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Abstract

This work addresses the mediator feedback problem, a bandit game where the decision set
consists of a number of policies, each associated with a probability distribution over a com-
mon space of outcomes. Upon choosing a policy, the learner observes an outcome sampled
from its distribution and incurs the loss assigned to this outcome in the present round. We
introduce the policy set capacity as an information-theoretic measure for the complexity
of the policy set. Adopting the classical EXP4 algorithm, we provide new regret bounds
depending on the policy set capacity in both the adversarial and the stochastic settings.
For a selection of policy set families, we prove nearly-matching lower bounds, scaling simi-
larly with the capacity. We also consider the case when the policies’ distributions can vary
between rounds, thus addressing the related bandits with expert advice problem, which
we improve upon its prior results. Additionally, we prove a lower bound showing that
exploiting the similarity between the policies is not possible in general under linear bandit
feedback. Finally, for a full-information variant, we provide a regret bound scaling with
the information radius of the policy set.

Keywords: regret minimization, multi-armed bandits, expert advice, information theory,
best of both worlds

1. Introduction

The framework of multi-armed bandits (MAB) models sequential decision-making problems
with partial feedback. Real-world applications of this framework span a wide array of
domains and include problems such as dynamic pricing (Misra et al., 2019) and advert
placement (Schwartz et al., 2017). In the classical non-stochastic MAB problem (Auer et al.,
1995), a learner, faced with a fixed set of actions (also referred to as “arms”), repeatedly
interacts with the environment in a series of rounds by selecting an action and subsequently
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observing a numerical loss assigned beforehand to this action. The performance of the
learner is measured via the notion of regret, which compares the cumulative loss of the
learner with that of the best action in hindsight. The minimax regret for this problem, that
is, the smallest achievable regret in the worst-case, is known to be of order

√
KT (Audibert

and Bubeck, 2009), with K being the number of actions and T the number of rounds.

This formulation, however, fails to model situations in which, aside from observing the
loss of the played action, the learner could—in the same round—obtain information con-
cerning the losses of other actions. This information leakage could be a result of prior
knowledge of an underlying structure for the losses, or owing to more explicit side observa-
tions. Regardless of form, such extra information can lead to more efficient learning in the
face of large (or even infinite) action sets. A prominent example of structured losses is ex-
hibited by the (adversarial) linear bandits problem, in which the action set is a subset of Rd
and the loss assigned to an action in a given round is the inner product between the action
and a common latent loss vector associated with that round. For this setting, Bubeck et al.
(2012) provide an algorithm achieving nearly optimal regret bounds of order

√
dT logK for

finite action sets and d
√
T log T for compact actions sets. On the other hand, a simple form

of side observations is modelled by the framework of online learning with graph feedback, in
which, upon choosing an action, the learner additionally observes the losses of the actions
adjacent to the chosen one in a given graph. Algorithms exploiting this extra feedback can
enjoy improved regret guarantees depending on the structure of the graph (see, e.g., Alon
et al., 2015).

In this work, we study a certain bandit model where the information leakage results
from a combination of side observations and a structured assignment of losses. In the
basic template of this model, the learner is faced with a policy set whose elements are each
associated with a probability distribution over a common (finite) space of outcomes. At each
round, a (latent) loss map associates each outcome with a numerical loss. Upon choosing a
policy, an outcome is sampled from its distribution, and the learner subsequently observes
both the outcome and its associated loss. Depending on the problem, the loss map could
be fixed over the rounds or changing in a stochastic or adversarial manner. The regret in
this framework is defined as the difference between the (expected) cumulative loss of the
learner and that of the optimal policy in hindsight. Our main goal is to understand how the
structure of the policy set, in particular, how the similarity between the policies affects the
achievable regret. One aspect of this problem reminiscent of linear bandits is that having
chosen a policy, the learner’s expected loss is linear in the policy’s distribution, seen as a
vector in the simplex. The distinction, however, is that the learner does not observe this
quantity, as would be the case under linear bandit feedback; instead, one outcome, sampled
via the chosen policy, and its assigned loss are observed.

This framework has been studied in the works of Papini et al. (2019) and Metelli et al.
(2021), where it was referred to as the mediator feedback model. The name here highlights
the role of the outcomes as an extra layer of feedback “mediating” between the chosen
policy and the observed loss, thereby allowing additional information gain regarding other
policies. This feedback model arises in these two works from a certain formulation of the
online policy optimization problem in episodic reinforcement learning. An instance of their
setting is characterized by a Markov decision process (MDP) and a set of policies that
map states to distributions over actions. At every round of interaction, the learner selects a
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policy through which they interact with the MDP for a fixed horizon. Naturally, the learner
observes both the sampled trajectory and the accumulated reward, and aims to compete
with the best policy from the given policy set. In this case, the trajectories are the outcomes
over which each policy induces a probability distribution.

The feedback structure of the mediator framework is shared with the more classical
problem of bandits with expert advice (Auer et al., 1995). This problem is a variation
of the (non-stochastic) MAB problem described above, where at the beginning of every
round, the learner receives “advice” from each of a number of “experts” in the form of
a probability distribution over the actions. The goal then becomes competing with the
(expected) cumulative loss of the best expert in hindsight. Here, the actions of the MAB
instance play the role of the outcomes, which are sampled from the distributions provided by
the experts. Exactly fitting this problem into the mediator feedback framework additionally
requires restricting the learner to only access the actions by way of sampling from (a mixture
of) the experts’ distributions, though this requirement is already satisfied by most state-
of-the-art approaches. A more important distinction of the expert advice problem is the
incorporation of a contextual element in that the distributions recommended by the experts
can vary from round to round. Given our stated goal of studying the extent to which
the similarity between the available distributions can be exploited, the addition of this
contextual element is somewhat orthogonal to the main focus of this work, though it will
still be briefly treated.

1.1 Prior Results

The Exp4 algorithm was proposed in the work of Auer et al. (1995) to address the bandits
with expert advice problem, and remains an important benchmark in the contextual bandits
literature. It was shown to enjoy a regret bound of order

√
KT logN , where N is the

number of experts and K still denotes the number of actions. As the recommendations
of an expert can be seen as a strategy against which the learner is competing, this result
shows that one can achieve a regret scaling only logarithmically with the number of such
strategies. This was later shown to be nearly optimal by Seldin and Lugosi (2016), who
proved a lower bound of order

√
KT logN/ logK. However, this lower bound concerns

an instance where the number of experts is exponential in the number of actions, and the
experts’ distributions are deterministic. The former is not surprising; if the number of
experts is small compared to the arms, one can always achieve a regret of order

√
NT

by playing a minimax optimal bandit algorithm directly over the experts, entirely casting
aside the structure of the problem. More importantly, the bound of Auer et al. (1995) does
not reflect one’s expectation that the problem should become easier if the recommended
distributions are more similar, and the lower bound does not address this question.

Via an elaborate modification of Exp4, McMahan and Streeter (2009) did address these
very two points. For a fixed set of expert recommendations, their algorithm achieves a bound
of order

√
ST logN , where S, formally defined in Section 3, is a notion of effective size of

the set of recommended distributions (i.e., the policy set). It satisfies S ≤ min{K,N}, but
can be smaller depending on the similarity between the distributions—or the “agreement
between the experts”. Specifically, it reaches its smallest value, S = 1, when all the distri-
butions are identical. One issue with this bound is that when the number of experts is small
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(say, only two), the fact that S ≥ 1 means that no substantial improvement is achieved over
the
√
NT bound, no matter how similar the distributions are. Indeed, S − 1 is arguably

a more apt metric as it can shrink arbitrarily if the distributions are similar enough. In
particular, it reduces to the total variation distance when there are only two distributions.
Nevertheless, even if the bound were to scale with this quantity, one may ask whether this
is the best achievable dependence on the structure of the policy set. We note in passing
that the bound of McMahan and Streeter (2009) can also be achieved by plain Exp4 in the
general case (see Lattimore and Szepesvári, 2020, Theorem 18.3), where it takes the form√∑

t St logN with St measuring the (dis)agreement between the experts at the t-th round.

While these results concern the adversarial regime, where no statistical constraints are
placed on the losses, similar mediator feedback problems have been studied in the stochastic
regime, where the losses are drawn at every round from a fixed distribution. This includes
the aforementioned works of Papini et al. (2019) and Metelli et al. (2021), and that of
Sen et al. (2018), who consider a stochastic variant of the expert advice problem. Unlike
the worst-case flavour (in terms of the dependence of the loss map) of the bounds in the
adversarial regime, the results in these works are generally instance-based; the bounds en-
joy a logarithmic dependence on the time horizon, but degrade in harder instances where
suboptimal policies are difficult to discern. Still, the dependence of these bounds on the
policy set structure is largely independent of the loss map as it is primarily represented via
diameter-like quantities measuring the pairwise maximum “distance” between the distribu-
tions according to some dissimilarity measure, mainly the chi-squared divergence or related
quantities. Comparing S − 1 with this chi-squared “diameter”, neither quantity uniformly
dominates the other, though the former is always bounded, while the latter need not be.

In the online learning and bandits literature, best-of-both-worlds (BOBW) algorithms
(Bubeck and Slivkins, 2012) address the adversarial and stochastic regimes simultaneously
without prior knowledge of the nature of the environment. They guarantee regret (poly)
logarithmic in the time horizon when the faced environment is stochastic, while retaining
sub-linear regret against general environments. Of particular relevance to our setting is
the recent work of Dann et al. (2023), where they obtain the first BOBW guarantees for
bandits with expert advice (or contextual bandits) using Exp4 as a black-box decision rule
within a cascade of two meta-algorithms. For stochastic environments, the bound is of order
K log T logN/∆, where ∆ denotes the minimum sub-optimality gap for the experts, whereas
the traditional bound of

√
KT logN is guaranteed for all environments. As apparent, these

bounds feature the usual coarse dependence on the number of actions and are therefore
unable to reflect the affinity of the recommended distributions.

