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Abstract

While message passing graph neural networks result in informative node embeddings, they
may suffer from describing the topological properties of graphs. To this end, node filtration
has been widely used as an attempt to obtain the topological information of a graph using
persistence diagrams. However, these attempts have faced the problem of losing node em-
bedding information, which in turn prevents them from providing a more expressive graph
representation. To tackle this issue, we shift our focus to edge filtration and introduce a
novel edge filtration-based persistence diagram, named Topological Edge Diagram (TED),
which is mathematically proven to preserve node embedding information as well as contain
additional topological information. To implement TED, we propose a neural network based
algorithm, named Line Graph Vietoris-Rips (LGVR) Persistence Diagram, that extracts
edge information by transforming a graph into its line graph. Through LGVR, we pro-
pose two model frameworks that can be applied to any message passing GNNs, and prove
that they are strictly more powerful than Weisfeiler-Lehman type colorings. Finally we
empirically validate superior performance of our models on several graph classification and
regression benchmarks.

Keywords: Graph Neural Network, Persistence Diagram, Topological Data Analysis,
Weisfeiler-Lehman Test, Vietoris-Rips Filtration

1. Introduction

Recently, message passing graph neural networks and its variants have emerged as an effec-
tive method to learn graph representations (Morris et al. (2019); Chen et al. (2019); Balcilar
et al. (2020); Kondor et al. (2018); Cai et al. (2021); Hamilton et al. (2017); Gilmer et al.
(2017); Wu et al. (2020)). Since message passing GNNs are designed to learn node represen-
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Figure 1: An overview of node filtration and edge filtration of WL coloring. For graphs G
and H distinguishable by WL test, the edge filtration-based persistence diagram can also
distinguish them while the node filtration-based one cannot.

tations, they can extract informative node embeddings by capturing localized information.
However, they can hardly capture topological information of the entire graph (Chen et al.
(2020); Hofer et al. (2020); Balcilar et al. (2021)). In this vein, various topological methods
have been proposed (Zhang et al. (2018); Ying et al. (2018); Ranjan et al. (2020); Bouritsas
et al. (2020)). In particular, node filtration has been widely used to extract topological
information of graphs using persistence diagrams (Oudot (2017)), showing superior perfor-
mance on graph benchmarks (Hofer et al. (2020); Horn et al. (2021); Hofer et al. (2017);
Carriere et al. (2019); Rieck et al. (2019); Zhao and Wang (2019)). For example, Hofer et al.
(2020) extracted topological information from the persistence diagram of sublevel sets of a
node filtration map over node features. Moreover, Horn et al. (2021) proposed a multi-scale
version of Hofer et al. (2020) using k node filtration maps. Theoretically, they claim that
persistence diagrams based on node filtration map fN can provide stronger expressivity
than the Weisfeiler-Lehman (WL) test (Weisfeiler and Lehman (1968)), assuming that the
input node features of fN are all different for each node (Horn et al., 2021, Theorem 1, 2).
However, even the WL test, which is known to be at least as powerful as message passing
GNNs (Xu et al. (2018a)), cannot assign different features to different nodes. Furthermore,
in cases where this assumption does not hold, there exist graphs that cannot be distin-
guished by node filtration-based persistence diagrams but can be distinguished by the WL
test (Figure 1). In other words, node filtration-based persistence diagram cannot provide
more powerful GNNs than the WL test in general.

We found out that such topological methods suffer from a loss of coloring information,
due to the nature of node filtration, which extracts induced subgraphs (Figure 2). To address
this, we shift our attention to edges. If we can capture information of two nodes in a single
edge, we can extract more fruitful information from edge filtration by directly controlling
the connectivity of graphs through edges while including all the node information. With
this goal in mind, we propose a novel edge filtration-based persistence diagram, Topologcial
Edge Diagram (TED), which, to the best of our knowledge, is the first approach using edge-
based filtration in topological graph representation learning. Specifically, TED is defined as
a persistence diagram of Vietoris-Rips filtration (Hatcher (2002); Oudot (2017)), which is
the well-known algebraic topological reconstruction technique, whose a set of graph nodes is
represented as a point cloud and edge information as distances between points. In contrast
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to node filtration, we prove that TED can preserve the expressive power of an arbitrary
node coloring (Lemma 8). We further prove that TED can even increase the expressive
powers of WL colorings thanks to its additional topological information (Theorem 9).

Next, we propose a novel neural-network-based algorithm, called Line Graph Vietoris-
Rips (LGVR) Persistence Diagram, to implement our theoretical foundation. A key chal-
lenge is to assign unique features to edges that consist of different node features. To tackle
this problem, we construct a map tφ (Section 5.1) that transforms a colored graph into a
colored line graph (Definition 11) through a neural network, which ensures the uniqueness
of edge features. Thanks to this, we prove that LGVR has the same expressivity as TED
and further analyze its theoretical expressivity. Through LGVR, we propose two types of
topological model frameworks, C-LGVR and C-LVGR+, that can be applied to any message
passing GNNs C (Section 6.2). From a theoretical perspective, we analyze their theoretical
expressivity when C is either GIN (Xu et al. (2018a)) or PPGN (Maron et al. (2019)), and
prove that our models are strictly more powerful than C (Corollary 18).

In addition to proposing a theoretical framework, we performed experiments on several
real-world datasets, including 7 classification and 12 regression tasks related to bioinfor-
matics, social networks, and chemical compounds, to substantiate the superiority of our
topological models (Section 7). We focus on three aspects. First, we test whether our mod-
els, C-LGVR and C-LVGR+, which theoretically have more powerful representational power
than the message passing GNN C, also show better performances empirically. Our findings
demonstrate that our topological models outperform the C by effectively comprehending di-
verse graph structures (Table 1, 3 and 4). Next, we conducted comparative experiments for
our edge filtration-based methodology and the existing node filtration-based approach (Xu
et al. (2018a)) to experimentally evaluate the representational capabilities between topo-
logical methodologies. In this vein, we compare their performances on both classification
and regression tasks, and found that our approach shows superior performance compared to
node filtration-based approach, which validates the superiority of edge filtration-based ap-
proach over node filtration-based one (Table 1, Figure 6 and Table 4). Finally, we observed
that the performances of GNNs vary significantly based on data splits, even for the same
dataset (Table 2). We speculate that this variation is due to the insufficient utilization of
graph information in the training data, resulting from the limited representational powers
of existing GNNs. Therefore, we measured the standard deviations of performances based
on data split for the message passing GNN C, node filtration-based methodology, and our
models. As a result, our models exhibited the lowest standard deviation compared to other
methods (Figure 7). From these results, we confirmed that our topological models, which
can well reflect various features in graph representations due to strong expressive powers,
enable more stable learning compared to the C and node filtration-based approach.

The main contributions of this paper can be summarized as follows:

1. We introduce a novel edge filtration-based persistence diagram, called Topological
Edge Diagram (TED). TED is mathematically proven to preserve node embedding
information as well as provide additional topological information. As far as we know,
our approach is the first to leverage edge-based filtration in topological graph repre-
sentation learning.
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2. We propose a novel neural-network-based algorithm, called Line Graph Vietoris-Rips
(LGVR) Persistence Diagram, to implement our theoretical foundation. We prove
that LGVR has the same expressivity as TED and further analyze its theoretical
expressivity.

3. By applying the LGVR, we propose two model frameworks: C-LGVR and C-LGVR+

that can be applied to any message passing GNN C, and theoretically demonstrate
the strong expressive powers of our models.

4. We perform experiments on several real-world datasets, including classification and
regression tasks related to bioinformatics, social networks, and chemical compounds.
Through these experiments, we demonstrate that our edge filtration-based models
not only have strong experimental representational capabilities but also enable stable
learning regardless of data split by encapsulating various graph properties in graph
representations.

This paper is organized as follows. Section 2 provides a brief explanation of the pre-
requisite knowledge, including the Weisfeiler-Lehman test, GNN, and basics of persistence
homology. We summarize some notations and conventions used throughout this paper
in Section 3. In Section 4, we introduce our novel edge filtration-based persistence di-
agram, which we call Topological Edge Diagram (TED), and analyze its theoretical ex-
pressive power. In Section 5, we propose a novel neural-network-based algorithm, named
Line Graph Vietoris-Rips (LGVR) Persistence Diagram, to implement TED, and analyze
its theoretical expressive power. In Section 6, we propose two model frameworks apply-
ing LGVR. Specifically, we first propose a simple mathematical technique that integrates
the expressive powers of both coloring information and topological information induced by
LGVR. Depending on the application of this integration technique, we propose two topo-
logical model frameworks, C-LGVR and C-LVGR+, and analyze their theoretical expressive
powers. In Section 7, we conduct experiments by focusing on experimental verification of
our models. Section 8 concludes the paper with some future work directions.

2. Preliminaries

In this section, we briefly recall Weisfeiler-Lehman test, graph neural network, and some
basic knowledge in algebraic topology related to persistence homology.

2.1 (Higher) Weisfeiler-Lehman Test

The Weisfeiler-Lehman test (WL test) is an algorithm which determines the graph isomor-
phism problem according to the histogram of colors on the vertices where the colors are
iteratively aggregated by those of the neighborhood vertices. Precisely, for a finite graph
G = (V,E) with the initial coloring X0 : V → Z, v 7→ 1, the n-th coloring Xn ∈ Hom(V,Z)
is given by Xn(v) :=

∑
u∈N (v)Xn−1(u), where N (v) is a neighbor of v in G. Then two

graphs G and G′ are isomorphic only if their associated n-th colorings Xn and X ′n coincide
for all n ≥ 1. To distinguish two graphs of the same order m = |V |, it suffices to terminate
the algorithm in the n-th iteration for some n = O(mk) Douglas (2011), and it is known
that the algorithm is effective for a broad class of graphs Babai and Kucera (1979).
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Higher-order variant of WL test, named k-WL, has been proposed to improve expressive
power and apply color refinements iteratively on vertex tuples instead of single vertices. For
a given G = (V,E), the initial coloring is defined using the isomorphism type of each k-tuple
of V . Specifically, two k-tuples (v1, . . . , vk) and (w1, . . . , wk) in V k are assigned the same
initial color if and only if for all i, j ∈ {1, . . . , k}, (1) vi = vj if and only if wi = wj , and (2)
vi is adjacent to vj if and only if wi is adjacent to wj .

Given this initial coloring, it refines the colorings of k-tuples iteratively (similar to the
WL test) until the histogram of coloring does not change further. In k-WL, the neighbor-
hood of ν = (v1, . . . , vk) ∈ V k is set to Nj(ν) = {(v1, . . . , vj−1, u, vj+1, . . . , vk) |u ∈ V },
where j ∈ {1, . . . , k} and u ∈ V . Then the coloring update rules are:

Xt(ν) = HASH(Xt−1(ν), N (ν, t− 1)),

where N (ν, t−1) = {{Xt−1(ν
′) | ν ′ ∈ Nj(ν)}} | j ∈ {1, . . . , k}. We refer to (Cai et al. (1992);

Grohe and Otto (2015); Morris et al. (2019)) for several results related to WL and k-WL.

