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Abstract

Student learners typically engage in an iterative process of actively updating its hypotheses,
like active learning. While this behavior can be advantageous, there is an inherent risk of
introducing mistakes through incremental updates including weak initialization, inaccurate
or insignificant history states, resulting in expensive convergence cost. In this work, rather
than solely monitoring the update of the learner’s status, we propose monitoring the
disagreement w.r.t. FT (·) between the learner and teacher, and call this new paradigm
“Mentored Learning”, which consists of ‘how to teach’ and ‘how to learn’. By actively
incorporating feedback that deviates from the learner’s current hypotheses, convergence
will be much easier to analyze without strict assumptions on learner’s historical status,
then deriving tighter generalization bounds on error and label complexity. Formally, we
introduce an approximately optimal teaching hypothesis, hT , incorporating a tighter slack
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term
(

1 + FT (ĥt)
)

∆t to replace the typical 2∆t used in hypothesis pruning. Theoretically,

we demonstrate that, guided by this teaching hypothesis, the learner can converge to tighter
generalization bounds on error and label complexity compared to non-educated learners who
lack guidance from a teacher: 1) the generalization error upper bound can be reduced from
R(h∗) + 4∆T−1 to approximately R(hT ) + 2∆T−1, and 2) the label complexity upper bound

can be decreased from 4θ
(
TR(h∗) + 2O(

√
T )
)

to approximately 2θ
(

2TR(hT ) + 3O(
√
T )
)

.

To adhere strictly to our assumption, self-improvement of teaching is proposed when hT

loosely approximates h∗. In the context of learning, we further consider two teaching
scenarios: instructing a white-box and black-box learner. Experiments validate this teaching
concept and demonstrate superior generalization performance compared to fundamental
active learning strategies, such as IWAL (Beygelzimer et al., 2009), IWAL-D (Cortes et al.,
2019b), etc.

Keywords: Machine Teaching, Hypothesis Pruning, Active Learning, Error Disagreement,
Convergence, Generalization Error, Label Complexity.

1. Introduction

The teaching model’s exceptional generalization ability (Goldman and Kearns, 1995) is
widely acknowledged within the realm of large language models, exemplified by systems
like Chat-GPT (Chen et al., 2024), and artificial intelligence agents such as Tesla’s Full
Self-Driving Computer (Talpes et al., 2020). In these advanced contexts, the pre-trained
model assumes the role of a teacher, actively engaging with a student learner (also referred to
as the learner) model to facilitate its improvement. The underlying assumption posits that
learners who employ self-paced learning no longer surpass those who benefit from teaching
demonstrations in terms of learning ability. This transformative shift has reverberated
throughout traditional learning communities, yielding significant ramifications in diverse
domains like natural language processing (Norouzi et al., 2020), embodied intelligence (Gupta
et al., 2021), and autonomous driving (Bhattacharyya et al., 2023).

The machine learning community has gradually recognized the significant benefits and
performance enhancements offered by large interactive models. Consequently, various
iterations of a novel paradigm have emerged, wherein these large models assume the role of
teachers, guiding and supervising the progress of learners. This development has compelled
theoretical researchers in the learning community to tackle the generalization challenges
associated with teachers. In fact, the theoretical learning community has long acknowledged
the importance of teaching and its role in the learning process, and the concept of teaching
was introduced early on and subsequently formalized as machine teaching (Simard et al.,
2017; Zhu, 2015). Meanwhile, this concept has also garnered attention and exploration
within the theoretical learning community, especially about hypothesis pruning.

We begin by first reviewing a theoretical description of learning. In learning theory,
hypothesis-pruning (Kääriäinen et al., 2004) interactively trims a pre-specified hypoth-
esis class (space) H to find a desired output, aiming to enhance the convergence of any
learning algorithm using as few labels as possible, such as active learning (Settles, 2009).
In this typical scenario, the learner has access to a pool of unlabeled data and can request
labels from human annotators for these unlabeled instances. Typically, the hypotheses are
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generated based on a functional assumption, such as MLP, CNN, etc. If the hypotheses
don’t rely on any specific functional assumption, it becomes an agnostic scenario (Balcan
et al., 2009), exploring the theoretical performance of achieving a parameterized error by
controlling the label complexity bound (Hanneke, 2007a). On the theoretical front, a range
of hypothesis update methods and analyses of label complexity bounds have been presented,
for example, (Hanneke, 2012) and (Beygelzimer et al., 2009). In practical applications,
active learning has already demonstrated benefits in image annotation (Beluch et al., 2018),
semantic segmentation (Siddiqui et al., 2020), and more. A common assumption in active
learning, whether in theoretical explorations or practical applications, is that an infinite
hypothesis class exists, containing the optimal hypothesis that can be iteratively updated
from a random initialization. With this assumption, Hanneke et al. introduced an error
disagreement coefficient (Hanneke et al., 2014) to regulate the hypothesis updates. The
policy dictates that any disagreement arising from the candidate hypothesis exceeding the
predefined coefficient is considered feasible and results in positive updates (Cao and Tsang,
2021a). Otherwise, it is deemed an insignificant update. To minimize the label complexity
of updating costs, Zhang et al. introduced a tighter bound using a new term called confi-
dence rate (Zhang and Chaudhuri, 2014); Golovin et al. (Golovin et al., 2010) proposed a
near-optimal Bayesian policy; Yan et al. (Yan and Zhang, 2017) presented near-optimal
label complexity bounds for both bounded and adversarial noise conditions, etc.

Question: Learners typically engage in an iterative process of actively updating its hypotheses.
While this behavior can be advantageous, there is an inherent risk of introducing mistakes
through incremental updates including weak initialization, inaccurate or insignificant history
states, resulting in expensive convergence cost. In short, the existing theoretical results
may not robustly guarantee the convergence of these incremental updates in the hypothesis
class. In essence, obtaining the optimal hypothesis h∗ from these updates may not be easily
achievable without explicit guidance and information from h∗. Therefore, can teaching
relieve the issues of learning?

For teaching, it refers to a framework and methodology that focuses on the design and
optimization of instructional strategies to facilitate effective learning in machine learning
systems. Remarkably, the emphasis is placed on the perspective of the teacher, who aims to
impart knowledge and guide the learning process of the learner model. Technically, it involves
various techniques such as curriculum design, active learning, and example selection, among
others. A general goal is to provide the learner model with informative and well-structured
training data that leads to improved performance and generalization. By leveraging teaching,
researchers and practitioners aim to enhance the efficiency, robustness, and interpretability of
machine learning. This approach acknowledges the crucial role of the teacher in shaping the
learning process and optimizing the learning outcomes. Theoretical analysis about teaching
complexity, teaching dimension, and teaching convergence have been well investigated, such
as (Doliwa et al., 2014; Liu et al., 2017). Recently, we (Zhang et al., 2023a,b) delved into
iterative teaching in nonparametric settings, where the target models are defined as functions
without dependencies on learners’ parameters. In contrast to typical parametric optimization,
which mainly operates for pruning parameter space, we explore functional optimization in
the function space, invoking iterative target approximation. To further extend this idea to
multiple learners, each learner is required to focus on learning a scalar-valued target model
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Figure 1: Hypothesis pruning of Learning vs. Teaching. Learning focuses on ‘how to learn’,
and teaching focuses on ‘how to teach’. With teaching, the general learning shifts
into “Mentored Learning”, which consists of the dual questions.

that can be decomposed in a reproducing kernel Hilbert space. In this setting, teaching with
implicit information shows potential. (These two works are accepted in ICML and NeurIPS
2023)

Teaching vs. Learning. Machine teaching is a framework that underscores the pivotal role
of the instructor in steering the learning process. This approach involves the meticulous
design of instructional strategies and the careful selection of informative training data,
aimed at enhancing the learning outcomes of machine learning models. Unlike machine
learning, which predominantly focuses on the development of algorithms and models that
can autonomously learn from data, machine teaching is concerned with the systematic
methodologies for effectively training these models. By optimizing the learning process,
improving generalization, and enhancing overall performance, machine teaching seeks to
significantly elevate the efficacy of machine learning systems. Theoretically, teaching can be
seen as a more advanced form of “Mentored Learning.” While both teaching and learning
involve guidance from a knowledgeable source, teaching goes beyond simply providing
guidance and encompasses the intentional design of instructional strategies to optimize the
learning process. Refer to Figure 6. In pursuit of the shared objective of facilitating learner
improvement, teaching refines the hypothesis through the feedback received from the learner,
distinguishing itself from the historical practice of hypothesis pruning in learning. The
disparity lies in the contrast between ‘how to learn’ and ‘how to teach’. With teaching, the
general learning shifts into “Mentored Learning” which consists of the dual questions.

Motivation Motivated by the teaching advantages, this paper relaxes the traditional
assumptions regarding the learning target and introduces an approximately optimal teacher
as a target (Dasgupta et al., 2019; Liu et al., 2018). In such a setting, this teacher provides
guidance to the learner without disclosing any internal cues, such as parameter distributions
or convergence conditions. Theoretically, this model envisions a teacher that offers direction
while maintaining opacity concerning its internal mechanisms. Unlike conventional teaching
models where the learner might access the teacher’s internal workings, the approximately
optimal teacher remains a black box, withholding specific details about its parameters
and expected convergence conditions. Consequently, the learner must rely exclusively on
the guidance provided, devoid of insights into the underlying decision-making processes
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of the teacher. This methodology aims to create a more realistic and challenging learning
environment, compelling the learner to adapt and improve based solely on external feedback.
Such an approach is anticipated to foster a more robust and adaptable learning framework.

In this paper, we call this new learning paradigm by teaching “Mentored Learning”. In
this way, the teacher provides an approximately optimal hypothesis hT , maintaining a fair
teaching scenario compared to non-educated learners who do not receive any guidance from a
teacher. With hT , an active learner can easily replace the infeasible h∗ and select unlabeled
data that maximize the disagreement of the feedback between the teacher and the learner,
rather than maximizing the disagreement between the current and subsequent hypotheses
as in typical pruning of hypothesis. Our contributions are summarized as follows.

• We propose a new perspective of introducing machine teaching to guide an active
learner, which guarantees a desired convergence to an approximated teaching hypothesis,
not the typical infeasible optimal hypothesis. We call this new paradigm “Mentored
Learning”, which consists of ‘how to teach’ and ‘how to learn’.

• We theoretically prove that, under the guidance of the teaching hypothesis, the learner
can converge into tighter generalization error and label complexity bounds than those
non-educated learners without teacher guidance. This involves “how to teach”. To
further improve its generalization, we then consider two scenarios: teaching a white-box
and black-box learner, where the self-improvement of teaching is firstly proposed to
improve the initial teaching hypothesis. This involves “how to learn”.

• We present an Approximately Optimal Teaching-based Mentored Learning (ATML)
algorithm, which spends fewer annotations to converge, yielding more effective perfor-
mance than those typical active learning strategies.

Organization. Section 3 presents the related work. Section 4 elaborates the error
disagreement-based active learning. Section 5 explains our approximately optimal teaching
idea. Section 6 improves teaching when the instructor has only a rough approximation of the
optimal hypothesis. Section 7 employs this idea to guide an active learner. Experiments are
presented in Section 8. We conclude this work in Section 9. See the main structure below.

• Section 4 presents “what are fundamental concepts” of learning.

• Section 5 introduces “how to teach” in Mentored Learning.

• Section 6 studies “how to teach better” in Mentored Learning.

• Section 7 introduces “how to learn” in Mentored Learning.

Notation We introduce the set of notations used throughout the paper. We denote by X
the input space and by Y the output space. Let D be an data distribution over X × Y,
and DX be the marginal distribution of D over X . We consider the on-line active learning
scenario: for each time t ∈ [T ] = {1, ..., T}, the learner receives an input sample xt drawn
i.i.d. according to DX and has to decide whether to query its label.

We denote by H = {h : X → Z} the hypothesis space, where Z is a prediction space. Let
`(h(x), y) denotes the loss function which operates Z × Y → [0, 1]. For any hypothesis
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h, we denote R(h) to be the generalization error: R(h) = E
(x,y)∼D

[`(h(x), y)], and denote

h∗ = argmin
h∈H

R(h) to be the optimal hypothesis in H. We also denote by Lt(h) the

importance-weighted empirical error of h, defined by the weighted loss of query samples
w.r.t. Eq. (3). Let Ht denote the candidate hypothesis set of the learner at t-time, where
H1 = H.

