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Abstract
Neural Collapse (NC) is a fascinating phenomenon that arises during the terminal phase of
training (TPT) of deep neural networks (DNNs). Specifically, for balanced training datasets
(each class shares the same number of samples), it is observed that the feature vectors of
samples from the same class converge to their corresponding in-class mean features and their
pairwise angles are the same. In this paper, we study the extension of NC phenomenon to
imbalanced datasets under cross-entropy loss function in the context of the unconstrained
feature model (UFM). Our contribution is multi-fold compared with the state-of-the-art
results: (a) we show that the feature vectors within the same class still collapse to the
same mean vector; (b) the mean feature vectors no longer share the same pairwise angle.
Instead, those angles depend on sample sizes; (c) we also characterize the sharp threshold
on which the minority collapse (the feature vectors of the minority groups collapse to one
single vector) will happen; (d) finally, we argue that the effect of the imbalance in datasets
diminishes as the sample size grows. Our results provide a complete picture of the NC
under the cross-entropy loss for imbalanced datasets. Numerical experiments confirm our
theories.
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1. Introduction
Deep neural networks (DNNs) have achieved impressive results in various classification
tasks He et al. (2016); Krizhevsky et al. (2012); LeCun et al. (2015); Simonyan and Zisser-
man (2014); Szegedy et al. (2015). However, its highly nonconvex nature along with the
massive number of parameters and distinct training paradigms pose great challenges for
conducting theoretical analysis. A recent thread of works studies the ways to keep optimiz-
ing the model in the terminal phase of training (TPT) when the training loss is very close
to zero to achieve a better generalization power Hoffer et al. (2017); Belkin et al. (2019b,a).
Therefore, theoretical studies about such over-parametrized neural networks in this regime
become helpful in demystifying DNNs so as to design better training paradigms.

Neural collapse (NC) is a phenomenon observed in Papyan et al. (2020) that some
particular structures emerge in the feature representation layer and the classification layer
of DNNs in the TPT regime for classification tasks when the training dataset is balanced. It
has been also observed and studied under the mean-squared loss Han et al. (2021); Poggio
and Liao (2021); Zhou et al. (2022a) and in many different settings Ergen and Pilanci (2021);
Ji et al. (2021); Tishby and Zaslavsky (2015). For the simplicity of future discussion, we
restate the four types of collapses introduced in Papyan et al. (2020):

• NC1: the feature of samples from the same class converge to a unique mean feature
vector;

• NC2: these feature vectors (after centering by their global mean) form an equiangular
tight frame (ETF), i.e., they share the same pairwise angles and length;

• NC3: the weight of the linear classifier converges to the corresponding feature mean
(up to scalar product);

• NC4: the trained DNN classifies the sample by finding the closest mean feature vectors
to the sample feature.

After this empirical finding, many works follow to theoretically explain why NC occurs
in DNNs. Staring from E and Wojtowytsch (2022); Fang et al. (2021); Lu and Steinerberger
(2022); Mixon et al. (2020), a thread of works consider the unconstrained feature model
(UFM) to simulate the process of training DNNs. The UFM simplifies a deep neural network
into an optimization program by treating the features of training data as free variables to
optimize over. Such simplification is based upon the rationale of universal approximation
theorem Hornik et al. (1989): deep neural networks can well approximate a large variety
of functions provided that the neural network is sufficiently over-parameterized. Various
versions of UFMs with different loss functions and regularizations are proposed in these
works E and Wojtowytsch (2022); Mixon et al. (2020); Zhu et al. (2021); Fang et al. (2021);
Dang et al. (2023); Zhou et al. (2022b); Lu and Steinerberger (2022); Tirer and Bruna
(2022); Tirer et al. (2023); Mixon et al. (2020); Yaras et al. (2022). They all manage to
find that the global minimizers of the empirical risk function under the UFMs match the
characterization of NC proposed in Papyan et al. (2020).

While there are many recent works focusing on balanced datasets, we take a step further
to see how NC generalizes to imbalanced datasets. Several works have already addressed
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phenomena in the imbalanced scenario. In particular, Fang et al. (2021) found a phe-
nomenon called minority collapse in the TPT regime for the training on imbalanced data.
They empirically observed that under cross-entropy loss, as the imbalance ratio goes to in-
finity, the pairwise angles among minority classes become zero, which means the predictions
on the minority classes become indistinguishable. It is believed that if the imbalance ratio is
above a certain threshold, this minority collapse occurs but the exact threshold is unknown.
A recent work Dang et al. (2023) obtained this exact threshold under the mean-square er-
ror (MSE) loss. The work Thrampoulidis et al. (2022) considered the neural collapse for
the imbalanced dataset under the unconstrained-feature SVM (UF-SVM) and proposed
Simplex-Encoded-Labels Interpolation (SELI) geometry that characterized the structure of
global minimizers to the UF-SVM, and later Behnia et al. (2023) extended Thrampoulidis
et al. (2022) to several cross-entropy parameterizations.

However, to the best of our knowledge, the NC on imbalanced datasets under the cross-
entropy loss is not fully understood. Our work will try to address a few questions that are
not yet answered in the current literature:

(a) Does NC1 still occur for the UFMs under cross-entropy loss if the data are imbal-
anced?

(b) If NC1 holds, what is the structure of the mean feature or prediction matrices?

(c) Can we provide a sharp threshold for the minority collapse?

(d) How does the imbalance ratio affect the structure of the mean feature vectors if the
sample size is sufficiently large?

For (a) and (b), these questions are answered under the MSE loss in Dang et al. (2023).
However, it becomes much more challenging under the cross-entropy loss. While Fang et al.
(2021) studied a special case when there are two giant clusters, a clear characterization of
the general case is unknown under the cross-entropy loss. For (c), the threshold for minority
collapse remains unknown and we aim to fill this gap. For (d), we have not observed any
recent works investigating this issue.

By adopting the UFMs under the cross-entropy loss, we provide a complete picture
of NC for the imbalanced scenario. Here are our main contributions: (i) We provide a
concise proof for NC1 under the cross-entropy loss for imbalanced datasets. This argument
is flexible and can be easily applied to other UFM settings and different loss functions.
Additionally, we find NC2 and NC3 do not hold for imbalanced datasets (Theorem 2). (ii)
By working with imbalanced datasets where the classes are partitioned into clusters such
that classes from the same cluster share the same number of samples, we show that the mean
feature, prediction and classifier weight vector of the classes from the same cluster form an
ETF-like structure. Moreover, we show the bias terms corresponding to the same cluster
also share the same value (Theorem 2). (iii) When there are only two clusters (majority
and minority cluster), which is the same setting adopted in Fang et al. (2021), we provide
an exact threshold for the minority collapse. Moreover, we also characterize the threshold
for complete collapse (Theorem 3), in which case all the classes collapse to a single vector.
(iv) We provide an asymptotic characterization when the number of samples in the majority
and minority cluster goes to infinity, but the imbalance ratio stays constant. We find NC2
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and NC3 hold asymptotically and the convergence rate w.r.t. the sample size is provided
(Theorem 5).

1.1 Notation

We let boldface letter X and x be a matrix and a vector respectively; X⊤ and x⊤ are
the transpose of X and x respectively. The matrices In, Jn, and ek are the n× n identity
matrix, a constant matrix with all entries equal to 1, and the one-hot vector with k-th entry
equal to 1. For the simplicity of notation, we also let

CK := IK − JK/K (1.1)

be the K × K centering matrix. For any vector x, diag(x) denotes the diagonal matrix
whose diagonal entries equal x. For any matrix X, we let ∥X∥, ∥X∥F , and ∥X∥∗ be the
operator norm, Frobenius form, and nuclear norm.

1.2 Organization

The following sections are organized in the following way. In Section 2, we formally introduce
NC and our UFM along with a review of more recent works about NC. In Section 3, we
present our main theoretical results. In Section 4, we provide numerical experiments to
support our theoretical findings and Section 5 justifies all our theorems.

2. Preliminaries
In this section, we briefly introduce DNNs, and then define the UFM and NC formally. A
deep neural network (DNN) is often in the form of

fΘ(x) = W⊤hθ(x) + b

where hθ ∈ Rd represents the feature vector on the last layer, W ∈ RK×d and b ∈ RK

stand for the weight and bias respectively. The capital letter Θ consists of all the training
parameters (θ,W , b) in the DNN. In addition, we call x the input and fΘ(x) the prediction
vector of x. Given the training data {(xi,yi)}Ni=1, we try to find a model via empirical risk
minimization (ERM):

min
Θ

1

N

N∑
i=1

ℓ(fθ(xi),yi) +
λ

2
∥Θ∥2

where ℓ(·, ·) denotes a loss function, yi is a one-hot vector representing the label of the i-th
training data xi, and λ > 0 is the regularization parameter (i.e., weight decay parameter
of SGD). For the classification tasks, we will use the cross-entropy (CE) function ℓCE(·, ·),
i.e.,

ℓCE(z, ek) = log

∑K
ℓ=1 e

zℓ

ezk
= log

K∑
ℓ=1

ezℓ − zk.

We let hki := hθ(xki) be the feature of the i-th data point in the k-th class with 1 ≤
i ≤ nk and 1 ≤ k ≤ K, and N =

∑K
k=1 nk is the total number of samples. In other words,
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there are in total K different classes with the k-th class containing nk samples. Without
loss of generality, we let {nk}Kk=1 be a non-increasing sequence, i.e., n1 ≥ n2 ≥ · · · ≥ nK . To
simplify the notation, we let H ∈ Rd×N be the feature matrix of all training samples with
hki denoting the

(∑k−1
i=1 nk + i

)
-th column of H. Now we are ready to introduce UFMs

and NC related results.

2.1 Unconstrained feature model
For general DNNs, the feature hθ(·) is always highly nonlinear and thus challenging to
analyze. The unconstrained feature model (UFM) simplifies the DNN model by assuming
hθ(·) as a free vector, by using the idea that if a neural network is sufficiently parameterized,
it can interpolate any data. Under the UFM, we instead study the regularized empirical
risk minimization (ERM):

min
W∈Rd×K

,H∈Rd×N

1

N

K∑
k=1

nk∑
i=1

ℓCE(W
⊤hki + b, ek) +

λW

2
∥W ∥2F +

λH

2
∥H∥2F +

λb

2
∥b∥2

where (λW , λH , λb) are positive regularization parameters. It has an equivalent matrix form:

min
W∈Rd×K

,H∈Rd×N
L(W ,H, b) :=

1

N
ℓCE(W

⊤H+b1⊤N ,Y )+
λW

2
∥W ∥2F+

λH

2
∥H∥2F+

λb

2
∥b∥2

(2.1)
where W ∈ Rd×K , H = {hki}1≤i≤nk,1≤k≤K ∈ Rd×N ,

Y = [e11
⊤
n1
, · · · , eK1⊤nK

] ∈ RK×N , (2.2)

and ℓCE(W
⊤H + b1⊤N ,Y ) computes the cross entropy column-wisely and then takes the

sum.
It is a great convenience to work with model (2.1) as we can convexify the problem.

Under d ≥ K, i.e., in the regime of over-parameterization, then W⊤H can represent any
K ×N matrix. Therefore, let Z = W⊤H ∈ RK×N and we have

min
W⊤H=Z

λW ∥W ∥2F + λH∥H∥2F = 2
√
λWλH∥Z∥∗ (2.3)

which follows from (Recht et al., 2010, Lemma 5.1) and (Zhu et al., 2021, Lemma A.3). By
letting λZ :=

√
λWλH , (2.1) becomes

min
Z∈RK×N

,b∈RK
L(Z, b) :=

1

N
ℓCE(Z + b1⊤N ,Y ) + λZ∥Z∥∗ +

λb

2
∥b∥2 (UFM)

which is a convex optimization problem.
Therefore, it suffices to focus on the structure of global minimizers to (UFM), as it

implies the global minimizer to (2.1). To see this, let Z∗ be a global minimizer to (UFM)
and Z∗ = UΣV ⊤ be its SVD. Then W ∝ Σ1/2U⊤ and H ∝ Σ1/2V ⊤ are actually the
global minimizer to (2.1), which follows from (Recht et al., 2010, Lemma 5.1). As a result,
our focus will be on analyzing Z instead of its factorized form Z = W⊤H. In particular,
we will call Z the prediction matrix.
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2.2 Neural collapse
In this section, we will review more recent works relevant to ours. Regarding the theoretical
understanding of NC, the research on the UFMs has become popular in the past few years.
Besides the UFM we have introduced above, there are several variants of the UFMs in
the state-of-the-art literature. Most works focus on characterizing the global solution of
the corresponding regularized empirical risk function and aim to show that it captures NC
phenomenon on the balanced dataset. For more details, we refer readers to works such
as Kothapalli et al. (2022); Zhu et al. (2021) and the references therein. With the notation
introduced in Section 2.1 at hand, we can describe the NC more precisely.

• NC1 - within-class variability collapse: hki = h̄k for 1 ≤ i ≤ nk and 1 ≤ k ≤ K;

• NC2 - convergence of the mean features to an ETF. Let H̄ = [h̄1, h̄2, · · · , h̄k] ∈ Rd×K

be the mean feature matrix. Then it holds H̄⊤H̄ ∝ CK , i.e., the mean features form
an equiangular tight frame (a regular simplex);

• NC3 - self-duality. The weight matrix W is proportional to H̄⊤.

NC on balanced datasets: The NC is first empirically observed on the balanced dataset
in Papyan et al. (2020). Hence most follow-up works focus on the balanced scenario, i.e.,
n1 = · · · = nK . The goal is to prove the global minimizer associated with the ERM satisfies
NC1-NC3 in Papyan et al. (2020) under certain UFMs. The work Fang et al. (2021) studies
the neural collapse under the bias-free unconstrained feature model (termed as the layer-
peeled model in Fang et al. (2021)), and shows NC1-NC3 hold in the balanced scenario with
an ℓ2-norm constraint on (W ,H, b). Several works have provided similar results such as E
and Wojtowytsch (2022); Lu and Steinerberger (2022); Zhu et al. (2021). In particular, the
authors in Zhu et al. (2021) characterize the benign landscape of the regularized ERM by
showing that there is only one local minimizer that is also global, modulo a global rotation.

