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Abstract

We investigate the power iteration algorithm for the tensor PCA model introduced in
Richard and Montanari (2014). Previous work studying the properties of tensor power
iteration is either limited to a constant number of iterations, or requires a non-trivial data-
independent initialization. In this paper, we move beyond these limitations and analyze the
dynamics of randomly initialized tensor power iteration up to polynomially many steps. Our
contributions are threefold: First, we establish sharp bounds on the number of iterations
required for power method to converge to the planted signal, for a broad range of the signal-
to-noise ratios. Second, our analysis reveals that the actual algorithmic threshold for power
iteration is smaller than the one conjectured in the literature by a polylog(n) factor, where
n is the ambient dimension. Finally, we propose a simple and effective stopping criterion
for power iteration, which provably outputs a solution that is highly correlated with the
true signal. Extensive numerical experiments verify our theoretical results.

Keywords: Spiked model, tensor PCA, power iteration, approximate message passing,
non-convex optimization

1. Introduction

Tensors are multi-dimensional arrays that have found wide applications across various do-
mains, including neuroscience (Wozniak et al., 2007; Zhou et al., 2013), recommendation
systems (Rendle and Schmidt-Thieme, 2010; Shah and Yu, 2019), image processing (Liu
et al., 2012; Sidiropoulos et al., 2017), community detection (Nickel et al., 2011; Jing et al.,
2021), and genomics (Hore et al., 2016; Wang et al., 2019). In these applications, oftentimes
the tensor exhibits a low-rank structure, meaning that the data admits the form of a low-
dimensional signal corrupted by random noise. Efficient recovery of this intrinsic low-rank
signal not only facilitates various important machine learning tasks, e.g., clustering (Zhou
et al., 2019; Luo and Zhang, 2022; Zhou and Chen, 2023), but also spurs the development
of important methodologies in the field of scientific computing (Khoromskij and Schwab,
2011; Grasedyck et al., 2013).

In this paper, we study the problem of recovering a low-rank tensor from noisy observa-
tions of its entries. Such a problem is also known as Tensor Principal Component Analysis
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(Tensor PCA) in the literature. To set the stage, we consider the single-spike model pro-
posed by Richard and Montanari (Richard and Montanari, 2014). Under this model, we
observe a k-th order rank-one tensor corrupted by random noise:

T = λnv
⊗k +W . (1)

Here, λn > 0 is the signal-to-noise ratio that depends on the ambient dimension n, v ∈ Sn−1

is a planted signal that lies on the n-dimensional unit sphere, and W ∈ (Rn)⊗k stands for
the random noise that has i.i.d. standard Gaussian entries and is independent of the signal.
We denote by k ∈ N+ the order of the tensor. The special case k = 2 has been well studied
by statisticians, where model (1) reduces to the spiked Wigner model (Johnstone, 2001).
In particular, detection and estimation problems under the spiked matrix model have been
extensively investigated under various contexts (Johnstone, 2001; Baik et al., 2005; Benaych-
Georges and Nadakuditi, 2012; Lelarge and Miolane, 2019; Montanari and Wu, 2022), and
numerous computationally efficient algorithms have been proposed to recover the signal
(Journée et al., 2010; Ma, 2013; Deshpande et al., 2016; Montanari and Venkataramanan,
2021). The main focus of the present paper will be tensors of order k ≥ 3.

Comparing to its matrix counterpart, tensor problems with order k ≥ 3 are, in many
scenarios, much more challenging. For instance, the spectral decomposition of a matrix or
matrix PCA can be performed efficiently using polynomial-time algorithms, while tensor
decomposition and tensor PCA are known to be NP-hard (Hillar and Lim, 2013). Despite
the NP-hardness of tensor PCA, researchers have designed scalable algorithms that are
capable of recovering the planted signal, if one additionally assumes that the data are ran-
dom and follow natural distributional assumptions. This random data perspective not only
simplifies analysis in many scenarios, but also offers valuable insights on the computational
complexity and estimation accuracy of the proposed methodologies from an average-case
point of view. Exemplary algorithms that come with average-case theoretical guarantees
include iterative algorithms (Ma, 2013; Anandkumar et al., 2017a; Zhang and Xia, 2018;
Arous et al., 2020; Han et al., 2022; Huang et al., 2022), sum-of-squares (SOS) algorithms
(Hopkins et al., 2015, 2016; Potechin and Steurer, 2017; Kim et al., 2017), and spectral
algorithms (Montanari and Sun, 2018; Xia and Yuan, 2019; Cai et al., 2019).

Another striking feature of the tensor PCA model (1) is that it exhibits the so-called
computational-to-statistical gap, meaning that there exists regime of signal-to-noise ratios
within which it is information theoretically possible to recover the planted signal, while
no polynomial-time algorithms are known (Berthet and Rigollet, 2013; Arous et al., 2019;
Gamarnik, 2021; Dudeja and Hsu, 2021). A sequence of works have established that the
information-theoretic threshold of tensor PCA (1) is of order Θ(

√
n) (Richard and Monta-

nari, 2014; Lesieur et al., 2017; Chen, 2019). On the other hand, the algorithmic threshold—
the minimal signal-to-noise ratio above which recovery is efficiently achievable—is conjec-
tured to be Θ(nk/4) (Richard and Montanari, 2014).1 This critical threshold, in fact, has
been achieved by various algorithms which originate from different ideas (Hopkins et al.,
2015; Anandkumar et al., 2017a; Biroli et al., 2020).

In spite of the strong theoretical guarantees achieved by strategically crafted algorithms,
in practice, it is often preferable to resort to simple iterative algorithms. Among them,

1. Under the scaling of Richard and Montanari (2014), these two thresholds are Θ(1) (constant order) and
Θ(n(k−2)/4), respectively.
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tensor power iteration has been extensively applied to solving a large number of tensor
problems, e.g., tensor decomposition and tensor PCA (Kolda and Mayo, 2011; Richard
and Montanari, 2014; Wang and Anandkumar, 2016; Anandkumar et al., 2017b; Huang
et al., 2022; Wu and Zhou, 2023). For tensor PCA, doing power iteration is equivalent
to running projected gradient ascent on a non-convex polynomial objective function with
infinite step size. Towards understanding the dynamics of this algorithm, in Richard and
Montanari (2014) the authors proved that tensor power iteration with random initialization
converges rapidly to the true signal provided that λn & nk/2. They also employed a heuristic
argument to suggest that the necessary and sufficient condition for convergence is actually
λn & n(k−1)/2.2 Later, a more refined analysis was carried out by Huang et al. (2022). The
authors showed that tensor power iteration with a constant number of iterates succeeds
when λn & n(k−1)/2+ε, and fails when λn . n(k−1)/2−ε for an arbitrarily small positive
constant ε, thus partially confirming the n(k−1)/2 threshold conjectured by Richard and
Montanari (2014). However, their analysis is restricted to a fixed number of power iterates,
and therefore fails to capture the dynamics of tensor power iteration when the number of
iterations grows with the input dimension. Further, they did not characterize the asymptotic
behavior of tensor power iteration when λn � n(k−1)/2. Therefore, a complete picture is
still lacking. As a side note, past works have also considered tensor power iteration with a
warm start depending on some extra side information (Richard and Montanari, 2014; Huang
et al., 2022). However, how to obtain such initialization in practice remains elusive. In this
paper, we will only consider tensor power iteration with random initialization independent
of the data.

1.1 Our contribution

This paper is devoted to establishing a more comprehensive picture of tensor power iteration
starting from a random initialization. Our contributions are summarized below.

Algorithmic threshold. First, we give a partial answer to the open problem in Richard
and Montanari (2014). To be concrete, our results imply that tensor power iteration with a
random initialization provably converges to the planted signal in polynomially many steps,
requiring only λn & n(k−1)/2(log n)−C for some positive constant C that depends only on
k. Recall that the conjectured threshold in Richard and Montanari (2014) is Θ(n(k−1)/2),
our conclusion actually shows that the true phase transition for power iteration occurs at
a slightly lower signal-to-noise ratio than the one conjectured in Richard and Montanari
(2014). In order to establish such a result, we introduce the concept of alignment to measure
the correlation between the iterates obtained from power iteration and the planted signal,
and show that the evolution of this alignment can be well approximated by a low-dimensional
polynomial recurrence process. We then conduct a precise analysis on the dynamics of this
process to establish the convergence of power iteration for tensor PCA.

Number of iterations required for convergence. Second, we present a sharp char-
acterization of the number of iterations required for convergence, for λn ranging from �
n(k−1)/2 to � n(k−1)/2. To be precise, when γn := n−(k−1)/2λn ∈ [c, no(1)] for c > 0 an arbi-
trary constant that does not depend on n, we show that (1+on(1)) logk−1(logk−1 n/ logk−1 γn)

2. Again, under their scaling, these two conditions should be λn & n(k−1)/2 and λn & n(k−2)/2, respectively.
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iterations are both necessary and sufficient for convergence to occur. In a different weak
signal regime where (log n)−(k−2)/2 � γn � 1, we establish upper and lower bounds on
the number of iterations that are of the same order of magnitude on a logarithmic scale
(see Theorem 2.1 for a formal statement). Our analysis is similar to that of Huang et al.
(2022). However, the technical treatment in Huang et al. (2022) is only able to analyze
the dynamics of tensor power iteration up to a constant number of steps, which is not suf-
ficient if the initialization is random. To overcome this difficulty, in this work we develop
a novel Gaussian conditioning lemma (Lemma 3.1), which allows us to accurately analyze
the dynamics of tensor power iteration up to polynomially many steps. To the best of our
knowledge, this is the first result that studies the dynamics of tensor power iteration beyond
a constant number of iterations under the setting of model (1).

Stopping criterion. We also propose a stopping criterion that allows us to decide when
to terminate the iteration in practice. Our proposal is simple, effective, and comes with
rigorous theoretical guarantee. To summarize, the proposed stopping criterion finds an
iterate that with high probability correlates well with the hidden spike. Besides, if we
implement the proposed stopping rule, then the actual number of power iteration we im-
plement matches well with the upper and lower bounds we have established, emphasizing
both accuracy and efficiency of our proposal.

Gaussian conditioning beyond constant steps. The tool that we employ to establish
the above results is based on the Gaussian conditioning technique, which has been widely
applied to analyze the Approximate Message Passing (AMP) algorithm (Bayati and Mon-
tanari, 2011) as well as many other iterative algorithms. Prior art along this line of research
mostly studies only a constant number of iterations. Encouragingly, recent years have wit-
nessed significant progress towards generalizing such Gaussian conditioning type analysis to
accommodate settings that allow the number of iterations to grow simultaneously with the
input dimension (Rush and Venkataramanan, 2018; Li and Wei, 2022; Li et al., 2023; Wu
and Zhou, 2023). Our work contributes to this active field of research by establishing the
first result of this kind under the tensor PCA model (1). From a technical perspective, we
believe our results not only push forward the development of AMP theory, but also enrich
the toolbox to analyze general iterative algorithms.

Future directions. One interesting future direction is to generalize our convergence anal-
ysis to sub-Gaussian tensors, which requires developing non-asymptotic AMP-type analysis
for sub-Gaussian random ensembles beyond a constant number of iterations, and is highly
non-trivial. Progress in this direction is made only recently by Jones and Pesenti (2024),
and their main results are based on some complicated combinatorial arguments.

