
Journal of Machine Learning Research 25 (2024) 1-61 Submitted 11/23; Revised 7/24; Published 9/24

Boundary constrained Gaussian processes for robust
physics-informed machine learning of linear partial

differential equations

David Dalton david.dalton@glasgow.ac.uk

Alan Lazarus alan.lazarus@glasgow.ac.uk

Hao Gao hao.gao@glasgow.ac.uk

Dirk Husmeier dirk.husmeier@glasgow.ac.uk

School of Mathematics and Statistics

University of Glasgow

Glasgow G12 8QQ, UK

Editor: Jean-Philippe Vert

Abstract

We introduce a framework for designing boundary constrained Gaussian process (BCGP)
priors for exact enforcement of linear boundary conditions, and apply it to the machine
learning of (initial) boundary value problems involving linear partial differential equations
(PDEs). In contrast to existing work, we illustrate how to design boundary constrained
mean and kernel functions for all classes of boundary conditions typically used in PDE
modelling, namely Dirichlet, Neumann, Robin and mixed conditions. Importantly, this
is done in a manner which allows for both forward and inverse problems to be natu-
rally accommodated. We prove that the BCGP kernel has a universal representational
capacity under Dirichlet conditions, and establish a formal equivalence between BCGPs
and boundary-constrained neural networks (BCNNs) of infinite width. Finally, extensive
numerical experiments are performed involving several linear PDEs, the results of which
demonstrate the effectiveness and robustness of BCGP inference in the presence of sparse,
noisy data.

Keywords: Physics-informed machine learning, Gaussian processes, partial differential
equations, boundary-value problems, inverse problems

1. Introduction

Physics-informed machine learning (PIML) is a rapidly developing field which integrates
data-based machine learning approaches with physics-based mathematical methods (Karni-
adakis et al., 2021). A PIML model of a physical system leverages observational data with
known physical principles, which can include, for example, boundary constraints, conserva-
tion laws and partial differential equations (PDEs). Physics-informed approaches can offer
more robust and interpretable predictions than purely data-based approaches, in addition
to delivering insights and inference about the system of interest that would not be possible
without accounting for domain-specific information. Consequently, PIML has become one
of the most topical research areas in computational physics and machine learning, with

c©2024 David Dalton, Alan Lazarus, Hao Gao and Dirk Husmeier.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-1508.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-1508.html

Dalton, Lazarus, Gao and Husmeier

applications in a wide range of disciplines. This includes quantum chemistry (Pun et al.,
2019), solid mechanics (Nguyen-Thanh et al., 2020), fluid dynamics (Cai et al., 2021), soft-
tissue mechanics (Dalton et al., 2023), and climate modelling (Lütjens et al., 2021), to give
some examples.

Gaussian process regression (GPR) is one machine learning framework that has found
application in the context of PIML (Raissi et al., 2017). GPR can be especially effective
for data that is limited or expensive to obtain, and it offers well-calibrated predictive un-
certainty estimates, which may be essential for scientific applications. In this work, we
will consider the application of GPR to physical systems subject to linear boundary and
linear PDE constraints. GPR is particularly effective in this case, as it allows for seamless
integration of observational data with linear PDE information, which enables efficient joint
inference of any unknown PDE parameters together with the solution function itself. In this
work, our objective is to expand upon the existing literature and design a GPR approach
which also seamlessly integrates known boundary conditions into the inferential framework.

1.1 Related Work

The closure of GPs under linear operators has been long understood (Adler, 2010), and was
recently formalised by Pförtner et al. (2024). Early work leveraged this property of GPs to
build models to incorporate derivative information (Solak et al., 2002), learn latent forces
(Alvarez et al., 2013), and model ordinary and partial differential equations (Graepel, 2003;
Melkumyan, 2012; Dondelinger et al., 2013). Of specific relevance to the material presented
here is the physics-informed Gaussian process (PIGP) inference framework introduced in
the seminal work of Raissi et al. (2017), in which it was outlined how noise levels, any
unknown PDE parameters and the function of interest itself could be jointly inferred using
GPR.

A recent thread of research in the GPR literature has focused on the design of models
that exactly satisfy known boundary conditions a-priori, which we refer to as boundary-
constrained methods. In the context of data-driven surrogate modelling, approaches have
been proposed which design non-stationary mean and covariance functions so that boundary
conditions on the value of the unknown function itself are satisfied (Tan, 2016; Li and Tan,
2022). Other approaches include the design of a bespoke kernel in terms of hyperbolic sine
and cosine functions so that Dirichlet conditions are satisfied (Ding et al., 2019), and the use
of kernels derived from variational harmonic features which can be used to enforce Neumann
and mixed boundary conditions in addition to Dirichlet conditions (Solin and Kok, 2019;
Solin and Särkkä, 2020; Gulian et al., 2022). GPs can also be designed to satisfy other
types of constraints (Swiler et al., 2020), including, for example, monotonicity (Riihimäki
and Vehtari, 2010), bound (Jensen et al., 2013) and general linear inequality constraints
(Da Veiga and Marrel, 2012), as well as certain linear PDEs (Harkonen et al., 2023) and
boundary-value problems (BVPs) (Lange-Hegermann, 2021).

Physics-informed neural networks (PINNs) are an alternative paradigm for the machine
learning of PDE systems (Raissi et al., 2019). While PINNs are considered to be a more
“data-hungry” method than PIGPs, they enjoy the particular advantage of not being limited
to the modelling of linear PDEs. Contemporaneous with the introduction of the above
boundary-constrained methods in the PIGP literature has been the development of methods

2

Boundary constrained Gaussian processes

for imposing the same types of constraints in PINNs. As we discuss in Section 4.2, these two
threads of research are, in fact, highly analogous. Early work in PINNs used simple distance
functions to enforce homogeneous Dirichlet conditions (Nguyen-Thanh et al., 2020), while
more recent work has introduced techniques to handle more complex domains and more
varied boundary conditions (Sheng and Yang, 2021; Sukumar and Srivastava, 2022; Liu
et al., 2022).

1.2 Contributions

In this work, we introduce a framework for explicitly enforcing linear boundary condi-
tions into the structure of a GP prior. This framework goes beyond existing approaches
for Dirichlet boundary conditions (Tan, 2016; Li and Tan, 2022) to also consider more
general Robin, Neumann and mixed boundary conditions. Importantly, time dependence,
forward problems, and inverse problems can all be accommodated. We prove that the
boundary-constrained kernel structure under Dirichlet conditions has a universal approxi-
mation property, and also introduce a theoretical link between the boundary-constrained
PINN and PIGP literatures in the limit of an infinite wide network. We then conduct ex-
tensive numerical experiments involving multiple linear PDE systems, the results of which
demonstrate that explicitly enforcing boundary conditions allows for more robust inference
to be performed, when compared to methods which ignore boundary conditions (Raissi
et al., 2017) or which introduce boundary information using a penalty approach (Zhang
et al., 2022).

The paper is laid out as follows. Firstly, Section 2 presents background material on
linear PDEs, Gaussian processes, distance functions, and solution structures for BVPs,
before Section 3 describes our new framework for constructing BCGPs. Section 4 presents
theoretical results, Section 5 details the numerical experiments we conducted to evaluate
our BCGP framework, while Section 6 concludes.

2. Preliminaries

2.1 Definitions and Notation

In the below, Ω denotes a non-empty, connected, open bounded subset of RD, with boundary
∂Ω and closure (i.e. Ω∪ ∂Ω) the compact set Ω̄. In Section 2.3, X refers to a more general
set on which a kernel can be defined. Finally, the space of all continuous functions on X is
denoted by C(X).

2.2 Linear Partial Differential Equations

A linear partial differential equation (PDE) takes the form

Lθx,t[u](x, t) = f(x, t), x ∈ Ω, t > 0, (1)

in which u : Ω̄ × [0,∞) → R is the unknown solution function describing the behaviour of
the system, f : Ω× [0,∞)→ R is called the forcing term and is typically known, and Lθx,t
is a linear differential operator (see Definition 17), parameterised by θ. Systems are often
spatio-temporal, depending on both spatial location x and time t. For notational simplicity,
however, for the remainder of Section 2 we do not make the temporal input explicit.

3

Dalton, Lazarus, Gao and Husmeier

2.2.1 Boundary Conditions

Solutions to PDEs are not uniquely defined. To make a problem well posed, boundary
conditions can be imposed, which specify the behaviour of the system on the boundary of
the spatial domain, ∂Ω. In this work, we will primarily consider Dirichlet, Robin and mixed
boundary conditions. Periodic boundary conditions can be treated similarly to Dirichlet
conditions, which we illustrate using a numerical example in Section 5.4.2. Other forms of
boundary conditions can also be accommodated if they are linear in the solution field—for
further discussion, see Section 2.5.4.

Dirichlet conditions specify the form of the solution function itself on the boundary as

Dirichlet: u(x) = b(x), x ∈ ∂Ω, (2)

where b is a known function. Robin conditions specify the form of a linear combination of
the solution and its directional derivative outward of the boundary as

Robin: n(x) · ∇u(x) + a(x)u(x) = h(x), x ∈ ∂Ω, (3)

where a and h are known functions and n(x) is the outward normal vector at x ∈ ∂Ω. Note
that Neumann boundary conditions are recovered from Eq. (3) by setting a = 0.

Remark 1 Robin boundary conditions can be defined such that Dirichlet conditions are
also recovered as a special case. However, constructing solution spaces to explicitly satisfy
Dirichlet conditions (see Eq. 26) is much simpler than for Robin/Neumann conditions (see
Eq. 27), and for this reason, we keep the definitions separate here.

Finally, if ∂Ω is decomposed into disjoint segments ∂Ω1 and ∂Ω2, mixed boundary
conditions can be specified by imposing Dirichlet boundary conditions on the first segment
and Robin boundary conditions on the second as

Mixed:

{
u(x) = b(x), x ∈ ∂Ω1,

n(x) · ∇u(x) + a(x)u(x) = h(x), x ∈ ∂Ω2.
(4)

Remark 2 For notational simplicity in Sections 2.5 and 3, we assume that the functions
a, b and h in Eqs. (2)-(4) are known in the interior of the domain Ω in addition to the
boundary ∂Ω. If this is not the case, then interpolation can be used—see Remark 10 for
more details.

When considered together, a PDE and a set of boundary conditions are called a boundary
value problem (BVP). If a PDE is time-dependent, an initial boundary value problem (IBVP)
can be defined, whereby an additional constraint is placed on the initial condition of the
system. Initial conditions can be treated analogously to boundary conditions, which we
demonstrate using several experiments involving IBVPs in Section 5.

4

Boundary constrained Gaussian processes

2.3 Gaussian process regression

Regression refers to the process of using a finite set of possibly noise corrupted data to
perform inference about an unknown function of interest, which we denote u : X → R.

Specifically, suppose a data set of input-output pairs (x
(i)
u , y

(i)
u) has been observed for i =

1, . . . , Nu, with the following noise model assumed for each observation:

y(i)
u = u(x(i)

u) + ε(i)u with x(i)
u ∈ X and ε(i)u ∼ N (0, σ2

u). (5)

The goal of regression is to use these observations yu = (y
(1)
u , . . . , y

(Nu)
u)> to learn the

underlying function, allowing its output u∗ = (u
(1)
∗ , . . . , u

(N∗)
∗)> to be predicted at any

test points of interest x
(1)
∗ , . . . ,x

(N∗)
∗ . In this section, we discuss the essential concepts of

a non-parametric Bayesian method for performing regression based on Gaussian processes
(GPs). For further details, we direct the reader to Rasmussen and Williams (2006), while
Kanagawa et al. (2018) offers a more technical introduction.

Central to the formulation of GPs are Mercer kernels (Kanagawa et al., 2018, Definition
2.1), which we henceforth refer to as simply kernels.

Definition 3 (Mercer kernel) Let X be a non-empty set. A symmetric function k : X ×
X → R is called a Mercer kernel if, for any N ∈ N, c(1), . . . , c(N) ⊂ R and x(1), . . . ,x(N) ⊂
X , we have

N∑
i=1

N∑
j=1

c(i)c(j)k(x(i),x(j)) ≥ 0. (6)

This property of kernels is referred to as positive-definiteness. When the input space is
Euclidean, the prototypical example of a kernel is the squared-exponential.

Example 1 (Squared-exponential kernel) Let X ⊂ RD. Given τ, ` > 0, a squared-
exponential kernel kSE is defined as

kSE(x,x′; τ, `) , τ2 exp

(
−‖x− x

′‖2
2`2

)
, x,x′ ∈ X . (7)

A kernel will, in general, depend on a set of hyperparameters, which we denote as ξ. With
the squared exponential kernel, we have ξ = (τ, `), where τ is called the amplitude and `
the lengthscale. For ease of notation we usually leave this dependence implicit, i.e. writing
k(x,x′) in place of k(x,x′; ξ).

We are now ready to define a GP (Kanagawa et al., 2018, Definition 2.2), where kernels
allow for the covariance between random function outputs to be specified, and are hence
often called covariance functions in this context.

Definition 4 (Gaussian process) Let X be a non-empty set, k : X × X → R a Mercer
kernel and m : X → R any function. Then a random function u : X → R is called a
Gaussian process (GP) with mean m and covariance k, which we denote

u(x) ∼ GP
(
m(x), k(x,x′)

)
, (8)

5

Dalton, Lazarus, Gao and Husmeier

if, for any finite collection of inputs x(1),x(2), . . . ,x(N) ∈X , the distribution of the corre-
sponding outputs u = (u(x(1)), u(x(2)), ..., u(x(N)))> is Gaussian, that is p(u) = N (m,K),
where the mean vector m and covariance matrix K are found by evaluating the mean and
covariance functions from Eq. (8) as follows:

E
(
u(x(i))

)
= m(i) = m(x(i)), (9)

Cov
(
u(x(i)), u(x(j))

)
= K(i,j) = k(x(i),x(j)). (10)

Performing Gaussian process regression (GPR) begins with the assumption that the un-
known function of interest u follows a GP with specified mean and covariance functions,
which we denote mu and kuu respectively. This assumption, along with the independent
and identically distributed Gaussian observation noise model (see Eq. 5), implies that the
training observations yu ∈ RNu×1 and unknown test outputs u∗ ∈ RN∗×1 have the following
joint Gaussian distribution:[

yu
u∗

]
∼ N

([
mu

m∗

]
,

[
Kuu + σ2

uINu Ku∗
K∗u K∗∗

])
. (11)

Here, mu ∈ RNu×1 and m∗ ∈ RN∗×1 are found using the mean function mu as in Eq. (9),
while Kuu ∈ RNu×Nu and K∗∗ ∈ RN∗×N∗ are found using the covariance function kuu as in
Eq. (10). INu ∈ RNu×Nu is the identity matrix, while the off diagonal terms are found as

K
(j,i)
u∗ = K

(i,j)
∗u = kuu(x

(i)
∗ ,x

(j)
u).

Given this joint distribution, the regression task reduces to evaluating p(u∗ |yu), the
conditional distribution of the unknown test data given the observed data. The properties
of the multivariate Gaussian are such that this distribution is again Gaussian (Murphy,
2023, Section 2.3.1.5).

Proposition 5 (Posterior Predictive Gaussian Distribution) Let u∗ and yu be jointly
Gaussian distributed as in Eq. (11). Then p(u∗ |yu) = N (µ∗,Σ∗) with

µ∗ = m∗ + K>u∗
(
Kuu + σ2

uINu
)−1

(yu −mu) ,

Σ∗ = K∗∗ −K>u∗
(
Kuu + σ2

uINu
)−1

Ku∗.
(12)

Carrying out GPR requires then the mean and covariance functions to be specified.
A common choice in practice is to use a zero-mean function and a squared exponential
kernel. Various approaches can then be used to fit any tunable mean/kernel parameters,
including Markov-chain Monte-Carlo, variational inference and empirical Bayesian methods
respectively.

2.3.1 Linear Partial Differential Equation Constraints

In this work, we consider processes for which linear PDE information is available. Specifi-
cally, suppose that, in addition to observations yu ∈ RNu×1 in u-space (see Eq. 5), observa-
tions in yf ∈ RNf×1 in f -space (see Eq. 1) are available with observation model

y
(i)
f = f(x

(i)
f) + ε

(i)
f with ε

(i)
f ∼ N (0, σ2

f), (13)

6

Boundary constrained Gaussian processes

for all i = 1, . . . , Nf . We seek to incorporate yu and yf into a joint inference framework
using GPs. To do so, we employ the GPR algorithm introduced by Raissi et al. (2017),
which is generalised in this section to allow for non-zero mean function. As with usual
GPR, the algorithm begins by assuming that u(x) follows a GP, i.e.

u(x) ∼ GP
(
mu(x), kuu(x,x′; ξ

)
). (14)

For clarity, we use subscripts in this section to denote the spaces in which observations
are made, so that mg(x) = E (g(x)) and kgh(x,x′) = Cov(g(x), h(x′)), for g, h ∈ {u, f}.
Additionally, we make explicit the dependence of the kernel on any hyperparameters ξ (we
assume the mean function has no trainable parameters).

The key insight required here is that GPs are closed under linear operations (Pförtner
et al., 2024, Corollary 2.). This means that our GP prior assumption on u(x) in Eq. (14)
implies that

Lθx[u](x) = f(x) ∼ GP
(
mf (x;θ), kff (x,x′; ξ,θ)

)
. (15)

Furthermore, we have the following fundamental relationship between the mean and covari-
ance functions of the two processes (Raissi et al., 2017):

mf (x;θ) = Lθxmu(x),

kff (x,x′; ξ,θ) = LθxLθx′kuu
(
x,x′; ξ

)
.

(16)

Similarly, the cross-covariance between the observations of the two processes are found as

kuf (x,x′; ξ,θ) = Lθx′kuu(x,x′; ξ),

kfu(x,x′; ξ,θ) = Lθxkuu(x,x′; ξ)
(17)

Note that we are assuming here that the chosen kernel kuu is sufficiently smooth for the
PDE operator to be applied, an issue which is discussed in Section 2.2 of Adler (2010).

The above properties of GPs along with our Gaussian noise assumptions for observations
yu in u-space and observations yf in f -space imply the following joint distribution for the
observed data.

Proposition 6 (Joint distribution of yu and yf) Let u follow a Gaussian process as

in Eq. (14), with Lθx[u] = f . Assume yu ∈ RNu×1 has been observed with noise model given
in Eq. (5), and yf ∈ RNf×1 has been observed with noise model in Eq. (13). Then, yu and
yf follow a joint normal distribution p(yu,yf ; ξ,θ, σ2

u, σ
2
f) of the form[

yu
yf

]
∼ N

([
mu

mf

]
,Kyy

)
, with Kyy =

[
Kuu + σ2

uINu Kuf

Kfu Kff + σ2
fINf

]
, (18)

where m
(i)
g = m(x

(i)
g) and K

(i,j)
gh = kgh(x

(i)
g ,x

(i)
h) for g, h ∈ {u, f}, while IN is the identity

matrix of dimension N , for N ∈ {Nu, Nf}.