We use hT to denote the teaching hypothesis w.r.t. Assumption 1, which replaces the
infeasible h∗ to guide the active learner. Then, we use HT to denote the teaching-hypothesis-
class w.r.t. Definition 6, which is an efficient approximation to H. To avoid any confusion, we
denote by HTt the candidate hypothesis set at t-time with respect to the teaching hypothesis
hT . At t-time, we define the current empirical optimal hypothesis ĥt = argmin

h∈HTt
Lt(h), which

has the minimum importance-weighted empirical error in HTt .

Notation Description

X Input space
Y Output spcae
D Data distribution over X × Y
DX Marginal distribution of D over X
T Total number of time steps
xt Input sample at time t
H Hypothesis space {h : X → Z}
Z Prediction space
`(·, ·) Loss function operating on Z × Y → [0, 1]
R(h) Generalization error: R(h) = E(x,y)∼D [`(h(x), y)]

h∗ Optimal hypothesis in H: h∗ = argmin
h∈H

R(h)

Lt(h) Importance-weighted empirical error of h at time t
Ht Candidate hypothesis set at time t, where H1 = H
ĥt Current empirical optimal hypothesis at time t: ĥt = argmin

h∈Ht

Lt(h)

hT Teaching hypothesis
HT Teaching-hypothesis-class
HTt Candidate hypothesis set at time t with respect to teaching hypothesis hT

ĥt Current empirical optimal hypothesis at time t: ĥt = argmin
h∈HTt

Lt(h)

FT (ĥt) Teaching feedback function of ĥt at time t with respect to hT

H ′t Candidate generation base at t-time for drawing new hypotheses

h̃ New hypothesis generated from the convex hull of H ′t: h̃ =
∑m

j λjhj , hj ∈ H ′t
H̃ ′t Hypothesis generation set for self-improvement H̃ ′t =

{
h̃i; i ∈ [n]

}
Table 1: Main notations used in the paper
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2. Main Theoretical Results

Main Progress Theoretically, we present the teaching-based hypothesis pruning and its
improvements to defend our teaching idea. In detail, 1) we observe whether the teaching-
based hypothesis pruning strategy can prune the candidate hypothesis set faster than the
error disagreement-based active learning; 2) we observe whether the optimal hypothesis can
be usually maintained in the candidate hypothesis set; 3) we also present the generalization
error and label complexity bounds of teaching an active learner.

Main Assumption For any hypothesis class H, we assert the existence of a specific
hypothesis, hT , termed the teaching hypothesis. This hypothesis hT possesses the capacity
to tolerate a defined error bias (gap) to h∗ denoted by ε. The accommodation of ε signifies
that hT remains a valid and functional hypothesis within H, even in the presence of an
error rate up to ε. Elaborating further, the teaching hypothesis hT assumes the role of a
benchmark or guiding principle within the context of teaching-based hypothesis pruning. The
parameter ε delineates an acceptable deviation from the optimal hypothesis h∗, indicating
that while hT needs not be flawless, it should uphold an error rate within the prescribed
bounds of ε. Formally, it is denoted by

L
(
h∗, hT

)
= E

x∼DX

[
max
y

∣∣`(h∗(x), y)− `(hT (x), y)
∣∣] < ε,

where h∗ denotes the optimal hypothesis in H, and the disagreement of hypothesis invokes
Eq. (1).

This concept is fundamental in the analysis and refinement of teaching strategies within
machine learning frameworks. It forms the bedrock for evaluating the effectiveness and
efficiency of teaching-based approaches in refining the hypothesis space, safeguarding the
optimal hypothesis, and ultimately refining the learning process.

Main Technique We still follow the pruning manner of IWAL w.r.t. Eq. (4) to supervise
the updates of the candidate hypothesis set, where the main difference is that we introduce a
teaching hypothesis hT to control the slack constraint of hypothesis pruning. Specifically, the

slack constraint 2∆t is tightened as
(

1 + FT (ĥt)
)

∆t by invoking the guidance of a teacher,

where FT (ĥt) denotes disagreement feedback with the teacher w.r.t. current empirical
optimal hypothesis ĥt. With such operation, the candidate hypothesis set HTt+1 at t+ 1-time
is updated by

HTt+1=
{
h ∈ HTt : Lt(h) ≤ Lt(ĥt) +

(
1 + FT (ĥt)

)
∆t

}
,

where HT1 = HT , and ∆t =
√

(2/t) log(2t(t+ 1)|HT |2/δ) for some fixed confidence parame-
ter δ > 0. Therefore teaching-based hypothesis pruning is more aggressive in shrinking the
candidate hypothesis set, resulting in better learning guarantees.

Main Theorem 0.1 For any teaching-hypothesis-class HT , the instruction of an active
learner is conducted within it. Given any δ > 0, with a probability at least 1 − δ, for any
T ∈ N+, the following holds:
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1) the generalization error holds

R(ĥT ) ≤ R(h∗) +
(

2 + FT (ĥT−1) + FT (ĥT )
)

∆T−1 + ε;

2) if the learning problem has disagreement coefficient θ, the label complexity is at most

τT ≤ 2θ
(

2TR(h∗) +
(
3 + FT (ĥT−1))

)
O(
√
T ) + 2Tε

)
.

The theorem outlined above establishes the boundaries for generalization error and label
complexity concerning approximately optimal teaching within an active learning framework.
The efficacy of such teaching hinges upon two pivotal determinants:

• Efficiency of Learning: This factor is contingent upon the extent of the teacher’s
feedback disagreement, denoted as F(ĥ), imparted to the learner. Effective active
learning necessitates substantial feedback from the teacher to guide the learning process
effectively.

• Quality of the Teacher: The teaching ability is epitomized by the maximal discrepancy
to the optimal hypothesis, denoted as ε, which affects the learner’s performance.

Specifically, when ĥT−1 and ĥT exhibit close proximity to hT , and ε remains within an
acceptable error threshold, significant enhancements presents:

• The upper bound on generalization error is tighten from R(h∗) + 4∆T−1 to approxi-
mately R(hT ) + 2∆T−1.

• Likewise, the upper bound on label complexity is tighten from 4θ
(
TR(h∗) + 2O(

√
T )
)

to approximately 2θ
(

2TR(hT ) + 3O(
√
T )
)

.

Stricter assumption : If the teaching hypothesis is loosely approximated to the optimal
hypothesis, i.e. ε is large, how do we guarantee the convergence of approximately optimal
teaching? We thus design self-improvement of teaching.

The statement addresses the challenge of achieving convergence towards approximately
optimal teaching when there is a significant disparity between the teaching hypothesis and
the optimal hypothesis, indicated by a large ε value.

To tackle this challenge, “self-improvement of teaching” is introduced. This way entails
devising mechanisms within the teaching process to adapt and refine itself iteratively. By
incorporating feedback and evaluation, the teaching process undergoes iterative adjustments
to reduce the gap between the teaching hypothesis and the optimal hypothesis, which
improves the safety and stability of the subsequent learning performance.

In essence, self-improvement of teaching involves an iterative refinement process aimed at
enhancing teaching effectiveness and facilitating convergence towards approximately optimal
teaching outcomes.

Main Theorem 0.2 For any teaching-hypothesis-class HT , the instruction of an active
learner is conducted within HT . If the self-improvement of teaching is applied, given any
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δ > 0, with a probability at least 1 − δ, for any T ∈ N+, the following holds: 1) for any
t ∈ [T ], holds hTt ∈ HTt ;

2) the generalization error holds

R(ĥT ) ≤ R(h∗) +
(

2 + FTT−1(ĥT−1) + FTT−1(ĥT )
)

∆T−1 + εT−1;

3) if the learning problem has disagreement coefficient θ, the label complexity is at most

τT ≤ 2θ
(

2TR(h∗) +
(
3 + FTT−1(ĥT−1)

)
O(
√
T ) + 2TεT−1

)
.

The Theorem shows that the optimal hypothesis of
t⋃

k=1

HTk is maintained in the candidate

hypothesis set with a high probability at any t-time. With Corollary 15, we have εT−1 ≤
ε = ε1, which shows that self-improvement of teaching strategy can further reduce the
generalization error and label complexity bounds of the learner w.r.t. Theorem 11. Moreover,
the improvement of the active learner is decided by the improvement of the approximately
optimal teacher.

Given any t-time, the results highlight the theorem’s findings regarding the persistence of
the optimal hypothesis, generalization error inequality, and label complexity inequality for
learning. The below explains these results:

Theorem Findings:

• The theorem establishes that the optimal hypothesis persists within a candidate
hypothesis set throughout different learning stages. This forms safety guarantees for
the learning process.

• Regardless of the stage denoted by t, the optimal hypothesis remains prominently

featured within
t⋃

k=1

HTk with a high probability. This ensures that the process of

self-improvement can uphold the optimal hypothesis within the given class.

Corollary Implications:

• Referring to Corollary 15, it reveals the inequality of εT−1 ≤ ε = ε1, that is, with
self-improvement, the teacher’s gap to the optimal hypothesis could be decreased. It
shows the success of the self-improvement.

• This discovery suggests the potential of self-improvement in teaching strategies to
further tighten the generalization error and label complexity bounds for the learner.

Alignment with Theorem:

• The optimization through self-improvement aligns with the assurances provided by
Theorem 11.

Efficacy of Teaching:

• The statement emphasizes the direct correlation between the refinement of teaching
strategies and the efficacy of the active learner’s progression.
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• Achieving a state of approximately optimal teaching significantly influences learning
outcomes and overall performance.

In essence, the statement emphasizes how the iterative refinement of the teaching strategy
through the generation of new hypotheses directly contributes to improving the learning
guarantees for the active learner. This highlights the significance of self-improvement
mechanisms in optimizing the teaching process and facilitating more effective learning
experiences.

3. Related Work

First, we introduce active learning, encompassing both its theoretical explorations and prac-
tical applications. Subsequently, we delve into machine teaching, which involves supervising
both white-box and black-box learners.

3.1 Active Learning

Active learning encompasses two branches: theoretical explorations (Hanneke, 2009) and
practical applications (Settles, 2009). The theoretical branch focuses on the generalization
analysis of error and label complexity bounds within the hypothesis class. In practical
applications, these theoretical results are extended to weakly-supervised sampling (Rasmus
et al., 2015), Bayesian approximation (Pinsler et al., 2019), adversarial training (Sinha et al.,
2019), and other related areas.

Theoretical explorations Theoretical active learning is approached from two perspectives:
agnostic bound convergence and version space shrinking. Agnostic active learning is derived
from the standard PAC framework (Denis, 1998), while version space shrinking (Dasgupta,
2004; Tong and Koller, 2001) can be generalized from a hypothesis pruning view (Cortes
et al., 2019b; Cao and Tsang, 2020). In the analysis of the linear perceptron (Gonen et al.,
2013), Dasgupta et al. (Dasgupta, 2011) presented a series of upper and lower bounds on
label complexity, maintaining consistent convergence with the query-by-committee algorithm
(Gilad-Bachrach et al., 2006), which involves multiple learners. Hanneke later extended
these bounds for more general settings (Hanneke, 2007a, 2012), enhancing the efficiency of
the error disagreement coefficient. In a uniform framework, Balcan et al. summarized these
theoretical results as the agnostic scenario (Balcan et al., 2009). However, these results often
assume a uniform distribution and a noise-free setting. For bounded and adversarial noise,
Yan et al. (Yan and Zhang, 2017) presented label complexity bounds. With a consistent
assumption about support vectors, Tong et al. (Tong and Koller, 2001) utilized the notion
of the version space to shrink its volume by maximizing the minimum distance to any of the
delineating hyperplanes. Other similar works can also be found in (Warmuth et al., 2001;
Golovin and Krause, 2010; Ailon et al., 2012; Krishnamurthy et al., 2017). To shrink the
version space into the minimal covering on the optimal hypothesis, Cortes et al. presented a
region-splitting algorithm to ensure that pruning in the hypothesis class can converge to the
optimal hypothesis, as demonstrated in works such as (Cortes et al., 2019a, 2020).