Another fascinating future direction would be to extend our main results to the multi-
rank case, namely, the observed tensor T is a rank-r tensor perturbed by random Gaussian
noise for some r > 1. Under this setting, we believe that the same Gaussian conditioning
technique can be employed to analyze the (properly defined) alignment between the power
iterates and the planted rank-r signal, and we leave that for future work.
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1.2 Organization

The rest of this paper is organized as follows. Section 2 formulates the framework and gives
our main result. We present the proof of the main theorem in Section 3, while deferring
the proofs of several auxiliary lemmas to appendices. In Section 4 we report numerical
experiments that support our theorems.

1.3 Notation

Throughout the proof, with a slight abuse of notation, we use letters c, C to represent
various constants (which can only depend on the tensor order k), whose values might not
necessarily be the same in each occurrence. For a matrix S ∈ Rd×m, we denote by ΠS ∈ Rd×d
the projection matrix onto the column space of S, and let Π⊥S := Id −ΠS. For n ∈ N+, we
define [n] = {1, 2, · · · , n}. For two sequences of positive numbers {an}n∈N+ and {bn}n∈N+ ,
we say an & bn if there exists a positive constant c, such that an ≥ c bn, we say an = on(bn)
if an/bn → 0 as n→∞, and we say an � bn if an/bn →∞ as n→∞.

2. Main results

We summarize in this section our main results. We first give a formal definition of tensor
power iteration from a random initialization. Then, we present our main theorem in which
we determine the regime of convergence and characterize the number of iterations required.
We also give a stopping criterion that determines when to terminate the power iteration.

2.1 Tensor power iteration

We denote by v0 = ṽ0 ∼ Unif(Sn−1) the random initialization that is independent of T.
Tensor power iteration initialized at v0 is defined recursively as follows:

vt+1 = T[(ṽt)⊗(k−1)] = λn〈v, ṽt〉k−1v +W [(ṽt)⊗(k−1)],

ṽt+1 =
vt+1

‖vt+1‖2
,

(2)

where W [(ṽt)⊗(k−1)] is an n-dimensional vector whose i-th entry is 〈W , ei ⊗ (ṽt)⊗(k−1)〉.
Here, ei is an n-dimensional vector that has the i-th entry being one and all the rest being
zero.

As a side remark, iteration (2) can be regarded as projected gradient ascent with infinite
step size for the following constrained optimization problem:

maximize 〈T,σ⊗k〉, subject to σ ∈ Sn−1.

2.2 Convergence analysis

Next, we study the number of iterations required for algorithm (2) to converge. To this
end, we first define the convergence criterion. For any fixed positive constant δ, let

T conv
δ := min

{
t ∈ N+ : |〈ṽt,v〉| ≥ 1− δ

}
. (3)

Our main result provides upper and lower bounds on T conv
δ , in a signal-to-noise ratio regime

when we simultaneously have γn � (log n)−(k−2)/2 and γn = no(1).
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Theorem 2.1 Recall that γn = n−(k−1)/2λn. Assume γn � (log n)−(k−2)/2 and γn = no(1).
Then for any fixed δ, η > 0, with probability 1− on(1) we have

T conv
δ ≥ max

{
exp

(
1− η

2

(
Ck
γn

)2/(k−2)
)
, (1− η) logk−1

logk−1 n

max{logk−1 γn, 1}

}
,

T conv
δ ≤ exp

(
1 + η

2

(
1

γn

)2/(k−2)
)

+ (1 + η) logk−1

logk−1 n

max{logk−1 γn, 1}
,

(4)

where Ck = (k − 2)k−2/(k − 1)k−1.

Remark 2.1 When γn & 1, Theorem 2.1 implies that

T conv
δ

logk−1
logk−1 n

max{logk−1 γn,1}

P→ 1, (5)

which gives a sharp characeterization of the number of steps required for convergence. On
the other hand, as γn drops below the constant level, T conv

δ grows drastically, but is still
polynomial in n provided that γn � (log n)−(k−2)/2. In addition, based on the upper and
lower bounds presented in the theorem, we conjecture that the time complexity of tensor
power iteration is super-polynomial when γn � (log n)−(k−2)/2. However, due to the use of
the Gaussian conditioning scheme (Lemma 3.1), our current approach can only accurately
analyze the dynamics of tensor power iteration up to polynomially many steps. Therefore,
justifying this conjecture would require the development of new theoretical tools, which we
leave for future work. Further, our Theorem 2.1 assumes γn = no(1), since Huang et al.
(2022) already proved that a constant number of power iterations is sufficient to recover the
true signal when γn & nc, for any constant c > 0 that does not depend on n.

We present the proof of Theorem 2.1 in Section 3, with proofs of auxiliary lemmas and
propositions deferred to the appendices.

2.3 Stopping criterion

Theorem 2.1 gives lower and upper bounds on the number of iterations required for con-
vergence. However, the theorem falls short of providing practical guidance regarding when
should we terminate the power iteration, as we do not assume we know any prior information
about the signal-to-noise ratio λn, or equivalently γn.

To tackle this issue, we propose in this section a simple while effective stopping criterion
that with high probability finds an iterate that aligns well with the hidden spike. In addition,
we give upper and lower bounds on the actual number of power iterations we implement if
we follow the proposed stopping criterion, which matches that introduced in Theorem 2.1.

To give a high level description, we propose to terminate the algorithm if we find any
two consecutive iterates being moderately correlated with each other. To be precise, we
define

Tstop := inf
{
t ∈ N+ :

∣∣〈ṽt−2, ṽt−3〉
∣∣ ≥ 1/2

}
. (6)

We shall output ṽTstop as an estimate of v. We give theoretical guarantee for our approach
in the theorem below, which will be proved in Appendix F.
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Theorem 2.2 We assume the conditions of Theorem 2.1. Then, for any positive constant
δ, with probability 1− on(1) we have |〈ṽTstop ,v〉| ≥ 1− δ. In addition, with high probability
we still get the upper and lower bounds as indicated in Eq. (4) if we replace T conv

δ with Tstop.

3. Proof of Theorem 2.1

We present in this section the proof of Theorem 2.1. The idea is to track the alignment
between the iterates obtained from tensor power iteration and the planted signal. Equipped
with the Gaussian conditioning technique, we are able to control the difference between this
alignment and a scalar polynomial recurrence process that we define below, and prove that
they are with high probability close to each other. This allows us to simplify our analysis
by resorting to a reduction, and the remaining convergence analysis is conducted directly
on this polynomial recurrence process.

3.1 Reduction to the polynomial recurrence process

In this section we define the alignment with the true signal and show that it can be captured
by a polynomial recurrence process.

For t ∈ N+, we define

αt := λn〈v, ṽt−1〉k−1 = γn
(√
n〈v, ṽt−1〉

)k−1
.

The magnitude of αt measures the level of alignment between the obtained iterates and
the hidden spike. We also define α0 = 0 for convenience. In the first iteration, the ini-
tial alignment is of the same order as γn, since by taking a random initialization roughly
speaking we have |〈v, ṽ0〉| � n−1/2. Throughout the paper, αt will be the key quantity that
characterizes the evolution of iteration (2).

As we have mentioned, the main goal of this section is to establish that {αt}t∈N+ can
be closely tracked by a one-dimensional discrete Markov process {Xt}t∈N, given by the
following recurrence equation:

X0 = 0, and Xt+1 = γn(Xt + Zt)
k−1 for t ≥ 0, (7)

where {Zt}t∈N+ is a sequence of i.i.d. standard Gaussian random variables. To this end, we
first develop the recurrence equation for the alignment sequence {αt}t∈N+ . Our derivation
is based on the Gaussian conditioning technique, which has been widely applied to study
the AMP algorithm (Bayati and Montanari, 2011).

Decomposing tensor power iterates

Next, we give a useful decomposition of the tensor power iterates. By definition of tensor
power iteration, we have

vt+1 =λn〈v, ṽt〉k−1v +W
[
(ṽt)⊗(k−1)

]
=αt+1v +W

[
(ṽt)⊗(k−1)

]
,

where we recall that αt+1 = λn〈v, ṽt〉k−1.
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Before proceeding, we shall first introduce several concepts that are useful for our anal-
ysis. For t ∈ N, we let V t ∈ Rn×(t+1) be a matrix whose i-th column is vi−1. Based on the
column space of V t, we can decompose the vector vt as vt = vt⊥+vt‖, where vt⊥ := Π⊥V t−1

vt

and vt‖ := ΠV t−1v
t. Analogously, we set ṽt⊥ = vt⊥/‖vt‖2 and ṽt‖ = vt‖/‖v

t‖2 as their nor-
malized versions. When the original vector is an all-zero one, we simply set its normalized
version to be itself.

We immediately see that the vectors {ṽi⊥/‖ṽi⊥‖2 : 0 ≤ i ≤ t} form an orthonormal basis
of the linear space spanned by {ṽi : 0 ≤ i ≤ t}. As a consequence, ṽt admits the following
decomposition:

ṽt =

t∑
i=0

〈ṽt, ṽi⊥〉
‖ṽi⊥‖2

· ṽi⊥
‖ṽi⊥‖2

.

For (i1, · · · , ik−1) ∈ {0, 1, · · · , t}k−1, we define

β
(t)
i1,i2,··· ,ik−1

:=
k−1∏
j=1

〈ṽij⊥, ṽ
t〉

‖ṽij⊥‖2
∈ R,

wi1,i2,··· ,ik−1
:=

k−1∏
j=1

‖ṽij⊥‖
−1
2 W

[
ṽi1⊥ ⊗ ṽ

i2
⊥ ⊗ · · · ⊗ ṽ

ik−1

⊥

]
∈ Rn.

As will become clear soon, with probability 1 over the randomness of the data generation
process, it holds that ‖ṽt⊥‖2 6= 0 for all t = O(n1/(2k−2)). Therefore, wi1,i2,··· ,ik−1

and

β
(t)
i1,i2,··· ,ik−1

are almost surely well-defined. With these definitions, we see that vt+1 can be
decomposed as the sum of the following terms:

vt+1 =αt+1v +W
[
(ṽt)⊗(k−1)

]
=αt+1v +

∑
(i1,··· ,ik−1)∈Ht

β
(t)
i1,i2,··· ,ik−1

wi1,i2,··· ,ik−1

=αt+1v +
∑

(i1,··· ,ik−1)∈Ht−1

β
(t)
i1,i2,··· ,ik−1

wi1,i2,··· ,ik−1
+
√

1− ‖ṽt‖‖
2k−2
2 gt+1,

(8)

where Ht = {0, 1, · · · , t}k−1, and

gt+1 =
1√

1− ‖ṽt‖‖
2k−2
2

∑
(i1,i2,··· ,ik−1)∈Ht\Ht−1

β
(t)
i1,i2,··· ,ik−1

wi1,i2,··· ,ik−1
. (9)

Here, we make the convention that H−1 = ∅. In what follows, we will characterize the
joint distribution of the vectors wi1,i2,··· ,ik−1

for all (i1, i2, · · · , ik−1) ∈ Ht via a Gaussian
conditioning lemma, and derive the relationship between αt+1 and αt.

The Gaussian conditioning lemma

As an important ingredient of our conditioning analysis, we introduce the sigma-algebra Ft,
which roughly speaking, is generated by the vectors associated with the first t iterations.
To be precise, we define

Ft := σ
({
wi1,i2,··· ,ik−1

: (i1, i2, · · · , ik−1) ∈Ht−1

}
∪
{
g,v0,v1, · · · ,vt,v

})
. (10)

8
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Notice that Ft ⊆ Ft+1. With these notations, we state our Gaussian conditioning lemma
as follows.

Lemma 3.1 For all t < n and all (i1, i2, · · · , ik−1) ∈Ht\Ht−1, it holds that wi1,i2,··· ,ik−1
⊥

Ft. Furthermore, wi1,i2,··· ,ik−1

i.i.d.∼ N(0, In).