The NC under the UFMs with MSE loss has also been studied in Dang et al. (2023); Han
et al. (2021); Tirer and Bruna (2022); Zhou et al. (2022a). While the within-class collapse
NC1 still holds, NC2 exhibits a slightly different structure: the mean feature vectors in H̄
become pairwise orthogonal, i.e., H̄⊤H̄ ∝ IK . This is due to the difference between the
CE and MSE loss. Other loss functions including loss label smoothing and focal loss have
been considered in Zhou et al. (2022b) to demonstrate the universality of NC.

NC on imbalanced data: The work Fang et al. (2021) is likely the first to consider the
NC for the imbalanced data under the UFM and cross-entropy loss. They work with a
dataset consisting of two giant clusters A and B: each cluster A (or B) contains kA (or kB)
classes and each class contains nA (or nB) samples, i.e., nA := n1 = n2 = · · · = nkA and
nB := nkA+1 = nkA+2 · · · = nkA+kB . Without loss of generality, we assume nA > nB, and A
and B are referred to as majority and minority class respectively. In Fang et al. (2021), it is
empirically observed that the NC1 occurs. Moreover, when the imbalance ratio r := nA/nB

is greater than some threshold, all the mean feature vectors w.r.t. the minority class become
the same, which means the prediction on the classes in B becomes indistinguishable. This
phenomenon is termed as the minority collapse. Theoretically, Fang et al. (2021) shows
minority collapse when the imbalance ratio r is sufficiently large but the exact threshold
remains unknown.
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For the minority collapse under MSE loss, Dang et al. (2023) has explicitly characterized
the collapse threshold for each class in terms of the regularization parameters and number of
samples. The argument essentially follows from the idea of singular value thresholding Cai
et al. (2010). In particular, Behnia et al. (2023) provides the pairwise angle within the
minority and majority classes under two parameterizations of the CE loss.

NC beyond the UFMs: There are a few other works concerning slightly more compli-
cated models beyond the UFMs. Recently, Yaras et al. (2022) has taken one step forward
from the UFMs by restricting the weight wk and feature hki on the unit ball, also known
as the normalized features, and has analyzed the NC under this restricted setting. One
disadvantage of the UFM is that the model ignores the network depth and nonlinearity,
and also the dependence of the feature vector on the input sample. A few progress in
this direction include Dang et al. (2023) which considers deep linear networks and explores
the NC under the MSE. In addition, Tirer and Bruna (2022) adds a bit of nonlinearity
by applying the ReLU activation to the features H before feeding to the linear classifier.
Recently, Seleznova et al. (2023) has explored the connection between the neural collapse
and neural tangent kernel Jacot et al. (2018).

NC and training/generalization Now we briefly review a few other works that are
relevant to the NC. Regarding the stability of NC, the work Tirer et al. (2023) considers
initializing the input feature near the collapsed solution and conducts perturbation analysis
in the near-collapse regime. Motivated by the ETF type mean feature vectors, Yang et al.
(2022); Zhu et al. (2021) consider training with the last layer fixed as an ETF; this training
scheme achieves on-par performance compared with that with the classifier not fixed. This
may be used as a potential way to decrease the computational costs of training DNNs. The
works Galanti et al. (2021, 2022) show that few-shot learning achieves good performance
by adopting transfer learning on a trained-to-collapsed network except for the last classifier
layer. A similar setting of transfer learning is also considered in Li et al. (2022).

Another important aspect is the connection between NC and generalization Elad et al.
(2020); Hui et al. (2022). The recent work Hui et al. (2022) has examined their relation
empirically. They find the collapse on the testing dataset does not take place on benchmark
datasets including MNIST, FMNIST and Cifar10. They point out that NC is not desirable
in certain transfer learning settings. Additionally, Hui et al. (2022) also observes the NC
starts to occur on a few layers before the last layer, known as the cascading collapse.

3. Main results
The global minimizer to (UFM) in the balanced scenario forms exactly an equiangular
tight frame E and Wojtowytsch (2022); Fang et al. (2021); Zhu et al. (2021). However,
it is unclear how this phenomenon is affected by the number of samples in each class. In
this section, we will present our findings on neural collapse under the imbalanced scenario.
Before proceeding to our main results, we need to introduce the cluster structure.
Definition 1 (Cluster structure). Let {Nj}Jj=1 be the distinct values of {nk}Kk=1 with
J ≤ K and

Γj = {k : nk = Nj , 1 ≤ k ≤ K} (3.1)
We call Γj the j-th cluster, i.e., every class in Γj has Nj samples.
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Now we present the first main theorem, regarding the structure of the global minimizer
to (UFM).

Theorem 2. The global minimizer (Z, b) to (UFM) is unique and satisfies the following
properties:

(a) (Within-class feature collapse) The NC1 occurs for unconstrained feature models
under cross-entropy loss: the prediction vectors zki, 1 ≤ i ≤ nk within each class
collapse to their sample mean z̄k:

zki = z̄k, 1 ≤ i ≤ nk, ⟨z̄k,1K⟩ = 0, 1 ≤ k ≤ K.

In other words, the prediction matrix Z is in the following factorized form:

Z = Z̄Y =∈ RK×N

where
Z̄ = [z̄1, · · · , z̄K ], Y is defined in (2.2). (3.2)

From now on, we refer to Z̄ as the mean prediction matrix.

(b) (Block structure of Z̄) The mean prediction matrix Z̄ and the bias term b exhibit
the block structure:

Z̄ =
J∑

j=1

ajIΓj +
∑

1≤j,j′≤J

ajj′1Γj1
⊤
Γj′

, b =
J∑

j=1

cj1Γj , aj +
J∑

j′=1

aj′j |Γj′ | = 0,

where 1Γj is an indicator vector, defined by

1Γj (ℓ) =

{
1, ℓ ∈ Γj

0, ℓ ∈ Γc
j

, IΓj = diag(1Γj ).

In other words, the mean prediction vectors {z̄k}k∈Nj
in the same cluster have the same

pairwise angle, so do the mean feature matrix H̄.

(c) (Balanced scenario as a special case) If n1 = n2 = · · · = nK = N/K, then

Z̄ = a (KIK − JK) , b = 0.

In particular, we have

i. if NλZ ≥
√

N
K , then a = 0;

ii. if NλZ <
√

N
K , then

a =
1

K
log

( √
K√

NλZ

−K + 1

)
.
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(d) The weight W and feature matrix H also have a block structure. More precisely, let
ŪΣ̄V̄ ⊤ be the SVD of Z̄D1/2 where

D := Y Y ⊤ = diag(n1, · · · , nK). (3.3)

Then H = H̄Y and the mean prediction Z̄ equals W⊤H̄ where

W = Σ̄1/2Ū⊤, H̄ = Σ̄1/2V̄ ⊤D−1/2.

The theorem above indicates the block structure of the global minimizer to (UFM).
For a numerical illustration, we refer the readers to Figure 2 in our numerical section. In
particular, Theorem 2(c) exactly recovers the existing results on the neural collapse for
balanced datasets in Fang et al. (2021); Zhu et al. (2021). It is worth pointing out that our
proof technique is much more general than those in Fang et al. (2021); Zhu et al. (2021),
and a similar argument also applies to the normalized features Yaras et al. (2022).

Despite Theorem 2 characterizes the structure of global minimizers, it does not give
insights into how the sample size in each class affects the global minimizers. Next, we focus
on a special case where there are two giant clusters, denoted by A and B. In the cluster A
(or B), there are kA ( or kB) classes with the sample size of each individual class equal to
nA (or nB). Without loss of generality, we let nA > nB and refer A (B) as the majority
(minority) class. Hence N = kAnA + kBnB and K = kA + kB.

Note that Theorem 2(a) implies that the global minimizer of Z and b exhibit block
structures. Therefore, we will frequently use the following 2 × 2 block matrix. We say a
matrix X ∈ RK×K equals B(aX , bX , cX , dX) if

X =

[
aX(kAIkA − JkA×kA) + cXkBIkA −bXJkA×kB

−cXJkB×kA dX(kBIkB − JkB×kB ) + bXkAIkB

]
∈ RK×K .

(3.4)
Without loss of generality, we assume Z̄ (the within-class mean of Z) and b are

Z̄ = B(a, b, c, d) ∈ RK×K , b = m

[
kB1kA
−kA1kB

]
∈ RK (3.5)

for some parameter a, b, c, d and m. The next theorem provides a detailed characterization of
how the solution structure of Z̄ depends on λZ . This theorem will be crucial in characterizing
the threshold for minority collapse.

Theorem 3 (Block structure v.s. λZ). Assume nA > nB, and N = kAnA + kBnB with
kA ≥ 2 and kB ≥ 2. For λZ of different regimes, the optimal solution is Z = Z̄Y with the
mean prediction matrix Z̄ in the form of (3.5).

(a) If NλZ ≤ min{√nA,
√
nB}, Z̄ is unique in the form of (3.5) that satisfies a, b, c, d > 0

and
a− c+ d− b ≤ 0.

(b) If √nB < NλZ <
√
nA and ξ(λZ , λb) < 0 for some nonlinear function ξ in (5.24), then

Z̄ =

[
a(kAIkA − JkA×kA) + ckBIkA −bJkA×kB

−cJkB×kA
kA
kB

bJkB×kB

]
∈ RK×K .
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Moreover, (a, b, c, d) satisfies b > 0, and c > 0. In particular, ∃ε > 0 such that for any
λZ ∈ [

√
nB/N,

√
nB/N + ε], ξ(λZ , λb) < 0 holds.

(c) If √nB < NλZ <
√
nA and ξ(λZ , λb) > 0 for some nonlinear function ξ in (5.24), then

Z̄ =

[
a(kAIkA − JkA×kA) 0

0 0

]
∈ RK×K .

Moreover, (a, b, c, d) satisfies b = c = d = 0. In particular, ∃ε > 0 such that for any
λZ ∈ [

√
nA/N − ε,

√
nA/N ], ξ(λZ , λb) > 0 holds.

(d) If NλZ > max{√nA,
√
nB}, then Z̄ = 0.

(e) In particular, for the bias-free scenario, i.e., λb = ∞, then ξ(λZ ,∞) < 0 (> 0) is
equivalent to √

nB/N < λZ < λ∗ (λ∗ < λZ <
√
nA/N) respectively for some λ∗ ∈

(
√
nB/N,

√
nA/N). The threshold λ∗ is the unique solution to a nonlinear equation.

In Theorem 3, the sign of ξ(λZ , λb) signifies the phase transition of parameters b, c, d
being nonzero or not. This nonlinear function arises from the discussion about the solution
of the first order optimality system concerning a, b, c, d, and m. As a result, its expression
is quite complicated. For the clarity of the presentation, we defer its formal definition to
the proof. We notice that the threshold for cases (b) and (c) in the bias-free scenario is
simpler. This is because it is challenging to prove the monotonicity of the nonlinear function
ξ(λZ , λb) in λZ for any fixed λb > 0 where ξ(·, ·) is defined in (5.24). However, for any λb > 0,
we are able to show that when λZ is close to √

nB/N (or √
nA/N), the corresponding ξ

satisfies ξ < 0 (ξ > 0). But a clear characterization of how Z̄ transits from case (b) to (c) is
unavailable now. However, it is certain that for √

nB < NλZ <
√
nA, the solution is either

in case (b) or (c); moreover, the minority collapse occurs as long as λZ >
√
nB/N for the

unconstrained feature model, i.e., the mean prediction Z̄ on the minority group becomes a
single vector, as we can see the right block of Z̄ is rank-1 in both case (b) and (c).

The theorem above immediately leads to the following corollary which characterizes the
sharp threshold on the minority collapse. It is empirically observed by Fang et al. (2021)
that the mean prediction of minority classes collapse to one vector when fixing λZ and λb

as the imbalance ratio r = nA/nB increases and is greater than some threshold. Based on
Theorem 3, we are able to give an explicit characterization of this critical threshold.

Corollary 4 (Minority collapse threshold (r → ∞, nB is fixed)). Suppose r =
nA/nB > 1, and λZ , kA, kB, and nB are fixed. Assume

r =
nA

nB
≥ 1

kA

[
1

λZ
√
nB

− kB

]
,

the mean prediction matrix on minority classes collapses to one vector.

We proceed to provide some asymptotic characterization of the mean prediction Z̄,
when nA and nB go to infinity but their ratio stays constant.

10
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Theorem 5 (r = nA/nB > 1 is fixed, nB → ∞). Assume

NλZ = λ <
√
nB is constant,

r = nA/nB is constant,
N = kAnA + kBnB, with (kA, kB) fixed,
λ−1
b = o(

√
N logN),

then the global minimizer Z̄ of the form (a∗N , b∗N , c∗N , d∗N ) in (3.5) satisfies

lim
N→∞

max

{∣∣∣∣b∗Nc∗N − 1

∣∣∣∣ , ∣∣∣∣a∗Nc∗N − 1

∣∣∣∣ , ∣∣∣∣d∗Nb∗N − 1

∣∣∣∣} = O

(
1

logN

)
.

In other words, the columns of Z̄ converge to the ETF as N → +∞ with λ and r = nA/nB

fixed, and so do the corresponding weight W⊤ and the mean feature matrix H̄⊤.

As the original model (2.1) is non-convex, a natural concern is about the landscape of
the original programming. Theorem 3.2 in Zhu et al. (2021) proves a benign optimization
landscape for (2.1) in the balanced scenario: all the critical points are either global minimum
of (2.1) (also critical points of (UFM)) or saddle points. This result has been extended
in Zhou et al. (2022b) to characterize the optimization landscape for other loss functions.
Regarding the imbalanced scenario under the UFM and cross-entropy loss, the optimization
landscape of (2.1) is also benign.

Theorem 6. Assume the feature dimension d > K, then L(W ,H, b) in (2.1) is a strict
saddle function with no spurious local minimum, in the sense that

• Any local minimizer of (2.1) is a global minimizer.