Practical applications To prune the hypothesis class, following the error disagreement co-
efficient, incremental optimization is a common approach. This involves iteratively updating
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the current learning model by maximizing its uncertainty. Within this paradigm, various
baselines have been proposed, including maximizing error reduction (Roy and McCallum,
2001) and maximizing mean standard deviation (Kampffmeyer et al., 2016), among others. In
statistical optimization, active learning can also be redefined as experimental design (Wong,
1994), which includes A, D, E, and T optimal design. In this context, the A-optimal design
minimizes the average variance of the parameter estimates, the D-optimal design maximizes
the differential Shannon information content of the parameter estimates, the E-optimal
design maximizes the minimum eigenvalue of the information matrix, and T-optimal design
methods maximize the trace of the information matrix. In the Bayesian setting, active
learning is defined as Bayesian approximation on the likelihood (Orekondy et al., 2019) or
maximizing the information gain (Kirsch et al., 2019), among other approaches. In recent
years, propelled by the powerful modeling capabilities of deep neural networks, deep active
learning has emerged, sparking new interest. Examples include Monte-Carlo dropout with
active learning (Gal et al., 2017), deep active annotation (Huijser and van Gemert, 2017),
adversarial training with an active querying set (Sinha et al., 2019), dual adversarial networks
for deep active learning (Wang et al., 2020a), and consistency-based semi-supervised active
learning (Gao et al., 2020), among others.

Remark 1 Active learning prunes the predefined hypothesis class into a desired one. Through
an iterative labeling process, the initially broad hypothesis class, which encompasses potential
hypotheses or models, gradually narrows down or refines to a more specific one aligned with
the desired model characteristics or performance criteria. Essentially, active learning assists
in selecting and refining the most relevant hypotheses from the predefined class, thereby
guiding the learning process towards achieving the desired outcome more efficiently. This
forms the structured perspective of ‘how to learn’, i.e., the framework of fundamental learning
manner of “Mentored Learning”.

3.2 Machine Teaching

Machine teaching (Zhu et al., 2018) focuses on an inverse problem of machine learning,
specifically finding the optimal teaching examples when the teacher already knows the
learning parameters. Machine teaching is categorized into two scenarios: teaching a white-
box and teaching a black-box (Dasgupta et al., 2019; Liu et al., 2018).

Teaching white-box Machine teaching assumes that the teacher is aware of the optimal
learning parameters of the learner. It provides theoretical analyses for various types of
learners, such as those using linear regression, logistic regression, and support vector machines
(SVMs), to identify the best teaching examples. These examples can then adjust a random
initial training parameter to its optimal state. Essentially, machine teaching offers optimal
control over parameter exploration for a learner. To enhance theoretical guarantees, Goldman
et al. (Goldman and Kearns, 1995) introduced a comprehensive set of theoretical concepts,
including teaching dimension (Liu et al., 2016; Doliwa et al., 2014), and teaching complexity
(Hanneke, 2007b). Zhu et al. (Zhu et al., 2017) subsequently extended teaching theories
to multiple learners. In practical scenarios, this teaching approach has found widespread
application in teacher-student learning models, as evidenced by works such as those by
Wang et al. (Wang et al., 2020b), Matiisen et al. (Matiisen et al., 2019), Meng et al. (Meng
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et al., 2018, 2019), and Wang et al. (Wang et al., 2021). Recently, Zhang and Cao et
al. (Zhang et al., 2023a,b) studied iterative teaching in nonparametric settings, where the
teacher models are defined as functions independent of specific parameters.

Teaching black-box A more challenging problem arises when the teacher is unable to
disclose any cues regarding the distribution of the learning parameters, rendering the learner
essentially a black box. In this context, Liu et al. (Liu et al., 2018) explored cross-space
machine teaching, which involves distinct feature representations for the teacher and the
student. Dasgupta et al. (Dasgupta et al., 2019) proposed reducing the training sets for any
classifier family by identifying an approximately minimal subset of training instances that
maintains the consistent properties of the original hypothesis class. Cicalese et al. (Cicalese
et al., 2020) investigated scenarios where the teacher aims for the learner to converge to
a well-available approximation of the optimal hypothesis. Cao et al. (Cao and Tsang,
2021b) suggested employing iterative distribution matching to instruct a black-box learner.
Orekondy et al. (Orekondy et al., 2019) utilized model functionality feedback to guide
a black-box learner, thereby approximating their parameter distributions. Wang et al.
(Wang, 2021) introduced a knowledge distillation method capable of extracting knowledge
from a decision-based black-box model without accessing the model’s internal structure
or parameters. This approach facilitates the transfer of knowledge from complex, opaque
models into a more interpretable and compact student model. Nguyen et al. (Nguyen et al.,
2022) considered the situation where the teacher can only aim for the black-box learner to
converge to the best available approximation of the optimal hypothesis, rather than the
exact optimal hypothesis itself.

Remark 2 Machine teaching involves supervising and guiding the learner to refine its
hypothesis class to achieve a desired outcome. Through this supervision, the initial broad
hypothesis class is narrowed down or refined to better fit the specific requirements or goals.
Unlike learning, teaching involves the presence of a “teacher” entity, which actively guides
and instructs the learner throughout the learning process. The teacher’s role is crucial
in facilitating the learner’s improvement by providing guidance, feedback, and instruction.
In contrast to general learning approaches that may rely on incremental updates and be
potentially prone to mistakes or inaccuracies, machine teaching aims to mitigate these issues.
By providing direct guidance and supervision, machine teaching helps to avoid incremental
errors and ensures a more accurate and efficient learning process. This forms the structured
perspective of ‘how to teach’, i.e., the framework of the fundamental teaching manner of

“Mentored Learning”.

4. Error Disagreement-based Active Learning: Fundamental Concepts

In this section, we introduce the error disagreement and its generalized learning algorithm
with guarantees. This constitutes the fundamental concepts for learners in mentored learning.
Within this prototype, the learner can be generalized across various classifiers and examined
under a range of noise models. For a thorough exploration of introduced and established
results in error disagreement-based active learning, refer to Hanneke et al. (2014).
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4.1 Error Disagreement

Given a hypothesis class H, active learning tries to reduce the maximum disagreement of
hypothesis in H by invoking a disagreement function L(·, ·) (Cortes et al., 2019b).

For any hypothesis pair {h, h′} ⊆ H, L(h, h′) measures their disagreement by the error
disagreements, i.e.,

L(h, h′) = E
x∼DX

[
max
y

∣∣`(h(x), y)− `(h′(x), y)
∣∣] , (1)

where `(h(x), y) denotes the loss function which operates X ×Y → [0, 1]. The calculation of
error disagreement w.r.t. Eq. (1) does not require labels, i.e., it can be calculated over the unla-
beled dataset. Given an i.i.d. sample x1, x2, . . . , xn fromDX , the error disagreement is the em-
pirical average L(h, h′) = 1

n

∑n
i=1

[
maxy

∣∣`(h(xi), y)− `(h′(xi), y)
∣∣]. As an example of binary

classification, we solve for max
{∣∣`(h(xi),+1)− `(h′(xi),+1)

∣∣, ∣∣`(h(xi),−1)− `(h′(xi),−1)
∣∣}

to obtain the error disagreement between h and h′ over sample xi.

4.2 Learning Algorithm

Importance weighted active learning (IWAL) (Beygelzimer et al., 2009) invokes the error
disagreement to prune the hypothesis class H, which is a typical error disagreement-based
active learning algorithm.

Given an initial candidate hypothesis set H1 = H, IWAL receives xt ∈ X drawn i.i.d.
according to DX . At t-time, the algorithm decides whether to query the label of xt and
prunes the candidate hypothesis set Ht to Ht+1.

Query At t-time, IWAL does a Bernoulli trial Qt with success probability pt, where pt is
the maximum error disagreement of Ht over xt:

pt = max
h,h′∈Ht

max
y

∣∣`(h(xt), y)− `(h′(xt), y)
∣∣. (2)

If Qt = 1, the algorithm queries the label yt of xt.

Hypothesis pruning Let Lt(h) be the importance-weighted empirical error of hypothesis
h ∈ H, there is:

Lt(h) =
t∑

k=1

Qk
pk
` (h (xk) , yk) , (3)

where its minimizer is ĥt = argmin
h∈Ht

Lt(h). With the expectation taken over all the random

variables, we know E [Lt(h)] = R(h). At t-time, IWAL prunes Ht to Ht+1 through Lt(ĥt)
and an allowed slack 2∆t:

Ht+1 =
{
h ∈ Ht : Lt(h) ≤ Lt(ĥt) + 2∆t

}
, (4)

where ∆t =
√

(2/t) log(2t(t+ 1)|H|2/δ) for a fixed confidence parameter δ > 0. At T -time,

IWAL returns the current empirical optimal hypothesis ĥT as the final hypothesis output.
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We add some remarks on evaluating the quality of active learning algorithms. The following
Remark 3 presents the necessary conditions for a feasible active learning algorithm.

Remark 3 Whether the optimal hypothesis h∗ can usually be maintained in the candidate
hypothesis set Ht is a necessary condition for the success of an active learning algorithm.

The following Remark 4 presents two factors for evaluating the quality of an active learning
algorithm.

Remark 4 Two factors measure the quality of an active learning algorithm: 1) tighter
bound on generalization error R(ĥT ), where ĥT is the hypothesis returned by the algorithm
after T rounds, and 2) tighter bound on label complexity τT , where τT is the expected value
of label numbers queried by the active learning algorithm within T rounds.

With Remarks 3 and 4, to guarantee a high-quality learning performance, any active learning
algorithm needs to satisfy the three factors, including 1) maintaining the optimal hypothesis,
2) tighter bound on generalization error, and 3) tighter bound on label complexity.

4.3 Learning Guarantees

We present the learning guarantees analysis for IWAL. Firstly, we introduce another definition
of the disagreement with respect to hypothesis. For any two hypotheses h, h′, let ρ(h, h′)
denote their disagreement:

ρ(h, h′) = E
(x,y)∼D

[∣∣`(h(x), y)− `(h′(x), y)
∣∣] . (5)

The new disagreement ρ(·, ·) can derive a more favorable learning guarantees for the error
disagreement-based active learning. Cortes et al. (2019b) shows that the new disagreement
ρ(·, ·) removes a constant K` from the label complexity bound of IWAL compared to the
error disagreement L(·, ·) w.r.t. Eq. (1). Based on the new disagreement ρ(·, ·), we can
define a ball with respect to the hypothesis. Given r > 0, let B(h∗, r) denote a ball centered
in h∗ ∈ H with the radius r: B(h∗, r) = {h ∈ H : ρ(h∗, h) ≤ r}, where h∗ is the optimal
hypothesis of H. The error disagreement coefficient is then defined as the minimum value of
θ for all r > 0:

θ ≥ E
x∼DX

[
max

h∈B(h∗,r)
max
y

∣∣`(h(x), y)− `(h∗(x), y)
∣∣

r

]
. (6)

The error disagreement coefficient θ is a complexity measure widely used for label complexity
analysis in disagreement-based active learning. See Hanneke et al. (2014) for more analysis
of disagreement coefficient in active learning. Based on the error disagreement coefficient,
guarantees of the learning algorithm is proved by Beygelzimer et al. (2009) and improved by
Cortes et al. (2019b).

Theorem 5 For any hypothesis class H, we perform IWAL within it. Given any δ > 0, with
probability at least 1− δ, for any T ∈ N+, the following holds: 1) for any t ∈ [T ], holds h∗ ∈
Ht; 2) the generalization error holds R(ĥT ) ≤ R(h∗) + 4∆T−1; 3) if the learning problem has

a disagreement coefficient θ, the label complexity is at most τT ≤ 4θ
(
TR(h∗) + 2O(

√
T )
)
.
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Theorem 5 guarantees the following facts. 1) The optimal hypothesis h∗ is maintained in the
candidate hypothesis set Ht with high probability, which is the key to the success of IWAL.
2) As time T increases, ∆T−1 gradually tends to zero, leading to a tighter approximation of
ĥT to h∗ in terms of R(ĥT )−R(h∗). 3) The upper bound on the number of query labels of
IWAL depends on the disagreement coefficient θ.