1.2 Contributions1

In this work, we consider a generic mediator feedback setting with finite policy and outcome
sets. We propose a new complexity (or effective size) measure for the policy set, which we
refer to as the chi-squared capacity of the policy set, or simply the policy set capacity.
This quantity (defined in Section 3) can be interpreted as the information capacity of a
certain hypothetical communication channel induced by the policy set, albeit we define the
mutual information between the input and output of said channel in terms of the chi-squared

1. A preliminary version of this work appeared as (Eldowa et al., 2023).
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divergence in lieu of the standard Kullback–Leibler divergence. The channel referred to here
is one whose input alphabet is the policy set and output alphabet is the outcome set, while
its transition matrix is defined such that conditioned on an input policy, the output is drawn
from the policy’s distribution. Besides its more natural information-theoretic interpretation,
this notion of capacity is never larger than either S−1 or the maximum pairwise chi-squared
divergence. Moreover, when the policy set consists of only two policies, the capacity reduces
to a (symmetric) divergence measure of the same order as the squared Hellinger distance
and the triangular discrimination.

In Section 3, we consider the adversarial regime and provide an improved regret bound
of order max{

√
CT logN, logN} for Exp4, where C denotes the capacity. Unlike prior re-

sults, the horizon-dependent term in this bound can shrink arbitrarily if the distributions
are similar enough. We then extend this result to the case when the policies’ distributions
can vary between rounds, thus addressing the general bandits with expert advice problem.
In particular, we show that the same algorithm run with an adaptive learning rate enjoys a
bound essentially of order

√∑
t Ct logN , where Ct is the capacity of the policies’ distribu-

tions at round t. This bound is obtained as an implication of a stronger history-dependent
bound, where the complexity of the policy set in a given round is represented through
the mutual (chi-squared-)information between the chosen policy and the drawn outcome,
conditioned on the events up to the previous round.

Still considering the Exp4 algorithm, we provide best-of-both-worlds bounds in Sec-
tion 4. In the stochastic regime, we show that the algorithm enjoys a bound of order
C log T log(NT )/∆, where ∆ is the minimum sub-optimality gap for the policies. Simulta-
neously, the algorithm is shown to retain a worst-case bound of order

√
CT log T logN . The

former bound follows from a more general guarantee that we provide for the adversarially
corrupted stochastic regime, an intermediate regime commonly considered in BOBW works
(see, e.g., Ito et al., 2022; Dann et al., 2023). The proof of this result builds upon the
techniques developed in (Ito et al., 2022) for proving BOBW bounds for a related algorithm
in the setting of online learning with graph feedback.

We complement these results in Section 5 by proving worst-case lower bounds for three
families of policy sets. These lower bounds scale with the policy set capacity in the same
manner as the regret bound we provided for Exp4 in the adversarial setting, asserting its
optimality up to factors logarithmic in the number of policies. Additionally, in Section 6, we
prove another lower bound through which we aim to compare the studied feedback model
with that of linear bandits. As alluded to before, the policies’ distributions can be treated
as a set of arms belonging to the simplex under an alternative linear bandit formulation of
the problem, where the learner observes the inner product between the chosen policy and
the latent loss map. Considering a particular family of policy sets, we prove that under
linear bandit feedback, one must incur regret of order at least

√
NT against any policy set

in this family, even as the capacity approaches zero. This shows that the attainability of
regret guarantees that improve as policies become more similar is a distinctive feature of
mediator feedback, a key aspect of which is that the observed loss is attributed to a single
outcome sampled via the chosen policy and revealed to the learner.

Finally, in Section 7, we consider a full-information variant of the problem, where the
learner observes the entire loss map at every round. This can be seen as a generalization of
the prediction with expert advice problem (Cesa-Bianchi et al., 1997). For this setting, we
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show that a simple Online Mirror Descent strategy enjoys a regret bound of order
√
CKLT ,

where CKL is an altered form of the policy set capacity, based on the more standard KL-
divergence. This quantity is no larger than logN , and can be interpreted as an information
radius of the policy set.

1.3 Additional Related Works

Krishnamurthy et al. (2020) study a contextual bandit problem with continuous actions,
where the learner competes with a set of competitor policies mapping states (contexts) to
actions. Instead of placing a smoothness assumption on the loss function, they opt for
minimizing a notion of smoothed regret. More precisely, they fix a smoothing kernel that
maps each action to a distribution over action. Accordingly, they obtain a new competitor
class of smoothed policies that map states to distributions over actions by composing the
original policies with the smoothing kernel. This has the effect of forcing a favourable
structure on the policy set. Indeed, they obtain (via Exp4) a bound of order

√
κT logN in

the adversarial regime, where N is the number of policies and κ, called the kernel complexity,
is defined as the largest possible density assigned by the smoothing kernel with respect to
some base probability measure. This latter quantity upper bounds the continuous analogue
of S for any given context. Similar smoothed benchmarks are studied in (Majzoubi et al.,
2020) and (Zhu and Mineiro, 2022) under realizability assumptions.

In its dependence on the mutual information between policies and outcomes, one of the
regret bound we provide for Exp4 (see Theorem 2) bears some superficial resemblance to the
PAC-Bayesian results in (Seldin et al., 2011). For a stochastic contextual bandits problem,
Seldin et al. (2011) prove bounds on the per-round instantaneous regret that depend on
the mutual information between the observed state and the chosen action. This quantifies
the complexity of the adopted decision rule, which is traded off against its empirical regret
measured according to past observations. Another notable mention is the information-
theoretic analysis of Russo and Van Roy (2016) for Thompson sampling in Bayesian bandit
problems, which results in bounds scaling with the mutual information between the faced
environment and the optimal action, or some satisficing benchmark (Russo and Van Roy,
2022; Arumugam and Van Roy, 2021). This measures the amount of information that needs
to be acquired about the environment to identify the target action.

Another related line of work concerns the best arm identification (BAI) problem, a
variant of the MAB problem where the learner’s aim is to find the optimal arm efficiently.
Reddy et al. (2023) and Poiani et al. (2023) study the BAI problem with the added constraint
that the learner can only sample arms via a number of given stochastic policies. As the
objective remains identifying the optimal arm, the manner in which the structure of the
policy set affects the achievable regret is fundamentally different from our setting. Indeed,
in their problem, a more diverse policy set can be advantageous to the learner.

2. Preliminaries

In this section, we start by reviewing some concepts from information theory that will be
referenced throughout the rest of the paper. Then, we lay down a formal statement of the
main problem setting.

6



Information Capacity Regret Bounds for Bandits with Mediator Feedback

2.1 Information Theory Background

Let f : (0,∞) → R be a convex function with f(1) = 0, and define the limits f(0) =
limx→0+ f(x) and f ′(∞) = limx→∞ f(x)/x (either of which could be infinite). If P and Q
are two distributions (probability mass functions) on a common finite set Ω, the f -divergence
(Ali and Silvey, 1966; Csiszár, 1967; Polyanskiy and Wu, 2023, Section 7.1) between them
is defined as:

Df (P ‖Q) :=
∑
x∈Ω

Q(x)f

(
P (x)

Q(x)

)
,

with the understanding that 0f(0/0) = 0 and 0f(a/0) = limx→0+ xf(a/x) = af ′(∞) for
a > 0. Notable properties of f -divergences include joint convexity in P and Q, non-
negativity, and the fact that Df (P ‖P ) = 0. Examples for f -divergences used in this work
include

• f(x) = (1/2)|x− 1| −→ total variation distance:

δ(P,Q) :=
1

2

∑
x
|P (x)−Q(x)| = 1−

∑
x

min{P (x), Q(x)} .

• f(x) = (1/2)(
√
x− 1)2 −→ squared Hellinger distance:

H2(P,Q) :=
1

2

∑
x
(
√
P (x)−

√
Q(x))2 .

• f(x) = (x − 1)2/(x + 1) −→ triangular discrimination (also known as the Vincze–Le
Cam divergence, see Sason and Verdú, 2016):

∆(P,Q) :=
∑

x

(P (x)−Q(x))2

P (x) +Q(x)
.

• f(x) = x lnx −→ KL-divergence:

D(P ‖Q) :=
∑

x
P (x) log

(
P (x)

Q(x)

)
.

• f(x) = (x− 1)2 −→ chi-squared divergence:

χ2(P ‖Q) :=
∑

x
Q(x)

(
P (x)

Q(x)
− 1

)2

=
∑

x

P (x)2

Q(x)
− 1 .

Let X and Y be two discrete random variables mapping Ω to the finite sets X and Y
respectively. The quantity defined as

Df (PY |X ‖QY |X |PX) :=
∑
x∈X

PX(x)Df (PY |X=x ‖QY |X=x)

is known as the conditional f -divergence, where a summand corresponding to some x ∈ X is
set to zero if PX(x) = 0. An immediate property of f -divergences is that if PX,Y = PXPY |X
and QX,Y = PXQY |X , then

Df (PX,Y ‖QX,Y ) = Df (PY |X ‖QY |X |PX) . (1)
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When jointly distributed according to PX,Y , the mutual information between X and Y
based on a given f -divergence (or their mutual f -information) is defined as (Polyanskiy
and Wu, 2023, Section 7.8):

If (X;Y ) := Df (PX,Y ‖PXPY ) ,

which is the divergence between their joint distribution and the product of the marginals;
hence, it is non-negative and symmetric in X and Y . Moreover, when f is strictly convex
at unity (as is the case for the above examples), we have that If (X;Y ) = 0 if and only if
X and Y are independent (Makur and Zheng, 2020). Via (1), it holds that2

If (X;Y ) = Df (PY |X ‖PY |PX) =
∑

x
PX(x)Df (PY |X=x ‖

∑
x′PX(x′)PY |X=x′) .

The previous identity justifies the overloaded notion If (PX , PY |X) := If (X;Y ) formulating
If as a function of PX and the kernel PY |X .

