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Abstract

The notion of margin loss has been central to the development and analysis of algorithms
for binary classification. To date, however, there remains no consensus as to the analogue
of the margin loss for multiclass classification. In this work, we show that a broad range
of multiclass loss functions, including many popular ones, can be expressed in the relative
margin form, a generalization of the margin form of binary losses. The relative margin
form is broadly useful for understanding and analyzing multiclass losses as shown by our
prior work (Wang and Scott, 2020, 2021). To further demonstrate the utility of this way
of expressing multiclass losses, we use it to extend the seminal result of Bartlett et al.
(2006) on classification-calibration of binary margin losses to multiclass. We then analyze
the class of Fenchel-Young losses, and expand the set of these losses that are known to be
classification-calibrated.

Keywords: Classification, loss functions, consistency, margins, label encodings

1. Introduction

Classification into k ≥ 2 categories is the learning task of selecting a classifier, i.e., a
function from the feature space X to the set of labels [k] := {1, . . . , k}, given training data.
Many of the most popular and successful classification methods aim to find a classifier with
minimum risk, where the risk of a classifier is the expected value of a loss function that
measures the quality of predictions. Indeed, logistic regression, support vector machines,
boosting, and neural network methods can all be viewed as algorithms to minimize the
risk associated with a certain loss. In practice, “loss-based” approaches to binary (k = 2)
and multiclass (k ≥ 3) cases are formulated differently. Because of this discrepancy, the
theory and practice of multiclass methods often lag behind their binary counterparts. The
purpose of this work is to bridge this gap by introducing a framework that unifies binary
and multiclass loss-based classification.

The standard approach to binary classification is to learn a discriminant function g :
X → R that maps an instance x to a discriminant g(x), e.g., g(x) = wTx + b for linear
classification. Identifying {1, 2} with {−1,+1}, a label y is predicted by sign(g(x)). The loss
ascribed to a discriminant g and a pair (x, y) is defined in terms of a function ψ : R → R,
with the loss being equal to ψ((−1)yg(x)). Loss functions of this form are referred to as

c©2024 Yutong Wang and Clayton Scott.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-1599.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-1599.html


Wang and Scott

Figure 1: Relative margin form. Panel (a): Multiclass losses L satisfying the permutation
equivariant and relative margin-based conditions (i.e., PERM losses, Definition 2.2) can be
expressed in the relative margin form as in Panel (b). See Theorem 2.5. The relative
margin form employs three components: Panels (c). the matrix label code {Υy}y∈[k], (d).

the discriminant function g, and (e). the “template”, a symmetric function ψ : Rk−1 → R.

binary margin loss functions. Examples include the logistic loss ψ(t) = log(1+e−t) (logistic
regression), the hinge loss ψ(t) = max(0, 1− t) (support vector machines), the exponential
loss ψ(t) = e−t (AdaBoost), and the sigmoid loss ψ(t) = 1/(1 + et) (some neural networks).

The conventional approach to multiclass classification seeks to learn a class-score func-
tion f = (f1, . . . , fk) : X → Rk, e.g., a feed-forward neural network. The label for an input
x is predicted by taking the argmax of the class-score vectors v := f(x). Multiclass loss
functions, e.g., cross entropy, may be viewed as functions L : {1, . . . , k} × Rk → R. The
loss incurred by a class-score function f on a pair (x, y) ∈ X × [k] is then L(y, f(x)). When
a multiclass loss function is expressed in terms of a class-score function output, we say that
it is in class-score form.

We show that a large family of multiclass loss functions in class-score form, including
cross-entropy, multiclass exponential loss (Mukherjee and Schapire, 2013), multiclass hinge
losses (Crammer and Singer, 2001; Weston and Watkins, 1998), Gamma-Phi losses (Beijbom
et al., 2014), and Fenchel-Young losses (Blondel et al., 2020), can be expressed in what we
call the relative-margin form. Instead of being defined in terms of a class-score function
output f(x), in the relative margin form a loss is expressed ψ(Υyg(x)), which involves the
following elements:

1. a symmetric1 function ψ : Rk−1 → R,

2. a set of (k − 1)× (k − 1) matrices {Υy}y∈[k] that encode the label, and

3. a discriminant function of the form g : X → Rk−1.

When k = 2, we have Υy = (−1)y, and the relative margin form coincides with the
standard binary margin form. See Figure 1 for an illustration of the framework. Thus, the
relative margin form generalizes the notion of margin loss from binary classification.

1. Recall that a function is symmetric if its value does not change when its input is permuted.
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1.1 Our contributions

In this work, we develop the relative margin from as described above, and illustrate the
utility of this framework by establishing novel results on classification-calibration2. More
specifically, our contributions are:

• Theorem 2.5: characterization of losses expressible in the relative margin
form. We show that a multiclass loss function can be expressed in the relative margin
form if and only if both of the following conditions are met: 1. permutation equivariance:
L treats all classes equally, and 2. relative margin-based : L(y, f(x)) depends only on the
differences between the fj(x)’s rather than the values of the fj(x)’s themselves. Below, such
losses are referred to as PERM losses.

Our characterization implies that many popular losses such as the cross entropy, multi-
class exponential, and Fenchel-Young losses (Blondel, 2019) are PERM losses. PERM losses
are characterized by their template, a symmetric function ψ : Rk−1 → R. Thus, our result
implies that for the analysis of existing and design of new PERM losses, it suffices to focus
on the template ψ which can be simpler than the original L.

• Theorem 4.7: Extending a fundamental result on classification-calibration
(CC) to the multiclass case. A seminal result of Bartlett et al. (2006) in the binary case
shows that a convex margin loss is classification-calibrated if and only if ψ is differentiable at
0 and has negative derivative there. We use the PERM loss framework to prove a multiclass
extension of this result for L that are totally regular (Definition 4.2). We use Theorem 4.7
to prove a novel sufficient condition for CC of sums of losses (Proposition 4.8), and, as a
corollary, establish CC for sums of Gamma-Phi losses (Example 5). A key component of
the totally regular property is that the gradient of the template ∇ψ must be entry-wise
negative everywhere3.

• Theorem 5.10: Expanding previous sufficient conditions of CC for Fenchel-
Young losses. Fenchel-Young losses, defined via taking the convex conjugate of a cer-
tain negentropy function, have recently been proposed for structured prediction, including
multiclass classification. However, an open question is whether Fenchel-Young losses are
classification-calibrated under the assumption that the negentropy is strictly convex. Our
Theorem 5.10 answers this in the affirmative.

• The matrix label code. The key component in our analysis is the matrix label code
(Definition 2.4) which extends to the multiclass case the universally adopted {±1} label
code for binary classification. To obtain our main results, we developed a suite of technical
lemmas for working with the matrix label code in Appendix B. We expect the matrix label
code to be useful for multiclass classification research beyond the scope here.

1.2 Background

In this section, we define the probabilistic setting assumed throughout this work. Moreover,
we first review the background on classification-calibration.

2. For readers unfamiliar with this theory, we provide a brief review below in the “Background on
Classification-Calibration” section (Section 1.2).

3. Thus, in the binary case, our result is weaker than that of Bartlett et al. (2006), which only requires
negativity at 0 ∈ R. We leave as an open question whether this gap can be closed.
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Let {(xi, yi)}ni=1 be drawn from a joint distribution P over X × [k]. Let I be the indicator
function and I{y 6= j} be the 01-loss for y, j ∈ [k]. The goal of classification is to select a
classifier h : X → [k] minimizing the 01-risk R01,P (h) := E(X,Y )∼P [I{Y 6= h(X)}] objective.
A fundamental approach for learning a classifier is empirical risk minimization (ERM),
which selects an h minimizing the empirical 01-risk R̂n01(h) := 1

n

∑n
i=1 I{yi 6= h(xi)} over a

class of functions H.
Directly minimizing the empirical 01-risk objective is often intractable4 due to the dis-

creteness of the objective. The surrogate-based approach addresses this issue as follows.
Define the L-risk for a fixed continuous loss function L by RL(f) := E(X,Y )∼P [L(Y, f(X))]

and the empirical L-risk by R̂nL(f) := 1
n

∑n
i=1 L(yi, f(xi)). Minimizing R̂nL(f) over a family

of f ’s, e.g., neural networks, is employed as a tractable surrogate objective. A class-score
function f induces a discrete-valued classifier arg max ◦f(x) := arg maxj=1,...,k fj(x) with
ties broken arbitrarily. An important question is whether good performance with respect
to the surrogate L-risk “transfers” back to the 01-risk, the original objective.

Definition 1.1 A surrogate loss L has the consistency transfer property5 if for any dis-
tribution P over X × [k] and any sequence of class-score functions {f̂ (n)}n, e.g., f̂ (n) is an
empirical L-risk minimizer over a family of functions depending on n, the following is satis-
fied: limn→∞RL(f̂ (n)) = inff RL(f) implies that limn→∞R01(arg max ◦f̂ (n)) = infhR01(h).
The infimums are, respectively, over all measurable functions f : X → Rk and h : X → [k].

Thus, the consistency transfer property (CTP) provides justification for L-risk min-
imization when minimizing the 01-risk is the original objective of interest. For binary
margin-based losses ψ, the seminal result of Bartlett et al. (2006, Theorem 1.3) shows that
CTP is equivalent to a functional property of ψ known as classification-calibration (CC).
For the multiclass case, Tewari and Bartlett (2007) define the CC property (reviewed in
detail in Section 3 below) and show its equivalence to the CTP as well.

1.3 Related work

• Sufficient conditions for CC of multiclass convex margin-based losses. For
binary convex loss in margin form, the sufficient conditions for CC are easy to verify and
apply to common losses of interest. Indeed, Bartlett et al. (2006, Theorem 2.1) asserts that
a nonnegative binary convex loss in margin form ψ : R → R≥0 is CC if and only if ψ is
differentiable at 0 and ψ′(0) < 0.

There are several difficulties for extending the above characterization to the multiclass
case. The result in the binary case relies on the expression of a binary margin-based loss
as ψ((−1)yz). While proposed multiclass extensions of the expression exist (to be reviewed
below), existing work on sufficient conditions for CC of multiclass losses focus on losses in
the class-score form L : [k]×Rk → R.

Most previous works studied CC of losses of a specific form such as the Gamma-Phi
losses (Zhang, 2004; Beijbom et al., 2014; Wang and Scott, 2023a), Fenchel-Young losses
(Duchi et al., 2018; Blondel et al., 2020), and hinge-like losses (Tan and Zhang, 2022).

4. See Bhattacharyya et al. (2018) and the references therein
5. This property appears in many works, e.g., Steinwart (2007); Bartlett et al. (2006); Tewari and Bartlett

(2007); Zhang (2004). The name “consistency transfer property” was used by Wang and Scott (2023a).
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Notably, Tewari and Bartlett (2007) derive a characterization of CC for multiclass losses
analogous to that of Bartlett et al. (2006, Theorem 2.1). However, their sufficient condition
(Tewari and Bartlett, 2007, Theorem 7), while geometrically elegant, is hard to verify for
common losses such as the multiclass exponential loss6.
•Multiclass margins & margin-based loss. A line of work has considered the problem
of extending the binary margin (−1)yz and binary margin form ψ((−1)yz) to the multiclass
setting. For the margin, Crammer and Singer (2001) and Mohri et al. (2018, §9.2) defined
a notion of scalar-valued multiclass margin as minj∈[k]:j 6=y vy − vj where y is the ground
truth label. In other words, this notion of multiclass margin is the minimum difference of
score between the ground truth label and the rest of the labels. While intuitive, according
to Tewari and Bartlett (2007, §5.1), convex losses based on this notion of margin are never
classification-calibrated.

Lee et al. (2004); Zou et al. (2008) proposes definitions of vector-valued multiclass margin
vectors and associated margin losses for multiclass SVMs and boosting, respectively. These
losses are known to be classification-calibrated if and only if sum-to-zero constraints are
enforced on the input margin vectors (Dogan et al., 2016, Theorem 6). Lee et al. (2004)
develops a multiclass SVM based on a hinge loss that leverages this notion of margin.
However, in practice, enforcing these sum-to-zero constraints leads to significantly slower
computations (Fu et al., 2022).

Dogan et al. (2016) developed a framework using relative margins to unify the analysis
of several variants of multiclass support vector machines. This notion of relative margin7

is first introduced by Rosset et al. (2003, §4). Both of these prior works only established
classification-calibration of specific losses for specific algorithms. By contrast, our work
develops a framework that characterizes when multiclass losses can be expressed via relative
margins and proves general classification-calibration results for a large family of losses.
• Label encodings for multiclass classification. As alluded to earlier, the multiclass
SVM introduced by Lee et al. (2004) is classification-calibrated provided that certain sum-
to-zero constraints are enforced. Moreover, enforcing these constraints is computationally
prohibitive. The simplex code (Hill and Doucet, 2007) is a multiclass label code designed
to address this computational issue by using a constraint-free reparametrization of the
multiclass SVM dual formulation (Wu and Lange, 2010; Saberian and Vasconcelos, 2011;
Mroueh et al., 2012; van den Burg and Groenen, 2016; Pouliot, 2018).

Another approach to label encoding is the multivector construction8 (Shalev-Shwartz
and Ben-David, 2014, §17.7) which has been used to study the multiclass perceptron, logis-
tic regression and SVMs (Duda et al., 2006, §5.12). Moreover, the multivector construction
has been used to study the PAC learning sample complexity of multiclass linear classi-
fiers (Daniely and Shalev-Shwartz, 2014).

While the simplex code and the multivector constructions are elegant techniques, the
scope of these work are on specific algorithms and classifiers. In particular, a framework for

6. See Footnote 7 in Tewari and Bartlett (2007, Table 1).
7. Rosset et al. (2003) also uses the name “margin vector” in conflict with the later work by Zou et al.

(2008) which defines a different notion of margin. Due to this confusion, we will refer to the earlier
notion of Rosset et al. (2003) by “relative margins”.

8. Also known as “Kesler’s construction” which, according to Crammer and Singer (2003), is credited to
(Kesler, 1961). A description of the construction can be found in Duda et al. (2006, §5.12) and Shalev-
Shwartz and Ben-David (2014, §17.7).
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general multiclass margin-based losses and analysis of their properties, e.g., classification-
calibration, is lacking.

Our work fills this gap by using the framework of the relative-margin form and matrix
label code to 1. characterize the set of multiclass losses expressible in this form (Theo-
rem 2.5), 2. prove sufficient conditions for classification-calibration of a large family of
multiclass losses (Theorems 4.7) and 3. apply our results to expand the previously known
family of classification-calibrated Fenchel-Young losses (Theorem 5.10).

1.4 Notations

In this subsection, we briefly discuss some of the key notations. For the reader’s convenience,
we include a more comprehensive reference for the notations in Table 1 in Section A of the
appendix. Moreover, we tabulate the mathematical objects defined in Table 2.

Throughout this work, let k ≥ 2 denote the number of classes. Denote the k-probability
simplex by ∆k = {p ∈ Rk

≥0 :
∑k

j=1 pj = 1}.
Vectors/matrices. Let the square bracket with subscript [·]j be the projection of a vector
onto its j-th component, i.e., [v]j := vj where v = (v1, . . . , vk) ∈ Rk. Given two vectors
w,v ∈ Rk, we write w � v (resp. w � v) if wj ≥ vj (resp. wj > vj) for all j ∈ [k]. All-

zeros/all-ones/i-th elementary basis vector in Rn are denoted 0(n)/1(n)/e
(n)
i , respectively.

When the ambient dimension is clear, we drop the superscript (n). The n × n identity
matrix is denoted In.

Permutations and permutation matrices. A bijection from [k] to itself is called a
permutation (on [k]). Denote by Sym(k) the set of all permutations on [k]. For each σ ∈
Sym(k), let Sσ denote the permutation matrix corresponding to σ. In other words, if v ∈ Rk

is a vector, then [Sσv]j = [v]σ(j) = vσ(j).

2. Permutation equivariant relative margin (PERM) losses

In this section, we define PERM losses and prove fundamental properties used throughout
the rest of the work. We begin with a discussion of the two defining properties: permutation
equivariance and relative-margins.

Recall that in the introduction, we denoted loss functions as L : [k] × Rk → R. For a
class-score function f : X → Rk, the loss is evaluated as L(y, f(x)) on an instance (x, y).
Throughout the rest of this work, for mathematical convenience we will use the equiva-
lent notation convention Ly(f(x)) where y appears in the subscript. In this convention, a
multiclass loss function is a vector-valued function L = (L1, . . . ,Lk) : Rk → Rk.

With this convention, the property that the loss treats each of the k classes equally is
captured by permutation equivariance, a notion similar to but distinct from symmetry9.
Denote by v the class-score vector f(x) on some generic instance (x, y). The permutation
equivariance property states that if the class-score vector v is “relabeled” by some permu-
tation σ ∈ Sym(k), then the vector of losses L(v) should be “relabeled” in the same way,
i.e., L(Sσv) = SσL(v).

9. Recall that a function is symmetric if its value does not change when its input is permuted. Sometimes,
this is also referred to as permutation invariance (Bronstein et al., 2021, §3.1). For our purposes,
equivariance is the correct descriptor.
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Relative margins10 have been recently used by Dogan et al. (2016) and by Fathony
et al. (2016) in the context of multiclass SVMs that only utilize the set of differences vy−vj
over all y, j ∈ [k] such that y 6= j, rather than the non-relative or “absolute” class-scores
(v1, . . . , vk) themselves. Below, it will be notationally convenient to use a matrix that
converts the vector of class-score v into relative margins:

Definition 2.1 Let D :=
[
−Ik−1 1(k−1)

]
∈ R(k−1)×k. Observe that [Dv]y = vk − vy for

y ∈ [k − 1] and v ∈ Rk. Equivalently, Dv = (vk − v1, vk − v2, . . . , vk − vk−1)>.