2.2 Graph Neural Network

Graph neural network (GNN) computes the structure of a graph and its node features to
learn a representation vector hv of a vertex v. Modern GNNs use spatial methods based on
a message passing scheme (Kipf and Welling (2016)). In short, the learning process of GNNs
iteratively updates the node features from those of the neighboring nodes, which formally

associates (1) the representation vectors h
(k)
v ∈ Rd, and (2) the aggregation procedure

h
(k)
v = ϕk(h

(k−1)
v , fk({{h(k−1)u : u ∈ {w ∈ V | (v, w) ∈ E}}})), given by an aggregation

function fk that operates on multisets and a combine function ϕk. To extract the graph-
level representation hG, various pooling methods, also called readout operations, have been

proposed to summarize the representation vectors h
(k)
v of nodes v ∈ V (Zhang et al. (2018);

Ying et al. (2018); Ranjan et al. (2020); Hofer et al. (2020)). In terms of the expressive
power of hG, it is proven in Xu et al. (2018a) that GNNs are as powerful as the WL test
under the assumption on the injectivity of fk and ϕk for each k.

2.3 Simplicial Complexes, Persistence Homology, and Vietoris-Rips Filtration

In this section, we will introduce some basic knowledge in algebraic topology. Readers who
are already familiar with algebraic topology may skip this section without hesitation.

2.3.1 Simplicial Complexes

In this subsection, we recall some basics of simplicial complexes. Briefly speaking, a simplex
is the simplest geometric object, such as points, line segments, triangles, and their higher-
dimensional analogs. Moreover, a simplicial complex is a set of simplices satisfying certain
rules. Both are central topological concepts in algebraic topology in order to understand
the shape and structure of complex spaces. Formal definitions of both objects are as follows:

Definition 1 A k-simplex is a k-dimensional polytope which is the convex hull of affinely
independent k+1 vertices. Moreover, a simplicial complex K is a set of simplices satisfying
the following: (1) every face of a simplex in K is also in K, and (2) for any σ1, σ2 ∈ K such
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that σ1 ∩ σ2 6= ∅, σ1 ∩ σ2 is a face of both σ1 and σ2. Finally, the d-skeleton of a simplicial
complex K is the simplicial complex consisting of the set of all simplices in K of dimension
d or less.

Finally, a morphism, which is a map preserving structures of mathematical objects,
between simplicial complexes can be defined as follows. It is easy to see that simplicial maps
can be seen as an extension of graph maps from the perspective of simplicial complexes.

Definition 2 Let K and L be two simplicial complexes. A simplicial map f : K → L is
a function from 0-simplices of K to 0-simplices of L that maps every simplex in K to a
simplex in L. Moreover, a simplicial map f : K → L is called a simplicial isomorphism if it
is bijective and its inverse is also a simplicial map. If there exists a simplicial isomorphism
between K and L, we call K and L are isomorphic and denote it by K ∼= L

2.3.2 Homology and Betti Numbers

Homology is an abstract way of associating topological or algebraic spaces with a sequence
of algebraic objects. In algebraic topology, this allows to encode the topological information
of a space through a chain of vector spaces and linear maps. We refer to Hatcher (2002)
for interested readers. In general, homology can be defined over an arbitrary field, but
for simplicity, we restricted our attention to Z2. Furthermore, we will only deal with the
homology classes whose algebraic objects are vector spaces.

Let C0, C1, . . . be vector spaces over Z2, and let ∂n : Cn → Cn−1 be linear maps satisfying
∂n+1 ◦ ∂n = 0 for all n ≥ 0, which we call boundary operators. A chain complex refers to
the sequence

C• : · · · → Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1 → · · ·
∂1−→ C0 → 0.

Let ker(∂n) = {x ∈ Cn | ∂n(x) = 0} be the kernel of ∂n, which we call cycles, and let
im(∂n) = {y ∈ Cn−1 | there exists x ∈ Cn such that ∂n(x) = y} be the image of ∂n, which
we call boundaries. Since ∂n+1 ◦ ∂n = 0 holds for all n, it is clear that im(∂n+1) ⊆ ker(∂n)
for all n. Since both im(∂n+1) and ker(∂n) are vector spaces, we may form the quotient
vector space

Hn(C•) := ker(∂n)/im(∂n+1)

for all n ≥ 0. We call Hn(C•) the n-th homology (group) of C•, and the elements of Hn(C•)
are called homology classes. Moreover, the dimension of Hn(C•) as a vector space, denoted
by βk(C•), is called the n-th Betti number of C•.

2.3.3 Simplicial Homology

We will introduce simplicial homology, a type of homology that is widely used in algebraic
topology and tailored to our purposes. As the name suggests, simplicial homology is derived
from simplicial complexes.

Given a simplicial complex K, we define a chain complex C•(K) of Z2-vector spaces
in the following way: Let Kn = {σ1, . . . , σk} be the n-skeleton of K. Then we define
Cn(K) to be the vector space over Z2 with Kn as a basis. Moreover, for each n-simplex
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σi = [v0, . . . , vn] ∈ Cn(K), the boundary operator ∂n : Cn(K)→ Cn−1(K) is defined by

∂n(σi) :=
n∑
j=0

[v0, . . . , v̂j , . . . , vn],

where v̂j means that vj is omitted. By extending linearly to all of Cn(K), the boundary
operator ∂n can be defined on Cn(K).

It is easy to see that the boundary operator ∂n satisfies ∂n+1 ◦ ∂n = 0. Hence vector
spaces Cn(K) with the boundary operators ∂n form a chain complex. This allows us to form
the homologies Hn(C•(K)) of C•(K), which we call simplicial homology.

2.3.4 Persistence Homology and Diagrams

Given a point cloud P sampled from the unknown manifold M , how can we determine
the topological characteristics of M from P? The simplest way is to generate a suitable
manifold K from P and compute its homology. However, homology is very sensitive to
small changes, so there is a problem that the topological characteristics of K can be very
different from those of M . Persistence homology (Oudot (2017)) addresses this problem
by incorporating the scale ε, which varies from 0 to ∞ , into homology computations.
As ε increases, the topological characteristics of a manifold induced by ε can vary: some
topological information born at some ε0 and die ε1. Informally, the idea of persistence
homology is to track all the birth and death of topological information with scale ε.

A persistence homology essentially tracks the evolution of homology classes in a filtration
of simplicial complexes K. Once a simplicial complex K admits a filtration

K• : ∅ = K−∞ ⊆ · · · ⊆ Ki ⊆ · · · ⊆ Kj ⊆ · · · ⊆ K∞ = K,

then each inclusion fi,j : Ki ↪→ Kj is a simplicial map so that it induces a linear map
Hn(fi,j) between the homologies of Hn(Ki) and Hn(Kj). Such indices i and j are referred
to as ’time’ in persistence homology theory. Fix a non-negative integer n ≥ 0. For any i < j,
one can see whether a homology class in Hn(Ki) are mapped to the same homology class
in Hn(Kj) by Hn(fi,j). If this happens, such a homology class is said to persist from time
i to j. If not, such a class is said to have died at some time between i and j. If a homology
class first appears at time i and disappears at time j, then we say that this class is born at
time i and dies at time j, and appends (i, j) as an element of n-th persistence homology.
By tracking all homology classes of {Hn(Kt)}t∈R and appending them as elements of n-th
persistence homology, the n-th persistence homology can be seen as a multi-set of birth and
death tuples. Now, regard the n-th persistence homology as a multi-set of points in R2.
Then we call such a multi-set n-th persistence diagram.

Informally, n-th persistence homology (or diagram) tracks different topological features
depending on n. For example, 0-th persistence homology tracks the birth and death of con-
nected components, while 1-th persistence homology tracks those of circular holes. The gen-
eral n-th persistence homology has information about the birth and death of n-dimensional
holes. Through persistence homology information for each n, we can understand the char-
acteristics of a given topological object.
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2.3.5 Vietoris-Rips Complex and Filtration

Given a point cloud P with a distance matrix M and a scale ε, the Vietoris-Rips complex
of ε is a type of simplicial complex constructed from P and M whose simplices are formed
by connecting points in P that are within a certain distance ε of each other. In particular,
given two scales ε1 < ε2, the Vietoris-Rips complex of ε1 is contained in that of ε2. Thus,
by adjusting a scale ε, we can define a filtration of simplicial complexes, called Vietoris-Rips
filtration. This makes it possible to analyze the persistence homologies of a point cloud.
Here we will provide their definitions below.

Definition 3 Let P be a finite point cloud, and let M be a non-negative symmetric matrix
of size |P | × |P | with zero diagonals. The Vietoris-Rips complex of (P,M) with a scale
ε ∈ R≥0, denoted as VRε(P,M), has one t-simplex per (t + 1)-tuple of points (u0, . . . , ut)
of P such that M(ui, uj) ≤ ε for all i, j = 0, . . . , t. Moreover, the Vietoris-Rips filtration
of (P,M) is the indexed family VR(P,M) = {VRε(P,M)}ε∈R. Finally, we denote the k-
skeleton of VRε(P,M) as VRε

k(P,M), and let VRk(P,M) = {VRε
k(P,M)}ε∈R for k ∈ Z≥0.

Finally, we will provide a short remark regarding the matrix M used in Definition 3.
In general, when defining the Vietoris-Rips complex, the matrix M is constructed based on
the distance between two points according to some metric. However, since the Vietoris-Rips
complex can be defined based solely on the pairwise distances between points, we follow a
general definition (Definition 3) with minimal conditions on the matrix M , independent of
a metric. In other words, the matrix M in Definition 3 may not satisfy properties of metrics
such as triangle inequality. For example, M may not satisfy the triangle inequality, that
is, Mi,j + Mj,k � Mi,k for some i, j, and k. However, since the existence of a metric does
not affect the theoretical results that will be developed later in this paper, we will use the
general version of the Vietoris-Rips complex based on such a matrix M .

3. Notations and conventions

In this section, we summarize some notations used throughout this paper. First of all, we
use the following notations, which are commonly used, to distinguish between a set and a
multi-set: we denote a set by {· · · } and a multi-set by {{· · · }}. Moreover, the WL test
refers to the 1-WL test, otherwise specified.

Let (G, C) be a space of graphs with node coloring C, and let χG ⊆ RN (or simply χ) be
a space of node features of (G, C) containing (0, . . . , 0), where N ∈ N. For a graph G ∈ G,
V (G) denotes a set of nodes in G, E(G) denotes a set of edges in G, and EC(G) denotes a
multi-set of colored edges in G, that is, EC(G) = {{ {{C(u), C(v)}} | {{u, v}} ∈ E(G)}}.

Finally, since we frequently use the notation in Definition 3, we summarize it here again.
Given a finite point cloud P and a non-negative symmetric matrix M of size |P | × |P | with
zero diagonals, we denote the k-skeleton of VRε(P,M) as VRε

k(P,M), and put VRk(P,M) =
{VRε

k(P,M)}ε∈R for k ∈ Z≥0.

4. Theoretical Framework: Topological Edge Diagram

In this section, we introduce a novel edge filtration-based persistence diagram, which we
call Topological Edge Diagram. To begin with, we introduce the edge filtration map, and
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Figure 2: The difference in subgraph construction between two types of filtrations: node
filtration and edge filtration.

then define the topological edge diagram by leveraging it. In the end, we will wrap up this
section by analyzing its theoretical expressive power.

4.1 Definition of Topological Edge Diagram (TED)

To introduce our persistence diagram, we first introduce the edge filtration (map) which is
essential in developing our theoretical framework. To grasp the distinction between node
(Hofer et al. (2020); Horn et al. (2021)) and edge filtration, see Figure 2.

Definition 4 Let G ∈ G be a graph, and let C be a node coloring of G.

1. An edge filtration (map) efC of G with respect to C is defined to be a positive real-valued
function efC :

⋃
G∈G E

C(G) → R>0 such that sup {efC(x) | x ∈
⋃
G∈G E

C(G)} < ∞,
where EC(G) = {{ {{C(u), C(v)}} | {{u, v}} ∈ E(G)}} is a multi-set of colored edges.