When the f -divergence of choice is the KL-divergence, we obtain the standard mu-
tual information, denoted simply as I(X;Y ), whereas Iχ2(X;Y ) will denote the mutual
information based on the chi-squared divergence. The latter is bounded from above by
min{|X |, |Y|} − 1 considering that

Iχ2(X;Y ) =
∑

x : PX(x)>0

PX(x)
∑

y : PY |X=x(y)>0

PY |X=x(y)
PY |X=x(y)∑

x′∈X PX(x′)PY |X=x′(y)
− 1

≤
∑

x : PX(x)>0

PX(x)
∑

y : PY |X=x(y)>0

PY |X=x(y)
PY |X=x(y)

PX(x)PY |X=x(y)
− 1 ≤ |X | − 1 ,

which holds with equality if the distributions {PY |X=x}x∈X have disjoint supports and PX
has full support. Symmetrically, we also have that Iχ2(X;Y ) ≤ |Y|−1. On the other hand,
as D(P ‖Q) ≤ log(χ2(P ‖Q) + 1) (Polyanskiy and Wu, 2023, Section 7.6), we have that
I(X;Y ) ≤ min{log |X |, log |Y|}. In particular, I(X;Y ) = log |X | holds if the distributions
{PY |X=x}x∈X have disjoint supports and PX is uniform. Another distinction between the
two quantities concerns their behaviour as functions of PX . While for a fixed kernel PY |X ,
I(PX , PY |X) is continuous in PX (Cover and Thomas, 2006, Section 7.3), the same does
not hold in general for Iχ2 . To see this, consider a simple instance where X = Y = {0, 1},
PY |X=0(0) = 0.5, and PY |X=1(0) = 1. If PX(0) = ε for some ε ∈ (0, 1], then

Iχ2(PX , PY |X) =
2− (3/2)ε

2− ε
− 1

2
=: g(ε) ,

which satisfies limε→0+ g(ε) = 1/2 even though Iχ2(PX , PY |X) = 0 at ε = 0 by definition
since X and Y become independent. Moreover, since g is decreasing in the interval (0, 1],
Iχ2 as a function of PX attains no maximum.

Maximizing the standard mutual information I(PX , PY |X) in PX gives rise to what we
will refer to as the (KL-)information capacity of the kernel PY |X , denoted as:

CKL(PY |X) := max
PX∈PX

I(PX , PY |X) ,

2. By symmetry, this also holds when the roles of X and Y are exchanged.
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where PX is the set of possible distributions over the elements of X . More practically,
CKL(PY |X) is better known as the information capacity of the discrete memoryless stationary
channel (DMC) with input alphabet X , output alphabet Y, and transition matrix PY |X
(Cover and Thomas, 2006, Chapter 7; Polyanskiy and Wu, 2023, Chapter 19). This quantity
has an operational significance as it quantifies the highest rate per channel use at which
information can be reliably sent (Cover and Thomas, 2006, Theorem 7.7.1; Polyanskiy and
Wu, 2023, Theorem 19.9). Analogously, we define the χ2-capacity of PY |X as:

Cχ2(PY |X) := sup
PX∈PX

Iχ2(PX , PY |X) ,

where we use the supremum in place of the maximum as the latter might not exist per the
counterexample provided earlier.

2.2 Problem Setting

Let X := {1, . . . ,K} denote a set of K ≥ 2 outcomes, and let Θ := {θ1, . . . , θN} ⊂ ∆K

denote a policy set consisting of N ≥ 2 distributions over the outcomes, where ∆K is the
probability simplex in RK defined as {u ∈ RK :

∑K
j=1 u(j) = 1 and u(j) ≥ 0 ∀j ∈ [K]}.

Hence, for an outcome x ∈X and policy θ ∈ Θ, θ(x) denotes the probability assigned to x
by θ. We consider a mediator feedback problem where a learner, possessing full knowledge
of the policy set Θ, plays a sequential game with an unknown environment for T rounds.
From the environment’s characteristic distribution,3 a latent sequence of loss vectors (`t)

T
t=1

is drawn at the beginning of the game, where `t ∈ [0, 1]K maps each outcome to a loss at the
t-th round. Ensuingly, the learner sequentially interacts with the environment by selecting
at each round t a policy ϑt ∈ Θ, possibly at random, and subsequently observing the pair
(Xt, `t(Xt)), where Xt is a random outcome distributed according to ϑt. Slightly overloading
the notation, we let `t(θ) denote the expected value (conditioned on `t) of `t(Xt) had the
learner picked policy θ at round t; that is, `t(θ) :=

∑
x∈X θ(x)`t(x). The learner’s objective

is to minimize their regret, defined as:

RT := E

[
T∑
t=1

`t(ϑt)

]
−min

θ∈Θ
E

[
T∑
t=1

`t(θ)

]
,

where the expectation is taken over both the learner’s and the environment’s randomization.
We use a common probability space (Ω,F ,P) to define all random variables. For round
t ∈ [T ], let Ht := (ϑs, Xs, `s(Xs))

t
s=1 denote the interaction history up to the end of round

t, and let Ft := σ(Ht) denote the σ-algebra generated by Ht. Accordingly, we define
Et[·] := E[· | Ft−1] and Pt(·) := P(· | Ft−1), with F0 being the trivial σ-algebra. Analogously
to (Russo and Van Roy, 2016), we define It(X;Y ) and Itχ2(X;Y ) as the mutual information

and the mutual chi-squared-information between (discrete) random variables X and Y with
Pt as the base measure. Notice that these quantities are random variables owing to their
dependence on the history.

3. This formulation subsumes the standard (non-adaptive) adversarial case, where an environment is char-
acterized by a deterministic sequence of loss vectors.
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3. The Policy Set Capacity: An Improved Regret Bound for EXP4

Before defining the policy set capacity, we provide some context by briefly reviewing some
quantities used in related works to describe the richness of the policy set. McMahan and
Streeter (2009) introduce the quantity

S(Θ) :=
∑
x∈X

max
θ∈Θ

θ(x) .

It is easily verified that 1 ≤ S(Θ) ≤ min{K,N}, where the lower bound is attained in
the limit case when all the policies are identical, and the upper bound is attained either
when the policies have disjoint supports or when each outcome is matched with a policy
entirely concentrated on that outcome. To get a finer sense of this quantity, we define
V(Θ) := S(Θ)− 1. Notice then that when there are only two policies, that is, Θ = {θ1, θ2},
V reduces to the total variation distance between the two distributions:

V({θ1, θ2}) =
∑

x
max{θ1(x), θ2(x)} − 1 = 1−

∑
x

min{θ1(x), θ2(x)} = δ(θ1, θ2) .

More generally, one can obtain the somewhat coarse bound:

V(Θ) ≤ min
α∈∆K

∑
θ
δ(θ, α) ,

where the distribution minimizing the right-hand side acts as the geometric median of
Θ in terms of the total variation distance. This inequality follows from Theorem II.1 in
(Guntuboyina, 2011), which for any f -divergence and any α ∈ ∆K , provides the (implicit)
bound:

f(S(Θ)) + (N − 1)f

(
N − S(Θ)

N − 1

)
≤
∑

θ
Df (θ ‖α) .

Another relevant quantity is the chi-squared “diameter” of the policy set:

dχ2(Θ) := max
θ,θ′∈Θ

χ2(θ ‖ θ′) ,

which is featured in the regret bounds of Sen et al. (2018) and Papini et al. (2019), see
Section 4. Though it has no general upper bound, dχ2 can be smaller than V as shown
in the examples section below. Sen et al. (2018) also obtain bounds in terms of another
diameter-like quantity based on the logarithm of (one plus) the f -divergence with f(x) =
x exp(x− 1)− 1, though dχ2 is never larger.

3.1 The Policy Set Capacity

Let ϑ and X be two random variables taking values respectively over Θ and X such that
PX|ϑ=θ(x) = θ(x) for any θ ∈ Θ and x ∈X. Then, we define the (chi-squared) capacity of
the policy set as:

C(Θ) := Cχ2(PX|ϑ) ,

10
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which does not depend on the distribution of ϑ. More explicitly, if we define

Qτ (Θ) := Iχ2(τ,PX|ϑ) =
∑

θ
τ(θ)χ2

(
θ
∥∥∑

θ′τ(θ′)θ′
)
,

for some distribution τ ∈ PΘ;4 then,

C(Θ) = sup
τ∈PΘ

Qτ (Θ) .

As alluded to before, this definition inspires an interpretation of the policy set as inducing
a stationary, memoryless channel defined via the kernel PX|ϑ. Intuitively, C(Θ) can be seen
to measure the dependency between ϑ and X maximised over the prior distribution of ϑ.
Hence, the more dissimilar the distributions are, the larger this quantity.

Since C is based on Iχ2 , it satisfies 0 ≤ C(Θ) ≤ min{K,N}− 1, which is the same range
as that of V. In particular, much like V, the upper bound is attained either when the policies
have disjoint supports or when each outcome is matched with a policy entirely concentrated
on that outcome. Moreover, C(Θ) = 0 if and only if X and ϑ are independent no matter
how ϑ is distributed, which requires the policies to be identical. More distinctively, it holds
in general that C(Θ) ≤ min{V(Θ), dχ2(Θ)}. On the one hand, the (joint) convexity of the
chi-squared divergence implies that

C(Θ) ≤ sup
τ∈PΘ

∑
θ,θ′

τ(θ)τ(θ′)χ2(θ ‖ θ′) ≤ max
θ,θ′

χ2(θ ‖ θ′) = dχ2(Θ) .

On the other hand, we have that

C(Θ) = sup
τ∈PΘ

∑
θ
τ(θ)

(∑
x

θ(x)2∑
θ′ τ(θ′)θ′(x)

− 1

)
= sup

τ∈PΘ

∑
x

∑
θ τ(θ)θ(x)2∑
θ′ τ(θ′)θ′(x)

− 1

≤ sup
τ∈PΘ

∑
x

max
θ′′

θ′′(x)

∑
θ τ(θ)θ(x)∑
θ′ τ(θ′)θ′(x)

− 1

=
∑

x
max
θ
θ(x)− 1 = S(Θ)− 1 = V(Θ) .