• Any critical point (W ,H, b) that is not a local minimizer is a strict saddle point
with negative curvature, i.e. the Hessian ∇2L(W ,H, b), at this critical point, is
non-degenerate and has at least one negative eigenvalue.

Theorem 6 is a direct generalization of Theorem 3.2 in Zhu et al. (2021) from the
balanced case to the imbalanced case. The proof (see Section C.1 in Zhu et al. (2021)) also
directly applies without any changes, and thus we do not repeat the proof here. For the
completeness of the presentation, we briefly discuss the proof idea, which is to classify the
critical points of (2.1) into two categories. We denote the cross-entropy loss part of (2.1)
as L1(X) = N−1ℓCE(X,Y ). For any critical points (W ,H, b) of (2.1), if

•
∥∥∇L1(W

⊤H + b1⊤N )
∥∥ ≤

√
λWλH : one can show these points are also critical points

of the convexified programming (UFM), and thus the global minimum. Intuitively,
the inequality constrains the norm of the gradient, so it becomes a legal subgradient
of the nuclear norm.

•
∥∥∇L1(W

⊤H + b1⊤N )
∥∥ >

√
λWλH : One can construct a negative curvature direction

in the null space of W , which is nonempty since d > K, and the singular vector
corresponding to the largest singular value of ∇2L1(W ,H, b).

11
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We conclude this section by discussing our results and pointing out a few possible future
directions. In conclusion, we present a rigorous and in-depth study into the neural collapse
phenomenon for imbalanced dataset using the UFM with cross-entropy loss. In particular,
we give a full characterization of the solution when the dataset has two clusters under
the UFM, thus precisely finding the minority collapse threshold. This sharp threshold in
Corollary 4 is also confirmed in real experiments. As a result, one can select a suitable
oversampling rate of minority classes to avoid minority collapse while saving computational
resources and also not impairing test performance due to the high oversampling rate. One
may also wonder whether the minority collapse and the emergence of block structure in
the mean features still occur in absence of the regularization, i.e., λZ = 0. We confirm
numerically that these structures do not occur when training networks by using the SGD
with zero weight decay. In addition, the feature collapse is not guaranteed either. These
numerical observations imply that the regularization is essential to the neural collapse and
minority collapse.

As later shown in Section 4, our theory can only partially explain the behavior of real
deep neural networks. For example, we can see non-negligible difference arises in certain
regime between the predicted solution by the UFM and the actual prediction by the DNNs.
Despite the landscape of UFM is benign by Theorem 6, the landscape of DNN is inherently
different. This calls for more complicated models to explain DNNs. Several works Tirer
and Bruna (2022); Dang et al. (2023) try to add more linear layers to UFM, but adding
even one layer of nonlinearity remains unexplored, which could be a future direction. It will
be also interesting to find a weaker substitute of the UFM that interpolates between the
DNNs and UFM. Finally, our paper does not discuss the relation between neural collapse
and generalization error. To the best of our knowledge, most studies on that topic remain
empirical. Addressing this issue theoretically will lead to a deeper understanding of the
interplay between generalization and implicit bias broadly. We will leave these possible
directions for future work.

4. Numerics

In this section, we present numerical results that confirm our theory and also give new
insights. Our code is available on Github and is adapted from the code by Fang et al.
(2021). In the next four subsections, we show (a) the neural collapse phenomena arising
from the imbalanced dataset; (b) the block structure of the mean prediction matrix Z̄, and
the difference between the feature mean and the exact solution obtained from solving (2.1);
(c) the sharp threshold of the minority collapse; and (d) the asymptotic behavior of Z̄ as
the sample size grows to infinity with fixed imbalance ratio.

We first briefly describe the training details. To make the experiments and settings
in (2.1) consistent, we place activation regularization on the last layer before the classi-
fication layer to model the regularization on features for every network and dataset we
have trained. All the networks, if not specified, are trained with a diminishing stepsize, as
adopted in Fang et al. (2021): the initial learning rate is 0.1 for the first 1/6 epochs; and
after the first 1/6 epochs, we divide the learning rate by 10, i.e., learning rate equals 0.01,
and train for another 1/6 epochs. After that, we set the learning rate as 10−3 for the rest of
the training process. All the networks are trained by SGD with momentum 0.9, and batch

12
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size 128. Additionally, except for networks trained in subsection 4.3 where we turn off the
weight decay of SGD, we set the weight decay of SGD to be 5e-4 during training. Since we
are comparing the minority collapse threshold against regularization parameters in 4.3, we
turn the weight decay off to make the regularization effect exact.

In Section 4.1 and 4.2, we train three neural network including VGG11, VGG13, and
ResNet18 on Fashion MNIST (FMNIST) and Cifar10. To validate our theory under different
imbalance levels, we pick the following two choices of parameters, denoted by Dataset1 and
Dataset2. The whole dataset (either FMNIST or Cifar 10) contains three giant clusters
A,B, and C. For each group (e.g. A), it contains kA classes and each class contains nA

samples. In other words, there are in total kA + kB + kC classes and kAnA + kBnB + kCnC

samples. The sample size of each class in the same cluster is the same.
1. Dataset1: kA = 4, kB = kC = 3, nA = 5000, nB = 4000, nC = 3000

2. Dataset2: kA = kC = 4, kB = 2, nA = 5000, nB = 3000, nC = 1000

From the settings above, we can see Dataset2 is more imbalanced than Dataset1. For the
regularization parameters, we use λW = 10−3, λH = 10−6, λb = 10−2 and train each model
for 1000 epochs.

In Section 4.3 and 4.4, the experiments are used to verify Theorem 3, and Theorem 5 and
Corollary 4 respectively. Therefore, we only consider two giant clusters A and B, with the
number of classes and within-class sample size equal to (kA, nA) and (kB, nB) respectively.
The regularization parameters λW and λH are set as λW = 10λZ and λH = λZ/10 for each
given λZ . We will provide the specific parameter settings in each section. The network is
ResNet18 and it is trained on Cifar10 by using SGD for 2000 epochs.

4.1 Collapse of feature and prediction vectors
We first show the collapse of within-class feature vectors, as predicted by Theorem 2(a). To
quantify the level of within-class collapse, we compute the within-class and between-class
covariance:

ΣW :=
1

N

K∑
k=1

nk∑
i=1

(hki − h̄k)(hki − h̄k)
⊤, ΣB :=

1

K

K∑
k=1

(h̄k − hG)(h̄k − hG)
⊤

where

hG :=
1

N

K∑
k=1

nk∑
i=1

hki, h̄k :=
1

nk

nk∑
i=1

hki, 1 ≤ k ≤ K,

are the total and within-class means respectively. The level of within-class collapse is
measured by

NC1 :=
1

K
Tr
(
ΣWΣ†

B

)
. (4.1)

It is easy to see that if the within-class collapse occurs, NC1 should be very small, as ΣW

is close to 0.
Figure 1 plots the change of logNC1 against the epochs. We can see after training 1000

epochs, logNC1 is near −10 across all networks and datasets except VGG11 on the Cifar10
dataset which attains logNC1 ≈ −6. This is strong evidence of the within-class collapse,
and it confirms our Theorem 2.
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1

Figure 1: Plot of logNC1 v.s. epochs: x-axis is the epoch number and y-axis is logNC1.
Datasets: Cifar10 and FMNIST with two sets of parameters Dataset1 and
Dataset2. Network: ResNet18 (red straight line), VGG11 (blue dotted line),
and VGG13 (black dashed line).

4.2 Block structure of the mean prediction and features

In this subsection, we will illustrate the block structure of the mean prediction matrix to
confirm Theorem 2(b). We also compare the difference of the mean prediction matrix Z̄ =
[W⊤h̄k]1≤k≤K and the solution Z̄∗ to the unconstrained feature model with λZ =

√
λWλH .

The datasets and networks are exactly the same as those in Section 4.1.
In Figure 2, we plot the final mean prediction matrix Z̄ with the k-th column being

z̄k = W⊤h̄k over the 12 experiments computed in Figure 1. The entries in Z̄ of the largest
magnitude show up on the diagonal. To show a stronger contrast in the plot, we apply
min-max standardization across all the mean prediction matrices. The white dashed lines
separate giant clusters into 3× 3 blocks which match the setting of Dataset1 and Dataset2.
We see all the entries in each off-diagonal block, and all the off-diagonal entries in each
diagonal block share a very similar magnitude in their own block. This indicates the block
structure of the mean prediction matrix Z̄ and also that of the mean feature vectors.

Figure 3 and 4, we select two experiments to show the difference between the trained
predictions Z̄ and b and the solution Z̄∗ and b∗ to (2.1). For VGG13 trained on Dataset1,
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Figure 2: Standardized (over 12 matrices) mean prediction matrix Z̄ for all 12 experiments
in Figure 1. The white dashed lines separate clusters A,B and C in Dataset1 and
Dataset2.

Figure 3 (Left) shows a decreasing trend of the relative error between Z̄ and Z̄∗ which
stabilizes around 0.04 under both Frobenius and supreme norm. The bias difference is
relatively higher and stabilizes around 0.2; for VGG11 trained on Dataset2, the relative error
is higher compared to the previous one, possibly because the Dataset2 is more imbalanced.
Despite the relative error is approximately 0.1, the final mean prediction matrix shown in
Figure 4 implies that Z̄ and Z̄∗ share a similar block structure.

4.3 Minority collapse

Theorem 3 and Corollary 4 show the sharp threshold on λZ so that the prediction made by
the neural network on the minority classes collapses to a single vector. For the experiments
below, we adopt a slightly different learning rate scheme. To prevent the features and
weights from vanishing due to the large regularization terms, we initialize λH and λW to
be ten times smaller for the first 1/6 epochs with stepsize 0.1. Then we set back the
regularization parameters and keep training for the next 1/6 epochs with the stepsize 0.1.
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Figure 3: Relative error ∥Z̄ − Z̄∗∥F /∥Z̄∗∥F (∥b − b∗∥2/∥b∗∥2) and ∥Z̄ − Z̄∗∥∞/∥Z̄∗∥∞
(∥b − b∗∥∞/∥b∗∥∞) v.s. the epoch for VGG13 on Cifar10 with Dataset1 (Left)
and VGG11 on Cifar10 with Dataset2 (Right). The starting epoch numbers are
chosen to be 400 and 200 when NC1 has reaches a low level.

For the next 1/3 epochs, we set the learning rate as 0.01. After that, we keep the learning
rate equal to 10−3 for the rest.

We design two types of experiments to verify our theoretical findings. The first type
fixes nA = 500 and nB = 100 for a given pair of (kA, kB), and λb = 0.01. Then we vary λZ

and run ResNet18 on Cifar10 dataset for each λZ . For kA = kB = 5, the results are shown
in Figure 5: it implies that the minority collapse occurs at λZ = 0.0033, which matches√
nB/N = 1/300 where N = kAnA+kBnB = 3000. However, our Theorem 3 fails to predict

the threshold beyond which all the predictions become constant: the theoretical threshold is√
500/3000 ≈ 0.075 while Figure 5 shows the complete collapse for some λZ ≤ 0.069 which

is strictly smaller than 0.075. For kA = 3 and kB = 7, Theorem 3 predicts the minority and
complete collapse occur at approximately λZ = 0.0045 and 0.0102 respectively. Figure 6
implies the empirical threshold for minority collapse matches our theoretical prediction
while that for the complete collapse is between 0.0086 and 0.0094, strictly smaller than
0.0102.

In the second type, we fix λZ = 0.005, λb = 0.01, and nB = 100. Then we let nA increase
from 100 to 1400, and compute the mean prediction matrix for each set of parameters. For
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Figure 4: Comparison of the min-max standardized final mean prediction matrix Z̄ and
Z̄∗. Top: VGG13 on Cifar10 with Dataset1; Bottom: VGG11 on Cifar10, with
Dataset2.
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Figure 5: Plot for the mean prediction matrix Z̄ for 10 classes with kA = kB = 5 v.s.
varying λZ . The white dashed lines separate clusters majority group A and
minority group B.
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Figure 6: Plot for the mean prediction matrix Z̄ for 10 classes with kA = 3 and kB = 7
v.s. varying λZ . The white dashed lines separate clusters majority group A and
minority group B.

kA = kB = 5, our theory predicts the threshold of nA for minority and complete collapse
are nA ≈ 300 and 1392 respectively. Our numerical experiments in Figure 7 confirm the
threshold for minority collapse but the theory overestimates the threshold for complete
collapse. Similar phenomena are also observed for kA = 3 and kB = 7 in which the
thresholds for nA are 433 and 3964 respectively, as shown in Figure 8.
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Figure 7: Plot for the mean prediction matrix Z̄ for 10 classes with kA = kB = 5 v.s. nA.

Based on the Figure 5-8, we make the following main observations: (i) the threshold
of minority collapse λZ =

√
nB/N matches the empirical experiments. However, the the-

oretical threshold for complete collapse λZ =
√
nA/N tends to overestimate; (ii) all four

figures confirm the block structure of the mean prediction matrix that is characterized by
cases (a), (b), and (d) in Theorem 3. For case (c), we can take a look at the 8th subfigure
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Figure 8: Plot for the mean prediction matrix Z̄ for 10 classes with kA = 3 and kB = 7 v.s.
nA.

(λZ = 0.0063) in Figure 5. The right blocks and lower left block have a much smaller mag-
nitude compared with the upper left blocks. However, the entries in the lower left blocks
(the order is 10−3) still are much larger than those on the right block (the order is 10−7).
Therefore, we do not see a strong signal of the case (c) for λZ before the complete collapse
occurs.

4.4 Convergence to the ETF

In this section, we will carry out some experiments for Theorem 5. For the parameters,
we fix parameters kA = 5, kB = 5, r = nA/nB = 2, NλZ = 0.1, and λb = 0.01. We train
ResNet18 on the Cifar10 dataset with different nA: nA ranges from 500 to 5500. For each
set of parameters, we run 2000 epochs and compute the pairwise correlation (i.e., cosine
angle) for mean prediction vectors Z̄, i.e.,

Θ̂ := diag(Z̄⊤Z̄)−1/2Z̄⊤Z̄ diag(Z̄⊤Z̄)−1/2.