5. Approximately Optimal Teaching: How to Teach

Error disagreement-based active learning may not easily prune the candidate hypotheses
into their optimum. We thus introduce a teaching hypothesis that guides an active learner
to converge with tighter bounds on generalization error and label complexity.

Theoretical analysis prove that 1) we introduce a teaching hypothesis to guide the hypothesis
pruning, which results in faster pruning speed but always retains the optimal hypothesis in
the candidate hypothesis set; 2) to improve the initial teaching hypothesis, self-improvement
is applied and shows better learning guarantee than any initialization on the teacher. Related
proofs are presented in Appendix A.

5.1 Teaching Assumption

The primary assumption of our approximately optimal teaching idea is formed as follows.

Assumption 1 For any hypothesis class H, assume that there exists a teaching hypothesis
hT such that tolerates an error bias ε:

L
(
h∗, hT

)
= E

x∼DX

[
max
y

∣∣`(h∗(x), y)− `(hT (x), y)
∣∣] < ε,

where h∗ is the optimal hypothesis in H, and the disagreement of hypothesis invokes Eq. (1).

Note that Assumption 1 presents a formal description for our teaching idea, and we also
consider a loose approximation of hT in Section 6, i.e., ε is large. In real-world scenarios, it
is a more practical problem and can help to improve the credibility of our assumption.

With Assumption 1, we then construct an approximation to the hypothesis class H.

Definition 6 Teaching-hypothesis-class. For any hypothesis class H, hT is a teaching
hypothesis that satisfies Assumption 1. If there exists a hypothesis class HT such that
hT = argmin

h∈HT
R(h), then HT is called the teaching-hypothesis-class of H.

By introducing a approximately optimal teaching hypothesis hT , we define a new hypothesis
class HT related to H, which uses hT to replace the infeasible h∗. The following two feasible
corollaries show the validity of Definition 6.

Corollary 7 For any hypothesis class H and given hT , HT is a teaching-hypothesis-class of
H. Then we have the inequality E

(x,y)∼D

[
`(h∗(x), y)− `(hT (x), y)

]
≤ 0, which requires that

there are at least τ ≥ 0 hypotheses with tighter generalization errors than hT . Therefore, the
teaching-hypothesis-class HT has fewer candidate hypotheses than H, that is, |HT | ≤ |H|.

15



Cao, Guo, Shen, Tsang and Kwok

For any learning algorithm, Corollary 7 shows that hypothesis pruning in HT may have
lower complexity than that of H. Corollary 7 gives the validity of HT in terms of complexity,
and the following corollary gives the validity of HT in terms of error.

Corollary 8 For any hypothesis class H and given hT , HT is a teaching-hypothesis-class
of H. Based on properties of expectation, we have

∣∣R(hT )−R(h∗)
∣∣ ≤ L(h∗, hT ) < ε.

For any learning algorithm, Corollary 8 shows that the error of hypothesis pruning in HT is
almost equal to the error of hypothesis pruning in H. In conclusion, Corollary 7-8 initially
demonstrates the validity of our teaching idea. The subsequent theorems in this paper
strictly give the improved bounds on generalization error and label complexity.

5.2 Teaching Model

Before precisely presenting our theoretical results, we set some notes and explain the
approximately optimal teaching model in more detail. We use FT (·) = L(hT , ·) to denote a
disagreement feedback function with operation H → [0, 1].

Teacher: the teacher has a teaching hypothesis hT , which only can provide the disagreement
feedback FT (·) to the Learner.

Learner: the learner has a teaching-hypothesis-class HT , which prunes HT by identifying
the disagreement feedback FT (·) with the Teacher.

At t-time, the learner receives a sample xt and decides whether to query the label yt of xt.
Then the learner prunes the candidate hypothesis set based on the disagreement feedback
FT (·) with the teacher. The goal of the learner is to return a desired hypothesis ĥ from HT
by using fewer labeled samples, where ĥ has the minimum generalization error on the input
dataset X .

The approximately optimal teaching scenario we consider is simple and practical, which
merely necessitates the teacher’s ability to provide the learner with disagreement feedback.
In this setting, the teacher is required to be an end-to-end model which only provides output
as the feedback of the input and does not know the model configuration. Therefore, the
learner only requires very limited information from the teacher, which maintains a fair
teaching scenario compared to those non-educated learners who do not receive any guidance
from a teacher.

We follow the rules of notations used in a standard hypothesis pruning like IWAL of Section 4.
Let HTt denote the candidate hypothesis set of the learner at t-time, where HT1 = HT .

We denote by ĥt = argmin
h∈HTt

Lt(h) the current empirical optimal hypothesis, which has the

minimum importance-weighted empirical error in HTt . At T -time, the algorithm returns the
current empirical optimal hypothesis ĥT as the final hypothesis output.

5.3 Teaching Improves Hypothesis Pruning

We below present the teaching-based hypothesis pruning and its theoretical improvements
to defend our teaching idea. In detail, 1) we observe whether the teaching-based hypothesis
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pruning strategy can prune the candidate hypothesis set faster than the error disagreement-
based active learning; 2) we observe whether the optimal hypothesis can be usually maintained
in the candidate hypothesis set; 3) we also present the generalization error and label
complexity bounds of teaching an active learner.

Teaching-based hypothesis pruning We still follow the pruning manner of IWAL w.r.t.
Eq. (4) to supervise the updates of the candidate hypothesis set, where the main difference
is that we introduce a teaching hypothesis hT to control the slack constraint of hypothesis

pruning. Specifically, the slack constraint 2∆t is tightened as
(

1 + FT (ĥt)
)

∆t by invoking

the guidance of a teacher, where FT (ĥt) denotes disagreement feedback with the teacher w.r.t.
current empirical optimal hypothesis ĥt. With such operation, the candidate hypothesis set
HTt+1 at (t+ 1)-time is updated by

HTt+1=
{
h ∈ HTt : Lt(h) ≤ Lt(ĥt) +

(
1 + FT (ĥt)

)
∆t

}
, (7)

where HT1 = HT , and ∆t =
√

(2/t) log(2t(t+ 1)|HT |2/δ) for some fixed confidence parame-
ter δ > 0. Therefore teaching-based hypothesis pruning is more aggressive in shrinking the
candidate hypothesis set, resulting in better learning guarantees.

Pruning speed With a fast hypothesis pruning speed, the candidate hypothesis set HTt
is shrunk rapidly, which reduces the learning difficulty, easily converting into hT . The

primary determinant of pruning speed is the pruning slack term, i.e.,
(

1 + FT (ĥt)
)

∆t of

Eq. (7). With Eqs. (4) and (7), there is
(

1 + FT (ĥt)
)

∆t ≤ 2∆t, which means that the

teaching-based hypothesis pruning employs a tighter slack term to shrink HTt than IWAL. It
then leads to a faster pruning speed for our teaching strategy. Therefore, our teaching-based
hypothesis pruning may be easier to prune the candidate hypotheses into their optimum
than the error disagreement-based hypothesis pruning.

Retain the teaching hypothesis To evaluate Remark 3 of teaching-based hypothesis
pruning, we present our analysis. The following lemma relates importance-weighted empirical
error to the generalization error.

Lemma 9 For any teaching-hypothesis-class HT , the instruction of an active learner is
conducted within HT , where the sequence of candidate hypothesis sets satisfies HTt+1 ⊆ HTt
with HT1 = HT . Given any δ > 0, with a probability at least 1− δ, for any T ∈ N+ and for
all h, h′ ∈ HTT , the following inequality holds:∣∣LT (h)− LT (h′)−

(
R(h)−R(h′)

)∣∣ ≤ (1 + L(h, h′)
)

∆T ,

where ∆T =
√

(2/T ) log(2T (T + 1)|HT |2/δ).

Lemma 9 indicates that the generalization error is concentrated near its importance-weighted
empirical error for every pair {h, h′} ⊆ H. Based on Lemma 9, we can derive the Theorem 10,
which connects the importance-weighted empirical error of the teacher and the learner.

Theorem 10 For any teaching-hypothesis-class HT , the instruction of an active learner is
conducted within it. Given any δ > 0, with a probability at least 1− δ, for any t ∈ N+, the

17



Cao, Guo, Shen, Tsang and Kwok

following inequality holds:

Lt(h
T )− Lt(ĥt) ≤

(
1 + FT (ĥt)

)
∆t.

Theorem 10 shows that the teaching hypothesis hT satisfies the pruning rule with a high
probability at any t-time. And hT is the optimal hypothesis in the teaching-hypothesis-class
HT . Thus teaching-based hypothesis pruning maintains the optimal hypothesis in the
candidate hypothesis set with a high probability.

Learning guarantees To demonstrate the improvement of teaching an active learner (w.r.t.
Remark 4), we present the learning guarantee for teaching-based hypothesis pruning in
Theorem 11.

Theorem 11 For any teaching-hypothesis-class HT , the instruction of an active learner is
conducted within it. Given any δ > 0, with a probability at least 1− δ, for any T ∈ N+, the
following holds:

1) the generalization error holds

R(ĥT ) ≤ R(h∗) +
(

2 + FT (ĥT−1) + FT (ĥT )
)

∆T−1 + ε;

2) if the learning problem has disagreement coefficient θ, the label complexity is at most

τT ≤ 2θ
(

2TR(h∗) +
(
3 + FT (ĥT−1))

)
O(
√
T ) + 2Tε

)
.

Theorem 11 shows the generalization error and label complexity bounds of approximately
optimal teaching an active learner. The performance of approximately optimal teaching
relies on two key factors: firstly, the effectiveness of active learning, i.e., the magnitude of
the teacher’s disagreement feedback F(ĥ) of the learner; and secondly, the quality of the
teacher, which is determined by the maximum level of disagreement ε between the teaching
hypothesis and the optimal hypothesis. In particular, when ĥT−1, ĥT are sufficiently close
to hT and ε is a tolerable error, the generalization error upper bound can be reduced from
R(h∗) + 4∆T−1 to approximately R(hT ) + 2∆T−1, and the label complexity upper bound

can be decreased from 4θ
(
TR(h∗) + 2O(

√
T )
)

to approximately 2θ
(

2TR(hT ) + 3O(
√
T )
)

.

In conclusion, by improving hypothesis pruning, approximately optimal teaching guides an
active learner to converge into tighter bounds on generalization error and label complexity.

6. Self-improvement of Teaching: How to Teacher Better

Section 5.3 demonstrates that approximately optimal teaching an active learner is effective.
However, for Assumption 1, if the teaching hypothesis is loosely approximated to the optimal
hypothesis, i.e. ε is large, how do we guarantee the convergence of approximately optimal
teaching? We thus design a self-improvement of teaching strategy, which generates new
hypotheses after each hypothesis pruning and determines whether to update the teacher.
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We then observe the improvement of teaching performance and further analyze gains for the
active learner of the bounds on generalization error and label complexity.

New hypotheses Since hypothesis pruning is a process of shrinking the candidate hypothesis
set, generating new hypotheses should not interrupt this process. More specifically, we re-
quire that the sequence of candidate hypothesis sets satisfy Conv(HTt+1) ⊆ Conv(HTt ), where
Conv(·) is the convex hull of a set. To avoid any confusion, we denote by H ′t the candidate hy-

pothesis set after pruning at t-time, i.e., H ′t =
{
h ∈ HTt : Lt(h) ≤ Lt(ĥt) +

(
1 + FT (ĥt)

)
∆t

}
w.r.t. Eq. (7). This indicates the candidate generation base for the new hypotheses, which is
aligned with the teacher’s hypothesis and ensures the reliability of the subsequent generation.
Therefore, after pruning the hypothesis set from HTt to H ′t at t-time, we generate new
hypotheses h̃ from the convex hull of H ′t, that is, drawing h̃ from Conv(H ′t):

h̃ =

m∑
j

λjhj , hj ∈ H ′t, (8)

subjected to
∑m

j λj = 1, λj ∈ [0, 1], where m denotes the size of H ′t, and this ensures

h̃ ∈ Conv(H ′t). We use Eq. (8) to draw n hypotheses for obtaining the hypothesis generation

set H̃ ′t =
{
h̃i; i ∈ [n]

}
and combine it with H ′t as the candidate hypothesis set next time:

HTt+1 = H ′t ∪ H̃ ′t.