We are now ready to define

Definition 2.2 (PERM losses) Let k ≥ 2 be an integer. A k-ary multiclass loss function
is a vector-valued function L = (L1, . . . ,Lk) : Rk → Rk. We say that L is

1. permutation equivariant if L(Sσv) = SσL(v) for all v ∈ Rk and σ ∈ Sym(k),
2. relative margin-based if for each y ∈ [k] there exists a function `y : Rk−1 → R so that

Ly(v) = `y(Dv) = `y(vk − v1, vk − v2, . . . , vk − vk−1), for all v ∈ Rk. (1)

We refer to the vector-valued function ` := (`1, . . . , `k) as the reduced form of L.
3. PERM if L is both permutation equivariant and relative margin-based. In this case,

the function ψ := `k is referred to as the template of L.

While the concepts of permutation equivariance and relative margin have been studied
largely in isolation in previous works, our work is the first to systematically study the
properties of losses having both properties. Below in Theorem 2.5, we show that a PERM
loss is completely determined by its template via what we call the relative-margin form.

Remark 2.3 (On the name “template”) The symbol of the template ψ is chosen in-
tentionally to match that of Bartlett et al. (2006), where a (binary) margin loss is expressed
as ψ((−1)yg(x)). Treating g(x) = z as an arbitrary input to ψ, the rationale behind the
name is that the “positive branch” ψ((−1)2z), of the margin loss serves as a “template” for
the “negative branch” ψ((−1)1z).

Before proceeding, let us examine some notable PERM losses:

Example 1 The cross entropy (also multinomial logistic) loss is given by

LCEy (v) = log
(

1 +
∑

j∈[k]:j 6=y exp(−(vy − vj))
)
, for all v ∈ Rk.

It is easy to see that its template is the function ψCE(z) = log
(

1 +
∑k−1

j=1 exp(−zj)
)

. When

k = 2, we have ψCE(z) = log(1 + exp(−z)) which is the binary logistic loss (also known as
the binary cross entropy). When k = 3, we have ψCE(z) = log(1 + exp(−z1) + exp(−z2)) is
a function defined over the 2D plane R2, plotted in Figure 1.

10. The idea of relative margins goes back to Rosset et al. (2003). We note that Jebara and Shivaswamy
(2008) also use this term in a unrelated context in binary SVMs.
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Example 2 The Gamma-Phi loss (Beijbom et al., 2014), denoted Lγ,φy (v), is a general-
ization of the cross entropy loss defined as follows: Let γ : R → R and φ : R → R≥0 be
functions. Define

Lγ,φy (v) := γ
(∑

j∈[k]:j 6=y φ(vy − vj)
)
, for all v ∈ Rk.

It is easy to see that its template is the function ψγ,φ(z) = γ
(∑k−1

j=1 φ(zj)
)

. The cross

entropy LCE is the Gamma-Phi loss where φ(t) = exp(−t) and γ(t) = log(1 + t). The
multiclass exponential (Mukherjee and Schapire, 2013) loss LExp is the Gamma-Phi loss
where φ(t) = exp(−t) and γ is the identity.

Example 3 A notable case of the Gamma-Phi loss is when φ(t) = max{0, 1 − t} is the
hinge loss and γ is the identity. The resulting loss is known as the Weston-Watkins hinge
loss (Weston and Watkins, 1998; Bredensteiner and Bennett, 1999; Vapnik, 1998), which
is well-known to be not classification-calibrated (Liu, 2007; Tewari and Bartlett, 2007).
However, the Weston-Watkins hinge loss is calibrated with respect to a discrete loss called
the “ordered partition loss” related to ranking with ties (Wang and Scott, 2020).

Example 4 The Crammer-Singer hinge loss (Crammer and Singer, 2001) is a well-known
loss that is a PERM loss but not a Gamma-Phi loss. It is defined as

LCSy (v) := maxj∈[k]:j 6=y {max{0, 1− (vy − vj)}} , for all v ∈ Rk.

Section 5 features another example of a family of PERM losses, namely, the Fenchel-
Young losses (Blondel et al., 2020).

2.1 Matrix label code and the relative margin form

This section introduces the multiclass generalization of {±1}: the matrix label code {Υy}ky=1.

Definition 2.4 (Matrix label code) For k ≥ 2 and y ∈ [k], define the (k − 1)× (k − 1)
matrix Υy as follows: For y = k, Υk := Ik−1. For y ∈ [k − 1], define Υy column-wise by

[Υy]:j :=

{
e

(k−1)
j : j 6= y

−1(k−1) : j = y,
for each j ∈ [k − 1].

Equivalently, to construct Υy for each y ∈ [k − 1], first take the identity matrix Ik−1, then
replace the y-th column by all −1’s.

Note that Υ2
y = Ik−1 for all y ∈ [k−1], i.e., Υy is an involution. Moreover, in the binary

case where k = 2, we have Υ1 = −1 and Υ2 = 1, i.e., the matrix label code reduces to the
label encoding {±1}.

Next, recall that a function f : Rn → R is symmetric if f(Sσ(·)) = f(·) for all σ ∈
Sym(n). We now state the main property of the PERM loss and the matrix label code:

Theorem 2.5 (Relative-margin form) Let L : Rk → Rk be a PERM loss with template
ψ, and let v ∈ Rk and y ∈ [k] be arbitrary. Then ψ is a symmetric function. Moreover,

Ly(v) = ψ(ΥyDv). (2)

Conversely, let ψ : Rk−1 → R be a symmetric function. Define a multiclass loss function
L = (L1, . . . ,Lk) : Rk → Rk according to eq. (2). Then L is a PERM loss with template ψ.
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Equation (2) is referred to as the relative margin form of L. Theorem 2.5 and other results
in this section are proved in Section C in the appendix.

Remark 2.6 The relative margin form can be interpreted as a one-to-one correspondence
between PERM losses L : Rk → Rk and symmetric functions ψ : Rk−1 → R. Thus, we can
refer to a PERM loss by either L or ψ without ambiguity.

Remark 2.7 (Uniqueness of the matrix label code) In Section J of the appendix, we
prove11 a unique-ness result: any set of matrices {Υ′y}ky=1 satisfying the conclusion of The-
orem 2.5 is equal to the matrix label code (Definition 2.4) up to row permutations of the
Υy’s.

Remark 2.8 Observe that ΥyDv = (vy − v1, vy − v2, . . . , vy − vk)
> ∈ Rk−1 where the

vy − vy entry is omitted. This is Lemma B.2 in the appendix. Now, note that the right
hand side is exactly the relative margin as defined in Rosset et al. (2003, Eqn. (8)). The
advantage of the left hand expression ΥyDv is that the label y acts via its label encoding
Υy by left matrix multplication. This “disentanglement” of the label encoding and the loss
can facilitate calculations and will be crucial in our key Lemma G.6.

Remark 2.9 (Prior work) The matrices in the definition of the matrix label code have
been used by Wang and Scott (2020, 2021) for analyzing the Weston-Watkins (WW) SVMs
(Weston and Watkins, 1998). Wang and Scott (2020) show that the hinge loss from the
WW-SVM is calibrated with respect to the ordered partition loss, and uses this theory to
explain the empirical observation made by Dogan et al. (2016) that WW-SVM performs
well even under significant label noise. Wang and Scott (2021) derive a reparametrization
of the Weston-Watkins dual problem that decomposes into subproblems that can be solved
exactly in O(k log(k)) time, leading to faster performance for the linear WW-SVMs with
many classes. The “disentanglement” discussed in the previous remark is the key ingredient
for deriving this reparametrization.

This work extends Wang and Scott (2020, 2021) beyond the multiclass SVM setting, and
provides a framework for using these matrices for margin-based losses.

2.2 Relationship between class-score functions and discriminant functions

As mentioned in the introduction, the “sign” function converts a real-valued discriminant
function g : X → R to a discrete-valued classifier h : X → {1, 2} by choosing h(x) to be
y ∈ {1, 2} such that (−1)yg(x) ≥ 0 with ties broken arbitrarily. To generalize this to the
multiclass case, first recall that when k = 2, the matrix label code is equal to Υy = (−1)y.
Thus, (−1)yg(x) ≥ 0 iff Υyg(x) ≥ 0. More simply put, y is the predicted class if and only
if Υy is the sign of g(x).

Next, we define the multiclass “sign” function analogously. Given a vector-valued dis-
criminant function g : X → Rk−1 we define a discrete-valued classifier h : X → [k] by taking
y ∈ [k] such that Υyg(x) � 0. Similar to the binary case, ties can be broken arbitrarily.
Thus, Υy can be viewed as the sign of g(x). To relate this multiclass “sign” function method
for producing a classifier to the conventional “arg max” method, we have

11. We omit the proofs of some of the technical intermediate lemmas. For the omitted proofs, see the arXiv
version of our manuscript (Wang and Scott, 2023b).
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Proposition 2.10 Let v ∈ Rk, z := Dv, and y ∈ [k]. Then y ∈ arg maxj vj iff Υyz � 0.

Furthermore, let v′ :=
[
0 −z>

]>
. Then y ∈ arg maxj vj iff y ∈ arg maxj v

′
j.

Proof For the first part, recall from Remark 2.8 that ΥyDv = (vy−v1, vy−v2, . . . , vy−vk)>
where the vy − vy entry is omitted. Therefore, the assertion “y ∈ arg maxj vj iff Υyz � 0”
follows immediately from the definition of � and z. For the “Furthermore” part, note that
by construction we have v′ = (0, v2 − v1, v3 − v1, . . . , vk − v1)>. By adding the constant v1

to all entries of v′, we recover v. Thus, the indices maximizing v′ are the same as those of
v = (v1, v2, . . . , vk)

>.

The first part of Proposition 2.10 gives an intuitive explanation for our earlier definition of a
multiclass “sign”. The second part of Proposition 2.10 gives a simple formula for computing
the “arg max” from the discriminant function.

Remark 2.11 Proposition 2.10 can be seen as an equivalence between class-score func-
tions and discriminant functions. Given a class-score function f : X → Rk, we can derive
a discriminant function g : X → Rk−1 by defining g(x) := Df(x) for all x ∈ X . Con-
versely, we can view the discriminant function g as the “given”, and derive a class-score

function f by defining f(x) :=
[
0 −g(x)

]>
for all x ∈ X . In both cases, arg max f(x) =

arg max
[
0 −g(x)

]>
.

3. Classification-calibration and Consistency

This section is a brief review of the core definitions and theorem from Tewari and Bartlett
(2007) in preparation for our results on sufficient conditions for classification-calibration.

Below, we assume the probability setting introduced earlier in Section 1.2.

Definition 3.1 (Range and its convex hull) Let f : Rm → Rn be a function. Denote
by ran(f) := {f(x) : x ∈ Rm} the range of f , and ranc(f) := conv(ran(f)) the convex hull
of the range of f .

Definition 3.2 (Tewari and Bartlett (2007)) A set S ⊆ Rk
+ is classification-calibrated

if there exists a function12 θ : Rk → [k] such that

inf{〈p, ζ〉 : ζ ∈ S : pθ(ζ) < max p} > infζ∈S〈p, ζ〉 (3)

for all p ∈ ∆k. A multiclass loss function L is classification-calibrated if ranc(L) is
classification-calibrated.

Intuitively, Definition 3.2 says that the lowest achievable conditional risk when predict-
ing the wrong label (Eqn. (3) LHS) is still strictly larger than the conditional Bayes risk
(Eqn. (3) RHS). Define arg max : Rk → [k] by arg max(v) = min{i ∈ [k] : vi = maxj∈[k] vj}.
When L is permutation equivariant and classification-calibrated, we can take θ in Defini-
tion 3.2 to be simply arg max. See Tewari and Bartlett (2007, Lemma 4). As alluded to
earlier, the significance of Definition 3.2 is demonstrated by the following theorem:

12. The function θ is called a calibrated link for S.

10
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Theorem 3.3 (Tewari and Bartlett 2007) Let L be a PERM loss. Let F be the set of
all Borel functions X → Rk. If L is classification-calibrated, then L has the consistency
transfer property: For all sequence of function classes {Fn}n such that Fn ⊆ F ,

⋃
nFn = F ,

all f̂n ∈ Fn and all probability distributions P on X × [k]

RL,P (f̂n)
P→ inff RL,P (f) implies R01,P (arg max ◦ f̂n)

P→ infhR01,P (h)

where the infimums are taken over all Borel functions f : X → Rk and h : X → [k],
respectively.

Remark 3.4 In applications, f̂n is often taken to be an L-risk empirical minimizer over
a training dataset of cardinality n. However, the above property holds for any sequence of
functions f̂n ∈ Fn.

Checking that a multiclass loss L is classification-calibration is a non-trivial task, requir-
ing delicate analysis of the loss function (Tewari and Bartlett, 2007). Recently, Wang and
Scott (2023a) established a sufficient condition of classification-calibration for Gamma-Phi
losses (Example 2). Below, we derive a sufficient conditions for general PERM losses.

4. Regular PERM losses

To demonstrate the utility of the relative margin form and Theorem 2.5, we prove in this
section Theorem 4.7, a sufficient condition for classification-calibration (CC) of multiclass
loss functions. To this end, we begin with the necessary definitions.

Definition 4.1 A function f : Rn → R is
1. coercive if for all c ∈ R, the set {v ∈ Rn : f(v) ≤ c} (i.e., the c-sublevel set) is

bounded,
2. semi-coercive if for all c ∈ R there exists b ∈ R such that

{v ∈ Rn : f(v) ≤ c} ⊆ {v ∈ Rn : b ≤ minj∈[n] vj}.

The definition of a coercive function is well-studied (Boyd and Vandenberghe, 2004). How-
ever, semi-coercivity appears to be new. Intuitively, a function is semi-coercive if, for all
c ∈ R, its c-sublevel set is contained in a translation of the positive orthant.

Definition 4.2 (Regular PERM loss) Let L be a PERM loss with template ψ. We say
that L is regular if ψ is nonnegative, twice differentiable, strictly convex, semi-coercive, and
the gradient ∇ψ(z) ≺ 0 is entrywise negative for all z ∈ Rk−1.

Below, we give a sufficient condition for a Gamma-Phi loss (Example 2) to be a regular
PERM loss. But first, we discuss the intuition behind the condition ∇ψ(z) ≺ 0. The
condition ∇ψ(z) ≺ 0 is reminiscent of a condition in Bartlett et al. (2006, Theorem 6),
which shows that in the binary case a convex margin loss ψ is classification-calibrated
if and only if ψ is differentiable at 0 and ψ̇(0) < 0 where the “overdot” denotes taking
derivative of a univariate function. If we view −ψ̇(·) as a “vector field” on R, then this
condition on the derivative can be stated as “the vector field −ψ̇(·) near 0 points toward
the positive half of the real line”.

11
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Figure 2: Vector field −∇ψ(z) where ψ is the
template of the cross entropy (Example 1).
The contour lines are shaded according to the
value of the function ψ (darker is larger). See
Figure 1.

The condition ∇ψ(z) ≺ 0 can be
thought of in a similar fashion. See Figure 2
for a plot of the vector field −∇ψ(z) where
ψ ≡ ψCE is the template of the cross entropy
(Example 1), and where k = 3. Note that
the vectors point toward the shaded region
whose interior is the positive orthant in R2.

However, Definition 4.2 requires the
strict negativity of the gradient for all of
Rk−1, whereas the derivative of ψ is only
required to be negative at 0 in the binary
case in Bartlett et al. (2006, Theorem 6).

Next, we define the “truncation” of a
PERM loss L. Intuitively, if k ≥ 3 is the
number of classes and L is k-ary, then the
truncation of L results in a (k− 1)-ary loss.

Proposition 4.3 (Truncation) Assume k ≥ 3. Let L : Rk → Rk
≥0 be a PERM loss with

template ψ : Rk−1 → R. Define trunc[ψ](w) := limλ→∞ ψ(λ,w) for all w ∈ Rk−2. If L is
regular (Definition 4.2), then trunc[ψ] is a well-defined symmetric function Rk−2 → R (i.e.,
all limits exist in R), referred to as the truncation of ψ.

Proof Let h(λ) := ψ(λ,w). The condition that ∇ψ(·) ≺ 0 implies that h is decreasing as
a function of λ. Moreover, h is nonnegative since ψ is nonnegative. Thus, limλ→+∞ h(λ)
exists. The symmetry of trunc[ψ] follows immediately from the symmetry of ψ.

By Theorem 2.5, the symmetric function trunc[ψ] induces a unique loss function which we
call the truncation of L. Note that if ψCE(z) = log(1+exp(−z1)+exp(−z2)) is the template
of the cross entropy with k = 3 (Example 1), then trunc[ψCE](w) = limλ→∞ ψ

CE(λ,w) =
log(1 + exp(−w)), which is just the binary cross entropy/logistic loss.

Next, we define the m-fold iterated truncation of the template of a PERM loss.

Corollary 4.4 For each m ∈ {0, 1, . . . , k− 2}, define trunc×m[ψ] to be m-fold repeated ap-
plications of trunc to ψ, i.e., trunc×m[ψ] := trunc[· · · trunc[trunc[ψ]] · · · ] where trunc appears
m-times. By convention, let trunc×0[ψ] = ψ. Moreover, for each n ∈ {2, . . . , k}, define the
notational shorthand ψ(n) := trunc×(k−n)[ψ]. If, for n ∈ {2, . . . , k − 1}, ψ(n+1) : Rn → R

is a symmetric function such that the associated PERM loss, denoted L(n+1), is a regular
PERM loss, then ψ(n) : Rn−1 → R is a symmetric function.

The n-ary truncated loss captures the behavior of ψ when the first k − n inputs to the
template ψ approach +∞. Note that if ψCE is the template of the k-ary cross entropy, then
trunc×(k−n)[ψCE] is the template of the n-ary cross entropy. This follows from a calculation
similar to the one right before Corollary 4.4.

Next, we define “totally regular PERM loss” which generalizes the above observation:

Definition 4.5 (Totally regular PERM loss) Let L : Rk → Rk be a regular PERM
loss with template ψ : Rk−1 → R. For each n ∈ {2, . . . , k}, let ψ(n) : Rn−1 → R be as in

12
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Corollary 4.4 and let L(n) be the unique13 PERM loss associated to ψ(n). We say that L is
a totally regular PERM loss if L(n) is regular for each n ∈ {2, . . . , k}.