3.2 A Regret Bound for EXP4 in Terms of the Capacity

Exp4, detailed in Algorithm 1, adopts a simple and natural approach for tackling mediator
feedback problems. Its choice of policy in a given round is drawn from a running distribution
over the policies taking an exponential weights form. There, each policy θ is weighted
according to a proxy of the sum of its losses so far, where an importance-weighted estimator̂̀
t(θ) replaces the inaccessible `t(θ). The following theorem provides a regret bound for Exp4

that scales with the policy set capacity. This result improves upon the
√
S(Θ)T logN

bound, seemingly the best available worst-case bound for the considered setting. Further,
we instantiate the capacity in the ensuing discussion for three families of policy sets for
which the bound of this theorem will be shown to be near-optimal in Section 5. While the
proposed learning rate schedule requires exact knowledge of the capacity, this requirement
will be lifted in Theorem 2, which also addresses the case when the policies’ distributions
can vary between rounds.

4. Inline with previous notation, PΘ denotes the set of possible distributions over the policies.
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Algorithm 1 Exp4 (Fixed Policy Set)

1: Input: sequence of learning rates (ηt)
T
t=1

2: Initialize: ∀θ ∈ Θ, ̂̀0(θ) = 0
3: for t = 1, . . . , T do

4: Draw ϑt ∼ pt, where pt(θ) =
exp(−ηt

∑t−1
s=0

̂̀
s(θ))∑

θ′ exp(−ηt
∑t−1
s=0

̂̀
s(θ′))

5: Draw Xt ∼ ϑt, and observe loss `t(Xt)

6: ∀θ ∈ Θ, set ̂̀t(θ) = θ(Xt)∑
θ′ pt(θ

′)θ′(Xt)
`t(Xt)

7: end for

Theorem 1 Algorithm 1 with ηt = min
{

1,
√

logN
eC(Θ)t

}
satisfies

RT ≤ 2 max
{√

eC(Θ)T logN, logN
}
.

Proof Let θ∗ ∈ arg minθ∈Θ E
∑T

t=1 `t(θ). For a policy θ, we define a shifted version of
the loss at time t as ζt(θ) :=

∑
x

(
θ(x) − ψt(x)

)
`t(x), where ψt(x) :=

∑
θ pt(θ)θ(x). Thus,

ζt(θ) = `t(θ) −
∑

θ′ pt(θ
′)`t(θ

′). Notice that for any two policies θ and θ′, ζt(θ) − ζt(θ′) =
`t(θ)− `t(θ′). Hence, RT = E

∑
t

(
`t(ϑt)− `t(θ∗)

)
= E

∑
t

(
ζt(ϑt)− ζt(θ∗)

)
. Next, we define

ζ̂t(θ) as an estimate of the shifted loss of θ at time t:

ζ̂t(θ) :=
(
θ(Xt)− ψt(Xt)

) `t(Xt)

ψt(Xt)
= ̂̀

t(θ)− `t(Xt) . (2)

For convenience, we will sometimes treat the distribution pt as a vector belonging to the sim-
plex ∆N ⊂ RN , where its i-th coordinate pt(i) denotes pt(θi) for each i ∈ [N ]. Analogously,
the functions ̂̀t and ζ̂t will sometimes be handled as vectors in RN . Notice that pt and ψt
are measurable with respect to Ft−1, and that `t is independent of ϑt and Xt conditioned
on Ft−1. Hence, it holds that Etζt(ϑt) = Et

∑
θ pt(θ)ζt(θ), and that Etζ̂t(θ) = Etζt(θ) for

any fixed θ ∈ Θ. Consequently, thanks to the tower rule and the linearity of expectation,
we have that

E
∑

t

(
ζt(ϑt)− ζt(θ∗)

)
= E

∑
t
〈pt − eθ∗ , ζt〉 = E

∑
t
〈pt − eθ∗ , ζ̂t〉 ,

where eθ∗ ∈ RN is the indicator vector for θ∗.
It is well known (see Shalev-Shwartz et al., 2012, Section 2.7) that for every round t,

the definition of pt in Algorithm 1 is equivalent to

pt = arg min
p∈∆N

ηt

〈∑t−1

s=1
̂̀
s, p
〉
−H(p) , (3)

where H(p) :=
∑N

i=1 p(i) log(1/p(i)) is the Shannon entropy of p. Note that for any p ∈ ∆N ,〈∑t−1

s=1
ζ̂s, p

〉
=
〈∑t−1

s=1
̂̀
s, p
〉
−
∑t−1

s=1
`s(Xs) .

Hence, by adding constant terms (i.e., not depending on p) to the objective function in (3)
and changing the scaling, we can arrive at the following alternative characterization of pt

12
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for t ∈ [T + 1]:

pt = arg min
p∈∆N

〈∑t−1

s=1
ζ̂s, p

〉
+

1

ηt

(
logN −H(p)

)
,

which is equivalent to the update rule of the follow the regularized leader (FTRL) algorithm
when executed on the losses (ζ̂t)t∈[T ] with a decision set ∆N and a sequence of regularizers
(φt)t∈[T+1] where

φt(p) =
1

ηt

(
logN −H(p)

)
∀p ∈ ∆N ,

which is the negative Shannon entropy normalized to the range [0, logN ] and scaled by the
learning rate. Let Dφt(· ; ·) be the Bregman divergence based on φt, and set ηT+1 = ηT .
We can then use Lemma 7.14 in (Orabona, 2023) to obtain the following regret bound for
FTRL on the estimated shifted losses:∑

t
〈pt − eθ∗ , ζ̂t〉 ≤

logN

ηT
+

1

2

∑
t
ηt〈zt, ζ̂ 2

t 〉 ,

where zt lies on the line segment between pt and p̃t+1 = arg minu∈RN≥0
〈ζ̂t, u〉+Dφt(u ; pt). By

its definition, it is easy to show that p̃t+1(i) = pt(i) exp(−ηtζ̂t(i)) for every i ∈ [N ]. Notice
that ηtζ̂t(i) ≥ −ηt`t(Xt) ≥ −ηt ≥ −1 since ̂̀t is non-negative, ηt ∈ (0, 1], and `t(Xt) ≤ 1.
Hence, it holds for every i ∈ [N ] that p̃t+1(i) ≤ e pt(i), implying that 〈zt, ζ̂ 2

t 〉 ≤ e〈pt, ζ̂ 2
t 〉 .

Overall, we have shown that

RT ≤
logN

ηT
+
e

2

∑
t
ηt E

∑
θ
pt(θ)ζ̂t(θ)

2 . (4)

Now, for every θ ∈ Θ and t ∈ [T ], we have that

Etζ̂t(θ)2 = Et
(
θ(Xt)− ψt(Xt)

)2 `t(Xt)
2

ψt(Xt)2

≤ Et

(
θ(Xt)− ψt(Xt)

)2
ψt(Xt)2

= Et
∑

x

(
θ(x)− ψt(x)

)2
ψt(x)2

I{x = Xt}

=
∑

x

(
θ(x)− ψt(x)

)2
ψt(x)

=
∑

x
ψt(x)

(
θ(x)

ψt(x)
− 1

)2

= χ2(θ ‖ψt) = χ2
(
θ
∥∥∑

θ′pt(θ
′)θ′
)
,

where the third equality holds since EtI{x = Xt} = Pt(x = Xt) = ψt(x). This implies that

Et
∑

θ
pt(θ)ζ̂t(θ)

2 ≤
∑

θ
pt(θ)χ

2
(
θ
∥∥∑

θ′pt(θ
′)θ′
)

= Qpt(Θ) . (5)

Consequently, we arrive at the following bound:

RT ≤
logN

ηT
+
e

2
E
∑

t
ηtQpt(Θ) ≤ logN

ηT
+
e

2
C(Θ)

∑
t
ηt .

13
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If T ≥ logN
eC(Θ) , then ηT =

√
logN
eC(Θ)T and RT ≤ 2

√
eC(Θ)T logN , where we have used that

ηt ≤
√

logN
eC(Θ)t for t ∈ [T ] and that

∑T
t=1

1√
t
≤ 2
√
T . Otherwise, if T < logN

eC(Θ) , then

η1 = · · · = ηT = 1 and RT ≤ logN + eC(Θ)T
2 ≤ 2 logN .

Compared to the standard analysis of Exp4 (see, e.g., Bubeck and Cesa-Bianchi, 2012,
Section 4.2) or the analysis of McMahan and Streeter (2009), the main nuance in the proof
is the use of a more refined bound on the second moment of the estimated losses, thanks
to which, the dependence on the capacity occurs naturally in the regret bound. Moreover,
carrying out the analysis in terms of the shifted losses (introduced in the proof) causes the
horizon-dependent term in the regret bound to feature C(Θ) directly instead of 1 + C(Θ),
which can lead to a substantial improvement whenever C(Θ) � 1. This distinction is
particularly relevant, as discussed in the introduction, when the number of policies is very
small (e.g., just two), as in that case, a bound scaling with 1 + C(Θ) would not improve
much on the trivial worst-case bound of

√
NT , no matter how benign the policy set is.

Interestingly, all prior works seem to suffer from this shortcoming.

3.3 Examples

We now examine the quantity C(Θ) for a selection of policy set structures and compare it
with related quantities.

3.3.1 Two Policies

We start with the case when the policy set consists of only two policies, i.e., Θ = {θ1, θ2}. As
mentioned before, we have that V(Θ) = δ(θ1, θ2), while dχ2 = max{χ2(θ1 ‖ θ2), χ2(θ2 ‖ θ1)}.
These two quantities are incomparable in general, and this can be seen by specializing the
next example to the two policies case. For a fixed r ∈ [0, 1], define qr(θ1 ‖ θ2) = Qτ (Θ) with
τ(θ1) = r; hence, C(Θ) = supr∈[0,1] qr(θ1 ‖ θ2) =: C(θ1, θ2). An explicit form for qr(θ1 ‖ θ2) is
given by:

qr(θ1 ‖ θ2) = r(1− r)
∑

x

(θ1(x)− θ2(x))2

rθ1(x) + (1− r)θ2(x)
.