2. For an edge filtration efC and i ≥ 0, phiVR(G, efC) is the i-th persistence diagram of 1-
skeleton of Vietoris-Rips filtration with point cloud V (G) whose distance matrix M(G)
is defined as follows: for any i, j = 1, . . . , |V (G)| corresponding to nodes ui, uj ∈ V (G),

M(G)i,j =

{
efC({{C(ui), C(uj)}}) if {{C(ui), C(uj)}} ∈ EC(G),

∞ otherwise

Remark 5 In this remark, we will explain why the 1-skeleton of the Vietoris-Rips com-
plex of V (G) is a natural choice when defining the persistent homology phiVR(G, efC) of
the graph G (Definition 4-2). Before going on, we briefly explain the conditions that the
filtration {Xε}ε>0 of a simplicial complex X must satisfy to define persistent homology:
given a simplicial complex X, the filtration {Xε}ε>0 to define the persistence homology of
X should satisfy the following condition: for any ε > 0, Xε ↪→ X as simplicial complexes
and limε→∞Xε = X.

In this perspective, we see how the dimension of the clique complex of G is related when
defining its Vietoris-Rips filtration. More precisely, let VRε

d(V (G),M(G)) be the d-skeleton
of Vietoris-Rips complex of scale ε > 0 with point cloud V (G) whose distance matrix is
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M(G) (Definition 4). Since a graph G ∈ G is 1-simplicial complex, it is easy to see the
following:

1. for any ε > 0, VRε
1(V (G),M(G)) ↪→ G as simplicial complexes,

2. limε→∞VRε
1(V (G),M(G)) = G, and

3. for any d ≥ 2, there exists ε > 0 such that VRε
d(V (G),M(G)) 6↪→ G as simplicial

complexes.

In other words, 1-skeleton is the most natural choice for defining the persistence homology
phiVR(G, efC) of the graph.

Note that the edge filtration induces a novel persistence diagram by using the Vietoris-
Rips filtration of graph. In particular, when the edge filtration is injective, we call this
persistence diagram, Topological Edge Diagram (TED).

Definition 6 Given a graph G ∈ G and an injective edge filtration efC with a node coloring
C, a topological edge diagram (TED) of (G, efC), denoted by TED(G, efC), is defined to be
the tuple of multi-sets (ph0

VR(G, efC), ph1
VR(G, efC)).

4.2 Theoretical Expressivity of TED

It is clear that an injective edge filtration efC of the node coloring C includes all the pairwise
node coloring information. Hence our question is whether TED also contains all of the node
coloring information. For theoretical clarity, we first propose a weak assumption about the
node coloring C, called the Degree Assumption.

Definition 7 (Degree Assumption) Let C be a node coloring of G, that is, C :
⋃
G∈G V (G)→

χ. We say that C satisfies the degree assumption if the following holds: for any u, v ∈⋃
G∈G V (G), if C(u) = C(v), then deg(u) = deg(v).

We remark that the degree assumption is a very weak assumption related to node
coloring, and almost all node colorings we know satisfy this assumption. For example, any
node colorings of all message passing GNNs with arbitrary initial node colorings satisfy the
Degree Assumption. Furthermore, the WL test, which is a classical graph isomorphism
test, satisfies the Degree Assumption as demonstrated in the following example.

Now, we are ready to show the strong expressive power of TED. Specifically, our next
result shows that TED can incorporate all of the node coloring information if any graph
G ∈ G has no isolated nodes.

Lemma 8 Let G,H ∈ G be graphs with no isolated nodes, and let C be a node coloring of
G satisfying the degree assumption. If {{C(u) | u ∈ V (G)}} 6= {{C(v) | v ∈ V (H)}}, then
TED(G, efC) 6= TED(H, efC) for any injective edge filtration efC and any k ≥ 1.

Proof Since {{C(u) | u ∈ V (G)}} 6= {{C(v) | v ∈ V (H)}}, there are three cases:

1. |V (G)| 6= |V (H)|,

10
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2. |V (G)| = |V (H)| and there exists u ∈ V (G) such that C(u) /∈ {{C(v) | v ∈ V (H)}},

3. |V (G)| = |V (H)| and {C(u) | u ∈ V (G)} = {C(v) | v ∈ V (H)} but {{C(u) | u ∈
V (G)}} 6= {{C(v) | v ∈ V (H)}}.

Fix an injective edge filtration efC . First of all, suppose the case (1). Since an edge filtration
efC is positive, each element in ph0

VR(G, efC) should be of the form (0, t) for some t ∈ (0,∞].
So the number of elements in the multi-set ph0

VR(G, efC) is equal to the number of nodes in
G. Hence |V (G)| 6= |V (H)| implies that the cardinalities of ph0

VR(G, efC) and ph0
VR(H, efC)

are not equal as multi-sets so that ph0
VR(G, efC) 6= ph0

VR(H, efC).
Next, suppose the case (2). Let u ∈ V (G) be a node satisfying C(u) /∈ {{C(v) | v ∈

V (H)}}. Since G has no isolated nodes, there exists an edge eG ∈ E(G) whose one of the
end points is u. Since C(u) /∈ {{C(v) | v ∈ V (H)}}, it is easy to see from the injectivity of
efC that there does not exist an edge e ∈ E(H) such that efC(e) = efC(eG).

Now we claim that either (0, efC(eG)) ∈ ph0
VR(G, efC) or (efC(eG),∞) ∈ ph1

VR(G, efC)
holds but neither (0, efC(eG)) ∈ ph0

VR(H, efC) nor (efC(eG),∞) ∈ ph1
VR(H, efC) holds.

Note that it is clear that both (0, efC(eG)) /∈ ph0
VR(H, efC) and (efC(eG),∞) /∈ ph1

VR(H, efC)
hold since there is no edge e ∈ E(H) satisfying efC(e) = efC(eG). Hence we need to show
the first part of the claim. Note that the birth of a colored edge e = {{C(u), C(v)}} ∈ EC(G)
corresponds to either of the following two cases:

(i) there was no path between u and v before the birth of e, or

(ii) there was a path between u and v before the birth of e.

In case (i), the birth of e leads to the death of a connected component, which corresponds
to (0, efC(eG)) ∈ ph0

VR(G, efC). Moreover, the second case (ii) implies that e creates a
new cycle so that it corresponds to (efC(eG),∞) ∈ ph1

VR(G, efC) since phiVR(G, efC) is
computed from the 1-skeleton of Vietoris-Rips complex with point cloud V (G). This proves
our claim. In other words, our claim shows that there is an element that is contained in
ph0

VR(G, efC) ∪ ph1
VR(G, efC) but not in ph0

VR(H, efC) ∪ ph1
VR(H, efC), we conclude that

(ph0
VR(G, efC), ph1

VR(G, efC)) 6= (ph0
VR(H, efC), ph1

VR(H, efC)).
Finally, it remains to show the conclusion holds for the case (3). Since {C(u) | u ∈

V (G)} = {C(v) | v ∈ V (H)}, there exists an indexed coloring set {Ci}i∈I with an index set
I such that for each i ∈ I, there exists u ∈ V (G) and v ∈ V (H) satisfying C(u) = C(v) = Ci.
Towards contradiction, suppose not, that is, phkVR(G, efC) = phkVR(H, efC) for any k = 0, 1.
Again, by the claim in the proof of case (2), this implies that EC(G) = EC(H). Hence, for
all i ∈ I, we have ∑

u∈V (G),
C(u)=Ci

deg(u) =
∑

v∈V (H),
C(v)=Ci

deg(v). (1)

However, since the multi-set of node features of G and H are not the same, that is,
{{C(u) | u ∈ V (G)}} 6= {{C(v) | v ∈ V (H)}}, there exists an index i0 ∈ I such that

|{u ∈ V (G) | C(u) = Ci0}| 6= |{v ∈ V (H) | C(v) = Ci0}|.

By the definition of I, both {u ∈ V (G) | C(u) = Ci0} and {v ∈ V (H) | C(v) = Ci0} are both
non-empty, thus we put {u ∈ V (G) | C(u) = Ci0} = {u1, . . . , ug} and {v ∈ V (H) | C(v) =

11
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Ci0} = {v1, . . . , vh} with g 6= h. Since all ui and vj have the same coloring, the degree
assumption of C gives that

deg(u1) = · · · = deg(ug) = deg(v1) = · · · = deg(vh).

Moreover, such a degree value is positive since G and H have no isolated nodes. Hence we
have ∑

u∈V (G),
C(u)=Ci0

deg(u) = g · deg(u1) 6= h · deg(v1) =
∑

v∈V (H),
C(v)=Ci0

deg(v),

which contradicts to Equation 1. Thus

(ph0
VR(G, efC), ph1

VR(G, efC)) 6= (ph0
VR(H, efC), ph1

VR(H, efC)),

which concludes the proof.

Lemma 8 presents a general result applicable to any node coloring C. Moving forward, we
will narrow our focus to WL coloring. Since WL coloring satisfies the degree assumption,
Lemma 8 implies that TED(·, efC) is at least as powerful as the WL test for any edge
filtration efC , assuming non-isolated nodes. Our next theorem, which is the core of our
theoretical framework, shows that a stronger result holds for WL coloring: TED is strictly
more powerful than the WL test without assuming non-isolated nodes.

Theorem 9 Let G,H ∈ G, and let C be the stable WL coloring whose initial node colorings
are all the same. Additionally, let efC be an arbitrary injective edge filtration. If G and H
are distinguishable by WL test, then TED(G, efC) 6= TED(H, efC). Moreover, there exists
a pair of non-isomorphic graphs (G,H) ∈ G × G such that TED(G, efC) 6= TED(H, efC)
while the WL test cannot distinguish them.

Proof Let G and H be two graphs that are distinguishable by the WL test, and fix an
injective edge filtration efC . We divide the graph (G, H) into non-isolated components
(G+, H+) and isolated components (G0, H0). More precisely, we have

V (G0) = {u ∈ V (G) | deg(u) = 0},
V (H0) = {v ∈ V (H) | deg(v) = 0},
V (G+) = {u ∈ V (G) | deg(u) > 0},
V (H+) = {v ∈ V (H) | deg(v) > 0}.