Due to the block structure of Z̄, the variance of angles in each block of Θ̂ is quite small,
and thus here, we only plot the mean within-class correlation for A and B respectively,
and the mean correlation between A and B. Here K = kA + kB = 10, and the pairwise
correlation is −1/9 for the ETF. Figure 9 shows a clear convergence of all the three groups
of mean correlation toward −1/9 as nA increases, i.e., the mean prediction vectors slowly
converge to an ETF. This validates our result in Theorem 5, i.e., the impact created by
the imbalance in data size on the prediction of neural networks diminishes as the number
of training samples increases. We also conducted experiments with higher imbalance ratio
r. The trend of mean features converging towards the ETF is also observed but that will
require much larger sample sizes.
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Figure 9: y-axis plots the mean pairwise correlation for mean prediction vector Z̄ within
the cluster A (red dot-dashed) and B (blue dotted), and between clusters A and
B (black dashed); x-axis is the size of nA between 500 and 5500. The pairwise
correlation of the ETF for 10 classes is denoted by the yellow straight line.

5. Proof
5.1 Basic facts and optimality condition
This subsection establishes important lemmas that will be used for proving our main theo-
rems.

Lemma 7. Define

φ(Z, b) =
1

N
ℓCE(Z + b1⊤N ,Y ) =

1

N

K∑
k=1

nk∑
i=1

ℓCE(zki + b, ek) (5.1)

and then φ(Z, b) is strongly convex in the direction (∆Z ,∆b) ∈ RK×N ⊕ RK that belongs
to {(∆Z ,∆b) : 1

⊤
K(∆Z +∆b1

⊤
N ) = 0}.

Proof The proof is straightforward, and it suffices to show the quadratic form

[∆Z ,∆b] : ∇2
Z,bφ(Z, b) : [∆Z ,∆b] ≥ λ(Z, b) ·

∥∥∥∆Z +∆b1
⊤
N

∥∥∥2
F
,

for every (∆Z ,∆b) satisfying 1⊤K(∆Z + ∆b1
⊤
N ) = 0 where λ(Z, b) is a strictly positive

number that only depends on (Z, b). For ease of notation, define

pki :=
exp(zki + b)

⟨exp(zki + b),1K⟩
, P = [pki]1≤i≤nk,1≤k≤K ∈ RK×N (5.2)

as the probability vector associated with zki + b. The gradient of φ is
∂φ

∂zki
=

1

N
(pki − ek),

∂φ

∂b
=

1

N

∑
k,i

(pki − ek)
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whose matrix form is
∂φ

∂Z
=

1

N
(P − Y ),

∂φ

∂b
=

1

N
(P − Y )1N .

The corresponding Hessian is

∂2φ

∂z2
ki

=
1

N

(
diag(pki)− pkip

⊤
ki

)
,

∂2φ

∂zki∂zk′i′
= 0, ∀(k, i) ̸= (k′, i′),

∂2φ

∂b2
=

1

N

∑
k,i

(
diag(pki)− pkip

⊤
ki

)
,

∂2φ

∂zki∂b
=

1

N
(diag(pki)− pkip

⊤
ki).

Note that pkip
⊤
ki is a positive matrix and thus the associated Laplacian diag(pki)− pkip

⊤
ki

is positive semidefinite with its second smallest eigenvalue strictly positive. Let ∆Z,ki be
the difference in the variable zki, and then the quadratic form equals

[∆Z ,∆b] : ∇2
Z,bφ(Z, b) : [∆Z ,∆b]

=
1

N

∑
k,i

(∆Z,ki +∆b)
⊤
(
diag(pki)− pkip

⊤
ki

)
(∆Z,ki +∆b)

≥ 1

N

∑
k,i

λ2(diag(pki)− pkip
⊤
ki)∥∆Z,ki +∆b∥2

≥ 1

N
min
k,i

λ2(diag(pki)− pkip
⊤
ki) · ∥∆Z +∆b1

⊤
N∥2F

where the first inequality follows from the fact that
(
diag(pki)− pkip

⊤
ki

)
1K = 0 and

⟨1K ,∆Z,ki + b⟩ = 0 for all 1 ≤ i ≤ nk and 1 ≤ k ≤ K.

Lemma 8 (Optimality condition). The first-order optimality condition of L(Z, b) in (UFM)
is

N−1(Y − P ) ∈ λZ∂∥Z∥∗, N−1(Y − P )1N = λbb (5.3)

where P = [pki]1≤i≤nk,1≤k≤K , pki are defined in (5.2), and ∂∥Z∥∗ stands for the subdiffer-
ential of the nuclear norm at Z. In particular, the global minimizer (Z, b) satisfies 1⊤KZ = 0
and 1⊤Kb = 0.

Proof Consider L(Z, b) = N−1ℓCE(Z + b1⊤N ,Y ) + λZ∥Z∥∗ + λb∥b∥2/2 in (UFM). Then
its gradient (subgradient) is

∂L

∂Z
= N−1 (P − Y ) + λ∂∥Z∥∗,

∂φ

∂b
= N−1 (P − Y )1N + λbb.

Therefore, (Z, b) is a global minimizer if

N−1(Y − P ) ∈ λZ∂∥Z∥∗, N−1(Y − P )1N = λbb

where ∂∥Z∥∗ is the subdifferential of nuclear norm at Z.
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For any Z and b, we notice that Z + 1Kv⊤ and b + µ1K does not change φ(Z, b) for
any v ∈ RN and µ ∈ R, i.e.,

φ(Z + 1Kv⊤, b+ µ1K) = φ(Z, b).

Note that
∥b∥2 ≥ min

µ
∥b− µ1K∥2 = ∥b− 1K⟨1K , b⟩/K∥2

and
min
v∈RN

∥Z − 1Kv⊤∥∗ = ∥(IK − JK/K)Z∥∗

where the subdifferential of ∥Z − 1Kv⊤∥∗ is (∂∥Z − 1Kv⊤∥∗)⊤1K and

0 ∈ (∂∥Z − 1Kv⊤∥∗)⊤1K
∣∣∣
v=Z⊤1K/K

since the column space of (IK − JK/K)Z is perpendicular to 1K . Therefore, the global
minimizer must satisfy 1⊤KZ = 0 and 1⊤Kb = 0.

By considering the exact form of ∥Z∥∗, the optimality condition in Lemma 8 can be
expressed explicitly as given by the next corollary.

Corollary 9. Assume zki = z̄k for 1 ≤ i ≤ nk, 1 ≤ k ≤ K and ⟨z̄k,1K⟩ = 0, and then it
holds that

N−1(IK − P̄ ) = λZ

([(
Z̄DZ̄⊤

)†]1/2
Z̄ + R̄

)
,

N−1(IK − P̄ )n = λbb

(5.4)

where Z̄ = [z̄1, · · · , z̄K ] ∈ Rd×K , R̄ satisfies R̄DZ̄⊤ = 0, Z̄⊤R̄ = 0, ∥R̄D1/2∥ ≤ 1, and D
is defined in (3.3). In particular, if Z̄ is of rank K − 1, then

N−1(IK − P̄ ) = λZ

[(
Z̄DZ̄⊤

)†]1/2
Z̄.

Proof Under assumption, zki = z̄k, 1 ≤ i ≤ nk and z̄⊤
k 1K = 0, we have Z = Z̄Y

and P = P̄ Y where Z̄ and Y are defined in (3.2) and P̄ = [p̄1, · · · , p̄K ] with p̄k as the
probability vector w.r.t. z̄k + b. Then (5.3) reduces to

N−1(IK − P̄ )Y ∈ λZ∂∥Z̄Y ∥∗ (5.5)

Here we let Z = UΣV ⊤ be the SVD of Z.

∂∥Z̄Y ∥∗ =
{
UV ⊤ +R : ∥R∥ ≤ 1, U⊤R = 0, RV = 0

}
where

UV ⊤ =

[(
Z̄DZ̄⊤

)†]1/2
Z̄Y

22



Neural collapse for imbalanced data

and † denotes the Moore-Penrose pseudo-inverse. Then (5.5) becomes

N−1(IK − P̄ )Y = λZ

([(
Z̄DZ̄⊤

)†]1/2
Z̄Y +R

)

where R is in the form of
R = R̄Y , R̄ = [r̄1, · · · , r̄K ]

such that

R̄Y
(
Z̄Y

)⊤
= R̄DZ̄⊤ = 0, Z̄⊤R̄ = 0, ∥R̄D1/2∥ ≤ 1

where D is defined in (3.3) and Y Y ⊤ = D. This leads to

N−1(IK − P̄ ) = λZ

([(
Z̄DZ̄⊤

)†]1/2
Z̄ + R̄

)

where R̄DZ̄⊤ = 0 and Z̄⊤R̄ = 0.
In particular, if Z̄ is of rank K − 1, then each column of R̄ is parallel to 1K since

1⊤KZ̄ = 0. Since P̄ is a positive left-stochastic matrix with P̄⊤1K = 1K , and thus IK − P̄
is of rank K−1. Note that 1K is also in the left null space of IK − P̄ , then R̄ = 0. It means

N−1(IK − P̄ ) = λZ

[(
Z̄DZ̄⊤

)†]1/2
Z̄.

For b, it is straightforward to have

N−1(Y − P )1N = N−1
K∑
k=1

nk(ek − p̄k) = N−1(IK − P̄ )n = λbb.

Lemma 10 (Invariance under permutation).

(a) Suppose X satisfies
ΠXΠ′ = X

for any permutation Π and Π′, then X = cJ for some c.

(b) Suppose X satisfies
ΠXΠ⊤ = X,

then X = aI + cJ for some a and c.

Proof For (a), we have
ΠX = X, XΠ′ = X

holds for any permutation matrix. Then X is invariant under either row or column permu-
tation. Therefore, X is a constant matrix.
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For (b), we first pick the permutation matrix Πℓ,ℓ′ that only exchanges ℓ- and ℓ′-th
entries. Then Πℓ,ℓ′ = Πℓ′,ℓ and

Πℓ,ℓ′XΠℓ,ℓ′ = X.

Now let ek be any one-hot vector, and it holds

Xℓ′ℓ′ = e⊤ℓ′Xeℓ′ = e⊤ℓ Πℓ,ℓ′XΠℓ,ℓ′eℓ = e⊤ℓ Xeℓ = Xℓℓ,

where Πℓ,ℓ′eℓ′ = eℓ. This implies that the diagonal entries of X are the same.
For any k ̸= ℓ or ℓ′, Πℓ,ℓ′ek = ek holds and

Xkℓ = e⊤k Xeℓ = e⊤k Πℓ,ℓ′XΠℓ,ℓ′eℓ = e⊤k Xeℓ′ = Xkℓ′ .

Similarly, it also holds Xℓk = Xℓ′k. Therefore, Xℓℓ′ is the same for ℓ ̸= ℓ′.

5.2 Proof of Theorem 2
Theorem 2(a) The proof follows from a convenient permutation argument. Recall (UFM)
equals

L(Z, b) =
1

N

K∑
k=1

nk∑
i=1

ℓCE(zki + b, ek) + λZ∥Z∥∗ +
λb

2
∥b∥2 (5.6)

Note that it is strongly convex in (Z, b) in the restricted direction, as shown in Lemma 7.
Then the sublevel set of {(Z, b) : L(Z, b) ≤ c} is a compact set when restricted on those
directions, for any c if λZ > 0 and λb > 0. Therefore, the existence of a global minimizer is
guaranteed. Suppose (Z, b) is a global minimizer to L(Z, b) and we know from Lemma 8
that 1⊤KZ = 0 and 1⊤Kb = 0. Then by using Jensen’s inequality, we have

1

nk

nk∑
i=1

ℓCE(zki + b, ek) ≥ ℓCE

(
1

nk

nk∑
i=1

(zki + b), ek

)
= ℓCE(z̄k + b, ek)

where {zki}nk
i=1 belong to the same class and z̄k = n−1

k

∑nk
i=1 zki.

Let blkdiag(Πn1 , · · · ,Πnk
) be a block-diagonal permutation matrix where each Πnk

is
any nk × nk permutation. Then

∥Z blkdiag(Πn1 , · · · ,Πnk
)∥∗ = ∥Z∥∗.

Note that
1

n1! · · ·nK !

∑
{Πk,1≤k≤K}

blkdiag(Πn1 , · · · ,Πnk
) = blkdiag(Jn1/n1, · · · ,JnK/nK)

where the number of distinct permutation matrices in the form of blkdiag(Πn1 , · · · ,Πnk
) is

n1! · · ·nK ! and the summation is taken over all possible permutations in that form. Using
Jensen’s inequality again results in

∥Z∥∗ ≥ ∥Z blkdiag(Jn1/n1, · · · ,JnK/nK)∥∗ = ∥[z̄11⊤n1
, · · · , z̄K1⊤nK

]∥∗ = ∥Z̄Y ∥∗ (5.7)
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As a result, it holds that

L(Z, b) =
1

N

K∑
k=1

nk

(
1

nk

nk∑
i=1

ℓCE(zki + b, ek)

)
+ λZ∥Z∥∗ +

λb

2
∥b∥2

≥
K∑
k=1

nk

N
ℓCE(z̄k + b, ek) + λZ∥[z̄11⊤n1

, · · · , z̄K1⊤nK
]∥∗ +

λb

2
∥b∥2

=
1

N
ℓCE(Z̄Y + b1⊤N ,Y ) + λZ∥Z̄Y ∥∗ +

λb

2
∥b∥2 = R(Z̄Y , b).

As Lemma 7 guarantees the strong convexity of L(Z, b) restricted on {(∆Z ,∆b) : 1
⊤
K(∆Z+

∆b1
⊤
N ) = 0}, the global optimality of (Z, b) implies that Z = Z̄Y , i.e., zki = z̄k for

1 ≤ i ≤ nk.