As a function of r ∈ [0, 1], qr(θ1 ‖ θ2) is concave with q0(θ1 ‖ θ2) = q1(θ1 ‖ θ2) = 0. This
quantity is known in the literature as the Vincze–Le Cam divergence of order r (Raginsky,

2016; Makur and Zheng, 2020), which is an f -divergence with f(x) = r(1−r)(x−1)2

r(x−1)+1 . Cor-

responding to r = 1/2 is (half) the triangular discrimination ∆, immediately implying a
lower bound for C:

C(θ1, θ2) ≥ q1/2(θ1 ‖ θ2) =
1

2

∑
x

(θ1(x)− θ2(x))2

θ1(x) + θ2(x)
=

1

2
∆(θ1, θ2) .

On the other hand, since r(1−r)(x−1)2

r(x−1)+1 ≤ (
√
x− 1)2 for any r ∈ (0, 1) and x ∈ [0,∞), we can

bound C in terms of the squared Hellinger distance H2:

C(θ1, θ2) ≤
∑

x
θ2(x)

(√
θ1(x)/θ2(x)− 1

)2
= 2H2(θ1, θ2) . (6)
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Combining these observations with known inequalities (Topsoe, 2000), we obtain that

δ2 ≤ ∆

2
≤ C ≤ 2H2 ≤ ∆ ≤ 2δ ,

which shows that the capacity of two policies is of the same order as the squared Hellinger
distance and the triangular discrimination. For the two policies case, we prove in Theorem 5
a lower bound of Ω(

√
C(θ1, θ2)T ), which order-wise matches the bound of Theorem 1.

3.3.2 ε-Greedy Policies

Consider now a case in which N = K and each policy θ is associated (one-to-one) with an
outcome xθ such that for any outcome x, θ(x) = (1− ε)/N + εI{x = xθ}, where ε ∈ [0, 1].
At ε = 0, all policies collapse to the uniform distribution, and we get that C(Θ) = 0. On
the other hand, when ε = 1, the problem essentially reduces to a standard (unstructured)
bandit problem with C(Θ) = N −1. Generally, for τ ∈ PΘ, Qτ (Θ) takes the following form:

Qτ (Θ) = ε2
∑

θ

τ(θ)(1− τ(θ))
1−ε
N + ετ(θ)

.

For intermediate values of ε ∈ (0, 1), Qτ (Θ) is a strictly concave function in τ attaining its
maximum value at the uniform distribution, entailing that C(Θ) = ε2(N−1). In comparison,
we have that

V(Θ) = ε(N − 1) and dχ2(Θ) =
ε(N − 2) + 2

ε(N − 1) + 1
· ε2

1− ε
N .

Notice that even though dχ2 grows unbounded as ε approaches 1, it can be smaller than V
for small enough ε. In Theorem 6, we prove a lower bound of order ε

√
NT for this policy

set structure, which matches the upper bound of Theorem 1 up to a logarithmic factor.

3.3.3 M-Supported Uniform Policies

Consider another policy set structure where all policies are uniform distributions over a
support of M ≤ K outcomes. That is, if we denote by Supp(θ) the support for policy θ, then
we have that Supp(θ) = M and for any outcome x, θ(x) = (1/M)I{x ∈ Supp(θ)}. Assume
further that each outcome belongs to the support of at least one policy. For this structure,
one can verify that C(Θ) = V(Θ) = K/M − 1. In fact, we have that Qτ (Θ) = C(Θ) for any
τ ∈ PΘ with full support. On the other hand, dχ2 = ∞ outside of the trivial case when
M = K. In Theorem 7, we show that for a special family of M -supported uniform policies
(where N ≥ K/M), the regret of any algorithm is Ω

(√
(K/M − 1) T log(N)/log (K/M)

)
.

This lower bound particularly shows that the logarithmic factor in the regret bound of
Theorem 1 is at least partly unavoidable.

3.4 A Generalization for Time-Varying Policy Distributions

The next theorem extends the result of Theorem 1 by allowing the distributions of the
policies to vary between rounds, modelling in this manner the problem of bandits with
expert advice. We rely on an adaptive learning rate schedule, whose form is common in
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Algorithm 2 Exp4 (Time-Varying Policy Distributions)

1: Input: sequence of learning rates (ηt)
T
t=1

2: Initialize: ∀θ ∈ Θ, ̂̀0(θ) = 0
3: for t = 1, . . . , T do
4: Observe distributions θ(·; t) ∀θ ∈ Θ

5: Draw ϑt ∼ pt, where pt(θ) =
exp(−ηt

∑t−1
s=0

̂̀
s(θ))∑

θ′ exp(−ηt
∑t−1
s=0

̂̀
s(θ′))

6: Draw Xt ∼ ϑt, and observe loss `t(Xt)

7: ∀θ ∈ Θ, set ̂̀t(θ) = θ(Xt;t)∑
θ′ pt(θ

′)θ′(Xt;t)
`t(Xt)

8: end for

the online learning and bandits literature (Auer et al., 2002b; McMahan and Streeter, 2010;
Neu, 2015a). The resulting bound replaces the dependence on the (per-round) capacity with
the history-conditioned mutual chi-squared-information between the chosen policy and the
drawn outcome, recalling that the former is an upper bound for the latter by definition.
Additionally, the adopted learning rate in a given round only requires an upper bound on
the capacity of the policies’ distributions, thus affording one the flexibility of providing a
quantity of simpler form like V, or even just min{N,K}. In terms of regret, this flexibility
is paid for through a solitary additive term depending primarily on the largest of these
provided bounds.

Only in the current scope, a member θ of the policy set Θ is not synonymous with a
distribution over the outcomes; it serves solely as an identifier for a policy. Along with
the sequence of losses, the environment draws for each θ ∈ Θ a sequence of distributions
(θ(·; t))Tt=1 at the beginning of the game, where θ(x; t) is the probability assigned to outcome
x by policy θ at round t. The distributions (θ(·; t))θ∈Θ associated with a given round t
are revealed to the learner at the beginning of the round. Accordingly, we redefine the
interaction history as Ht :=

(
(ϑs, Xs, `s(Xs))s∈[t], (θ(·; s))θ∈Θ,s∈[t+1]

)
, which includes all the

information available to the learner before choosing a policy at round t+ 1.5 The definition
of the regret remains the same, only that the loss of policy θ at round t is now defined as
`t(θ) :=

∑
x θ(x; t)`t(x). For a distribution τ ∈ PΘ and round t ∈ [T ], we define

Qt,τ :=
∑

θ
τ(θ)χ2

(
θ(·; t)

∥∥∑
θ′τ(θ′)θ′(·; t)

)
and Ct := supτ∈PΘ

Qt,τ as the time-varying analogues of Qτ and C. The following theorem
still concerns the plain EXP4 algorithm, reformulated in Algorithm 2 for the time-varying
case. Observe that for any round t, Itχ2(ϑt;Xt) = Qt,pt .

Theorem 2 Let Zt :=
∑t

s=1 I
s
χ2(ϑs;Xs) for all t ∈ [T ], and let (Jt)

T
t=1 be a non-decreasing

sequence of non-negative real numbers such that Jt is Ft−1-measurable and Jt ≥ Ct. Then,

5. Consistently, the usage of the filtration (Ft)t (and dependent quantities) in the context of the following
result refers to this augmented definition of the history.
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Algorithm 2 with ηt =
√

logN
logN+e(Zt−1+Jt)

satisfies

RT ≤ E
[
2

√
e
∑

t
It
χ2(ϑt;Xt) logN + logN +

√
eJT logN

]
≤ E

[
2

√
e
∑

t
Ct logN + logN +

√
eJT logN

]
.

Proof For any θ ∈ Θ and t ∈ [T ], let, similarly to (2), ζ̂t(θ) := ̂̀
t(θ) − `t(Xt), with ̂̀t(θ)

as defined in Algorithm 2. Notice that the distributions (θ(·; t))θ∈Θ are measurable with
respect to Ft−1. Moreover, the sequence (ηt)t is non-increasing and ηt ≤ 1 holds for all
rounds. Hence, with the same arguments laid out in the proof of Theorem 1, one can show
that

RT ≤ E
[

logN

ηT
+
e

2

∑
t
ηt
∑

θ
pt(θ)ζ̂t(θ)

2

]
.

Furthermore, similar to what was shown in the proof of Theorem 1, it holds for every t that
Et
∑

θ pt(θ)ζ̂t(θ)
2 ≤ Qt,pt = Itχ2(ϑt;Xt). Hence, since ηt is Ft−1-measurable, we get that

RT ≤ E
[

logN

ηT
+
e

2

∑
t
ηtI

t
χ2(ϑt;Xt)

]
.

We then conclude the proof by bounding the two terms inside the expectation. Starting
with the second term, we have that

e

2

∑
t
ηtI

t
χ2(ϑt;Xt) =

√
logN

2

∑
t

eItχ2(ϑt;Xt)√
logN + e (Zt−1 + Jt)

≤
√

logN

2

∑
t

eItχ2(ϑt;Xt)
√
eZt

≤
√
eZT logN ,

where the last inequality follows via Lemma 3.5 in (Auer et al., 2002b). Whereas

logN

ηT
=

√
log2N + e (ZT−1 + JT ) logN ≤

√
eZT logN + logN +

√
eJT logN .

Let St :=
∑

x maxθ θ(x; t), and let Vt := St−1. A reasonable choice is to set Jt = maxs≤t Vs,
which would only cause the bound to concede an added term of

√
emaxt≤T Vt logN while

lifting the more burdensome requirement of computing the capacity at each round. Notice
that the first bound of Theorem 2 depends (in expectation) on the observed sequence of
losses through its dependence on the algorithm’s decision at each round (i.e., pt). However,
it is unclear whether this bound can take advantage of any particular benign property
of the losses when compared with the second bound, which only depends on the policies’
distributions. Nevertheless, for what concerns the bandits with expert advice problem, these
bounds improve upon the state of the art bound of

√∑
t St logN reported in (Lattimore

and Szepesvári, 2020, Theorem 18.3).