Then V (G) = V (G0) t V (G+) and V (H) = V (H0) t V (H+). If |V (G)| 6= |V (H)|, then
ph0

VR(G, efC) 6= ph0
VR(H, efC) clearly holds. So we may assume that |V (G)| = |V (H)|. We

divide it into two cases: (i) |V (G0)| 6= |V (H0)| and (ii) |V (G0)| = |V (H0)|.
First, assume the case (i). For a contradiction, suppose not, that is, phkVR(G, efC) =

phkVR(H, efC) for all k = 0, 1. Since V (G0) and V (H0) are isolated, the multi-set of all
non-essential points (that is, (0, t) where t 6= ∞) of ph0

VR(G, efC) (and ph0
VR(H, efC) re-

spectively) and the multi-set ph1
VR(G, efC) (and ph1

VR(H, efC) respectively) should come

12
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Figure 3: An example of a pair of non-isomorphic graphs that are not distinguishable by
WL test.

from G+ (and H+ respectively). Hence EC(G+) and EC(H+) should be the same as multi-
sets, which implies that ∑

u∈V (G+),
C(u)=C

deg(u) =
∑

v∈V (H+),
C(v)=C

deg(v) (2)

for any color C. However, since |V (G0)| 6= |V (H0)|, we have |V (G+)| 6= |V (H+)|. Thus
there exists a color C0 such that |{u ∈ V (G+) | C(u) = C0}| 6= |{v ∈ V (H+) | C(v) = C0}|.
Since the WL test satisfies the degree assumption, all u ∈ V (G+) and v ∈ V (H+) whose
WL color is C0 should have the same positive degree, which we call it d. Hence∑

u∈V (G+),
C(u)=C0

deg(u) = d · |{u ∈ V (G+) | C(u) = C0}|

6= d · |{v ∈ V (H+) | C(v) = C0}| =
∑

v∈V (H+),
C(v)=C0

deg(v),

which contradicts to Equation 2. Hence

(ph0
VR(G, efC), ph1

VR(G, efC)) 6= (ph0
VR(H, efC), ph1

VR(H, efC))

for the case (i).
Now it remains to prove the case (ii) for the first statement. Since |V (G0)| = |V (H0)|

and all the isolated nodes of G (and H respectively) correspond to the essential points (that
is, (0,∞)) in ph0

VR(G, efC) (and ph0
VR(H, efC) respectively), phkVR(G, efC) 6= phkVR(H, efC)

is equivalent to phkVR(G+, efC) 6= phkVR(H+, efC) for any k = 0, 1. Moreover, since

{C(u) | u ∈ V (G), deg(u) = 0} ∩ {C(u) | u ∈ V (G), deg(u) > 0} = ∅,

the fact that WL test can distinguish G and H implies that it can also distinguish G+

and H+. In other words, G+ and H+ have no isolated nodes and can be distinguish-
able by WL test. Since WL test satisfies the degree assumption, Lemma 8 implies that
phkVR(G+, efC) 6= phkVR(H+, efC) for some k = 0, 1. Thus (ph0

VR(G, efC), ph1
VR(G, efC)) 6=

(ph0
VR(H, efC), ph1

VR(H, efC)) holds as desired.
Next, we will prove the second statement. Let G be the graph on the left of Figure 3

and H the graph on the right. It is clear that the WL test cannot distinguish them since
stable WL colorings of all nodes are identical and the number of nodes of G and H are the
same. However, for any injective edge filtration efC , the number of non-essential elements
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of ph0
VR(G, efC) is 5 while the number of non-essential elements of ph0

VR(H, efC) is 4. Thus
ph0

VR(G, efC) 6= ph0
VR(H, efC), that is, (ph0

VR(·, efC), ph1
VR(·, efC)) can distinguish G and

H as desired.

5. Algorithm: Line Graph Vietoris-Rips Persistence Diagram

In this section, we propose a novel neural-network-based algorithm, named Line Graph
Vietoris-Rips Persistence Diagram, to implement TED. First, we construct the map tφ
that transforms a colored graph into a colored line graph (Definition 11) in Section 5.1.
Next, through tφ, we propose an algorithm to construct an injective edge filtration, which
is the core of our Line Graph Vietoris-Rips Persistence Diagram, in Section 5.2. Finally, we
analyze its theoretical expressivity in Section 5.3.

5.1 Construction of the map tφ : (G, C)→ (LG , Cφ)

First of all, we briefly recall line graph LG of a graph G ∈ G. In graph theory, a line graph
is a type of graph where the vertices correspond to the edges of a given graph G, and two
vertices in the line graph are connected by an edge if and only if their corresponding edges
in G share a common endpoint. Formally, it is defined as follows:

Definition 10 Let G = (V (G), E(G)) ∈ G be a graph. Its line graph LG = (V (LG), E(LG))
is a graph such that (1)) each node in V (LG) represents an edge in E(G), and (2) for any
{u1, u2} 6= {v1, v2} ∈ E(G) with u1, u2, v1, v2 ∈ V (G), their corresponding nodes in V (LG)
are adjacent if and only if ui = vj for some i = 1, 2 and j = 1, 2.

Throughout this paper, we will write the node of the line graph LG corresponding to
{{u, v}} ∈ E(G) as l{{u,v}}. Moreover, we denote LG := {LG | G ∈ G}. Now we first
propose a colored line graph, which is a coloring version of a line graph (Definition 10).
This is defined using the node coloring C of a given colored graph (G, C).

Definition 11 Let (G, C) be a graph with node coloring C. A colored line graph (LG, Ch)
of (G, C) with respect to h is the line graph LG of G with the node coloring Ch such that
for any l{{u,v}} ∈ V (LG), Ch(l{{u,v}}) = h({{C(u), C(v)}}), where l{{u,v}} is a node in LG
corresponding to {{u, v}} ∈ E(G) and h is a hash map on { {{C(u), C(v)}} ∈ EC(G) | u, v ∈
V (G), G ∈ G}.

In order to elaborate our algorithm, Line Graph Vietoris-Rips (LGVR) Persistence
Diagram, we first construct a map tφ that transforms (G, C) ∈ (G, C) into a colored line graph
(LG, Cφ) ∈ (LG , Cφ). Recall that χ denotes a space of node features of (G, C) containing
(0, . . . , 0), where N ∈ N. Let Mχ(2) = {{{x, y}} | x, y ∈ χ}, and let m be a multi-layer
perceptron with learnable parameters. Now, define a map

φ :Mχ(2)→ R2N , {{x, y}} 7→ (x+ η ·m(x) + y + η ·m(y), |x+ η ·m(x)− y − η ·m(y)|),

where η is a learnable scalar parameter. Then we can define the map tφ : (G, C)→ (LG , Cφ)
as follows: for a given (G, C) ∈ (G, C), let l{{u,v}} be the node in LG corresponding to
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Figure 4: An overall framework of Algorithm 1. Note that the map tφ transforms a colored
graph (G, C) into a colored line graph (LG, Cφ) as described in Construction of the map
tφ.

{{u, v}} ∈ E(G). Since {{C(u), C(v)}} ∈ EC(G) ⊆ Mχ(2), we can assign a coloring
φ({{C(u), C(v)}}) to a node l{{u,v}} ∈ V (LG), that is,

Cφ(l{{u,v}}) := φ({{C(u), C(v)}}).

Since each edge in G has a corresponding node in LG, tφ can be well-defined by assigning
colors to all the nodes in LG via φ.

5.2 Construction of Line Graph Vietoris-Rips (LGVR) Persistence Diagram

In this section, we will elaborate on a neural network-based algorithm, named Line Graph
Vietoris-Rips (LGVR) Persistence Diagram, with the same expressivity as TED. Pseu-
docode for the construction of LGVR is described in Algorithm 1 (See Figure 4 for the
overall framework). Here, we briefly explain it.

The core of LGVR is to construct an injective edge filtration matrix ACG that contains
distance information between nodes in a colored graph (G, C) (See orange box in Figure 4).
To do this, we first convert (G, C) into a colored line graph (LG, Cφ) through a map tφ.
Now that the edge information of G has been converted into the node information of LG,
we perform the binary node classification task (actual vs virtual) so that the nodes of LG
corresponding to the actual edges of G have a value of 0. However, since all nodes in LG
correspond to actual edges in G, they are all trained to have values sufficiently close to 0
during node classification, which can hinder the acquisition of rich information. To address

this, we extend (LG, Cφ) into a colored complete line graph (LKG , C̃φ), and perform the task

on (LKG , C̃φ). In this way, we extract meaningful edge information by adding virtual edges
to G and training to distinguish actual edges from virtual ones (Appendix A). Based on
the extracted edge information of G, we construct the matrix ACG. Finally, LGVR(G, C)
is defined as the persistence diagram of {VRε

1(V (G), ACG)}ε∈[0,0.5] (See Appendix B for ε ∈
[0, 0.5]). Similar to conventional GNNs, LGVR is trained in an end-to-end fashion with task-
specific loss Ltask (for example, cross entropy) and the LGVR loss LLGVR in Algorithm 1.

We conclude this section with the complexity analysis of LGVR. Since the complexity of
LGVR is dominated by the calculation of persistence homology, we will focus on explaining
the computational complexity of dimensions 0 and 1. In short, they can be computed
efficiently with a worst-case complexity of O(mα(m))) for a graph with m sorted edges
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Algorithm 1 Line Graph Vietoris-Rips (LGVR) Persistence Diagram of (G, C)
Input:

Labeled graph dataset (G, yG) ∈ (G, yG)
Initialize:
C(G|θC)← GNN with weight θC

tφ((G, C)|θtφ)← a map with weight θtφ in Construction of the map tφ
P1(G|θP1)← (shallow) node-level GINs with weights θP1

P2(G|θP2)← (shallow) [0, 1]-valued node-level GINs with weights θP2

S(·|θS)← a set encoder with weight θS . See Appendix C
mtask(·|θmtask)← a task-specific MLP with weight θmtask

for T = 1 to total iteration do
Sample a mini-batch {(G1, yG1), . . . , (Gn, yGn)} of size n from (G, yG)
for t = 1 to n do

(Gt, C)← C(Gt|θC) and construct the edge filtration matrix AC
Gt in Supplementary

LGVR(Gt, C)← (ph0({VRε
1(V (Gt), A

C
Gt)}ε∈[0,0.5]), ph1({VRε

1(V (Gt), A
C
Gt)}ε∈[0,0.5]))

end for
Update all the weights θC , θtφ , θP1 , θP2 , θS , θmtask by minimizing the loss

1

n
·
n∑
t=1

(Ltask(yGt ,mtask(S(LGVR(Gt, C)|θS)|θmtask)) + λ · LLGVR(Gt)),

where λ is a hyperparameter, Ltask is the task-specific loss, and

LLGVR(Gt) =
1

|V (LKGt )|
·

∑
l{{ux,uy}}∈V (LKGt

)

(C̃φ(l{{ux,uy}})− 1l{{ux,uy}} /∈V (LGt )
)2.

end for

Supplementary - Construction of Edge Filtration Matrix AC
G of (G, C) of size |V (G)| × |V (G)|

(LG, Cφ)← P1(tφ((G, C)|θtφ)|θP1)
KG ← the complete graph of V (G)
πG ← the natural inclusion map: V (LG) = E(G) ↪→ E(KG) = V (LKG)
for v ∈ V (LKG) do

C̃φ0 (v)←

{
Cφ(u) if v = πG(u) for some u ∈ V (LG),

(0, . . . , 0) otherwise.

end for

Extend (LG, Cφ) to (LKG , C̃φ), and then (LKG , C̃φ)← P2((LKG , C̃
φ
0 )|θP2) . See Appendix A

for i, j ∈ {1, . . . , |V (G)|} corresponding to ui, uj ∈ V (G) with l{{ui,uj}} ∈ V (LKG), do

(AC
G)i,j ←

{
0 if i = j,

C̃φ(l{{ui,uj}}) otherwise
. Edge Filtration Map C̃φ(·) and Matrix AC

G of (G, C)

end for

(Edelsbrunner and Harer (2022)), where α(·) refers to the inverse Ackermann function,
which can be considered practically constant for all purposes. Therefore, the computation
of persistence homology is mainly affected by the complexity of sorting all edges, which is
O(m log(m))).

5.3 Theoretical Expressivity of LGVR

The most crucial point in LGVR is whether the edge filtration in Algorithm 1 can be injec-
tive. In this regard, we will first state and prove the most essential lemma that demonstrates
the injectivity of the edge filtration used in LGVR as follows.
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Lemma 12 Assume that χ is countable, and let Mχ(2) = {{{x, y}} | x, y ∈ χ}. Then
there exists an injective map

φ :Mχ(2)→ χ̃⊕ χ̃ ↪→ R2N ,

where χ̃ ↪→ RN and χ̃ is countable.