Remark 12 In other words, our teaching scheme incorporates a dual-loop mechanism,
consisting of: 1) outer candidate hypothesis pruning, and 2) inner hypothesis generation.
In the inner loop, the candidate hypothesis set HTt is redefined as the candidate generation
base H ′t after t iterations of pruning for subsequent hypothesis generation. Within this
framework, the hypothesis generation set is denoted as H̃ ′t w.r.t. Eq. (8). In the outer loop,
the candidate hypothesis set is iteratively pruned, and the hypothesis generation set also
follows. Consequently, the updated of HTt+1 ← HTt is expressed as HTt+1 = H ′t ∪ H̃ ′t.

Self-improvement The new hypotheses may perform better than the teaching hypothesis,
that is, R(h̃) ≤ R(hT ). By adding a restriction to the loss function, we give a condition
for determining whether the teacher improves or not. We assume `(h(x), y) = φ (yh(x)),
where φ is functional non-increasing and convex. In short, `(h(x), y) can be specified as 0-1,
hinge, logistic loss functions, etc. Under the additional assumptions of the loss function, the
following lemma reveals the variation of the maximum error disagreement in the candidate
hypothesis set.

Note that the loss function `(h(x), y) is modeled using a non-increasing and convex function
φ, which operates on the product yh(x) of the true label and the predicted value. This
structure ensures that better and more confident predictions lead to lower loss values, making
the optimization process more effective. Common examples of such loss functions include
the 0-1 loss, hinge loss, and logistic loss, each suited to different types of machine learning
models and optimization strategies.

By understanding the role and properties of φ, we can design loss functions that are both
theoretically sound and practically useful for various learning algorithms.
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Lemma 13 For any teaching-hypothesis-class HT , the instruction of an active learner is
conducted within it. If the loss function can be rewritten to form `(h(x), y) = φ(yh(x)) and
the function φ is non-increasing and convex, for any candidate hypothesis set HTt and for
all x ∈ X , the following equation holds:

max
h,h′∈Conv(HTt )

max
y

∣∣`(h(x), y)− `(h′(x), y)
∣∣ = max

h,h′∈HTt
max
y

∣∣`(h(x), y)− `(h′(x), y)
∣∣ ,

where Conv(HTt ) is the convex hull of the hypothesis set HTt .

Lemma 13 shows that the maximum error disagreement at a certain fixed sample x will not
increase despite the learning algorithm generating new hypotheses in the convex hull of HTt .
Based on this property, Theorem 14 presents the lower bound analysis for the generalization
error difference between the teaching hypothesis hT and new hypotheses h̃.

Theorem 14 For any teaching-hypothesis-class HT , the instruction of an active learner is
conducted within it, where the sequence of candidate hypothesis sets satisfies Conv(HTt+1) ⊆
Conv(HTt ) with HT1 = HT . For any t ∈ N+, given any δ > 0, with a probability at least

1− δ, for any h̃ ∈ H̃ ′t, the following inequality holds:

R(hT )−R(h̃) ≥ Lt(hT )− Lt(h̃)−
(

1 + FT (h̃)
)

∆t. (9)

Theorem 14 elaborates on the determining conditions necessary for self-improvement:: if

β
(t)
i = Lt(h

T ) − Lt(h̃i) −
(

1 + FT (h̃i)
)

∆t > 0, i.e., R(h̃i) < R(hT ), then the teaching

hypothesis of HT is updated to hT = h̃i. Thus self-improvement of teaching strategy reduces
generalization error of the teaching hypothesis without excessive additional calculations.

Improvement of teaching performance Self-improvement of teaching strategy obtain
a teaching hypothesis sequence

{
hT1 , ..., h

T
T

}
, where hTt denote the optimal hypothesis in

t⋃
k=1

HTk . Based on Theorem 14, Corollary 15 gives the improvement of teaching performance.

Corollary 15 For any teaching-hypothesis-class HT , tthe instruction of an active learner

is conducted within it. Let αt = max{maxi β
(t)
i , 0} and hT1 be the initial teaching hypothesis.

If the self-improvement of teaching is applied, given any δ > 0, with a probability at least
1− δ, for any T ∈ N+, we have an inequality R(hTT ) ≤ R(hT1 )−

∑T−1
t=1 αt.

Corollary 15 guarantees that, with high probability, self-improvement of teaching can reduce
the generalization error of the initial teaching hypothesis by at least

∑T−1
t=1 αt. Moreover,

assuming ε is the initial approximation error of the teaching hypothesis to the optimal
hypothesis, we have an inequality R(hTT ) ≤ R(h∗) + εT , where εT := ε −

∑T−1
t=1 αt(T > 1)

and ε1 = ε. Thus the self-improvement of teaching alleviates the loose approximation of the
teaching hypothesis to the optimal hypothesis w.r.t. ε of Assumption 1.

Learning guarantees With the improvement of the teacher, the improvement of the
learner is natural. Recalling Theorem 11, we then present the learning guarantees for the
self-improvement of teaching. The primary motivation is to replace the pre-defined teaching
hypothesis hT by a teaching hypothesis sequence

{
hT1 , ..., h

T
T

}
. At t-time, we denote by

20



Mentored Learning: Improving Generalization and Convergence of Student Learner

FTt (·) := L(hTt , ·) the disagreement feedback with latest teaching hypothesis hTt . Because
the disagreement coefficient θ w.r.t. Eq. (6) is defined based on the varying candidate
hypothesis set HTt , it varies with time t. To make the theoretical results more concise, we
assume that θ is stable for smooth distribution and does not change dramatically as HTt
changes. The learning guarantees of Theorem 11 are then re-derived.

Theorem 16 For any teaching-hypothesis-class HT , the instruction of an active learner is
conducted within it. If the self-improvement of teaching is applied, given any δ > 0, with
a probability at least 1− δ, for any T ∈ N+, the following holds: 1) for any t ∈ [T ], holds
hTt ∈ HTt ;

2) the generalization error holds

R(ĥT ) ≤ R(h∗) +
(

2 + FTT−1(ĥT−1) + FTT−1(ĥT )
)

∆T−1 + εT−1;

3) if the learning problem has disagreement coefficient θ, the label complexity is at most

τT ≤ 2θ
(

2TR(h∗) +
(
3 + FTT−1(ĥT−1)

)
O(
√
T ) + 2TεT−1

)
.

Theorem 16 shows that the optimal hypothesis of
t⋃

k=1

HTk is maintained in the candidate

hypothesis set with a high probability at any t-time. Recalling Corollary 15, we have
ε = ε1 ≤ εT−1, which shows that self-improvement of teaching strategy can further reduce
the generalization error and label complexity bounds of the learner w.r.t. Theorem 11.
Moreover, the improvement of the active learner is decided by the improvement of the
approximately optimal teacher.

In conclusion, by generating new hypotheses, self-improvement of teaching strategy tightens
the approximation of the teaching hypothesis to the optimal hypothesis, which provides
more favorable learning guarantees for an active learner.

7. Teaching-based Mentored Learning: How to Learn

Based on the theoretical results of Section 5, we present the Approximately Optimal Teaching-
based Mentored Learning algorithm (ATML), which guides a white-box learner. To guide a
black-box learner, we then extend ATML into ATML+.

7.1 Teaching a White-box Learner

We here consider the teaching for a white-box learner who discloses its hypothesis class
information to the teacher. In this setting, the learner prunes the teaching-hypothesis-class
HT by querying the sample labels and finally outputs a desired hypothesis. In each round,
ATML includes three stages: 1) query, 2) hypothesis pruning, and 3) self-improvement. Its
pseudo-code is presented in Algorithm 1.

Query (Steps 3-6) On the setting of white-box learner, ATML adopts a similar label query
strategy as IWAL w.r.t. Eq. (2), with a slightly different hypothesis class. At t-time, ATML
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Algorithm 1 ATML(HT , hT , T, n)

1: Initialize: HT1 = HT , hT1 = hT , H̃ ′t = ∅
2: for t ∈ [T ] do
3: pt = maxh,h′∈HTt maxy |`(h(xt), y)− `(h′(xt), y)| w.r.t. Eq. (10)

4: Qt ∈ {0, 1} with Qt ∼ B(1, pt)
5: if Qt = 1 then
6: yt ← LABEL(xt)
7: ĥt = argmin

h∈HTt
Lt(h) w.r.t. Eq. (3)

8: H ′t =
{
h ∈ HTt : Lt(h) ≤ Lt(ĥt) +

(
1 + FT (ĥt)

)
∆t

}
w.r.t. Eq. (7)

9: for i ∈ [n] do
10: h̃ =

∑m
j λjhj where hj ∈ H ′t w.r.t. Eq. (8)

11: H̃ ′t = H̃ ′t ∪ h̃
12: hTt+1 = h̃ if R(h̃) < R(hT ) else hTt w.r.t. Eq. (9)
13: end for
14: HTt+1 = H ′t ∪ H̃ ′t
15: end if
16: end for
17: Return ĥT

does a Bernoulli trial Qt with a success probability pt:

pt = max
h,h′∈HTt

max
y

∣∣`(h(xt), y)− `(h′(xt), y)
∣∣ . (10)

If Qt = 1, the algorithm queries the label yt of xt.

Hypothesis pruning (Step 7-8) At any t-time, ATML maintains a candidate hypothesis set
HTt with HT1 = HT . After querying the label, ATML updates the current empirical optimal

hypothesis ĥt = argmin
h∈HTt

Lt(h) w.r.t. Eq. (3). Then the algorithm prunes the candidate

hypothesis set from HTt to hypothesis generation base H ′t according to Eq. (7). At T -time,
ATML returns the hypothesis ĥT as the final hypothesis output. Note that Lt(h) of Eq. (3)
denotes the importance-weighted empirical error of hypothesis h ∈ H, and it is incrementally
updated with additional sampling of (xt, yt).

Self-improvement (Steps 9-14) After the hypothesis pruning, ATML will generate new
hypotheses to improve the performance of the teaching hypothesis. At t-time, ATML
generates new hypotheses h̃i from the convex hull of H ′t according to Eq. (8) and obtains

the generation hypothesis set H̃ ′t =
{
h̃i; i ∈ [n]

}
. Next, the algorithm updates the teaching

hypothesis according to Eq. (9) and uses HTt+1 = H ′t ∪ H̃ ′t as the candidate hypothesis set
at (t + 1)-time. More detailed contents can be found in the part of “New hypothesis” of
Section 6 and Remark 12. Note that this is an augmentation of the candidate hypothesis
class due to the generation of new hypotheses.
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7.2 Teaching a Black-box Learner

Here, we consider a more challenging problem: the learner is also a black-box who can
not disclose its hypothesis class information to the teacher. In this setting, the teaching-
hypothesis-class HT of learner is non-transparent. Therefore, the learner tries to converge
to the optimal hypothesis from an initial hypothesis ĥ0 by incremental updates. We extend
ATML into ATML+ for teaching a black-box learner. In each round, ATML+ includes
three stages: 1) query, 2) hypothesis pruning, and 3) self-improvement. Its pseudo-code is
presented in Algorithm 2.