Theorem 2(b) Without loss of generality, we let n1 ≤ n2 ≤ · · · ≤ nK and Γj = {k : nk =
Nj , 1 ≤ k ≤ K} where {Nj}Jj=1 are the distinct values of {nk}Kk=1. In other words, we
re-group each class according to their individual class sizes and it holds K =

∑J
j=1 |Γj |. As

Theorem 2(a) implies the global minimizer Z satisfies zki = z̄k, 1 ≤ i ≤ nk. Then it holds

L(Z, b) =
1

N

K∑
k=1

nkℓCE(z̄k + b, ek) + λZ∥Z̄Y ∥∗ +
λb

2
∥b∥2

=
1

N

J∑
j=1

Nj

∑
k∈Γj

ℓCE(z̄k + b, ek) + λZ∥Z̄D1/2∥∗ +
λb

2
∥b∥2

where D = Y Y ⊤ and

Z̄ = [ZΓ1 , · · · ,ZΓJ
], ZΓj = [z̄k]k∈Γj

.

Let Πℓ,ℓ′ be a K ×K permutation matrix that only switches the index ℓ and ℓ′ but keeps
the other indices unchanged. Then we claim that

L(Πℓ,ℓ′Z̄Πℓ,ℓ′Y ,Πℓ,ℓ′b) = L(Z̄Y , b)

as long as index ℓ and ℓ′ are in the same Γj for some j. By using the restricted strong
convexity of L(Z, b) in Lemma 7, we have

Πℓ,ℓ′Z̄Πℓ,ℓ′ = Z̄, Πℓ,ℓ′b = b, ∀ℓ, ℓ′ ∈ Γj , for some j. (5.8)

Now we assume the claim holds, and see how it leads to the desired result. For any
j ̸= j′, it holds that Π⊤

Γj
Z̄j,j′ΠΓj′ = Z̄j,j′ where ΠΓj is any kj × kj permutation matrix.

Lemma 10 implies every entry in Z̄j,j′ equals some constant ajj′ . For the diagonal blocks,
we have Π⊤

Γj
Z̄j,jΠΓj = Z̄j,j . Therefore, Z̄j,j = ajIΓj + ajj′1Γj1

⊤
Γj

follows from Lemma 10.
Now we conclude that

Z̄ =
J∑

j=1

ajIΓj +
∑

1≤j,j′≤J

ajj′1Γj1
⊤
Γj′

, aj +
J∑

j′=1

aj′j |Γj′ | = 0 (5.9)
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where IΓj = diag(1Γj ), which follows from Lemma 10.
From Πℓ,ℓ′b = b for any ℓ, ℓ′ ∈ Γj , then b is in the form of

b =
J∑

j=1

cj1Γj ,

J∑
j=1

cj |Γj | = 0.

To complete the proof, it remains to justify the claim. For any k ̸= ℓ or ℓ′, then

ℓCE([Πℓ,ℓ′(Z̄ + b1⊤K)Πℓ,ℓ′ ]k, ek) = ℓCE(Πℓ,ℓ′(Z̄ + b1⊤K)Πℓ,ℓ′ek, ek)

= ℓCE(Πℓ,ℓ′(z̄k + b), ek) = ℓCE(z̄k + b, ek)

where Πℓ,ℓ′ek = ek if k ̸= ℓ or ℓ′. In addition, it holds∑
k∈{ℓ,ℓ′}

ℓCE([Πℓ,ℓ′(Z̄ + b1⊤K)Πℓ,ℓ′ ]k, ek) = ℓCE(Πℓ,ℓ′(z̄ℓ′ + b), eℓ) + ℓCE(Πℓ,ℓ′(z̄ℓ + b), eℓ′)

= ℓCE(z̄ℓ′ + b, eℓ′) + ℓCE(z̄ℓ + b, eℓ)

where Πℓ,ℓ′eℓ = eℓ′ . Also, we note that Πℓ,ℓ′Y = Y for ℓ and ℓ′ in the same cluster, and
also the nuclear norm is invariant under orthogonal transform. Hence,

∥Πℓ,ℓ′Z̄Πℓ,ℓ′Y ∥∗ = ∥Z̄Y ∥∗, ∥Πℓ,ℓ′b∥ = ∥b∥,

and we have proven the claim. In other words, we have

blkdiag(ΠΓ1 , · · · ,ΠΓJ
)⊤Z̄ blkdiag(ΠΓ1 , · · · ,ΠΓJ

) = Z̄

where ΠΓj is any |Γj | × |Γj | permutation matrix that acts on the index set Γj .

Theorem 2(c) In the balanced case, Z̄ = a(KIK − JK) holds and b = 0.

P̄ =
e−aJK + e−a(eaK − 1)IK

e−a(K − 1 + eaK)
=

JK + (eaK − 1)IK
K − 1 + eaK

and

IK − P̄ = IK − JK + (eaK − 1)IK
K − 1 + eaK

=
KIK − JK

K − 1 + eaK
.

Then the optimality condition (5.4) indicates

KIK − JK

K − 1 + eaK
∈ NλZ∂∥Z̄∥∗.

Note that the operator norm of the left-hand side is K/(K−1+eaK). If NλZ ≥ K/(K−1),
then a = 0 and Z̄ = 0. If NλZ < K/(K − 1), then a ̸= 0 and it satisfies

KIK − JK

K − 1 + eaK
= NλZ(IK−JK/K) =⇒ K

K − 1 + eaK
= NλZ =⇒ a =

1

K
log

(
K

NλZ
−K + 1

)
.
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Theorem 2(d) The proof directly follows from (2.3) of (Recht et al., 2010, Lemma 5.1).
More precisely, we write

Z = Z̄Y = Z̄D1/2D−1/2Y

where D−1/2Y has orthogonal rows. By performing the SVD on Z̄D1/2 = ŪΣ̄V̄ ⊤, we
have

Z = ŪΣ̄V̄ ⊤D−1/2Y = W⊤H

Then (2.3) implies W = Σ̄1/2Ū⊤, H = Σ̄1/2V̄ ⊤D−1/2Y , and H̄ = Σ̄1/2V̄ ⊤D−1/2.

5.3 Optimality condition and the solution structure
In this section, we focus on a special case when the dataset contains kA classes with nA points
in each class and kB classes with nB points. The total number of classes is K = kA+kB and
number of points is N = kAnA + kBnB. In particular, we assume kA ≥ 2 and kB ≥ 2. To
characterize the solution, it suffices to look into the optimality condition (5.4) in Corollary 9
which involves IK − P̄ and (Z̄DZ̄⊤)†/2Z̄. We first provide the explicit expression for both
of them and in fact, they are in the form of block-structure B in (3.4).

We adopt the notation (3.5) for Z̄ and b, and further write Z̄ in the following form,

Z̄ =

[
(kAa+ kBc)CkA 0

0 (kAb+ kBd)CkB

]
+ kAkBss

⊤
[
cIkA 0
0 bIkB

]
∈ RK×K

where CkA (and CkB ) is defined in (1.1) and

s :=

[
1kA
kA

−1kB
kB

]
, ∥s∥ =

√
1

kA
+

1

kB
, D =

[
nAIkA 0

0 nBIkB

]
(5.10)

A direct computation gives

Z̄DZ̄⊤ =

[
nA(kAa+ kBc)

2CkA 0
0 nB(kBd+ kAb)

2CkB

]
+ (kAnBb

2 + kBnAc
2)kAkBss

⊤

(5.11)
and [

(Z̄DZ̄⊤)†
] 1

2
Z̄ =

[
sign(kAa+kBc)√

nA
CkA 0

0 sign(kAb+kBd)√
nB

CkB

]

+
sign(kAnBb

2 + kBnAc
2)kAkB√

(kAnBb2 + kBnAc2)(kA + kB)
· ss⊤

[
cIkA 0
0 bIkB

]
is B(aZ , bZ , cZ , dZ) which satisfies

kAaZ + kBcZ = n
−1/2
A sign(kAa+ kBc), kAbZ + kBdZ = n

−1/2
B sign(kAb+ kBd),

bZ =
b sign(kAnBb

2 + kBnAc
2)√

(kAnBb2 + kBnAc2)(kA + kB)
, cZ =

c sign(kAnBb
2 + kBnAc

2)√
(kAnBb2 + kBnAc2)(kA + kB)

.
(5.12)

In particular, if a = b = c = d = 1/K, then

Z̄ = IK − JK/K
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and

Z̄DZ̄⊤ =

[
nACkA 0

0 nBCkB

]
+

nAkB + kAnB

kA + kB
·
(

kAkB
kA + kB

)
ss⊤. (5.13)

The eigenvalues are nA with multiplicity kA − 1, nB with multiplicity kB − 1, (nAkB +
kAnB)/K with multiplicity 1, and 0 with multiplicity 1.

For IK − P̄ , direct computation implies that B(aP , bP , cP , dP ), i.e.,

IK − P̄ =

[
aPkACkA + cPkBIkA −bPJkA×kB

−cPJkB×kA dPkBCkB + bPkAIkB

]
(5.14)

where

aP =
e−a+mkB

kBe−c−mkA + e−a+mkB (kA − 1 + ekAa+kBc)
,

bP =
e−b+mkB

kAe−b+mkB + e−d−mkA(kB − 1 + ekAb+kBd)
,

cP =
e−c−mkA

kBe−c−mkA + e−a+mkB (kA − 1 + ekAa+kBc)
,

dP =
e−d−mkA

kAe−b+mkB + e−d−mkA(kB − 1 + ekAb+kBd)
.

(5.15)

To characterize the solution structure w.r.t. λZ and λb, we look into the optimality
condition in Corollary 9:

N−1(IK − P̄ ) = λZ

([
(Z̄DZ̄⊤)†

] 1
2
Z̄ + R̄

)
where R̄DZ̄⊤ = 0, Z̄⊤R̄ = 0, and ∥R̄D1/2∥ ≤ 1. The key idea of the proof is straightfor-
ward: for different regimes of λZ , we will explicitly construct R̄ and show that a solution
exists for the nonlinear equation system above. Then by restricted strong convexity in
Lemma 7, we know that this solution must be a unique global minimizer to (UFM).

Now we will present the main result on how the solution structure changes w.r.t. the
varying λZ . To characterize this, we first introduce a few functions that will be used later.
Let

f2(t, λZ , λb) := g2(x2(t))− (kA + kB)kAm(t, λZ , λb)

= log

[(√
nA

NλZ
− 1

)
(kA + kBx2(t)) + 1

]
− kA log x2(t)− (kA + kB)kAm(t, λZ , λb)

(5.16)
where g2 is defined in (5.23), and

m(t, λZ , λb) =
λZ

λb

nA − nBt√
(kBnA + kAnBt2)(kA + kB)

, (5.17)

x2(t) =
kA√

(kB + kAnBt2/nA)(kA + kB)− kB
. (5.18)
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The main result and proof rely on a key quantity:

t∗(λZ , λb) = argmint≥0 |f2(t, λZ , λb)| =

{
the root of f2(t, λZ , λb), η(λZ) < 0,

0, η(λZ) ≥ 0,
(5.19)

where
η(λZ) := f2(0, λZ , λb), λZ ∈ (

√
nB/N,

√
nA/N). (5.20)

The function η(·) is decreasing and in particular η(
√
nA/N) < 0.

Later, Lemma 13 will prove f2(t, λZ , λb) and m(t, λZ , λb) are strictly increasing and
decreasing respectively. Therefore, if f2(0, λZ , λb) ≤ 0, then f2 must have a unique root and
it is also equal to t∗(λZ , λb); otherwise, f2(t, λZ , λb) stays positive for all t ≥ 0 and t = 0
is the global minimizer of f2 in t. Moreover, we will see that t∗(λZ , λb) is increasing in λZ

when λb > 0 is fixed.
For simplicity, we denote m(t, λZ , λb) and t∗(λZ , λb) by m(t) and t∗(λZ) respectively.

Now we are ready to present the main result which implies Theorem 3 immediately.

Proposition 11. Suppose nA > nB. For λZ of different regimes, the optimality condition
satisfies the following properties:

(a) If NλZ ≤ √
nB, there is a unique solution (a, b, c, d) to

N−1(IK − P̄ ) = λZ

[
(Z̄DZ̄⊤)†

] 1
2
Z̄

that satisfies a, b, c, d > 0 and a− c+ d− b ≤ 0.

(b) If √nB < NλZ <
√
nA and

kBe
−(kA+kB)m(t∗(λZ ,λb)) <

1

NλZ

√(
kBnA

t∗(λZ , λb)2
+ kAnB

)
(kA + kB)− kA, (5.21)

then there is a unique solution (a, b, c, d) to

N−1(IK − P̄ ) = λZ

[
(Z̄DZ̄⊤)†

] 1
2
Z̄ + R̄

where
R̄ =

1
√
nB

[
0 0
0 IkB − JkB/kB

]
.

Moreover, (a, b, c, d) satisfies kAb+ kBd = 0 and a, b, c > 0.

(c) If √nB < NλZ <
√
nA and

kBe
−(kA+kB)m(t∗(λZ ,λb)) >

1

NλZ

√(
kBnA

t∗(λZ , λb)2
+ kAnB

)
(kA + kB)− kA, (5.22)

then there is a unique solution (a, b, c, d, t, τ ) to

N−1(IK − P̄ ) = λZ

[
(Z̄DZ̄⊤)†

] 1
2
Z̄ + R̄
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where

R̄ =

[
0 0
0 1

NλZ
(IkB − JkB/kB)

]
+

kAkBτ√
(kBnA + kAnBt2)(kA + kB)

ss⊤
[
IkA 0
0 tIkB

]
and s is defined in (5.10). Moreover, (a, b, c, d) satisfies b = c = d = 0 and a > 0.

(d) If NλZ > max{√nA,
√
nB}, then Z = 0.

(e) If λb = ∞, i.e., the bias-free scenario, then (5.21) and (5.22) are equivalent to λZ < λ∗

and λZ > λ∗ respectively for some λ∗ ∈ (
√
nB/N,

√
nA/N), where λ∗ satisfies

t∗(λ∗) =

√
kBnA

(NλZ)2(kA + kB)− kAnB
.