17



Eldowa, Cesa-Bianchi, Metelli, and Restelli

4. Best-of-Both-Worlds Bounds

Besides the adversarial regime considered thus far, we study in this section a more benign
setting where the dependence of the regret on the time horizon can be improved. Specifically,
we will consider what we will refer to as the adversarially corrupted stochastic regime, where
it is assumed that there exists a policy ξ ∈ Θ such that for every round t and policy θ 6= ξ,

E
[
`t(θ)− `t(ξ)

]
≥ ∆−Bt ,

for some ∆ ∈ (0, 1] and Bt ≥ 0. Additionally, we define B :=
∑T

t=1Bt. This includes, as a
special case, the canonical stochastic regime where the loss functions (`t)t are independently
and identically distributed across rounds. Notice that besides the addition of corruption,
the more general stochastic regime we consider does not require the losses to be distributed
either stationarily or independently. For similar setups, see, for example, (Wei and Luo,
2018; Zimmert and Seldin, 2021; Ito et al., 2022; Dann et al., 2023).

The main result of this section concerns, once again, the Exp4 algorithm, which we
show to enjoy BOBW bounds when coupled with a certain learning rate schedule. For the
stochastic regime, the algorithm achieves a bound linear in the capacity and only poly-
logarithmic in the time horizon. Simultaneously, it retains roughly the same worst-case
guarantee as that of Theorem 1. This result, provided in the next theorem, is obtained
by combining elements from the proof of Theorem 1 with the learning rate schedule and
analysis technique used by Ito et al. (2022) in the setting of online learning with strongly
observable feedback graphs. Before stating the theorem, we define

P (θ) :=
T∑
t=1

(1− pt(θ)) and P (θ) := E
T∑
t=1

(1− pt(θ))

for every policy θ ∈ Θ, where pt(θ) = Pt(ϑt = θ) as specified in Algorithm 1. Moreover, for
any distribution p over the policies, we let H(p) :=

∑
θ p(θ) log(1/p(θ)) denote its Shannon

entropy as before.

Theorem 3 Let γ =
√

eC(Θ) log(eT )
2 log(N) , and suppose Algorithm 1 is run with ηt = min

{
1, 1

βt

}
for t ∈ [T +1], where β1 = γ and for t ∈ [T ], βt+1 = βt+

γ√
1+ 1

logN

∑t
s=1 H(pt)

. Then, it holds

in general that

RT ≤ 3
√

2eC(Θ)T log(eT ) log(eN) + logN ,

whereas in the adversarially corrupted stochastic regime, the algorithm additionally satisfies

RT ≤ 36e2C(Θ) log(eT ) log(NT )

∆
+ 3e

√
2C(Θ) log(eT ) log(NT )B

∆
+ 2 logN + 4∆ .

Proof Let θ∗ ∈ arg minθ∈Θ E
∑

t `t(θ), which need not coincide with ξ. For policy θ and

round t, let ζ̂t(θ) be defined as in (2). As shown in the proof of Theorem 1,6 we have that
RT = E

∑
t〈pt−eθ∗ , ζ̂t〉, where eθ∗ ∈ RN is the indicator vector for θ∗. Also, similar to what

6. We at times treat pt and ζ̂t as vectors in RN in the manner described before in the proof of Theorem 1.
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was argued in that proof, Algorithm 1 produces its predictions according to the following
FTRL rule:

pt = arg min
p∈∆N

〈∑t−1

s=1
ζ̂s, p

〉
+ φt(p) ,

where for p ∈ ∆N and t ∈ [T + 1], φt(p) = − 1
ηt
H(p). Note that the sequences βt and ηt

are increasing and non-increasing, respectively. Hence, we have that φt(p) − φt+1(p) ≥ 0.
With this in mind, one can extract the following bound from the proof of Theorem 1 and
the proof of Lemma 7.14 in (Orabona, 2023):∑

t
〈pt − eθ∗ , ζ̂t〉 ≤ φT+1(eθ∗)− φ1(p1) +

∑
t

(
φt(pt+1)− φt+1(pt+1)

)
+
e

2

∑
t
ηt
∑

θ
pt(θ)ζ̂t(θ)

2

=
1

η1
logN +

∑
t

(
1

ηt+1
− 1

ηt

)
H(pt+1) +

e

2

∑
t
ηt
∑

θ
pt(θ)ζ̂t(θ)

2 .

Since, ηt is measurable with respect to Ft−1, we have via (5) that Etηt
∑

θ pt(θ)ζ̂t(θ)
2 ≤

ηtQpt(Θ) ≤ ηtC(Θ) . Consequently, it holds that

RT ≤
1

η1
logN + E

∑
t

(
1

ηt+1
− 1

ηt

)
H(pt+1) +

e

2
C(Θ)E

∑
t
ηt .

For every round t, we clearly have that ηt ≤ 1
βt

, and that 1
ηt

= max{1, βt}. Hence, since

βt+1 ≥ βt, it holds that 1
ηt+1
− 1
ηt

=
(
max{1, βt+1}−max{1, βt}

)
≤ βt+1−βt . Consequently,

RT ≤ max{1, γ} logN + E
∑

t

(
βt+1 − βt

)
H(pt+1) +

e

2
C(Θ)E

∑
t

1

βt
. (7)

The following two facts can be extracted from the proof of Proposition 1 in (Ito et al., 2022):∑
t

(
βt+1 − βt

)
H(pt+1) ≤ 2γ

√
logN

√∑
t
H(pt)∑

t

1

βt
≤ log(eT )

γ
√

logN

√
logN +

∑
t
H(pt) .

Moreover, Lemma 4 in the same paper entails that
∑

tH(pt) ≤ P (ξ) log eNT
P (ξ) . Plugging

these inequalities back into (7) yields that

RT ≤ max{1, γ} logN + 2γ
√

logN E

√
P (ξ) log

eNT

P (ξ)

+
eC(Θ) log(eT )

2γ
√

logN
E

√
logN + P (ξ) log

eNT

P (ξ)
. (8)

To obtain the worst-case bound, simply observe that u log eNT
u is an increasing function in

u for 0 < u ≤ NT . Hence, P (ξ) log eNT
P (ξ) ≤ T log(eN) , which, together with (8), implies

that

RT ≤ max{1, γ} logN +

(
2γ
√

logN +
eC(Θ) log(eT )

γ
√

logN

)√
T log(eN) ,
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from which the desired bound can be seen to hold after plugging in the value of γ.
Towards proving the second bound, we take an alternative route following the proof of

Theorem 4 in (Ito et al., 2022). Namely, we argue that if P (ξ) ≤ e, then P (ξ) log eNT
P (ξ) ≤

e log(NT ), otherwise, P (ξ) log eNT
P (ξ) ≤ P (ξ) log(NT ). Resuming again from (8), we get that

RT ≤ max{1, γ} logN +

(
2γ
√

logN +
eC(Θ) log(eT )

γ
√

logN

)√
log(NT )E

√
max{P (ξ), e}

≤ max

{
logN,

√
e

2
C(Θ) log(eT ) log(N)

}
+ 2
√

2eC(Θ) log(eT ) log(NT )

(√
P (ξ) +

√
e

)
≤ logN + 3e

√
2C(Θ) log(eT ) log(NT )

(
1 +

√
P (ξ)

)
,

where the second inequality follows after plugging in the value of γ and using Jensen’s
inequality. For what follows, we define G1 := logN and G2 := 3e

√
2C(Θ) log(eT ) log(NT ).

Now, in the adversarially corrupted stochastic regime, we observe that

RT ≥
∑

t
E
[
`t(θ)− `t(ξ)

]
≥ ∆E

∑
t
I{ϑt 6= ξ} −B = ∆P (ξ)−B .

Combining this with the last bound, we obtain that for any λ > 0,

RT = (1 + λ)RT − λRT ≤ (1 + λ)
(
G1 +G2 +G2

√
P (ξ)

)
− λ∆P (ξ) + λB .

Using the fact that 2a
√
u− bu ≤ a2/b for all u, a, b ≥ 0, we get that

RT ≤ (1 + λ)(G1 +G2) + λB +
(1 + λ)2G2

2

4λ∆

= (1 + λ)(G1 +G2) +
G2

2

2∆
+ λ

(
B +

G2
2

4∆

)
+

G2
2

4λ∆
.

If we choose λ :=

√
G2

2
4∆

/(
B +

G2
2

4∆

)
, we obtain the following bound:

RT ≤ 2G1 + 2G2 +
G2

2

2∆
+ 2

√
G2

2B

4∆
+

G4
2

16∆2
≤ 2G1 + 2G2 +

G2
2

∆
+

√
G2

2B

∆
,

where we have also used the fact that λ ≤ 1. Using the definitions of G1 and G2, we can
conclude that

RT ≤ 18e2C(Θ) log(eT ) log(NT )

∆
+ 3e

√
2C(Θ) log(eT ) log(NT )B

∆
+ 2 logN

+ 6e
√

2C(Θ) log(eT ) log(NT )

≤ 36e2C(Θ) log(eT ) log(NT )

∆
+ 3e

√
2C(Θ) log(eT ) log(NT )B

∆
+ 2 logN + 4∆ ,

where we used that 6e
√

2C(Θ) log(eT ) log(NT ) ≤ max
{

18e2 C(Θ) log(eT ) log(NT )
∆ , 4∆

}
.

The appeal of this theorem is that it shows that the simple and fundamental Exp4 algorithm
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can obtain logarithmic regret in stochastic environments, always scaling with the policy set
capacity. Notice that we require the uniqueness of the optimal policy to achieve this, though
similar assumptions are common in BOBW works adopting the so-called self-bounding
technique applied in the last proof (Wei and Luo, 2018; Zimmert and Seldin, 2021; Ito
et al., 2022; Dann et al., 2023). There is, however, small room for improvement in terms
of the dependence of both bounds on the time horizon. Compared to Theorem 1, the
adversarial bound shown above is worse off by an extra

√
log T factor. At the same time,

the stochastic regime bound scales as log2 T instead of the typical log T rate. Arguably,
these shortcomings are mild for BOBW bounds, especially considering the simplicity of the
algorithm.