The proof of Lemma 3.1 is deferred to Appendix B. With the aid of this lemma, we know
that gt+1 is independent of the wi1,i2,··· ,ik−1

’s for (i1, · · · , ik−1) ∈Ht−1. Further, since∑
(i1,i2,··· ,ik−1)∈Ht\Ht−1

(
β

(t)
i1,i2,··· ,ik−1

)2
= 1−

∑
(i1,i2,··· ,ik−1)∈Ht−1

(
β

(t)
i1,i2,··· ,ik−1

)2
(11)

= 1−
k−1∏
j=1

t−1∑
ij=0

〈ṽij⊥, ṽ
t〉2

‖ṽij⊥‖22
(12)

= 1−

(
t−1∑
i=0

〈ṽi⊥, ṽt〉2

‖ṽi⊥‖22

)k−1

(13)

= 1− ‖ṽt‖‖
2k−2
2 , (14)

it follows that gt+1 ∼ N(0, In).

Recurrence equation for the alignment

With the aid of Lemma 3.1 and decomposition (8), we are ready to establish the recurrence
equation for the alignment. For notational convenience, we let

ht+1 :=
∑

(i1,··· ,ik−1)∈Ht−1

β
(t)
i1,i2,··· ,ik−1

wi1,i2,··· ,ik−1
,

where we make the convention that h0 = 0. It then follows that

vt+1 = αt+1v + ht+1 +
√

1− ‖ṽt‖‖
2k−2
2 gt+1,

=⇒ 〈vt+1,v〉 = αt+1 + 〈ht+1,v〉+
√

1− ‖ṽt‖‖
2k−2
2 〈gt+1,v〉,

which further implies

αt+2 =λn〈ṽt+1,v〉k−1 = γn ·
( √

n

‖vt+1‖2

)k−1

· 〈vt+1,v〉k−1

= γn

( √
n

‖vt+1‖2

)k−1 (
αt+1 + 〈ht+1,v〉+

√
1− ‖ṽt‖‖

2k−2
2 · 〈gt+1,v〉

)k−1

.

Decrementing the index by one, we get the following recurrence equation for the sequence
{αt}t∈N:

αt+1 = γn

( √
n

‖vt‖2

)k−1 (
αt + 〈ht,v〉+

√
1− ‖ṽt−1

‖ ‖
2k−2
2 · 〈gt,v〉

)k−1

. (15)

The remaining parts of this section will be devoted to the analysis of {αt}t∈N based on the
above equation.
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Controlling the error terms

We then show that the recurrence equation (15) can be viewed as a perturbed version of
the polynomial process (7) with small errors. We start with defining some key quantities
in Eq. (15):

ζt :=

( √
n

‖vt‖2

)k−1

, bt := 〈ht,v〉, ct :=
√

1− ‖ṽt−1
‖ ‖

2k−2
2 . (16)

In the above display, we make the convention that ṽ−1
‖ = 0. At initialization, since ζ0 = 1,

b0 = 0, and c0 = 1, we know that the first iteration of Eq. (15) is equivalent to

α1 = γnζ0 (α0 + b0 + c0Z0)k−1 = γn (α0 + Z0)k−1 ,

where Z0 = 〈g0,v〉 ∼ N(0, 1) is by Lemma 3.1 (recall that g0 is defined in Eq. (9)). Similarly,
by the law of large numbers, we know that ζ1 = 1+on,P(1), b1 = on,P(1) and c1 = 1+on,P(1),
hence the next iteration has the following approximation:

α2 = γnζ1 (α1 + b1 + c1Z1)k−1 ≈ γn (α1 + Z1)k−1 ,

where Z1 = 〈g1,v〉 ∼ N(0, 1) is independent of α1. Indeed, we will show that the above
approximation is valid up to polynomially many steps along the power iteration path until
the alignment αt reaches a certain threshold. To be precise, we establish the following
lemma:

Lemma 3.2 For any fixed ε ∈ (1/4, 1/2), define the stopping time

Tε := min {t ∈ N+ : |αt| ≥ nε} . (17)

Then, there exists an absolute constant C > 0, such that with probability no less than
1− exp(−C

√
n), the following happens: For all t < min(Tε, n

1/2(k−1)),

ζt ∈ [1− n−1/6, 1 + n−1/6], |bt| ≤ Cn1/4+(k−1)(ε−1/2), |ct − 1| ≤ Cn2(k−1)(ε−1/2). (18)

We defer the proof of Lemma 3.2 to Appendix C. As a direct corollary of Lemma 3.2, we
immediately obtain the following proposition:

Proposition 3.1 Under the same setting as in Lemma 3.2, and let ε = εk = (6k −
11)/12(k − 1), which satisfies εk ∈ (1/4, 1/2) for all k ≥ 3. Then, we have

αt+1 = γnζt(αt + bt + ctZt)
k−1, α0 = 0. (19)

where Zt ∼ N(0, 1) is independent of (ζt, αt, bt, ct). Further, with probability at least 1 −
exp(−C

√
n), the following happens: For all t < min(Tε, n

1/2(k−1)),

ζt ∈ [1− n−1/6, 1 + n−1/6], |bt| ≤ Cn−1/6, |ct − 1| ≤ Cn−5/6. (20)

The above proposition establishes that up to min(Tε, n
1/2(k−1)) steps, the iteration of the

alignment is closely tracked by that of the one-dimensional stochastic process defined in
Eq. (7). In what follows, we show that the convergence of power iteration for tensor PCA
can be precisely characterized by the stopping time Tε. Before proceeding, we establish
high probability upper and lower bounds on Tε, detailed by the following lemma.
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Lemma 3.3 Under the assumptions of Theorem 2.1, and let ε = εk = (6k− 11)/12(k− 1)
as in the statement of Proposition 3.1. Then, for any sufficiently large n ∈ N and any
η ∈ (0, 1), with probability 1− on(1) one has

Tε ≥ max

{
exp

(
1− η

2

(
Ck
γn

)2/(k−2)
)
, (1− η) logk−1

logk−1 n

max{logk−1 γn, 1}

}
, (21)

Tε ≤ exp

(
1 + η

2

(
1

γn

)2/(k−2)
)

+ (1 + η) logk−1

logk−1 n

max{logk−1 γn, 1}
, (22)

where Ck = (k − 2)k−2/(k − 1)k−1.

The proof of Lemma 3.3 is based on Proposition 3.1. For the compactness of presentation,
we delay the proof of Lemma 3.3 to Appendix D.

3.2 Convergence of tensor power iteration

Recall that T conv
δ is defined in Eq. (3) and Tε is defined in Eq. (17). For fixed positive

constants δ and ε ∈ (1/4, 1/2), we see that for n large enough we have T conv
δ ≥ Tε. In this

section, we also show that with high probability T conv
δ ≤ Tε + 1. Putting together these

results, we conclude that if we can establish bounds on Tε, then this automatically gives
bounds on T conv

δ as well.

Now let t = Tε. Naively we have t − 1 < Tε and |αt| ≥ nε. According to the power
iteration equation, we obtain that

vt = αtv + ht +
√

1− ‖ṽt−1
‖ ‖

2k−2
2 gt.

Invoking Lemma 3.3, we see that for a large enough n, with probability 1 − on(1) it holds
that Tε ≤ n1/2(k−1). In this case we have t−1 < min(Tε, n

1/2(k−1)). Re-examining the proof
of concentration of ct in the proof of Lemma 3.2, we find that (note ε > 1/4)

P
(
‖ṽt−1
‖ ‖2 ≤ Cn

ε−1/2
)
≥ 1− exp(−Cn2ε) ≥ 1− exp(−C

√
n), (23)

where C is a positive constant, and consequently

‖ht‖2 ≤ 2
√
n · ‖ṽt−1

‖ ‖
k−1
2 ≤ Cn1/12

if we choose ε = εk = (6k − 11)/12(k − 1) as per Proposition 3.1. Note that∥∥vt∥∥
2

=
∥∥∥αtv + ht +

√
1− ‖ṽt−1

‖ ‖
2k−2
2 gt

∥∥∥
2

≤ |αt|+ ‖gt‖2 + Cn1/12 ≤ |αt|+ C
√
n

with probability at least 1− exp(−C
√
n). Therefore,

|〈ṽt,v〉| = |〈v
t,v〉|
‖vt‖2

=
|αt + bt + ctZt|

‖vt‖2
≥ |αt| − |bt| − |ctZt|

|αt|+ C
√
n

. (24)
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Again according to the proof of Lemma 3.2 and the choice of ε in Proposition 3.1, we know
that |bt| ≤ Cn−1/6 and |ct| ≤ 1 + Cn−5/6 with probability at least 1− exp(C

√
n). Further

since Zt ∼ N(0, 1), it finally follows that with high probability |〈ṽt,v〉| ≥ Cnε−1/2, which
leads to

|αt+1| = γn
∣∣√n〈v, ṽt〉∣∣k−1

> Cn1/2+1/24 (25)

for sufficiently large n, provided that γn � (log n)−(k−2)/2. Consider the next iteration:

vt+1 = αt+1v + ht+1 +
√

1− ‖ṽt‖‖
2k−2
2 gt+1.

Using standard concentration arguments, we know that∥∥∥ht+1 +
√

1− ‖ṽt‖‖
2k−2
2 gt+1

∥∥∥
2
≤ Cn1/2 ≤ Cn−1/24|αt+1|

with probability at least 1− exp(−Cn), which immediately implies that

|〈ṽt+1,v〉| ≥ 1− Cn−1/24. (26)

Therefore, T conv
δ ≤ t+ 1 = Tε + 1 with probability at least 1− exp(−C

√
n). We summarize

the main result of this section in the following lemma:

Lemma 3.4 Assume γn � (log n)−(k−2)/2 and γn = no(1). Then, with probability at least
1− exp(−C

√
n), we have

|〈ṽTε+1,v〉| ≥ 1− Cn−1/24. (27)

Namely, tensor power iteration converges in one step after αt reaches the level nε.

Combining the conclusions of Lemma 3.3 and Lemma 3.4 completes the proof of Theo-
rem 2.1.

4. Numerical experiments

We present in this section simulations that support our theories. For the simplicity of pre-
sentation, in the main text we only present experiments for several representative settings.
We refer interested readers to Appendix G for simulation outcomes under more settings.

4.1 Comparing alignment and the polynomial recurrence process

As demonstrated in Section 3, a key ingredient of our proof is to connect the tensor align-
ments {αt}t≥0 with the polynomial recurrence process {Xt}t≥0 defined in Eq. (7). Theo-
retical result that suggests their closeness has already been established in Proposition 3.1.
We complement to this result in this section by providing empirical evidence.

To set the stage, we choose n = 200, k = 3, λn = n(k−1)/2, and generate the tensor
data according to Eq. (1). We then run tensor power iteration with random initialization
and compare the marginal distributions of αt and Xt, for all t ∈ {1, 2, 3, 4}. We repeat
this procedure 1000 times independently, and collect the realized values of αt to form the
corresponding empirical distributions. We also simulate the polynomial recurrence process
{Xt}t≥0 and obtain 1000 independent samples. We display the simulation outcomes in Fig-
ure 1, which suggests that the marginal distributions already match well with a moderately
large n.
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Figure 1: Comparison of the marginal distributions between αt and Xt, for t ∈ {1, 2, 3, 4}.
Here, we set n = 200, k = 3, λn = n(k−1)/2, and run tensor power iteration
from random initialization on independent datasets for 1000 times. Note that
in this figure, the histograms for αt and Xt overlap a lot with each other (their
overlapping regions are indicated by the third color), meaning that the marginal
distributions of αt and Xt are indeed very close.

