zeroed out without having a noticeable impact on the final results.

2. Confidence cutoff. Consider the one-hot encoded matrix of source labels Y0 ∈
{0, 1}m×#class and the entropy-regularized OT plan γ∗λ. The logits of target prediction
by optimal label transport is

ŶT = γ∗λ
TY0. (52)

Then, we can calculate a confidence score for each target prediction by the logits.
Using a certain confidence threshold, the target samples that the transport plan is
unconfident with can be filtered out, making the transport plan more sparse.

With proper choices of cutoff values, those methods can reduce the space complexity from
O(mn) to O(m+ n) without noticeable compromise on the final performance.

C.1 Number of Intermediate Domains

The number of intermediate domains can be considered as a hyperparameter. The theory
shows that there exists an optimal number T ∗ in terms of self-training performance in the
GDA setting:

T ∗ = max

{
L

∆
, Õ

((
1

1 + ∆
√
n

)2/3
)}

, (53)

12As we discussed in Sec. 4.2, γ∗ has at most n+m− 1 non-zero entries, thus it is a sparse matrix.
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where L is the Wp distance between the source and target and ∆ is the average Wp distance
between any pair of consecutive domains.

Although Eq. (53) shows the relationship between the optimal number of domains and
source-target distance, it is still unclear what exact number should be chosen. To solve
the problem, we use a heuristic hyperparameter tuning approach. Specifically, we use a
subset of the target set with highly confident pseudo-labels as a validation set. Then, with
all other components of the algorithm fixed, we evaluate the performance using different
numbers of domains on the target validation set and select the (empirically) optimal number
of intermediate domains.

Appendix D. More Details on Experiments

Network Implementation. For the 4-layer CNN encoder used in experiments on Rotated
MNIST and Portraits, we use convolutional layers with kernel size 3 and SAME padding.
During self-training, we train on each domain for 10 epochs. Empirically, we verify that
regularization techniques are important for the success of gradual self-training, including
using dropout layers and early stopping.

For the VAE used to produce Fig. 4, we use 4 convolutional layers with kernel size 3 and
max-pooling, followed by a fully-connected layer with 128 neurons as the encoder. For the
decoder, we use four deconvolutional layers with kernel size 3 (Kingma and Welling, 2014).
We use ReLU activation for the layers. The encoder and decoder are jointly trained on data
from source and target in an unsupervised manner with the Adam optimizer (Kingma and
Ba, 2015) (learning rate as 10−4 and batch size as 512).

Encoder Pretraining. We pretrain an encoder on the given domains. During pretraining,
we use a 3-layer MLP on top of the encoder and perform self-training on the given domains.
Specifically, we first fit the model on the source domain, then iteratively use the model to
pseudo-label the next domain and self-train on it. After pretraining, the MLP is discarded
and the encoder is fixed to provide features for the downstream tasks.

OT ablation. When designing different plans, we make sure that the number of non-zero
entries is equal so that in the domains generated by those plans, the amount of data is the
same. For the random plan, we first initialize a zero matrix, then sample the same amount
of entries as the ground-truth plan in the matrix, and fill in a weight value between 0 to 1
uniformly at random. For the uniform plan, we use the same procedure except that we fill
in the same weight for each sampled entry. In the end, we normalize the matrix.
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