Before proving our main result, we note that Gamma Phi losses form a large family of
totally regular PERM losses:

Proposition 4.6 Let γ, φ : R → R be functions and Lγ,φ be the associated Gamma-Phi
loss as defined in Example 2. Suppose that all of the following holds

1. γ is a twice differentiable function such that γ ≥ 0, dγ
dt > 0 and d2γ

dt2
≥ 0 on all of R,

2. φ is a twice differentiable function such that dφ
dt < 0, d2φ

dt2
> 0 on all of R. Moreover,

φ(t)→ 0 as t→ +∞.

Then Lγ,φ is totally regular.

We now state our main result:

Theorem 4.7 If L is totally regular, then L is classification-calibrated.

In view of Theorem 4.7, the assumptions of Proposition 4.6 turns out to be a suf-
ficient condition for a Gamma-Phi loss to be classification-calibrated. Theorem 4.7 and
Proposition 4.6 together recover the result that the coherence loss (Zhang et al., 2009) is
classification-calibrated. However, this sufficient condition is subsumed by a previous result
in Wang and Scott (2023a, Theorem 3.3). Nevertheless, that Lγ,φ is totally regular has
nontrivial consequences as we will see next.

First, new totally regular PERM losses can be constructed from existing ones:

Proposition 4.8 Let L and L′ : Rk → Rk be totally regular PERM losses and λ > 0 be a
number. Then λL and L+ L′ are also totally regular.

Thus, λL and L+L′ are both classification-calibrated by Theorem 4.7. Next, we apply this
result to sums of Gamma-Phi losses:

Example 5 (Sum of Gamma-Phi losses) Consider two Gamma-Phi losses each satis-
fying the assumptions of Proposition 4.6. For concreteness, take the cross entropy LCE and
the multiclass exponential loss LExp (See Example 2). Then by Proposition 4.8, the loss
1
2(LCE +LExp) is totally regular and thus classification-calibrated by Theorem 4.7. Note that
the sum of two Gamma-Phi losses need not be another Gamma-Phi losses. Thus, Theo-
rem 4.7 combined with Proposition 4.8 gives the first sufficient condition for when the sum
of classification-calibrated losses are again classification-calibrated, in the multiclass case14.

In the next section, we will apply Theorem 4.7 to obtain a sufficient condition for
classification-calibration of Fenchel-Young losses (Theorem 5.10).

13. The existence and uniqueness is guaranteed by Theorem 2.5.
14. Note that the situation is much simpler in the binary case, due to the result of Bartlett et al. (2006,

Theorem 6) that convex margin loss ψ is classification-calibrated if and only if ψ is differentiable at 0
and ψ̇(0) < 0 where the “overdot” denotes taking derivative of a univariate function.

13
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5. Fenchel-Young losses: sufficient conditions for classification-calibration

In this section, we consider a subset of PERM losses called the Fenchel-Young losses:

Definition 5.1 (Blondel et al. 2020) Let Ω : ∆k → R be a continuous function and

µ ∈ R≥0. Define cy := µ(1(k) − e
(k)
y ). The Fenchel-Young loss associated to Ω and µ is the

loss function LΩ,µ : Rk → Rk
≥0 whose y-th component is given by

LΩ,µ
y (v) := maxp∈∆k −Ω(p) + Ω(e

(k)
y ) + 〈v + cy,p− e

(k)
y 〉. (4)

The maximization in Eqn. 4 is essentially the Fenchel conjugate15 of −Ω. See Definition 5.4.

It is not obvious that Fenchel-Young losses are indeed PERM losses. We prove this fact
in Proposition I.1 in the appendix.

Definition 5.2 (Negentropy) A function Ω : ∆k → R is a negentropy if :
1. Ω is closed (maps closed sets to closed sets) and convex,
2. Ω is symmetric, i.e., Ω(Sσp) = Ω(p) for all p ∈ ∆k and σ ∈ Sym(k),

3. −Ω(p) ≥ 0 for all p ∈ ∆k and Ω(e
(k)
i ) = 0 for all i ∈ [k].

The negative entropy is more convenient to work with due to its convexity. We use the term
“negentropy” in the interest of brevity. This term has been previously used in statistics
(Hyvärinen and Oja, 2000) and in machine learning (Mensch et al., 2019).

Example 6 When Ω(p) :=
∑k

y=1 py log(py) is the negative Shannon entropy and µ = 0,

we have that LΩ,0 is the cross entropy (Example 1).

Below, we use the notation that p̃ = [p1, . . . , pk−1]> ∈ Rk−1 is the sub-vector of p with
the last element dropped. Later in Proposition I.1, we show that the Fenchel-Young loss
Eqn. (4) is a PERM loss with template

ψΩ,µ(z) := maxp∈∆k −Ω(p) + µ1>p̃− 〈p̃, z〉. (5)

Remark 5.3 Blondel et al. (2020) allow the vector cy ∈ Rk to be arbitrary, in which case
the resulting loss is known as cost-sensitive Fenchel-Young loss. However, known calibration
results (Blondel, 2019; Nowak-Vila et al., 2019) are only for cy as in Definition 5.1.

In order to state our sufficient condition for classification-calibration (Theorem 5.10),
we briefly review two key notions from the theory of convex analysis and Legendre trans-
formation following Rockafellar (1970, Section 26):

Definition 5.4 (Convex conjugates) Let D ⊆ Rn be a closed convex set. Let f : D → R

be a function. Define D∗ := {y ∈ Rn : supx∈D〈y, x〉− f(x) <∞}. The convex conjugate of
a function f : D → R is the function f∗ : D∗ → R given by f∗(y) = supx∈D〈y, x〉 − f(x).

Definition 5.5 (Convex functions of Legendre type) Let D ⊆ Rn be a closed convex
set. A convex function f : D → R is said to be of Legendre type if

15. Also known as the convex conjugate.
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1. C := int(D) is an open convex subset of Rn,
2. f is strictly convex and differentiable on C,
3. for all {xi}∞i=1 ⊆ C with limi→∞ xi ∈ bdry(D), we have limi→∞ ‖∇f (xi)‖ = +∞.

For example, when D = ∆k and f = −H is the negative Shannon entropy, then f :
D → R≤0 is of Legendre type. See the paragraph immediately following Blondel et al.
(2020, Definition 3).

Definition 5.6 (Regular negentropies) A negentropy Ω : ∆k → R is a regular negen-
tropy if Ω is of Lengedre type and twice differentiable.

The term “negentropy” was previously used by Mensch et al. (2019). To the best of our
knowledge, the term “regular negentropy” is new.

Proposition 5.7 (Truncation of a negentropy) Assume k ≥ 3. Let pad : ∆k−1 →
∆k be the “zero-padding” operator, i.e., pad(q) := [0, q1, . . . , qk−1] ∈ ∆k for all q =
[q1, . . . , qk−1] ∈ ∆k−1. Let Ω : ∆k → R be a negenetropy. Define the truncation of Ω,
denoted trunc[Ω] : ∆k−1 → R, by trunc[Ω](·) := Ω(pad(·)). Then trunc[Ω] is a negentropy.

The following is analogous to the earlier iterated truncation construction in Corollary 4.4:

Corollary 5.8 For each m ∈ {0, 1, . . . , k− 2}, define trunc×m[Ω] to be m-fold repeated ap-
plications of trunc to Ω, i.e., trunc×m[Ω] := trunc[· · · trunc[trunc[Ω]] · · · ] where trunc appears
m-times. By convention, let trunc×0[Ω] = Ω. Moreover, for each n ∈ {2, . . . , k}, define the
notational shorthand Ω(n) := trunc×(k−n)[Ω]. Then Ω(n) : ∆n → R is a negentropy.

Definition 5.9 (Totally regular negentropy) Let Ω : ∆k → R be a negentropy. We say
that Ω is a totally regular negentropy if Ω(n) is a regular negentropy for each n ∈ {2, . . . , k}.

To the best of our knowledge, the definition of a totally regular negentropy is new. As
suggested by the name, totally regular negentropies induce Fenchel-Young losses that are
totally regular. This is a critical step16 towards proving the main result of this section below.
The result leverages Theorem 4.7 to establish a sufficient condition for the classification-
calibration of Fenchel-Young losses:

Theorem 5.10 Let Ω be a totally regular negentropy, µ ∈ R≥0 be fixed, and LΩ,µ be the
Fenchel-Young loss associated to Ω and µ. Then LΩ,µ is classification-calibrated.

In light of Theorem 3.3, if Ω satisfies the conditions of Theorem 5.10, then LΩ,µ sat-
isfies the consistency transfer property (Definition 1.1). Theorem 5.10 recovers all known
classification-calibration sufficient conditions (Nowak-Vila et al., 2019; Blondel, 2019) which
require that Ω be strongly-convex whereas our result only requires strict convexity. The
following proposition and example show that there is always a nonempty set of losses to
which the result applies but the prior results don’t.

16. See the proof of Theorem I.5 in the appendix.
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Proposition 5.11 Let Ω : ∆k → R be a totally regular negentropy and g : R≥0 → R≥0

be convex, twice differentiable and strictly increasing. Let u := (1/k)1(k) ∈ ∆k be the
uniform probability vector. Define Θ : ∆k → R by Θ(p) := g(Ω(p)−Ω(u))− g(−Ω(u)) for
p ∈ ∆k. Then Θ is a totally regular negentropy. Furthermore, if g′(0) = 0, then Θ is not
strongly-convex.

Example 7 For a concrete application of Proposition 5.11, take Ω to be the negative Shan-
non entropy (Example 6) and g(x) = x2 the square function. Then Θ as defined in Propo-
sition 5.11 is a totally regular negenetropy that is not strongly-convex. Moreover, LΘ,µ is
classification-calibration for any µ ∈ R≥0 by Theorem 5.10.

Note that previous sufficient conditions (Nowak-Vila et al., 2019; Blondel, 2019) do not
cover our example above.

6. Discussion and Future Directions

We proposed the relative margin form as a multiclass extension to the popular (binary)
margin loss framework. We characterized the set of losses that can be expressed in the
relative margin form — the PERM losses. Our Theorem 4.7 generalizes to the multiclass
case the seminal result of (Bartlett et al., 2006, Theorem 6). Central to our analysis is
the matrix label code (Definition 2.4) which we expect to be useful beyond the scope here.
Utilizing our framework, we extended the existing set of known sufficient conditions for the
classification-calibration of Fenchel-Young losses. We expect the framework to be useful
for research on multiclass classification, e.g., for H-consistency (Long and Servedio, 2013;
Zhang and Agarwal, 2020; Awasthi et al., 2022).
• Characterization of classification-calibration. One weakness of our work is that,
compared to the characterization of CC in the binary case (Bartlett et al., 2006, Theorem
6), we are only able to prove an analogous result (Theorem 4.7) in the multiclass case under
additional assumptions. Future work will investigate whether this can be improved.
• Cost-weighted classification. Our results are limited to the traditional notion of
classification-calibration under the assumption that the cost of misclassifying all classes are
the same. The more general notion of c-classification-calibration described in Williamson
et al. (2016) allows the cost of misclassification to be class-dependent according to some
class-specific weight vector c. An interesting future direction is to consider a setting where
a general c-classification-calibration sufficient condition similar to our Theorem 4.7 can be
derived for non-symmetric losses. More specifically, given a classification-calibrated PERM
loss, is there a principled way to modify the loss to make it c-classification calibrated?
• Combining losses. Hui et al. (2023) demonstrate the effectiveness of summing existing
losses (the cross entropy and the square loss) to design new losses for classification. Un-
fortunately, our result in Proposition 4.8 does not apply to their new loss since the square
loss is not totally regular. One approach may be to connect our technique with that of
Williamson and Cranko (2023, §6) for studying the geometric properties of sums of losses.
• Beyond classification. While this work is concerned with classification-calibration,
there are many works on calibration for more general discrete supervised learning tasks.
Ramaswamy and Agarwal (2016) developed theory for multiclass classification with abstain
option and, more generally, losses defined over finite sets i.e., discrete losses. Finocchiaro
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et al. (2019) showed that there exists polyhedral losses that are calibrated with respect
to arbitrary discrete losses. An interesting question is if the PERM loss framework can
useful for analyzing such surrogate losses. Beyond classification-calibration, a potentially
fruit direction is to employ the PERM loss framework to study optimization and learning
theory.
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Appendix A. Notational conventions and definitions

For the reader’s convenience, we tabulate the notational convention used in this work in
Table 1. Moreover, we tabulate the mathematical objects defined in Table 2. Finally, we
require the following additional notations:

Permutations. A bijection from [k] to itself is called a permutation (on [k]). Recall we
denote by Sym(k) the set of all permutations on [k]. Two permutations σ, σ′ ∈ Sym(k) can be
composed resulting in another permtuation σσ′ ∈ Sym(k) defined by function composition:
for y ∈ [k], we have σσ′(y) := σ(σ′(y)). For i, j ∈ [k], let τ(i,j) ∈ Sym(k) denote the
transposition which swaps i and j, leaving all other elements unchanged. More precisely,
τ(i,j)(i) = j, τ(i,j)(j) = i and τ(i,j)(y) = y for y ∈ [k]\{i, j}. Define the notational shorthand
τi := τ(k,i), the transposition that swaps k and i.

Permutation matrices. Recall that for each σ ∈ Sym(k), Sσ ∈ Rk×k denotes the
permutation matrix corresponding to σ. In other words, if v ∈ Rk is a vector, then
[Sσv]j = [v]σ(j) = vσ(j). Note that if σ, σ′ ∈ Sym(k), then Sσσ′ = Sσ′Sσ where the order of
compositions are reversed (Lemma B.6). Define the notational shorthand T(i,j) := Sτ(i,j)
the matrix corresponding to the transposition of i and j. Likewise, define Ti := T(k,i).

When k is ambiguous, we disambiguate it with the superscript notation and write S
(k)
(i,j) and

T
(k)
(i,j).

Topology. Let S be a subset of a topological space. Let int(S) and bdry(S) denote the
interior and the boundary of the set S, respectively. See Table 1 for the full list of symbols.

Mathematical object Description of notation Example of notation

Set of all permutations Sym(k)
Permutations Lower case sigma or tau σ, τ
Transpositions tau with subscripts τ(i,j)

Vector Bold lower case v,w
Entries of vector Normal font lower case v1, v2, . . .

Special vector Blackboard font

All zeros/ones vector in Rn 0(n), 1(n)

i-th elem. basis vector in Rn e
(n)
i

Matrix Bold upper case A
j-th Column [A]:j
n× n Identity In

Table 1: Notation convention used throughout this work.

Appendix B. Properties of the matrix label code

As mentioned in the main text, the definition of matrix label code has already been in-
troduced in Wang and Scott (2020, Definition S3.14). However, that work, the matrix
label code is used to analyze a particular optimization problem resulting from the Weston-
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Symbol Description Defined in...

L Multiclass loss function Definition 2.2
` Reduced form of L Definition 2.2 item 2
ψ Template of L Definition 2.2 item 3
Ω Negentropy Definition 5.2
LΩ,µ Fenchel-Young loss assoc. to Ω, µ Definition 5.1
trunc[ψ] truncation of ψ Proposition 4.3

ψ(n) trunc applied k − n times to ψ Corollary 4.4

L(n) PERM loss corresponding to ψ(n) Definition 4.5
trunc[`] truncation of ` Definition H.3
pad “zero-padding” operator Proposition 5.7
trunc[Ω] truncation of Ω Proposition 5.7

Ω(n) trunc applied k − n times to Ω Corollary 5.8
D relative margins conversion matrix Definition 2.1
Mσ DSσD

† Definition B.4
Υ matrix label code Definition 2.4
T Transposition matrix Section A
τ Transposition permutation Section A
A(z) gradient of `(z) Lemma G.6
P (resp. Q) drop last (resp. first) coordinate Lemma G.25 (resp. G.26)
ran(·) and ranc(·) range of convex hull of range Definition 3.1
ran•c(f) and ran◦c(f) closure and interior of ranc(f) Definition G.27
N (ζ;S) Positive normals Definition G.35

Table 2: Mathematical objects and where they are defined.

Watkins SVM (Weston and Watkins, 1998). Here, we develop a comprehensive theory for
using matrix label code with PERM loss. With the exception of Lemma B.15, all results in
this section have already appeared in Wang and Scott (2020, 2021) using slightly different
notation. For the reader’s convenience, the proofs are omitted here but are all included in
the arXiv version of this manuscript (Wang and Scott, 2023b).

First, we note that for y ∈ {1, . . . , k − 1}, the matrix Υ
(k)
y acts on a vector z =

(z1, . . . , zk−1)> ∈ Rk−1 by

∀j ∈ [k − 1], [Υ(k)
y z]j :=

{
zj − zy : j 6= y

−zy : j = y.
(6)

Remark B.1 Throughout this section, we consider k fixed and write Υ1, · · · ,Υk instead of

Υ
(k)
1 , · · · ,Υ(k)

k . Moreover, whenever Ty does not have a superscript, we implicitly assume

that Ty = T
(k)
y . In some results, we will work with (k − 1)× (k − 1) permutation matrices

in which case we will write, for example, T
(k−1)
(y,y′) where y, y′ ∈ [k − 1].
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Lemma B.2 For all y ∈ [k], we have DTy = ΥyD. In particular, for all i > 1 and
j ∈ [k − 1], we have

[ΥyDv]j =

{
vy − vj : y 6= j

vy − vk : y = j.

Remark B.3 Let D† denote the Moore-Penrose inverse of D. Since D contains a copy of
the identity matrix, D has full column rank. Hence, DD† is the identity.

Definition B.4 For each σ ∈ Sym(k), define the (k − 1)× (k − 1) matrix Mσ := DSσD
†.

Lemma B.5 For all y ∈ [k], we have Mτy = Υy.