A major contribution of Raissi et al. (2017) was to recognise that the parameters θ of
the linear PDE operator are turned into hyperparameters of mf , kff , kuf and kfu (note how
these functions depend on θ in Eqs. 16-17). Therefore, if these parameters are unknown,

7

Dalton, Lazarus, Gao and Husmeier

they can be inferred in the same manner as the original kernel parameters ξ. Raissi et al.
(2017) perform inference by maximisation of p(yu,yf ; ξ,θ, σ2

u, σ
2
f) as follows:

{ξ̂, θ̂, σ̂2
u, σ̂

2
f} = argmax

ξ,θ,σ2
u,σ

2
f

log p(yu,yf ; ξ,θ, σ2
u, σ

2
f), (19)

where the log is taken for reasons of numerical stability.

When viewed as a function of the tunable parameters given fixed observations as in
Eq. (19) above, p(yu,yf ; ξ,θ, σ2

u, σ
2
f) is called the marginal likelihood or evidence of the

observed data. Maximisation of the log marginal likelihood is a common method for training
GPs, as this quantity balances a trade-off between model fit and complexity (Murphy,
2023, Section 3.8.1). This can be seen by writing the objective function out in explicit
form (Murphy, 2023, Section 18.3.5), where we suppress dependence on the parameters
ξ,θ, σ2

u, σ
2
f and ignore any added constants for notational convenience:

log p(yu,yf) = −

Data-Fit︷ ︸︸ ︷
1

2

[
yu −mu

yf −mf

]>
K−1
yy

[
yu −mu

yf −mf

]
−

Regularisation︷ ︸︸ ︷
1

2
log |Kyy| . (20)

The first term above is the squared distance between the observed and predicted values
under the Mahalanobis metric (Murphy, 2023, Section 2.3.1). This is a data-fit term, as it
favours models which better fit the observations. The second term is the log determinant of
Kyy, which is a measure of model complexity, since smoother functions will yield smaller
determinants. Therefore, this is a regularisation term, as it favours more simple models.
By balancing fit and complexity, the marginal likelihood can enable effective model train-
ing even in the low-data regime. This is discussed further in the context of a numerical
experiment in Section 5.2.1.

Once the GP has been trained, prediction at any new test points of interest follows
almost the same formulas as presented in Eq. (12). The only difference is that any terms
involving the training data now have a block structure to account for the fact that obser-
vations are available in two different spaces. For instance, K>u∗ in Eq. (12) is replaced with
a matrix of the form [K>u∗ K>f∗] .

2.4 Approximate Distance Functions

Given a compact set Ω̄ ⊂ RD of the form specified in Section 2.1, there exists a continuous
distance function d : Ω̄→ R given by

d(x) ≡ inf
x′∈∂Ω

‖x− x′‖2, (21)

which gives the shortest distance from any point x to the boundary ∂Ω (Shapiro, 2007,
Section 2.2). Distance functions have wide applicability in modelling and engineering prob-
lems, including, for instance, computer-aided design (Frisken and Perry, 2006), robotics
(Gilbert and Johnson, 1985), computer vision (Perera et al., 2015) and medical imaging
(Felipe et al., 2009). In this work, we make use of (approximate) distance functions to
construct GPs which lie with the solution space of BVPs. Intuitively, a distance function

8

Boundary constrained Gaussian processes

will collapse the variance of the GP to zero at a boundary where the solution function (or
a linear transformation of it) is prescribed—for more details, see Sections 2.5 and 3 below.

There are, however, two immediate drawbacks of using the exact distance function d
from Eq. (21) in this context. Firstly, the precise functional form of d may not be known
for complex geometries, and evaluating a numerical approximation can be computationally
expensive (Sukumar and Srivastava, 2022). Secondly, d will not be differentiable at points
equidistant from more than one point at the boundary (see x = 0.5 in Figure 1 a for
example). For these reasons, in practical applications the exact distance function is often
replaced by a smoothed approximate distance function (ADF), which we denote as φ in this
work. Like the exact distance function, an ADF will equal zero for points on the boundary
∂Ω and be positive otherwise, i.e.

ADF:

{
φ(x) = 0, x ∈ ∂Ω,

φ(x) > 0, x ∈ Ω,
(22)

while also satisfying any desired smoothness properties.
As is detailed in Section 2.5 below, ADFs are sufficient for constructing solution spaces

which exactly satisfy Dirichlet boundary conditions. For Robin conditions, however, an ad-
ditional normalisation condition is required, which states that the outward normal derivative
of the ADF must be exactly minus one on the boundary. This can be expressed as

Normalised ADF: ∇φ(p) = −n(p) (23)

for all regular points p ∈ ∂Ω , i.e. points where the unit outward normal vector n(p) is
well-defined. Any ADF with a non-vanishing gradient near ∂Ω can be normalised (Biswas
and Shapiro, 2004, Eq. A.1).

Remark 7 The concept of a normalised ADF can be extended to higher orders (Biswas
and Shapiro, 2004, Eq. 1). This is not necessary in the present work, however, as we only
consider boundary conditions which are first order in the solution function u.

Example 2 If Ω̄ = [0, 1], then the exact distance function has the form d(x) = Min(x, 1−
x). An ADF which is normalised is given by φ(x) = x(1− x). Both of these functions are
plotted in Figure 1 (a)—note that d is not differentiable at x = 0.5, while φ is differentiable
everywhere.

2.4.1 Methods for constructing ADFs

As shown in Example 2, it is simple to design an ADF for a 1D interval. This construction
easily extends to higher dimensions if the domain has a grid-like shape—see for instance
Figure 2. For domains of more general shape, however, constructing an ADF is non-trivial.
Here, we briefly summarise some construction techniques.

Interpolation methods are one way in which ADFs can be defined for domains of arbi-
trary shape. For example, Freytag et al. (2006) used B-splines fitted to a point cloud of
sampled distance values to construct an ADF, while Sheng and Yang (2021) used radial ba-
sis function interpolation to construct individual distance functions between pairs of points

9

Dalton, Lazarus, Gao and Husmeier

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5
d(x)

φ(x)

−0.25 0.00 0.25 0.50 0.75 1.00 1.25
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

0.00

0.24

0.48

0.72

0.96

1.20

1.44

1.68

(a) d and φ for Ω̄ = [0, 1] (b) ADF to line segment

Figure 1: Panel (a) shows exact distance function d and ADF φ for Ω̄ = [0, 1]. Panel (b)
shows the density plot of an ADF to a line segment (the white line) in R2.

on the boundary, before joining them into a single ADF using multiplication (Sheng and
Yang, 2021, Eq. 10). Particular advantages of these methods include their ease of imple-
mentation and computational efficiency. However, as noted in (Biswas and Shapiro, 2004),
it can be difficult to normalise the ADFs found by interpolation because the gradient of the
ADF may have flat spots near ∂Ω.

Level set methods (Osher et al., 2004) are an alternative approach for constructing
ADFs, in which the domain Ω̄ is implicitly represented by a level set function—the boundary
is represented by the zero level of the function, and the interior as those points with positive
level. The main drawback of this approach is that the level set function is defined implicitly,
and its evaluation requires the repeated solution of a Hamilton Jacobi PDE (Nilsson, 2009,
Eq. 4.7).

ADFs can also be constructed using the theory of mean-value interpolation, the objective
of which is to extend a function defined on the boundary of a spatial domain to its interior
(Dyken and Floater, 2009). An exact formula for performing this interpolation in general
dimensions is given in (Bruvoll and Floater, 2010, Eq. 1). It turns out that the reciprocal of
the weight function in this formula will be an ADF for the domain. Furthermore, this ADF
can be normalised (Bruvoll and Floater, 2010, Theorem 5) and will not have a flat gradient
in the interior of the domain (Bruvoll and Floater, 2010, Section 4). A disadvantage of this
approach is that the ADF is only defined implicitly via an integral equation that needs to be
solved, and furthermore, the ADF can have derivative discontinuities where neighbouring
boundary segments meet.

2.4.2 Constructing ADFs for segmented boundaries

In practice, the boundary of the domain ∂Ω may be represented in terms of M disjoint
segments as ∂Ω = ∪Mi=1∂Ωi. In this case, the theory of R-functions (reviewed in detail by
Shapiro, 2007) can be used to construct a global ADF for ∂Ω when individual ADFs φi
are known for each segment. Briefly, an R-function is a real-valued function whose sign is

10

Boundary constrained Gaussian processes

φ(x, y) ‖∇φ(x, y)‖2
P
ro
d
u
ct

J
oi
n

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.000

0.009

0.018

0.027

0.036

0.045

0.054

0.063

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

R
-E
q
u
iv
al
en
ce

J
oi
n

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.000

0.018

0.036

0.054

0.072

0.090

0.108

0.126

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.00

0.15

0.30

0.45

0.60

0.75

0.90

Figure 2: Comparison of ADFs for domain Ω̄ = [0, 1]2 obtained using by applying the
product (Eq. 24) and R-equivalance (Eq. 25) joins respectively to the functions
φ1(x, y) = x, φ2(x, y) = 1−x, φ3(x, y) = y and φ4(x, y) = 1− y. The left column
shows the ADFs and the right column the norm of the gradient of the ADFs.

determined solely by the sign of its inputs, which can be used to compose the individual
ADFs into a single global ADF (Biswas and Shapiro, 2004, Section 2.2).

To illustrate this idea, we introduce two examples. Firstly, consider the simple grid
domain Ω̄ = [0, 1]2, whose boundary can be decomposed into M = 4 segments in which ∂Ω1

is where x = 0, ∂Ω2 is where x = 1, ∂Ω3 is where y = 0 and ∂Ω4 is where y = 1. For the
second example, consider the intricate polygon in Figure 3 (a), which is a map of County
Laois in Ireland. Here, the boundary is represented by M = 503 individual line segments.

Given a set of M segments, an ADF for the entire boundary can be constructed in two
stages. The initial stage requires that an individual ADF φi is defined for each boundary
segment ∂Ωi. For the grid domain example, these can be specified simply as φ1(x, y) = x,
φ2(x, y) = 1 − x, φ3(x, y) = y and φ4(x, y) = 1 − y. For the polygon in Figure 3 (a), we
use the trimming approach described in (Biswas and Shapiro, 2004, Section 2.1) to define
an ADF for each individual line segment in the boundary, the precise details of which are
provided in Appendix A.4 (see Eq. 72 specifically). For illustration, we provide a heatmap

11

Dalton, Lazarus, Gao and Husmeier

in Figure 1 (b) of the distance field generated by this approach for the line segment that
joins the points (0, 0) and (0.8, 0.5).

The second stage is then to join the individual ADFs φi together into a single ADF φ
for all of ∂Ω using an R-function. A simple joining method is the product join:

Product Join: φ(x) =

M∏
i=1

φi(x). (24)

Note that this is an R-function because the sign of φ is solely determined by the sign of the
individual ADFs φi. We find this join is sufficient under Dirichlet boundary conditions for
simple-grid like domains. However, the ADF it defines is, in general, not normalised (Biswas
and Shapiro, 2004, Section 2.2.1) and therefore not appropriate for Robin conditions (see
Section 2.5). To illustrate this point, we used the product join to construct an ADF for
the boundary of the domain [0, 1]2, using the ADFs φ1, · · · , φ4 given above. The top panel
of Figure 2 shows the distance and normed gradient values over the domain for this ADF.
Although the individual ADFs are normalised, the joined ADF is not. Furthermore, the
product join can also be numerically unstable to evaluate if M is large.

An alternative joining function then which can preserve normalisation at all regular
points of the boundary (Biswas and Shapiro, 2004) is the R-equivalence join:

R-Equivalence Join: φ(x) =
1∑M

i=1 φi(x)−1
. (25)

We use this join for BVPs involving Robin/Neumann boundary conditions and for domains
with many boundary segments M . The bottom row of Figure 2 distance and normed
gradient values over the example domain [0, 1]2 for an ADF found using the R-equivalence
join. Normalisation is preserved at all regular points of the boundary where ‖∇φ(x, y)‖2 =
1. Note that normalisation fails at non-regular points, which in this case are the corner
points where two boundaries meet, such as (0, 0). A more complex example is provided
in Figure 3 (b), which displays a heat map of an ADF constructed using Eq. (25) for the
polygon on the left side of the figure.

2.5 The R-Function Method in Boundary Value Problems

The R-function method (RFM) is an approach for designing a flexible solution structure
ũ using R-functions that satisfies exactly a set of (mixed) boundary conditions (Rvachev
et al., 2000). RFM is applicable to problems involving mixed inhomogeneous boundary
conditions on domains that can be irregularly shaped (Rvachev et al., 2001), heterogeneous
(Tsukanov and Shapiro, 2005) and time varying (Shapiro and Tsukanov, 1999a). It has
been applied to physical problems involving, for instance, fluid dynamics (Artiukh et al.,
2021; Sidorov and Artyukh, 2014), heat transfer (Kolyada et al., 2019; Basarab et al., 2020)
and solid mechanics (Kosta and Tsukanov, 2014; Kurpa et al., 2013). For any given BVP,
the form that the RFM structure will take depends on the shape of the geometry and the
boundary conditions, but not the PDE itself. In the following, we present the structural
forms in the case of Dirichlet, Robin, and mixed boundary conditions respectively.

12

Boundary constrained Gaussian processes

Ω

∂Ω

0.00

0.03

0.06

0.09

0.12

0.15

0.18

(a) Polygonised map (b) ADF for Ω̄

Figure 3: Panel (a) shows a polygonised map of County Laois in Ireland, the boundary of
which is represented using 503 individual line segments. Panel (b) shows an ADF
for the map, found by joining individual ADFs for each boundary segment using
the R-equivalence join from Eq. (25).

2.5.1 Dirichlet Boundary Conditions

Given Dirichlet boundary conditions (see Eq. 2), consider the following solution structure

ũ(x) = b(x) + φ(x)û(x), (26)

where φ is an ADF (see Eq. 22) for the boundary ∂Ω, and û is an undetermined trial function.
The ADF will collapse the contribution of any continuous û to zero on ∂Ω, ensuring the
Dirichlet condition is exactly satisfied. This type of solution structure dates back to the
pioneering work of Kantorovich et al. (1960), and has recently begun to be deployed in the
context of physics-informed machine learning (Berg and Nyström, 2018; Sheng and Yang,
2021).

2.5.2 Robin Boundary Conditions

An extension of Eq. (26) to allow more varied linear boundary conditions to be satisfied can
be derived using a generalised form of the Taylor series expansion (Shapiro, 2007, Section
7). Here, we simply state the solution structure for Robin boundary conditions (see Eq. 3)
to be the following ansatz

ũ(x) = (1 + φ(x)a(x)) û1(x)− φ(x)∇φ(x) · ∇û1(x)− φ(x)h(x) + φ(x)2û2(x), (27)

where û1 and û2 are trial functions, a and h are as given in Eq. (3), and φ is a normalised
ADF (see Eq. 23) for the boundary ∂Ω. In this case, it is not immediately obvious that
the boundary conditions are exactly satisfied by ũ. We therefore introduce the following
proposition, which is proved in Appendix C.1.

13

Dalton, Lazarus, Gao and Husmeier

Proposition 8 If û1, û2, a and h are smooth functions and φ is a normalised ADF for the
boundary ∂Ω, then the RFM solution structure ũ from Eq. (27) exactly satisfies the Robin
boundary conditions from Eq. (3) everywhere on ∂Ω.

2.5.3 Mixed Boundary Conditions

A solution for the mixed boundary conditions in Eq. (4) can be derived by constructing one
structure for the Dirichlet boundary ∂Ω1 and another for the Robin boundary ∂Ω2, before
adding them together. Appendix C.2 presents step-by-step details of this derivation, which
yields the expression below, where φ1 is an ADF for ∂Ω1, φ2 is a normalised ADF for ∂Ω2

and the joined ADF φ is also normalised for ∂Ω2.

ũ(x) = (φ1(x) + φ(x) [a(x)φ1(x)−∇φ2(x) · ∇φ1(x)]) û1(x)

− φ(x)φ1(x)∇φ2(x) · ∇û1(x) + φ(x)φ2(x)û2(x)

+ φ(x) [a(x)b(x)− h(x)−∇φ2(x) · ∇b(x)] + b(x).

(28)

2.5.4 Other Boundary Conditions

RFM solution structures can be constructed for a more varied class of boundary conditions
than considered above. In some cases, a bespoke structure can be derived as in Appendix
C.2—we direct the reader to (Rvachev and Sheiko, 1995) for several examples. Alternatively,
for mixed BVPs with more than two boundary segments, separate solution structures can
be defined for each segment before being joined into a single global solution structure using
transfinite interpolation (Rvachev et al., 2001).

3. Boundary Constrained Gaussian Processes

Modelling problems in which boundary conditions are known are common in scientific ap-
plications. In some cases, they can be explicitly controlled or accurately measured (Maillet,
2019), while in other cases, physical reasoning can be used to deduce what values the system
must take on its boundary (Li and Tan, 2022). Consequently, there has recently been an
interest in the construction of boundary constrained Gaussian process (BCGP) models for
scientific modelling, which we define as follows.

Definition 9 (Boundary-Constrained Gaussian Process) Given a set of linear bound-
ary conditions (e.g. Eq. 4), we define a boundary constrained Gaussian process (BCGP) to
be a GP whose mean and covariance functions have been designed so that the boundary
conditions are exactly satisfied a-priori of any observation data being observed.

The mean and covariance functions of a BCGP are denoted m̃ and k̃ for the remainder
of the paper. We have deliberately not presented a constructive definition of a BCGP, as
several construction procedures have already been proposed (Tan, 2016; Ding et al., 2019;
Solin and Kok, 2019). In the following, we present a new approach for designing BCGPs
based on the RFM from Section 2.5.

14

Boundary constrained Gaussian processes

3.1 R-Function Method Approach to Constructing BCGPs

Existing work involving RFM has typically specified the undetermined trial functions using,
for instance, polynomials or splines. Here, we instead propose placing zero mean GP priors
on these trial functions. Note that each RFM solution structure ũ presented in Section
2.5 (see Eqs. 26-28) involves an affine transformation of the trial functions, i.e. a linear
transformation plus an offset term. By Corollary 2 of Pförtner et al. (2024), therefore, each
ũ will also be a GP, with mean function equal to the offset term and kernel found by plugging
the linear transformation into Eq. (16) (see Eqs. 29-32 below for details). Furthermore, this
GP will be constrained to satisfy the given boundary conditions, since the RFM solution
structure is valid for any choice of continuous trial functions. Therefore, this procedure
constitutes a new way to construct BCGPs.

For the Dirichlet solution structure from Eq. (26), the GP prior on û induces the below
BCGP for Eq. (2):

Dirichlet BCGP:

{
m̃(x) = b(x),

k̃(x,x′) = φ(x)φ(x′)k(x,x′).
(29)

This form of BCGP is equivalent to the construction introduced by Graepel (2003).

Remark 10 In practice, the boundary function b in Eq. (29) may not be known on the
interior of the domain (see, for instance, Section 5.3.1). In this case, interpolation can be
used to construct a function that matches b on the boundary and is smooth on the interior.
In Appendix B.1, we present an algorithm for doing so if the domain has a grid-like shape,
while for domains of a more complex shape, mean value interpolation (Floater and Patrizi,
2020) or neural network approximations (Sheng and Yang, 2021) could be applied.