Proof Since χ is countable, it is easy to see that there exists an injective map f : χ→ R
and infinitely many ε ∈ R such that for any d ∈ N,( ⋃

X∈Mχ(d)

{
∑
x∈X,

rsgn(x)=±1

rsgn(x) · ε · (f(x), . . . , f(x)) ∈ RN}
)
∩ χ = {~0}. (3)

By fixing a desired f and ε, we put χ̃ = {x+ ε · (f(x), . . . , f(x)) ∈ RN | x ∈ χ}. It is trivial
that χ̃ is countable.

Now consider the map φ :Mχ(2)→ χ̃⊕ χ̃,

{{x, y}} 7→ (x+ ε · fN (x) + y + ε · fN (y), |x+ ε · fN (x)− y − ε · fN (y)|),

where fN (x) = (f(x), . . . , f(x)) ∈ RN . Note that φ is well-defined since it is order-invariant.
Hence it remains to show that φ is injective. For the injectivity, assume that

(x1 + ε · fN (x1) + y1 + ε · fN (y1), |x1 + ε · fN (x1)− y1 − ε · fN (y1)|)
= (x2 + ε · fN (x2) + y2 + ε · fN (y2), |x2 + ε · fN (x2)− y2 − ε · fN (y2)|)

(4)

for some x1, x2, y1, y2 ∈ χ. We need to show that {{x1, y1}} = {{x2, y2}} holds under
(4). Note that the first equality of (4) implies that x1 + y1 − x2 − y2 = ε · (fN (x2) +
fN (y2) − fN (x1) − fN (y1)). By (3), both sides should be 0. Hence fN (x1) + fN (y1) =
fN (x2) + fN (y2), which implies that

f(x1) + f(y1) = f(x2) + f(y2). (5)

Moreover, the second equality of (4) implies that x1 + ε · fN (x1) − y1 − ε · fN (y1) =
δ · (x2 + ε · fN (x2)− y2 − ε · fN (y2)), where δ = (δ1, . . . , δN ) and

δi =


1 if the signs of i-th component of x1 + ε · fN (x1)− y1 − ε · fN (y1)

and x2 + ε · fN (x2)− y2 − ε · fN (y2) are the same,

−1 otherwise

for any i = 1, . . . , N . Again, the same argument as the first equality implies that

f(x1)− f(y1) = δ · (f(x2)− f(y2)), that is, |f(x1)− f(y1)| = |f(x2)− f(y2)|. (6)

By interchanging xi and yi, if necessary, we may assume that f(x1) ≥ f(y1) and f(x2) ≥
f(y2). Then both equations (5) and (6) imply that f(x1) = f(x2) and f(y1) = f(y2). Since
f is injective, we conclude that x1 = x2 and y1 = y2, that is, {{x1, y1}} = {{x2, y2}}, which
implies the injectivity of φ as desired.
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Lemma 12 shows that under a countable universe, the map φ in Section 5.1 is injective.
Moreover, since the subsequent steps also maintain the injectivity, this implies that the edge

filtration map {{ui, uj}} 7→ C̃φ(l{{ui,uj}}) in Algorithm 1 is inejctive Based on this, we show
that LGVR satisfies the essential property (Lemma 8, Theorem 9) of TED, which implies
that LGVR has the same expressivity as TED.

Theorem 13 Assume that χ is countable. Then the following statements hold:

1. Let C be an arbitrary node coloring of G satisfying the degree assumption. For any
G,H ∈ G with no isolated nodes, if {{C(v) | v ∈ V (G)}} 6= {{C(u) | u ∈ V (H)}},
then LGVR(G, C) 6= LGVR(H, C).

2. Let C be the stable WL coloring whose initial node colorings are all the same. If G,H ∈
G are distinguishable by C, then we have LGVR(G, C) 6= LGVR(H, C). Moreover, there
exists a pair of graphs (G,H) ∈ G × G such that LGVR(G, C) 6= LGVR(H, C).

Proof First, we prove (1). Lemma 12 and the universal approximation theorem of multi-
layer perceptrons (Hornik (1991, 1992)) imply that our map

φ :Mχ(2)→ R2N , {{x, y}} 7→ (x+ε ·m∗G(x)+y+ε ·m∗G(y), |x+ε ·m∗G(x)−y−ε ·m∗G(y)|)

in Section 5.1 induces the injective edge filtration of G with respect to C. Moreover, since
the WL message passing scheme does not decrease the expressive power in distinguishing
node colorings of line graphs, the edge filtration of the LGVR that derives the positive
symmetric matrix AGG is injective. Finally, since G and H are graphs with no isolated nodes
and the coloring C satisfies the degree assumption, the desired result is a direct consequence
of Lemma 8.

Next assume that C is the stable WL coloring whose initial node colorings are all the
same. As mentioned in the proof above, we know that the edge filtration of the LGVR
that derives the positive symmetric matrix ACG is injective. Hence the statement (2) can be
proved similarly as the proof of Theorem 9.

6. Model Framework

From Theorem 13, we can infer two important results regarding LGVR: (1) LGVR can pre-
serve arbitrary node coloring information, and (2) especially for WL type coloring, LGVR
has stronger expressive powers, which enables the construction of more powerful topologi-
cal GNNs. In this section, we will delve deeper into the construction of topological GNNs.
Before providing a framework for applying LGVR to GNN, we first remark one important
aspect of LGVR. From a theoretical perspective, LGVR can guarantee the expressive pow-
ers of node colorings due to the injectivity of edge filtration. However, from a practical
perspective, if specific node information plays a crucial role in determining the character-
istics of a graph due to its rich node coloring information, it is likely that LGVR may not
extract a graph representation that properly reflects this since LGVR can only indirectly
use the node coloring information by converting it into other (topological) information.
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To bridge this gap between theoretical and practical perspectives, we first propose a
simple mathematical technique that integrates the expressive powers of both coloring in-
formation and topological information induced by LGVR under a countable universe in
Section 6.1. Depending on the application of this technique, we propose two topological
model frameworks in Section 6.2 and analyze their expressivities in Section 6.3.

6.1 Integration Technique

In this subsection, we will present a general mathematical method for constructing an em-
bedding space that integrates the expressive power of each representation under a countable
universe. Proposition 15 and Corollary 16 propose a framework that preserves all expres-
sive powers of representations by finding |I| integrated embedding maps fi. This integration
technique will be used for the construction of one of our model frameworks in Section 6.2 in
order to integrate the coloring information of C and the topological information of LGVR
simultaneously.

First, we state and prove a useful lemma that is crucial to prove Proposition 15.

Lemma 14 Given m ∈ N and countable spaces {χi}i∈I , where I is an index set satisfying
|I| <∞, there exists a family of functions {fi : χi → Rm}i∈I so that⋂

i∈I
{fi(xi) | xi ∈ χi} = ∅.

Proof First, we prove the case when |I| = 2. We claim that given any functions f1 : χ1 →
Rm and f2 : χ2 → Rm, there exists ε ∈ Rm such that {f1(x1) | x1 ∈ χ1}∩{f2(x2) + ε | x2 ∈
χ2} = ∅. Choose any two functions f1 : χ1 → Rm and f2 : χ2 → Rm, and consider the set

DF := {f1(x1)− f2(x2) | x1 ∈ χ1 and x2 ∈ χ2}.

Since χ1 and χ2 are countable, so is DF . Hence there exists infinitely many ε ∈ Rm such
that ε /∈ DF , which proves the claim. Now, by replacing f2 by f2 + ε for some ε /∈ DF , it
is clear that f1 and f2 satisfy the desired property.

For general I with |I| <∞, the same arguments implies the existence of infinitely many
εi ∈ Rm, i ∈ I satisfying ⋂

i∈I
{fi(xi) + εi | xi ∈ χi} = ∅

since the countable union of countable sets are countable. Hence by replacing fi by fi + ε,
the result holds.

Recall that Mχ(d) is a space of multi-sets of χ whose cardinality is d, and let Mχ =⋃
d∈NMχ(d). With this notation in mind, we can prove the following result.

Proposition 15 Given m ∈ R and countable spaces {χi}i∈I , where I is an index set satis-
fying |I| <∞, there exists a family of functions {fi : χi → Rm}i∈I so that

g(X1, . . . , X|I|) =
∑
i∈I

∑
x∈Xi

fi(x)

is unique for each (X1, . . . , X|I|) ∈Mχ1 × · · · ×Mχ|I| of bounded sizes.
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Figure 5: Two model frameworks: C-LGVR and C-LGVR+. Note that ENC component
refers to the process of extracting node coloring from the message passing graph neural
network (or coloring) C as described in Section 6.2 and 6.3.

Proof We first prove the case when |I| = 2. Since χ1 and χ2 are countable, there exists
f̃1 : χ1 → Rm and f̃2 : χ2 → Rm so that {f̃1(x1) | x1 ∈ χ1} ∩ {f̃2(x2) | x2 ∈ χ2} = ∅ by
Lemma 14. This implies that for each (X1, X2) ∈Mχ1 ×Mχ2 , we have

{{f̃1(x1) | x1 ∈ X1}} ∩ {{f̃2(x2) | x2 ∈ X2}} = ∅. (7)

Let χ := f̃1(χ1) ∪ f̃2(χ2). Since both χ1 and χ2 are countable, χ is also countable. Hence
(Xu et al., 2018a, Lemma 5) implies that there exists a function f : χ → Rn so that
g(X) =

∑
x∈X f(x) is unique for each X ∈Mχ of bounded size. Now, we put f1 = f ◦f̃1 and

f2 = f ◦ f̃2. By Equation (7), every X ∈Mχ of bounded size can be uniquely decomposed
by {{f̃1(x1) | x1 ∈ X1}}t{{f̃2(x2) | x2 ∈ X2}} for some (X1, X2) ∈Mχ1×Mχ2 of bounded
sizes. Hence g(X1, X2) =

∑2
i=1

∑
x∈Xi fi(x) is unique for each (X1, X2) ∈ Mχ1 ×Mχ2 of

bounded sizes as desired.
As in the proof of Lemma 14, the same argument used in |I| = 2 can be extended to

any finite number of countable spaces without difficulty by using the fact that countable
union of countable sets is countable.

From another point of view, we can reformulate the problem of finding the functions fi
in Proposition 15 into a simpler one of finding |I| − 1 scalar values. Since this can be easily
derived from the proof of Proposition 15, we will omit the proof.

Corollary 16 Let m ∈ R and let I be an index set satisfying |I| < ∞. Given countable
spaces {χi}i∈I and a family of functions {fi : χi → Rm}i∈I , there exists infinitely many
values ε2, . . . , ε|I| ∈ R such that

g(X1, . . . , X|I|) =
∑
x∈X1

f1(x) +

|I|∑
i=2

(1 + εi) ·
∑
x∈Xi

fi(x)

is unique for each (X1, . . . , X|I|) ∈Mχ1 × · · · ×Mχ|I| of bounded sizes.

6.2 Model Frameworks: C-LGVR and C-LVGR+

We propose two model frameworks, C-LGVR and C-LGVR+, depending on the application
of the integration technique in Section 6.1. For both model frameworks, C indicates a
message passing graph neural network.
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6.2.1 C-LGVR

Note that the output of C for a graph G may or may not be node coloring, depending on C.
For example, if C is GIN (Xu et al. (2018a)), then its output is the node coloring. However,
when C is PPGN (Maron et al. (2019)), it provides all node tuple colorings as its output,
which is not the node coloring exactly. However, since LGVR relies on the node coloring
information of C as input, we first extract the node colorings from C in order to bridge this
gap. We denote the process of extracting node coloring from C as ENC(C), and we refer to
Section 6.3 for specific examples.