4.2 Evolution of correlation

Theorem 2.1 implies that as long as λn & 1, tensor power iteration with random initialization
will converge to the planted spike within O(log log n) iterations. In this experiment, we
provide numerical evidence that supports this claim. Throughout the experiment, we set
λn = n(k−1)/2. In Figure 2, we plot the evolution of correlation |〈ṽt,v〉| as a function of
the number of iterations t. From the figure, we see that the correlation rapidly increases
from 0 to 1 as t increases. Furthermore, the number of iterations required for convergence
is nearly independent of the input dimension, suggesting the correctness of our claim.
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Figure 2: Evolution of correlation |〈ṽt,v〉| as a function of the number of iterations t. Here,
the x axis represents the number of iterations ranging from 0 to 10, and the y
axis gives the level of correlation. We repeat the experiment independently for
1000 times for every combination of (n, k), and compute the average correlation.

4.3 Convergence probability

Next, we investigate the probability of tensor power iteration with a random initialization
converging to the planted spike. For this part we let λn = n(k−1)/2, k = 3, and use different
values of n. For each tensor realization, we run tensor power iteration from a random
initialization for a sufficiently large number of iterations and check the convergence. For
each n ∈ {25, 50, 100, 200, 400, 800}, we repeat this procedure independently for 1000 times
and compute the empirical convergence probability. Here, we say an iterate ṽt converges
to the true spike if and only if |〈ṽt,v〉| > 0.99. We plot such empirical probabilities in
Figure 3. Inspecting the figure, we see that the γ-threshold above which power iteration
with a random start achieves near probability one convergence decreases and approaches 0
as n→∞, once again suggesting the correctness of our main theorem.
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Figure 3: Probability of tensor power iteration with random initialization converging to
the hidden spike. The x axis stands for γn and the y axis gives the empirical
convergence probability averaged over 1000 independent experiments.
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4.4 Stopping rule

Finally, we evaluate the performance of the stopping rule proposed in Section 2.3. In this
experiment, we fix λn = n(k−1)/2 and consider different combinations of (n, k). For each
configuration, we independently generate five tensors following model (1), and implement
tensor power iteration from a random initialization. We then compute the correlation
between the true spike and the iterates measured by |〈ṽt,v〉|, and plot the evolution of this
correlation over the first 100 iterations. We also calculate Tstop using Eq. (6). We present
the simulation results in Figure 4. From the figure, we see that the proposed stopping rule
effectively terminates the algorithm at an early stage while simultaneously maintains high
estimation accuracy.
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Figure 4: Illustration of the effectiveness of the stopping rule. The x axis here is the log-
arithmic of the number of iterations, and the y axis shows the correlation. We
independently repeat the experiment 5 times for each setting, and record the cor-
relation along the power iteration trajectory. Here, Tstop is computed using the
power iteration iterates and is marked with a circle in the figure.

In Appendix G.2, we alter the value of the stopping threshold (which is 1/2 in the current
experiment) and still observe good performance, suggesting the proposed stopping rule is
not sensitive to the choice of the stopping threshold.
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Appendix A. Technical lemmas

Lemma A.1 (Tails of the normal distribution) Let g ∼ N(0, 1). Then for all t > 0,
we have (

1

t
− 1

t3

)
· 1√

2π
e−t

2/2 ≤ P (g ≥ t) ≤ 1

t
· 1√

2π
e−t

2/2.

Lemma A.2 (Bernstein’s inequality) Let X1, · · · , XN be independent, mean zero, sub-
exponential random variables. Then, for every t ≥ 0, we have

P

(∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

[
−cmin

(
t2∑N

i=1 ‖Xi‖2Ψ1

,
t

maxi ‖Xi‖Ψ1

)]
.

Lemma A.3 Let xi
i.i.d.∼ N(0, In) for i = 1, · · · ,m, where m <

√
n. Then, we have

P

(
sup

α∈Sm−1

∣∣∣∣∣
∥∥∥∥∥
m∑
i=1

αixi

∥∥∥∥∥
2

−
√
n

∣∣∣∣∣ ≥ ε√n
)
≤ exp(−Cε2n).

for some absolute constant C > 0.

Proof We use a covering argument. For α,β ∈ Sm−1 with ‖α− β‖2 ≤ ε, we have∣∣∣∣∣
∥∥∥∥∥
m∑
i=1

αixi

∥∥∥∥∥
2

−

∥∥∥∥∥
m∑
i=1

βixi

∥∥∥∥∥
2

∣∣∣∣∣ ≤ ‖X‖op ‖α− β‖2 ≤ C
√
nε

with probability at least 1 − exp(−Cn), where X is the matrix whose i-th column is xi.
For any fixed α ∈ Sm−1, we have

∑m
i=1 αixi ∼ N(0, In). Therefore, for any t ∈ (0,

√
n), we

have

P

(∣∣∣∣∣
∥∥∥∥∥
m∑
i=1

αixi

∥∥∥∥∥
2

−
√
n

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t

2

8

)
,

where the last inequality follows from concentration of sub-exponential random variables.
Now, let Nm

ε be an ε-net of Sm−1, we thus obtain that

P

(
sup

α∈Sm−1

∣∣∣∣∣
∥∥∥∥∥
m∑
i=1

αixi

∥∥∥∥∥
2

−
√
n

∣∣∣∣∣ ≥ 2C
√
nε

)

≤ exp(−Cn) + P

(
sup
α∈Nm

ε

∣∣∣∣∣
∥∥∥∥∥
m∑
i=1

αixi

∥∥∥∥∥
2

−
√
n

∣∣∣∣∣ ≥ C√nε
)

≤ exp(−Cn) +

(
C

ε

)m
× 2 exp

(
−C

2nε2

8

)
≤ exp(−Cε2n).

Replacing ε by Cε completes the proof.

21



Wu and Zhou

Appendix B. Proof of Lemma 3.1

Recall that Ft is defined in Eq. (10). We first show that

Ft = σ
({
wi1,i2,··· ,ik−1

: (i1, i2, · · · , ik−1) ∈Ht−1

}
∪ {g,v}

)
,

which is equivalent to proving that v0,v1, · · · ,vt are measurable with respect to the σ-
algebra on the right hand side of the above equation. Since v0 = g/ ‖g‖2, we know that v0

is measurable. Using decomposition (8) with t = 0, we know that v1 is measurable as well.
Repeating this argument yields that v2, · · · ,vt are all measurable. This proves our claim.

Next, we are in position to prove the lemma. To avoid heavy notation, we denote

ui1,··· ,ik−1
=

k−1∏
j=1

∥∥∥ṽij⊥∥∥∥−1

2
·
(
ṽi1⊥ ⊗ · · · ⊗ ṽ

ik−1

⊥

)
.

We further define for (i1, · · · , ik−1) ∈ Nk−1 and W ∈ (Rn)⊗k the rank-one tensor:

P(i1,··· ,ik−1)W = W
[
ui1,··· ,ik−1

]
⊗ ui1,··· ,ik−1

. (28)

Straightforward calculation reveals that for (i1, · · · , ik−1), (j1, · · · , jk−1) ∈ Nk−1,

P(j1,··· ,jk−1)P(i1,··· ,ik−1)W = P(i1,··· ,ik−1)W
[
uj1,··· ,jk−1

]
⊗ uj1,··· ,jk−1

=
〈
ui1,··· ,ik−1

,uj1,··· ,jk−1

〉
·W

[
ui1,··· ,ik−1

]
⊗ uj1,··· ,jk−1

(i)
= δi1j1 · · · δik−1jk−1

·W
[
ui1,··· ,ik−1

]
⊗ uj1,··· ,jk−1

= δi1j1 · · · δik−1jk−1
· P(i1,··· ,ik−1)W ,

where (i) follows from the fact that the ui1,··· ,ik−1
’s are mutually orthogonal, and δ represents

the Kronecker delta: δij = 1{i = j}. Moreover, for any subset S ⊂ Nk−1, define

PSW =
∑

(i1,··· ,ik−1)∈S

P(i1,··· ,ik−1)W , P⊥SW = W − PSW . (29)

One can prove using the previous calculation that for S, T ⊂ Nk−1,

PSPT = PTPS = PS∩T . (30)

We will show that for all t ∈ N,

W = PHt−1W + P⊥Ht−1
W̃ t, (31)

where W̃ t
d
= W and is independent of Ft. We prove Eq. (31) by induction. For t = 0, it is

obvious that we can simply choose W̃ 0 = W , since W is independent of F0 = σ({g,v}).
Now assume (31) holds for t = s, namely we have

W = PHs−1W + P⊥Hs−1
W̃ s, W̃ s

d
= W , W̃ s ⊥ Fs. (32)
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Then, for t = s+ 1, let us define

W̃ s+1 = P⊥Hs
W̃ s + PHsW

′
s, (33)

where W ′
s
d
= W and is independent of everything else. We show that W̃ s+1 defined as

above satisfies our requirement. To this end, first note that since Hs−1 ⊂Hs,

P⊥Hs
W = P⊥Hs

PHs−1W + P⊥Hs
P⊥Hs−1

W̃ s = P⊥Hs
W̃ s,

P⊥Hs
W̃ s+1 = P⊥Hs

P⊥Hs
W̃ s + P⊥Hs

PHsW
′
s = P⊥Hs

W̃ s,

which further implies that P⊥Hs
W = P⊥Hs

W̃ s+1. Hence, we deduce that

W = PHsW + P⊥Hs
W = PHsW + P⊥Hs

W̃ s+1, (34)

i.e., Eq. (31) holds for t = s+ 1. Next, it suffices to show that W̃ s+1
d
= W and that W̃ s+1

is independent of Fs+1. Recall that we already proved

Fs+1 = σ
({
wi1,i2,··· ,ik−1

: (i1, i2, · · · , ik−1) ∈Hs

}
∪ {g,v}

)
. (35)

According to Eq. (32) and direct calculation, we know that for (i1, · · · , ik−1) ∈Hs\Hs−1,

wi1,··· ,ik−1
= W

[
ui1,··· ,ik−1

]
= W̃ s

[
ui1,··· ,ik−1

]
,

and that ui1,··· ,ik−1
∈ Fs. Therefore,

Fs+1 = σ
(
Fs ∪ σ

{
W̃ s

[
ui1,··· ,ik−1

]
: (i1, · · · , ik−1) ∈Hs\Hs−1

})
. (36)

Next we compute the conditional distribution of P⊥Hs
W̃ s given Fs+1, which is equivalent

to the law of P⊥Hs
W̃ s conditioning on Fs and the random variables W̃ s

[
ui1,··· ,ik−1

]
for

(i1, · · · , ik−1) ∈ Hs\Hs−1. Here, we can view the (k − 1)-tensors ui1,··· ,ik−1
as fixed since

they are measurable with respect to Fs. By definition, these ui1,··· ,ik−1
’s are mutually

orthogonal and belong to Hs, and we know from induction hypothesis that W̃ s|Fs
d
= W .

Applying Lemma 4.1 in Huang et al. (2022) yields that the conditional distribution of
P⊥Hs

W̃ s is equal to the law of P⊥Hs
W ′′

s , where W ′′
s is an independent copy of W̃ s which is

further independent of Fs+1. As a consequence, it follows that

W̃ s+1|Fs+1
d
= P⊥Hs

W ′′
s + PHsW

′
s|Fs+1

d
= W ,

i.e., W̃ s+1
d
= W is independent of Fs+1. This completes the induction. Now, using Eq. (31),

we know that for (i1, · · · , ik−1) ∈ Ht\Ht−1, wi1,··· ,ik−1
= W̃ t[ui1,··· ,ik−1

], where W̃ t ⊥
Ft, {ui1,··· ,ik−1

} is an orthonormal set that is measurable with respect to Ft. It then

follows immediately that wi1,··· ,ik−1

i.i.d.∼ N(0, In) are independent of Ft for (i1, · · · , ik−1) ∈
Ht\Ht−1. This completes the proof of Lemma 3.1.