For the Robin solution structure from Eq. (27), we place a GP(0, k1) prior on û1 and a
GP(0, k2) prior on û2. This induces the following form of BCGP for Eq. (3):

Robin BCGP:

{
m̃(x) = −φ(x)h(x),

k̃(x,x′) = Br1x Br1x′k1(x,x′) + Br2x Br2x′k2(x,x′),
(30)

where the linear operators Br1x and Br2x are given by

Br1x [·](x) = (1 + φ(x)a(x)) [·](x)− φ(x)∇φ(x) · ∇[·](x),

Br2x [·](x) = φ(x)2[·](x).
(31)

In the same manner, a BCGP for Eq. (4) can be constructed from the mixed solution
structure from Eq. (28):

Mixed BCGP:

{
m̃(x) = φ(x) [a(x)b(x)− h(x)−∇φ2(x) · ∇b(x)] + b(x),

k̃(x,x′) = Bm1
x Bm1

x′ k1(x,x′) + Bm2
x Bm2

x′ k2(x,x′),
(32)

where the linear operators Bm1
x and Bm2

x are given by

Bm1
x [·](x) = (φ1(x) + φ(x) [a(x)φ1(x)−∇φ2(x) · ∇φ1(x)]) [·](x)

− φ(x)φ1(x)∇φ2(x) · ∇[·](x),

Bm2
x [·](x) = φ(x)φ2(x)[·](x).

(33)

15

Dalton, Lazarus, Gao and Husmeier

3.1.1 Initial Conditions

As discussed in Section 2.2.1, for spatio-temporal processes u(x, t), the initial condition of
the system at t = 0 can be specified in addition to its behaviour at the spatial boundary
∂Ω. A BCGP for Dirichlet initial conditions (where u(x, 0) is known) can be designed in
the same form as Eq. (29)—see Section 5.5 for examples.

Cauchy initial conditions are also commonly used, whereby the position I(x) and time-
derivative v(x) of the system are specified at t = 0, i.e.

Cauchy:

{
u(x, 0) = I(x), x ∈ Ω̄,

∂tu(x, 0) = v(x), x ∈ Ω̄.
(34)

A BCGP for Cauchy initial conditions can be designed by a slight adjustment of the case of
Dirichlet boundary conditions—for two examples, see Sections 3.2.4 and 5.4.1 respectively.

3.2 One Dimensional Examples

To provide examples of the construction of BCGPs using the RFM, we consider different
types of boundary conditions in the one-dimensional case where Ω̄ = [0, 1]. We denote
the two boundary segments as ∂Ω1 = {0} and ∂Ω2 = {1}, and set their corresponding
normalised ADFs to be φ1(x) = x and φ2(x) = 1 − x, which we join using the Eq. (24)
as φ(x) = φ1(x)φ2(x) because in this simple one dimensional case the product join does
generate a normalised ADF (see Eq. 23).

3.2.1 Dirichlet Boundary Conditions

Consider the Dirichlet conditions u(0) = −2.5 and u(1) = 0. We can enforce these boundary
values using a Dirichlet BCGP as in Eq. (29) with b(x) = 2.5x− 2.5, and φ as stated above.
Five samples from this BCGP and its derivative process are shown in the top row of Figure
4. In the left panel, it is clear that the boundary conditions are satisfied by each sample.
In the right panel, it is apparent that the derivative process takes random values across the
domain, i.e. imposing a constraint on the function itself at the boundary has not introduced
any artificial constraints on the derivative values.

3.2.2 Neumann Boundary Conditions

Next, consider the Neumann conditions ∂xu(0) = −2.5 and ∂xu(1) = 2.5. A Robin BCGP
as in Eq. (30) can be used to enforce these conditions, with a = 0 and h = −2.5. The second
row of Figure 4 displays five samples from this BCGP and its derivative process. In the left
panel, each sample takes a random value across Ω̄, whereas it is apparent in the right panel
that the samples are constrained to satisfy the Neumann conditions on ∂Ω.

3.2.3 Mixed Dirichlet and Robin Boundary Conditions

Now consider mixed boundary conditions, with a Dirichlet left boundary (u(0) = −2.5) and
a Robin right boundary (u(1) = −∂xu(1)). In this instance, a mixed BCGP can be defined
as in Eq. (32), with b = −2.5, a = 1 and h = 0. Function and derivative samples from this
BCGP are displayed in the third row of Figure 4. The Dirichlet condition at x = 0 is clearly

16

Boundary constrained Gaussian processes

satisfied by each sample, while by comparing the function and derivative values at x = 1,
it is apparent that the Robin condition is also satisfied.

3.2.4 Cauchy Initial Condition

For this example, we denote the scalar input as time t. Suppose that the Cauchy initial
condition (see Eq. 34) u(0) = −7.5 and ∂tu(0) = 5 is known. A BCGP for this problem can
then be specified as {

m̃(t) = −7.5 + 5t,

k̃(t, t′) = t(t′)2k(t, t′).
(35)

This BCGP can be derived by two adjustments to the formula given in Eq. (29) for Dirichlet
boundary conditions. Firstly, an additional term (5t) is included in the mean function m̃ to
account for the known derivative value. Secondly, the “distance” to the initial time (given
by t itself) is squared in the boundary constrained kernel k̃, which ensures that k̃ makes no
contribution to the derivative value at t = 0. The bottom row of Figure 4 shows samples
from this BCGP, from which it is clear that the initial condition at t = 0 is satisfied in each
case.

3.3 Comparison with Spectral Expansion Approach

Solin and Kok (2019) and Solin and Särkkä (2020) developed an approach for constructing
BCGPs under homogeneous Dirichlet boundary conditions (i.e. b(x) = 0 in Eq. 2) using
spectral analysis. The boundary-constrained kernel they derived takes the form

k̃(x,x′) =
m∑
j=1

ψj(x)ψj(x
′)s(λj), (36)

in which s is the spectral decomposition of a specified stationary and isotropic kernel func-
tion, while {λj}mj=1 are the eigenvalues (ranked in descending order) and {ψj}mj=1 are the
associated eigenfunctions of the Dirichlet Laplacian BVP on the domain Ω, i.e.{

−∇2ψj(x) = λ2
jψj(x), x ∈ Ω,

ψj(x) = 0, x ∈ ∂Ω.
(37)

For domains of a simple form, such as circles or rectangles, this BVP can be solved in
closed form (Swiler et al., 2020), while for more complex domains, efficient numerical solvers
have been proposed (Song et al., 2017). An extension of this method was later presented
by Gulian et al. (2022), in which the eigenfunctions/eigenvalues of more general elliptical
operators were considered under Robin boundary conditions.

Despite their distinct design techniques, the spectral expansion and RFM approaches
yield similar forms of boundary constrained kernels under Dirichlet conditions. In both
cases, functions that equal zero on the boundary ∂Ω (the eigenfunctions {ψj}mj=1 in Eq. 36
and the ADF φ in Eq. 29) in turn collapse to zero the variance of the GP on ∂Ω. The key
difference is that the eigenfunctions {ψj}mj=2 will not be strictly positive on the interior of
the domain Ω, and therefore will not be ADFs (see Eq. 22). Under certain mild conditions,
it can be shown however that the principal eigenfunction ψ1 will be strictly positive in Ω

17

Dalton, Lazarus, Gao and Husmeier

Function Samples Derivative Samples

D
ir
ic
h
le
t

0.0 0.2 0.4 0.6 0.8 1.0
x

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

0.0 0.2 0.4 0.6 0.8 1.0
x

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

N
eu
m
an

n

0.0 0.2 0.4 0.6 0.8 1.0
x

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

0.0 0.2 0.4 0.6 0.8 1.0
x

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

M
ix
ed

0.0 0.2 0.4 0.6 0.8 1.0
x

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

0.0 0.2 0.4 0.6 0.8 1.0
x

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

C
au

ch
y

0.0 0.2 0.4 0.6 0.8 1.0
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

t
0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

t

Figure 4: Function and derivative samples from the Dirichlet, Neumann, mixed and Cauchy
BCGPs detailed in Section 3.2.

18

Boundary constrained Gaussian processes

(Berestycki et al., 1994, Theorem 2.1-i). Therefore, ψ1 will be an ADF, and could be used
to design a BCGP kernel using the RFM method as in Eq. (29).

4. Theoretical Results

4.1 Universality of the Boundary Constrained Kernel

Remark 11 In the following, we present a concise and non-technical description of repro-
ducing kernel Hilbert spaces—for a more complete overview of this material, see Appendix
A.2.

In Section 2.3, we introduced a kernel as a positive definite function appropriate for use
as a covariance function in the specification of a GP. Kernels also have a deep and one-to-
one correspondence with Hilbert spaces of functions which are “well-behaved” in the sense
that norm convergence implies pointwise convergence (Steinward and Christmann, 2008,
Equation 4.7). Such function spaces are called reproducing kernel Hilbert spaces (RKHSs).
The correspondence is one-to-one because, for each kernel k, there exists a unique RKHS
Hk for which k “reproduces” the functions in the space, and conversely, each RKHS has a
unique reproducing kernel1.

Intuitively, the RKHS Hk of a given kernel k can be thought of as the space of all
posterior means of a zero-mean GP with covariance function equal to k. In the general
regression case, it would clearly be desirable if a kernel allowed for any continuous function
to be approximated to arbitrary accuracy. Kernels for which this property is true are called
universal kernels (Steinward and Christmann, 2008, Definition 4.52).

Definition 12 (Universal Kernel) A continuous kernel k defined on X × X with X a
compact metric space is called universal if its associated RKHS Hk is dense in C(X) with
respect to the metric induced by the supremum norm. That is, for every u ∈ C(X) and for
all ε > 0, there exists û ∈ Hk such that ‖u− û‖∞ ≤ ε.

It can be shown that the squared exponential kernel kSE from Eq. (7) is universal on any
compact subset of RD (Micchelli et al., 2006). By contrast, a boundary constrained kernel k̃
of the form described in Section 3.1 for Dirichlet boundary conditions will not be universal
because all functions in its associated RKHS Hk̃ will be constrained to equal zero at the

domain boundary, ∂Ω. This behaviour of k̃ is desirable when the value of the solution
function is prescribed on ∂Ω. However, the function is unknown on the interior of its
domain, Ω. Therefore, it would also be desirable if k̃ maintains universal approximation
within Ω̄, for all continuous functions which satisfy the boundary conditions.

We examine this problem in the particular case of homogeneous Dirichlet conditions,
i.e. we consider the function space

Hbc , {u ∈ C(Ω̄) : u(x) = 0 ∀x ∈ ∂Ω}, (38)

where Ω̄ is a compact set of the form described in Section 2.1. An appropriate boundary-
constrained kernel k̃ for this problem is given in Eq. (29). We then have the following result,
which is proved in Appendix C.3.

1. See Theorem 19 and related discussion in Appendix A.2 for precise details.

19

Dalton, Lazarus, Gao and Husmeier

Theorem 13 (Universal Boundary Constrained Kernel) Let k̃ be a boundary-constrained
kernel of the form stated in Eq. (29), in which k is any universal kernel on Ω̄ × Ω̄ and φ
any continuous ADF for the boundary ∂Ω (see Eq. 22). Then, the RKHS Hk̃ is dense in
Hbc from Eq. (38) with respect to the metric induced by the supremum norm. That is, for
every u ∈ Hbc and for all ε > 0, there exists ũ ∈ Hk̃ such that ‖u− ũ‖∞ ≤ ε.

4.2 Connection to Neural Networks

As discussed in Section 1.1, the problem of directly enforcing boundary conditions has also
been explored in the context of neural networks. Specifically, a boundary-constrained neural
network (BCNN) can be defined analogously to a BCGP (Definition 9), in which the output
of a neural network is transformed so that a given set of boundary conditions are exactly
satisfied. To our knowledge, no one has yet introduced a formal link between the BCNN
and BCGP literatures. Notice, however, that BCNNs can be constructed in almost the
same manner as BCGPs, by replacing the trial functions in an RFM solution structure (see
Section 2.5) with neural networks (Sukumar and Srivastava, 2022), instead of using GPs as
in Section 3.1. Consider, for instance, the case of Dirichlet boundary conditions (see Eq. 2).
In this case, a BCNN can be constructed following Eq. (26) to give :

Dirichlet BCNN: ũnn(x) = m̃(x) + φ(x)ûnn(x), (39)

in which ûnn is a neural network. This type of BCNN has been widely used recently in the
PINN literature (Berg and Nyström, 2018; Sheng and Yang, 2021; Sukumar and Srivastava,
2022; Anagnostopoulos et al., 2024).

Remark 14 Similar arguments to those presented in Appendix C.3 can be used to show that
the BCNN structure in Eq. (39) is a universal function approximator within the boundary
constrained function space Hbc in Eq. (38)2.

A further equivalence between the two approaches can be derived by considering the
limiting case of an infinitely wide BCNN. Recall that, in the infinite width limit and under
certain regularity conditions, a single layer neural network converges to a GP. Specifically,
we have the following result from Chapter 2 of Neal (1996), which is reviewed succinctly in
Section 18.7.1 of Murphy (2023).

Theorem 15 (Convergence of neural network to GP in infinite width limit) Consider
a single layer neural network of width H, i.e. a model of the form

ûnn(x) = b(1) +

H∑
j=1

w
(1)
j hj(x), hj(x) = ϕ

(
b
(0)
j + x>w

(0)
j

)
(40)

where H is the width of the hidden layer and ϕ is a non-linear activation function taken
to be bounded (such as the tanh function). Assuming Gaussian priors on the parameters of
the form

b(1) ∼ N (0, σb(1)) , w
(1)
j ∼ N

(
0,

√
ω

H

)
, b

(0)
j ∼ N (0, σb(0)) ,w

(0)
j ∼ N (0,Σw(0)), (41)

2. This relies on the well-known universal approximation theorem for neural networks (Cybenko, 1989).

20

Boundary constrained Gaussian processes

then, in the limit as H →∞, we have

ûnn(x)→ GP(0, knn(x,x′)), (42)

where the form of the limiting kernel knn depends on the choice of activation function ϕ.

We now introduce a corresponding theorem for the limiting form of a single layer BCNN.

Theorem 16 (Convergence of BCNN to BCGP in infinite width limit) Let ũnn be
a BCNN of the form of Eq. (39) and ûnn a single layer network of width H, with prior dis-
tributions of the form of Eq. (41) assumed on its parameters. Then, in the limit as H →∞,
we have

ũnn(x)→ GP(m̃(x), φ(x)φ(x′)knn(x,x′)), (43)

where knn is the same kernel found in Eq. (42).

This is proved in Appendix C.4—note also that the result immediately generalises to Robin
and mixed boundary conditions.

5. Numerical Experiments

We conducted a range of numerical experiments to evaluate the effectiveness of BCGPs for
the machine learning of linear PDEs, the results of which are presented and discussed in
Sections 5.2-5.7. Firstly, however, Section 5.1 below provides the implementation details
for these experiments.

5.1 Experimental Details

The numerical experiments we performed are summarised in Table 1, the final column of
which contains a GitHub link to the Jupyter notebooks where they were performed. The
experiments involved forward and inverse problems for five different linear PDEs under
Dirichlet, Cauchy, Neumann, Robin and periodic boundary/initial conditions. For inverse
problems, we introduced white noise to the observation data, with standard deviation (σu
in Eq. 5) typically set to a fraction of the standard deviation in the true function u.

Experiment D Nu Nf Inverse Initial Boundary Code

Poisson-BVP-1 1 0 10 No NA Mixed Link 1
Poisson-BVP-2 2 0 1000 No NA Dirichlet Link 2
Poisson-BVP-3 2 25 25 Yes NA Mixed Link 3
Poisson-BVP-4 2 25 25 Yes NA Dirichlet Link 4
Heat-IBVP-1 1 25 25 Yes Dirichlet Dirichlet Link 5
Heat-IBVP-2 2 50 50 Yes Dirichlet Dirichlet Link 6
Wave-IBVP-1 1 25 25 Yes Cauchy Neumann Link 7
Wave-IBVP-2 1 25 25 Yes Cauchy Periodic Link 8
Adv-Diff-IBVP 1 150 150 Yes Dirichlet Dirichlet Link 9
Helmholtz-BVP 2 10 10 Yes NA Mixed Link 10

Table 1: Summary of the ten (I)BVPs considered in Section 5.

21

https://github.com/dodaltuin/jax-pigp/blob/main/examples/BCGPs/poissonBVP1.ipynb
https://github.com/dodaltuin/jax-pigp/blob/main/examples/BCGPs/poissonBVP2.ipynb
https://github.com/dodaltuin/jax-pigp/blob/main/examples/BCGPs/poissonBVP3.ipynb
https://github.com/dodaltuin/jax-pigp/blob/main/examples/BCGPs/poissonBVP4.ipynb
https://github.com/dodaltuin/jax-pigp/blob/main/examples/BCGPs/heatIBVP1.ipynb
https://github.com/dodaltuin/jax-pigp/blob/main/examples/BCGPs/heatIBVP2.ipynb
https://github.com/dodaltuin/jax-pigp/blob/main/examples/BCGPs/waveIBVP1.ipynb
https://github.com/dodaltuin/jax-pigp/blob/main/examples/BCGPs/waveIBVP2.ipynb
https://github.com/dodaltuin/jax-pigp/blob/main/examples/BCGPs/advectionDiffusionIBVP.ipynb
https://github.com/dodaltuin/jax-pigp/blob/main/examples/BCGPs/helmholtzBVP.ipynb

Dalton, Lazarus, Gao and Husmeier

5.1.1 Gaussian process Specifications

For each experiment, we constructed a BCGP to exactly satisfy the given boundary con-
ditions by applying Eqs. (29), (30) and (32) (adjusted slightly in the presence of initial
conditions or periodic boundary conditions). For ease of readability, we present the exact
functional form of the boundary-constrained mean and kernel for each (I)BVP in Appendix
B.2 instead of the main text.

To benchmark BCGP performance, we used two alternative GP models:

- UCGP: Unconstrained Gaussian Process—here no boundary information is accounted
for in the modelling problem. This is the approach used in the seminal paper by Raissi
et al. (2017).

- PCGP: Penalty Constrained Gaussian Process—here a set of Nb pseudo-observations
on ∂Ω are used to account for the boundary conditions. This is similar to a penalty
or soft enforcement approach, as used by Zhang et al. (2022).

For all models, we used as base kernel the squared-exponential with separate length scales
for each dimension, i.e.

k(x,x′) = τ2 exp

(
−1

2

D∑
i=1

(xi − x′i)2

`2i

)
, (44)

in which the kernel hyperparameters are ξ = (τ, `1, . . . , `D). This is called an automatic
relevance determination (ARD) kernel, as it allows the most important input dimensions to
be identified automatically during the training procedure (Rasmussen and Williams, 2006,
Section 5.1). We used this kernel because it is infinitely differentiable, and therefore appro-
priate for each BVP we considered. If more fine-grained control over kernel differentiability
is desired, a tensor product of Matérn kernels could be used (Pförtner et al., 2024, Example
B.1).