The intuition behind the change of solution structure Z̄ is essentially the singular value
thresholding. By the 2 × 2 block structure of Z̄, Z̄ only has at most 3 different nonzero
singular values regardless of the multiplicity. As the nuclear norm penalty parameter λZ

grows, these singular values will gradually diminish to 0 until all the singular values become
0 after a certain finite threshold. The proof relies on the following two important lemmas.

Lemma 12. Suppose f1 and f2 are continuous, and strictly decreasing and increasing
respectively on t > 0. In addition, they satisfy

lim
t→0

f1(t) = +∞, lim
t→∞

f2(t) = +∞

and I+ = {t : f1 > 0, f2 > 0} is nonempty, then

f(t) =
f1(t)

f2(t)

is decreasing on I+ and f(t) = t has a unique solution.

Proof Let t1 = sup{t : f1(t) > 0} and t2 = inf{t : f2(t) > 0}. Since I+ is nonempty, we
have t2 < t1.

• if t1 < +∞, then f1(t1) = 0 and limt→t1 f2(t) exists and is positive, and thus
limt→t−1

f(t) = 0.

• if t1 = +∞, then limt→∞ f1(t) exists and is positive and limt→∞ f2(t) = ∞, and thus
limt→t−1

f(t) = 0.

• if t2 = 0, then limt→0 f2(t) exists and is positive and limt→0 f1(t) = ∞, and thus
limt→t+2

f(t) = ∞.

• if t2 > 0, then f2(t2) = 0 and limt→t2 f1(t) exists and is positive, and thus limt→t+2
f(t) =

∞.
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This implies that
lim
t→t−1

f(t) = 0, lim
t→t+2

f(t) = ∞.

As a result, f(t) is decreasing on (t2, t1) and the equation f(t) = t has a unique solution by
continuity.

Next, we introduce a few functions and look into their properties. These properties will
be very useful in proving the existence of a solution to the optimality system under different
regimes of λZ .

Lemma 13. (a) Let

g1(x) := log

[(√
nB

NλZ
− 1

)
(kAx+ kB) + 1

]
− kB log x, λZ ≤

√
nB/N,

g2(x) := log

[(√
nA

NλZ
− 1

)
(kA + kBx) + 1

]
− kA log x, λZ ≤

√
nA/N,

(5.23)

where x > 0. Then g1 and g2 are strictly decreasing in x.

(b) The function f2(t, λZ) in (5.16) and m(t, λZ) in (5.17) are strictly increasing and
decreasing in t respectively. Moreover, t∗(λZ , λb) is increasing in 0 < λZ ≤ √

nA/N
and t∗(λZ , λb) ≤ nA/nB holds.

(c) For NλZ ∈ [
√
nB,

√
nA], define

ξ(λZ , λb) := kBe
−(kA+kB)m(t∗(λZ ,λb))−

(
1

NλZ

√(
kBnA

t∗(λZ , λb)2
+ kAnB

)
(kA + kB)− kA

)
.

(5.24)
Then for any λb > 0, it holds

ξ

(√
nA

N
,λb

)
> 0, ξ

(√
nB

N
,λb

)
< 0. (5.25)

This implies by continuity that there exists an ε > 0, such that:

ξ

(√
nA

N
− δ′, λb

)
> 0, ξ

(√
nB

N
+ δ′′, λb

)
< 0, ∀δ′, δ′′ < ε.

(d) If λb = ∞, i.e., for the bias-free case, then

ξ(λZ ,∞) = (kA + kB)−
1

NλZ

√(
kBnA

t∗(λZ)2
+ kAnB

)
(kA + kB) (5.26)

and it is increasing in λZ ∈ [
√
nB/N,

√
nA/N ]. Combining with results from (5.25), we

have there exists a unique λ∗ ∈ (
√
nB/N,

√
nA/N) such that

ξ(λ∗,∞) = 0.
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Proof of Lemma 13 (a) Consider the first-order derivative of g1(x), we have

g′1(x) =
kA

(√
nB

NλZ
− 1
)

(√
nB

NλZ
− 1
)
(kAx+ kB) + 1

− kB
x

<
1

x
− kB

x
≤ 0

provided that x > 0 and NλZ <
√
nB, and similarly g′2(x) < 0 holds for x > 0 if

NλZ <
√
nA.

(b) We first note that f2(t, λZ , λb) = g2(x2(t)) − (kA + kB)kAm(t). Since x2(t) in (5.18)
is strictly decreasing w.r.t. t in its domain and so is g2, as shown in Lemma 13(a), we
conclude g2(x2(t)) is strictly increasing. For m(t), we notice that

m′(t) = −λZ

λb

nB(kBnA + nBkAt
2)(kA + kB) + kAnBt(nA − nBt)(kA + kB)

[(kBnA + nBkAt2)(kA + kB)]
3
2

= −λZ

λb
nBnA(kA + kB)

kB + kAt

[(kBnA + nBkAt2)(kA + kB)]
3
2

< 0

(5.27)

This implies m is decreasing in t, and then f2(t) is increasing in t. This proves the first half
of the argument.

Now we investigate the monotonicity of t∗ w.r.t. λZ . The idea is to apply implicit
differentiation on f2 at t∗(λZ , λb). We have

∂f2
∂t

· dt
∗(λZ , λb)

dλZ
+

∂f2
∂λZ

= 0 =⇒ dt∗(λZ , λb)

dλZ
= −∂f2/∂λZ

∂f2/∂t
(5.28)

where we already know ∂f2/∂t > 0 from (b). Therefore it suffices to check the monotonicity
of f2 in λZ at t∗(λZ , λb). Notice for any fixed t < nA/nB (m(t) > 0) and λb > 0, we have
that f2(t, λZ , λb) is decreasing in λZ . Finally, we claim t∗(λZ , λb) < nA/nB, so at t∗(λZ , λb),
∂f2/∂λZ < 0. Therefore by (5.28), we have ∂t∗(λZ , λb)/∂λZ > 0.

Now we are left with proving the claim t∗(λZ , λb) < nA/nB, which follows from the
following simple argument. By plugging t = nA/nB into f2, it holds that

m(nA/nB) = 0, x2(nA/nB) < x2(
√
nA/nB) = 1

where nA/nB > 1 and x2 is decreasing. Therefore, by the fact g2 is an increasing function
of x, we have

f2

(
nA

nB

)
= g2

(
x2

(
nA

nB

))
> g2

(
x2

(√
nA

nB

))
= g2(1) > 0,

and by the monotonicity of f2, t∗(λZ , λb) must be smaller than nA/nB.

(c) We evaluate the value of ξ at λZ =
√
nA/N and λZ =

√
nB/N separately.

Right endpoint: at λZ =
√
nA/N . Note that

f2(
√
nA/nB,

√
nA/N, λb) = −(kA + kB)kAm(

√
nA/nB,

√
nA/N, λb) < 0,

f2(nA/nB,
√
nA/N, λb) > 0,
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where x2(
√
nA/nB) = 1. This means a root exists within the interval (

√
nA/nB, nA/nB) for

f2 with λZ =
√
nA/N . Denote t∗ = t∗(λZ , λb), x∗2 = x2(t

∗(λZ , λb)), and ξ(λZ) = ξ(λZ , λb).
By definition, the root t∗ satisfies

x2(t
∗) = e−(kA+kB)m(t∗) =

kA√
(kB + nBkAt∗2/nA)(kA + kB)− kB

⇐⇒ t∗

√(
kB
t∗2

+
nBkA
nA

)
(kA + kB) = kAe

(kA+kB)m(t∗) + kB =
kA
x∗2

+ kB. (5.29)

Then applying (5.29) gives

ξ

(√
nA

N

)
= kBe

−(kA+kB)m(t∗) −

(√(
kB
t∗2

+
kAnB

nA

)
(kA + kB)− kA

)
= kA + kBe

−(kA+kB)m(t∗) − 1

t∗
(kAe

(kA+kB)m(t∗) + kB)

=
(
kA + kBe

−(kA+kB)m(t∗)
)(

1− e(kA+kB)m(t∗)

t∗

)
.

Note that 1 <
√
nA/nB < t∗ < nA/nB:

e(kA+kB)m(t∗) =

√
(kB + nBt∗2kA/nA)(kA + kB)− kB

kA
≤ 1

2

(
nB

nA
t∗2 + 1

)
<

1

2
(t∗ + 1) < t∗

where for the first inequality, we use √
xy ≤ (x+ y)/2 for x, y > 0 and for next two, we use

t∗ < nA/nB and t∗ > 1 respectively. Therefore, ξ
(√

nA/N
)
> 0 holds.

Left endpoint: at λZ =
√
nB/N . There are two possible cases. If f2(0,

√
nB/N, λb) ≥ 0,

then t∗ = 0 and ξ(
√
nB/N) = −∞ holds automatically. Otherwise, t∗ > 0 and it satisfies

0 <
1

kA
log

[(√
nA

nB
− 1

)
(kA + kBx

∗
2) + 1

]
= log x∗2 + (kA + kB)m(t∗) =⇒ e−(kA+kB)m(t∗) < x∗2.

Then it holds that

ξ

(√
nB

N

)
= kBe

−(kA+kB)m(t∗) −

(√
nA

nB

√(
kB
t∗2

+
kAnB

nA

)
(kA + kB)− kA

)

< kA + kBx
∗
2 −

√
nA

nB
· 1

t∗

(
kA
x∗2

+ kB

)
≤ (kA + kBx

∗
2)

(
1−

√
nA

nB
· 1

t∗x∗2

)
≤ 0

where the second line follows from (5.29), and the last line uses

tx2(t) =
kAt√

(kB + kAnBt2/nA)(kA + kB)− kB
≤ kAt

kA
√

nB/nAt
≤
√

nA

nB
, ∀t > 0,
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since√(
kB +

kAnBt2

nA

)
(kA + kB)− kB ≥ kB

(√(
1 +

kAnBt2

kBnA

)(
1 +

kA
kB

)
− 1

)
≥ kA

√
nB

nA
t

where the last inequality follows from (1 + x)(1 + y) ≥ (1 +
√
xy)2 for x, y ≥ 0.

(d) For any λZ ∈ [
√
nB/N,

√
nA/N ] and t ∈ [0, nA/nB], we know that m(t, λZ , λb) is

uniformly bounded. As λb → ∞, we have

lim
λb→∞

sup
0≤t≤nA/nB ,

√
nB≤NλZ≤√

nA

|m(t, λZ , λb)| = 0.

As a result, as λb → ∞,

lim
λb→∞

ξ(λZ , λb) = (kA + kB)−
1

NλZ

√(
kBnA

t∗(λZ)2
+ kAnB

)
(kA + kB).

Note that t∗(λZ) is increasing in λZ (proven in (b)), and so is ξ(λZ ,∞). From (c), we
know that there exists a λ∗ satisfying √

nB ≤ Nλ∗ ≤ √
nA such that for any λZ < λ∗,

ξ(λZ ,∞) < 0 holds, and for any λZ > λ∗, ξ(λZ ,∞) > 0 holds. This λ∗ is the zero to
ξ(λZ ,∞), i.e.,

t∗(λ∗) =

√
kBnA

(NλZ)2(kA + kB)− kAnB
.

5.4 Proof of Proposition 11

The idea is straightforward, according to our parametrization of Z̄ and b in (3.5), we have
1⊤(Z̄, b) = 0, which is necessary for being the global minimizer by Lemma 8. By strong
convexity on the set {(Z̄, b)|1⊤ (Z̄ + b1⊤N ) = 0} given by Lemma 7, it suffices to verify the
first order optimality equation has a solution in each regime of λZ which is automatically
unique and global by strong convexity. Therefore the key ideas of the proof are similar for
all four cases. We first propose a candidate solution for Z̄ and certificate R̄ such that they
are admissible according to Corollary 9, i.e.,

R̄DZ̄⊤ = 0, Z̄⊤R̄ = 0, ∥R̄D1/2∥ ≤ 1. (5.30)

Then we derive the corresponding optimality equation system and prove the existence of
a solution. In the following proof, we will let λb > 0 be any positive number and the bias
vector b is in the form of (3.5).
Proof of Proposition 11(a) We consider NλZ <

√
nB.

Solution structure: In this case, we propose the structure:

Z̄ = B(a, b, c, d) : =
[
a(kAIkA − JkA×kA) + kBcIkA −bJkA×kB

−cJkB×kA d(kBIkB − JkB×kB ) + kAbIkB

]
, R̄ = 0.
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Notice conditions (5.30) are trivially satisfied as R̄ being zero.

Optimality system: Note that IK−P̄ and
[
(Z̄DZ̄⊤)†

] 1
2 Z̄ are in the block structure with

B(aP , bP , cP , dP ) in (5.15) and B(aZ , bZ , cZ , dZ) in (5.12). By comparing the coefficients,
we need to ensure

kAaP + kBcP = NλZ(kAaZ + kBcZ), kAbP + kBdP = NλZ(kAbZ + kBdZ),

bP = NλZbZ > 0, cP = NλZcZ > 0.

Then the equations above along with the second equation in (5.4), N−1(IK − P̄ )n = λbb,
yield to the following system,

kAe
−a+mkB + kBe

−c−mkA

kBe−c−mkA + e−a+mkB (kA − 1 + ekAa+kBc)
=

NλZ√
nA

,

kAe
−b+mkB + kBe

−d−mkA

kAe−b+mkB + e−d−mkA(kB − 1 + ekAb+kBd)
=

NλZ√
nB

,

e−c−mkA

kBe−c−mkA + e−a+mkB (kA − 1 + ekAa+kBc)
=

NλZc√
(kAnBb2 + kBnAc2)(kA + kB)

,

e−b+mkB

kAe−b+mkB + e−d−mkA(kB − 1 + ekAb+kBd)
=

NλZb√
(kAnBb2 + kBnAc2)(kA + kB)

,

m =
λZ

λb

nAc− nBb√
(kAnBb2 + kBnAc2)(kA + kB)

.