Appendix C. Proof of Lemma 3.2

The entire argument is divided into three parts:
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Concentration of ζt. To this end, we need to estimate
∥∥vt∥∥

2
. From Eq. (8), we know

that
vt = αtv +

∑
(i1,··· ,ik−1)∈Ht−1

β
(t−1)
i1,i2,··· ,ik−1

wi1,i2,··· ,ik−1
. (37)

Since wi1,i2,··· ,ik−1

i.i.d.∼ N(0, In), and
∑

(i1,··· ,ik−1)∈Ht−1
(β

(t−1)
i1,i2,··· ,ik−1

)2 = 1, we deduce from

Lemma A.3 that with probability at least 1− exp(−Cη2n), for all t < n1/2(k−1),

(1− η)
√
n ≤

∥∥∥∥∥∥
∑

(i1,··· ,ik−1)∈Ht−1

β
(t−1)
i1,i2,··· ,ik−1

wi1,i2,··· ,ik−1

∥∥∥∥∥∥
2

≤ (1 + η)
√
n, (38)

where η > 0 is a small constant. Further, as long as t < Tε, by definition we have

‖αtv‖2 = |αt| < nε,

which leads to

(1− 2η)
√
n ≤ (1− η)

√
n− nε ≤

∥∥vt∥∥
2
≤ (1 + η)

√
n+ nε ≤ (1 + 2η)

√
n. (39)

To summarize, we conclude that with probability at least 1 − exp(−Cη2n), the following
happens:

For all t < min(Tε, n
1/2(k−1)),

∥∥vt∥∥
2
∈ [(1− η)

√
n, (1 + η)

√
n]. (40)

Recall that ζt = (
√
n/
∥∥vt∥∥

2
)k−1, the above bound also implies that ζt ∈ [1− 2(k− 1)η, 1 +

2(k − 1)η] for sufficiently small η > 0. In fact, from the proof of Lemma A.3 we know that
η can be chosen as n−1/6/2(k − 1), so that

P
(
ζt ∈ [1− n−1/6, 1 + n−1/6] for all t < min(Tε, n

1/2(k−1))
)
≥ 1− exp(−Cn2/3). (41)

Concentration of ct. To show that ct is close to 1 with high probability, we need to
control ‖ṽt−1

‖ ‖2. By definition, we have

∥∥∥ṽt−1
‖

∥∥∥
2

=

∥∥∥vt−1
‖

∥∥∥
2

‖vt−1‖2
≤ 1

1− η

∥∥∥vt−1
‖

∥∥∥
2√

n

for all t < min(Tε, n
1/2(k−1)) + 1 with probability at least 1− exp(−Cη2n). It then suffices

to establish an upper bound for
∥∥∥vt‖∥∥∥2

with t < min(Tε, n
1/2(k−1)). Note that

vt‖ = ΠV t−1vt = ΠV t−1

(
αtv + ht +

√
1− ‖ṽt−1

‖ ‖
2k−2
2 gt

)
=αt ·ΠV t−1v + ΠV t−1ht +

√
1− ‖ṽt−1

‖ ‖
2k−2
2 ·ΠV t−1gt,

which further implies that∥∥∥vt‖∥∥∥
2
≤ αt + ‖ht‖2 +

√
1− ‖ṽt−1

‖ ‖
2k−2
2 · ‖ΠV t−1gt‖2 . (42)
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By definition of ht, we know that ht can be written as

ht = ‖ṽt−1
‖ ‖

k−1
2 ·

(t−1)k−1∑
j=1

βjwj ,

where
∑(t−1)k−1

j=1 β2
j = 1 and wj ∼i.i.d. N(0, In). Applying again Lemma A.3, it follows that

‖ht‖2 ≤ 2
√
n · ‖ṽt−1

‖ ‖
k−1
2 for all t < n1/2(k−1) (43)

with probability at least 1− exp(−Cn). Further, since gt is independent of V t−1, we have
‖ΠV t−1gt‖22 ∼ χ

2(t). As a consequence,

P
(
‖ΠV t−1gt‖2 ≤ Cn

ε for all t < n1/2(k−1)
)
≥ 1− exp

(
−Cn2ε

)
. (44)

To summarize, with probability 1 − exp(−Cn2ε), the following estimate holds for all t <
min(Tε, n

1/2(k−1)):∥∥∥vt‖∥∥∥
2
≤αt + ‖ht‖2 +

√
1− ‖ṽt−1

‖ ‖
2k−2
2 · ‖ΠV t−1gt‖2

≤nε + 2
√
n · ‖ṽt−1

‖ ‖
k−1
2 + Cnε

√
1− ‖ṽt−1

‖ ‖
2k−2
2

≤C
(
nε +

√
n · ‖ṽt−1

‖ ‖
k−1
2

)
,

which further implies that ∥∥∥ṽt‖∥∥∥
2
≤ C

(
nε−1/2 +

∥∥∥ṽt−1
‖

∥∥∥k−1

2

)
.

At initialization, we have
∥∥∥ṽ0
‖

∥∥∥
2

= 0. We will use induction to show that
∥∥∥ṽt‖∥∥∥

2
≤ (C +

1)nε−1/2 as long as the above inequality holds. Assume this is true for t− 1, then we have∥∥∥ṽt‖∥∥∥
2
≤C

(
nε−1/2 + (C + 1)k−1n(k−1)(ε−1/2)

)
≤nε−1/2

(
C + C(C + 1)k−1n(k−2)(ε−1/2)

)
≤ (C + 1)nε−1/2

for sufficiently large n. We thus conclude that

P
(
|ct − 1| ≤ Cn2(k−1)(ε−1/2) for all t < min(Tε, n

1/2(k−1))
)
≥ 1− exp(−Cn2ε). (45)

Concentration of bt. Recall the definition of bt:

bt = 〈ht,v〉 =
∑

(i1,··· ,ik−1)∈Ht−2

β
(t−1)
i1,i2,··· ,ik−1

·
〈
wi1,i2,··· ,ik−1

,v
〉

= ‖ṽt−1
‖ ‖

k−1
2 ·

(t−1)k−1∑
j=1

βj〈wj ,v〉,
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where we have
(t−1)k−1∑
j=1

β2
j = 1, and wj

i.i.d.∼ N(0, In). (46)

It then follows that

|bt| ≤ ‖ṽt−1
‖ ‖

k−1
2 · sup

β∈S(t−1)k−1−1

∣∣∣∣∣∣
(t−1)k−1∑
j=1

βj〈wj ,v〉

∣∣∣∣∣∣ ≤ ‖ṽt−1
‖ ‖

k−1
2 · ‖Wv‖2 .

Since Wv ∈ R(t−1)k−1
has i.i.d. standard normal entries, we know that ‖Wv‖2 ≤ Cn1/4

with probability no less than 1− exp(−C
√
n). Therefore,

P
(
|bt| ≤ Cn1/4‖ṽt−1

‖ ‖
k−1
2 for all t < n1/2(k−1)

)
≥ 1− exp(−C

√
n). (47)

Using the upper bound on ‖ṽt−1
‖ ‖2 we obtained in the previous paragraph, it follows that

|bt| ≤ Cn1/4‖ṽt−1
‖ ‖

k−1
2 ≤ Cn1/4+(k−1)(ε−1/2) (48)

for all t < min(Tε, n
1/2(k−1)) with probability at least 1 − exp(−C

√
n) − exp(−Cn2ε) ≥

1− exp(−C
√
n). This proves the concentration bound on bt.

Appendix D. Proof of Lemma 3.3

Note that Proposition 3.1 implies that the following event occurs with probability at least
1− exp(−C

√
n):

E =
{
ζt ∈ [1− n−1/6, 1 + n−1/6], |bt| ≤ Cn−1/6, |ct − 1| ≤ Cn−5/6 for all t < min(Tε, n

1/2(k−1))
}
.

(49)

To facilitate our analysis, we define an auxiliary stochastic process {ᾱt}t∈N as follows:

1. {ᾱt} and {αt} have the same initialization, i.e., ᾱ0 = α0 = 0.

2. For all t ∈ N, we have ᾱt+1 = γnζ̄t(ᾱt + b̄t + c̄tZt)
k−1, where (ζ̄t, b̄t, c̄t) = (ζt, bt, ct) if

t < min(Tε, n
1/2(k−1)), and (1, 0, 1) otherwise.

By definition, we know that αt = ᾱt for all t ∈ {0, 1, · · · ,min(Tε, n
1/2(k−1))}. Further,

setting δ = (C + 1)n−1/6, Proposition 3.1 then implies that

max
{∣∣ζ̄t − 1

∣∣ , ∣∣b̄t∣∣ , |c̄t − 1|
}
≤ δ, ∀t ∈ N. (50)

Below we will establish lower and upper bounds on the first hitting time of {ᾱt}t∈N to
certain level sets, which is defined as follows:

T̄ε = min {t ∈ N+ : |ᾱt| ≥ nε} . (51)

Then, we will show that T̄ε = Tε with high probability, and consequently obtain the same
lower and upper bounds on Tε. To begin with, we state a helper lemma that is useful for
establishing upper and lower bounds on T̄ε:
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Lemma D.1 Let δ := (C + 1)n−1/6. Fix ∆ ∈ [δ, 1]. Define the deterministic sequences
{bt,∆}t≥0 and {bt,∆}t≥0 recursively as follows:

b0,∆ ≥ 0, bt+1,∆ = γn(1 + ∆)k · bk−1
t,∆ , (52)

b0,∆ ≥ 0, bt+1,∆ = γn(1−∆)k · bk−1
t,∆ . (53)

Then, we have

bt,∆ =
(
γn(1 + ∆)k

)((k−1)t−1)/(k−2)
· b(k−1)t

0,∆ ,

bt,∆ =
(
γn(1−∆)k

)((k−1)t−1)/(k−2)
· b(k−1)t

0,∆ .

(54)

Furthermore, for any t ∈ N,

P
(
|ᾱt+s| ≤ bs,∆, ∀s ∈ N

∣∣ |ᾱt| ≤ b0,∆)
≥P

(
|Zs| ≤

∆bs,∆ − δ
1 + δ

,∀s ∈ N
)
≥ 1− 2

∞∑
s=0

Φ

(
−

∆bs,∆ − δ
1 + δ

)
,

(55)

P
(
|ᾱt+s| ≥ bs,∆, ∀s ∈ N

∣∣ |ᾱt| ≥ b0,∆)
≥P

(
|Zs| ≤

∆bs,∆ − δ
1 + δ

,∀s ∈ N
)
≥ 1− 2

∞∑
s=0

Φ

(
−

∆bs,∆ − δ
1 + δ

)
.

(56)

We prove Lemma D.1 in Appendix E.1.

D.1 Lower bound on T̄ε

We start with two useful propositions, whose proofs are deferred to Appendices E.2 and
E.3, respectively.

Proposition D.1 Let Ck = (k − 2)k−2/(k − 1)k−1 and δ = (C + 1)n−1/6. Define

M(k, γn, δ) :=
1

k − 2

(
Ck

γn(1 + δ)

)1/(k−2)

, N(k, γn, δ) :=
1

1 + δ

(
Ck

γn(1 + δ)

)1/(k−2)

− δ

1 + δ
.