As discussed in Section 2.3.1, we trained all GP models by optimisation of the marginal
likelihood (see Eq. 19). Note that this objective function is not convex with respect to ξ,
and therefore we considered multiple random restarts when training.

5.1.2 Neural Network Specifications

BCNNs (see Section 4.2) were also used for performance benchmarking. We denote a
BCNN as ũnn, and its weights and biases collectively as ω. Given observations yu ∈ RNu×1

in u-space (see Eq. 5) and observations yf ∈ RNf×1 in f -space (see Eq. 13), training was
performed by solving the following optimisation problem.

{ω̂, θ̂} = argmin
ω,θ

[Lu(ω) + Lf (ω,θ)] , (45)

in which

Lu(ω) =
1

Nu

Nu∑
i=1

(
y(i)
u − ũnn(x(i)

u ;ω)
)2
, (46)

Lf (ω,θ) =
1

Nf

Nf∑
i=1

(
y

(i)
f − Lθx[ũnn](x

(i)
f ;ω)

)2
. (47)

22

Boundary constrained Gaussian processes

Again, we use multiple random restarts when solving this optimisation problem because the
objective function is non-convex with respect to ω. Typically with PINNs, a boundary loss
term is also included in the objective function; however, this is not necessary for a BCNN
ũnn because its output is constrained to satisfy the boundary conditions exactly.

Unless otherwise stated, for all experiments, we used a network architecture of four
hidden layers each of width 10, which we found to give strong accuracy across a range of
modelling problems.

5.1.3 Comparison of different modelling approaches

The modelling approaches detailed above have different strengths and weaknesses, and the
choice of which to deploy in practice will depend on the specifics of the problem of interest.
PIGPs are particularly suited to inference in systems governed by linear PDEs. As detailed
in Section 2.3.1, any unknown PDE parameters θ become hyperparameters of the PIGP
kernel, allowing for efficient inference of θ from observational data. The number of param-
eters to be inferred when using a PIGP (that is, the kernel, noise, and PDE parameters)
will be much lower than is the case with a PINN, where typically thousands of weights and
biases will need to be trained. PIGPs also give full uncertainty quantification through the
analytically tractable posterior predictive distribution (Eq. 12). The advantage of PINNs
is that they are significantly more computationally efficient than PIGPs, and can natu-
rally handle non-linear PDEs. As for the handling of boundary conditions, unconstrained
approaches (i.e. UCGPs) are appropriate for applications where boundary conditions are
unknown. When boundary conditions are known, they can either be softly enforced using a
penalty approach or explicitly enforced with a BCGP/BCNN. One problem with PCGPs is
that computational resources are “wasted” accounting for the boundary conditions, whereas
with a BCGP, the conditions are enforced without using observational data. However, the
mean and kernel of a BCGP are more complex than a standard GP, which leads to increased
expense in performing just-in-time compilation of code.

5.1.4 Evaluation Metrics

The results of the PIML models were assessed using the following error metrics

erru = Mean(|u− ûml|), errθ = ‖θ − θ̂‖2, (48)

where θ̂ is the point estimate of the PDE parameters found during training and ûml the
best prediction for the true solution3. The Mean(·) operator in erru was taken over a large
grid of test points in the specified domain.

5.1.5 Implementation Details

The experiments were implemented in Python using the JAX library (Bradbury et al.,
2018). Adam (Kingma and Ba, 2017) was used for training with an exponentially decaying
learning rate. For each PDE considered, the differential operator was implemented in JAX
code, which allowed for mf , kff , kuf and kfu (see Section 2.3.1 for details) to be found
using the automatic differentiation system provided by JAX, i.e. no hand derivations were

3. For GP models, ûml was set to the posterior mean.

23

Dalton, Lazarus, Gao and Husmeier

required. All experiments were performed on an NVIDIA RTX A6000 GPU. Code and data
are available at https://github.com/dodaltuin/jax-pigp/blob/main/examples/BCGPs.

5.2 Poisson Equation

Our first set of numerical experiments involved Poisson’s equation, the prototypical elliptic
PDE that has wide utility in physics. Given two spatial dimensions x and y, the equation
takes the form

Lθx,yu(x, y) , −θ
(
∂2

∂x2
u(x, y) +

∂2

∂y2
u(x, y)

)
= f(x, y). (49)

We applied the equation to four different sets of boundary conditions, specifying θ = 1
in each case and f = 4 unless otherwise stated. We used these experiments to compare
the performance of BCGPs with BCNNs (see Section 4.2)—comparisons with PCGPs and
UCGPs (see Section 5.1.1) were conducted for all other PDEs considered.

5.2.1 Poisson-BVP-1

Our first experiment was modelled on an example from the DeepXDE documentation (Lu
et al., 2021), by applying the Poisson equation on the spatial domain Ω = (0, 2) with
f(x) = 2, subject to the mixed Dirichlet and Robin boundary conditions in Eq. (50). This
BVP yields true solution u(x) = x2.

Poisson-BVP-1:

{
u(x) = 0, x ∈ ∂Ω1 = {0},

∂xu(x) = u(x), x ∈ ∂Ω2 = {2}. (50)

We used this simple example for exposition of the boundary-constrained framework for
modelling BVPs, both for neural networks (BCNNs) and Gaussian processes (BCGPs). Be-
cause this problem involved mixed boundary conditions, a BCGP could be specified using
Eq. (32), and a BCNN specified using Eq. (28)—see Appendix B.2.1 for further details. To
compare the two models, we considered the forward problem of learning u given Nf = 4
collocation points spread evenly in Ω. BCGP training was performed to maximise the
marginal likelihood of the collocation points (see Eq. 19), while BCNN training was per-
formed by minimising the loss term Lpinn (see Eq. 45), with Lpinn = Lf in this case because
no observations in u-space were available.

Figure 5 (a) presents the predictions of both models after training. The BCGP recovered
the true solution virtually exactly, with erru = 5.4 × 10−11, while the BCNN obtained an
erru value of 2.0×10−2. BCNN results were also sensitive to the initialisation of the weights
and biases ω at the beginning of training. This is illustrated in Figure 5 (b), which displays
Lθx[ũnn] under two different random restarts. Both BCNNs have been trained to almost
perfectly interpolate the collocation points, but BCNN 2 exhibits less oscillation near x = 0
and consequently achieves smaller prediction error (erru = 3.2 × 10−3). This illustrates a
problem with the PINN training scheme from Eq. (45) in the presence of sparse data, as it
is unable to distinguish between models which give the same data fit. A regularisation term
could be incorporated into the loss function, which would favour BCNN 2 in this example
because it is the simpler function. However, this requires both the form and the strength
of the regularisation to be specified, which would likely require manual tuning. Note the

24

https://github.com/dodaltuin/jax-pigp/blob/main/examples/BCGPs

Boundary constrained Gaussian processes

0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4 u(x)

BCGP

BCNN 1

0.0 0.5 1.0 1.5 2.0
x

−7

−6

−5

−4

−3

−2

f (x)

BCNN 1

BCNN 2

(a) u-space results (b) BCNN f -space results

Figure 5: Illustration of results for Poisson-BVP-1. The black circles in panel (a) indicate
the location of the collocation points.

contrast to the GP objective function, which automatically incorporates both a data fit
and regularisation term (see Eq. 20). This balance of model fit and complexity (called the
Bayesian Occam’s razor) is what allows the GP to learn the underlying function u even with
only Nf = 4 collocation points. With more training data, the performance of the BCNN
improves considerably; however, approximately Nf = 50 collocation points are required
before the BCNN matches the accuracy of the BCGP trained on Nf = 4 points.

5.2.2 Poisson-BVP-2

We subsequently applied the Poisson equation to a pentagon-shaped domain Ω embedded
within [−1, 1]2 (see the top row of Figure 6), subject to the following Dirichlet boundary
conditions:

Poisson-BVP-2: u(x, y) = 0, (x, y) ∈ ∂Ω. (51)

The solution to this BVP is not available in closed form, and therefore we used a numerical
approximation found using the finite-element method (FEM) (Zienkiewicz et al., 2005),
implemented in Python using the FEniCS library (Alnæs et al., 2015).

A BCGP was specified using Eq. (29), with m̃ = 0 and ADF φ constructed in the
manner detailed in Section 2.4.2 for the polygon in Figure 3 (a). A BCNN was defined
using Eq. (39) with the same choice of m̃ and φ. We used this example to compare the
performance of each model on the forward problem of learning the displacement field given
Nf = 1000 collocation points. The BCNN performed slightly better in this task, attaining
an erru value of 6.3× 10−5 versus 7.2× 10−5 for the BCGP. Both models incurred highest
prediction errors near the corner points where the solution field turns sharply, as can be
seen from the density plots of prediction error in the top row of Figure 6.

25

Dalton, Lazarus, Gao and Husmeier

BCGP BCNN
P
oi
ss
on

-B
V
P
-2

−0.5 0.0 0.5
x

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

0.0000

0.0003

0.0006

0.0009

0.0012

0.0015

−0.5 0.0 0.5
x

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

0.0000

0.0003

0.0006

0.0009

0.0012

0.0015

(a) erru = 7.2× 10−5 (b) erru = 6.3× 10−5

P
oi
ss
on

-B
V
P
-3

−1.0 −0.5 0.0 0.5
x

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

y

0.0000

0.0167

0.0333

0.0500

0.0667

0.0833

0.1000

0.1167

0.1333

0.1500

−1.0 −0.5 0.0 0.5
x

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

y

0.0000

0.0167

0.0333

0.0500

0.0667

0.0833

0.1000

0.1167

0.1333

0.1500

(a) erru = 8.0× 10−3 (b) erru = 1.1× 10−2

P
oi
ss
on

-B
V
P
-4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

(a) erru = 1.5× 10−3 (b) erru = 2.3× 10−3

Figure 6: Density plots of prediction error for BCGP (left) and BCNN (right) for Poisson-
BVP-2, Poisson-BVP-3 and Poisson-BVP-4.

26

Boundary constrained Gaussian processes

5.2.3 Poisson-BVP-3

Our next experiment involved a half-circle domain, which is displayed in the second row of
Figure 6. Mixed boundary conditions were considered, with a Dirichlet condition applied
to the curved segment of the boundary ∂Ω1, and a Neumann condition applied to the flat
bottom segment ∂Ω2:

Poisson-BVP-3:

{
u(x, y) = 0, (x, y) ∈ ∂Ω1,

n(x, y) · ∇u(x, y) = 0, (x, y) ∈ ∂Ω2.
(52)

This BVP can be solved in closed form to yield

u(x, y) = 1− x2 − y2. (53)

We used this BVP to compare BCGP and BCNN performance on the inverse problem of
learning θ given Nu = 25 observations of u (subject to 2.5% Gaussian noise) and Nf =
25 collocation points. A mixed BCGP was specified using Eq. (32), and the BCNN was
constructed analogously—see Appendix B.2.2 for further details. In this case, the BCGP
achieved both a better parameter estimate (errθ = 2.2× 10−2 versus 3.0× 10−2), and was
more accurate in recovering the solution function (erru = 8.0 × 10−3 versus 1.1 × 10−2).
The second row of Figure 6 displays density plots of prediction error—each model incurred
highest error at the bottom left region of the domain, near where the Dirichlet boundary
joins the Neumann boundary.

5.2.4 Poisson-BVP-4

In our final experiment involving the Poisson equation, we set the domain Ω to be the interior
of the intricate polygon from Figure 3 (a), and applied homogeneous Dirichlet conditions
of the form presented in Eq. (51) to its boundary ∂Ω. For this problem, no explicit solution
is available, so we instead treated a BCNN trained on 1000 collocation points as the true
solution. We specified a BCGP using Eq. (29) and a BCNN using Eq. (39), in both cases
setting m̃ = 0 and ADF φ equal to that displayed in Figure 3 (b). As in Section 5.2.3,
we considered the problem of learning both u and θ given Nu = 25 noisy solution space
observations and Nf = 25 collocation points. From this data, the BCGP achieved lower
erru value (1.5×10−3 versus 2.3×10−3) but higher errθ value (3.7×10−2 versus 1.1×10−2).
The bottom row of Figure 6 shows density plots of prediction error, which illustrate that
the BCNN incurred slightly higher errors at the top left of the domain.

5.3 Heat Equation

We next analysed the heat equation, which describes the diffusion of heat in an isotropic
medium. Over two spatial dimensions x and y, the equation takes the form

Lθx,y,tu(x, y) ,
∂

∂t
u(x, y, t)− θ

(
∂2

∂x2
u(x, y, t)− ∂2

∂y2
u(x, y, t)

)
= f(x, y, t) = 0. (54)

We performed experiments which involved the inverse problem of learning the thermal
diffusivity parameter θ = 1, using two IBVPs introduced by Zhang et al. (2022).

27

Dalton, Lazarus, Gao and Husmeier

5.3.1 Heat-IBVP-1

We first applied the heat equation over the spatial domain Ω =
(
−π

2 ,
π
2

)
and time interval

(0, 1], subject to the following Dirichlet initial/boundary conditions:

Heat-IBVP-1:

u(x, 0) = sin(x), x ∈ Ω̄,

u(x, t) = − exp(−t), x ∈ ∂Ω1, t > 0,

u(x, t) = exp(−t), x ∈ ∂Ω2, t > 0,

(55)

in which ∂Ω1 = {−π/2} and ∂Ω2 = {π/2}. The separation of variables technique can be
used to show the solution to this problem has the form stated in Eq. (56) below, which is
plotted in Figure 7 (a).

u(x, t) = sin(x) exp(−t). (56)

We used a BCGP to jointly learn θ and u given a data set of Nu = 25 observations in
solution space corrupted with 2.5% Gaussian noise, and Nf = 25 collocation points of
f = 0. Mean and kernel functions of the form given in Eq. (29) were used to construct the
BCGP, as the IBVP only contained Dirichlet conditions—see Appendix B.2.3 for further
details. The BCGP learned a parameter estimate of θ̂ = 1.000, while its posterior predictive
mean incurred a prediction error of erru = 4.9×10−5. This prediction is displayed in Figure
7 (c)—visually, it provides a perfect match to the true function.

To benchmark these results, we re-performed the experiment using PCGPs. Recall from
Section 5.1.1 that a PCGP incorporates boundary condition information by conditioning on
Nb pseudo-observations from the boundary. To account for the heteroscedasticity between
the noisy observations yu in the interior of the domain and the noise-free boundary obser-
vations, we introduced a small noise variance σ2

n for the boundary points. We furthermore
let σ2

n be a trainable hyperparameter, which we found yielded improved performance. To
explore how the number of boundary enforcement points (whose locations were chosen by
random sampling) affected PCGP results, inference was performed for a range of values
of Nb < 150. Figure 8 (a) displays these results as a line plot of errθ against Nb, which
indicates that errθ fell with higher values of Nb to closely match (but never exceed) the
BCGP result. The posterior means of the two models for Nu = Nf = 25 are presented
in panels (c) and (e) respectively of Figure 7. Visually, there is strong agreement between
the two results; however, the BCGP obtained an erru value approximately half that of the
UCGP.

5.3.2 Heat-IBVP-2

The spatial domain Ω = (0, π)2 and time interval (0, 0.5] was specified for our next experi-
ment, with the below Dirichlet initial/boundary conditions applied.

Heat-IBVP-2:

{
u(x, y, 0) = sin(x) sin(y), (x, y) ∈ Ω̄,

u(x, y, t) = 0, (x, y) ∈ ∂Ω, t > 0.
(57)

The separation of variables technique can be used to show that the exact solution to this
problem has the form given in Eq. (58), which is displayed in Figure 7 (b) for t = 0.5.

u(x, y, t) = sin(x) sin(y) exp(−2t). (58)

28

Boundary constrained Gaussian processes

Heat-IBVP-1 Heat-IBVP-2

T
ru
e
S
ol
u
ti
on

0.0 0.2 0.4 0.6 0.8 1.0
t

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(a) (b)

B
C
G
P

0.0 0.2 0.4 0.6 0.8 1.0
t

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(c) erru = 5.3× 10−5 (d) erru = 5.8× 10−4

P
C
G
P

0.0 0.2 0.4 0.6 0.8 1.0
t

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(e) erru = 9.4× 10−5 (f) erru = 9.1× 10−4

Figure 7: Plots of true and predicted results for Heat-IBVP-1 and Heat-IBVP-2.

As in Section 5.3.1, a Dirichlet BCGP for this problem was specified following Eq. (29)—see
Appendix B.2.4 for details. To perform inference, we generated a data set of Nu = 50 noise-
corrupted function observations and Nf = 50 collocation points. More training points were
used here due to the increased dimensionality of the problem. From this data, the BCGP
learned an estimate of θ̂ = 0.994, with erru = 5.8× 10−4. Figure 7 (d) shows the posterior
mean prediction over Ω̄ at time t = 0.5, from which it is clear that the true function was
accurately recovered. PCGPs with different values of Nb were again used as benchmarking,
the results of which can be seen in Figure 8 (b). In this case, high errθ errors were incurred

29

Dalton, Lazarus, Gao and Husmeier

0 25 50 75 100 125 150
Nb

10−3

10−2

10−1

er
r θ

PCGP

BCGP

0 25 50 75 100 125 150
Nb

10−2

10−1

100

er
r θ

PCGP

BCGP

(a) Heat-IBVP-1 (b) Heat-IBVP-2

Figure 8: Effect on parameter inference accuracy of number of penalty observation points
Nb for PCGP for Heat-IBVP-1 and Heat-IBVP-2.

for Nb < 25, however this rapidly switched to yield significantly more accurate results for
Nb > 25.

We remark here that when training a PCGP for this problem with a low number of
boundary enforcement points (Nb), we found that the optimiser consistently converged to
a result which yielded a posterior mean approximately equal to zero across the domain, in
which case all variation in the data was attributed to noise. This is a well-known problem in
physics informed training in the presence of sparse data (Leiteritz and Pflüger, 2021). We
call this the trivial solution, as the zero function trivially satisfies the Heat PDE in Eq. (54).
As Nb was increased, a greater proportion of the random restarts began to (approximately)
learn the true solution. However, even for values of Nb up to 1000, we continued to encounter
the problem. Furthermore, this was not a local optima—in fact, the value of the objective
function (see Eq. 19) for restarts where the posterior mean was close to zero was consistently
higher than for restarts which recovered the true solution accurately. For the PCGP results
presented in Figure 8 (b), we manually filtered all restarts and removed any optimisation
results which found the trivial solution. If this was not performed, the PCGP results
would have been significantly worse. We believe this was a particular problem in this
example because we applied homogeneous boundary conditions (i.e. u = 0 on ∂Ω), and
the introduction of pseudo-observations of u = 0 is unlikely to help the optimiser avoid
the trivial solution. By contrast, the initial condition in Eq. (57) is non-zero. We therefore
tried biasing the sampling of the boundary/initial pseudo-observations so that more initial
points were chosen compared to boundary points. This did make the trivial solution less
of a problem, but prediction errors were higher for those optimisations which escaped the
trivial optimum. This was in stark contrast to the BCGP, which consistently found the
correct solution under different random restarts without any hand-tuning.