Lemma B.6 If σ, σ′ ∈ Sym(k), then Sσσ′ = Sσ′Sσ.

Lemma B.7 For all σ, σ′ ∈ Sym(k), we have Mσσ′ = Mσ′Mσ.

Lemma B.8 For all y ∈ [k], Υ2
y is the identity.

Lemma B.9 Let y1, y2 ∈ [k − 1] be distinct, i.e., y1 6= y2. Then τy1τy2τy1 = τ(y1,y2), as

elements of Sym(k). Moreover, Ty1Ty2Ty1 = T(y1,y2), as elements of Rk×k.

Corollary B.10 Every σ ∈ Sym(k) can be written as a product σ = τy1τy2 · · · τyn for some
integer n ≥ 0 and yi ∈ [k − 1] for each i ∈ [n].

Lemma B.11 For all y1, y2 ∈ [k − 1], we have T
(k−1)
(y1,y2)D = DT

(k)
(y1,y2).

Lemma B.12 Let y1, y2 ∈ [k − 1] be distinct. Then T
(k−1)
(y1,y2) = Υy1Υy2Υy1 .

Lemma B.13 Let y, j ∈ [k]. Then

Υτy(j) =

{
T

(k−1)
(j,y) ΥjΥy : both y and j ∈ [k − 1]

ΥjΥy : otherwise.
(7)

Proposition B.14 For an arbitrary σ ∈ Sym(k − 1), let σ′ ∈ Sym(k) denote “the permuta-
tion that extends σ to [k]”, i.e., σ′(k) := k and σ′(y) := σ(y) for y ∈ [k− 1]. Then we have
SσD = DSσ′.

Lemma B.15 Let 1 := 1(k−1) denote17 the (k−1)-dimensional (column) vector of all ones.

Let ey := e
(k−1)
y denote the (k − 1)-dimensional y-th elementary basis (column) vector. Let

y, j ∈ [k] be such that y 6= j. Then we have the following identities

Υy −T(y,j)Υj = (1 + ej)(ej − ey)
> if y, j ∈ [k − 1], (8)

Υy −Υj = (1 + ej)(ej)
> if y = k, (9)

Υy −Υj = −(1 + ey)(ey)
> if j = k. (10)

17. We drop the superscript (k − 1) for convenience.
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Appendix C. Proof of Theorem 2.5

We first recall the definition of a template from Theorem 2.5. For the reader’s convenience,
we restate it as a definition below:

Lemma C.1 Let L be a PERM loss with template ψ. Let D be as in Definition 2.1. Then
for all v ∈ Rk we have Lk(v) := [L(v)]k = ψ(Dv).

Proof Recall from Definition 2.1 that Dv = (vk − v1, vk − v2, . . . , vk − vk−1)>. Thus, the
result now follows immediately from Definition 2.2.

For the reader’s convenience, the following is a restatement of Theorem 2.5.

Theorem C.2 Let L : Rk → Rk be a PERM loss with template ψ, and let v ∈ Rk and
y ∈ [k] be arbitrary. Then ψ is a symmetric function and L can be expressed as

Ly(v) = ψ(ΥyDv). (11)

Conversely, given a symmetric function ψ : Rk−1 → R, the function L = (L1, . . . ,Lk) :
Rk → Rk defined componentwise via eq. (11) is a PERM loss with template ψ.

Proof [Proof of Theorem C.2] We begin with the “ =⇒ ” direction of the proof. First,
we check that ψ : Rk−1 → R is symmetric, i.e., ψ(Sσz) = ψ(z) for all z ∈ Rk−1 and all
σ ∈ Sym(k − 1). Below, fix such z and σ.

Pick v ∈ Rk such that Dv = z. For instance, let v :=
[
−z> 0

]>
. Define σ′ ∈ Sym(k)

to be the permutation that extends σ to [k] as in Proposition B.14. Then

ψ(Sσz) = ψ(SσDv) = ψ(DSσ′v) ∵ Proposition B.14

= [L(Sσ′v)]k ∵ Definition 2.2 of the template ψ of a PERM loss

= [Sσ′L(v)]k ∵ L is permutation equivariant (Definition 2.2)

= [L(v)]σ′(k) ∵ Sσ′ is the permutation matrix of σ′

= [L(v)]k ∵ Definition of σ′ in Proposition B.14

= ψ(Dv). ∵ Lemma C.1

Since by definition ψ(Dv) = ψ(z), we have by the above that ψ(Sσz) = ψ(z) for all z.
This proves that ψ is symmetric. Next, we prove eq. (11), i.e., [L(v)]y = ψ(ΥyDv) for all
y ∈ [k]. Again, this is a straight forward computation:

[L(v)]y = [L(v)]τy(k) = [TyL(v)]k ∵ definitions of τy and Ty

= [L(Tyv)]k ∵ L is permutation equivariant

= ψ(DTyv) ∵ Lemma C.1

= ψ(ΥyDv) ∵ Lemma B.2.

This proves eq. (11) and thus the “ =⇒ ” direction follows. The proof of the “ ⇐= ”
direction, i.e., the “Conversely” part of the theorem, proceeds similarly. For the reader’s
convenience, it is omitted here but is included in the arXiv version of this manuscript (Wang
and Scott, 2023b).
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Lemma C.3 Let L : Rk → Rk be a function such that TyL(v) = L(Tyv) for all y ∈ [k]
and v ∈ Rk. Then L is permutation-equivariant, i.e., L(Sσv) = SσL(v) for all y ∈ [k] and
v ∈ Rk.

Proof For an arbitrary σ ∈ Sym(k), write σ = τy1τy2 · · · τyn as a product of transposition
where n ≥ 0 is an integer and yi ∈ [k − 1] for each i ∈ [n]. This is possible because of
Corollary B.10. By Lemma B.6, we have Sσ = Tyn · · ·Ty2Ty1 . Thus

L(Sσv) = L(Tyn · · ·Ty1v) = TynL(Tyn−1 · · ·Ty1v) = · · · = Tyn · · ·Ty1L(v) = SσL(v)

where “= · · · =” denotes repeated application of L(Tyv) = TyL(v) for all y ∈ [k].

Remark C.4 For convenience, we now summarize the relationship between L, ` and ψ
from Definition 2.2 in terms of the input to ψ, typically denoted below by z ∈ Rk−1. Let
y ∈ [k] and z ∈ Rk−1 be arbitrary. Define v ∈ Rk be such that Dv = z, where D is as
defined in Definition 2.1. Since DD† is the identity (Remark B.3), we can for instance let
v = D†z. Then we have

`y(z) = [L(v)]y = ψ(Υyz). (12)

The first equality is eq. (1) (rewritten using Dv = z) and the second equality is eq. (11). A
useful corollary of the above identity is the following:

Sσ`(z) = `(Mσz), for all σ ∈ Sym(k). (13)

To prove eq. (13), we let v := D†z as discussed earlier. Then

Sσ`(z)
1
= SσL(v)

2
= L(Sσv)

3
= `(DSσv)

4
= `(DSσD

†z)
5
= `(Mσz).

For 1 and 3, we used eq. (11). For 2, we used permutation equivariance of L. For 4, we
used the definition of v. For 5, we used Definition B.4 of Mσ.

Appendix D. Well-incentivized losses

This section discusses the “well-incentivized” property of a loss that should be satisfied for
a multiclass classification loss to be useful. This will be made clear after Remark D.2.

Definition D.1 (Well-incentivized losses) Let L be a multiclass loss function (Defini-
tion 2.2). We say that L is well-incentivized (resp. strictly well-incentivized) if for all
v ∈ Rk and distinct y, j ∈ [k], vj ≤ vy (resp. vj < vy) implies Lj(v) ≥ Ly(v) (resp.
Lj(v) > Ly(v)).

Remark D.2 Suppose that L is well-incentivized. Let v ∈ Rk and y ∈ arg maxj∈[k] vj.
Then Ly(v) = minj∈[k] Lj(v).

Remark D.2 implies that for well-incentivized losses, the arg max predictor is correct, i.e.,
Ly(v) is minimized when the class score [v]y is the highest. Next, we define a condition on
the template ψ such that the corresponding PERM loss is well-incentivized:
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Definition D.3 A function f : Rn → R is non-increasing (resp. decreasing) if for all
v,w ∈ Rn such that v � w (resp. v � w) we have f(v) ≤ f(w) (resp. f(v) < f(w)).

Proposition D.4 Let f : Rn → R be a continuously differentiable function. If ∇f (·) � 0

(resp. ∇f (·) ≺ 0) then f is non-increasing (resp. decreasing).

Proposition D.5 Let L be a PERM loss whose template ψ is non-increasing (resp. de-
creasing). Then L is (resp. strictly) well-incentivized.

The proofs of Propositions D.4 and D.5 are straightforward calculations involving the Fun-
damental Theorem of Calculus. For the reader’s convenience, they are omitted here but are
included in the arXiv version of this manuscript (Wang and Scott, 2023b).

Appendix E. Proof of Proposition 4.6

The proof is a straightforward calculation involving the chain rule and properties of the
functions φ and γ. For the reader’s convenience, it is omitted here but is included in the
arXiv version of this manuscript (Wang and Scott, 2023b).

Appendix F. Proof of Proposition 4.8

We first prove that L+L′ is regular. Let ψ and ψ′ be the templates of L and L′ respectively.
Then L+ L′ has template ψ + ψ′. All conditions in Definition 4.2 clearly holds, except for
the semi-coercive property which we now check. Let c, b ∈ R be arbitrary and satisfy

{z ∈ Rn : ψ(z) ≤ c} ⊆ {z ∈ Rn : b ≤ min
j∈[n]

zj}.

Since ψ and ψ′ are both non-negative, we have ψ(z) + ψ′(z) ≤ c implies ψ(z) ≤ c. Thus

{z ∈ Rn : ψ(z) + ψ′(z) ≤ c} ⊆ {z ∈ Rn : ψ(z) ≤ c} ⊆ {z ∈ Rn : b ≤ minj∈[n] zj},

which shows that ψ+ψ′ is semi-coercive, as desired. The fact that L+L′ is totally regular
follows immediately from the definition of the truncation in Proposition 4.3. That λL is
totally regular is completely straightforward and thus we omit its proof.

Appendix G. Properties of Regular PERM losses

In this section, we will prove several key properties of regular PERM losses which were
introduced in Definition 4.2. Recall that a regular PERM loss has a template ψ such
that ψ is nonnegative, twice differentiable, strictly convex, semi-coercive, and the gradient
∇ψ(z) ≺ 0 is entrywise negative for all z ∈ Rk−1. Section G.1 focuses on consequences
of the semi-coercivity condition. Sections G.2 and G.3 focus on consequences of the other
aforementioned conditions. Finally, Section H presents the proof of our main result Theo-
rem 4.7.
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G.1 Semi-coercive functions

In this section, we study the properties of a PERM loss L whose template ψ is semi-coercive
(Definition 4.1).

Lemma G.1 Let L : Rk → Rk
+ be a PERM loss whose template ψ is semi-coercive. Let `

be the reduced form of L. Then, for all ζ ∈ Rk, the set {z ∈ Rk−1 : `(z) � ζ} is bounded.

Proof Below, let z denote an arbitrary element of Rk−1. In set-builder notations, we write
{z : condition} to mean {z ∈ Rk−1 : condition}. Now, by eq. (12), we have that `(z) � ζ
if and only if ψ(Υyz) ≤ ζy for all y ∈ [k]. Thus, we get

{z : `(z) � ζ} =
⋂
y∈[k]{z : ψ(Υyz) ≤ ζy} =

⋂
y∈[k] Υy ({z : ψ(z) ≤ ζy}) (14)

For the last equality above, we used the fact that Υy = Υ−1
y (Lemma B.8) and that

{z : ψ(Υyz) ≤ ζy} = Υ−1
y ({z : ψ(z) ≤ ζy})

for all y ∈ [k]. Moreover, by the semi-coercivity assumption on ψ we have that for all y ∈ [k]
there exists by ∈ R such that {z : ψ(z) ≤ ζy} ⊆ {z : min z ≥ by}. Putting it all together,
we have

{z : `(z) � ζ} ⊆
⋂
y∈[k] Υy({z : min z ≥ by}) =: B (15)

Thus, it suffices to show that B is bounded. Below, we prove this.

Since the empty set is bounded, we assume below that B is nonempty. Let z′ ∈ B ⊆
Rk−1 be a fixed arbitrary point. First, recall the infinity-norm: ‖z′‖∞ := max{|z′i| : i ∈
[k − 1]}. To prove that B is bounded, it suffices to show that there exists some number M
such that ‖z′‖∞ ≤M . Note that we can express ‖z′‖∞ alternatively as

‖z′‖∞ = max {|max z′|, |min z′|} , (16)

where max z′ := maxj∈[k−1] z
′
j and min z′ := minj∈[k−1] z

′
j . Define M1 = max{|by| : y ∈ [k]}

and M2 = max{|by + bj | : y ∈ [k], j ∈ [k]}. Finally, define M = max{M1,M2}. We claim
that ‖z′‖∞ ≤M .

First, we note that min z′ ≥ bk. To see this, first recall that Υk is the identity (Defini-
tion 2.4). From eq. (15) we have B ⊆ Υy({z : min z ≥ by}) for each y ∈ [k]. Now, recall
from Definition 2.4 that Υk is the identity matrix. Thus in particular B ⊆ {z : min z ≥ bk}
and so min z′ ≥ bk holds.

Next, let y ∈ arg minj∈[k−1] z
′
j and thus z′y = min z′. From eq. (15), we have z′ ∈ Υy({z :

min z ≥ by}). Thus, Υyz
′ ∈ {z : min z ≥ by} and in particular, [Υyz

′]y ≥ by. Moreover,
by eq. (6), we have [Υyz

′]y = −z′y = −min z′, and thus min z′ ≤ −by. Combining with the
result from the previous paragraph, we now have that min z′ ∈ [bk,−by] and, in particular,
|min z′| ≤M1. Note that here, we used the fact that if α, β, γ ∈ R are such that γ ∈ [α, β],
then |γ| ≤ max{|α|, |β|}.

Next, let l ∈ arg maxj∈[k−1] z
′
j (and y be still the same as before). First consider the

case when l = y. Then z′ is a constant vector and ‖z′‖∞ = |min z′| in which case ‖z′‖∞ ≤
M1 ≤M holds.

27



Wang and Scott

Next, consider the case when l 6= y. Then we have [Υlz
′]y = z′l − z′y = (min z′) −

(max z′) by eq. (6). Similar as in the previous case, z′ ∈ B ⊆ Υl({z : min z ≥ bl})
which implies that [Υlz

′]y ≥ bl. Thus, max z′ ≤ min z′ − bl ≤ −(by + bl). Furthermore,
max z′ ≥ min z′ ≥ bk. Thus, we’ve shown that max z′ ∈ [bk,−(by + bl)]. This implies
that |max z′| ≤ max{M1,M2} = M , where again we used the fact that γ ∈ [α, β] implies
|γ| ≤ max{|α|, |β|}, for arbitrary α, β, γ ∈ R. To conclude, since |min z′| ≤ M , by Equa-
tion (16), we have ‖z′‖∞ ≤M .

Proposition G.2 Let L be a nonnegative PERM loss with template ψ. If ψ is semi-coercive
(Definition 4.1), then CLp is coercive for all p ∈ int(∆k).

Proof Let c ∈ R be arbitrary and S := {z ∈ Rk−1 : CLp (z) = 〈p, `(z)〉 ≤ c} be the

c-sublevel set. To show that CLp is coercive, we show that S ⊆ Rk−1 is a bounded set.
Observe that for all z ∈ S we have c ≥ 〈p, `(z)〉 =

∑
y∈[k] pyψ(Υyz) ≥ pyψ(Υyz) for

all y ∈ [k]. We remark that the preceding inequality crucially uses ψ(·) ≥ 0. Thus,
S ⊆

⋂
y∈[k]{z ∈ Rk−1 : ψ(Υyz) ≤ c/py}, where the right hand side is a bounded set

(Lemma G.1). Hence, S is also bounded.

G.2 The link function

In this section, we study the set of minimizers of the conditional risk of a PERM loss L,
i.e., the set arg minz∈Rk−1 CLp (z). When L is the multinomial cross entropy (Example 1),

this argmin is a singleton set for all p ∈ int(∆k) and the mapping from int(∆k) 3 p to this
unique minimizer recovers the logit function.

For a general loss L, this mapping is sometimes referred to as the link function (Nowak-
Vila et al., 2019; Williamson et al., 2016). See Definition G.5 below. This section will study
the properties of the link function, culminating in a sufficient condition for when the link
function is a bijection (Proposition G.9).

Proposition G.3 Let L be a nonnegative PERM loss with template ψ. If ψ is convex,
then CLp is convex for all p ∈ ∆k. Furthermore, if ψ is strictly convex, then CLp is strictly

convex for all p ∈ int(∆k).

Proof Recall that CLp (z) =
∑

y∈[k] pyψ(Υyz) where Υy is an invertible matrix by Lemma B.8.
Thus, if ψ is (strictly) convex, then z 7→ ψ(Υyz) is (strictly) convex for each y ∈ [k]. For
each p ∈ ∆k, CLp is a convex combination of convex function and is thus convex. Further-

more, if p ∈ int(∆k), then CLp is a convex combination of strictly convex function and is
thus strictly convex. See Boyd and Vandenberghe (2004, Section 3.2.1) for instance.

An easy consequence of the above result is the following:

Corollary G.4 Let p ∈ int(∆k) be arbitrary and L be a nonnegative PERM loss whose
ψ is semi-coercive. If ψ is convex, then the infimum infz∈Rk−1 CLp (z) is attained. Further-
more, if ψ is strictly convex, then the infimum is attained by a unique minimizer, i.e.,
arg minz∈Rk−1 CLp (z) is a singleton set.
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Proof By Proposition G.2, CLp is coercive. By Proposition G.3, CLp is strictly convex. By
the Extreme Value Theorem, a continuous and coercive function has at least one global
minimum. Furthermore, a strictly convex functions have at most one global minimum. For
a reference of these result standards, see Boyd and Vandenberghe (2004, Section 4.2).