Nevertheless, the recent work of Dann et al. (2023) offers one way for further honing these
bounds. There, a general reduction scheme is proposed, allowing the automatic synthesis
of BOBW algorithms starting from traditional algorithms satisfying a certain importance-
weighting (iw) stability condition. More precisely, this condition requires that if the algo-
rithm receives feedback in round t only with probability qt (communicated at the start of

the round), it achieves a gracefully degrading bound of E
[√

c1
∑

t≤t′ 1/qt + c2 maxt≤t′ 1/qt

]
on the expected regret at any stopping time t′ with some constants c1 and c2. Let updt
be an indicator for whether the feedback is received at round t. For bandits with expert
advice (or contextual bandits), Lemma 10 in their paper shows that Exp4 is iw-stable with
c1 = O(K logN) and c2 = 0 by scaling the loss estimators with updt/qt and using a simple
adaptive learning rate. This leads to BOBW bounds depending on the number of actions
K. For our setting, one can combine their analysis with that of Theorem 1 (similarly
scaling the estimated shifted losses ζ̂t with updt/qt) yielding that Exp4 is iw-stable with
c1 = O(C(Θ) logN) and c2 = O(logN) using the learning rate

ηt = min

{
min
s≤t

qs,

√
logN

eC(Θ)
∑

s≤t 1/qs

}
.

Hence, Theorems 6 and 11 in (Dann et al., 2023) imply the existence of an algorithm

enjoying a bound of O
(√
C(Θ)T log(N) + log(N) log2(T )

)
for the adversarial regime, and

O

(
C(Θ) log(T ) log(N)

∆
+

√
C(Θ) log(T ) log(N)B

∆
+ log(N) log(T ) log

(
B

∆

))

for the adversarially corrupted stochastic regime. These bounds deliver the sought improve-
ments at the minor cost of scaling the trailing terms in both bounds with log T factors. On
the downside, achieving these bounds requires an arguably laborious and contrived combi-
nation of Exp4 with two meta-algorithms.

In the stochastic regime, competing results in the literature mainly include a bound of
order (1 + dχ2(Θ))2 log T logN/∆ in (Sen et al., 2018, Corollary 2),7 and a bound of order√

(1 + dχ2(Θ))T log(NT ) in (Papini et al., 2019, Theorem 2). These bounds fall short of

7. To be precise, Sen et al. (2018) consider a stochastic version of the bandits with expert advice problem
where an expert’s recommendation is a function of an i.i.d. context. There, the diameter dχ2 is defined
with respect to the conditional chi-squared divergence integrated over the context distribution.
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this section’s results, primarily considering their dependence on the structure of Θ. Another
notable result, though incomparable, is the constant (time-independent) regret bound in
(Metelli et al., 2021, Theorem 5.2), which nonetheless requires dχ2(Θ) to be finite.

5. Lower Bounds

In this section, we complement the regret bounds provided thus far by proving lower bounds
for the families of policy sets described in Section 3.3. More precisely, for a given policy
set, we aim to prove a lower bound for the minimax regret infπ sup(`t)t RT , where π is the
player’s strategy. To this end, we will consider a class of environments, each identified
by a vector µ ∈ [0, 1]K such that, for an outcome x, the loss `t(x) at every round t is
drawn from a Bernoulli distribution with mean µ(x) in an i.i.d. manner. For t ≤ T , recall
that Ht := (ϑs, Xs, `s(Xs))

t
s=1 denotes the interaction history till the end of round t. The

player’s strategy π can be represented as a sequence of probability kernels {πt}Tt=1, each
mapping the history so far to a distribution over the policies such that ϑt is sampled from
πt(· | Ht−1). Hence, under environment µ, it holds that P(ϑt = · | Ht−1) = πt(· | Ht−1),
P(Xt = · | Ht−1, ϑt) = ϑt(·), and P(`t(Xt) = · | Ht−1, ϑt, Xt) = pµ,Xt(·), where pµ,x is the
loss distribution of outcome x under µ. Consequently, each environment µ (coupled with
the player’s strategy) induces a probability distribution Pµ on HT such that

Pµ
(
(ξ1, x1, l1, . . . , ξT , xT , lT )

)
=
∏T

t=1
πt(ξt | ξ1, x1, l1, . . . , ξt−1, xt−1, lt−1)ξt(xt)pµ,xt(lt) ,

for any (ξ1, x1, l1, . . . , ξT , xT , lT ) ∈ (Θ×X × {0, 1})T . For an environment µ, we define the
stochastic regret as:

RT (µ) := max
θ∗∈Θ

Eµ
T∑
t=1

∑
x∈X

(ϑt(x)− θ∗(x))µ(x) , (9)

where the subscript in Eµ emphasizes the dependence on Pµ. For any µ, RT (µ) is a lower
bound for sup(`t)t RT . Thus, to prove a lower bound on the minimax regret, it is sufficient to

prove a lower bound on supµRT (µ) that holds for any strategy of the player. In the sequel,
we will make use of the following lemma, which provides an expression for the KL-divergence
between the probability distributions induced by two environments.

Lemma 4 For a fixed player’s strategy, policy set, and time horizon, any two environments
µ and µ′ satisfy D(Pµ ‖Pµ′) =

∑
θNµ(θ;T )

∑
x θ(x)d

(
µ(x)

∥∥µ′(x)
)
, where Nµ(θ;T ) :=

Eµ
∑T

t=1 I{ϑt = θ}, and d(a ‖ b) is the KL-divergence between two Bernoulli distributions
with means a and b.

Proof Using the chain rule of the KL-divergence, one can obtain that

D(Pµ ‖Pµ′) =
∑

t
EµD(pµ,xt ‖ pµ′,xt) .
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We then use the tower rule and the linearity of expectation to conclude the proof:∑
t
EµD(pµ,xt ‖ pµ′,xt) =

∑
t
Eµ
[
Eµ
[
D(pµ,xt ‖ pµ′,xt) | ϑt

]]
=
∑

t
Eµ
∑

x
ϑt(x)D(pµ,x ‖ pµ′,x)

=
∑

θ
Nµ(θ;T )

∑
x
θ(x)D(pµ,x ‖ pµ′,x) .

5.1 The Two Policies Case

The following theorem provides a lower bound for the two policies case examined in Sec-
tion 3.3.1. The proof mostly follows the needle-in-a-haystack technique of Auer et al.
(2002a). The key to obtaining this result is a careful choice of the mean loss for each out-
come. This choice leads to a lower bound in terms of the Hellinger squared distance between
the two policies, which is then related to the capacity via (6). This shows that the bound
of Theorem 1 is order-wise unimprovable for this case.

Theorem 5 Assume that Θ = {θ1, θ2}. Then, for any algorithm and T ≥ 1
8 log(4/3)H2(θ1,θ2)

,

there exists a sequence of losses such that RT ≥ 1
13
√

2

√
C(θ1, θ2)T .

Proof We will consider two environments µ1 and µ2 such that for an outcome x, we choose

µ1(x) :=
1

2
−∆

√
θ1(x)−

√
θ2(x)√

θ1(x) +
√
θ2(x)

and µ2(x) :=
1

2
−∆

√
θ2(x)−

√
θ1(x)√

θ1(x) +
√
θ2(x)

,

where 0 ≤ ∆ ≤ 1
4 is to be tuned later. We posit that

√
θ1(x) +

√
θ2(x) is always positive

by assuming, without loss of generality, that each outcome is in the support of at least one
policy. Additionally, let µ0 be an environment such that µ0(x) := 1/2 for any outcome x.
Note that θ1 (θ2) is the optimal policy in µ1 (µ2). Indeed,∑

x
(θ2(x)− θ1(x))µ1(x) = ∆

∑
x

(√
θ1(x)−

√
θ2(x)

)2
= 2∆H2(θ1, θ2) > 0 .

Symmetrically, we have that
∑

x(θ1(x)− θ2(x))µ2(x) = 2∆H2(θ1, θ2). Hence, it holds that

RT (µ1) = Eµ1

∑
t
I{ϑt = θ2}

∑
x
(θ2(x)− θ1(x))µ1(x)

= 2∆H2(θ1, θ2)(T −Nµ1(θ1;T ))

≥ 2∆H2(θ1, θ2)

(
T −Nµ0(θ1;T )− T

√
1

2
D
(
Pµ0

∥∥Pµ1

))
, (10)

where the inequality follows by using that Nµ1(θ1;T )−Nµ0(θ1;T ) ≤ Tδ(Pµ0 , Pµ1) followed
by an application of Pinsker’s inequality. Note that for ∆ ≤ 1/4 and c := 8 log(4/3),

d(µ0(x) ‖µ1(x)) = d

(
1

2

∥∥∥∥ 1

2
−∆

√
θ1(x)−

√
θ2(x)√

θ1(x) +
√
θ2(x)

)
≤ c∆2

(√
θ1(x)−

√
θ2(x)√

θ1(x) +
√
θ2(x)

)2

.
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We also have that∑
x
θ1(x)

(√
θ1(x)−

√
θ2(x)√

θ1(x) +
√
θ2(x)

)2

≤
∑

x

(√
θ1(x)−

√
θ2(x)

)2
= 2H2(θ1, θ2) ,

with an analogous inequality holding for θ2. Combining these observation with Lemma 4
gets us that

D
(
Pµ0

∥∥Pµ1

)
= Nµ0(θ1;T )

∑
x
θ1(x)d

(
µ0(x)

∥∥µ1(x)
)

+Nµ0(θ2;T )
∑

x
θ2(x)d

(
µ0(x)

∥∥µ1(x)
)

≤ 2c∆2H2(θ1, θ2)(Nµ0(θ1;T ) +Nµ0(θ2;T )) = 2c∆2H2(θ1, θ2)T .