5.3.3 Effect of Observation Noise

In Sections 5.3.1 and 5.3.2 above, 2.5% Gaussian observation noise was applied to the
function space observations yu (measured as a percentage of the standard deviation of
the underlying signal). To explore how results change as this noise level is varied, we re-

30

Boundary constrained Gaussian processes

Heat-IBVP-1 Heat-IBVP-2

0.0 2.5 5.0 7.5 10.0
Observation Noise (%)

10−5

10−4

10−3

10−2

10−1

er
r u

UCGP

PCGP

BCGP

0.0 2.5 5.0 7.5 10.0
Observation Noise (%)

10−5

10−4

10−3

10−2

10−1

er
r u

UCGP

PCGP

BCGP

(a) (b)

0.0 2.5 5.0 7.5 10.0
Observation Noise (%)

10−4

10−3

10−2

10−1

100

er
r θ

UCGP

PCGP

BCGP

0.0 2.5 5.0 7.5 10.0
Observation Noise (%)

10−4

10−3

10−2

10−1

100

er
r θ

UCGP

PCGP

BCGP

(c) (d)

Figure 9: Effect of observation noise on results obtained using UCGPs, PCGPs and BCGPs
for Heat-IBVP-1 and Heat-IBVP-2.

performed the experiments with noise levels ranging from 0% to 10%. The results obtained
using UCGPs, PCGPs and BCGPs, respectively, are displayed as line plots against noise
level in Figure 9. For Heat-IBVP-1, Nb = 90 boundary points were used when implementing
the PCGP, while Nb = 100 points were used for Heat-IBVP-2.

The UCGP obtained strong accuracy for Heat-IBVP-1 in the noise free case; however,
performance rapidly deteriorated as noise levels increased. For Heat-IBVP-2, even with
low noise levels, the UCGP found the trivial solution and therefore incurred high errors in
prediction of u and θ, indicating a lack of robustness of the UCGP to observation noise. The
PCGP and BCGP results by contrast exhibited a more gentle deterioration with increasing
observation noise. The BCGP results were almost always better, except for errθ in Heat-
IBVP-1, where the accuracy of the PCGP oscillated as observation noise increased. Note
also the high errors incurred by the PCGP in Heat-IBVP-2 for 10% observation noise. As
discussed in Section 5.3.2, we manually filtered the PCGP optimisation results to remove
those which found the trivial zero solution. With 10% observation noise, however, all
random restarts found the trivial solution, leading to high errors in this case.

31

Dalton, Lazarus, Gao and Husmeier

5.4 Wave Equation

The third PDE we considered was the wave equation, a hyperbolic, second-order PDE that
is fundamental for describing wave phenomena in areas such as fluid dynamics, electromag-
netics and acoustics. Over one spatial dimension, the equation takes the form

Lθx,tu(x, y) ,
∂2

∂t2
u(x, t)− θ ∂

2

∂x2
u(x, t) = f(x, t) = 0, (59)

with θ > 0 the wave propagation speed. With this PDE, we again considered the inverse
problem of learning θ = 1, using two sets of boundary conditions.

5.4.1 Wave-IBVP-1

We first applied the wave equation over spatial domain Ω = (0, π) and time interval (0, 1],
with a Cauchy initial condition specified at t = 0 and a Neumann boundary condition
specified on ∂Ω:

Wave-IBVP-1:

u(x, 0) = cos(x), x ∈ Ω̄,

∂tu(x, 0) = cos2(x), x ∈ Ω̄,

∂xu(x, t) = 0, x ∈ ∂Ω, t > 0.

(60)

The separation of variables technique can be used to show that the solution takes the form
given in Eq. (61), which is plotted as using a heatmap in Figure 10 (a).

u(x, t) =
1

2
t+ cos(t) cos(x) +

1

4
sin(2t) cos(2x). (61)

We generated a training data set consisting of Nu = 25 noise corrupted observations of
u, and Nf = 25 collocation points for f . We first addressed the problem of learning θ and
u from this data set using a UCGP, i.e. ignoring boundary condition information during
parameter inference as in Raissi et al. (2017). UCGP performance was poor, with best
errθ value of 4.7× 10−1. Furthermore, we found that the parameter estimate was unstable
with respect to the initial value of the hyperparameters. The posterior mean of the UCGP
incurred erru value of 7.9× 10−2. It is plotted in Figure 10 (e), and it is clear that it failed
to capture the true function on the upper right of the spatio-temporal domain.

Because this problem involved Neumann boundary conditions, we constructed a BCGP
following Eq. (30), adjusted in the manner described in Section 3.2.4 to account for the
Cauchy initial condition—see Appendix B.2.5 for details. We found that the BCGP was
significantly more accurate than the UCGP under both error metrics, yielding an errθ value
of 1× 10−2 and erru value of 8.3× 10−3. Its posterior mean is displayed in Figure 10 (c),
and it exhibits strong agreement with the true solution. Also, in contrast to the UCGP, we
found that BCGP results were stable with respect to initialisation during training.

32

Boundary constrained Gaussian processes

Wave-IBVP-1 Wave-IBVP-2
T
ru
e
S
ol
u
ti
on

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

−1.0

−0.5

0.0

0.5

1.0

0.5 1.0 1.5 2.0 2.5
t

0.0

0.2

0.4

0.6

0.8

1.0

x

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

(a) (b)

B
C
G
P

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

−1.0

−0.5

0.0

0.5

1.0

0.5 1.0 1.5 2.0 2.5
t

0.0

0.2

0.4

0.6

0.8

1.0

x

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(c) erru = 8.3× 10−3 (d) erru = 3.3× 10−3

U
C
G
P

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

−1.0

−0.5

0.0

0.5

1.0

0.5 1.0 1.5 2.0 2.5
t

0.0

0.2

0.4

0.6

0.8

1.0

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(e) erru = 7.9× 10−2 (f) erru = 4.0× 10−1

Figure 10: Plots of true and predicted results for Wave-IBVP-1 and Wave-IBVP-2.

5.4.2 Wave-IBVP-2

In our second example involving the wave equation, we considered spatial domain Ω =
(0, 1) over the time interval (0.5, 2.5], and applied a Cauchy initial condition with periodic
boundary conditions:

Wave-IBVP-2:

u(x, 0) = sin(πx), x ∈ Ω̄,

∂tu(x, 0) = 0, x ∈ Ω̄,

u(0, t) = u(1, t).

(62)

33

Dalton, Lazarus, Gao and Husmeier

This IBVP can be solved using d’Alembert’s formula to give the below solution, which is
plotted in Figure 10 (b).

u(x, t) = sin(xπ) cos((t− 0.5)π). (63)

We again generated Nu = Nf = 25 observations, with the objective of learning θ and
u. We first applied a UCGP to this problem, which completely failed under each random
restart performed. The best result obtained was an estimate of θ̂ = 0.06 and erru value of
4.0× 10−1. The posterior mean is plotted in Figure 10 (f), from which is apparent that it
learned the trivial zero solution.

Because this problem involves periodic boundary conditions, a periodic kernel could be
used here to construct a BCGP, adjusted slightly as in Section 5.4.2 above to account for
the Cauchy initial condition. However, we found that better performance could be used by
designing a periodic BCGP kernel by a modification of the Dirichlet BCGP in Eq. (29)—full
details of this construction are given in Appendix B.2.6. In contrast to the UCGP, we found
that the BCGP could accurately capture both θ and u. Specifically, the BCGP learned an
estimate of θ̂ = 1.01 and incurred an erru value of only 3.3 × 10−3. The posterior mean
is plotted in Figure 10 (d), which illustrates that it almost perfectly recovered the true
function.

5.5 Advection-Diffusion Equation

We next considered an advection-diffusion equation

Lθx,tu(x, y) ,
∂

∂t
u(x, t)− θ1

∂

∂x
u(x, t)− θ2

∂2

∂x2
u(x, t) = f(x, t) = 0, (64)

over the spatial domain Ω = (0, 1) and time interval (0, 1], under the following Dirichlet
initial/boundary conditions:

Adv-Diff-IBVP:

{
u(x, 0) = sin(2πx) exp(x), x ∈ Ω̄,

u(x, t) = 0, x ∈ ∂Ω, t > 0.
(65)

The parameter θ1 in Eq. (64) controls the strength of the advection term, while θ2

controls the level of diffusion. Setting θ = (θ1, θ2) = (0.05, 0.025), it can be directly verified
that the true solution takes the form given in Eq. (66), which is visualised in Figure 11 (a).

u(x, t) = sin(2πx) exp
(
−(0.1π2 + 0.025)t+ x

)
. (66)

We used this system to explore how the number of observationsNu and collocation points
Nf affects the accuracy of the inference results. Specifically, we generated data sets of sizes
Nu + Nf = {50, 150, 300} with Nu = Nf , where the function space observations yu were
corrupted by 2.5% Gaussian noise. From these data sets, we used BCGPs and UCGPs to
learn both the solution function u and parameter vector θ. The BCGPs were specified using
mean and kernel functions of the form stated in Eq. (29) for Dirichlet boundary conditions—
see Appendix B.2.7 for further details. To give some uncertainty quantification, we repeated
the experiments under 15 different random regenerations of each data set. Distribution plots
of erru and errθ against Nu +Nf for both types of model are shown in the bottom row of

34

Boundary constrained Gaussian processes

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

(a) True solution (b) Prediction—BCGP

50 150 300
Nu + Nf

10−4

10−3

10−2

10−1

er
r θ

50 150 300
Nu + Nf

10−4

10−3

10−2

10−1

100

er
r u

(c) (d)

Figure 11: The top row displays the true solution and BCGP prediction for the Advection-
Diffusion-IBVP. In the bottom row, the distributions of UCGP erru and errθ
results are displayed in blue, with BCGP results displayed in green.

Figure 11, where UCGP results are coloured blue, and BCGP results green. Under both
error measures, the BCGP outperformed the UCGP by several orders of magnitude. Figure
11 (b) shows the posterior mean of a BCGP trained on a data set with Nu = Nf = 10.
Even given these sparse data, BCGP was able to accurately capture the true function, with
erru value of 9.0× 10−3 and parameter estimate θ̂ = (0.054, 0.0252).

We remark that we also tried fitting a PCGP for this problem but obtained similar results
to the UCGP. For all data set sizes, training yielded high values of both the observation
and nugget noise parameters. It is possible that more accurate results could be obtained
via a bespoke training routine whereby a bound is placed on the values that the nugget
parameter can take (which we found sometimes helps on Heat-IBVP-2). However, we felt
that such (possibly application-specific) modifications were beyond the scope of this paper.
Note also the contrast to the BCGP method, which does not require any boundary pseudo-
observations and therefore no tuning of this type was required.

35

Dalton, Lazarus, Gao and Husmeier

5.6 Helmholtz Equation

Our final experiment involved the two-dimensional Helmholtz equation

Lθx,yu(x, y) , θ2u(x, y)− ∂2

∂x2
u(x, y)− ∂2

∂y2
u(x, y) = f(x, y) (67)

over the spatial domain Ω = (0, 1)2, subject to Dirichlet conditions on the upper right por-
tion of the boundary ∂Ω1 (see Eq. 73) and Neumann conditions on the lower right boundary
∂Ω2 (see Eq. 74) as below.

Helmholtz-BVP:

{
u(x, y) = 0, (x, y) ∈ ∂Ω1,

n(x, y) · ∇u(x, y) = 0, (x, y) ∈ ∂Ω2.
(68)

We set θ = 3 and specified the below solution function, from which the form of f can
be found by directly evaluating the Helmholtz PDE.

u(x, y) =
(
1− x2

) (
1− y2

)
+ cos

(πx
2

)
(exp(−y) + y − (1 + exp(−1))). (69)

Once again, the inverse problem of recovering the solution u and PDE parameter θ was
considered, in this case given 10 observations each of u and f . Observations in both spaces
were subject to white noise, with common standard deviation σu = σf = 0.01. We modelled
this example on Section 4.2 of Gulian et al. (2022), in which BCGPs were constructed using
the spectral expansion method (see Section 3.3). This method is not suitable for inverse
problems without additional adjustments, however, and therefore θ was fixed to its true
value in their work.

To specify a BCGP for this problem, we used mean and kernel functions of the form given
Eq. (32), as the BVP involved mixed Dirichlet and Neumann conditions—see Appendix
B.2.8 for further details. The BCGP yielded an erru value of 5.0× 10−3 and errθ value of
1.2 × 10−2, in both cases lower than the values erru = 1.8 × 10−2 and errθ = 1.0 × 10−1

obtained using a UCGP. The posterior means for both models are displayed in the top two
rows of Figure 12. The density plots of the prediction error |u(x)− û(x)| and the posterior
predictive standard deviation σ(x, t) in the final two rows of the figure further emphasise
the advantage of the BCGP framework. From panels (c) and (e), we see that the highest
level of prediction error and uncertainty for the UCGP is at the point (1, 1). However, the
function value is prescribed at this point and therefore uncertainty should in principle be
lowest, which is precisely what is captured by the BCGP in panels (d) and (f).

5.7 Discussion

The BCGP and BCNN comparison in Section 5.2 showed that the BCGP was able to
obtain more accurate results from sparse data set sizes, while for larger data set sizes, the
results of the two approaches were more closely aligned. The UCGP/PCGP comparisons
in Sections 5.3-5.6 demonstrated that the BCGP approach was more robust to data set
size and observation noise. In particular, we consistently encountered the trivial solution
problem of learning the zero function across the domain when using UCGPs and PCGPs
for larger noise levels, whereas the BCGP results exhibited more robustness.

36

Boundary constrained Gaussian processes

UCGP BCGP
û

(x
,y

)

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0

0.2

0.4

0.6
0.8

1.0
0.00

0.10

0.20

0.30

0.40

0.50

0.60

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0

0.2

0.4

0.6
0.8

1.0
0.00

0.10

0.20

0.30

0.40

0.50

0.60

(a) (b)

|u
(x
,y

)
−
û

(x
,y

)|

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

(c) erru = 1.80× 10−2 (d) erru = 5.00× 10−3

σ
(x
,y

)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(e) (f)

Figure 12: Posterior predictive results for Helmholtz equation using UCGP (left column)
and BCGP (right column). The red points in the top row show the observations
in u-space, while the black crosses show the input locations for the observations
in f -space.

37

Dalton, Lazarus, Gao and Husmeier

For our inverse problem experiments, more PDE collocation points could have been
used, however, we found that this can actually lead to worse inference results for PDEs
with f = 0 (see Eq. 1). The reason for this counterintuitive result is that introducing more
pseudo-observations of f = 0 increases the attractor domain of the trivial solution, whereby
the posterior of the GP collapses to zero across the domain with very low uncertainty. For
an example of this phenomenon, we direct the reader to Section 4.4 of Dalton et al. (2024).
We therefore set the number of PDE collocation points Nf equal to the number of solution
space observations Nu, which we found to be a good heuristic to mitigate the problem.

6. Conclusions

In this work, we developed a new approach for constructing boundary constrained Gaus-
sian processes (BCGPs) to allow for the exact imposition of Dirichlet, Neumann and mixed
boundary conditions. We analysed the representational capacity of our BCGP framework
under Dirichlet conditions, and found that our construction can satisfy universal approxi-
mation within the space of continuous functions which satisfy the boundary constraint. We
also demonstrated an equivalence in the infinite width limit between a boundary-constrained
neural network (BCNN) and a BCGP. Finally, extensive numerical experiments were con-
ducted for a range of linear (I)BVPs, where the primary focus was the inference of any
unknown parameters of the underlying differential operator. A consistent pattern observed
was that the BCGP framework offered results that were robust to initialisation, observation
noise and data sparsity.

There are several ways in which future work could expand on that which has been pre-
sented in this paper. Firstly, the GPR approach we made use of is limited to the modelling
of linear PDEs, as Proposition 6 does not hold for non-linear differential operators. Several
approaches have been proposed to extend GP inference to non-linear PDEs (Raissi et al.,
2018; Chen et al., 2022; Long et al., 2022). Furthermore, our approach is not appropriate
for large data sets, as the computational cost of performing full GP inference would be pro-
hibitive. This issue could be alleviated through the use of so-called sparse GP approaches,
which allow for approximate inference with linear complexity in the number of training
points (Titsias, 2009). We also only considered boundary information in the design of the
hard-constrained mean and covariance functions. However, knowledge of the PDE itself
could also be used when designing these functions (Harkonen et al., 2023; Sarkka et al.,
2013). Future work could also consider techniques on how to avoid the trivial solution of
learning the zero function across the domain in the case of sparse and noisy data. For
instance, in practical applications information about the accuracy of the measurements is
typically available. This could potentially be used as an informative prior on the observation
noise parameter to potentially alleviate the problem. Finally, here we performed inference
in an empirical Bayesian manner, which did not yield uncertainty bounds for the parameter
estimates. This could be rectified in future work by taking a fully Bayesian approach to
inference using Markov chain Monte Carlo, which would allow uncertainty to be more fully
quantified.

Acknowledgments

38

Boundary constrained Gaussian processes

This work has been funded by the Engineering and Physical Sciences Research Council
(EPSRC) of the United Kingdom, grant reference numbers EP/T017899/1, EP/S030875/1
and EP/S020950/1.

Appendix A. Background Material

A.1 Linear differential operators

Following Definition 1 of Chen et al. (2022), we define a linear differential operator as
follows.

Definition 17 (Linear Differential Operator) A linear differential operator on a func-
tion u(x) takes the form:

Lθx[u](x) ,
L∑
i=1

ci(x,θ)∇αiu(x), with ∇αiu ,
∂αi,1

∂x
αi,1
1

· · · ∂
αi,D

∂x
αi,D
D

u,

where θ parameterises the operator, L is the number of derivatives, αi = (αi,1, · · · , αi,D)
indicates the order of the derivative for each input dimension, x = (x1, · · · , xD) and ci(x,θ)
is the coefficient at x.

A.2 Reproducing Kernel Hilbert Spaces

In Section 4.1, we described an RKHS Hk as a space of “well-behaved” functions for which
there exists a unique “reproducing kernel” k. More formally, an RKHS is defined as follows
(Kanagawa et al., 2018).

Definition 18 (Reproducing Kernel Hilbert Space) Let X be a non-empty set, k a
kernel on X ×X and H an R-Hilbert space over X . That is H is a vector space consisting of
functions u that map X to R, which is equipped with an inner product 〈·, ·〉H that induces a
metric for which the space is complete. H is additionally called a reproducing kernel Hilbert
space (RKHS) with reproducing kernel k, if the following are satisfied:

1. For all x ∈ X , we have k(·,x) ∈ H;

2. For all x ∈ X and for all u ∈ H, we have

u(x) = 〈u(·), k(·,x)〉H.

The second condition above is called the reproducing property of the kernel. As discussed
in Section 4.1, the correspondence between kernels and RKHSs is one-to-one (Aronszajn,
1950).

Theorem 19 (Moore–Aronszajn Theorem) Let X be a non-empty set. Then for every
kernel k on X × X , there exists a unique RKHS Hk for which it is the reproducing kernel,
and vice versa.

The following result allows us to consider the elements of an RKHS in terms of finite
weighted sums of its reproducing kernel (Steinward and Christmann, 2008, Theorem 4.21).