(57)
Then, for any T ∈ N, with probability at least 1− 2TΦ(−N(k, γn, δ)), we have

max
0≤t≤T

|ᾱt| ≤M(k, γn, δ). (58)

Proposition D.2 Assume γn = no(1) and γn � (log n)−(k−2)/2. Let ε = εk = (6k −
11)/12(k − 1). Then, for any fixed η ∈ (0, 1), and tn = b(1− η) logk−1

logk−1 n

max{logk−1 γn,1}
c, we

have

P
(

max
0≤t≤tn

|ᾱt| ≤
nε

2

)
≥ 1− n−C , (59)

where C > 0 is an absolute constant.
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With the aid of Proposition D.1 and Proposition D.2, we prove the follwing lower bound
on T̄ε: For any fixed η ∈ (0, 1) and large enough n, with probability at least 1 − n−C we
have

T̄ε ≥ max

{
exp

(
1− η

2

(
Ck
γn

)2/(k−2)
)
, (1− η) logk−1

logk−1 n

max{logk−1 γn, 1}

}
. (60)

To show Eq. (60), note that by definition of T̄ε and Proposition D.2, it immediately follows
that

P
(
T̄ε ≥ (1− η) logk−1

logk−1 n

max{logk−1 γn, 1}

)
≥ 1− n−C .

It then suffices to consider the case (log n)−(k−2)/2 � γn � 1, otherwise the lower bound
on the right hand side of Eq. (60) is just (1 − η) logk−1(logk−1 n/max{logk−1 γn, 1}) for a
large enough n. Recall that M(k, γn, δ) and N(k, γn, δ) are defined in Proposition D.1. For
a large enough n, we have

M(k, γn, δ) ≤
1

k − 2

(
Ck
γn

)1/(k−2)

� nε, N(k, γn, δ) ≥
1

1 + 10δ

(
Ck
γn

)1/(k−2)

� 1,

and

1− 2TΦ (−N(k, γn, δ)) ≥ 1− 2T

N(k, γn, δ)
exp

(
−1

2
N(k, γn, δ)

2

)
.

As a consequence, as long as T ≤ exp(N(k, γn, δ)
2/2), with high probability we have

max
0≤t≤T

|ᾱt| ≤M(k, γn, δ)� nε,

which further implies that

T̄ε ≥ exp

(
1

2(1 + 10δ)2

(
Ck
γn

)2/(k−2)
)
≥ exp

(
1− η

2

(
Ck
γn

)2/(k−2)
)
,

since δ → 0 as n→∞. This completes the proof of the lower bound given in Eq. (60).

D.2 Upper bound on T̄ε

Next, we establish an upper bound for T̄ε. Our proof consists of two steps. First, we show
that in a moderately many steps, the alignment ᾱt will reach a sufficiently large magnitude.
Then, we use Lemma D.1 to prove that, after reaching this magnitude, it takes at most
(1 + η) logk−1(logk−1 n/max{logk−1 γn, 1}) steps for |ᾱt| to reach nε, where η ∈ (0, 1) is
an arbitrarily small fixed positive constant. To get started, we establish the following
proposition, the proof of which can be found in Appendix E.4.

Proposition D.3 For any m > 0 and T ∈ N, we have

P
(

max
0≤t≤T

|ᾱt| ≥ m
)
≥ 1− exp

(
−TΦ

(
−
(

m

γn(1− δ)k

)1/(k−1)
))

,

where we recall that δ = (C + 1)n−1/6.
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For ∆ ∈ (δ, 1) and L > 0, we define

m(∆, L) := max

{(
1 + ∆

γn(1−∆)k

)1/(k−2)

, L

}
, (61)

we know that (using ∆ ≥ δ)(
m(∆, L)

γn(1− δ)k

)1/(k−1)

≤ max


(

(1 + ∆)1/(k−1)

γn(1−∆)k

)1/(k−2)

,

(
L(1 + ∆)1/(k−1)

γn(1−∆)k

)1/(k−1)
 .

Define Ak,∆ := (1+∆)1/(k−1)/(1−∆)k and Bk,∆ := (1+∆)/(1−∆)k. Invoking Proposition
D.3 and taking m = m(∆, L), we know that with probability at least

1−max

{
exp

(
−TΦ

(
−
(
Ak,∆
γn

)1/(k−2)
))

, exp

(
−TΦ

(
−
(
Ak,∆L

γn

)1/(k−1)
))}

,

there exists t ≤ T satisfying

|ᾱt| ≥ m(∆, L) = max

{(
Bk,∆
γn

)1/(k−2)

, L

}
.

In what follows, we will show that for a sufficiently large L, starting from such ᾱt, it takes

at most (1+η) logk−1
logk−1 n

max{logk−1 γn,1}
steps for ᾱt reach order nε. Such a result is established

as Proposition D.4 below. We delay the proof of this proposition to Appendix E.5.

Proposition D.4 Assume γn = no(1) and γn � (log n)−(k−2)/2. Let ε = εk = (6k −
11)/12(k − 1). Then, for any fixed η ∈ (0,∞) and tn = b(1 + η) logk−1

logk−1 n

max{logk−1 γn,1}
c, for

L, n sufficiently large we have

P
(
|ᾱt+tn | ≥ nε

∣∣ |ᾱt| ≥ m(∆, L)
)
≥ 1− C exp

(
−∆2m(∆, L)2

8

)
, (62)

where C is an absolute constant.

Putting together Proposition D.3 and Proposition D.4, we obtain the following theorem:

Lemma D.2 (Upper bound on T̄ε) Assume γn = no(1), γn � (log n)−(k−2)/2, and ε =
εk = (6k − 11)/12(k − 1). For any fixed η > 0 and sufficiently large n ∈ N, with probability
1− on(1) we have

T̄ε ≤ exp

(
1 + η

2

(
1

γn

)2/(k−2)
)

+ (1 + η) logk−1

logk−1 n

max{logk−1 γn, 1}
. (63)

Proof [Proof of Lemma D.2] Let L = Ln be such that L → ∞ as n → ∞ (specific choice
of L will be discussed later). Then, from the discussion following Proposition D.3, we know
that as long as

T � max

{
exp

(
1 + η

2

(
Ak,∆
γn

)2/(k−2)
)
, exp

(
1 + η

2

(
Ak,∆L

γn

)2/(k−1)
)}

, (64)
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then with high probability there exists t ≤ T satisfying

|ᾱt| ≥ m(∆, L) = max

{(
Bk,∆
γn

)1/(k−2)

, L

}
.

Applying Proposition D.4 yields that

|ᾱt+tn | ≥ nε, tn = b(1 + η) logk−1

logk−1 n

max{logk−1 γn, 1}
c. (65)

The above calculation implies that

T̄ε ≤ T + (1 + η) logk−1

logk−1 n

max{logk−1 γn, 1}
. (66)

Next we discuss the choice of L, which will eventually lead to an upper bound on T . Let L
be the solution to the equation below

exp

(
1 + η

2

(
Ak,∆L

γn

)2/(k−1)
)

= exp

(
1 + η

2

(
Ak,∆
γn

)2/(k−2)
)

+

(
logk−1

logk−1 n

max{logk−1 γn, 1}

)1−η
,

then one can show that L→∞ as n→∞. In fact, the above equation implies

L ≥Ck,∆,η ·max

{
γ−1/(k−2)
n , γn ·

(
(1− η) · log logk−1

logk−1 n

max{logk−1 γn, 1}

)(k−1)/2
}

≥Ck,∆,η ·
(

(1− η) · log logk−1

logk−1 n

max{logk−1 γn, 1}

)1/2

→∞,

where Ck,∆,η is a constant only depending on k,∆, η. Under this choice of L, setting

T = exp

(
1 + 2η

2

(
Ak,∆
γn

)2/(k−2)
)

+ η logk−1

logk−1 n

max{logk−1 γn, 1}
(67)

verifies Eq. (64). We finally deduce that

T̄ε ≤ exp

(
1 + 2η

2

(
Ak,∆
γn

)2/(k−2)
)

+ (1 + 2η) logk−1

logk−1 n

max{logk−1 γn, 1}
. (68)

Since η and ∆ can be arbitrarily small, the above upper bound is equivalent to

T̄ε ≤ exp

(
1 + η

2

(
1

γn

)2/(k−2)
)

+ (1 + η) logk−1

logk−1 n

max{logk−1 γn, 1}
. (69)

This concludes the proof.
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D.3 Proof of the lemma

Finally, we put together results in the previous two sections and prove Lemma 3.3. Denote
the lower and upper bounds in the statement of the theorem as Lε and Uε, respectively.
Then we know that Lε ≤ T̄ε ≤ Uε ≤ n1/2(k−1) with high probability. Note that P(En)→ 1
as n→∞, where

En :=
{
αt = ᾱt for all t < min(Tε, n

1/2(k−1)) + 1 and Lε ≤ T̄ε ≤ Uε
}
. (70)

We will show that Tε = T̄ε on En. Assume this is not true, then there are two possibilities:

(a) Tε < T̄ε. Since T̄ε ≤ n1/2(k−1), we know that ᾱt = αt for all t ≤ Tε, which further
implies that |ᾱTε | ≥ nε. As a consequence, Tε ≥ T̄ε, a contradiction.

(b) Tε > T̄ε. In this case, we know that ᾱt = αt for all t < min(T̄ε+1, n1/2(k−1)) = T̄ε+1.
Therefore, |αT̄ε | ≥ n

ε, and we know that Tε ≤ T̄ε, a contradiction.

We thus conclude that Tε = T̄ε on En. Hence, with high probability Lε ≤ Tε ≤ Uε as well.
This completes the proof of Lemma 3.3.

Appendix E. Proofs of auxiliary lemmas in Appendix D

E.1 Proof of Lemma D.1

We first prove Eq. (54). Note that for any sequence {bt}t≥0 satisfying bt+1 = qbk−1
t for some

q ∈ R, one has

q1/(k−2)bt+1 =
(
q1/(k−2)bt

)k−1
,

thus leading to

q1/(k−2)bt =
(
q1/(k−2)b0

)(k−1)t

=⇒ bt = q((k−1)t−1)/(k−2)b
(k−1)t

0 .

Specializing the above equation to (b0, q) = (b̄0,∆, γn(1+∆)k) and (b0, q) = (b0,∆, γn(1−∆)k)
proves Eq. (54).

Next, we prove Eq. (55). The proof of Eq. (56) follows similarly and we omit it for
the sake of simplicity. Without loss of generality we may assume t = 0. The proof applies
without change to positive t. To prove Eq. (55), it suffices to prove the following claim:

|ᾱ0| ≤ b0,∆, and |Zs| ≤
∆bs,∆ − δ

1 + δ
, ∀s ∈ N =⇒ |ᾱs| ≤ bs,∆, ∀s ∈ N. (71)

We establish the above relationship via induction. For s = 0, it holds trivially. Now assume
|ᾱs| ≤ bs,∆, then we know that

|ᾱs+1| = γnζ̄s ·
∣∣ᾱs + b̄s + c̄sZs

∣∣k−1 ≤ γn(1 + δ) · (|ᾱs|+ δ + (1 + δ)|Zs|)k−1

≤ γn(1 + ∆) ·
(
bs,∆ + ∆bs,∆

)k−1
= γn(1 + ∆)k · bk−1

s,∆ = bs+1,∆.
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This completes the induction. As a consequence, we obtain that

P
(
|ᾱt+s| ≤ bs,∆, ∀s ∈ N

∣∣ |ᾱt| ≤ b0,∆)
≥P

(
|Zs| ≤

∆bs,∆ − δ
1 + δ

, ∀s ∈ N
)

=

∞∏
s=0

P
(
|Zs| ≤

∆bs,∆ − δ
1 + δ

)

=
∞∏
s=0

(
1− 2Φ

(
−

∆bs,∆ − δ
1 + δ

))
≥ 1− 2

∞∑
s=0

Φ

(
−

∆bs,∆ − δ
1 + δ

)
,

where the last line follows from the inequality
∏∞
s=0(1−xs) ≥ 1−

∑
xs for xs ∈ [0, 1]. This

completes the proof of the lemma.