In view of Corollary G.4, we define:

Definition G.5 Let L be a PERM loss whose template ψ is nonnegative, strictly convex
and semi-coercive. Define the link function linkL : int(∆k) → Rk−1 by letting linkL(p) be
the unique element of arg minz∈Rk−1 CLp (z).

In this section, we give a sufficient condition on L for linkL of Definition G.5 to be a
bijection. We will need the concept of an M-matrix, which is reviewed in Section K.1.

Lemma G.6 Let L : Rk → Rk
+ be a regular PERM loss (Definition 4.2) with reduced form

` and template ψ. For all z ∈ Rk−1, the (k − 1)× (k − 1) matrix

A(z) :=
[
∇`1(z) · · · ∇`k−1

(z)
]

is a non-singular M-matrix with strictly positive diagonal elements. Furthermore, both A(z)
and A(z)> are strictly monotone.

While our usage of the operator ∇ is standard, for completeness we refer the reader to the
“Vector Calculus” section in the appendix of the arXiv version of this manuscript (Wang
and Scott, 2023b) for our notations on the derivative operator ∇.

The definition of a (strictly) monotone matrix is discussed in Section K.1.
Proof First, we compute the gradient of ` = (`1, . . . , `k) : Rk−1 → Rk. For each y ∈ [k],
we have by definition that `y(z) = ψ(Υyz) (eq. (12)). Thus, by the chain rule, we have

∇`y(z) = Υ>y ∇ψ(Υyz). (17)

Next, fix y ∈ [k − 1] and z ∈ Rk−1. Let w := ∇ψ(Υyz). Then by the assumption that
∇ψ(·) ≺ 0, we have w is a entrywise negative column vector, i.e., w ≺ 0. Moreover, by
eq. (17) we have ∇`y(z) = Υ>y w. Thus, for each j ∈ [k− 1], we have [Υ>y w]j = ([Υy]:j)

>w.
Recall from Definition 2.4 that

[Υy]:j =

{
e

(k−1)
j : j 6= y

−1(k−1) : j = y
, which implies that [Υ>y w]j =

{
wj : j 6= y

−
∑

l∈[k−1]wl : j = y.

In particular, [Υ>y w]j ≤ 0 for all j 6= y which proves that A(z) is a Z-matrix. Furthermore,

note that the fact w < 0 and [Υ>y w]y = −
∑

l∈[k−1]wl implies that the diagonals of A(z)

are positive. Observe that Υ>y w has the property that

|[Υ>y w]y| = −
∑

l∈[k−1]wl > −
∑

l∈[k−1]:l 6=y wl =
∑

l∈[k−1]:l 6=y |[Υ>y w]l|.

Note that the strict inequality above follows from the fact that w ≺ 0 and so in particular
−wy > 0. This proves that A(z) is strictly diagonally dominant. By Corollary K.3, we
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have that A(z) is a non-singular M-matrix. For the “Furthermore” part, we can apply
Lemma K.5 since the diagonal elements of A(z) are positive. By Corollary K.6, A(z)> is
also strictly monotone.

Lemma G.7 Let L : Rk → Rk
+ be a regular PERM loss. Let z ∈ Rk−1 and p ∈ ∆k be

arbitrary. Then z minimizes CLp if and only if

−pk∇ψ(z) = A(z)
[
p1 · · · pk−1

]>
(18)

where A(z) is as in Lemma G.6. Furthermore, CLp has a minimizer, then p ∈ int(∆k).

Proof Proposition G.3 asserts that CLp is convex. For a differentiable convex function,
recall that the gradient-vanishing condition is necessary and sufficient for optimality of
unconstrained optimization (Boyd and Vandenberghe, 2004). Thus, z minimizes CLp iff

0 = ∇CLp (z) =
∑

j∈[k] pj∇`j (z) = pk∇ψ(z) + A(z)
[
p1 · · · pk−1

]>
. (19)

which is equivalent to eq. (18).
Next, for the “Furthermore” part, first note that Lemma G.6 says A(z) is a non-singular

M-matrix. Now, we first show that pk 6= 0. If pk = 0, then Equation (18) reduces to

0 = A(z)
[
p1 · · · pk−1

]>
. Since A(z) is non-singular, we must have p1 = · · · = pk−1 = 0

as well which implies that p = 0. But this contradicts that p ∈ ∆k. Thus, pk > 0 and so
−pk∇ψ(z) � 0. From Lemma G.6, we have that A(z) is strictly monotone. Combined with
eq. (18), we can conclude that py > 0 for each y ∈ [k − 1] as well.

The “Furthermore” part of Lemma G.7 immediately implies the following.

Corollary G.8 If p ∈ ∆k \ int(∆k), then arg minz∈Rk−1 CLp (z) = ∅.

Proposition G.9 Let L be a regular PERM loss. Then linkL (Definition G.5) is a bijection.

Proof First, we prove that link is injective. Suppose that p,q ∈ int(∆k) are such that
linkL(p) = linkL(q) =: z. Then by eq. (18), we have that

−∇ψ(z)A(z)−1 = p−1
k

[
p1 · · · pk−1

]>
= q−1

k

[
q1 · · · qk−1

]>
. (20)

Thus, (1− pk)/pk = (p1 + · · ·+ pk−1)/pk = (q1 + · · ·+ qk−1)/qk = (1− qk)/qk implies that
pk = qk. Therefore, eq. (20) implies that py = qy for each y ∈ [k − 1] as well. Thus, p = q
which proves that link is injective.

Next, we prove that link is surjective. Pick z ∈ Rk−1. From Lemma G.6, we have
that A(z) is non-singular and strictly monotone. By non-singular-ness, there exists v ∈
Rk−1 such that −∇ψ(z) = A(z)>v. Furthermore, since −∇ψ(z) � 0 and A(z) is strictly
monotone, we have v � 0. Define p1, . . . , pk by pk := (v1 + · · ·+ vk−1 + 1)−1 and py := vypk
for each y ∈ [k − 1]. Clearly, we have p � 0. Furthermore,

p1 + p2 + · · ·+ pk = pk(v1 + · · ·+ vk−1 + 1) = 1.
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Thus, we have p ∈ int(∆k). By construction, z and p satisfy eq. (18). Thus linkL(p) = z
follows from the definition of linkL.

Remark G.10 Before proceeding, we remark that Proposition G.9 gives theoretical sup-
port to the conjectural observation in Nowak-Vila et al. (2019, Remark 3.1) regarding the
injectivity of the link function.

G.3 Geometry of the loss surface

Recall from Definition 3.1 and Theorem 3.3 that the classification-calibration of the set
ranc(L) implies the classification-calibration of the loss L. In general, the set ranc(L) may
be difficult to compute. In this section, we study the geometry of the set ran(L) when L is
a regular PERM loss which enables us to compute the convex hull ranc(L) of ran(L). One
of the main tools is the mapping defined below:

Corollary G.11 Let L be a regular PERM loss with reduced form `. Then ` : Rk−1 → Rk

is injective.

Proof Suppose that z,w ∈ Rk−1 are such that `(z) = `(w). By Proposition G.9, there
exists p ∈ int(∆k) such that linkL(p) = z. Now, 〈p, `(z)〉 = 〈p, `(w)〉 implies that both z,w
minimize CLp . By Corollary G.4, we have z = w and so ` is injective.

Definition G.12 Given a PERM loss L with reduced form `, we define two functions F

and G mapping from Rk−1 × R to Rk by F (z, λ) = `(z) + λ1 and G(z, t) = `(z) + te
(k)
k ,

where z ∈ Rk−1 and λ ∈ R. For computing ∇F , we view the tuple z, λ as a (column) vector[
z> λ

]>
. Hence, ∇F (z, λ) =

[
∇`(z)> 1>

]>
. Likewise for the tuple z, t and ∇G.

Remark G.13 In the context of Definition G.12, it is perhaps more precise to write F (
[
z> λ

]>
).

However, this notation is cumbersome. Below, we will always use the tuple notation. The
reason we discuss the vector notation is so that ∇F and ∇G can be more simply treated as
gradients of vector input-valued functions (rather than matrix input-valued).

Below, we will study the properties of the two functions from Definition G.12.

G.3.1 Properties of the F function

The main result of this section is to prove that F is a homeomorphism from Rk−1 × R to
Rk (Corollary G.19).

Lemma G.14 Let L be a regular PERM loss with reduced form ` and F be as in Def-
inition G.12. Then F is injective. In other words, if `(z) + λ1 = `(w) + µ1 for some
z,w ∈ Rk−1 and λ, µ ∈ R, then both z = w and λ = µ.
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Proof Let z,w ∈ Rk−1 and λ, µ ∈ R be as in the statement of the lemma. Our goal is to
show that both z = w and λ = µ. First, consider the case that z = w. Then `(z) = `(w)
and so λ = µ. Thus, z = w implies λ = µ.

Next, consider the case that λ = µ. Then we have `(z) = `(w). By Corollary G.11, we
have z = w. Therefore, λ = µ implies z = w.

Thus, it only remains to show that if both z 6= w and λ 6= µ, then we have a contradic-
tion. Without loss of generality, suppose that λ > µ. Then we have `(z) + (λ−µ)1 = `(w).
Thus, for all p ∈ ∆k, we have 〈p, `(w)〉 = 〈p, `(z) + (λ − µ)1〉 > 〈p, `(z)〉. Thus, there
does not exist p ∈ ∆k such that w is the minimizer of CLp . But this contradicts since
Proposition G.9 implies that link is surjective.

Lemma G.15 Let L be a regular PERM loss with reduced form `. Let F be as in Defini-
tion G.12. Then for all (z, λ) ∈ Rk−1 ×R, ∇F (z, λ) is non-singular.

Proof Recall that ∇`(z) ∈ R(k−1)×k and 1(k) ∈ Rk. Thus, ∇F (z, λ) =
[
∇`(z)> (1(k))>

]>
is a k × k square matrix. To show that it is non-singular, first pick v ∈ Rk arbitrary. It
suffices to check that if ∇F (z, λ)v = 0 then v = 0.

Towards this, first note that ∇F (z, λ)v = 0 can be equivalently stated as both ∇`(z)v =
0 and (1(k))>v = v1 + · · · + vk = 0. Replacing v by −v if necessary, we assume that
vk ≥ 0. Recall A(z) from Lemma G.6. Then the identity ∇`(z)v = 0 can be rewritten as

−vk∇ψ(z) = A(z)
[
v1 · · · vk−1

]>
. Since A(z) is monotone and −vk∇ψ(z) � 0, we get

that vy ≥ 0 for each y ∈ [k − 1]. Combined with the fact that v>1 = v1 + · · ·+ vk = 0, we
have that v = 0, as desired.

Now, by applying the inverse function theorem18, we immediately have the following.

Corollary G.16 Let L be a regular PERM loss with reduced form `. Let F be as in
Definition G.12. For all (z, λ) ∈ Rk−1 × R, there exist open neighborhoods U 3 (z, λ)
and V 3 F (z, λ) such that F |U : U → V is a diffeomorphism.

Proposition G.17 Let L be a regular PERM loss with reduced form `. Let F be as in
Definition G.12. The map F is a bijection.

Proof Lemma G.14 shows that F is injective. To show that F is surjective, we prove that
ran(F ) is both open and closed as a subset of Rk. This would imply that ran(F ) = Rk

since the only subets of Rk that are both open and closed are ∅ and Rk. Now, Lemma G.16
shows that ran(F ) is an open subset of Rk. It remains to prove that ran(F ) is closed.

To this end, consider a sequence {(z(i), λ(i))}∞i=1 such that F (z(i), λ(i)) = `(z(i)) + λ(i)1

converges to ζ ∈ Rk. Our goal is to show that ζ ∈ ran(F ).
We begin by first picking ε > 0. Let 1 := 1(k) (without the superscript (k)) denotes the

k-dimensional vector of all ones. Since the sequence converges, there exists M such that

ζ − ε1 � `(z(i)) + λ(i)1 � ζ + ε1

18. The inverse function theorem is a standard result in multivariate calculus. See the arXiv version of this
manuscript (Wang and Scott, 2023b) for the result’s statement and a textbook reference.
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for all i ≥M . Before proceeding, we prove a helper lemma.

Lemma G.18 (Helper lemma) Let L be a PERM loss with reduced form ` and template
ψ such that ∇ψ(·) � 0. Then for all z ∈ Rk−1, we have that miny∈[k−1] `y(z) ≤ ψ(0(k−1)) =:

C, where 0(k−1) is the (k − 1)-dimensional all-zeros vector.

Proof [Proof of helper lemma] Let v ∈ Rk be such that Dv = z, where we recall from

Definition 2.1 that D =
[
−Ik−1 1(k−1)

]
. As in Remark C.4, we can take v =

[
−z> 0

]>
.

Next, let y ∈ arg maxj∈[k−1] vj . Recall from Section A that min(·) over vector-valued inputs
denotes entrywise minimum. Then by Remark D.2 and Proposition D.5, we have that
min(L(z)) = Ly(v). Next by eq. (12) from Remark C.4, we have [L(v)]y = `y(z).

Let w := σy(v). (Recall from Section A that σy ∈ Sym(k) is the transposition that swaps
k and y.) Note that by construction we have k ∈ arg max w. By permutation-equivariance,
we have [L(v)]y = [L(v)]σy(k) = [L(σy(v))]k = [L(w)]k. Again by eq. (12) from Remark C.4,
we have [L(w)]k = ψ(Dw).

Since k ∈ arg max w, we have that Dw ∈ Rk−1
≥0 belongs to the non-negative orthtant.

In other words, Dw ≥ 0(k−1). Finally, since ∇ψ(·) � 0, we have that ψ(Dw) ≤ ψ(0(k−1)).

We now return to the proof of the proposition. Let C be as in the helper lemma. Then

min(`(z(i)) + λ(i)1) = min(`(z(i))) + λ(i) ≤ C + λ(i).

Thus, we have min(ζ)− ε ≤ C + λ(i) and which implies that −λ(i) ≤ C + ε−min(ζ) =: D.
From this, we get that

`(z(i)) � ζ + ε1− λ(i)1 � ζ + (ε+D)1

Thus, for all i ≥M we have z(i) ∈ {z ∈ Rk−1 : `(z) � ζ + (ε+D)1} which is a bounded set
by Lemma G.1. By passing to a subsequence, we may assume that z(i) converges to some
z∗ ∈ Rk−1. Thus, we have λ(i)1 converges to `(z∗) + ζ, which implies in particular that λ(i)

converges to some λ∗. Putting it all together, we have shown that F (z(i), λ(i)) converges to
ζ = F (z∗, λ∗) and so ran(F ) is closed.

Corollary G.19 Let L be a regular PERM loss with reduced form `. Let F be as in
Definition G.12. The map F is a diffeomorphism, i.e., F is a differentiable bijection with
a differentiable inverse. In particular, F is a homeomorphism.

Proof Lee (2013, Proposition 4.6 (f)) states that every bijective local diffeomorphism is a
(global) diffeomorphism. Thus, the result follows in view of the facts that F is a bijection
(Proposition G.17) and that F is a local diffeomorphism (Corollary G.16).

Proposition G.20 Let L be a regular PERM loss with reduced form `. Let F be as in
Definition G.12. Consider arbitrary v,x ∈ Rk and t ∈ R. Define19 α(t) ∈ Rk−1 and

19. Note that by Corollary G.19, such α(t) and β(t) exist and are unique with respect to this property.
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β(t) ∈ R to be such that tv + x = F (α(t), β(t)) = `(α(t)) + β(t)1(k). Then for all t ∈ R, we
have

1. α : R→ Rk−1 and β : R→ R are differentiable,

2. If v � 0, then β′(t) = dβ
dt (t) > 0,

3. β is concave, i.e., β′′(t) = d2β
dt2

(t) ≤ 0.

Remark G.21 We note that α and β in Proposition G.20 implicitly depend on x and v.

Proof Below, let 1 := 1(k) be the k-dimensional vector of all ones. To prove the first part,
first note that (α(t), β(t)) = F−1(tv + x). Hence, α and β are differentiable.

Next, we prove the second part. Let y ∈ [k] be arbitrary, to be specified later. Now, the
y-th coordinate of tv + x = `(α(t)) + β(t)1 is

vyt+ xy = `y(α(t)) + β(t). (21)

Differentiating (21) on both sides with respect to t and applying the chain rule20, we get

vy = α′(t)>∇`y(α(t)) + β′(t). (22)

For convenience, we adopt the notation f ′(·) := (∇f (·))> for functions with a scalar input.
Now, we claim that α′(t)>∇`y(α(t)) ≤ 0 for some y ∈ [k]. In fact, we prove this claim by
proving a slightly more general statement that will be used again later.

Lemma G.22 Let L be a regular PERM loss with reduced form `. Let z,w ∈ Rk−1 be
arbitrary. Then there exists y ∈ [k] such that w>∇`y(z) ≤ 0.

Proof Suppose for the sake of contradiction that w>∇`y(z) > 0 for all y ∈ [k]. Then

0 ≺
[
∇`1(z) · · · ∇`k−1

(z) ∇`k(z)
]>

w =
[
A(z) ∇ψ(z)

]>
w.

In other words, we have A(z)>w � 0 and w>∇ψ(z) > 0. By Lemma G.6, A(z)> is strictly
monotone . Thus, A(z)>w � 0 implies21 w � 0. But ∇ψ(z) ≺ 0 by assumption that L is
a regular PERM loss. Hence, w>∇ψ(z) < 0, a contradiction.

Applying Lemma G.22 with w = α′(t), we get the desired claim. Now, pick y ∈ [k] such
that α′(t)>∇`y(α(t)) ≤ 0. Thus, from Eqn. (22) we have β′(t) = vy − α′(t)>∇`y(α(t)) > 0.
This proves the second part of Proposition G.20.