Algorithm 2 ATML+(hT , T, n)

1: Initialize: Teacher hT1 = hT , Learner ĥ0
2: for t ∈ [T ] do
3: pt = maxy |`(hTt (x), y)− `(ĥt−1(x), y)| w.r.t. Eq. (11)
4: Qt ∈ {0, 1} with Qt ∼ B(1, pt)
5: if Qt = 1 then
6: yt ← LABEL(xt)
7: ĥt = argmin Lt(h) with SGD w.r.t. Eq. (3)
8: if Lt−1(ĥt) > Lt−1(ĥt−1) + Φt−1 then
9: ĥt = ĥt−1

10: end if
11: for i ∈ [n] do
12: h̃← λhTt + (1− λ)ĥt
13: hTt+1 = h̃ if R(h̃) < R(hT ) else hTt w.r.t. Eq. (9)
14: end for
15: end if
16: end for
17: Return ĥT

Query (Steps 3-6) In the setting of black-box learner, the maximum error disagreement
of the candidate hypothesis set HTt cannot be obtained. We thus re-characterize query
probability pt by the maximum error disagreement between teacher and learner:

pt = max
y

∣∣∣`(hTt (x), y)− `(ĥt−1(x), y)
∣∣∣ . (11)

Formally, pt should be defined as pt = maxy

∣∣∣`(hTt (x), y)− `(ĥt(x), y)
∣∣∣. Before the update

on ĥt at t-time, ĥt−1 is used to approximate ĥt. At t-time, ATML+ does a Bernoulli trial
Qt with success probability pt to decide whether to query the label of xt.

Hypothesis pruning(Steps 7-10) Since the teaching-hypothesis-classHT is non-transparent,
hypothesis pruning is generalized as a constraint in incremental updates. Specifically, we
present a backtracking approach to ensure that the current empirical optimal hypothesis ĥt
is maintained in the candidate hypothesis set HTt . After the learner updates to ĥt using a
standard optimization algorithm such as stochastic gradient descent (SGD) (Ruder, 2016)
at t-time, we judge whether the hypothesis pruning rule of ĥt is satisfied at (t− 1)-time by
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the following inequality:
Lt−1(ĥt) ≤ Lt−1(ĥt−1) + Φt−1, (12)

where Φt−1 =
(

1 + FTt−1(ĥt−1)
)

∆t−1 represents the slack term. If Eq. (12) does not satisfy,

it means that ĥt has already been pruned, and we backtrack the hypothesis ĥt = ĥt−1. The
backtracking approach forces the learner not to be updated too far for each update, which
prevents the learner to be disordered when updating towards a subsequent hypothesis.

Note that we can not prune the candidate hypothesis HTt to H ′t as Line 8 of Algorithm 1
due to the black-box learner setting, i.e., HT1 = HT cannot be initialized. Alternatively, we

employ the loss inequality of Eq. (12) to determine whether ĥt has been pruned.

Self-improvement(Steps 11-14) Because the teaching-hypothesis-class HT of the learner is
non-transparent, we cannot generate new hypotheses from the convex hull of the candidate
hypothesis set. We suggest generating new hypotheses by a linear combination of the
teaching hypothesis hTt and the current empirical optimal hypothesis ĥt:

h̃ = λhTt + (1− λ)ĥt. (13)

At t-time, ATML+ generates n new hypotheses by Eq. (13) and determines whether updating
the teacher according to Eq. (9).

Note that we can not determine whether the candidate hypothesis sets satisfy Conv(HTt+1) ⊆
Conv(HTt ) due to the black-box setting. Thus, we cannot perform the new hypothesis
generation of Line 10 of Algorithm 1. Alternatively, we introduce the teacher hypothesis hTt
for new hypothesis generation according to Eq. (13).

8. Experiments

To demonstrate our teaching idea of Section 5, we present the empirical studies for teaching-
based hypothesis pruning of Section 5.3, and the self-improvement of teaching of Section 6.
With their guarantees, we then present real-world studies for ATML of Section 7.1 and
ATML+ of Section 7.2.

Dataset We experimented with algorithms on 7 binary classification datasets: skin, shuttle,
magic04, covtype, nomao, jm1 and mnist. Table 2 shows the summary statistics for all
datasets used in our experiment. We denote by N the number of samples, by Dim the
number of features, and R is the relative size of the minority class. For the high-dimensional
datasets (covtype, nomao, jm1 ), we only keep the first 10 principal components of its original
features. For the multi-class datasets (shuttle, covtype), we set the majority class as positive
classes and all the remaining classes as negative classes. For mnist dataset, we set the digit
3 as the positive class and the digit 5 as the negative class. For all datasets, we normalize
each feature to [0, 1].

8.1 Empirical Studies

We present the following empirical studies on six UCI binary classification datasets: 1)
whether the teaching-based hypothesis pruning of ATML can prune the candidate hypothesis
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Table 2: Dataset summary in experiments.

Dataset N Dim R

skin 245,057 3 0.208
magic04 19,020 10 0.352
shuttle 43,500 9 0.216
covtype 581,012 54 0.488
nomao 34,465 118 0.286

jm1 10,880 21 0.193
mnist 11,552 784 0.469

set faster than hypothesis pruning of IWAL; 2) whether self-improvement of teaching strategy
of ATML can reduce the generalization error of teaching hypothesis.

Setting In our empirical studies, we randomly generate 10, 000 hyperplanes with bounded
norms as the initial hypothesis class HT and set the teaching hypothesis as that hypothesis
with the minimum empirical error from HT . For a Dim-dimensional dataset, the sample
can be described as ~x = (x1, ..., xDim). Correspondingly, the generated hyperplanes are
Dim+ 1-dimensional and can be parameterized as ~w = (w1, ..., wDim, b), where b is the bias
term. Thus the prediction of the hypothesis is h(x) =

∑Dim
n=1 wnxn+b. For all (x, y) ∈ X ×Y ,

the loss function is written as `(h(x), y) = log
(
1 + exp

(
− yh(x)

))
, and we use function

g (`(h(x), y)) = 2/
(
1 + exp

(
− `(h(x), y)

))
− 1 to normalize the output of `(h(x), y) to [0, 1].

The hypothesis pruning strategy of IWAL follows Section 4.2, and ATML follows Section 5.3.
To reduce computation, we use 10% of unlabeled samples of X to calculate approximately
L(·, ·) w.r.t. Eq. (1). For example, at t-time, for all x ∈ S, we solve for the disagreement
feedback of teacher and learner by traversing the label y, where S is the unlabeled data
subset of X s.t. |S| = 10% × |X |. If the dataset is split into training set and test set,
we use 10% of training set for calculating L(·, ·) approximately to prevent leakage of test
set information. We repeat the empirical studies 20 times on each dataset and collect the
average results with standard error.

Teaching-based hypothesis pruning To analyze the hypothesis pruning performance of
our teaching idea, we employ IWAL to compare our proposed ATML in the specified HT .
The size of the candidate hypothesis set written as |HTt | is generalized as a feasible measure
to show the pruning speed. We thus present the dynamic change of |HTt | with the number
of query labels (on log2 scale) in Figure 2. Since ATML applies a tighter hypothesis pruning
slack term (w.r.t. Eq. (7)) under the guidance of the approximately optimal teacher, its
pruning speed is naturally faster than that of IWAL in terms of the |HTt |.

Self-improvement of teaching To verify the effectiveness of the self-improvement of
teaching, we observe changes in the generalization error of the teaching hypothesis for ATML.
For each dataset, we randomly select 50% of the data as the training set and approximate
the generalization error of the teaching hypothesis by the empirical error on the remaining
data. The results are presented in Figure 3. With self-improvement of teaching, ATML
gradually tightens the approximation of the teaching hypothesis to the optimal hypothesis.
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Figure 2: The size of the candidate hypothesis set of IWAL and ATML vs. the number of
query labels (log 2 scale).

It then leads to the continuous and steady decreases in the generalization error curve of the
teaching hypothesis for ATML.
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Figure 3: The generalization error of teaching hypothesis for ATML vs. the number of query
labels (log 2 scale).
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8.2 Real-world Studies

We present the performance of ATML and ATML+ in real-world studies. We first report
the performance of ATML in the setting of white-box learner, where IWAL(Beygelzimer
et al., 2009) and IWAL-D(Cortes et al., 2019b) are used as the baseline. We then report the
performance of ATML+ in the setting of black-box learner, where MVR(Freeman, 1965),
ME(Shannon, 2001), and Random(Gal et al., 2017) are used as the baseline. The reason for
the different baselines in the two settings is that these algorithms are not directly applicable
to each other.

White-box learner In this setting, we compare the performance of IWAL, IWAL-D, and
ATML on six UCI binary classification datasets. For all algorithms, we adopt the same
settings as in Section 8.1, including 1) the initialization of the hypothesis set, 2) the loss
function, and 3) the calculation method of L(·, ·). For each dataset, we randomly select 70%
of the data as the training set and the remaining data as the test set. We run the three
algorithms 20 times and collect the average results with standard error.

Firstly, we compare the performance of the hypothesis ĥT returned by IWAL, IWAL-D, and
ATML. Figure 4 presents the error rate of ĥT on the test dataset against the number of query
labels (on log2 scale). The ĥT returned by IWAL and IWAL-D are subjected to the initial
hypothesis class, so the error rate of ĥT is almost the same. However, the self-improvement
of teaching strategy for ATML can generate new hypotheses in the candidate hypothesis set,
so ĥT has a lower error rate. This verifies the Theorem 16 that the learner guided by an
approximately optimal teacher can converge into a tighter generalization error than those
non-educated learners.
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Figure 4: The error rate of IWAL, IWAL-D, and ATML on the test dataset vs. the number
of query labels (log 2 scale).

Secondly, we compare the number of query labels of IWAL, IWAL-D, and ATML. Figure 5
presents the relationship between the number of query labels and the number of samples seen.
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IWAL-D uses the error disagreement of the learner for hypothesis pruning and thus spends
fewer the number of query labels than IWAL. ATML uses the error disagreement between
the teacher and the learner for hypothesis pruning, thus spending the fewest number of query
labels. This further verifies the Theorem 16 that the learner guided by an approximately
optimal teacher can converge into a tighter label complexity than those non-educated learners.
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Figure 5: The number of query labels of IWAL, IWAL-D, and ATML vs. the number of
samples seen.

Black-box learner In this setting, we test ATML+ on the digits 3 and 5 of mnist
dataset(Crammer et al., 2009) as a binary classification task, where 70% of dataset is
randomly selected as the training set and the remaining data as the test set. As a com-
parison, we examine the performance of several standard active learning algorithms: 1)
maximize variation ratios (MVR), 2) max entropy (ME), and 3) random (Random).

In all algorithms, we use the CNN network as a classifier following the structure of convolution-
relu-convolution-relu-max pooling-dropout-dense-relu-dropout-dense, with the loss function:
log(1 + exp(−yh(x)) and normalize to [0, 1]. In ATML+, the teaching hypothesis is specified
as a pre-trained CNN model. We repeat the learning algorithm 20 times and collect the
average results with standard error.

Figure 6 presents the relationship of the test accuracy and the number of query labels, where
ATML+ wins the traditional active learning baselines. The reasons are two-fold: 1) the
traditional active learning algorithms have an unclear purpose, which leads to convergence
of incremental updates that is usually infeasible; 2) ATML+ focuses on the disagreement
between learner and teacher, and thus its convergence benefits from the pre-trained teaching
hypothesis. This shows that teaching a black-box learner is also effective.
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Figure 6: The accuracy of Random, MVR, ME, and ATML+ on the test dataset vs. the
number of query labels.

8.3 Open Discussions

The above empirical experiments evaluate the theoretical advantages of teaching. However,
one question remains: does a warm start to the learning process yield better performance
than teaching? We thus present the below discussions.

Our teaching scenario Student learners typically engage in an iterative process of actively
updating its hypotheses, like active learning. While this behavior can be advantageous,
there is an inherent risk of introducing mistakes through incremental updates including weak
initialization, inaccurate or insignificant history states, resulting in expensive convergence
cost.

Theoretical feasibility Incorporating teaching methods into learning endeavors helps
reduce the potential risks associated with errors, inefficient learning trajectories, poor
generalization, and ineffective hypothesis selection. By providing structured guidance and
feedback, teaching enhances the robustness and reliability of the learning process, leading to
more successful outcomes. Therefore, teaching reduces the potential risk of learning. This is
theoretically feasible and statistically significant, as demonstrated in our continued work
presented at ICML and NeurIPS.