(5.31)

Our goal now is to show that there exists a solution to (5.31) with b > 0 and c > 0. Let
t = b/c, and then combining the four equations in (5.31) gives

eq.1 in (5.31) c =
g2(e

a−c−m(kA+kB))

kA + kB
−mkA,

eq.2 in (5.31) b =
g1(e

d−b+m(kA+kB))

kA + kB
+mkB,

eq.1 and 3 in (5.31) x2(t) := ea−c−m(kA+kB) =
kA√

(kB + kAnBt2/nA)(kA + kB)− kB
,

eq.2 and 4 in (5.31) x1(t) := ed−b+m(kA+kB) =
kB√

(kA + nAkBt−2/nB)(kA + kB)− kA
,

eq.5 in(5.31) m =
λZ

λb

nA − nBt√
(kBnA + kAnBt2)(kA + kB)

(5.32)
where g1 and g2 are defined in (5.23). Here

x1(t) := ed−b+m(kA+kB), x2(t) := ea−c−m(kA+kB) (5.33)

respectively, and x1(t) and x2(t) are monotonic increasing and decreasing function of t on
(t > 0) respectively in (5.32). Using the fact (1+ x)(1+ y) ≥ (1+

√
xy)2 for any x ≥ 0 and
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y ≥ 0 leads to

x1(t) ≤
kB
kA

√
nB

nA
t, x2(t) ≤

kA
kB

√
nA

nB
t−1. (5.34)

Finally, we simplify the equations (5.32) into

b =
g1(x1(t))

kA + kB
+mkB, c =

g2(x2(t))

kA + kB
−mkA. (5.35)

Now, the goal is to show the existence of solution set (a, b, c, d,m) for system (5.32).

Existence of a solution to (5.32): Observe that the existence of (a, d,m) fully relies
on the existence of (b, c) through eq.3-5 in (5.32). Notice, the RHS of both eq.1 and 2
only depends on t := b/c, so the existence of (b, c) is equivalent to whether the following
single-variable equation has a solution for t > 0:

t :=
b

c
=

g1(x1(t)) + (kA + kB)kBm

g2(x2(t))− (kA + kB)kAm
=:

f1(t)

f2(t)
(5.36)

It remains to show (5.36) has a solution. The argument will rely on the monotonicity of f1
and f2, and Lemma 12.

Note that g1, g2 and m are decreasing in t, as shown in Lemma 13. Therefore, f1(t) and
f2(t) are monotonically decreasing and increasing respectively on (0,∞). Note that

lim
t→0+

m(t) =
λZ

λb

√
nA

kB(kA + kB)
, lim

t→+∞
m(t) = −λZ

λb

√
nB

kA(kA + kB)
.

and
lim
t→0+

f1(t) = ∞, lim
t→∞

f2(t) = ∞.

Lemma 12 indicates that it remains to see if {t : f1(t) > 0, f2(t) > 0} is empty. Due to
the monotonicity of f1 and f2, it suffices to show that it is impossible to have f1(t) < 0 and
f2(t) < 0 for some t. We will prove this is impossible by contradiction. Now, we assume
k1f1(t) + kBf2(t) ≤ 0 holds. Note that

k1f1(t) + kBf2(t) = k1g1(x1(t)) + k2g2(x2(t)) ≤ 0

⇐⇒ kA log

[(√
nB

NλZ
− 1

)
(kAx1(t) + kB) + 1

]
+ kB log

[(√
nA

NλZ
− 1

)
(kBx2(t) + kA) + 1

]
≤ kAkB log x1(t)x2(t)

where x1(t)x2(t) ≤ 1 follow from (5.34). This leads to a contradiction, as the left-hand side
is strictly positive. Therefore, k1f1(t) + kBf2(t) > 0 holds which implies that {t : f1(t) >
0, f2(t) > 0} is nonempty. Using Lemma 12 finishes the proof, as it implies a root exists
for (5.36).
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Proof of Proposition 11(b) We consider √
nB < NλZ <

√
nA and λZ satisfies (5.21).

Solution structure: In this case, we propose the structure

Z̄ =

[
a(kAIkA − JkA×kA) + kBcIkA −bJkA×kB

−cJkB×kA −dJkB

]
, R̄ =

[
0 0
0 α(IkB − JkB/kB)

]
(5.37)

In other words, Z̄ = B(a, b, c, d) with kAb + kBd = 0 and R̄ is B(0, 0, 0, α/kB). We have
R̄DZ̄⊤ = Z̄⊤R̄ = 0 and ∥R̄D1/2∥ ≤ 1 holds as long as α

√
nB ≤ 1.

Optimality system: Based on (5.37), [(Z̄DZ̄)†]1/2Z̄ in (5.12) reduces to B(aZ , bZ , cZ , dZ)
satisfying

kAaZ + kBcZ = n
−1/2
A sign(kAa+ kBc), kAbZ + kBdZ = 0,

bZ =
b sign(kAnBb

2 + kBnAc
2)√

(kAnBb2 + kBnAc2)(kA + kB)
, cZ =

c sign(kAnBb
2 + kBnAc

2)√
(kAnBb2 + kBnAc2)(kA + kB)

,
(5.38)

and IK − P̄ in (5.15) becomes B(aP , bP , cP , dP ) with

aP =
e−a+mkB

kBe−c−mkA + e−a+mkB (kA − 1 + ekAa+kBc)
,

bP =
e−b+mkB

kAe−b+mkB + kBe−d−mkA
,

cP =
e−c−mkA

kBe−c−mkA + e−a+mkB (kA − 1 + ekAa+kBc)
,

dP =
e−d−mkA

kAe−b+mkB + kBe−d−mkA
.

(5.39)

Using the optimality condition IK − P̄ = NλZ((Z̄DZ̄⊤)†/2Z̄ + R̄) leads to a normal
equation similar to (5.31):

kAaP + kBcP = NλZ(kAaZ + kBcZ),

kAbP + kBdP = 1 = NλZ(kAbZ + kBdZ + α) = NλZα,

bP = NλZbZ > 0,

cP = NλZcZ > 0,

where (Z̄DZ̄⊤)†/2Z̄ + R̄ is B(aZ , bZ , cZ , dZ +α/kB) and kAbZ + kBdZ = 0. By comparing
the coefficients, we have

kAe
−a+mkB + kBe

−c−mkA

kBe−c−mkA + emkA−a(kA − 1 + ekAa+kBc)
=

NλZ√
nA

,

e−b+mkB

kAe−b+mkB + kBe−d−mkA
=

NλZb√
(kAnBb2 + kBnAc2)(kA + kB)

,

e−c−mkA

kBe−c−mkA + e−a+mkB (kA − 1 + ekAa+kBc)
=

NλZc√
(kAnBb2 + kBnAc2)(kA + kB)

,

kAb+ kBd = 0, 1 = NλZα,

m =
λZ

λb

nAc− nBb√
(kAnBb2 + kBnAc2)(kA + kB)

.

(5.40)
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Our goal is to show that there exists a solution (a, b, c,−kAb/kB) and α such that the
equations above have a unique solution. Here

∥∥R̄D1/2
∥∥ =

√
nBα =

√
nB/NλZ ≤ 1 with

α = 1/NλZ if λZ ≥ √
nB/N , so the certificate R̄ is feasible. By letting t = b/c, we just need

to show the following simplified system derived from (5.40) has a solution for (a, b, c, d,m):

eq.1 in (5.40) c =
g2(e

a−c−m(kA+kB))

kA + kB
−mkA,

eq.4 in (5.40) b =
−(d− b)kB
kA + kB

,

eq.1 and 3 in (5.40) x2(t) := ea−c−m(kA+kB) =
kA√

(kB + kAnBt2/nA)(kA + kB)− kB
,

eq.2 in (5.40) x1(t) := ed−b+m(kA+kB) =
kB

(NλZ)−1
√

(kAnB + kBnAt−2)(kA + kB)− kA
,

eq.5 in (5.40) m =
λZ

λb

nA − nBt√
(kBnA + kAnBt2)(kA + kB)

(5.41)

Existence of a solution to (5.41): Similarly, we consider the following single-variable
nonlinear equation for t,

t =
−kB(d− b)

g2(x2(t))− kA(kA + kB)m(t)
=:

f1(t)

f2(t)
= f(t) (5.42)

where x1(t) and x2(t) are defined in (5.41), and g2 is in (5.23). Equivalently we can also
write f1(t) = −kB [log x1(t)− (kA + kB)m(t)].

The idea of the proof is similar to the case (a): by using the monotonicity of f1 and f2,
and also Lemma 12. We denote the domain of f1(t) as D, i.e.,

D =
{
t > 0 | (NλZ)

−1
√
(kBnAt−2 + kAnB)(kA + kB) > kA

}
=

{
t ∈ R, NλZ ≤

√
nB(kA + kB)/kA,

t <
√

kBnA(kA+kB)
(NλZ)2k2A−kAnB(kA+kB)

, NλZ >
√
nB(kA + kB)/kA,

and that of f2(t) is R. In their domains, x1(t) and x2(t) are increasing and decreasing respec-
tively, which implies f1(t) and f2(t) are strictly decreasing and increasing in t respectively.
It is straightforward to verify:

lim
t→0+

f1(t) = +∞, lim
t→∞

f2(t) = +∞,

where m(t) stays bounded for any t, limt→0+ f1(t) = ∞ due to limt→0+ x1(t) = 0+, and
limt→∞ f2(t) = ∞ due to limt→∞ x2(t) → 0+ and limx→0+ g2(x) = ∞. It suffices to show
that f1(t) and f2(t) share a common positive part. The following argument divides into
two subcases whether f2(t) has a root or not.

Suppose η(λZ) in (5.20) is positive (f2(t) has no root), then f1 and f2 share a common
positive part since as t → 0+, f1 goes to ∞ and f2 stays positive. For λZ with η(λZ) < 0,
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f2 has a unique zero t∗(λZ). To ensure f1 and f2 share a common positive part, it suffices
to have

f1(t
∗(λZ)) = −kB log x1(t

∗(λZ)) + (kA + kB)kBm(t∗(λZ)) > 0,

which is equivalent to

x1(t
∗(λZ)) =

kB

(NλZ)−1
√
(kBnAt∗(λZ)−2 + kAnB)(kA + kB)− kA

< e(kA+kB)m(t∗(λZ))

⇐⇒ kBe
−(kA+kB)m(t∗(λZ)) <

1

NλZ

√(
kBnA

t∗(λZ)2
+ kAnB

)
(kA + kB)− kA.

This finishes the proof, as (5.21) guarantees f1(t
∗(λZ)) > 0 based on the argument above.

Note that Lemma 13 implies that the inequality above holds for any λZ =
√
nB/N + δ

with δ < ε. Hence for any λZ close to √
nB/N , the case (b) in Proposition 11 holds.

Proof of Proposition 11(c) We consider √
nB < NλZ <

√
nA and λZ satisfies (5.22).

Solution Structure: In this case, we propose the structure:

Z̄ = B(a, 0, 0, 0) =
[
a(kAIkA − JkA×kA) 0

0 0

]
,

R̄ = B(aR, bR, cR, dR) =
[
0 0
0 α(IkB − JkB/kB)

]
+

kAkBτ√
(kBnA + kAnBt2)(kA + kB)

ss⊤
[
IkA 0
0 tIkB

]
(5.43)

where

kAaR + kBcR = 0, kAbR + kBdR = α,

bR =
τt√

(kBnA + kAnBt2)(kA + kB)
, cR =

τ√
(kBnA + kAnBt2)(kA + kB)

,
(5.44)

which satisfies R̄DZ̄⊤ = Z̄⊤R̄ = 0 and ∥R̄D1/2∥ ≤ 1 holds as long as

max{
√
nB|α|, τ} ≤ 1.

Optimality system: Based on structure (5.43), we have (5.12) reduce to

kAaZ + kBcZ = n
−1/2
A sign(a), kAbZ + kBdZ = 0, bZ = cZ = 0, (5.45)

and (5.15) becomes

aP =
e−a+mkB

kBe−mkA + e−a+mkB (kA − 1 + ekAa)
, bP =

emkB

kAemkB + kBe−mkA
,

cP =
e−mkA

kBe−mkA + e−a+mkB (kA − 1 + ekAa)
, dP =

e−mkA

kAemkB + kBe−mkA
.

(5.46)

Using the optimality condition IK − P̄ = NλZ([(Z̄DZ̄⊤)†]1/2Z̄ + R̄) leads to a normal
equation similar to (5.31):
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kAaP + kBcP = NλZ(kAaZ + kBcZ), kAbP + kBdP = 1 = NλZα,

bP = NλZ (bZ + bR) > 0, cP = NλZ (cZ + cR) > 0.

where (aZ , bZ , cZ , dZ), (aR, bR, cR, dR) and (aP , bP , cP , dP ) satisfy (5.45), (5.44) and (5.46)
respectively. By comparing the coefficients, we have

kAe
−a+mkB + kBe

−mkA

kBe−mkA + e−a+mkB (kA − 1 + ekAa)
=

NλZ√
nA

,

emkB

kAemkB + kBe−mkA
=

NλZτt√
(kBnA + kAnBt2)(kA + kB)

,

e−mkA

kBe−mkA + e−a+mkB (kA − 1 + ekAa)
=

NλZτ√
(kBnA + kAnBt2)(kA + kB)

,

m =
λZτ

λb

nA − nBt√
(kBnA + kAnBt2)(kA + kB)

, τ ≤ 1, NλZα = 1.