Finally, we prove the last part of Proposition G.20. Pick y ∈ [k] (unrelated to the earlier
choice) such that α′′(t)>∇`y(α(t)) ≥ 0. Such a y ∈ [k] exists by Lemma G.22 by setting
w = −α′′(t). Differentiating eq. (22) with respect to t, we get by the product rule for
curves22 that

0 = α′′(t)>∇`y(α(t)) + α′(t)> d
dt(∇`y(α(t))) + β′′(t)

20. The chain rule is a standard result in multivariate calculus. See the arXiv version of this manuscript
(Wang and Scott, 2023b) for the result’s statement and a textbook reference.

21. This is the definition of “strictly monotone matrices”. See Section K.1
22. See the “Vector Calculus” section in the appendix of the arXiv version of this manuscript (Wang and

Scott, 2023b).
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By the chain rule for curves23, we have d
dt(∇`y(α(t))) = ∇2

`y
(α(t))α′(t) which combined

with the above implies

−β′′(t) = α′′(t)>∇`y(α(t)) + α′(t)>∇2
`y(α(t))α′(t).

Since `y is convex, ∇2
`y

(α(t)) is positive semidefinite. Therefore, α′(t)>∇2
`y

(α(t))α′(t) ≥ 0.

Putting it all together, −β′′(t) ≥ 0, i.e., β is concave.

G.3.2 Properties of the G function

Lemma G.23 Let L be a regular PERM loss with reduced form `. Let G be as in Defini-
tion G.12. Then for all (z, t) ∈ Rk−1 ×R, the gradient (matrix) ∇G(z, t) is non-singular.

Proof The proof proceeds similarly as in Lemma G.15. Recall that ∇`(z) ∈ R(k−1)×k

and e
(k)
k ∈ Rk. Below, we suppress this superscript and simply write ek := e

(k)
k Thus,

∇G(z, λ) =
[
∇`(z)> e>k

]>
is a k × k square matrix. To show that it is non-singular, first

pick v ∈ Rk arbitrary. It suffices to check that if ∇G(z, λ)v = 0 then v = 0.
Towards this, first note that ∇G(z, λ)v = 0 can be equivalently stated as both ∇`(z)v =

0 and e>k v = vk = 0. Recall A(z) from Lemma G.6. Then the identity ∇`(z)v = 0 can be

rewritten as 0 = −vk∇ψ(z) = A(z)
[
v1 · · · vk−1

]>
. Since A(z) is non-singular, we get

that vy = 0 for each y ∈ [k − 1]. Thus, we have that v = 0, as desired.

Lemma G.24 Suppose that A ∈ Rn×n and v ∈ Rn are such that 1) A is strictly monotone
(Definition K.1), 2) v ≺ 0 has strictly negative entries, 3) the matrix

[
A v
1> 1

]
is invertible,

and 4) M :=
[
A v
0> 1

] ([
A v
1> 1

])−1 ∈ R(n+1)×(n+1) is also invertible. Then Mn+1,n+1 > 0, i.e.,
the bottom right entry of M is positive.

Proof Define B ∈ Rn×n, w,u ∈ Rn and c ∈ R such that
([

A v
1> 1

])−1
=
[

B w
u> c

]
. Then by

definition of the matrix inverse, we have[
In 0

0> 1

]
=

[
A v
1> 1

] [
B w
u> c

]
=

[
AB + vu> Aw + cv
1>B + u> 1>w + c

]
. (23)

Now, we observe that

M =

[
A v
0> 1

] [
B w
u> c

]
=

[
AB + vu> Aw + cv

u> c

]
=

[
In 0

u> c

]
Since M is invertible by assumption, we have that c 6= 0. To finish the proof, it suffices to
show that c > 0. Below, we assume that c < 0 and derive a contradiction.

The top right block of eq. (23) implies that Aw + cv = 0, i.e., A(−w) = cv. Since
c < 0 and v ≺ 0, we have A(−w) � 0. By strict monotonicity of A, we have that

23. See the “Vector Calculus” section in the appendix of the arXiv version of this manuscript (Wang and
Scott, 2023b).
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−w � 0, or equivalently, w ≺ 0. Finally, the bottom right entry of eq. (23) implies that
1 = 1>w + c < 0, which is a contradiction.

Lemma G.25 Let L be a regular PERM loss with reduced form ` and z ∈ Rk−1 be ar-
bitrary. Define P to be the projection Rk → Rk−1 that drops the last coordinate, i.e.,
P([v1, . . . , vk]

>) = [v1, . . . , vk−1]>. Then there exists z∗ ∈ Rk−1 and t∗ ∈ R>0 such that
P`(z∗) + t∗1 = P(`(z)).

Proof Define functions ζ : Rk−1 ×R→ Rk−1 and τ : Rk−1 ×R→ R by[
ζ(z, t)> τ(z, t)

]>
:= F−1 ◦G(z, t).

We first show that τ(z, 0) = 0. Observe that

F−1(G(z, 0)) = F−1(`(z) + 0 · ek) = F−1(`(z) + 0 · 1) =
[
z> 0

]>
. (24)

Therefore, ζ(z, t) = z and τ(z, 0) = 0. Next, we claim that ∂τ
∂t (z, 0) 6= 0. By definition,

∇F−1◦G(z, t) =

[∂ζ
∂z(z, t) ∂τ

∂z (z, t)
∂ζ
∂t (z, t)

∂τ
∂t (z, t)

]
(25)

Let “·” be a notational shorthand for the input (z, t) to F and G. The gradient of F−1 ◦G

∇F−1◦G(·) = ∇G(·)∇F−1(G(·)) = ∇G(·)(∇F (F−1 ◦G(·)))−1

Below, let ek := e
(k)
k , i.e., we drop the superscript. Now, from the proof of Lemma G.23, we

have that ∇G(z, t) =
[
∇`(z)> ek

]>
and from the proof of Lemma G.15 that ∇F (z, t) =[

∇`(z)> 1(k)
]>

. By eq. (24), we have

∇G(z, 0)(∇F (F−1 ◦G(z, 0)))−1 = ∇G(z, 0)(∇F (z, 0))−1

The above is invertible because ∇G(z, 0) is invertible by Lemma G.23. Moreover,

∇G(z, 0)(∇F (z, 0))−1 =

[
∇`(z)
e>k

]([
∇`(z)

(1(k))>

])−1

(26)

=

[
A(z) ∇ψ(z)

(0(k−1))> 1

]([
A(z) ∇ψ(z)

(1(k−1))> 1

])−1

. (27)

By eq. (25), ∂τ
∂t (z, 0) is the bottom right element of ∇G(z, 0)(∇F (z, 0))−1. By applying

Lemma G.24 to the RHS of eq. (27) with A = A(z) and v = ∇ψ(z), we see that the bottom
right entry of ∇G(z, 0)(∇F (z, 0))−1 is nonzero. This proves that ∂τ

∂t (z, 0) 6= 0. Note that
Lemmas G.6 and G.23 together guarantee that the requirements of Lemma G.24 are all
met.

Next, we claim that there exists some t◦ ∈ R such that τ(z, t◦) > 0. To see this, assume
the contrary. Then τ(z, t) ≤ 0 for all t ∈ R. In particular, t = 0 is a (global) maximizer of
t 7→ τ(z, t) which implies that ∂τ

∂t (z, 0) = 0, a contradiction. Thus, the claim follows.
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Now, fix t◦ ∈ R such that τ(z, t◦) > 0. Define z∗ := ζ(z, t◦) and t∗ = τ(z, t◦). Then by
the definition of ζ and τ , we have F (z∗, t∗) = G(z, t◦) by applying F to both side of[

(z∗)> t∗
]>

=
[
ζ(z, t◦)> τ(z, t◦)

]>
= F−1(G(z, t◦)).

Unwinding the definition of F and G (Definition G.12), the identity F (z∗, t∗) = G(z, t◦)
implies

`(z∗) + t∗1 = F (z∗, t∗) = G(z, t◦) = `(z) + t◦ek.

Now, applying P(·) to both side, we have P(`(z∗) + t∗1) = P(`(z) + t◦ek) = P(`(z)) where
we used the fact that P(·) is linear and that P(ek) = 0.

Corollary G.26 Let L be a regular PERM loss with reduced form ` and z ∈ Rk−1 be
arbitrary. Define Q to be the projection Rk → Rk−1 that projs the first coordinate, i.e.,
Q([v1, . . . , vk]

>) = [v2, . . . , vk]
>. Then there exists z∗ ∈ Rk−1 and t∗ ∈ R>0 such that

Q(`(z∗) + t∗1) = Q`(z).

Proof Recall P from Lemma G.25. Let σ ∈ Sym(k) be such that Q = PSσ. Recall Mσ

from Definition B.4. Then Sσ`(z) = `(Mσz) by eq. (13). Applying Lemma G.25 to Mσz,
there exists z̃ ∈ Rk−1 and t∗ ∈ R>0 such that P`(Mσz) = P(`(z̃∗) + t∗1). Putting it all
together, we have

Q`(z) = PSσ`(z) = P`(Mσz) = P(`(z̃∗) + t∗1).

Next, Q = PSσ implies QSσ−1 = P. Hence, again applying eq. (13), we have

P(`(z̃∗) + t∗1) = QSσ−1(`(z̃∗) + t∗1) = Q(`(Mσ−1 z̃∗) + t∗1).

Letting z∗ := Mσ−1 z̃∗, we have Q`(z) = Q(`(z∗) + t∗1), as desired.

Definition G.27 Let f : Rm → Rn be a function. Define the following sets:

1. ran•c(f) := {ζ + λ1 : ζ ∈ ran(f), λ ∈ [0,∞)}

2. ran◦c(f) := {ζ + λ1 : ζ ∈ ran(f), λ ∈ (0,∞)}

When f = ` is the reduced form of a PERM loss, the above two sets are closely related to
ranc(`) (Definition 3.1), as the following lemma and Proposition G.31 show. These sets are
convenient alternative characterizations.

Lemma G.28 Let L be a regular PERM loss with reduced form `. Then we have the
following:

1. ran(`) is closed.
2. ran•c(`) is closed and bdry(ran•c(`)) = ran(`).
3. ran◦c(`) = int(ran•c(`)) and bdry(ran◦c(`)) = ran(`).
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Proof For item 1, define C := Rk−1 × {0} which is a closed subset of Rk−1 × R. Now,
note that ran(`) = F (C) where F is as in Definition G.12. Since F is a homeomorphism
(Corollary G.19), F (C) is closed as well.

For item 2, define D := Rk−1 × [0,∞) which is a closed subset of Rk−1 × R. Then
ran•c(`) = F (D). Thus, as in the previous case ran•c(`) is closed. Next, we have

bdry(ran•c(`)) = bdry(F (D))=F (bdry(D)) = F (C) = ran(`),

where the second equality from the left follows from F being a homeomorphism.
For item 3, let E = Rk−1 × (0,∞). Then similar to the above, we have

int(ran•c(`)) = int(F (D)) = F (int(D)) = F (E) = ran◦c(`).

To conclude, note that bdry(ran◦c(`)) = bdry(F (E)) = F (bdry(E)) = F (C) = ran(`).

Proposition G.29 Let L be a regular PERM loss. Then ran•c(`) is convex.

Proof Let ζ, ξ ∈ ran•c(f). Write ζ = `(z) + λ1 and ξ = `(w) + µ1, where z,w ∈ Rk−1 and
λ, µ ∈ [0,∞). Let v = ξ− ζ ∈ Rk and x = ζ. Take α and β as defined in Proposition G.20,
i.e., we have for all t ∈ R that

tv + x = F (α(t), β(t)) = `(α(t)) + β(t)1. (28)

Plugging in t = 0 into (28), we get ζ = `(α(0)) + β(0). Thus, α(0) = z and β(0) = λ.
Likewise, plugging in t = 1, we get α(1) = w and β(1) = µ. In particular, we have β(0) ≥ 0
and β(1) ≥ 0. By Proposition G.20, β is concave. Thus, β(t) ≥ 0 for all t ∈ [0, 1], i.e.,

tv + w = tξ + (1− t)ζ = `(α(t)) + β(t)1 ∈ ran•c(`)

for all t ∈ [0, 1]. This proves that ran•c(`) is convex.

The following result is a restatement of Beltagy and Shenawy (2013, Theorem 9):

Theorem G.30 (Beltagy and Shenawy (2013)) Let C be a nonempty closed convex
subset of Rn. If C contains no hyperplane, then C = conv(bdry(C)).

Proposition G.31 Let L be a regular PERM loss with reduced form `. Then ranc(`) =
ran•c(`) and bdry(ranc(`)) = ran(`).

Proof Clearly, ran•c(`) is nonempty. Furthermore, by Lemma G.28 and Lemma G.29,
ran•c(`) is closed and convex. Next, note that ran•c(`) lies in the nonnegative quadrant
[0,∞)k. Since no hyperplane lies entirely inside the nonnegative quadrant, ran•c(`) cannot
contain any hyperplane. Hence, we have verified that ran•c(`) satisfies the condition of
Theorem G.30. To finish the proof, we have

ranc(`) = conv(ran(`)) ∵ Definition of ranc(`) (29)

= conv(bdry(ran•c(`))) ∵ Lemma G.29 (30)

= ran•c(`) ∵ Theorem G.30 (31)
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This proves the first part. For the second part, note that bdry(ranc(`)) = bdry(ran•c(`)) =
ran(`) by Lemma G.29.

Before moving on, we summarize the results on ranc(`) we have thus obtained below:

Corollary G.32 Let L be a regular PERM loss with reduced form `. Recall from Defini-
tion G.27

ran◦c(`) := {ζ + λ1 : ζ ∈ ran(`), λ ∈ (0,∞)}.

Then ranc(`) is a closed and convex set with the following properties:

1. ranc(`) = {ζ + λ1 : ζ ∈ ran(`), λ ∈ [0,∞)}

2. int(ranc(`)) = ran◦c(`) (see Definitions 3.1 and G.27)

3. bdry(ranc(`)) = bdry(ran◦c(`)) = ran(`).

We state one more result about the set ran◦c(`) which will be useful later.

Lemma G.33 Let L be a regular PERM loss with reduced form `. Then ran◦c(`) = {ζ ∈
Rk : ∃z ∈ Rk−1 such that ζ � `(z)}.

Proof Recall that by definition we have ran◦c(`) = {`(z) + λ1 : z ∈ Rk−1, λ ∈ (0,∞)}.
Thus, the “⊆” direction is immediate. For the other inclusion, take ζ = `(z) + v where
z ∈ Rk−1 and v � 0. Let x = `(z). Take α and β as defined in Proposition G.20, i.e., we
have for all t ∈ R that

tv + x = F (α(t), β(t)) = `(α(t)) + β(t)1. (32)

Plugging in t = 0 into (32), we get x = `(z) = `(α(0))+β(0). Thus, α(0) = z and β(0) = 0.
Recall that v = ζ − `(z) � 0 by assumption. Hence, by Proposition G.20, β is strictly
increasing. In particular, β(1) > β(0) = 0. Now, plugging in t = 1 into (32), we get
v + x = v + `(z) = ζ = `(α(1)) + β(1)1. This shows that ζ ∈ ran◦c(`), as desired.

Remark G.34 From basic point-set topology24, we know that a closed set is the union
of its interior and its boundary. Thus, ranc(`) = int(ranc(`)) ∪ bdry(ranc(`)). Hence, a
consequence of Lemma G.33 and Lemma G.28 is that ranc(`) is precisely the superprediction
set of ` (see Williamson et al. (2016, Definition 15) and Kalnishkan and Vyugin (2008)):

ranc(`) = {ζ ∈ Rk : ∃z ∈ Rk−1 such that ζ � `(z)}.

Recall (Tewari and Bartlett, 2007, Definition 5):

Definition G.35 (Admissible sets; Tewari and Bartlett (2007)) Let S ⊆ Rk
+ be a

set and ζ ∈ Rk
+. Define the set N (ζ;S) := {p ∈ ∆k : 〈ξ − ζ,p〉 ≥ 0, ∀ξ ∈ S}. We say that

S is admissible if for all ζ ∈ bdry(S) and p ∈ N (ζ;S) we have arg min(ζ) ⊆ arg max(p).

24. The boundary of a set A is defined as the closure of A minus the interior of A.
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Proposition G.36 (Tewari and Bartlett (2007)) Let S ⊆ Rk
+ be a symmetric set. If

|N (ζ;S)| = 1 for all ζ ∈ bdry(S), then S is admissible.

Lemma G.37 Let L be a regular PERM loss with reduced form `. Let ζ ∈ ran(`). Then
we have N (ζ; ran(`)) = N (ζ; ranc(`)) = N (ζ; ran◦c(`)).

Proof We first prove that N (ζ; ran(`)) = N (ζ; ranc(`)). Since ranc(`) ⊇ ran(`), we im-
mediately have N (ζ; ran(`)) ⊇ N (ζ; ranc(`)). For the other inclusion, we first note that
ranc(`) = ran•c(`) by Proposition G.31. Thus, every ξ ∈ ranc(`) can be written as ξ = α+β1
for some α ∈ ran(`) and β ≥ 0. Now, let p ∈ N (ζ; ran(`)) and let ξ ∈ ranc(`) be decomposed
as in the preceding sentence. Then

〈ξ − ζ,p〉 = 〈α + β1− ζ,p〉 = 〈α− ζ,p〉+ β〈1,p〉 ≥ 0

where the last inequality holds since (1) 〈α − ζ,p〉 ≥ 0 because p ∈ N (ζ; ran(`)), and (2)
β ≥ 0. Hence, such a p satisfies 〈ξ − ζ,p〉 ≥ 0, ∀ξ ∈ ranc(`) as well which implies that
p ∈ N (ζ; ranc(`)), as desired.

Next, we prove N (ζ; ranc(`)) = N (ζ; ran◦c(`)). Again, since ranc(`) ⊇ ran◦c(`), we im-
mediately have N (ζ; ran◦c(`)) ⊇ N (ζ; ranc(`)). For the other inclusion, we first note that
clos(ran◦c(`)) = ranc(`). Suppose p ∈ ∆k is such that 〈ξ− ζ,p〉 ≥ 0 for al ξ ∈ ran◦c(`). Then
by continuity, we must have that 〈ξ − ζ,p〉 ≥ 0 for all ξ ∈ clos(ran◦c(`)) = ranc(`).