E.2 Proof of Proposition D.1

Note that by definition of {ᾱt}t≥0, we have

|ᾱt+1| ≤ γn(1 + δ) (|ᾱt|+ δ + (1 + δ) |Zt|)k−1 .

Recall that Ck = (k − 2)k−2/(k − 1)k−1, we next show that as long as

|Zt| ≤
1

1 + δ

(
Ck

γn(1 + δ)

)1/(k−2)

− δ

1 + δ
for all 0 ≤ t ≤ T − 1,

then we also have

|ᾱt| ≤
1

k − 2

(
Ck

γn(1 + δ)

)1/(k−2)

for all 0 ≤ t ≤ T.

To this end, we use induction. For t = 0, we already have α0 = 0, so the above inequality
holds automatically. Assume that it is true for all t ≤ T − 1, then one has

|ᾱt+1| ≤ γn(1 + δ) (|ᾱt|+ δ + (1 + δ) |Zt|)k−1

≤ γn(1 + δ)

(
|ᾱt|+

(
Ck

γn(1 + δ)

)1/(k−2)
)k−1

≤ γn(1 + δ)× (k − 1)k−1

(k − 2)k−1
×
(

Ck
γn(1 + δ)

)(k−1)/(k−2)

=
1

k − 2

(
Ck

γn(1 + δ)

)1/(k−2)

= M(k, γn, δ).
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This completes the induction. As a consequence, we deduce that

P

(
|ᾱt| ≤

1

k − 2

(
Ck

γn(1 + δ)

)1/(k−2)

for all 0 ≤ t ≤ T

)

≥P

(
|Zt| ≤

1

1 + δ

(
Ck

γn(1 + δ)

)1/(k−2)

− δ

1 + δ
for all 0 ≤ t ≤ T − 1

)

=

(
1− 2Φ

(
δ

1 + δ
− 1

1 + δ

(
Ck

γn(1 + δ)

)1/(k−2)
))T

≥ 1− 2TΦ

(
δ

1 + δ
− 1

1 + δ

(
Ck

γn(1 + δ)

)1/(k−2)
)

= 1− 2TΦ (−N(k, γn, δ)) .

This completes the proof.

E.3 Proof of Proposition D.2

Take ∆ = 1. Consider the sequence {bt,∆}t≥0 defined via b0,∆ = Mk,n = logk−1 n > 0, and

bt+1,∆ = γn2k · bk−1
t,∆ .

Then, according to Lemma D.1 we know that

bt,∆ =
(

2kγn

)((k−1)t−1)/(k−2)
·M (k−1)t

k,n , (72)

and that

P
(
|ᾱt| ≤ bt,∆, ∀t ∈ N

) (i)
= P

(
|ᾱt| ≤ bt,∆, ∀t ∈ N

∣∣ |ᾱ0| ≤Mk,n

)
≥ 1− 2

∞∑
t=0

Φ

(
−
bt,∆ − δ

1 + δ

)
,

where (i) is because ᾱ0 = 0. Since γn � (log n)−(k−2)/2, we then see that Mk,n �
max{γ−1/(k−2)

n , 1}, hence for large enough n:

bt,∆ − δ
1 + δ

≥
bt,∆

2
for all t ≥ 0.

Therefore, for sufficiently large n it holds that

1− 2
∞∑
t=0

Φ

(
−
bt,∆ − δ

1 + δ

)
≥ 1− 2

∞∑
t=0

Φ

(
−
bt,∆

2

)
≥ 1− 2

∞∑
t=0

Φ

(
−
(

2k−1γnM
k−2
k,n

)t
·Mk,n

)

≥ 1− C
∞∑
t=0

exp

(
−
M2
k,n

2
·
(

2k−1γnM
k−2
k,n

)2t
)

≥ 1− C
∞∑
t=0

exp

(
−

(t+ 1)M2
k,n

2

)
≥ 1− C exp

(
−
M2
k,n

2

)
,
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where C is a positive numerical constant. Furthermore, we have

Mk,n = logk−1 n =⇒ 1− C exp

(
−
M2
k,n

2

)
≥ 1− n−C .

It then follows that for large enough n, with probability at least 1− n−C ,

max
0≤t≤tn

|ᾱt| ≤ max
0≤t≤tn

bt,∆ ≤ max
0≤t≤tn

(
max(2kγn, 1) ·Mk,n

)(k−1)t

≤
(

max(2kγn, 1) ·Mk,n

)(k−1)tn

≤
(

max(2kγn, 1) ·Mk,n

)( logk−1 n

max{logk−1 γn,1}

)1−η

= exp

((
logk−1 n

max{logk−1 γn, 1}

)1−η
·
(

logMk,n + log
(

max(2kγn, 1)
)))

≤ exp
(
C0

(
(log n)1−η/2 + (log n)1−η(log (max{γn, 1}))η

))
(i)
= no(1) ≤ nε

2

for sufficiently large n, where (i) is due to our assumption: γn = no(1). In the above display,
C0 is another positive numerical constant. This completes the proof of the proposition.

E.4 Proof of Proposition D.3

Note that for any 0 ≤ t ≤ T − 1, Zt is independent of ᾱt + b̄t. Therefore, for any x ≥ 0,
with probability Φ(−x), we have |Zt| ≥ x and sign(Zt) = sign(ᾱt + b̄t). When this event
occurs, we have∣∣ᾱt + b̄t + c̄tZt

∣∣ ≥ c̄t |Zt| ≥ (1− δ)x =⇒ |ᾱt+1| ≥ γn(1− δ)kxk−1.

Define Et := {|Zt| < x or sign(Zt) 6= sign(ᾱt + b̄t)}, then P(Et) = P
(
Et| ∩t−1

s=0 Es
)

=

1− Φ(−x) for all 0 ≤ t ≤ T − 1. Note that on (∩T−1
t=0 Et)

c, we have

max
0≤t≤T

|ᾱt| ≥ γn(1− δ)kxk−1. (73)

Since {ᾱt}t≥0 is a Markov chain, we obtain that

P
(

(∩T−1
t=0 Et)

c
)

= 1− P
(
∩T−1
t=0 Et

)
= 1−

T−1∏
t=0

P
(
Et| ∩t−1

s=0 Es
)

= 1− (1− Φ(−x))T ≥ 1− exp(−TΦ(−x)).

Now, choosing x = (m/γn(1− δ)k)1/(k−1), it follows that

P
(

max
0≤t≤T

|ᾱt| ≥ m
)
≥ 1− exp

(
−TΦ

(
−
(

m

γn(1− δ)k

)1/(k−1)
))

. (74)

This completes the proof.
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E.5 Proof of Proposition D.4

Consider the sequence {bt,∆}t≥0 defined as per Eq. (53) with b0,∆ = m(∆, L). Applying
Lemma D.1 to {ᾱt} and {bt,∆} yields

bt,∆ =
(
γn(1−∆)k

)((k−1)t−1)/(k−2)
·m(∆, L)(k−1)t , (75)

and consequently,

P
(
|ᾱt+tn | ≥ btn,∆

∣∣ |ᾱt| ≥ m(∆, L)
)

≥P
(
|ᾱt+s| ≥ bs,∆, ∀s ∈ N

∣∣ |ᾱt| ≥ m(∆, L)
)

≥ 1− 2

∞∑
s=0

Φ

(
−

∆bs,∆ − δ
1 + δ

)
. (76)

Note that by definition γn(1−∆)km(∆, L)k−2 ≥ 1 + ∆. Also note that

bt,∆ =
(
γn(1−∆)k

)−1/(k−2)
·
(
m(∆, L) · γ1/(k−2)

n (1−∆)k/(k−2)
)(k−1)t

,

hence {bt,∆}t≥0 is an increasing sequence, lower bounded by m(∆, L). Therefore, for suffi-
ciently large n the last line in Eq. (76) if further no smaller than 1− 2

∑∞
s=0 Φ(−∆bs,∆/2),

which by Eq. (75) is equal to

1− 2

∞∑
s=0

Φ

(
−∆

2

(
γn(1−∆)k

)((k−1)s−1)/(k−2)
·m(∆, L)(k−1)s

)

= 1− 2
∞∑
s=0

Φ

(
−∆

2

(
γn(1−∆)km(∆, L)k−2

)((k−1)s−1)/(k−2)
·m(∆, L)

)
(i)

≥ 1− 2
∞∑
s=0

Φ

(
−∆

2
(1 + ∆)((k−1)s−1)/(k−2) ·m(∆, L)

)
(ii)

≥ 1− 2
∞∑
s=0

Φ

(
−∆

2
(1 + ∆)sm(∆, L)

)
(iii)

≥ 1− C
∞∑
s=0

exp

(
−∆2

8
(1 + ∆)2sm(∆, L)2

)
≥ 1− C

∞∑
s=0

exp

(
−1 + 2s∆

8
∆2m(∆, L)2

)
= 1− C exp(−∆2m(∆, L)2/8)

1− exp(−∆3m(∆, L)2/4)
≥ 1− C exp

(
−∆2m(∆, L)2

8

)
,

where (i) follows from our choice of m(∆, L): γn(1−∆)km(∆, L)k−2 ≥ 1 + ∆, (ii) is due to
the inequality (k − 1)s ≥ 1 + (k − 2)s, and (iii) follows from the well-known fact regarding
Gaussian tail bound: Φ(−x) ≤ C exp(−x2/2) for x ≤ 0, where C > 0 is a numerical
constant.
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It then suffices to show that btn,∆ ≥ nε. By direct calculation, we obtain that for a
sufficiently large L and n, it holds that

btn,∆ =
(
γn(1−∆)k

)((k−1)tn−1)/(k−2)
·m(∆, L)(k−1)tn

≥
(
γn(1−∆)km(∆, L)k−2

)((k−1)tn−1)/(k−2)

≥ (γn(1−∆)km(∆, L)k−2)(k−1)tn−1

≥ (γn(1−∆)km(∆, L)k−2)(k−1)(1+η/2) logk−1(logk−1 n/max{logk−1 γn,1})

≥ (γn(1−∆)km(∆, L)k−2)(logk−1 n/max{logk−1 γn,1})(1+η/2) . (77)

By definition of m(∆, L), we see that γn(1 − ∆)km(∆, L)k−2 ≥ C∆,k,L max{γn, e}, where
C∆,k,L > 1 is a constant that depends only on (∆, k, L) (this is true if we choose L large
enough). For simplicity, define ω = max{γn, e}. To show that the last line of Eq. (77) is no
smaller than nε, it suffices to prove the following:(

logk−1 n

logk−1 ω

)1+η/2

· logk−1(C∆,k,Lω) ≥ ε logk−1 n

⇐⇒
(
logk−1 n

)η/2 · logk−1(C∆,k,Lω) ≥ ε
(
logk−1 ω

)1+η/2
.

This is true for large enough n since ω � n and C∆,k,L > 1. The proof is complete.