After taking node coloring of G from ENC(C), we extract the LGVR persistence diagram
LGVR(G,ENC(C)) (Algorithm 1). Finally, LGVR(G,ENC(C)) is encoded via a set encoder
to extract a graph representation (Figure 5).

6.2.2 C-LVGR+

C-LVGR+ differs from C-LVGR in the way it extracts the graph representation: C-LVGR+

uses not only the C-LGVR representation but also the pooling output of C (Figure 5).
Specifically, C-LGVR+ uses

(C-LGVR representation) + (1 + ε) · (Graph Pooling of C) (8)

as the graph representation vector, where ε is a learnable parameter in Corollary 16, to
leverage the expressive powers of both representations (See Remark 17).

Remark 17 We will briefly explain how Corollary 16 is related to the fact that C-LVGR+

preserves the expressive powers of both coloring information of C and topological information
of LGVR. Note that each component of the output of C-LVGR+ (Equation 8) can be written
simply as follows: given a graph G,

1. (C-LVGR+ representation) = MLP (
∑

x0∈ph0(G) S0(x0),
∑

x1∈ph1(G) S1(x1)), where phi(G)
is the i-th persistence diagram of the Vietoris-Rips filtration of G (which is a multi-set)
and Si is a universal set encoder for each i = 0, 1, and

2. (Graph Pooling of C) =
∑

u∈V (G) C(u).

Since ph0(G), ph1(G), and {{C(u) | u ∈ V (G)}} are all multi-sets of bounded sizes, the
universalities of MLP (Hornik (1991, 1992)) and Si (Appendix C) guarantee the existence
of fi in Corollary 16. Hence this implies that C-LVGR+ extracts different representation
vectors for each triple of multi-sets (ph0(G),ph1(G), {{C(u) | u ∈ V (G)}}) by Corollary 16.
In other words, C-LVGR+ integrates the coloring information of C, which corresponds to
{{C(u) | u ∈ V (G)}}, and the topological information of LGVR, which corresponds to
(ph0(G),ph1(G)).

6.2.3 Training Loss of C-LGVR and C-LVGR+

For both C-LGVR and C-LGVR+, we train them in an end-to-end fashion by minimizing
the task-specific loss Ltask and the LGVR loss LLGVR in Algorithm 1 simultaneously, that
is, for a set of all learnable parameters θ and a hyperparameter λ,

θ∗ = argminθ
∑

G∈G,yG∈YG

{Ltask(G, yG; θ) + λ · LLGVR(G; θ)},
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where YG is the set of ground truth of G and yG ∈ YG is the ground truth of a graph G ∈ G.

6.3 Theoretical Expressivities of GIN-LGVR, GIN-LVGR+, and PPGN-LVGR+

We analyze the expressive powers of three specific models (which will be used in Section 7),
GIN-LGVR, GIN-LVGR+, and PPGN-LVGR+, with the model frameworks in Section 6.2.
As described in Section 6.2.1, we first introduce the simplest form of ENC(·) to be used in
GIN (Xu et al. (2018a)) and PPGN (Maron et al. (2019)), respectively (Figure 5).

ENC for GIN. Since GIN provides node colorings as output, ENC is set to the identity:

ENC(Y ) := Y ∈ Rn×d,

where Y ∈ Rn×d is the GIN output, n is the number of graph nodes and d is the dimension
of node colorings.

ENC for PPGN. Since PPGN provides all node tuple colorings as output, ENC is set
up to extract diagonal elements of the node tuple matrix of PPGN:

ENC(Y ) := diag(Y ) ∈ Rn×d,

where Y ∈ Rn×n×d is the PPGN output, n is the number of graph nodes and d is the
dimension of node tuple colorings.

Finally, we will conclude this section with a theoretical analysis of our models as follows.

Corollary 18 Assume that χ is countable. Then the following statements hold:

1. Assume that either all initial node colorings are the same or G contains no graphs
with isolated nodes. Then GIN-LGVR is strictly more powerful than WL test.

2. GIN-LVGR+ is strictly more powerful than WL test.

3. PPGN-LVGR+ is at least as powerful as 3-WL test.

Proof First (1) is a direct consequence of Theorem 13 and (Xu et al., 2018a, Theorem 3),
and (3) follows from Corollary 16 and Remark 17. Hence it remains to show (2). First,
Corollary 16 and Remark 17 again imply that GIN-LVGR+ is at least as powerful as the
WL test. To prove the ’strictly powerful’ part, we need to show that there exists a pair of
graphs G and H that GIN-LVGR+ can distinguish but the WL test cannot. Again, it is
easy to see thatG andH in Figure 3 work as a desired example, which concludes the proof.

7. Experiments

In this section, we evaluate the performance of our models, GIN-LGVR, GIN-LVGR+, and
PPGN-LVGR+, on several graph classification and regression benchmark datasets. We
measure the performance improvements of our models compared to the baseline message
passing GNNs C, GIN and PPGN, to demonstrate that our edge filtration-based approach
helps C to achieve a substantial gain in predictive performance. Furthermore, we compare
our models with node filtration-based ones (Hofer et al. (2020)) to validate the superiority
of edge filtration over node filtration. In short, we focus on experimental verification of the
following claims:
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Claim 1. Superior performances of our model frameworks, C-LGVR and C-LVGR+, that
outperform the message passing GNN C.

Claim 2. Superiority of edge filtration-based approach over node filtration-based one.

Claim 3. Experimental validation of our integration technique (Section 6.1; Corollary 16)
that integrates the pooling information of C and the LGVR information.

7.1 Experimental Setup

We conduct experiments on three models: GIN-LGVR, GIN-LVGR+, and PPGN-LVGR+.
Both networks, GIN (Xu et al. (2018a)) and PPGN (Maron et al. (2019)), are constructed
in their most basic form: they both consist of three message passing layers, with a hidden
dimension of 64 for GIN and 400 for PPGN. To minimize the impacts of other techniques,
we refrain from using the jumping knowledge network scheme (Xu et al. (2018b)). Finally,
to encode LGVR diagrams, which are a tuple of multi-sets, we use a set encoder. To
sufficiently leverage their topological information, we set our set encoder by combining
Deep Set (Zaheer et al. (2017)) and Set Transformer (Lee et al. (2019)) (See Appendix C
for details). We run all experiments on a single DGX-A100 GPU. Our code is publicly
available at https://github.com/samsungsds-research-papers/LGVR.

7.2 Datasets

We evaluate our methods on two different tasks: graph classification and graph regression.
For classification, we test our method on 7 benchmark graph datasets: 5 bioinformatics
datasets (MUTAG, PTC, PROTEINS, NCI1, NCI109) that represent chemical compounds
or protein substructures, and two social network datasets (IMDB-B, IMDB-M) (Yanardag
and Vishwanathan (2015)). For the regression task, we experiment on a standard graph
benchmark QM9 dataset (Ramakrishnan et al. (2014); Ruddigkeit et al. (2012); Wu et al.
(2018)). It is made up of 134k small organic molecules of varying sizes from 4 to 29 atoms,
and the task is to predict 12 real-valued physical quantities for each molecule graph. Further
details can be found in Appendix D.1.

7.3 Baseline and Comparison Models

To argue the superiority of our method, we essentially compare our models C-LGVR and C-
LVGR+ to the same message passing graph neural network C: we compare GIN-LGVR and
GIN-LVGR+ to GIN, and PPGN-LVGR+ to PPGN. To demonstrate the superiority of edge
filtration over node filtration, we further compare the performance of both methods for GIN.
For fairness in comparison, both models are constructed with the same GIN architecture
and extract topological information in a single scale.

Specifically, we conduct experiments using (1) GFL (Hofer et al. (2020)), which is a
single-scale version of node filtration, and (2) GFL+ (which we call) that integrates graph
pooling and GFL by using the integration technique in Section 6.1. All hyperparameters
were carried out on the same set based on C (Appendix D.2): the learning rate is set to
{5 · 10−3, 10−3, 5 · 10−4, 10−4, 5 · 10−5} for GIN while it is set to {10−4, 5 · 10−5} for PPGN.
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The decay rate is set to {0.5, 0.75, 1.0} with Adam optimizer (Kingma and Ba (2014)), and
we implement all the models by tuning hyperparameters based on the validation score.

7.4 Graph Classification Results

We test our models on datasets from the domains of bioinformatics and social networks.
Since there is no separate test set for these datasets, for a fair comparison, we follow the
standard 10-fold cross-validation based on the same split used by Zhang et al. (2018) and
report the results according to the evaluation protocol described by Maron et al. (2019):

max
i∈{1,...,t}

1

10
·

10∑
k=1

Pk,i, (9)

where t is the total epoch and Pk,i is the k-fold validation accuracy at i-th epoch.

7.4.1 Performance Analysis

Table 1 presents the performances of our models (GIN-LGVR, GIN-LVGR+, PPGN-LVGR+)
and comparison models (GIN, GFL, GFL+, PPGN). First of all, we experimentally verify
Claim 1, 2, 3. As shown in Table 1, our models show the best performances across all
datasets for the message passing GNN C. This empirically demonstrates that our approach
helps the GNN C to achieve substantial gains in predictive performance, which validates
Claim 1. Moreover, we found that our approach based on edge filtration shows supe-
rior performance compared to node filtration-based methods (GFL, GFL+) by utilizing
both nodes and edges to extract more informative representations. This demonstrates the
superiority of our edge filtration over node filtration (Figure 6), which validates Claim 2.
Finally, we remark that GIN-LVGR+ generally shows better performances than GIN-LGVR
and outperforms GIN on all datasets: GIN-LVGR+ achieves the best performance on 5 out
of 7 datasets. This empirically demonstrates that our theoretical framework (Corollary 16)
which integrates the pooling output of C and the LGVR output without losing information,
works well in practice, which validates Claim 3.

In addition to Claim 1, 2, 3, Table 1 provides an interesting finding: the improvement
percentages of our models compared to GIN are inversely proportional to the amount of
initial node information. Specifically, as shown in Figure 6, our models show relatively larger
improvement percentages on datasets such as MUTAG, PROTEINS, and IMDB with less
initial node information (see the feature column in Table 5), compared to PTC, NCI1,
and NCI109. This is because having an initial node with rich information enables GNNs
to extract a sufficiently expressive graph representation using only the node information
so that the performance improvement of additional topological information from LGVR
decreases. Therefore, this implies that our LGVR is more effective for datasets with less
initial node information, which are relatively difficult to analyze.

For a comprehensive analysis, we further analyze the classification results with C = GIN
from two aspects in the next subsection. Here we will briefly explain them. First, we found
that model performances varied significantly by the data split (Table 2, Figure 7). Hence we
further analyze the standard deviation of the 10-fold performances in Table 1 to determine
how stable each model is in training regardless of the data split. We found that our models,
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Table 1: Graph classification results (with mean accuracy)

Model / Dataset MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B IMDB-M

C=GIN

GIN 78.89 59.71 68.11 70.19 69.34 73.8 43.8
GFL 86.11 60.0 73.06 71.14 70.53 68.7 44.67

GFL+ 79.44 59.11 69.55 71.16 70.12 71.9 44.33
GIN-LGVR 86.67 60.29 73.42 69.22 69.39 72.5 45.47

GIN-LGVR+ 85.0 61.76 69.55 71.61 70.68 74.0 45.8

C=PPGN
PPGN 88.88 64.7 76.39 81.21 81.77 72.2 44.73

PPGN-LGVR+ 91.11 66.47 76.76 83.04 81.88 73.5 51.0

Figure 6: Improvement percentages of two filtrations compared to GIN. The performances
of two filtrations are calculated as max{PGIN-LGVR, PGIN-LVGR+} for edge filtration, and
max{PGFL, PGFL+} for node filtration, where P• is the model performance of Table 1.