39

Dalton, Lazarus, Gao and Husmeier

Theorem 20 (Reproducing kernel map representation) Let X be a non-empty set
and k a kernel on X × X , with Hk its associated RKHS. Consider the set of functions

Hprek ,

{
u(x) =

N∑
i=1

cik (xi,x) : N ∈ N, c1, . . . , cN ∈ R,x1, . . . ,xN ∈ X
}
. (70)

Then Hprek ⊂ Hk and Hprek is dense in Hk with respect to the metric induced by 〈·, ·〉Hk .

We remark that the density of Hprek in Hk is equivalent to stating that the topological
completion of Hprek is equal to Hk (Searcóid, 2007, Theorem 4.2.1), with appropriate choice
of inner product on Hprek (Kanagawa et al., 2018, page 11).

The implication of Theorem 20 for GPR is clear by noticing that, in the case of a zero
prior mean function, the posterior GP mean µ∗ from Eq. (12) has exactly the form of a
weighted sum of evaluations from the chosen kernel as in Eq. (70). Therefore, the RKHS
of a given kernel k can be seen intuitively as the space of all posterior means of the GP, as
mentioned in Section 4.1.

For the proof of Theorem 13, the following alternative (but equivalent) definition of a
kernel is useful (Steinward and Christmann, 2008, Definition 4.1).

Definition 21 Let X be a non-empty set. A function k : X × X → R is a kernel if there
exists an R-Hilbert space H0 and a map Φ0 : X → H0 such that, for all x,x′ ∈ X , we have

k(x,x′) =
〈
Φ0(x),Φ0(x′)

〉
H0
. (71)

We call Φ0 a feature map of k, and H0 a feature space.

Similarly, the following alternative feature map representation of an RKHS will be of use
(Steinward and Christmann, 2008, Theorem 4.21).

Theorem 22 (Feature map representation of RKHS) Let X be a non-empty set and
k a kernel on X × X with feature map Φ0 : X → H0 where H0 is an R-Hilbert space.
Consider the normed space

HΦ0 ,
{
u : X → R : ∃ w ∈ H0 with u(x) = 〈w,Φ0(x)〉H0

for all x ∈ X
}
,

where

‖u‖HΦ0
, inf

{
‖w‖H0 : w ∈ H0 with u = 〈w,Φ0(·)〉H0

}
.

Then, Hk = HΦ0.

We remark that kernels do not have unique feature maps; however, the above construc-
tion is independent of the specific choice of Φ0.

A.3 Topological results

Two topological results are required for the proof of Lemma 27 (see Appendix C.3.2). The
first is the Tietze extension theorem (van Douwen et al., 1977, Theorem A), and the second
the pasting lemma (Dugundji, 1966, Theorem III.9.4).

40

Boundary constrained Gaussian processes

Theorem 23 (Tietze extension theorem) If A is a normal space and f : X → R a
bounded continuous function with X a compact subset of A, then there exists a bounded
continuous function F : A→ R such that F (x) = f(x), x ∈ X

sup
x∈A
|F (x)| = sup

x∈X
|f(x)| .

Theorem 24 (Pasting Lemma) Let X and Y be closed subsets of a topological space A
such that A = X ∪ Y . If F : A → R is continuous when restricted to both X and Y , then
F is continuous.

A.4 Construction of approximate distance functions for line segments

Here we describe the trimming procedure outlined in Section 2.1 of (Biswas and Shapiro,
2004) for constructing a normalised ADF to a line segment in R2. Note that the following
arguments extend to more general curves and surfaces (Shapiro and Tsukanov, 1999b).

A line segment between the points (x1, y1) and (x2, y2) can be represented as the inter-
section of an infinite line passing along the segment and a trim region such as a circle—see
Figure 3A of (Biswas and Shapiro, 2004) for an illustration. A trimming operation con-
structs an ADF for the line segment by combining normalised functions for the infinite line
and the trim region. A normalised function for the infinite line passing between (x1, y1)
and (x2, y2) can be found as

h(x, y) =
(x− x1) (y2 − y1)− (y − y1) (x2 − x1)

L

where L is the length of the segment. We set the trim region to be a circle with diameter
L and centre (xc, yc) = ((x1 + x2)/2, (y1 + y2)/2). This shape can be represented by the
inequality t(x, y) ≥ 0 where

t(x, y) =
1

L

[(
L

2

)2

− (x− xc)2 − (y − yc)2

]
.

There are several ways in which a normalised ADF φ can be constructed from the functions
h and t. Here we follow Eq. (5) of (Biswas and Shapiro, 2004) which gives

φ(x, y) =

√√√√
h(x, y)2 +

(√
t(x, y)2 + h(x, y)2 − t(x, y)

)2

4
, (72)

which is twice differentiable at all points away from the line segment.

Appendix B. Additional BCGP Material

B.1 Mean function interpolation on hypercube domains

As discussed in Remarks 2 and 10, the functions b, a and h in Eqs. (2)-(4) may only be
known on the boundary of the domain, ∂Ω. In this case, interpolation can be used to define
functions defined on Ω̄ which match the boundary values.

41

Dalton, Lazarus, Gao and Husmeier

Here, we present an interpolation algorithm to construct the mean function m̃ for Dirich-
let boundary conditions from Eq. (29) given boundary function b : ∂Ω → R where the do-
main of interest is the unit cube in RD, i.e. Ω̄ = [0, 1]D. In this case, the boundary ∂Ω can
be decomposed into 2D quasi-disjoint segments as

∂Ω =

D⋃
i=1

1⋃
j=0

∂Ωij , where ∂Ωij = {x = (x1, . . . , xD) ∈ Ω : xi = j}.

The boundary constrained mean function m̃ can then be using the iterative procedure
shown in Algorithm 1. For the first input dimension (x1), the mean is initialised on line 1
by linearly interpolating between the specified boundary functions on ∂Ω10 and ∂Ω11. For
each additional dimension i = 2, . . . , D, the mean is augmented by adding a similar linear
interpolation for the ith input dimension on line 4. The difference is that the interpolation is
done with respect to the augmented boundary functions b̃i,0 and b̃i,1 found on line 3, which
ensures that the boundary values for dimensions l < i are not affected by the augmentation
procedure.

Algorithm 1 BCGP mean function generator for hypercube

Input: Domain Ω̄ = [0, 1]D, boundary function b : ∂Ω→ R
Output: BCGP mean function m̃ : Ω̄→ R

1: m̃1(x) = b(x : x1 = 0)(1− x1) + b(x : x1 = 1)x1

2: for i = 2 : D

3: b̃i,j(x) = b(x : xi = j)− m̃i−1(x : xi = j) for all j ∈ {0, 1}
4: m̃i(x) = m̃i−1(x) + b̃i,0(x)(1− xi) + b̃i,1(x)xi
5: end for

6: m̃(x) , m̃d(x)

The function m̃ exactly satisfies the given Dirichlet boundary conditions:

Proposition 25 Dirichlet boundary conditions of the form given in Eq. (2), let m̃ be the
mean function generated by Algorithm 1. Then we have

m̃(x) = b(x) for all x ∈ ∂Ω.

This result is proved in Appendix C.5. We use this algorithm to specify the BCGP
mean function for Heat-IBVP-1 in Section 5.3.1, adjusted slightly to account for an initial
condition—see Appendix B.2.3 below for details.

B.2 Explicit form of BCGPs used in numerical experiments

B.2.1 Explicit form of BCGP used for Poisson-BVP-1

We used normalised ADFs φ1(x) = x and φ2(x) = 2− x for the boundary segments ∂Ω1 =
{0} and ∂Ω2 = {2} respectively, and found a joined ADF φ by inputting φ1 and φ2 into
Eq. (25).

42

Boundary constrained Gaussian processes

Eq. (50) specifies mixed boundary conditions of the form given in Eq. (4), with specific
values b = 0, a = −1 and h = 0. A mixed BCGP can then be constructed for this problem
my plugging these values of φ1, φ2, φ b, a and h into Eqs. (32)-(33), to give mean function
m̃(x) = 0 and kernel function

k̃(x, x′) = Bm1
x Bm1

x′ k1(x, x′) + Bm2
x Bm2

x′ k2(x, x′)

in which Bm1
x and Bm2

x are given by

Bm1
x [·](x) = (φ1(x)− φ(x) [φ1(x) +∇φ2(x) · ∇φ1(x)]) [·](x)

− φ(x)φ1(x)∇φ2(x) · ∇[·](x),

Bm2
x [·](x) = φ(x)φ2(x)[·](x).

In the same way, a BCNN can be specified as

ũnn(x) = Bm1
x [û(1)

nn](x) + Bm2
x [û(2)

nn](x),

where û
(1)
nn and û

(2)
nn are neural networks and Bm1

x and Bm2
x are as given above.

B.2.2 Explicit form of BCGP used for Poisson-BVP-3

To construct an ADF φ1(x, y) for the upper curved portion of the boundary ∂Ω1, we first
constructed individual ADFs to each of the 100 line segments along the boundary (as in
Figure 1 b), and then joined them into a single ADF φ1 using Eq. (25) (as in Figure 3 b).
For the lower flat boundary ∂Ω2, we simply set φ2(x, y) = y, and then found joined ADF
by inputting φ1 and φ2 into Eq. (25).

Eq. (52) specifies mixed boundary conditions of the form given in Eq. (4), with specific
values b = 0, a = 0 and h = 0. A mixed BCGP can then be constructed for this problem
by plugging these values of φ1, φ2, φ b, a and h into Eqs. (32)-(33), to give mean function
m̃(x, y) = 0 and kernel function

k̃([x, y], [x′, y′]) = Bm1
x,yBm1

x′ k1([x, y], [x′, y′]) + Bm2
x,yBm2

x′ k2([x, y], [x′, y′])

in which Bm1
x,y and Bm2

x,y are given by

Bm1
x,y [·](x, y) = (φ1(x, y)− φ(x, y)∇φ2(x, y) · ∇φ1(x, y)) [·](x, y)

− φ(x, y)φ1(x, y)∇φ2(x, y) · ∇[·](x, y),

Bm2
x,y [·](x, y) = φ(x, y)φ2(x, y)[·](x, y).

In the same way, a BCNN can be specified as

ũnn(x, y) = Bm1
x,y [û(1)

nn](x, y) + Bm2
x,y [û(2)

nn](x, y),

where û
(1)
nn and û

(2)
nn are neural networks and Bm1

x,y and Bm2
x,y are as given above.

43

Dalton, Lazarus, Gao and Husmeier

B.2.3 Explicit form of BCGP used for Heat-IBVP-1

Because this IBVP only involves Dirichlet boundary conditions, a BCGP of the form given
in Eq. (29) can be used, given the following ADF for the spatial boundary ∂Ω = {π/2,−π/2}
and initial time t = 0

φ(x, t) =
(
x+

π

2

)(π
2
− x
)
t.

Since the Dirichlet values in Eq. (55) are only known at the initial / boundary points,
Algorithm 1 can be followed to find a mean function m̃ which interpolates these values into
the interior of the spatio-temporal domain. The final BCGP then has the below form.

m̃(x, t) = 2πx exp(−t) + (1− t)(sin(x)− 2πx),

k̃([x, t], [x′, t′]) = φ(x, t)φ(x′, t′)k([x, t], [x′, t′]).

B.2.4 Explicit form of BCGP used for Heat-IBVP-2

A BCGP for this problem can be constructed following Eq. (29) by treating the time input
as another spatial boundary. In this case, we can specify an ADF for the boundary ∂Ω and
initial time t = 0 using the product join from Eq. (29) as

φ(x, y, t) = x(π − x)y(π − y)t.

Then, notice that the initial condition in Eq. (57) also satisfies the homogeneous boundary
conditions; therefore we can treat this function in the same manner as b(x) in Eq. (29). This
means that the following form of mean and kernel functions yield an appropriate BCGP:{

m̃(x, y, t) = sin(x) sin(y),

k̃([x, y, t], [x′, y′, t′]) = φ(x, y, t)φ(x′, y′, t′)k([x, y, t], [x′, y′, t′]).

B.2.5 Explicit form of BCGP used for Wave-IBVP-1

We constructed a mean function m̃ for the Cauchy initial condition in the same manner as
the example in Section 3.2.4, to give

m̃(x, t) = cos(x) + t cos2(x).

Furthermore, note that this mean function also satisfies the vanishing spatial derivative
boundary condition in Eq. (60), and therefore it is appropriate to use as the mean function
in a BCGP for this IBVP.

Constructing an associated boundary-constrained covariance function involved two stages.
Firstly, we designed a covariance function to satisfy the Neumann boundary by inputting
spatio-temporal kernels k1([x, t]; [x′, t′]) and k2([x, t]; [x′, t′]) into Eq. (30) with a = 0 and
ADF φ(x) = x(π − x). Secondly, we simply multiplied this kernel by factors of time
squared (as in Section 3.2.4) so that all samples from a zero-mean GP with this kernel were
constrained to have zero time derivative at t = 0. This yielded the following boundary
constrained kernel:

k̃([x, t], [x′, t′]) = t(t′)2
[
Br1x Br1x′ k1([x, t], [x′, t′]) + Br2x Br2x′ k2([x, t], [x′, t′])

]
,

44

Boundary constrained Gaussian processes

where the linear operators Br1x and Br2x are given by

Br1x [·](x, t) = [·](x, t)− φ(x)∇φ(x) · ∇[·](x, t),
Br2x [·](x, t) = φ(x)2[·](x, t).

B.2.6 Explicit form of BCGP used for Wave-IBVP-2

Designing a BCGP mean and kernel under periodic boundary conditions involves two stages.

Firstly, we design a mean and kernel assuming homogeneous Dirichlet boundary condi-
tions (i.e. b = 0 in Eq. 2). Note that the initial condition in Eq. (62) satisfies this condition,
so we use it as the mean function m̃ in Eq. (29). Then, treating time as another spatial
boundary, we define an ADF for Eq. (29) as

φ(x, t) = x(1− x)t2

where t is squared to ensure the derivative process satisfies the Cauchy initial condition in
the IBVP.

In the second stage, we place a GP prior on the value of the function at the boundary,
which is solely a function of time and not space. Adding this to the above GP gives final
mean and kernel of the form

m̃(x, t) = sin(xπ),

k̃([x, t], [x′, t′]) =φ(x, t)φ(x′, t′)k1([x, t], [x′, t′]) + t2(t′)2k2(t, t′),

where again the t squared factor in front of k2 ensure the initial condition is satisfied.

B.2.7 Explicit form of BCGP used for Adv-Diff-IBVP

As in Appendix B.2.4 above, a BCGP for this problem can be constructed following Eq. (29)
by treating the time input as another spatial boundary. In this case, we can specify an ADF
for the boundary ∂Ω and initial time t = 0 using the product join from Eq. (24) as

φ(x, t) = x(1− x)t.

Then, notice that the initial condition in Eq. (65) also satisfies the homogeneous boundary
conditions. Therefore, we can treat this function the same as b(x) in Eq. (29). This means
that the following form of mean and kernel functions yield an appropriate BCGP:{

m̃(x, t) = sin(2πx) exp(x),

k̃([x, t], [x′, t′]) = φ(x, t)φ(x′, t′)k([x, t], [x′, t′]).

B.2.8 Explicit form of BCGP used for Helmholtz-BVP

The Dirichlet portion of the boundary ∂Ω1 is formed by the upper and right portions of the
square spatial domain. Specifically, we have

∂Ω1 =
{

(x, y) ∈ [0, 1]2 : x = 1 or y = 1
}
. (73)

45

Dalton, Lazarus, Gao and Husmeier

The Neumann portion of the boundary ∂Ω2 is formed by the left and lower portions of the
domain:

∂Ω2 =
{

(x, y) ∈ [0, 1]2 : x = 0 or y = 0
}
. (74)

We specified an ADF φ1 for ∂Ω1 by joining the functions φ
(1)
1 (x, y) = 1 − x and

φ
(2)
1 (x, y) = 1 − y using Eq. (25). Similarly, an ADF φ2 for ∂Ω1 was specified by join-

ing the functions φ
(1)
2 (x, y) = x and φ

(2)
2 (x, y) = y in the same manner. Finally, a joint

ADF φ was found by joining φ1 and φ2, again using Eq. (25).
The mixed boundary conditions in Eq. (68) are the same as those given in Eq. (52).

Therefore, a mixed BCGP (see Eq. 4) can be specified for this problem using φ1, φ2 and φ
described above, where m̃ and k̃ have the same form as presented in Appendix B.2.2.

Appendix C. Proofs of Theoretical Results

C.1 Proof of Proposition 8

Proof Proving Proposition 8 simply requires the solution structure ũ from Eq. (27) to be
plugged in to the Robin condition from Eq. (3), before then showing that the constraint
is satisfied under the assumption that φ is a normalised ADF for the boundary ∂Ω. We
present these steps in the following.

Assume x ∈ ∂Ω. Then ∇ũ(x) can be evaluated by applying the chain rule to each term
in Eq. (27) and ignoring those terms with involving φ(x) = 0 to yield:

∇ũ(x) = ∇û1(x) +∇φ(x)a(x)û1(x)−∇φ(x)∇φ(x) · ∇û1(x)−∇φ(x)h(x).

The inner product n(x) · ∇ũ(x) with n(x) the outward normal vector is then given by

n(x)·∇û1(x)+n(x)·∇φ(x)a(x)û1(x)−(n(x)·∇φ(x))(∇φ(x)·∇û1(x))−n(x)·∇φ(x)h(x).

Since φ is a normalised ADF, ∇φ(x) = −n(x) when x ∈ ∂Ω (see Eq. 23), meaning the
above expression simplifies to give

n(x) · ∇u(x) = n(x) · ∇û1(x)− a(x)û1(x)− n(x) · ∇û1(x) + h(x)

= −a(x)û1(x) + h(x).

Since φ(x) = 0 on the boundary ∂Ω, a(x)ũ(x) takes the form

a(x)ũ(x) = a(x)û1(x).

Therefore,

n(x) · ∇ũ(x) + a(x)ũ(x) = −a(x)û1(x) + h(x) + a(x)û1(x)

= h(x),

as required.

46

Boundary constrained Gaussian processes

C.2 Derivation of Eq. (28)

Our derivation follows that described by Rvachev and Sheiko (1995) and Sukumar and
Srivastava (2022). The objective is to design trial functions ũ1 and ũ2 such that

ũ1(x) = b(x), x ∈ ∂Ω1, (75)

n(x) · ∇ũ1(x) + a(x)ũ1(x) = 0, x ∈ ∂Ω2, (76)

and

ũ2(x) = 0, x ∈ ∂Ω1, (77)

n(x) · ∇ũ2(x) + a(x)ũ2(x) = h(x), x ∈ ∂Ω2. (78)

The solution structure ũ(x) = ũ1(x) + ũ2(x) will then exactly satisfy the mixed BVP from
Eq. (4).

In the below we will assume that û1, û2, b, a and h are smooth functions, φ1 is an ADF
for ∂Ω1, φ2 is a normalised ADF for ∂Ω2 and finally that the joined ADF φ is normalised
for ∂Ω2 also.