Proposition G.38 Let L be a regular PERM loss with reduced form `. Then ranc(`) and
ran◦c(`) are both admissible.

Proof By Proposition G.36, it suffices to check the following two claims hold:

1. for all ζ ∈ bdry(ranc(`)) we have |N (ζ; ranc(`))| = 1, and
2. for all ζ ∈ bdry(ran◦c(`)) we have |N (ζ; ran◦c(`))| = 1.

By Corollary G.32, we have bdry(ranc(`)) = bdry(ran◦c(`)) = ran(`). Hence, by Lemma
G.37, to show both above claims it suffices to show that |N (ζ; ran(`))| = 1 for all ζ ∈ ran(`).
Note that here we can replace N (ζ; ranc(`)) and N (ζ; ran◦c(`)) by N (ζ; ran(`)) because of
Lemma G.37. Below, fix ζ = `(z) ∈ ran(`) where z ∈ Rk−1 is arbitrary. Then

N (ζ; ran(`)) = {p ∈ ∆k : 〈ξ − ζ,p〉 ≥ 0, ∀ξ ∈ ran(`)} ∵ Definition G.35

= {p ∈ ∆k : 〈`(w)− `(z),p〉 ≥ 0, ∀w ∈ Rk−1} ∵ Corollary G.11

=
{

p ∈ ∆k : z ∈ arg minw∈Rk−1 CLp (w)
}
∵ definition of arg min

=
{

p ∈ int(∆k) : z ∈ arg minw∈Rk−1 CLp (w)
}
∵ Corollary G.8

= {p ∈ int(∆k) : z = linkL(p)} ∵ Definition G.5 and Corollary G.4

By Proposition G.9, linkL is an injection. Thus, |
{
p ∈ int(∆k) : z = linkL(p)

}
| = 1.
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Appendix H. Proof of Theorem 4.7

Lemma H.1 Suppose that k ≥ 3 and y ∈ {2, . . . , k}. Let Q be as in Corollary G.26. Then

QΥ
(k)
y = Υ

(k−1)
y−1 Q.

The proof of Lemma H.1 is similar to that of Lemma B.2 and is thus omitted here. For
the proof, see the arXiv version of this work (Wang and Scott, 2023b).

Lemma H.2 Assume k ≥ 3. Let L : Rk → Rk be a regular PERM loss with template
ψ : Rk−1 → R. Let Q be as in Corollary G.26. Recall from Proposition 4.3 the truncation
of ψ denoted by trunc[ψ] : Rk−2 → R. Let z ∈ Rk−1 and w ∈ Rk−2 be arbitrary and such

that Qz = w. Then limλ→∞ ψ(z + λe
(k−1)
1 ) = trunc[ψ](w).

Proof Write z = [z1, . . . , zk−1] and w = [w1, . . . , wk−2]. Since Qz = w, we have z2 =

w1, z3 = w2 and so on. Now, define g : R → R by g(λ) := ψ(z + λe
(k−1)
1 ) = ψ(z1 +

λ, z2, . . . , zk−1) and h : R→ R by

h(λ) := ψ(λ,w) = ψ(λ,w1, w2, . . . , wk−2) = ψ(λ, z2, z3, . . . , zk−1) = g(λ− z1).

As argued in the proof of Proposition 4.3, h is decreasing and nonnegative. Thus, g is also
decreasing and nonnegative. Moreover, limλ→∞ g(λ) = limλ→∞ g(λ − z1) = limλ→∞ h(λ).
The right hand side is equal to trunc[ψ](w), as in the proof of Proposition 4.3

Earlier in Proposition 4.3 and Corollary 4.4, we defined trunc[ψ], ψ(n) and L(n). We now
define the analogous notation for the reduced form `:

Definition H.3 (Truncation of `) Assume k ≥ 3. Let L : Rk → Rk
≥0 be a regular PERM

loss with template ψ : Rk−1 → R. As in Proposition 4.3, define trunc[`] to be the reduced
form of trunc[L] (whose template is trunc[ψ]).

Lemma H.4 Assume k ≥ 3. Let L : Rk → Rk be a regular PERM loss with template
ψ : Rk−1 → R. Let Q be as in Corollary G.26. Recall from Proposition 4.3 the truncation
of ψ denoted by trunc[ψ] : Rk−2 → R. Let trunc[`] be as in Definition H.3. Let Q be as

in Corollary G.26. Let z ∈ Rk−1 and x ∈ Rk
≥0 be arbitrary. For brevity, let e1 := e

(k−1)
1 .

Then we have

lim
λ→+∞

Q (` (z + λe1) + x) = trunc[`](Qz) + Qx (33)

and

Q (` (z) + x) � trunc[`](Qz). (34)

Proof Throughout this proof, let y ∈ {2, . . . , k} be arbitrary. First, we claim that Υ
(k)
y e1 =

e1 for each y ∈ {2, . . . , k}. If y = k, then this is clearly true since Υ
(k)
k is, by definition,

the identity matrix. Now, for y ∈ {2, . . . , k − 1}, recall that Υ
(k)
y is defined as the matrix

obtained by replacing the y-th column of the identity matrix with the all −1’s vector. Thus,
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since y > 1, the first column of Υ
(k)
y is equal to that of the identity matrix. Therefore,

Υ
(k)
y e1 = e1 as well. Next, still assuming y ∈ {2, . . . , k − 1}, we have

`y(z + λe1) = ψ(Υ(k)
y (z + λe1)) = ψ(Υ(k)

y z + λe1).

Hence, we have

lim
λ→+∞

`y(z + λe1) = lim
λ→+∞

ψ(Υ(k)
y z + λe1) ∵ Theorem C.2.

= trunc[ψ](QΥ(k)
y z) ∵ Proposition 4.3 and Lemma H.2

= trunc[ψ]
(
Υ

(k−1)
y−1 Qz

)
∵ Lemma H.1

= [trunc[`]]y−1(Qz) ∵ Theorem C.2 and explanation below.

Application of Theorem C.2 to the last equality requires a bit more explanation. For said
equality, we used the fact that trunc[`] is the reduced form of L(k−1) (Definition H.3), whose
template is trunc[ψ]. Thus, applying Equation (12) (which is a collary of Equation (11)

from Theorem C.2) to trunc[L], we have [trunc[`]]y−1(z) = trunc[ψ](Υ
(k−1)
y−1 z). Thus,

lim
λ→+∞

Q (`(z + λe1) + x) = trunc[`](Qz) + Qx.

Next, for every y ∈ {2, . . . , k}, we note that the function

gy(λ) := `y(z + λe1) = ψ(Υyz + λe1)

is strictly decreasing. To see this, by the chain rule for curves25, we have

g′y(λ) = ∇ψ(Υyz + λe1)>e1 < 0.

Thus, `y(z) = gy(0) > limλ→+∞ gy(λ) = trunc[`]y−1(Qz), which proves that

Q (`(z) + x) � trunc[`](Qz) + Qx � trunc[`](Qz)

as desired.

Lemma H.5 Assume k ≥ 3. Let L : Rk → Rk be a regular PERM loss with template
ψ : Rk−1 → R. Let Q be as in Corollary G.26. Recall from Proposition 4.3 the truncation
of ψ denoted by trunc[ψ] : Rk−2 → R. Let trunc[`] be as in Definition H.3. Let Q be as in
Corollary G.26. Then Q(ranc(`)) ⊆ ran◦c(trunc[`]) and clos[Q(ranc(`))] = ranc(trunc[`]).

Proof Let C := Q(ranc(`)) and take ζ ∈ C. We first prove C ⊆ ran◦c(trunc[`]). By the
characterization of ranc(`) from Corollary G.32 item 1, there exists z ∈ Rk−1 and x ∈ [0,∞)k

such that ζ = Q(`(z) + x). Now let z̃ := Q(z). Applying Eqn. (34) from Lemma H.4, we
get

ζ = Q (`(z) + x) � trunc[`](z̃).

25. See the “Vector Calculus” section in the appendix of the arXiv version of this manuscript (Wang and
Scott, 2023b).
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In particular, by the characterization of ran◦c(trunc[`]) from Lemma G.33, we have that
ζ ∈ ran◦c(trunc[`]). This proves that C ⊆ ran◦c(trunc[`]).

Next, we prove clos[C] = ranc(trunc[`]). We first show that clos[C] ⊇ ranc(trunc[`]) by
proving that every point ranc(trunc[`]) is a limit point of C.

Let ζ ∈ ranc(trunc[`]). By the characterization of ranc(trunc[`]) as in Corollary G.32,
there exists z̄ ∈ Rk−2 and x̄ ∈ [0,∞)k−1 such that ζ = trunc[`](z̄) + x̄. Now, pick z ∈ Rk−1

and x ∈ [0,∞)k such that z̄ = Qz and x̄ = Qx. Applying Lemma H.4 Eqn. (33), we get
that ζ is a limit point of S, which proves the desired claim. This proves that clos(C) ⊇
ranc(trunc[`]). By the first part, we know that C ⊆ ran◦c(trunc[`]). By Corollary G.32,
ran◦c(trunc[`]) = int(ranc(trunc[`])) ⊆ ranc(trunc[`]). Putting it all together, we have

C ⊆ ran◦c(trunc[`]) ⊆ ranc(trunc[`]) ⊆ clos(C).

From Corollary G.32, we have that ranc(trunc[`]) is closed. Since by definition clos(C) is
the smallest closed set containing C, we get that ranc(trunc[`]) = clos(C), as desired.

Theorem H.6 (Blackwell and Girshick (1979)) Let C ⊆ Rn be a convex set. Then
int(C) = int(clos(C)).

Proposition H.7 Assume k ≥ 3. Let L : Rk → Rk be a regular PERM loss with template
ψ : Rk−1 → R. Let Q be as in Corollary G.26. Recall from Proposition 4.3 the truncation
of ψ denoted by trunc[ψ] : Rk−2 → R. Let trunc[`] be as in Definition H.3. Let Q be as in
Corollary G.26. Then we have Q(ranc(`)) = ran◦c(trunc[`])

Proof For brevity, let C := Q(ranc(`)). By Corollary G.32, ranc(trunc[`]) is convex. Since
convexity is preserved under projection, we have that C is convex as well. Now,

int(C) = int(clos(C)) ∵ Theorem H.6 (35)

= int(ranc(trunc[`])) ∵ Lemma H.5 (36)

= ran◦c(trunc[`]) ∵ Lemma G.28 (37)

⊇ C ∵ Lemma H.5 (38)

Since C ⊇ int(C) by definition, we conclude that C = ran◦c(trunc[`]).

Proposition H.8 Assume k ≥ 3. Let L : Rk → Rk be a regular PERM loss with template
ψ : Rk−1 → R. Let Q be as in Corollary G.26. Recall from Proposition 4.3 the truncation
of ψ denoted by trunc[ψ] : Rk−2 → R. Let trunc[`] be as in Definition H.3. Let Q be as in
Corollary G.26. Then we have Q(ran◦c(`)) = ran◦c(trunc[`]).

Proof By the preceding Proposition H.7, we have Q(ranc(`)) = ran◦c(trunc[`]). Since
ran◦c(`) ⊆ ranc(`) we have Q(ran◦c(`)) ⊆ Q(ranc(`)). Thus, to prove the result we only have
to show Q(ran◦c(`)) ⊇ ran◦c(trunc[`]).

To this end, let trunc[`](w) ∈ ran◦c(trunc[`]) and z ∈ ranc(`) be such that Q`(z) =
trunc[`](w). By Corollary G.26, there exist z∗ ∈ Rk−1 and t∗ ∈ R such that t∗ > 0
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and Q(`(z∗) + t∗1) = Q`(z) = trunc[`](w). Since `(z∗) + t∗1 ∈ ran◦c(`), we get that
trunc[`](w) ∈ Q(ran◦c(`)) as desired.

Definition H.9 For each m ∈ {0, 1, . . . , k − 2}, define trunc×m[`] to be m-fold repeated
applications of trunc to `, i.e., trunc×m[`] := trunc[· · · trunc[trunc[`]] · · · ] where trunc appears
m-times. By convention, let trunc×0[`] = `. Moreover, for each n ∈ {2, . . . , k}, define the
notational shorthand `(n) := trunc×(k−n)[`].

Remark H.10 It follows tautologically from the definition of ψ(n) in Corollary 4.4, that
define `(n) is the reduced form of L(n) (whose template is ψ(n)).

Next, let m ≥ 1 be an integer. Below, let Q×m denote the m-fold iterated composition
of Q. In other words, Q×m := Q ◦ · · · ◦Q repeated m times.

Proposition H.11 Suppose that L is totally regular. Then Let m ∈ {1, . . . , k − 2}. Then
Q×m(ranc(`)) = ran◦c(trunc

×m[`]).

Proof We prove by induction. The case when m = 1 is simply Proposition H.8. Now,
suppose that the result holds for m where 1 < m < k − 2. Then

Q×m+1(ranc(`)) = Q(Q×m(ranc(`)))

= Q(ran◦c(trunc
×m[`])) ∵ Induction hypothesis

= ran◦c(trunc[trunc
×m[`]]) ∵ Proposition H.8

= ran◦c(trunc
×m+1[`]).

This completes the induction step and the desired result follows.

Before presenting the proof of Theorem 4.7, we recall (Tewari and Bartlett, 2007, The-
orem 7):

Theorem H.12 (Tewari and Bartlett (2007)) Let S ⊆ Rk
+ be a symmetric convex set.

Then S is classification calibrated if and only if 1. S is admissible and 2. Q×m(S) is ad-
missible for all m ∈ {1, . . . , k − 2}.

Finally, we conclude with the

Proof of Theorem 4.7 Assume that we are in the situation stated at the beginning of
Section H. Let S = ranc(`

(k)). By Theorem H.12, it suffices to prove that 1. S is admissible
and 2. Q×m(S) is admissible for all m ∈ {1, . . . , k − 2}. First, from Proposition G.38,
S = ranc(`

(k)) is admissible. Next, for each m ∈ {1, . . . , k−2}, we have by Proposition H.11
that Q×m(ranc(`

(k))) = ran◦c(`
(k−m)). Since L(k−m) is a regular PERM loss with reduced

form `(k−m), we have again by Proposition G.38 that ran◦c(`
(k−m)) is admissible. �
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Appendix I. Classification-Calibration of Fenchel-Young losses

The goal of this section is two fold. The first subsection (Section I.1) presents the proof
of Theorem 5.10 on a sufficient condition for the classification-calibration of Fenchel-Young
losses. The second subsection (Section I.2) shows the existence of a totally regular negen-
tropy that is strictly convex, but not strongly convex.

To prepare for the later proofs, we introduce a more convenient parametrization of the
the negenetropy and its Fenchel-Young loss. Define the reduced k-probability simplex as

∆̃k := {p̃ := (p1, . . . , pk−1) ∈ [0, 1]k−1 :
∑k−1

i=1 pi ≤ 1}. (39)

In other words, ∆̃k is simply ∆k without the first coordinate. To every function Ω : ∆k → R

with domain on the k-simplex, we define a corresponding function Ω̃ : ∆̃k → R called the
reduced form of Ω, defined by

Ω̃(p̃) := Ω
(
p1, . . . , pk−1, 1−

∑k−1
i=1 pi

)
, for all p̃ = (p1, . . . , pk−1)> ∈ ∆̃k. (40)

Equation (40) induces a one-to-one correspondence between functions Ω : ∆k → R on the
simplex ∆k and functions Ω̃ : ∆̃k → R on the reduced simplex ∆̃k.

I.1 Proof of Theorem 5.10

Before proceeding with the proof, we establish two key results. Recall that ∆̃k is defined in
Eqn. (39) and Ω̃ in Eqn. 40.

Proposition I.1 Let Ω be a negentropy (Definition 5.2) and µ ∈ R. Then the Fenchel-
Young loss LΩ,µ associated to Ω and µ (Definition 5.1) is a PERM loss that is closed,
convex, and non-negative. The template ψΩ,µ of LΩ,µ is semi-coercive and is given by

ψΩ,µ(z) = max
p̃=[p1,...,pk−1]∈∆̃k

−Ω̃(p̃) + µ1>p̃− 〈p̃, z〉. (41)

Furthermore, if Ω is a regular negentropy, then L is a regular PERM loss.

Remark I.2 We note that results from Blondel et al. (2020) may be used to prove por-
tions of Proposition I.1. Combining their Proposition 1-“Order preservation” part with the
expression immediately following their Definition 2 can be used to prove that LΩ,µ is permu-
tation equivariant. Moreover, the expression in our Eqn. (41) is related to their Eqn. (15).
However, there are key technical differences since we work with the (k − 1-dimensional)
relative margin, while Blondel et al. (2020) use the class-score formulation. For this reason
and for the reader’s convenience, we prove Proposition I.1 without leveraging their results.

Proof In this proof, all elementary basis vectors are implicitly assumed to be k-dimensional,

i.e., we write ey instead of e
(k)
y . First, recall that the Fenchel conjugate of a closed convex

function is again closed convex (Rockafellar, 1970). Next, we show that L is permutation
equivariant. First, we show that L is symmetric. By Lemma C.3, it suffices to prove the
claim that L(Tjv) = TjL(v) for all j ∈ [k] and v ∈ Rk. To this end, let y ∈ [k] be arbitrary.
Recall that the Fenchel-Young loss is defined as

[L(v)]y = maxp∈∆k −Ω(p) + 〈cy,p− ey〉+ 〈v,p− ey〉 (42)
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Thus,

[TjL(v)]y = [L(v)]τj(y) = max
p∈∆k

−Ω(p) + 〈v + cτj(y),p− eτj(y)〉 ∵ definition of L

= max
p∈∆k

−Ω(p) + 〈Tj(v + cτj(y)),Tj(p− eτj(y))〉 ∵ Tj is an isometry

= max
p∈∆k

−Ω(p) + 〈Tjv + cτj(τj(y)),Tjp− eτj(τj(y))〉

= max
p∈∆k

−Ω(p) + 〈Tjv + cy,Tjp− ey〉 ∵ τj ◦ τj is the identity

= max
p∈∆k

−Ω(Tjp) + 〈Tjv + cy,Tjp− ey〉 ∵ Ω is symmetric

= max
p∈∆k

−Ω(p) + 〈Tjv + cy,p− ey)〉 ∵ Tj |∆k is a bijection

= [L(Tjv)]y ∵ definition of L.