(5.47)

Here √
nBα =

√
nB/(NλZ) ≤ 1 with α = 1/NλZ if λZ ≥ (

√
nBN). Let x(t, τ) :=

ea−m(kA+kB), and then the optimality system (5.47) becomes

eq.1 in (5.47) h(t, λZ , λb, τ) := log

[(√
nA

NλZ
− 1

)
(kA + kBx(t, τ)) + 1

]
− kA log x(t, τ)− (kA + kB)kAm(t, λZ , λb, τ) = 0,

eq.1 and 3 in (5.47) x(t, τ) := ea−(kA+kB)m

=
kA

τ−1
√

(kB + t2kAnB/nA)(kA + kB)− kB
,

eq.4 in (5.47) m(t, λZ , λb, τ) :=
λZτ

λb

nA − nBt√
(kBnA + kAnBt2)(kA + kB)

,

eq.2 in (5.47), eq.2-3 in (5.48) t =

√
nA(kA/x(t, τ) + kB)

NλZ(kA + kBe−(kA+kB)m(t,λZ ,τ))
,

eq.4 in (5.47) τ ≤ 1.
(5.48)

In particular, if τ = 1, h(t, λZ , λb, 1) = f2(t, λZ , λb) holds where f2 is given in (5.16). When
no confusion arises, we denote m(t, λZ , λb, τ) and x(t, τ) by m(t) and x(t) respectively. Now
the goal is to prove the existence of solution set (a,m, t, τ ) of the above system.

Existence of a solution to (5.48): The proof follows from two steps: (i) given λZ ,
h(t, λZ , τ) has a root t(λ, τ, λb) for any τ ∈ [τ∗λZ ,λb

, 1] where τ∗λZ ,λb
is a number only depends

on λZ and λb if
f2(0, λZ , λb) = h(0, λZ , λb, 1) < 0

so that the first three equations in (5.48) satisfy; (ii) we show that there exists a τ ≤ 1
such that the fourth equation in (5.48) also holds. The combination of steps (i) and (ii) is
sufficient to prove the existence of the solution, we prove them respectively.
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Proof for step (i): For simplicity, we use t(λZ , τ) or t to replace t(λZ , λb, τ). Observe
that x and m are both determined by t and τ according to eq 2 and 3 of (5.48), so the
key is to prove the existence of t as the root of h. Note that the domain of h(t, λZ , τ) is
R for any fixed 0 < τ ≤ 1 and √

nB ≤ NλZ ≤ √
nA, and h is strictly increasing in t with

limt→∞ h(t, λZ , τ) = ∞ and

h(0, λZ , λb, τ) = log

[(√
nA

NλZ
− 1

)
(kA + kBx(0)) + 1

]
− kA log x(0)− (kA + kB)kAm(0)

where
m(0) =

λZτ

λb

√
nA

kB(kA + kB)
, x(0) =

kA

τ−1
√
kB(kA + kB)− kB

.

This implies h(t, λZ , λb, τ) has a unique solution in t for a given triple of (λZ , λb, τ) if and
only if h(0, λZ , λb, τ) < 0.

We can also see that h(0, λZ , λb, τ) is decreasing in λZ and τ . Note that

lim
τ→0+

h(0, λZ , λb, τ) = +∞.

For h(0, λZ , λb, 1) < 0, we define τ∗λZ ,λb
∈ [0, 1] as

h(0, λZ , λb, τ
∗
λZ ,λb

) = 0

where τ∗λZ ,λb
is the unique zero of h(0, λZ , λb, τ) in τ as h(0, λZ , λb, τ) is continuous in τ for

any λZ .

Now we define t(λZ , τ) be the zero to h(t, λZ , λb, τ), i.e.,

h(t(λZ , τ), λZ , λb, τ) = 0, ∀τ ∈ [τ∗λZ ,λb
, 1].

In particular, t(λZ , τ
∗
λZ ,λb

) = 0 holds, so the existence of x(t(λZ , τ)) and m(t(λZ , τ)) follow.

Proof for step (ii): It suffices to find a τ such that the fourth equation holds. Let

L(λZ , τ) = t(λZ , τ)−
√
nA(kA/x(t(λZ , τ), τ) + kB)

NλZ(kA + kBe−(kA+kB)m(t(λZ ,τ),λZ ,τ))

for any τ ∈ [τ∗λZ ,λb
, 1] and λZ with f2(0, λZ) ≤ 0.

To show L(λZ , τ) has a zero in τ , we check the value of L(λZ , τ) at τ = τ∗λZ ,λb
and τ = 1.

At τ = τ∗λZ ,λb
, it holds t(λZ , τ

∗
λZ ,λb

) = 0 and

L(λZ , τ
∗
λZ ,λb

) = −
√
nA(kA/x(0, τ

∗
λZ ,λb

), τ) + kB)

NλZ(kA + kBe
−(kA+kB)m(0,λZ ,τ∗λZ,λb

)
)
< 0.

At τ = 1, we have t(λZ , 1) = t∗(λZ), x(t∗(λZ), 1) = x2(t
∗(λZ)), m(t∗(λZ), λZ , 1) =

m(t∗(λZ)), and

kA
x(t∗(λZ), 1)

+ kB =
√
(kB + kAnBt∗(λZ)2/nA)(kA + kB)
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follows from the second equation in (5.48). Therefore,

L(λZ , 1) = t∗(λZ)−
√
nA(kA/x(t

∗(λZ), 1) + kB)

NλZ(kA + kBe−(kA+kB)m(t∗(λZ)))

= t∗(λZ)−
√
(kBnA + kAnBt∗(λZ)2)(kA + kB)

NλZ(kA + kBe−(kA+kB)m(t∗(λZ)))
> 0

which is guaranteed by the condition (5.21),

kA + kBe
−(kA+kB)m(t∗(λZ)) >

1

NλZ

√(
kBnA

t∗(λZ)2
+ kAnB

)
(kA + kB).

By continuity of L(λZ , τ) in τ , there exists a choice of τ such that the fourth equation holds.
Therefore, the condition (5.21) guarantees a solution to system (5.48).

Note that Lemma 13 implies that the inequality above holds for any λZ =
√
nA/N − δ

with δ < ε. Hence, for any λZ close to √
nA/N , the case (c) in Proposition 11 holds.

Proof of Proposition 11(d) We consider NλZ ≥ √
nA.

Solution structure: In this case, we propose the solution structure:

Z̄ = 0, R̄ = B(aR, bR, cR, dR) (5.49)

Aagin, we directly have R̄DZ̄⊤ = Z̄⊤R̄ = 0 and we are left with verifying ∥R̄D1/2∥ ≤ 1
through optimality condition.

Optimality system: The optimality condition is straightforward by (5.4) when Z = 0.
When Z = 0, we have

N−1(IK − P̄ ) = λZR̄,

N−1(IK − P̄ )n = λbb,

∥R̄D1/2∥ ≤ 1.

(5.50)

For ease of notation, we denote u = e−mkA , v = e−mkB and w = v/u. The system (5.50)
above reduces to

eq.1 and 3 in (5.50) ∥(IK − P̄ )D1/2∥ ≤ NλZ ,

eq.2 (5.50) nA − nBw

kB + kAw
= Nλb

logw

kA + kB
,

m = (kA + kB)
−1 logw.

(5.51)

Now we proceed to find a solution to system (5.51).

Existence of a solution to (5.51): We compute the SVD of (IK − P̄ )D1/2 directly,

(IK − P̄ )D1/2 =

[√
nA(IkA − JkA/kA) 0

0
√
nB(IkB − JkB/kB)

]
+

1

kBu+ kAv

[
kB

√
nAu

kA
JkA −√

nBvJkA×kB

−√
nAuJkB×kA

kA
√
nB

kB
vJkB

] (5.52)
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Hence we have,

(IK − P̄ )D(IK − P̄ )⊤ =

[
nA(IkA − JkA/kA) 0

0 nB(IkB − JkB/kB)

]
+

1

(kBu+ kAv)2

[
(
k2BnA

kA
u2 + kBnBv

2)JkA −(kBnAu
2 + kAnBv

2)JkA×kB

−(kBnAu
2 + kAnBv

2)JkB×kA (
k2AnB

kB
v2 + kAnAu

2)JkB

] (5.53)

Therefore, the singular values of (IK − P̄ )D1/2 are √
nA with multiplicity kA − 1, √

nB

with multiplicity kB − 1,
√
(kA + kB)(kBnAu2 + kAnBv2)/(kBu+ kAv) with multiplicity 1,

and 0 with multiplicity 1. It suffices to show the maximum singular value is given by √
nA.

Hence eq.1 in (5.51) is satisfied when λZ ≥ √
nA/N . We only need to look into the squared

singular value

σ(w) :=
(kA + kB)(kBnAu

2 + kAnBv
2)

(kBu+ kAv)2
=

(kA + kB)(kBnA + kAnBw
2)

(kB + kAw)2
.

The objective is then to show the existence of w as the solution of eq.2 in (5.51) and
σ(w) ≤ nA satisfies for that w. The idea is to constrain the range of w and bound it by the
monotonicity of σ(w).

We claim w ∈ [1, nA/nB] by checking two ends of eq.2 in (5.51). On the one hand, the
LHS is greater than 0 iff w < nA/nB and the RHS is greater than 0 iff w > 1. On the
other hand, on w ∈ [1, nA/nB], the LHS (RHS) strictly decreases (increases) in w and at
w = 1 (nA/nB), we have LHS>RHS (LHS<RHS). These allow us to conclude that there
exists a unique w ∈ [1, nA/nB] that satisfies eq.2 of (5.51).

Now we check the monotonicity of σ(w) by computing its derivative:

σ′(w) = 2(kA + kB)
kAnBw(kB + kAw)− kA(kBnA + kAnBw

2)

(kB + kAw)3

= 2kAkB(kA + kB)
nBw − nA

(kB + kAw)3
≤ 0, for w ∈

[
1,

nA

nB

]
.

Therefore when w = 1, we obtain an upper bound of this singular value,

σ(1) =
kBnA + kAnB

kA + kB
≤ nA,

which implies the largest singular value of (IK − P̄ )D1/2 is no larger than √
nA. This

verifies eq.1 of (5.51).

Proof of Proposition 11(e) If λb = ∞, then (5.21) and (5.22) are equivalent to ξ(λZ ,∞) <
0 and ξ(λZ ,∞) > 0 in (5.26). Lemma 13(d) implies that ξ(λZ ,∞) is increasing in λZ with
ξ(
√
nB/N,∞) < 0 and ξ(

√
nA/N,∞) > 0. Therefore, there exists a λ∗ which is the root to

ξ(λZ ,∞), such that (5.21) and (5.22) are equivalent to λZ < λ∗ and λZ > λ∗ respectively.
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5.5 Limiting case: Proof of Corollary 4 and Theorem 5
In this section, we give some asymptotic characterization of Z̄, when either nA or nB, or
both go to infinity.

Proof of Corollary 4 From Proposition 11, the minority collapse occurs when NλZ ≥√
nB. Plugging in N = kAnA + kBnB = nB(kAr + kB) yields

nB(kAr + kB)λZ ≥
√
nB ⇐⇒ r ≥ 1

kA

(
1

√
nBλZ

− kB

)
.

Proof of Theorem 5 Under the assumption NλZ <
√
nB, the mean feature matrix Z̄

falls in the case (a) of Theorem 3. The key is to show that the unique solution t∗N of (5.36)
(i.e., the reduced optimality condition for case (a)) converges to 1 at the rate of 1/ logN as
N → ∞. For simplicity, we define

fN (t) =
g1(x1(t)) + (kA + kB)kBm(t)

g2(x2(t))− (kA + kB)kAm(t)

indexed by the total sample size. Let hN (t) = fN (t) − t and tN be the zero of hN (t).
From the previous analysis, we know tN is unique and hN (t) is monotonically decreasing
on I+fN := {t : fN (t) > 0}. Moreover, it holds f ′

N (t) < 0 on I+fN and as a result,

h′N (t) = f ′
N (t)− 1 < −1.

This implies that ∣∣hN (t)− hN (t′)
∣∣ ≥ ∣∣t− t′

∣∣ for any t, t′ ∈ I+fN .

From the following argument, it is straightforward to see that for sufficiently large N ,
g1(x1(1)) and g2(x2(2)) are both positive and dominate m(1), which implies 1 ∈ I+fN . So
we can obtain the following bound:

|tN − 1| ≤ |hN (tN )− hN (1)| = |hN (1)|

=

∣∣∣∣∣∣
log
[(√

nB

λ − 1
)
(kAx1(1) + kB) + 1

]
− kB log x1(1) + (kA + kB)kBm(1)

log
[(√

nA

λ − 1
)
(kA + kBx2(1)) + 1

]
− kA log x2(1)− (kA + kB)kAm(1)

− 1

∣∣∣∣∣∣ ,
where x1(t) and x2(t) are defined in (5.33), satisfying

x1(1) =
kB√

(rkB + kA)(kA + kB)− kA
, x2(1) =

kA√
(kB + kA/r)(kA + kB)− kB

. (5.54)

It is easy to see x1(t) and x2(t) stay bounded for fixed r. As N → ∞, we notice both nA

and nB go to ∞, and also
m(1) ≲ λ√

Nλb

= o (log(N))
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follows from the assumption on the decay rate of λb. Thus sending N → ∞ implies

|tN − 1| ≲
∣∣∣∣ log√nB/λ+ o(logN)

log
√
nA/λ+ o(logN)

− 1

∣∣∣∣ = log
√
r

log
√
nA/λ

= O

(
1

logN

)
for sufficiently large N .

From (5.32), we know that

bN = log

[(√
nB

λ
− 1

)
(kAx1(tN ) + kB) + 1

]
− kB log x1(tN ) + o (logN)

≥ log

√
nB

λ
− kB log x1(tN ) + o (logN) .

Therefore, bN is at least log(
√
nB/λ) and similarly cN ≥ log(

√
nA/λ). The uniform bound-

edness of x1 and x2 in (5.33) implies that aN and cN , and bN and dN grow at the same
rate, i.e.,

lim
N→∞

bN = O(logN) = ∞, lim
N→∞

cN = O(logN) = ∞

and
lim

N→∞
tN = lim

N→∞

bN
cN

= 1, lim
N→∞

aN
cN

= 1, lim
N→∞

dN
bN

= 1.

In other words, as N → ∞, we have

lim
N→∞

1

bN
Z̄ = (kA + kB)IkA+kB − JkA+kB

which implies the column normalized Z̄ in this limit should converge to the ETF, so do H̄
and W .
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