The function b(x) + φ1(x)û1(x) will satisfy the Dirichlet condition in Eq. (75) but not
the Robin condition in Eq. (76) given arbitrary choice of continuous trial function û1. To
satisfy the Robin condition, we plug this function into Eq. (27) with h = 0 and ignoring the
û2 term whose role will be fulfilled by ũ2 below. Doing so gives

ũ1(x) = (1 + φ(x)a(x)) (b(x) + φ1(x)û1(x))− φ(x)∇φ2(x) · ∇ (b(x) + φ1(x)û1(x)) .

A simple solution structure ũ2 which satisfies Eqs.(77) and (78) is given by

ũ2(x) = φ(x) [φ2(x)û2(x)− h(x)] .

Expanding ũ1 using the chain rule and adding the result to ũ2 yields the solution structure
in Eq. (28).

C.3 Proof of Theorem 13

Proof Let both u ∈ Hbc and ε > 0 be arbitrary. We need to find some ũ ∈ Hk̃ such
that ‖u − ũ‖∞ ≤ ε. We will assume that the input scale has been chosen such that
supx∈Ω̄ φ(x) = 1. This is without loss of generality, since otherwise the arguments we
present below can be rescaled with respect to the supremum value.

We first introduce the following lemma, which is proved in Appendix C.3.1. Recall that
φ is an ADF (see Eq. 22) for the boundary ∂Ω.

Lemma 26 For any ε′ > 0, there exists δ ∈ (0, 1) such that φ(x) ≤ δ implies |u(x)| ≤ ε′.

Choose δ ∈ (0, 1) such that Lemma 26 holds for ε′ = ε
3 > 0. We next introduce some

notation:
Iδ = {x ∈ Ω̄ : φ(x) > δ}
∂Iδ = {x ∈ Ω̄ : φ(x) = δ}
Īδ = Iδ ∪ ∂Iδ

Ω̄ \ Iδ = {x ∈ Ω̄ : φ(x) ≤ δ}

(79)

47

Dalton, Lazarus, Gao and Husmeier

Note that δ ∈ (0, 1) implies Iδ, ∂Iδ and Ω̄ \ Iδ are all non-empty, because φ : Ω̄→ [0, 1]
is continuous.

We define the continuous function zu : Ω→ R as

zu(x) ,
u(x)

φ(x)
. (80)

Now, consider the following lemma, which is proved in Appendix C.3.2.

Lemma 27 There exists z̄u ∈ C(Ω̄) such that z̄u(x) = zu(x), x ∈ Īδ
sup

x∈Ω̄\Iδ
|z̄u(x)| = |zu(p)| , p ∈ ∂Iδ. (81)

Since we have assumed that k is a universal kernel (see Definition 12) on Ω̄, there exists
ẑ ∈ Hk such that

‖z̄u − ẑ‖∞ ≤
ε

3
. (82)

Consider now the function ũ : Ω̄→ R defined as

ũ(x) , φ(x)ẑ(x). (83)

By the following lemma (which is proved in Appendix C.3.3), ũ ∈ Hk̃.

Lemma 28 Let k : Ω̄ × Ω̄ → R be a kernel, and k̃ a boundary-constrained kernel of the
form given in Eq. (29) with φ an ADF for Ω̄. Then g ∈ Hk implies h ∈ Hk̃, where h(x) =
φ(x)g(x).

We claim that ‖u− ũ‖∞ ≤ ε—to prove this, we use the partition Ω̄ = ∂Ω∪Iδ ∪{Ω \Iδ}
(see Eq. 79), and consider each subdomain in turn:

Case I: x ∈ ∂Ω. Clearly ũ(x) = 0 in this case, since φ(x) = 0 for x ∈ ∂Ω and ẑ
is a continuous function. Since u(x) = 0 if x ∈ ∂Ω by assumption, ‖u− ũ‖∞ ≤ ε holds.

Case II: x ∈ Iδ. By Eq. (82) we have that

|z̄u(x)− ẑ(x)| ≤ ε

3
.

Recall that z̄u(x) = zu(x) if x ∈ Iδ (see Eq. 81). Therefore

|zu(x)− ẑ(x)| ≤ ε

3
.

Since φ(x) ∈ (0, 1] if x ∈ Iδ, we additionally have

φ(x) |zu(x)− ẑ(x)| ≤ ε

3

⇒ |φ(x)zu(x)− φ(x)ẑ(x)| ≤ ε

3
.

48

Boundary constrained Gaussian processes

Finally, note that u(x) = φ(x)zu(x) for x ∈ Iδ by construction of zu (see Eq. 80) and
ũ(x) = φ(x)ẑ(x) by definition (see Eq. 83). Therefore

|u(x)− ũ(x)| ≤ ε

3
.

Case III: x ∈ Ω \ Iδ. By Eq. (82), we again know that

|z̄u(x)− ẑ(x)| ≤ ε

3
.

This inequality can be expressed equivalently as

−ε
3
≤ z̄u(x)− ẑ(x) ≤ ε

3

⇒ −z̄u(x)− ε

3
≤ −ẑ(x) ≤ −z̄u(x) +

ε

3
.

Since φ is strictly positive in Ω, the above inequalities hold when multiplied by φ(x):

−φ(x)z̄u(x)− φ(x)
ε

3
≤ −φ(x)ẑ(x) ≤ −φ(x)z̄u(x) + φ(x)

ε

3

⇒ −φ(x)z̄u(x)− ε

3
≤ −ũ(x) ≤ −φ(x)z̄u(x) +

ε

3
,

where in the last line we make use of the fact that φ(x) ≤ 1 and ũ has the form given in
Eq. (83). Since inequalities are not affected by the addition of constants, the above implies

u(x)− φ(x)z̄u(x)− ε

3
≤ u(x)− û(x) ≤ u(x)− φ(x)z̄u(x) +

ε

3
.

Furthermore, since δ has been chosen such that x ∈ Ω \ Iδ implies |u(x)| ≤ ε
3 , we have:

−ε
3
− φ(x)z̄u(x)− ε

3
≤ u(x)− û(x) ≤ ε

3
− φ(x)z̄u(x) +

ε

3

⇒ −2ε

3
− φ(x)z̄u(x) ≤ u(x)− û(x) ≤ 2ε

3
− φ(x)z̄u(x). (84)

We now proceed to show that |φ(x)z̄u(x)| ≤ ε
3 :

|φ(x)z̄u(x)| = φ(x) |z̄u(x)| (since φ(x) > 0 in Ω)

≤ φ(x) sup
x′∈Ω̄\Iδ

∣∣z̄u(x′)
∣∣

= φ(x) |zu(p)| , p ∈ ∂Iδ (by Eq. 81).

Finally, since φ(p) ≥ φ(x) > 0 by Eq. (79), we have

|φ(x)z̄u(x)| ≤ φ(p) |zu(p)|
= |φ(p)zu(p)|
= |u(p)| (by Eq. 80)

≤ ε

3
(by choice of δ).

49

Dalton, Lazarus, Gao and Husmeier

The above implies that Eq. (84) can be simplified to yield

−2ε

3
− ε

3
≤ u(x)− ũ(x) ≤ 2ε

3
− ε

3
⇒ −ε ≤ u(x)− ũ(x) ≤ ε

⇒ |u(x)− ũ(x)| ≤ ε.

Putting all three cases together, we have ‖u− ũ‖∞ ≤ ε as required.

C.3.1 Proof of Lemma 26

Proof We first introduce two sub-lemmas, where in each case d(x) is the exact distance
function from Eq. (21) and S , supx∈Ω̄ d(x). Lemma 29 is proved in Appendix C.3.4, and
Lemma 30 is proved in Appendix C.3.5.

Lemma 29 For any ε′ > 0, there exists δ′ ∈ (0, S) such that d(x) ≤ δ′ implies |u(x)| ≤ ε′.

Lemma 30 For any δ′ ∈ (0, S), there exists δ ∈ (0, 1) such that φ(x) ≤ δ implies d(x) ≤ δ′.

The desired result then holds by setting δ′ in Lemma 29 equal to δ′ in Lemma 30.

C.3.2 Proof of Lemma 27

Proof We begin by remarking that the sets ∂Iδ, Īδ and Ω̄ \ Iδ defined in Eq. (79) are
all closed sets under the Euclidean topology because φ ∈ C(Ω̄). Furthermore, they are all
compact, since they are subsets of the bounded set Ω̄. Also, note that Ω̄ \ Iδ ⊂ RD is
normal (and therefore can be used in place of the normal space A in Theorem 23) because
all metrizable spaces are normal.

Consider the function zu : ∂Iδ → R. Since ∂Iδ is compact and Ω̄ \ Iδ is normal, by
Theorem 23 there exists a function z′u ∈ C(Ω̄ \ Iδ) such that z′u(x) = zu(x), x ∈ ∂Iδ

sup
x∈Ω̄\Iδ

∣∣z′u(x)
∣∣ = sup

x∈∂Iδ
|zu(x)| . (85)

Now, define the function z̄u : Ω̄→ R by

z̄u(x) =

{
z′u(x), x ∈ Ω̄ \ Iδ
zu(x), x ∈ Iδ.

(86)

To show that z̄u ∈ C(Ω̄), we use Theorem 24. Consider the closed sets Ω̄ \ Iδ and Īδ.
Clearly, Ω̄ = {Ω̄ \ Iδ} ∪ Īδ (see Eq. 79). Furthermore, the restriction of z̄u to Ω̄ \ Iδ (i.e.
the function z̄u : Ω̄ \ Iδ → R) is continuous because in this case, it equals z′u ∈ C(Ω̄ \ Iδ) by

50

Boundary constrained Gaussian processes

construction in Eq. (86). Similarly, the function z̄u : Īδ → R, is continuous because in this
case, it equals zu ∈ C(Īδ) by Eqs.(85) and (86). Therefore, by Theorem 24, z̄u ∈ C(Ω̄).

Additionally, we have that

sup
x∈Ω̄\Iδ

|z̄u(x)| = sup
x∈∂Iδ

|zu(x)| .

Finally, since zu is continuous and ∂Iδ compact, by the extreme value theorem there exists
p ∈ ∂Iδ such that

zu(p) = sup
x∈∂Iδ

|zu(x)|

= sup
x∈Ω̄\Iδ

|z̄u(x)| .

C.3.3 Proof of Lemma 28

Proof Let g ∈ Hk be arbitrary. By Theorem 22, there exists a feature map Φ0 : Ω̄→ H0

with H0 an R-Hilbert space so that, for all x ∈ Ω̄, we have

g(x) = 〈w,Φ0(x)〉H0

for some w ∈ H0. Therefore, for all x ∈ Ω̄, we have

h(x) = φ(x)g(x)

= φ(x) 〈w,Φ0(x)〉H0

= 〈w, φ(x)Φ0(x)〉H0

Now consider the forward map Φ̃0 : Ω̄→ H0 defined as Φ̃0(x) , φ(x)Φ0(x). Note that
Φ̃0 maps into H0 because φ(x) ∈ R for all x ∈ Ω̄ and H0 is an R-Hilbert space.

Let x,x
′ ∈ Ω̄ be arbitrary. Then〈

Φ̃0(x), Φ̃0(x′)
〉
H0

=
〈
φ(x)Φ0(x), φ(x′)Φ0(x′)

〉
H0

= φ(x)φ(x′)
〈
Φ0(x),Φ0(x′)

〉
H0

= φ(x)φ(x′)k(x,x′) (by Eq. 71)

= k̃(x,x′).

Therefore, Φ̃0 is a feature map for k̃ (see Definition 21). This means we have

h(x) =
〈
w, Φ̃0(x)

〉
H0

,

where Φ̃0 : Ω̄→ H0 with H0 an R-Hilbert space and w ∈ H0. This implies by Theorem 22
that h ∈ HΦ̃0

= Hk̃. Since g was chosen arbitrarily, this holds for all g ∈ Hk.

51

Dalton, Lazarus, Gao and Husmeier

C.3.4 Proof of Lemma 29

Proof Let ε′ > 0 be arbitrary. Since Ω̄ is compact and u : Ω̄→ R is continuous, u is also
uniformly continuous. Coupled with the fact that u is zero on ∂Ω, this implies the existence
of δ′ ∈ (0, S) such that, for all xb ∈ ∂Ω, ‖x− xb‖2 ≤ δ′ implies |u(x)| ≤ ε′.

Suppose now that d(x) ≤ δ′. Because d is continuous and ∂Ω is compact, by the extreme
value theorem there exists xb ∈ ∂Ω such that

d(x) = inf
x′∈∂Ω

‖x− x′‖2
= ‖x− xb‖2
≤ δ′.

Therefore, by the construction of δ′ above, |u(x)| ≤ ε′.

C.3.5 Proof of Lemma 30

Proof Let δ′ ∈ (0, S) be arbitrary. Consider the superlevel set of d with respect to δ′,

L+
δ′(d) = {x ∈ Ω : d(x) ≥ δ′}.

Note that L+
δ′(d) is non-empty because δ′ < S = supx∈Ω̄ d(x). Furthermore, the continuity

of d implies that L+
δ′(d) is closed and therefore compact as Ω is bounded. Now consider the

infimum of φ over this set,
inf

x′∈L+
δ′ (d)

φ(x′).

Since the infimum is being taken over a compact set and φ is continuous, by the extreme
value theorem there exists x ∈ L+

δ′(d) such that

inf
x′∈L+

δ′ (d)
φ(x′) = φ(x) = ∆ > 0.

Note that ∆ > 0 because φ(x) = 0 ⇐⇒ x ∈ ∂Ω ⇐⇒ d(x) = 0. Set δ = ∆/2 ∈ (0, 1).
Suppose that x ∈ Ω̄ is such that φ(x) ≤ δ. By construction of δ, we know that x /∈ L+

δ′(d).
Therefore d(x) < δ′ =⇒ d(x) ≤ δ′, as required.

C.4 Proof of Theorem 16

Proof We do not directly make use of Theorem 15 in the proof, and instead, for complete-
ness, we show all required steps fully, which mirror those from the proof of Theorem 15
given in (Murphy, 2023, Section 18.7.1). We denote the trainable parameters of the neural
network ûnn (Eq. 40) used in the definition of the BCNN ũnn(x) (Eq. 39) as

ω = {b(1), w
(1)
1 , . . . , w

(1)
H , b

(0)
1 , . . . , b

(0)
H ,w

(0)
1 , . . . ,w

(0)
H }.

52

Boundary constrained Gaussian processes

Let x ∈ Ω̄ be arbitrary. Then, the expected value of ũnn(x) under the prior distributions
from Eq. (41) is given by:

Eω [ũnn(x)] = Eω [m̃(x) + φ(x)ûnn(x)]

= Eω

m̃(x) + φ(x)

b(1) +
H∑
j=1

w
(1)
j hj(x)

= Eω [m̃(x)] + Eω

φ(x)

b(1) +
H∑
j=1

w
(1)
j hj(x)

= m̃(x) + φ(x)Eω

b(1) +

H∑
j=1

w
(1)
j hj(x)

= m̃(x) + φ(x)

Eω
[
b(1)
]

+

H∑
j=1

Eω
[
w

(1)
j hj(x)

]
= m̃(x) + φ(x)

Eω
[
b(1)
]

︸ ︷︷ ︸
=0

+

H∑
j=1

Eω
[
w

(1)
j

]
︸ ︷︷ ︸

=0

Eω [hj(x)]

= m̃(x).

We remark that Eω
[
w

(1)
j hj(x)

]
= Eω

[
w

(1)
j

]
Eω [hj(x)] holds because w

(1)
j is independent

of hj(x) for all j = 1, . . . ,H under our prior assumption for ω (see Eq. 41).
Now let x,x′ ∈ Ω be arbitrary. Then by Eq. (39) and Eq. (41), the covariance between

the corresponding outputs ũnn(x) and ũnn(x′) is given by

Cov
(
ũnn(x)ũnn(x′)

)
= Eω

[
(ũnn(x)− Eω [ũnn(x)])

(
ũnn(x′)− Eω

[
ũnn(x′)

])]
= Eω

[
φ(x)ûnn(x)φ(x′)ûnn(x′)

]
= φ(x)φ(x′)Eω

[
ûnn(x)ûnn(x′)

]
.

We furthermore have that

Eω
[
ûnn(x)ûnn(x′)

]
= Eω

b(1) +
H∑
j=1

w
(1)
j hj(x)

b(1) +
H∑
j=1

w
(1)
j hj(x

′)

= σ2

b(1) +
H∑
j=1

ω

H
Eω
[
hj(x)hj

(
x′
)]
,

where the final expression holds because Eω
[
b(1)
]

= 0 and Cov
(
w

(1)
i , w

(1)
j

)
= 0 for i 6= j.

Note that all b
(0)
j

(
w

(0)
j

)
share a common prior. Therefore, Eω [hj(x)hj (x′)] is the same

for all j = 1, . . . ,H. This means we have

Eω
[
ûnn(x)ûnn(x′)

]
= σ2

b(1) + ωEω
[
h1(x)h1

(
x′
)]

, knn
(
x,x′

)
.

53

Dalton, Lazarus, Gao and Husmeier

We remark that knn is the form of the kernel for the infinite width limit of the unconstrained
neural network ûnn given in Eq. (42) (Murphy, 2023, Section 18.7.1). We therefore have

Cov
(
ũnn(x), ũnn(x′)

)
= φ(x)φ(x′)knn(x,x′)

= k̃nn(x,x′),

i.e. the covariance between any two function outputs is given by the boundary constrained
kernel k̃nn generated by using knn in the construction of a Dirichlet BCGP (see Eq. 29).

Now, consider the limit as H →∞. Note that the contribution of the hidden units (the
hj ’s) is an infinite sum of random variables with shared mean and variance, respectively.
Furthermore, the variance is bounded because we are assuming ϕ is bounded. Therefore, we
conclude by the Central Limit Theorem that the contribution of the hidden units converges
in distribution to a Gaussian. Therefore, the output of the BCNN itself at any point x ∈ Ω̄
converges to a Gaussian, with mean m̃(x) and covariance k̃nn (x,x). Furthermore, given any
set of inputs x(1),x(2), . . . ,x(N)∈ Ω̄ with N ≥ 2 the joint distribution of the corresponding
outputs (ũnn(x(1)), ũnn(x(2)), ..., ũnn(x(N)))> converges to a multivariate Gaussian, where
the cross covariance terms are found as Cov

(
ũnn(x(i)), ũnn(x(j))

)
= k̃nn

(
x(i),x(j)

)
Therefore, in the limit, the function ũnn exactly satisfies the definition of a Gaussian

process (Definition 4) over Ω̄ with mean function m̃ and covariance function k̃nn so we
conclude

ũnn(x)→ GP(m̃(x), k̃nn(x,x′)).

C.5 Proof of Proposition 25

Proof

We prove that for all i = 1, . . . , D, m̃i(x) exactly satisfies boundary conditions on⋃i
l=0

⋃1
j=0 ∂Ωlj . Since m̃(x) , m̃d(x), this is sufficient to prove the claim.

We proceed by induction. Firstly, note by construction of m̃1 that m̃1(x : x1 = 0) =
b(x : x1 = 0) and m̃1(x : x1 = 1) = b(x : x1 = 1), i.e m̃1(x) satisfies the specified boundary
conditions on ∂Ω10 and ∂Ω11.