Since y is arbitrary, we have proven the claim.
Next, we show that L is relative margin-based, i.e., eq. (42) depends on v only through

Dv. Recall that Dv =
[
vk − v1 vk − v2 · · · vk − vk−1

]>
. See Definition 2.1. Now, only

the “〈v,p − ey〉” term of eq. (42) depends on v. Thus, it suffices to prove that this term
only depends on Dv. To this end, observe that

〈v,p〉 = p1v1 + · · ·+ pkvk = p1v1 + · · ·+ pk−1vk−1 + (1− (p1 + · · ·+ pk−1))vk

= vk − (p1(vk − v1) + · · ·+ pk−1(vk − vk−1)) = vk − 〈p̃,Dv〉

where we write p̃ to denote the vector [p1, . . . , pk−1]>. Thus, for each y ∈ [k − 1], we have

〈v,p− ey〉 = 〈v,p〉 − vy = vk − vy − 〈p̃,Dv〉 = [Dv]y − 〈p̃,Dv〉

This shows that L is relative margin-based. Now the template of L is

ψ(z) = `k(z) = maxp∈∆k −Ω(p) + 〈ck,p− ek〉 − 〈p̃, z〉.

Since ek ∈ ∆k and [ek]y = 0 for y ∈ [k − 1], we have by construction that

ψ(z) ≥ −Ω(e1) + 〈c1, e1 − e1〉 − 〈0, z〉 = 0.

When ck = µ(1− ek), we have

ψ(z) = maxp̃∈∆̃k −Ω̃(p̃) + µ1>p̃− 〈p̃, z〉, for all z ∈ Rk−1. (43)

Finally, we prove that ψ is semi-coercive (Definition 4.1), i.e., for all c ∈ R there exists
b ∈ R such that {z ∈ Rk−1 : ψ(z) ≤ c} ⊆ {z ∈ Rk−1 : b ≤ min z}. To this end, let c ∈ R

and z ∈ Rk−1 be such that c ≥ ψ(z). Let j ∈ arg min z. Then since ej = ek−1
j ∈ ∆̃k, we

have

c ≥ ψ(z) = supp∈∆̃k −Ω̃(p)− 〈p, z〉 ≥ −Ω̃(ej) + µ− 〈ej , z〉 ≥ −zj = −min z.

Thus, we have shown that {z ∈ Rk−1 : ψ(z) ≤ c} ⊆ {z ∈ Rk−1 : min z ≥ −c}.
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Next, we prove the “Furthermore” part. By the first part, it remains to show that ψ
is strictly convex, twice differentiable and ∇ψ(z) ≺ 0 for all z ∈ Rk−1. Define ϕ(p̃) :=
Ω̃(p̃)− µ1>p̃. Then ϕ : ∆̃k → R is also of Legendre type. Moreover, note that

ψ(z) = maxp̃∈∆̃k〈p̃,−z〉 − Ω̃(p̃) + µ1>p̃ ∵ Eqn. (43)

= maxp̃∈∆̃k〈p̃,−z〉 − ϕ(p̃) = ϕ∗(−z) ∵ definition of Fenchel conjugate

Recall the following fundamental theorem regarding convex conjugates (Rockafellar,
1970).

Theorem I.3 (Rockafellar (1970)) If (C, f) is a convex function of Legendre type, then
(C∗, f∗) is a convex function of Legendre type. The map ∇f : C → C∗ is a homeomorphism
and ∇f∗ = (∇f )−1.

By Theorem I.3, we have

1. The function ϕ∗, and hence ψ, is of Legendre type. In particular, ψ is strictly convex.

2. The derivative ∇ϕ : int(∆̃k) → Rk−1 is a bijection and the derivative of ϕ∗ satisfies
∇ϕ∗ = (∇ϕ)−1 : Rk−1 → int(∆̃k).

It follows that if ϕ is twice differentiable, then so is ϕ∗. Finally, by the chain rule, we have
∇ψ(z) = −∇ϕ∗(z). Since ∇ϕ∗(z) ∈ int(∆̃k) for all z, we have in particular that ∇ϕ∗(z) � 0.
Thus, ∇ψ(z) ≺ 0 for all z.

Proposition I.4 Let k ≥ 3 be an integer, Ω : ∆k → R a regular negentropy and µ ≥ 0. Let
LΩ,µ be the Fenchel-Young loss corresponding to Ω and µ. Then trunc

[
LΩ,µ

]
= Ltrunc[Ω],µ.

Proof Throughout this proof, let Θ := trunc[Ω]. Let Ω̃ and Θ̃ be the reduced versions
(see eq. (40)) of Ω and Θ, respectively. We remark that the notation used in this proof
slightly departs from that of eq. (40) in the following way: Here, elements of ∆̃k will be
denoted as p instead of p̃. Likewise, elements of ∆̃k−1 will be denoted as q rather than q̃.
Moreover, throughout this proof, we abuse notation and denote by 1 either the (k − 1) or
the (k − 2)-dimensional vector. The dimension of 1 will be clear from the context.

Now, from eq. (41) in Proposition I.1, recall that the template of LΩ,µ is

ψΩ,µ : Rk−1 → R, where ψΩ,µ(z) = max
p=[p1,...,pk−1]∈∆̃k

−Ω̃(p) + µ1>p− 〈z,p〉. (44)

Similarly, the template of LΘ,µ is

ψΘ,µ : Rk−2 → R, where ψΘ,µ(w) = max
q=[q1,...,qk−2]∈∆̃k−1

−Θ̃(q) + µ1>q− 〈w,q〉. (45)

By the definition of the truncation of a PERM loss (given in Proposition 4.3), the template
of trunc[LΩ,µ] is trunc[ψΩ,µ]. Since PERM losses are uniquely defined by their templates
(Theorem 2.5), the result of Proposition I.4 can be equivalently stated as trunc[ψΩ,µ] = ψΘ,µ.
Below, our proof will focus on proving this identity.
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Both trunc[ψΩ,µ] and ψΘ,µ have Rk−2 as domain. Fix w ∈ Rk−2 arbitrarily. Our goal is
to show that trunc[ψΩ,µ](w) = ψΘ,µ(w). Pick z ∈ Rk−1 such that Qz = w. For instance,
we can pad w with a zero, i.e., take z := [0,w] = pad(w). By Lemma H.2, we have

trunc[ψΩ,µ](w) = lim
λ→+∞

ψΩ,µ(z + λe
(k−1)
1 )

To simplify notations, let e1 := e
(k−1)
1 . In view of eq. (44) and eq. (45), establishing our

goal, i.e., the identity trunc[ψΩ,µ](w) = ψΘ,µ(w), is equivalent to proving

lim
λ→+∞

max
p∈∆̃k

−Ω̃(p) + µ1>p− 〈z + λe1,p〉 = max
q∈∆̃k−1

−Θ̃(q) + µ1>q− 〈Qz,q〉. (46)

For brevity, we define

g(λ) := max
p∈∆̃k

−Ω̃(p) + µ1>p− 〈z + λe1,p〉. (47)

For each λ ∈ R, fix arbitrarily an element pλ ∈ arg maxp∈∆̃k −Ω̃(p) + µ1>p− 〈z + λe1,p〉.
We note that the maximization is over a compact domain with a continuous objective. We
will prove the result via a series of claims.

Claim 1: g : R→ R+, defined at eq. (47), is monotone non-increasing.

Claim 2: For all λ ∈ R, g(λ) ≥ −Θ̃(q̂) + µ1>q̂− 〈w, q̂〉.
Claim 3: p1 = 0.

Claim 4: limt→∞ g(λt) = −Ω̃(q̂) + µ1>q̂− 〈w, q̂〉
The proofs of these claims proceed via straightforward but tedious computations and

applications of inequalities. They are omitted here but appear in the arXiv version of
this work (Wang and Scott, 2023b). Now we finish the proof of eq. (46), which we
argued earlier suffices to establish Proposition I.4. By Claims 1 and 4, we have that
limλ→+∞ g(λ) = −Θ̃(q̂) + µ1>q̂ − 〈w, q̂〉. But limλ→+∞ g(λ) is exactly the left hand side
of eq. (46), by the construction of g in eq. (47). By the definition of q̂, moreover we have
that −Θ̃(q̂) + µ1>q̂− 〈w, q̂〉 is precisely the right hand side of eq. (46).

Theorem I.5 Let Ω : ∆k → R be a negentropy (Definition 5.2). For each n ∈ {2, . . . , k},
let Ω(n) be the n-ary truncated negentropy of Ω (Definition 5.9). Let LΩ,µ be the Fenchel-
Young loss corresponding to Ω and µ (Definition 5.1). Likewise, for each n ∈ {2, . . . , k},
let L(n) be the n-ary truncation of LΩ,µ (Definition 4.5). Then L(n) = LΩ(n),µ. In other
words, the n-ary truncated loss L(n) of LΩ,µ is equal to the Fenchel-Young loss of the n-ary
truncated negentropy Ω(n) and µ.

The proof of Theorem I.5 is omitted here since it largely mirrors that of Proposition H.11.
See the arXiv version of manuscript (Wang and Scott, 2023b) for the proof.

Proof [Proof of Theorem 5.10] By Theorem 4.7, it suffices to show that LΩ,µ is totally
regular (Definition 4.5). Unwinding the definition, our goal is to show for each n ∈ {2, . . . , k}
that the n-ary truncated loss of LΩ,µ, denoted L(n), is regular.
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Next, let Ω(n) be the n-ary truncated negentropy of Ω (Definition 5.9) and let LΩ(n),µ

be the Fenchel-Young loss corresponding to Ω(n) and µ. By Theorem I.5, we have L(n) =
LΩ(n),µ. By the assumption of Theorem 5.10, Ω(n) is a regular negentropy. Thus, by Propo-
sition I.1, LΩ(n),µ is a regular PERM loss. Since L(n) = LΩ(n),µ, we are done.

I.2 Totally regular negentropy that is not strongly convex

In this section, we prove Proposition 5.11 which is used to show that there exists totally
regular entropies that are not strongly convex. See Example 7. Thus, the associated Fenchel-
Young loss is calibrated by Theorem 5.10. Moreover, this calibration result is outside of
the purview of previously established results (Blondel, 2019; Nowak-Vila et al., 2019) which
requires strong convexity

The next four results serve as the technical tools for proving Proposition 5.11. Their
proofs are omitted here and are in the arXiv version of this work (Wang and Scott, 2023b).

Proposition I.6 Let f : D → R≥0 be of Legendre type and g : R≥0 → R be convex,
differentiable and strictly increasing. Let C = int(D). Suppose that D is compact and there
exists x∗ ∈ C such that infx∈D f(x) = f(x∗). Then g ◦ f : D → R is of Legendre type.

Lemma I.7 Let f and g be as in Proposition I.6. If g′(0) = 0 and x∗ ∈ int(D) is such that
infx∈D f(x) = f(x∗) = 0, then the Hessian of g ◦ f vanishes at x∗, i.e., ∇2

g◦f (x∗) = 0.

Corollary I.8 In the situation of Lemma I.7, g ◦ f is not α-strongly convex for any α > 0.

Proposition I.9 Let Ω : ∆k → R be a regular negentropy and let g : R≥0 → R≥0 be as in
Proposition I.6. Furthermore, suppose that g is twice differentiable. Let a ∈ R be a negative
number such that a ≤ Ω(p) for all p ∈ ∆k. Define Θ : ∆k → R by

Θ(p) := g(Ω(p)− a)− g(−a), ∀p ∈ ∆k.

Then Ω is a regular negentropy.

Proof [Proof of Proposition 5.11] First we note that the assumptions on g is in the set-
ting of Proposition I.6. Next, by Definition 5.9, we must show that Θ(n) is a regular
negentropy for each n ∈ {2, . . . , k}. Let a = Ω(u). Note that since Ω is symmetric and
convex, we must have that a ≤ Ω(p) for all p ∈ ∆k. Furthermore, it is easy to see that
Θ̃(n)(q̃) := g(Ω̃(n)(q̃)− a)− g(−a) for all q ∈ ∆̃n. Now, apply Proposition I.9 to Θ(n) and
a = Ω(u), we get the desired result. The part of the proposition assuming g′(0) = 0 follows
immediately from Corollary I.8.

Appendix J. Uniqueness of the matrix label code

In this section, we prove Theorem J.1. The proof appears at the end of this section.
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Theorem J.1 Let L be the cross entropy loss and ψ be its template as in Example 1.
Suppose that {Ay}ky=1 is a set of (k − 1) × (k − 1) matrices satisfying Ly(v) = ψ(AyDv)

for all y ∈ [k] and all v ∈ Rk. Then for each y ∈ [k] there exists a permutation σy ∈ Sym(k)
so that Ay = SσyΥy.

Lemma J.2 Let ψ be the template of the multinomial logistic loss (Example 1). Let a ∈
Rk−1 be a vector. Suppose that ψ(ta) = ψ(te1) for all t ∈ R. Then a = ei for some
i ∈ [k − 1].

Lemma J.2 serves as the main tool for Lemma J.3 below. The proofs of both Lemmas J.2
and J.3 appear in the arXiv version of our manuscript (Wang and Scott, 2023b).

Lemma J.3 Let ψ be the template of the multinomial logistic loss (Example 1). Suppose
that A is such that ψ(z) = ψ(Az) for all z ∈ Rk−1, then A is the identity matrix up to row
permutation. In other words, there exists σ ∈ Sym(k) such that A = Sσ.

Lemma J.4 Let ψ be the template of the multinomial logistic loss (Example 1). Let j ∈ [k]
and A ∈ R(k−1)×(k−1) be arbitrary. Suppose that ψ(Υjz) = ψ(Az) for all z ∈ Rk−1. Then
A is equal to the Υj up to row permutation. In other words, there exists σ ∈ Sym(k) such
that A = SσΥj.

Proof [Proof of Lemma J.4] We first prove that the assumption of Lemma J.4 implies that
of the previous Lemma J.3: ψ(z) = ψ(Az) for all z ∈ Rk−1. Let u ∈ Rk−1 be arbitrary and
let z := Υju. Since Υ2

j = I, we have ψ(u) = ψ(ΥjΥju) = ψ(Υjz) = ψ(Az) = ψ(AΥju)
where for the third equality from the left we used the assumption of Lemma J.4.

Now, by the previous Lemma J.3, we have that AΥj = Sσ for some σ ∈ Sym(k). Using
Υ2
j = I, we get SσΥj = AΥjΥj = A. That is to say A is equal to Υj up to permutations

of the rows.

Proof [Proof of Theorem J.1] Let y ∈ [k] and v ∈ Rk be fixed. Let z := Dv. By Theo-
rem 2.5, we have ψ(Υyz) = ψ(Ayz). Since D is surjective, the preceding identity holds for
all z ∈ Rk−1. Thus by Lemma J.4, Ay = SσΥy for some σ ∈ Sym(k).

Appendix K. Mathematical Background

We review mathematical background on fundamental topics that are used throughout this
work.

K.1 Non-singular M-matrix

We recall some definitions from linear algebra.

Definition K.1 Let A = (aij) ∈ Rn×n be a matrix. We say that A is a

1. Z-matrix if aij ≤ 0 whenever i 6= j.
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2. M-matrix if A is a Z-matrix and all eigenvalues of A have nonnegative real parts.

3. strictly diagonally dominant matrix if |aii| >
∑

j∈[n]:j 6=i |aij | for all i ∈ [n].

4. monotone matrix if for all x ∈ Rn, Ax � 0 implies x � 0. If, in addition, Ax � 0
implies x � 0, then A is said to be strictly monotone.

Theorem K.2 (Levy-Desplanques/Gershgorin circle) Let A be a strictly diagonally
dominant matrix. Then A is non-singular whose eigenvalues all have nonnegative real parts.

The above result immediately implies the following:

Corollary K.3 A strictly diagonally dominant Z-matrix is a non-singular M-matrix.

Non-singular M-matrices have many equivalent characterizations. The one relevant to us is
the following:

Theorem K.4 (Plemmons (1977)) Let A be a Z-matrix. Then A is a non-singular
M-matrix if and only A is a monotone matrix.

Lemma K.5 Let A = (aij) ∈ Rn×n be a non-singular M-matrix. If the diagonals of A are
positive, then A is strictly monotone.

Proof Let x ∈ Rn be arbitrary such that Ax � 0. Our goal is to show that x � 0.
First, from Theorem K.4, we have that A is monotone. Thus, Ax � 0 implies x � 0. We
only have to check additionally that x � 0. Since A is a Z-matrix, the off-diagonals are
non-positive, i.e., aij ≤ 0 for all i, j ∈ [n] such that i 6= j. Now, let i ∈ [n]. We need to check
that xi > 0. To this end, note that 0 < [Ax]i =

∑n
j=1 aijxj = aiixi +

∑
j 6=i aijxj ≤ aiixi.

Note that
∑

j 6=i aijxj ≤ 0 because x � 0 and aij ≤ 0. Finally, xi > 0 since aii > 0.

Corollary K.6 Let A = (aij) ∈ Rn×n be a non-singular M-matrix. Then A> is also a
non-singular M-matrix. Moreover, if the diagonals of A are positive, then A> is strictly
monotone.

Proof Note that A and A> are both non-singular and have the same set of eigenvalues.
Moreover, A being a Z-matrix implies that A> is a Z-matrix. Thus, A> is a non-singular
M-matrix. Finally, Lemma K.5 implies that A> is a strictly monotone matrix.
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