GIN-LGVR and GIN-LVGR+, show low standard deviations compared to GIN, GFL, and
GFL+ (Figure 7). This implies that GIN-LVGR and GIN-LVGR+, which use both nodes
and edges to reflect various characteristics in graph representations, would have enabled
more stable learning compared to GIN, GFL, and GFL+ that only use nodes.

Next, we compare the models using performance metric different from Equation 9. Met-
rics are indicators to determine the perspective from which models are compared, hence we
measure performances based on another commonly used metric (Equation 10) to compare
models from a different perspective. Concerning this metric, our models, GIN-LGVR and
GIN-LVGR+, still exhibit the best performance compared to others (See Table 3).

7.4.2 Additional Analysis on Graph Classification with C = GIN

Here, we will provide additional analysis on the 10-fold classification results of each dataset
for five GIN type models in Section 7.4.1: GIN, GFL, GFL+, GIN-LVGR, and GIN-LVGR+.
Before conducting the analysis, we fix some notation. Let i0 be the epoch that computes
the performance (Equation 9), that is, Equation (9) = 1

10 ·
∑10

k=1 Pk,i0 . For a notational
convenience, we denote Pk,i0 by Pk.

Analysis of Pk for each model. In Section 7.4.1, we use the average of {Pk}k=1,...,10

as the final performance metric. However, as can be seen in Table 2, the performance Pk
varies significantly for each fold k. Therefore, we measure the standard deviation of the
10-fold performances in Table 1 to determine how stable each model (GIN, GFL, GFL+,
GIN-LVGR, and GIN-LVGR+) is in training regardless of the data split.
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Table 2: Minimum and maximum values of Pk for each model and dataset.

Dataset / Model GIN GFL GFL+ GIN-LVGR GIN-LVGR+

MUTAG
min 61.11 72.22 66.67 77.78 72.22
max 94.44 100.0 100.0 100.0 100.0

PTC
min 50.0 47.06 44.12 44.12 55.88
max 85.35 70.59 76.47 70.59 73.53

PROTEINS
min 59.46 63.06 58.56 63.96 58.56
max 76.58 81.08 77.48 85.59 82.88

NCI1
min 66.91 66.67 67.15 65.94 67.15
max 74.21 74.69 74.69 71.29 74.7

NCI109
min 66.02 64.8 67.23 65.78 67.48
max 72.09 74.51 74.02 73.54 75.97

IMDB-B
min 65.0 64.0 61.0 69.0 72.0
max 79.0 72.0 81.0 82.0 79.0

IMDB-M
min 39.33 39.33 32.67 42.67 40.0
max 50.0 49.33 56.67 48.0 54.0

Figure 7: Standard deviations of GIN type models: GIN, GFL, GFL+, GIN-LVGR, and
GIN-LVGR+. (Left) Each point represents the standard deviation of 10-fold performances
(Table 1) for each model and dataset. (Right) The horizontal dashed line represents the
average of the overall standard deviation for each model.

The standard deviation results for {Pk}k=1,...,10 for each model and dataset are sum-
marized in Figure 7. Here, we find that GIN-LVGR and GIN-LVGR+ show relatively
low standard deviations compared to other models. More specifically, each model shows
the following average of the overall standard deviation: 4.42 (for GIN-LVGR), 4.91 (for
GIN-LVGR+), 5.08 (for GIN), 5.16 (for GFL), and 6.66 (for GFL+). Since graphs are com-
posed of nodes and edges, the importance of nodes and edges can vary depending on the
data. From this perspective, we claim that these results stem from the characteristics of
GIN-LVGR and GIN-LVGR+, which leverage both nodes and edges. In other words, this
result implies that GIN-LVGR and GIN-LVGR+, which leverage both nodes and edges to
reflect various features in graph representations, would have enabled more stable learning
compared to other models (GIN, GFL, and GFL+) that rely solely on nodes.
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Table 3: Graph classification results (with Equation 10)

Model / Dataset MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B IMDB-M

GIN 88.33 70.29 74.5 72.31 71.97 77.3 50.0
GFL 92.22 71.47 76.84 73.23 72.88 75.2 49.6

GFL+ 91.11 69.41 73.96 73.28 72.62 77.4 51.0
GIN-LGVR 92.78 70.29 77.3 72.34 71.77 76.7 50.07

GIN-LGVR+ 91.11 72.64 74.68 73.94 73.45 77.8 52.0

Other Performance Metric: Mean of the maximum accuracy per fold. As
mentioned in Section 7.4.1, since there was no separate test set in graph classification
benchmarks, we performed 10-fold cross-validation and used Equation 9 as our performance
metric. The reason why we use this metric is that it is best suited to evaluate model
performance through cross-validation. Specifically, the key aspect of cross-validation is
to provide performance estimation and hyperparameters (for example, learning rate, decay
rate, epoch, etc) without a test set. However, to reduce the hyperparameter search space, the
epoch is typically set to a fixed value, which may result in reduced reliability of performance
estimation due to inappropriate epoch settings. To address this, we used Equation 9 as our
final performance metric. Equation 9 calculates performance estimation for all epochs,
preventing a decrease in performance reliability due to inappropriate epoch settings and
providing the optimal epoch, which is consistent with the purpose of cross-validation.

However, in addition to Equation 9, the average of the maximum validation performance
for each fold is also frequently used:

1

10
·

10∑
k=1

( max
i∈{1,...,t}

Pk,i), (10)

where t is the total epochs and Pk,i is the k-fold validation accuracy at i-th epoch. Therefore,
we also provide the classification results measured by Equation 10 in Table 3.

Note that there is a significant difference between the values of Table 1 with Equation 9
and those of Table 3 with Equation 10. Moreover, there is a slight variation in the rankings
between models for some datasets. In particular, GFL+ showed a significant ranking im-
provement for some datasets (MUTAG, IMDB-B, IMDB-M, for example) when measured
by Equation 10, due to its high variations as can be seen in Table 2 and Figure 7. How-
ever, there is no change in the model that shows the best performance for each dataset. In
other words, even when using Equation 10 as the performance metric, we confirm that our
models, GIN-LVGR and GIN-LVGR+, still show the best performance for all datasets.

7.5 Graph Regression Results

We evaluate our models on the QM9 dataset, which involves predicting 12 numeric quanti-
ties for a given molecular graph. The dataset is split into 80% train, 10% validation, and
10% test. Finally, we use the same network from the classification experiments and com-
pare the performances of models by training a single network to predict all 12 quantities
simultaneously.

Table 4 presents the test mean absolute error for both our models (GIN-LGVR, GIN-
LVGR+, PPGN-LVGR+) and comparison models (GIN, GFL, GFL+, PPGN). These results
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Table 4: Graph regression results on the QM9 dataset (with mean absolute error).

C=GIN C=PPGN

Target / Model GIN GFL GFL+ GIN-LGVR GIN-LGVR+ PPGN PPGN-LGVR+

µ 0.729 0.917 0.655 1.058 0.661 0.231 0.09
α 3.435 4.818 2.985 3.542 2.76 0.382 0.19

εhomo 0.00628 0.01595 0.00581 0.01528 0.00683 0.00276 0.00178
εlumo 0.00957 0.02356 0.00987 0.02952 0.00911 0.00287 0.0019
∆ε 0.01023 0.01737 0.01003 0.03253 0.00931 0.00406 0.00253
〈R2〉 124.05 175.23 121.33 174.96 113.1 16.07 3.47
ZPV E 0.00719 0.02354 0.00393 0.00534 0.0026 0.00064 0.00032
U0 17.477 18.938 18.121 17.458 15.705 0.234 0.216
U 17.477 18.881 18.12 17.807 15.706 0.234 0.215
H 17.476 18.923 18.118 17.626 15.705 0.229 0.217
G 17.477 18.889 18.121 17.72 15.708 0.238 0.216
Cv 1.361 3.515 1.258 1.993 1.163 0.184 0.081

provide several interesting findings. First, GIN-LVGR+ and PPGN-LVGR+, show the best
performances for almost all 12 quantities, which empirically demonstrates the superior per-
formance of our model for regression task as well. This validates Claim 1. Next, regardless
of filtration types, both GFL and GIN-LGVR, which do not use pooling information, show
a decrease in performance compared to GIN. As mentioned in the classification experiment,
we remark that such decreases in performances stem from the fact that the initial node
features of molecule graphs in QM9 are highly informative (Appendix D.1.3). However,
we found that GIN-LVGR+ outperforms GIN and GIN-LVGR for all 12 quantities. This
empirically validates the effectiveness of our integration framework technique (Section 6.1;
Corollary 16), which validates Claim 3. Finally, to verify Claim 2, we compare our models
with node filtration methodologies for the GIN type and show that GIN-LVGR+ outper-
forms node filtration-based models (GFL, GFL+) on almost all tasks (10 out of 12 tasks).
Through these results, we empirically demonstrate the superiority of our edge filtration-
based approach over node filtration-based one for regression tasks as well (Claim 2).

8. Conclusion

We propose a novel edge filtration-based persistence diagram, named Topological Edge
Diagram (TED), which can incorporate topological information into any message passing
graph neural networks. We mathematically prove that TED can preserve the node embed-
ding information as well as contain additional topological information. We further prove
that TED can even strictly increase the expressivity of the WL test. To implement our the-
oretical foundation, we propose a novel neural network-based algorithm, called Line Graph
Vietoris-Rips (LGVR) Persistence Diagram and prove that LGVR has the same expres-
sivity as TED. To evaluate the performance of LGVR, we propose two model frameworks
(C-LVGR and C-LVGR+) that can be applied to any message passing GNNs C, and prove
that they are strictly more powerful than the WL test. Through our model frameworks,
we empirically demonstrate the superior performances of our approach. The downside is
that since the ENC only extracts node coloring information, applying the C-LVGR would
result in losing all non-node coloring information. Although we address this problem by
introducing the integration technique in Section 6.1, we believe that investigating ENC to
prevent this information loss would be an interesting future work.
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Appendix A. Purpose of extension to (LKG , C̃φ) in Algorithm 1

In this section, we will explain the reason why we extend a colored line graph (LG, Cφ) to

a colored complete line graph (LKG , C̃φ). In short, it is done to extract rich topological
information about graph G by performing binary node classification on the line graph to
distinguish actual edges and virtual edges of G.

Suppose that we perform node classification on (LG, Cφ) instead of (LKG , C̃φ) with the
loss LLGVR in Algorithm 1. Then all the nodes will end up being trained to have a value
of 0 since all the nodes in LG correspond to actual edges in G. This means that all edge
values of G will be sufficiently close to 0 (that is, they are all similar), which can act as
a bottleneck in obtaining rich topological information, as the persistence of all homology
classes of phiVR(G, efC) becomes excessively short. To avoid this issue, we add virtual edges

to G using the complete graph KG and perform the node classification on (LKG , C̃φ) instead
of (LG, Cφ).

Appendix B. A remark on the range [0, 0.5] of ε for {VRε
1(V (G), ACG)}ε∈[0,0.5]

In this section, we explain why the range of ε is set to [0, 0.5] in the definition of LGVR(G, C):
(ph0({VRε

k(V (G), ACG)}ε∈[0,0.5]), . . . ,phk({VRε
k(V (G), ACG)}ε∈[0,0.5])). Since we assign scalar

values to edges through ACG and use them as distances between nodes, the range of ε de-
termines which edges are significant and used to extract the topological information of the
graph. Hence, to set an appropriate range for ε, it is necessary to interpret the values of the
distance matrix ACG, which contains information about the edges. The values in ACG range
from 0 to 1, and meaningful (or actual) edges have a value close to 0, while meaningless (or
virtual) edges have a value close to 1. Therefore, we determine that meaningful edges have
values of 0.5 or less, so we use this to extract the topological information of the graph by
setting the range of ε to [0, 0.5].