Warm start accelerates learning With appropriate configurations, such as warm starting,
the learning process can exhibit accelerated convergence rates. This phenomenon stems from
the establishment of a robust learning foundation, which inherently facilitates improved
convergence outcomes. The efficacy of this approach is contingent upon meticulous setup of
the learning configuration. Consequently, in theoretical contexts, the amalgamation of robust
learning mechanisms with supplementary information holds promise for enhancing the overall
learning process. While acknowledging the validity of this assertion, it is pertinent to note
that our primary research focus lies elsewhere. This experimental problem, characterized by
non-absolute statistical significance, is intrinsically related to various configurations.
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In summary, we acknowledge that a solid learning framework can markedly improve learning
performance. Introducing teaching as a mentor for learning proves instrumental in mitigating
ineffective or unexpected processes. While our theoretical insights establish a foundational
understanding, our empirical experiments serve to validate these concepts. Nevertheless,
for experimental configurations such as warm-start vs. teaching, the absence of rigorous
theoretical proofs remains a notable gap.

9. Conclusion

Teaching the learner for mentored learning is a novel concept for the traditional hypothesis
space theory in the machine learning community. To maintain fair teaching in error
disagreement-based learners, we designate the machine teacher as approximately optimal
teaching, providing only disagreement feedback to the learner. With this assumption, we
introduce a teaching hypothesis to enhance hypothesis pruning, resulting in tighter bounds
on generalization error and label complexity. Recognizing that the teaching hypothesis may
be a loose approximation to the optimal hypothesis, we also present the self-improvement of
teaching. Supported by our theoretical insights, we explore teaching for both white-box and
black-box learners. Rigorous analysis and robust experiments demonstrate the effectiveness
of our teaching approach.
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Appendix A. Proof

Lemma 9 For any teaching-hypothesis-class HT , the instruction of an active learner is
conducted within it, where the sequence of candidate hypothesis sets satisfies HTt+1 ⊆ HTt
with HT1 = HT . Given any δ > 0, with a probability at least 1− δ, for any T ∈ N+ and for
all h, h′ ∈ HTT , the following inequality holds:∣∣LT (h)− LT (h′)−

(
R(h)−R(h′)

)∣∣ ≤ (1 + L(h, h′)
)

∆T , (14)

where ∆T =
√

(2/T ) log(2T (T + 1)|HT |2/δ).

Proof Pick any T ∈ N+ and a pair of h, h′ ∈ HTT . We define a sequence of random variables
{U1, · · · , UT }, where Ut(t ∈ [T ]) with respect to h, h′:

Ut =
Qt
pt

[
`(h(xt), yt)− `(h′(xt), yt)

]
− [R(h)−R(h′)],

We then solve for the expectation of the random variable Ut with respect to the past:

E[Ut|U1, · · · , Ut−1]

= E
(xt,yt)∼D

Qt
pt

[`(h(xt), yt)− `(h′(xt), yt)]− [R(h)−R(h′)]

= 0.

This indicates that Ut has zero expectation of the past, i.e., the sequence of random variables
{U1, · · · , UT } is a martingale difference sequence.

In order to use the Azuma’s inequality, we also need to prove the individual Ut are bounded.
We split Ut into two parts and prove that each is bounded separately.

We first prove that |`(h(xt), yt) − `(h′(xt), yt)| is bounded. For all hypothesis pruning
strategies, the sequence of candidate hypothesis sets satisfies HTT ⊆ HTT−1 ⊆ · · · ⊆ HT1 = HT .
Thus for all t ≤ T , combine the definition of pt, we have:

|`(h(xt), yt)− `(h′(xt), yt)|
≤ max

y

∣∣`(h(xt), y)− `(h′(xt), y)
∣∣

≤ max
h1,h2∈HTT

max
y
|`(h1(xt), y)− `(h2(xt), y)|

≤ max
h1,h2∈HTt

max
y
|`(h1(xt), y)− `(h2(xt), y)|

= pt.

(15)

ConsideringHTT ⊆ HTt , given the loss disagreement of maxh1,h2 maxy |`(h1(xt), y)− `(h2(xt), y)|,
the upper bound subjected to “h1, h2 ∈ HTT ” is tighter than that of “h1, h2 ∈ HTt ”. From
the perspective of hypothesis diameter, the dual-max optimization elucidates the diameter
of the hypothesis set, and we find the hypothesis diameter of HTT is smaller than that of
HTt . Thus, the above inequality holds.
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Following the similar principle, we next prove that |R(h)−R(h′)| is bounded. Considering
the margin distribution DX is i.i.d. drawn from D, we have

|R(h)−R(h′)| =

∣∣∣∣∣ E
(x,y)∼D

[`(h(x), y)− `(h′(x), y)]

∣∣∣∣∣
≤ E

(x,y)∼D

∣∣`(h(x), y)− `(h′(x), y)
∣∣

≤ E
x∼DX

[
max
y
|`(h(x), y)− `(h′(x), y)|

]
= L(h, h′).

Using the above inequality, we obtain that |Ut| is bounded for all t ∈ [T ]:

|Ut| =
∣∣∣∣Qtpt [`(h(xt), yt)− `(h′(xt), yt)

]
− [R(h)−R(h′)]

∣∣∣∣
≤ 1

pt

∣∣`(h(xt), yt)− `(h′(xt), yt)
∣∣+ |R(h)−R(h′)|

≤ 1 + L(h, h′).

Thus {U1, · · · , UT } is a martingale difference sequence with bounded 1 + L(h, h′). To make
the subsequent proof clearer, let Zt = Ut

1+L(h,h′) . Then {Z1, · · · , ZT } is a martingale difference

sequence with bounded |Zt| ≤ 1. Applying Azuma’s inequality to
∑T

t=1 Zt:

P
(
|LT (h)− LT (h′)−R(h) +R(h′)| ≥ (1 + L(h, h′))∆T

)
= P

(
1

T
|
T∑
t=1

Zt| ≥ ∆T

)

= P

(
|
T∑
t=1

Zt| ≥ T∆T

)

≤ 2 exp(
−T 2∆2

T

2T
)

=
δ

T (T + 1)|HT |2
.

The above probability inequality shows that the probability that Eq. (14) does not hold
is less than δ

T (T+1)|HT |2 . Note that with the last line of the inequality, we have ∆T =√
(2/T ) log(2T (T + 1)|HT |2/δ).

SinceHTT is a random subset ofHT , a union bound over all T ∈ N+ and all pairs of h, h′ ∈ HTT ,
we can conclude the proof. In short, any measure of hypothesis disagreement yields a given
maximum discrepancy. This ensures the safety of hypothesis pruning, preventing the
subsequent process from stepping outside the hypothesis space.
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Theorem 10 For any teaching-hypothesis-class HT , the instruction of an active learner is
conducted within it. Given any δ > 0, with a probability at least 1− δ, for any t ∈ N+, the
following inequality holds:

Lt(h
T )− Lt(ĥt) ≤

(
1 + FT (ĥt)

)
∆t.

Proof Start by assuming that the 1− δ probability event of Lemma 9 holds.

Let t = T ∈ N+. By using the absolute value inequality, we have:

Lt(h
T )− Lt(ĥt)

≤ R(hT )−R(ĥt) + (1 + L(hT , ĥt))∆t

≤ (1 + FT (ĥt))∆t.

The last inequality follows from the fact that hT has the minimum generalization error in
HT , i.e., R(hT )−R(ĥt) ≤ 0.

From the arbitrariness of T , the theorem is proved. Note that this shows the empirical
hypothesis ĥt is mentored by the teaching hypothesis hT employing a teaching feedback
function FT .

Theorem 11 For any teaching-hypothesis-class HT , the instruction of an active learner is
conducted within it. Given any δ > 0, with a probability at least 1− δ, for any T ∈ N+, the
following holds:

1) the generalization error holds

R(ĥT ) ≤ R(h∗) +
(

2 + FT (ĥT−1) + FT (ĥT )
)

∆T−1 + ε;

2) if the learning problem has disagreement coefficient θ, the label complexity is at most

τT ≤ 2θ
(

2TR(h∗) +
(
3 + FT (ĥT−1))

)
O(
√
T ) + 2Tε

)
.

Proof Start by assuming that the 1− δ probability event of Lemma 9 holds.

Firstly, we give the bound of R(ĥT ). Since HTT ⊆ HTT−1, there is ĥT , h
T ∈ HTT−1. To

eliminate the importance-weighted empirical error, we consider Eq. (14) with respect to
ĥT , h

T at (T − 1)-time:

R(ĥT )−R(hT )

≤ LT−1(ĥT )− LT−1(hT ) + (1 + L(ĥT , h
T ))∆T−1

≤ LT−1(ĥT−1) + (1 + FT (ĥT−1))∆T−1 − LT−1(ĥT−1) + (1 + FT (ĥT ))∆T−1

≤
(

2 + FT (ĥT−1) + FT (ĥT )
)

∆T−1,
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where the second to last inequality follows from teaching-based hypothesis pruning rule
w.r.t. Eq. (7). Thus, for any T ∈ N+, the bound of generalization error for ĥT satisfies the
following inequality:

R(ĥT ) ≤ R(hT ) +
(

2 + FT (ĥT−1) + FT (ĥT )
)

∆T−1

≤ R(h∗) +
(

2 + FT (ĥT−1) + FT (ĥT )
)

∆T−1 + ε,

where the last inequality comes from Corollary 8. Note that the upper bound of the empirical
loss of hT could be mentored by the T -time teaching feedback FT (ĥT ). To tighten this
bound, the above inequality employs the teaching feedback at (T − 1)-time since FT (ĥT ) is
influenced by FT (ĥT−1). This reduces the loose property of the inequality.

Next, we give the upper bound of τT . For any h ∈ HT and the teaching hypothesis hT , their
disagreement ρ(h, hT ) w.r.t Eq. (5) has the upper bound:

ρ(h, hT ) = E
(x,y)∼D

∣∣`(h(x), y)− `(h′(x), y)
∣∣

≤ E
(x,y)∼D

[
`(h(x), y) + `(h′(x), y)

]
≤ R(h) +R(hT ).

For any t ∈ [T ], if h ∈ HTt , using Lemma 9, we have the upper bound for R(h):

R(h) ≤ R(hT ) +
(

2 + FT (ĥt−1) + FT (h)
)

∆t−1. (16)

When h ∈ HTt , we use Eq. (16) to rewrite the upper bound of ρ(h, hT ) as follows:

ρ(h, hT ) ≤ 2R(hT ) +
(

2 + FT (ĥt−1) + FT (h)
)

∆t−1.

The above inequality shows that there is a common upper bound on the disagreement
between any h in HTt and the teaching hypothesis hT . Thus, we can construct a ball
B(hT , rt) such that HTt ⊆ B(hT , rt) for any t-time, where

rt = 2R(hT ) +

(
2 + FT (ĥt−1) + max

h∈HTt
FT (h)

)
∆t−1. (17)

LetOt denote all the previous observations up to t-time: Ot = {(x1, y1, p1, Q1), ..., (xt, yt, pt, Qt)}
with O0 = ∅. By using the error disagreement coefficient w.r.t Eq. (6), the expected value of
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the query probability pt is at most:

E
xt∼DX

[pt | Ot−1]

= E
xt∼DX

max
h,h′∈HTt

max
y
|`(h(xt), y)− `(h′(xt), y)|

≤ 2 E
xt∼DX

max
h∈HTt

max
y
|`(h(xt), y)− `(hT (xt), y)|

≤ 2 E
xt∼DX

max
h∈B(hT ,rt)

max
y
|`(h(xt), y)− `(hT (xt), y)|

≤ 2θrt

= 2θ

(
2R(hT ) + (2 + FT (ĥt−1) + max

h∈HTt
FT (h))∆t−1

)
,

where the first inequality follows from the triangle inequality, the second inequality follows
from HTt ⊆ B(hT , rt), and the third inequality follows from the definition of θ.

Summing over t = 1, ..., T , we get the upper bound of the label complexity τT :

τT =

T∑
t=1

E
xt∼DX

[pt | Ot−1]

=

T∑
t=1

2θ

(
2R(hT ) + (2 + FT (ĥt−1) + max

h∈HTt
FT (h))∆t−1

)

≤
T∑
t=1

2θ
(

2R(hT ) + (3 + FT (ĥt−1))∆t−1

)
= 2θ

(
2TR(hT ) + (3 + FT (ĥT−1))

T∑
t=1

∆t−1

)
≤ 2θ

(
2TR(hT ) + (3 + FT (ĥT−1))O(

√
T )
)
,

where the last inequality uses
∑T

t=1

√
1
t = O(

√
T ). Recalling Corollary 8, there exists

R(h∗) ≤ R(hT ) such that

τT ≤ 2θ
(

2TR(h∗) +
(
3 + FT (ĥT−1))

)
O(
√
T ) + 2Tε

)
.