Next, assume that m̃i−1(x) exactly satisfies boundary conditions on
⋃i−1
l=0

⋃1
j=0 ∂Ωlj for

i = 2, . . . , D. Consider the output of m̃i(x) with xi = j for j ∈ {0, 1}, that is, m̃i(x : xi = j).
We have

m̃i(x : xi = j) = m̃i−1(x : xi = j) + b̃i,0(x : xi = j)(1− j) + b̃i,1(x : xi = j)j

= m̃i−1(x : xi = j) + b̃i,j(x : xi = j)

= m̃i−1(x : xi = j) + b(x : xi = j)− m̃i−1(x : xi = j)

= b(x : xi = j).

That is, m̃i satisfies the boundary conditions on ∂Ωi0 and ∂Ωi1.

Now, we show that m̃i satisfies the boundary conditions on ∂Ωij for l < i. Since m̃i−1

satisfies these conditions by assumption, by construction of m̃i we simply need to prove

54

Boundary constrained Gaussian processes

that for all l < i we have b̃i,j(x : xl = q) = 0 for j, q ∈ {0, 1}. To see this, let l < i be
arbitrary. We then have

b̃i,j(x : xl = q) = b(x : xi = j, xl = q)− m̃i−1(x : xi = j, xl = q)

= 0.

The above equality holds because m̃i−1 equals b where xl = q ∈ {0, 1} by assumption.
Therefore m̃i(x) = m̃i−1(x) where x ∈ ∂Ωl0 ∪ ∂Ωl1, Since l was arbitrary, this holds for
all l < i, i.e. boundary conditions are satisfied for all

⋃i−1
l=0

⋃1
j=0 ∂Ωlj . Combined with the

above result for ∂Ωi0∪∂Ωi1, we conclude by induction that m̃ satisfies boundary conditions
on all of ∂Ω.

References

Robert J Adler. The Geometry of Random Felds. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2010.

Martin Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders
Logg, Chris Richardson, Johannes Ring, Marie E Rognes, and Garth N Wells. The
FEniCS project version 1.5. Archive of numerical software, 3(100), 2015.

Mauricio A Alvarez, David Luengo, and Neil D Lawrence. Linear latent force models using
Gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2013.

Sokratis J Anagnostopoulos, Juan Diego Toscano, Nikolaos Stergiopulos, and George Em
Karniadakis. Residual-based attention in physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 421:116805, 2024.

Nachman Aronszajn. Theory of Reproducing Kernels. Transactions of the American Math-
ematical Society, 68(3):337–404, 1950. Publisher: American Mathematical Society.

A.V. Artiukh, M.V. Sidorov, and S.M. Lamtyugova. R-functions and nonlinear galerkin
method for solving the nonlinear stationary problem of flow around body of revolution.
Nonlinear Dynamics and Systems Theory, 21:138–149, 2021.

Mikhail Basarab, Alain Giani, and Philippe Combette. Thermal accelerometer simulation
by the R-functions method. Applied Sciences, 10(23):8373, 2020.

Henri Berestycki, Louis Nirenberg, and SR Srinivasa Varadhan. The principal eigenvalue
and maximum principle for second-order elliptic operators in general domains. Commu-
nications on Pure and Applied Mathematics, 47(1):47–92, 1994.

Jens Berg and Kaj Nyström. A unified deep artificial neural network approach to partial
differential equations in complex geometries. Neurocomputing, 317:28–41, 2018.

55

Dalton, Lazarus, Gao and Husmeier

Arpan Biswas and Vadim Shapiro. Approximate distance fields with non-vanishing gradi-
ents. Graphical Models, 66(3):133–159, 2004.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

Solveig Bruvoll and Michael S Floater. Transfinite mean value interpolation in general
dimension. Journal of Computational and Applied Mathematics, 233(7):1631–1639, 2010.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis.
Physics-informed neural networks (PINNs) for fluid mechanics: A review, 2021.

Jialei Chen, Zhehui Chen, Chuck Zhang, and C. F. Jeff Wu. Apik: Active physics-informed
kriging model with partial differential equations. SIAM/ASA Journal on Uncertainty
Quantification, 10(1):481–506, 2022.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals and Systems, 2(4):303–314, 1989.

Sébastien Da Veiga and Amandine Marrel. Gaussian process modeling with inequality con-
straints. In Annales de la Faculté des sciences de Toulouse: Mathématiques, volume 21,
pages 529–555, 2012.

David Dalton, Dirk Husmeier, and Hao Gao. Physics-informed graph neural network emula-
tion of soft-tissue mechanics. Computer Methods in Applied Mechanics and Engineering,
417:116351, 2023.

David Dalton, Dirk Husmeier, and Hao Gao. Physics and Lie symmetry informed Gaussian
processes. In International Conference on Machine Learning (ICML), 2024.

Liang Ding, Simon Mak, and C. F. Jeff Wu. BdryGP: a new Gaussian process model for
incorporating boundary information, 2019.

Frank Dondelinger, Maurizio Filippone, Simon Rogers, and Dirk Husmeier. ODE parameter
inference using adaptive gradient matching with Gaussian processes. In International
Conference on Artificial Intelligence and Statistics (AISTATS), 2013.

James Dugundji. Topology. Prentice Hall, 1966.

Christopher Dyken and Michael S Floater. Transfinite mean value interpolation. Computer
Aided Geometric Design, 26(1):117–134, 2009.

Joaquim Cezar Felipe, Caetano Traina, and Agma Juci Machado Traina. A new family of
distance functions for perceptual similarity retrieval of medical images. Journal of Digital
Imaging, 22:183–201, 2009.

Michael S Floater and Francesco Patrizi. Transfinite mean value interpolation over polygons.
Numerical Algorithms, 85(3):995–1003, 2020.

56

Boundary constrained Gaussian processes

Michael Freytag, Vadim Shapiro, and Igor Tsukanov. Field modeling with sampled dis-
tances. Computer-Aided Design, 38(2):87–100, 2006.

Sarah F Frisken and Ronald N Perry. Designing with distance fields. ACM SIGGRAPH
2006 Courses, pages 60–66, 2006.

Elmer Gilbert and Daniel Johnson. Distance functions and their application to robot path
planning in the presence of obstacles. IEEE Journal on Robotics and Automation, 1(1):
21–30, 1985.

Thore Graepel. Solving noisy linear operator equations by Gaussian processes: Application
to ordinary and partial differential equations. In International Conference on Machine
Learning (ICML), 2003.

Mamikon Gulian, Ari L. Frankel, and Laura P. Swiler. Gaussian process regression con-
strained by boundary value problems. Computer Methods in Applied Mechanics and
Engineering, 388:114117, 2022.

Marc Harkonen, Markus Lange-Hegermann, and Bogdan Raita. Gaussian process priors for
systems of linear partial differential equations with constant coefficients. In International
Conference on Machine Learning (ICML), 2023.

Bjørn Sand Jensen, Jens Brehm Nielsen, and Jan Larsen. Bounded Gaussian process re-
gression. In IEEE International Workshop on Machine Learning for Signal Processing
(MLSP), 2013.

Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K. Sriperumbudur.
Gaussian processes and kernel methods: A review on connections and equivalences, 2018.
arXiv:1807.02582 [cs, stat].

Leonid Vitalevich Kantorovich, Vladimir Ivanovich Krylov, Curtis D Benster, and George
Weiss. Approximate methods of higher analysis. Physics Today, 13(1):74–76, 1960.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and
Liu Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440,
2021. Number: 6 Publisher: Nature Publishing Group.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

RA Kolyada, KV Maksimenko-Sheiko, and TI Sheiko. R-functions method in the mathe-
matical modeling of convective heat exchange in an octahedral fuel assembly with 37 fuel
elements. Journal of Mathematical Sciences, 238:154–164, 2019.

Tomislav Kosta and Igor Tsukanov. Meshfree modeling of dynamic response of mechanical
structures. Meccanica, 49:2399–2418, 2014.

Lidiya Kurpa, Olga Mazur, and Igor Tsukanov. Application of R-functions theory to study
parametric vibrations and dynamical stability of laminated plates. In International Con-
ference on Nonlinear Dynamics, 2013.

57

Dalton, Lazarus, Gao and Husmeier

Markus Lange-Hegermann. Linearly constrained Gaussian processes with boundary condi-
tions. In International Conference on Artificial Intelligence and Statistics (AISTATS),
pages 1090–1098, 2021. ISSN: 2640-3498.

Raphael Leiteritz and Dirk Pflüger. How to avoid trivial solutions in physics-informed
neural networks, 2021. arXiv:2112.05620 [cs, stat].

Zhaohui Li and Matthias Hwai Yong Tan. Improving Gaussian process emulators with
boundary information. In Artificial Intelligence, Big Data and Data Science in Statistics:
Challenges and Solutions in Environmetrics, the Natural Sciences and Technology, pages
171–192. Springer, 2022.

Songming Liu, Hao Zhongkai, Chengyang Ying, Hang Su, Jun Zhu, and Ze Cheng. A unified
hard-constraint framework for solving geometrically complex PDEs. 2022.

Da Long, Zheng Wang, Aditi Krishnapriyan, Robert Kirby, Shandian Zhe, and Michael
Mahoney. AutoIP: A united framework to integrate physics into Gaussian processes. In
International Conference on Machine Learning (ICML), 2022.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. DeepXDE: A deep learning
library for solving differential equations. SIAM Review, 63(1):208–228, 2021.

Björn Lütjens, Catherine H. Crawford, Mark Veillette, and Dava Newman. PCE-PINNs:
Physics-informed neural networks for uncertainty propagation in ocean modeling. CoRR,
abs/2105.02939, 2021.

Denis Maillet. A review of the models using the cattaneo and vernotte hyperbolic heat
equation and their experimental validation. International Journal of Thermal Sciences,
139:424–432, 2019.

Arman Melkumyan. Operator induced multi-task Gaussian processes for solving differen-
tial equations. In Advances in Neural Information Processing Systems Workshop: New
Directions in Multiple Kernel Learning. MIT Press, 2012.

Charles A. Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal Kernels. Journal of
Machine Learning Research, 7(95):2651–2667, 2006.

Kevin P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023.

Radford M. Neal. Bayesian Learning for Neural Networks. Springer, 1996.

Vien Minh Nguyen-Thanh, Xiaoying Zhuang, and Timon Rabczuk. A deep energy method
for finite deformation hyperelasticity. European Journal of Mechanics - A/Solids, 80:
103874, 2020.

Ola Nilsson. Level-set methods and geodesic distance functions. PhD thesis, Linköping
Universisty Electronic Press, 2009.

Stanley Osher, Ronald Fedkiw, and K Piechor. Level set methods and dynamic implicit
surfaces. Applied Mechanics Reviews, 57(3):B15–B15, 2004.

58

Boundary constrained Gaussian processes

Samunda Perera, Nick Barnes, Xuming He, Shahram Izadi, Pushmeet Kohli, and Ben
Glocker. Motion segmentation of truncated signed distance function based volumetric
surfaces. In 2015 IEEE Winter Conference on Applications of Computer Vision, pages
1046–1053, 2015.

Marvin Pförtner, Ingo Steinwart, Philipp Hennig, and Jonathan Wenger. Physics-informed
Gaussian process regression generalizes linear pde solvers, 2024.

GP Purja Pun, Rohit Batra, Rampi Ramprasad, and Yuri Mishin. Physically informed
artificial neural networks for atomistic modeling of materials. Nature Communications,
10(1):2339, 2019.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Machine learning of linear
differential equations using Gaussian processes. Journal of Computational Physics, 348:
683–693, 2017.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Numerical Gaussian processes
for time-dependent and nonlinear partial differential equations. SIAM Journal on Scien-
tific Computing, 40(1):A172–A198, 2018. Publisher: Society for Industrial and Applied
Mathematics.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational Physics, 378:686–707,
2019.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian Processes for Machine
Learning. MIT Press, Cambridge, MA., 2006.

Jaakko Riihimäki and Aki Vehtari. Gaussian processes with monotonicity information. In
International Conference on Artificial Intelligence and Statistics (AISTATS), 2010.

Vladimir L Rvachev and Tatyana I Sheiko. R-functions in boundary value problems in
mechanics. Applied Mechanics Reviews, 48(4):151–188, 1995.

Vladimir L Rvachev, Tatyana I Sheiko, Vadim Shapiro, and Igor Tsukanov. On completeness
of RFM solution structures. Computational Mechanics, 25(2):305–317, 2000.

Vladimir L Rvachev, Tatyana I Sheiko, Vadim Shapiro, and Igor Tsukanov. Transfinite
interpolation over implicitly defined sets. Computer Aided Geometric Design, 18(3):195–
220, 2001.

Simo Sarkka, Arno Solin, and Jouni Hartikainen. Spatiotemporal learning via infinite-
dimensional Bayesian filtering and smoothing: A look at Gaussian process regression
through Kalman filtering. IEEE Signal Processing Magazine, 30(4):51–61, 2013.

Mı́cheál Ó Searcóid. Metric Spaces. Springer London, London, 2007.

Vadim Shapiro. Semi-analytic geometry with R-functions. Acta Numerica, 16:239–303,
2007.

59

Dalton, Lazarus, Gao and Husmeier

Vadim Shapiro and Igor Tsukanov. Meshfree simulation of deforming domains. Computer-
Aided Design, 31(7):459–471, 1999a.

Vadim Shapiro and Igor Tsukanov. Implicit functions with guaranteed differential proper-
ties. In ACM symposium on solid modeling and applications, 1999b.

Hailong Sheng and Chao Yang. PFNN: A penalty-free neural network method for solving
a class of second-order boundary-value problems on complex geometries. Journal of
Computational Physics, 428:110085, 2021. arXiv:2004.06490 [cs, math].

M. Sidorov and A. Artyukh. Mathematical modeling and numerical analysis of nonsta-
tionary plane-parallel flows of viscous incompressible fluid by R-functions and Galerkin
method. ECONTECHMOD, 3:3–11, 2014.

Ercan Solak, Roderick Murray-Smith, WE Leithead, Douglas Leith, and Carl Rasmussen.
Derivative observations in Gaussian process models of dynamic systems. In Advances in
neural information processing systems, 2002.

Arno Solin and Manon Kok. Know your boundaries: Constraining Gaussian processes by
variational harmonic features. In Artificial Intelligence and Statistics (AISTATS). PMLR,
2019.

Arno Solin and Simo Särkkä. Hilbert space methods for reduced-rank Gaussian process
regression. Statistics and Computing, 30(2):419–446, 2020.

Fangying Song, Chuanju Xu, and George Em Karniadakis. Computing fractional Laplacians
on complex-geometry domains: algorithms and simulations. SIAM Journal on Scientific
Computing, 39(4):A1320–A1344, 2017.

Ingo Steinward and Andreas Christmann. Support Vector Machines. Information Science
and Statistics. Springer New York, New York, NY, 2008.

N. Sukumar and Ankit Srivastava. Exact imposition of boundary conditions with distance
functions in physics-informed deep neural networks. Computer Methods in Applied Me-
chanics and Engineering, 389:114333, 2022.

Laura P Swiler, Mamikon Gulian, Ari L Frankel, Cosmin Safta, and John D Jakeman.
A survey of constrained Gaussian process regression: Approaches and implementation
challenges. Journal of Machine Learning for Modeling and Computing, 1(2), 2020.

Matthias Tan. Gaussian process modeling with boundary information. Statistica Sinica,
2016.

Michalis Titsias. Variational learning of inducing variables in sparse Gaussian processes. In
International Conference on Artificial Intelligence and Statistics (AISTATS), 2009.

Igor Tsukanov and Vadim Shapiro. Meshfree modeling and analysis of physical fields in
heterogeneous media. Advances in Computational Mathematics, 23:95–124, 2005.

Eric K van Douwen, David J Lutzer, and Teodor C Przymusiński. Some extensions of the
Tietze-Urysohn theorem. The American Mathematical monthly, 84(6):435–441, 1977.

60

Boundary constrained Gaussian processes

Jiahao Zhang, Shiqi Zhang, and Guang Lin. PAGP: A physics-assisted Gaussian process
framework with active learning for forward and inverse problems of partial differential
equations, 2022. arXiv:2204.02583 [cs, math, stat].

Olek C Zienkiewicz, Robert L Taylor, and Jian Z Zhu. The Finite Element Method: Its
Basis and Fundamentals. Elsevier, 2005.

61

	Introduction
	Related Work
	Contributions

	Preliminaries
	Definitions and Notation
	Linear Partial Differential Equations
	Boundary Conditions

	Gaussian process regression
	Linear Partial Differential Equation Constraints

	Approximate Distance Functions
	Methods for constructing ADFs
	Constructing ADFs for segmented boundaries

	The R-Function Method in Boundary Value Problems
	Dirichlet Boundary Conditions
	Robin Boundary Conditions
	Mixed Boundary Conditions
	Other Boundary Conditions

	Boundary Constrained Gaussian Processes
	R-Function Method Approach to Constructing BCGPs
	Initial Conditions

	One Dimensional Examples
	Dirichlet Boundary Conditions
	Neumann Boundary Conditions
	Mixed Dirichlet and Robin Boundary Conditions
	Cauchy Initial Condition

	Comparison with Spectral Expansion Approach

	Theoretical Results
	Universality of the Boundary Constrained Kernel
	Connection to Neural Networks

	Numerical Experiments
	Experimental Details
	Gaussian process Specifications
	Neural Network Specifications
	Comparison of different modelling approaches
	Evaluation Metrics
	Implementation Details

	Poisson Equation
	Poisson-BVP-1
	Poisson-BVP-2
	Poisson-BVP-3
	Poisson-BVP-4

	Heat Equation
	Heat-IBVP-1
	Heat-IBVP-2
	Effect of Observation Noise

	Wave Equation
	Wave-IBVP-1
	Wave-IBVP-2

	Advection-Diffusion Equation
	Helmholtz Equation
	Discussion

	Conclusions
	Background Material
	Linear differential operators
	Reproducing Kernel Hilbert Spaces
	Topological results
	Construction of approximate distance functions for line segments

	Additional BCGP Material
	Mean function interpolation on hypercube domains
	Explicit form of BCGPs used in numerical experiments
	Explicit form of BCGP used for [sec:poissonBVP1]Poisson-BVP-1
	Explicit form of BCGP used for [sec:poissonBVP3]Poisson-BVP-3
	Explicit form of BCGP used for [sec:heatIBVP1]Heat-IBVP-1
	Explicit form of BCGP used for [sec:heatIBVP2]Heat-IBVP-2
	Explicit form of BCGP used for [sec:waveIBVP1]Wave-IBVP-1
	Explicit form of BCGP used for [sec:waveIBVP2]Wave-IBVP-2
	Explicit form of BCGP used for [sec:advDiffusionEquation]Adv-Diff-IBVP
	Explicit form of BCGP used for [sec:helmhotzEquation]Helmholtz-BVP

	Proofs of Theoretical Results
	Proof of Proposition 8
	Derivation of Eq.(28)
	Proof of Theorem 13
	Proof of Lemma 26
	Proof of Lemma 27
	Proof of Lemma 28
	Proof of Lemma 29
	Proof of Lemma 30

	Proof of Theorem 16
	Proof of Proposition 25