Appendix C. Our Set Encoder

To extract the representation of LGVR Diagram, we use both Deep Set (Zaheer et al.
(2017)) and Set Transformer (Lee et al. (2019)). Deep Set has a simple architecture and has
been theoretically proven to be a universal approximator of set functions under a countable
universe ((Zaheer et al., 2017, Theorem 2)). However, Deep Set operates independently on
each element of the set, which leads to the disadvantage of discarding all information related
to interactions between elements. Inspired by (Vaswani et al. (2017)), Lee et al.Lee et al.
(2019) proposed the Set Transformer, to reflect higher-order interactions between elements
in a set.

Our set encoder is constructed by combining these two models: Deep Set and Set
Transformer. Briefly speaking, we first apply Deep Set and then pass the results to Set
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Figure 8: An architecture of our set encoder. Note that Elementwise MLP means performing
MLP on each element in the multi-set, and ISAB and PMA respectively denote Induced
Set Attention Block and Pooling by Multihead Attention (Lee et al. (2019)). After passing
the 0-th and 1-st persistence diagrams through Elementwise MLPs, their outputs are not
only used as inputs for Set Transformers (Lee et al. (2019)) but also used to extract the
representation vectors of Deep Set (Zaheer et al. (2017)) through pooling (for example,
sum). Through this skip connection scheme, our set encoder takes on a form that combines
Deep Set and Set Transformer.

Transformer. We expect to reflect better element-wise interactions within the set by passing
higher-quality feature vectors through the Deep Set to Set Transformer.

Here we will describe our set encoder architecture in detail. For notational convenience,
let

phi(G) := phi({VRε
1(V (G), ACG)}ε∈[0,0.5])

for i = 0, 1. Since multi-sets ph0(G) and ph1(G) are independent of each other, we construct
each set encoder and concatenate them. First, we construct the element-wise encoding part
of Deep Set using multi-layer perceptrons MLP0

0 and MLP0
1 with two layers: for i = 0, 1,

DEi(G) := MLP0
i (phi(G)),

where

phi(G) = {{x1, . . . , xg}}, and

MLPi(phi(G)) = MLPi({{x1, . . . , xg}}) := {{MLPi(x1), . . . ,MLPi(xg)}}

Next, we construct Set Transformers ST0 and ST1 taking multi-sets DE0(G) and DE1(G)
as their inputs. For each i = 0, 1, the encoder of each STi is composed of three layers of
Induced Set Attention Block (ISAB) ISABj

i , j = 0, 1, 2, and the decoder is composed of
a single layer of Pooling by Multi-head Attention (PMA) PMAi and fully connected layer
FCi: for each i = 0, 1,

(Encoder of STi)(DEi(G)) := ISAB2
i (ISAB1

i (ISAB0
i (DEi(G)))),

STi(DEi(G)) := FCi(PMAi(Encoder of STi)(DEi(G))).
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Table 5: Details of datasets for graph classification task. Note that features (5th column)
refer to the number of classes of the initial node feature. When the feature is NA, it
indicates that there is no initial node feature so the degree is used as the initial node
feature. Moreover, #classes (6th column) means the number of classes of labels.

Dataset #graphs avg. #nodes avg. #edges features #classes

MUTAG 188 17.9 19.79 7 2
PTC 344 14.29 14.69 22 2
PROTEINS 1113 39.06 72.82 3 2
NCI1 4110 29.87 32.3 37 2
NCI109 4127 4 29.6 38 2
IMDB-B 1000 19.77 96.53 NA 2
IMDB-M 1500 13 65.94 NA 3

Now, for each i = 0, 1, we define a new vector DSTi(G) by concatenating the result of Deep
Set,

∑
x∈DEi(G) x, with the result of Set Transformer, STi(DEi(G)), and then passing it

through an additional multi-layer perceptrons MLP1
i : for each i = 0, 1,

DSTi(G) := MLP1
i ([

∑
x∈DEi(G)

x | STi(DEi(G))]).

Finally, we extract the embedding vector for the LGVR diagram by concatenating DST0(G)
and DST1(G), and passing it through the last multi-layer perceptrons MLP2:

SetEncoder(G) := MLP2([DST0(G) | DST1(G)]).

By combining the Deep Set and Set Transformer as described above, we construct our set
encoder. Note that Figure 8 depicts the overall architecture of our set encoder.

Appendix D. Experimental Details

In this section, we explain some details of datasets and hyperparameter settings used in the
experiments (Section 7).

D.1 Details of Datasets

We give detailed descriptions of datasets used in our experiments: MUTAG, PTC, PRO-
TEINS, NCI1, NCI109, IMDB-B, IMDB-M, and QM9.

D.1.1 Bioinformatics datasets

In bioinformatic graphs, the nodes have categorical input features, and we test 5 datasets
in our experiments: MUTAG, PTC, PROTEINS, NCI1, and NCI109. MUTAG is a dataset
of 188 mutagenic aromatic and heteroaromatic nitro compounds. PTC is consisted of 344
chemical compounds that reports the carcinogenicity for male and female rats. Moreover,
PROTEINS is a dataset whose nodes are secondary structure elements and there is an edge
between two nodes if they are neighborhoods in the amino-acid sequence or in 3D space.
Finally, NCI1 and NCI109, made publicly available by the National Cancer Institute, are
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Table 6: A brief description of each regression target on QM9 dataset.

Target Description

µ Dipole moment
α Isotropic polarizability
εhomo Highest occupied molecular orbital energy
εlumo Lowest unoccupied molecular orbital energy
∆ε Gap between εhomo and εlumo
〈R2〉 Electronic spatial extent
ZPV E Zero point vibrational energy
U0 Internal energy at 0K
U Internal energy at 298.15K
H Enthalpy at 298.15K
G Free energy at 298.15K
Cv Heat capacity at 298.15K

two subsets of balanced datasets of chemical compounds screened for ability to suppress or
inhibit the growth of a panel of human tumor cell lines. Statistics for these datasets are
summarized in Table 5.

D.1.2 Social network datasets

In social network graphs, no features are provided for nodes so we set all node features to
be the same (thus, node features are uninformative). We test two social network datasets
in our experiments: IMDB-B (binary) and IMDB-M (multi-class). Both datasets are movie
collaboration datasets. Each graph provides information about actors/actresses and genres
of different movies on IMDB. For each graph, nodes correspond to actors/actresses and
an edge is drawn between actors/actresses who appear in the same movie. Each graph
corresponds to a specific genre label, and the task is to classify which genre a given graph
belongs to. IMDB-B consists of collaboration graphs on Action and Romance genres, and
IMDB-M is a multi-class version of IMDB-B derived from Comedy, Romance, and Sci-Fi
genres. Statistics for these datasets are summarized in Table 5.

D.1.3 QM9 dataset

QM9 is the dataset consisting of 134k small organic molecules of varying sizes from 4 to 29
atoms. Each graph is represented by an adjacency matrix and input node features, which
can be obtained from the pytorch-geometric library Fey and Lenssen (2019). Note that
the input node features are of dimension 18, which contain information about the distance
between atoms, categorical data on the edges, etc.

This dataset has three characteristics: (1) nodes correspond to atoms and edges corre-
spond to close atom pairs, (2) edges are purely distance-based, and (3) it only provides the
coordinates of atoms and atomic numbers as node features. Moreover, the number of classes
of initial node features is 18, and the task is to predict 12 real-valued physical quantities
for each molecule graph. We provide a brief description of each regression target in Table
6. A more detailed explanation of QM9 dataset can be found in Pinheiro et al. (2020).
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Table 7: GIN Type: Details of hyperparameter settings used in our experiments for graph
classification and regression tasks.

GIN GIN-LVGR GIN-LVGR+ GFL GFL+

Dataset LR DR BS Ep LR DR BS Ep LR DR BS Ep LR DR BS Ep LR DR BS Ep

MUTAG 10−3 0.75 5 500 5 ∗ 10−4 0.75 5 500 5 ∗ 10−4 0.75 5 500 5 ∗ 10−4 0.75 5 500 10−3 0.75 5 500
PTC 10−3 0.75 5 400 10−3 0.75 5 400 5 ∗ 10−4 0.75 5 400 5 ∗ 10−4 0.75 5 400 5 ∗ 10−4 0.75 5 400
PROTEINS 10−3 0.75 5 400 10−3 0.75 5 400 10−3 0.75 5 400 5 ∗ 10−4 0.75 5 400 10−3 0.75 5 400
NCI1 5 ∗ 10−4 0.75 5 200 5 ∗ 10−4 0.75 5 200 5 ∗ 10−4 0.75 5 200 10−3 0.75 5 200 10−3 0.75 5 200
NCI109 5 ∗ 10−4 0.75 5 250 5 ∗ 10−4 0.75 5 250 10−3 0.75 5 250 5 ∗ 10−4 0.75 5 250 5 ∗ 10−4 0.75 5 250
IMDB-B 10−3 0.75 5 150 10−4 0.75 5 150 10−3 0.75 5 150 10−3 0.75 5 150 10−3 0.75 5 150
IMDB-M 10−3 0.75 5 150 10−4 0.75 5 150 10−3 0.75 5 150 10−3 0.75 5 150 10−3 0.75 5 150
QM9 5 ∗ 10−3 0.8 64 300 5 ∗ 10−5 0.8 64 300 10−3 0.8 64 300 5 ∗ 10−4 0.8 64 300 5 ∗ 10−3 0.8 64 300

Table 8: PPGN Type: Details of hyperparameter settings used in our experiments for graph
classification and regression tasks.

PPGN PPGN-LVGR+

Dataset LR DR BS Ep LR DR BS Ep

MUTAG 10−4 1.0 5 500 10−4 1.0 5 500
PTC 10−4 1.0 5 400 5 ∗ 10−5 1.0 5 400
PROTEINS 10−3 0.5 5 400 5 ∗ 10−5 0.5 5 400
NCI1 10−4 0.75 5 200 5 ∗ 10−5 0.75 5 200
NCI109 10−4 0.75 5 250 5 ∗ 10−5 0.75 5 250
IMDB-B 5 ∗ 10−5 0.75 5 150 5 ∗ 10−5 0.75 5 150
IMDB-M 10−4 0.75 5 150 5 ∗ 10−5 0.75 5 150
QM9 10−4 0.8 64 300 10−4 0.8 64 300

D.2 Details of Hyperparameter Settings

The hyperparameters we tune for each dataset are: (1) learning rate (LR), (2) decay rate
(DR), (3) batch size (BS), and (4) the number of epochs (Ep). For classification, the search
space for each hyperparameter is as follows: when C is GIN, the learning rate is set to
{10−3, 5 · 10−4, 10−4} and when C is PPGN, they are set to {10−4, 5 · 10−5}. Moreover, for
regression, in the case of PPGN, it maintains the same setting as classification, whereas in
the case of GIN, the learning rate is set to {5 · 10−3, 10−3, 5 · 10−4, 10−4, 5 · 10−5}. In both
cases, we use the Adam optimizer (Kingma and Ba (2014)) and decay the learning rate by
{0.5, 0.75, 1.0} every 20 epochs.

Among the search space for hyperparameter, we summarize the hyperparameter settings
for each dataset used in our experiments in Table 7 and 8.
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