Appendix F. Proof of Theorem 2.2

In this section, we follow the definitions and notations introduced in the proof of Theo-
rem 2.1. Recall from Eq. (17) that Tε = min{t ∈ N+ : |αt| ≥ nε}, where

αt = λn〈v, ṽt−1〉k−1 = γn
(√
n〈v, ṽt−1〉

)k−1
.

Part I: before Tε

We first prove that with probability 1− on(1),

‖ṽt − ṽt−1‖2 < 1/2

simultaneously for all t ∈ {1, 2, · · · , Tε − 1}. Invoking Lemma 3.3, we see that for ε =
(6k − 11)/12(k − 1), with probability 1 − on(1) we have Tε + 10 < n1/10(k−1). Recall that

wi1,i2,··· ,ik−1

d
= gt

d
= N(0, In). Employing standard Gaussian concentration inequalities, we

see that with probability at least 1− on(1), it holds that∥∥wi1,i2,··· ,ik−1

∥∥
2
≤
√
n log n,

∣∣∥∥gt∥∥2
−
√
n
∣∣ ≤ log n,

∥∥gt − gt+1

∥∥
2
≥
√
n (78)

for all t ∈ {0, 1, · · · , dn1/10(k−1)e} and (i1, · · · , ik−1) ∈Ht. In addition, Lemma 3.2 implies
that with probability 1− on(1) we have∣∣∣√1− ‖ṽt−1

‖ ‖
2k−2
2 − 1

∣∣∣ = |ct − 1| ≤ Cn−5/6
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for an absolute constant C > 0 and all t ∈ {0, 1, · · · , Tε − 1}. Observe that for t ∈
{1, · · · , dn1/10(k−1)e},∑

(i1,··· ,ik−1)∈Ht−2

|βi1,i2,··· ,ik−1
|2 + c2

t = 1,
∑

(i1,··· ,ik−1)∈Ht−3

|βi1,i2,··· ,ik−1
|2 + c2

t−1 = 1,

hence using Cauchy-Schwartz inequality we get∑
(i1,··· ,ik−1)∈Ht−2

|βi1,i2,··· ,ik−1
| ≤ Cn−5/12+1/20,

∑
(i1,··· ,ik−1)∈Ht−3

|βi1,i2,··· ,ik−1
| ≤ Cn−5/12+1/20.

(79)

Plugging these bounds into Eq. (8) and applying the triangle inequality, we see that with
probability 1− on(1)

‖vt‖2 ≤ n1/2 + log n+ n(6k−11)/12(k−1) + Cn−11/30
√
n log n+ Cn−5/6 · (n1/2 + log n),

‖vt‖2 ≥ n1/2 − log n− n(6k−11)/12(k−1) − Cn−11/30
√
n log n− Cn−5/6 · (n1/2 + log n).

for all t ∈ {0, 1, · · · , Tε−1}. From the above upper bound, we see that with high probability∣∣∣‖vt‖2 − n1/2
∣∣∣ ≤ 2n(6k−11)/12(k−1)

for all t ∈ {0, 1, · · · , Tε − 1}.
We can also employ Eq. (78) and Eq. (79) to lower bound ‖vt − vt−1‖2. Invoking the

triangle inequality, we get:∥∥vt − vt−1
∥∥

2

≥‖gt − gt−1‖2 − |αt| − |αt−1| − |1− ct| · ‖gt‖2 − |1− ct−1| · ‖gt−1‖2−∑
(i1,··· ,ik−1)∈Ht−2

|βi1,i2,··· ,ik−1
| · ‖wi1,i2,··· ,ik−1

‖2 −
∑

(i1,··· ,ik−1)∈Ht−3

|βi1,i2,··· ,ik−1
| · ‖wi1,i2,··· ,ik−1

‖2.

By definition of Tε we have max{|αt|, |αt−1|} ≤ nε = n(6k−11)/12(k−1). By Lemma 3.2 we
have max{|ct − 1|, |ct−1 − 1|} ≤ Cn−5/6. Putting together the above equations, we get∥∥vt − vt−1

∥∥
2

≥‖gt − gt−1‖2 − 2n(6k−11)/12(k−1) − Cn−5/6 ·
(
n1/2 + log n

)
− Cn−11/30

√
n log n

≥n1/2 − 3n(6k−11)/12(k−1),

which holds with high probability for all t ∈ {0, 1, · · · , Tε− 1} for a sufficiently large n. We
can then use this to give a high-probability lower bound for ‖ṽt − ṽt−1‖2. Leveraging the
triangle inequality, we obtain that for a large enough n, with probability 1− on(1)∥∥ṽt − ṽt−1

∥∥
2

=

∥∥∥∥ vt

‖vt‖2
− vt−1

‖vt−1‖2

∥∥∥∥
2

≥
∥∥∥∥ vt√n − vt−1

√
n

∥∥∥∥
2

−
∣∣∣∣ 1

‖vt‖2
− 1√

n

∣∣∣∣ · ‖vt‖2 − ∣∣∣∣ 1

‖vt−1‖2
− 1√

n

∣∣∣∣ · ‖vt−1‖2

≥ 1− 20n−5/12(k−1)
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for all t ∈ {0, 1, · · · , Tε−1}. Therefore, with probability 1−on(1) we have ‖ṽt−ṽt−1‖2 < 1/2
for all t ∈ {1, 2, · · · , Tε − 1}. This completes the proof for Part I. The takeaway message is
that with high probability Tstop ≥ Tε + 1.

Part II: after Tε

In the second part of the proof, we show with high probability |〈ṽTε+1, ṽTε+2〉| ≥ 1/2, hence
Tstop ≤ Tε + 4.

We first prove with probability 1−on(1) we have |〈v, ṽTε+i〉| ≥ 1−δ for all i ∈ {1, 2, 3, 4}.
According to Eq. (26), we see that with probability 1 − on(1) we have |〈ṽTε+1,v〉| ≥ 1 −
Cn−1/24. This already proves the desired result for i = 1.

Once again we apply standard Gaussian concentration inequalities, and obtain that with
probability 1− on(1) ∣∣〈wi1,i2,··· ,ik−1

,v〉
∣∣ ≤ log n, |〈gt,v〉| ≤ log n (80)

for all t ∈ {0, 1, · · · , dn1/10(k−1)e} and (i1, · · · , ik−1) ∈Ht.
Applying Eq. (78) and the triangle inequality to Eq. (8), we get

‖vTε+2‖2 ≥ |αTε+2| −
∑

(i1,··· ,ik−1)∈HTε

|β(Tε+1)
i1,i2,··· ,ik−1

| · ‖wi1,i2,··· ,ik−1
‖2 − cTε+2‖gTε+2‖2

≥λn(1− Cn−1/24)k−1 − n1/10 ·
√
n log n,

where to get the second lower bound we use the equality |αTε+2| = λn · |〈v, ṽTε+1〉k−1|.
Similarly, we obtain ‖vTε+2‖2 ≤ λn + n1/10 ·

√
n log n. Therefore,

|〈ṽTε+2,v〉| = |〈v
Tε+2,v〉|
‖vTε+2‖2

=
1

‖vTε+2‖2
·

∣∣∣∣∣∣αTε+2 +
∑

(i1,··· ,ik−1)∈HTε

β
(Tε+1)
i1,i2,··· ,ik−1

〈wi1,i2,··· ,ik−1
,v〉+ cTε+2〈gTε+2,v〉

∣∣∣∣∣∣
≥ 1

λn + n1/10 ·
√
n log n

·
(
λn(1− Cn−1/24)k−1 − n1/10 log n

)
≥ 1− on(1)

with probability 1−on(1). Following the same route, we are able to conclude that with high
probability |〈ṽTε+3,v〉| = 1 − on(1) and |〈ṽTε+3,v〉| = 1 − on(1). As a direct consequence,
we see that with high probability mini∈{1,2,3,4} |〈ṽTε+i,v〉| ≥ 1− δ.

Finally, we show |〈ṽTε+1, ṽTε+2〉| > 1/2. Let s = sign(〈v, ṽTε+1〉), then

|〈ṽTε+1, ṽTε+2〉| = |〈ṽTε+1, ṽTε+2 − sv〉+ s〈v, ṽTε+1〉| ≥ |〈v, ṽTε+1〉| − ‖ṽTε+2 − sv‖2.
(81)

With high probability

‖ṽTε+2 − sv‖22 = 2− 2s〈v, ṽTε+2〉 = 2− 2|〈v, ṽTε+2〉| = on(1).

Plugging the above upper bound into Eq. (81), we get

|〈ṽTε+1, ṽTε+2〉| ≥ 1− on(1),
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which further implies that with probability 1 − on(1) the inner product |〈ṽTε+1, ṽTε+2〉| is
larger than 1/2. Hence, Tstop ≤ Tε+4. Recall that we have proved mini∈{1,2,3,4} |〈ṽTε+i,v〉| ≥
1 − δ with high probability, which further implies that with high probability |〈v, ṽTstop〉| ≥
1− δ. The proof is complete.

Appendix G. Additional experiments

G.1 Comparing alignment and the polynomial recurrence process

We collect in this section additional experiments for Section 4.1. The basic setup is the same
as that presented in the main text. Throughout the experiment, we fix λn = n(k−1)/2, and
use different combinations of (n, k). As before, we compare the marginal distributions of
{αt}t≥0 and {Xt}t≥0 by comparing the histograms of their empirical marginal distributions,
generated from 1000 independent experiments. Observing the simulation outcomes, we see
that they all match well.

Setting I: n = 100,k = 3

Simulation results are plotted as Figure 5.
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Figure 5: Comparison of the marginal distributions between αt and Xt, for t ∈ {1, 2, 3, 4}
from left to right. Here, we set n = 100, k = 3, λn = n(k−1)/2, and run ten-
sor power iteration from random initialization on independent datasets for 1000
times.

Setting II: n = 500,k = 3

Simulation results are plotted as Figure 6.

Setting III: n = 1000,k = 3

Simulation results are plotted as Figure 7.

Setting IV: n = 100,k = 4

Simulation results are plotted as Figure 8.

Setting IV: n = 200,k = 4

Simulation results are plotted as Figure 9.
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Figure 6: Comparison of the marginal distributions between αt and Xt, for t ∈ {1, 2, 3, 4}
from left to right. Here, we set n = 500, k = 3, λn = n(k−1)/2, and run ten-
sor power iteration from random initialization on independent datasets for 1000
times.
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Figure 7: Comparison of the marginal distributions between αt and Xt, for t ∈ {1, 2, 3, 4}
from left to right. Here, we set n = 1000, k = 3, λn = n(k−1)/2, and run
tensor power iteration from random initialization on independent datasets for
1000 times.

G.2 Experiments with different stopping thresholds

In this section, we adjust the stopping threshold value, and test the proposed stopping
criterion under these values. To be specific, we consider here thresholds 0.3 and 0.7, and
conduct the corresponding experiments. Counterparts of Figure 4 are presented as Figures
10 and 11. These figures suggest that the effectiveness of the stopping rule is not sensitive
to the choice of the stopping threshold.
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Figure 8: Comparison of the marginal distributions between αt and Xt, for t ∈ {1, 2, 3, 4}
from left to right. Here, we set n = 100, k = 4, λn = n(k−1)/2, and run ten-
sor power iteration from random initialization on independent datasets for 1000
times.
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Figure 9: Comparison of the marginal distributions between αt and Xt, for t ∈ {1, 2, 3, 4}
from left to right. Here, we set n = 200, k = 4, λn = n(k−1)/2, and run ten-
sor power iteration from random initialization on independent datasets for 1000
times.
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Figure 10: Illustration of the effectiveness of the stopping rule with stopping threshold 0.3.
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Figure 11: Illustration of the effectiveness of the stopping rule with stopping threshold 0.7.
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