Note that recalling Eqs. (4) and (7), there is
(

1 + FT (ĥt)
)

∆t ≤ 2∆t, we thus obtain the

first inequality. By shifting
∑T

t=1 ∆t−1 into O(
√
T ), the second inequality holds. This serves

to integrate inequalities at the function level into the complexity scale.

Lemma 13 For any teaching-hypothesis-class HT , the instruction of an active learner is
conducted within it. If the loss function can be rewritten to form `(h(x), y) = φ(yh(x)) and
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the function φ is non-increasing and convex, for any candidate hypothesis set HTt and for
all x ∈ X , the following equation holds:

max
h,h′∈Conv(HTt )

max
y

∣∣`(h(x), y)− `(h′(x), y)
∣∣ = max

h,h′∈HTt
max
y

∣∣`(h(x), y)− `(h′(x), y)
∣∣ , (18)

where Conv(HTt ) is the convex hull of the hypothesis set HTt .

Proof Let f(x) = maxh,h′∈Conv(HTt ) maxy |`(h(x), y)− `(h′(x), y)| denote the left-hand side

of Eq. (18), and g(x) = maxh,h′∈HTt ) maxy |`(h(x), y)− `(h′(x), y)| denote the right-hand

side of Eq. (18). For all x ∈ X , we prove f(x) ≥ g(x), then prove f(x) ≤ g(x), and get
f(x) = g(x). Since Conv(HTt ) ⊇ HTt , there is f(x) ≥ g(x). We next prove f(x) ≤ g(x).

For any t ∈ [T ] and for all hypotheses h ∈ Conv(HTt ), h can be linear representation by the
hypothesis hj in HTt = {h1, h2, ..., h|HTt |}, that is

h =

|HTt |∑
j=1

λjhj ,

where
∑m

j λj = 1 with λj ∈ [0, 1].

Based on the additional assumptions of the loss function, `(h(x), y) = φ(yh(x)), where φ is a
non-increasing function. Then, for all hypotheses h ∈ Conv(HTt ) and for any (x, y) ∈ X ×Y ,
`(h(x), y) has the following upper bound:

`(h(x), y) = `

|HTt |∑
j=1

λjhj(x), y


= φ

y |HTt |∑
j=1

λjhj(x)


≤ max

hj∈HTt
φ(yhj(x))

= max
hj∈HTt

`(hj(x), y).

(19)

Note that φ
(
y
∑|HTt |

j=1 λjhj(x)
)

is a linear group of hj subjected to
∑

j λj = 1. Thus this

new generation hypothesis inherits the upper and lower bounds of the loss of hj . On this
reason, `(h(x), y) has the following lower bound:

`(h(x), y) = `

|HTt |∑
j=1

λjhj(x), y


= φ

y |HTt |∑
j=1

λjhj(x)


≥ min

hj∈HTt
φ(yhj(x))

= min
hj∈HTt

`(hj(x), y).

(20)
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With inequalities Eq. (19)-(20), for all hypotheses h ∈ Conv(HTT ) over any (x, y) ∈ X × Y,
the loss `(h(x), y) can be bounded by the loss of hypothesis hj ∈ HTt .

Using the above properties of the loss function w.r.t. Eq. (19)-(20), we can derive the
upper bound of error disagreement for any hypothesis pair {h, h′} ⊆ Conv(HTt ) over all
(x, y) ∈ X × Y. For any h, h′ ∈ Conv(HTt ) and for all (x, y) ∈ X × Y, there exists
h, h′ ∈ Conv(HTt ) such that

`(h(x), y)− `(h′(x), y)

≤ max
h∈HTt

`(h(x), y)− min
h∈HTt

`(h(x), y)

≤ max
h,h′∈HTt

|`(h(x), y)− `(h′(x), y)|

≤ max
h,h′∈HTt

max
y
|`(h(x), y)− `(h′(x), y)|.

For the first and second inequalities, the disagreement of the upper and lower bound of
h(x) ∈ HTt must be tighter than that of the maximal discrepancy of h(x), h′(x) ∈ HTt , which
denotes the hypothesis diameter of HTt . Observing any class over y, the third inequality
holds.

The above inequalities show that the error disagreement in Conv(HTt ) over a fixed sample x
will not exceed the maximum error disagreement in HTt over x.

Take the common upper bound on the left side of the inequality to conclude the proof.

Lemma 17 For any teaching-hypothesis-class HT , the instruction of an active learner is
conducted within it, where the sequence of candidate hypothesis sets satisfies Conv(HTt+1) ⊆
Conv(HTt ) with HT1 = HT . Given any δ > 0, with a probability at least 1 − δ, for any
T ∈ N+ and for all h, h′ ∈ Conv(HTT ), the following inequality holds:

∣∣LT (h)− LT (h′)−
(
R(h)−R(h′)

)∣∣ ≤ (1 + L(h, h′)
)

∆T , (21)

where ∆T =
√

(2/T ) log(2T (T + 1)|HT |2/δ).

Proof Lemma 17 complements the scenario of Lemma 9, where the satisfying condition is
weakened from HTt+1 ⊆ HTt to Conv(HTt+1) ⊆ Conv(HTt ). Recalling the process of proving
Lemma 9, to prove Lemma 17, we only need to show that Eq. (15) still holds.
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For all t ≤ T and for any h, h′ ∈ Conv(HTT ), we have:

|`(h(xt), yt)− `(h′(xt), yt)|
≤ max

y

∣∣`(h(xt), y)− `(h′(xt), y)
∣∣

≤ max
h1,h2∈Conv(HTT )

max
y
|`(h1(xt), y)− `(h2(xt), y)|

≤ max
h1,h2∈Conv(HTt )

max
y
|`(h1(xt), y)− `(h2(xt), y)|

= max
h1,h2∈HTt

max
y
|`(h1(xt), y)− `(h2(xt), y)|

= pt,

where the second to last inequality follows that maximum error disagreement at a certain
fixed sample x will not increase w.r.t. Lemma 13.

Theorem 14 For any teaching-hypothesis-class HT , the instruction of an active learner is
conducted within it, where the sequence of candidate hypothesis sets satisfies Conv(HTt+1) ⊆
Conv(HTt ) with HT1 = HT . For any t ∈ N+, given any δ > 0, with a probability at least

1− δ, for any h̃ ∈ H̃ ′t, the following inequality holds:

R(hT )−R(h̃) ≥ Lt(hT )− Lt(h̃)−
(

1 + FT (h̃)
)

∆t.

Proof Start by assuming that the 1− δ probability event of Lemma 17 holds.

Let t = T ∈ N+. For all new hypotheses h̃ ∈ H̃ ′t, there is h̃ ∈ Conv(HTt ) by the definition of
h̃ w.r.t. Eq. (8). At t-time, we use Lemma 17 w.r.t. hT , h̃ to obtain the following inequality:

R(hT )−R(h̃) ≥ Lt(hT )− Lt(h̃)− (1 + FT (h̃))∆t.

From the arbitrariness of T , the theorem is proved. Consequently, the new generation
hypothesis also follows the teaching constraints as the other hypotheses.

Theorem 16 For any teaching-hypothesis-class HT , the instruction of an active learner is
conducted within it. If the self-improvement of teaching is applied, given any δ > 0, with
a probability at least 1− δ, for any T ∈ N+, the following holds: 1) for any t ∈ [T ], holds
hTt ∈ HTt ;

2) the generalization error holds

R(ĥT ) ≤ R(h∗) +
(

2 + FTT−1(ĥT−1) + FTT−1(ĥT )
)

∆T−1 + εT−1;

3) if the learning problem has disagreement coefficient θ, the label complexity is at most

τT ≤ 2θ
(

2TR(h∗) +
(
3 + FTT−1(ĥT−1)

)
O(
√
T ) + 2TεT−1

)
.
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Proof Start by assuming that the 1− δ probability event of Lemma 17 holds.

We first show that hTt ∈ HTt for any t ∈ [T ] by mathematical induction. It obviously applies
to t = 1. Now suppose it holds for t = k, that is, hTk ∈ HTk , let us prove that it is also true
for t = k + 1. By Lemma 17, there is hTk ∈ HTk such that

Lk(h
T
k )− Lk(ĥk)

≤ R(hTk )−R(ĥk) + (1 + L(hTk , ĥk))∆k

≤ (1 + FTk (ĥk))∆k.

Therefore, we have Lk(h
T
k ) ≤ Lk(ĥk) + (1 + FTk (ĥk))∆k, which shows that the teaching

hypothesis hTk satisfies the hypothesis pruning rule, i.e., hTk ∈ H ′k. If the self-improvement
of teaching strategy does not find a better teaching hypothesis, then hTk+1 = hTk ∈ H ′k. This
provides a fallback guarantee. If the self-improvement of teaching strategy finds a better
teaching hypothesis, then hTk+1 ∈ H̃ ′k. In both cases, there is always holds hTk+1 ∈ H ′k ∪ H̃ ′k =

HTk+1. Thus hTt ∈ HTt holds for any t ∈ [T ] by the mathematical induction. This provides a
significant forward guarantee.

Next, we give the bound of R(ĥT ). Since ĥT ∈ HTT = H ′T−1 ∪ H̃ ′T−1, we consider h ∈ H ′T−1
and h ∈ H̃ ′T−1 separately.

Assuming that ĥT ∈ H ′T−1, we give an upper bound on the generalization error for any
hypothesis h in H ′T−1. Since h ∈ H ′T−1 ⊆ HTT−1, by Lemma 17, we have:

R(h)−R(hTT−1)

≤ LT−1(h)− LT−1(hTT−1) + (1 + L(h, hTT−1))∆T−1

≤ LT−1(ĥT−1) + (1 + FTT−1(ĥT−1))∆T−1 − LT−1(ĥT−1) + (1 + FTT−1(ĥT ))∆T−1

≤
(

2 + FTT−1(ĥT−1) + FTT−1(ĥT )
)

∆T−1,

where FTt (·) := L(hTt , ·) denotes the disagreement feedback with latest teaching hypothesis
hTt at t-time.

Assuming that h ∈ H̃ ′T−1, the second inequality above is no longer true because h does
not necessarily satisfy the hypothesis pruning rule. According to the self-improvement of

teaching strategy w.r.t. Section 6, we can express h as h =
∑|H′T−1|

j=1 λjhj , where hj ∈ H ′T−1
and

∑m
j λj = 1 with λj ∈ [0, 1]. Based on the additional assumptions of the loss function,
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the following inequality portrays the upper bound of R(h).

R(h) = E
(x,y)∼D

[`(

|H′T−1|∑
j=1

λjhj(x), y)]

= E
(x,y)∼D

[φ(y

|H′T−1|∑
j=1

λjhj(x))]

≤
|H′T−1|∑
j=1

λj E
(x,y)∼D

[φ(yhj(x))]

≤ max
hj∈H′T−1

E
(x,y)∼D

[`(hj(x), y)]

= max
hj∈H′T−1

R(hj).

Note this group of inequalities inherit the similar properties of Eq. (19). It shows that the
generalization error of the hypothesis in H̃ ′T will not be greater than the generalization error
of the hypothesis in H ′T . In other words, any new generation hypothesis derived from the
convex hull of H ′T will inherit the constraints of H ′T ’s hypothesis diameter, which requires
both an upper and lower bound for the loss.

Thus, for any T ∈ N+, the bound of generalization error for ĥT satisfies the following
inequality:

R(ĥT ) ≤ R(hTT−1) +
(

2 + FTT−1(ĥT−1) + FTT−1(ĥT )
)

∆T−1

≤ R(h∗) +
(

2 + FTT−1(ĥT−1) + FTT−1(ĥT )
)

∆T−1 + εT−1,

where the last inequality comes from the definition of εT−1 and Corollary 15.

The proof of label complexity is similar to Theorem 11, which is omitted here.
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