Plugging back into (10) yields that

RT (µ1) ≥ 2∆H2(θ1, θ2)

(
T −Nµ0(θ1;T )− T∆

√
cH2(θ1, θ2)T

)
.

An analogous bound can be similarly shown to hold for environment µ2. Hence, we can
proceed by arguing that

sup
µ
RT (µ) ≥ 1

2
(RT (µ1) +RT (µ2)) ≥ ∆H2(θ1, θ2)T

(
1− 2∆

√
cH2(θ1, θ2)T

)
.

The theorem then follows by setting ∆ := 1

4
√
cH2(θ1,θ2)T

and using that (see Section 3.3.1)

2H2(θ1, θ2) ≥ C(θ1, θ2). Note that the stated condition on T ensures that ∆ ≤ 1/4.

5.2 ε-Greedy Policies

Next, we prove a lower bound for the ε-greedy case discussed in Section 3.3.2. Recall that
for this case, C(Θ) = ε2(N − 1); hence, the following lower bound matches the bound of
Theorem 1 up to a logarithmic factor. Further, we can conclude from this result that for
any g ∈ [0, N − 1], there exists a policy set Θ with |Θ| = N and C(Θ) = g for which one
has to incur regret of order at least

√
C(Θ)T .

Theorem 6 Assume that the policy set conforms to the ε-greedy structure. Then, for
T ≥ N

4 log(4/3) and any algorithm, there exists a sequence of losses such that RT ≥ 1
18ε
√
NT .

Proof We will consider N environments {µθ}θ∈Θ such that for environment µθ and outcome
x, µθ(x) := 1/2−∆I{x = xθ}, where 0 ≤ ∆ ≤ 1/4 is to be tuned later. Additionally, let µ0

be an environment such that µ0(x) := 1/2 for any outcome x. Notice that θ is the optimal
policy in environment µθ. In particular, for θ′ ∈ Θ \ {θ}, we have that∑

x
(θ′(x)− θ(x))µθ(x) = ∆(θ(xθ)− θ′(xθ)) = ∆ε .

Thus,

RT (µθ) = ∆ε(T −Nµθ(θ;T )) ≥ ∆ε

(
T −Nµ0(θ;T )− T

√
1

2
D
(
Pµ0

∥∥Pµθ)) , (11)
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where the inequality follows by using that Nµθ(θ;T ) − Nµ0(θ;T ) ≤ Tδ(Pµ0 , Pµθ) followed
by an application of Pinsker’s inequality. Starting from Lemma 4, we have that

D
(
Pµ0

∥∥Pµθ) =
∑

θ′
Nµ0(θ′;T )

∑
x
θ′(x)d

(
µ0(x)

∥∥µθ(x)
)

=
∑

θ′
Nµ0(θ′;T )θ′(xθ)d

(
1

2

∥∥∥∥ 1

2
−∆

)
≤ c∆2

∑
θ′
Nµ0(θ′;T )θ′(xθ) = c∆2

(
1− ε
N

T + εNµ0(θ;T )

)
,

where the inequality holds for ∆ ≤ 1/4 with c := 8 log(4/3). Plugging this result back into
(11) allows us to conclude that

sup
µ
RT (µ) ≥ 1

N

∑
θ
RT (µθ)

≥ ∆ε

(
T − T

N
− T

√
c

2
∆2

(
1− ε
N

T + ε
T

N

))
≥ ∆εT

(
1

2
−∆

√
c

2

T

N

)
,

where the second inequality uses the concavity of the square root, and the third holds since

N ≥ 2. The theorem then follows by setting ∆ := 1
4

√
2N
cT and verifying that the stated

condition on T ensures that ∆ ≤ 1/4.

5.3 The Multitask Bandits Structure

In this section, we prove a lower bound for a certain structure belonging to the family of
M -supported uniform policies described in Section 3.3.3. Let M be a positive integer such
that q := K/M is an integer greater than or equal to 2. In this structure, the outcomes
are divided into M sections, and each policy is a uniform distribution supported over M
outcomes such that its support contains an outcome from each section. Assuming that
the policy set contains all such policies, we have that N = (K/M)M . For this particular
structure, we will index the outcomes according to the section they belong to and their
order therein: X = {xi,j : i ∈ [M ], j ∈ [q]}. With this notation, we can describe the policy
set as

Θ =

{
θ ∈ UK,M : ∀i ∈ [M ],

q∑
j=1

θ(xi,j) =
1

M

}
,

where UK,M is the set of all M -supported uniform distributions over K outcomes. Seeing the
outcomes in one section as arms in a bandit game, this problem is, in a sense, equivalent to
playing M bandit games simultaneously, with the choice of policy at each round dictating
an arm choice for each game. The distinction is that only the loss incurred in a single
randomly sampled game is observed, while the player nonetheless aims at minimizing their
regret averaged over the M games. This type of structure (albeit with a different type
of feedback) is commonly used to prove lower bounds for combinatorial bandits (see, e.g.,
Audibert et al., 2014). The following theorem, proved in Appendix A, provides a lower
bound for our setting.
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Theorem 7 Suppose the policy set conforms to the multi-task structure. Then, for any
algorithm and T ≥ K

4 log(4/3) , there exists a sequence of losses such that RT ≥ 1
18

√
KT .

Recall from Section 3.3.3 that for M -supported uniform policies, C(Θ) = K/M − 1.
Also, note that M = log(N)/ log(K/M). Thus, the bound given by the theorem is of order√
C(Θ)T log(N)/ log(C(Θ) + 1). The distinguishing value of this lower bound is that it

shows that the logarithmic dependence on the number of policies in the bound of Theorem 1
is not entirely spurious and that it becomes increasingly tight as C(Θ) decreases. This
result can be seen as an analogue for our setting of the

√
KT log(N)/ log(K)) lower bound

proved by Seldin and Lugosi (2016) for the problem of bandits with expert advice, noting
that the construction of their bound relies on a (time-varying) sequence of deterministic
expert recommendations.

6. An Impossibility Result for Linear Bandits

In this section, we establish a separation between the mediator feedback model and the
linear bandit model in terms of achievable regret. With Θ ⊂ ∆K as the action set, we
consider a linear bandit problem where upon choosing a policy ϑt in round t, the learner
directly observes `t(ϑt) =

∑
x ϑt(x)`t(x). This is in contrast to the setting considered thus

far, where the learner observes (Xt, `t(Xt)) with Xt sampled from the distribution of ϑt.
The notion of regret we aim to minimize in the linear bandit variant remains the same as
before. The main message conveyed by this section’s results is that obtaining information
regarding individual outcomes is crucial for achieving regret guarantees that reflect the
affinity of the policies’ distributions.

Concretely, we will consider once again the ε-greedy structure described in Section 3.3.2.
Similar to the previous section, we will rely on a class of environments, each identified by a
vector µ ∈ [0, 1]K . However, we will adopt a different scheme for generating the losses for
the outcomes. For every round t, let Zt be a random variable drawn in an i.i.d. manner
from a normal distribution N (0, σ2), with some σ > 0. Accordingly, for each outcome x,
we set `t(x) := µ(x) + Zt. Hence, the losses assigned to the outcomes in a given round
are correlated, see (Cohen et al., 2017) for a similar approach in the combinatorial bandit
problem. It follows then that `t(ϑt) = 〈ϑt, µ〉 + Zt. In this section, we let Pµ denote
the distribution induced by µ (and the player’s strategy) over the interaction history in
this variant, namely (ϑ1, `1(ϑ1), . . . , ϑT , `T (ϑT )). We will again study the stochastic regret
RT (µ), still defined as in (9).

For the ε-greedy decision set, Theorem 22.1 in (Lattimore and Szepesvári, 2020) implies
the existence of an algorithm enjoying a bound of order

√
NT log(NT ) on the stochastic

regret (when σ = 1), recalling that the members of Θ in this case are N -dimensional vectors.
While for the adversarial regret, an upper bound of order

√
NT log(N) is achievable, see

(Bubeck et al., 2012). The following two results show that, up to factors logarithmic in N
and T , the cited bounds are unimprovable, no matter the value of ε. Hence, the growing
similarity between the actions—or the shrinking diameter of Θ—as ε approaches 0 cannot
be exploited. This is in sharp contrast to the mediator feedback setting, where Theorems 1
and 6 establish the minimax regret to be essentially of order ε

√
NT for this family.
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Proposition 8 Assume that the policy set conforms to the ε-greedy structure with ε > 0.
Then, for the class of linear bandit environments described above (with any given σ > 0),

it holds for any algorithm and T ≥ σ2N
ε2

that supµRT (µ) ≥ σ
8

√
NT .

Proof We will consider N environments {µθ}θ∈Θ such that for environment µθ and outcome
x, we set

µθ(x) :=
1

2
+ ∆

(1− ε
N
− I{x = xθ}

)
,

where 0 ≤ ∆ ≤ 1/2 is to be tuned later. Thus, under environment µθ, we have that

`t(ϑt) =
∑

x
ϑt(x)`t(x) =

1

2
+ ∆

(1− ε
N
− ϑt(xθ)

)
+ Zt =

1

2
−∆εI{ϑt = θ}+ Zt . (12)

Additionally, let µ0 be an environment such that µ0(x) = 1/2 for any outcome x, implying
that `t(ϑt) = 1/2+Zt. Notice that θ is the optimal policy in environment µθ. In particular,
for θ′ ∈ Θ \ {θ}, we have that∑

x
(θ′(x)− θ(x))µθ(x) = ∆(θ(xθ)− θ′(xθ)) = ∆ε .

Hence, it holds that

RT (µθ) = ∆ε(T −Nµθ(θ;T )) ≥ ∆ε

(
T −Nµ0(θ;T )− T

√
1

2
D
(
Pµ0

∥∥Pµθ)) ,
where the inequality follows by using that Nµθ(θ;T ) − Nµ0(θ;T ) ≤ Tδ(Pµ0 , Pµθ) followed
by an application of Pinsker’s inequality. Combining the observation in (12) with standard
results, see, for example, Exercise 15.8 (b) and Exercise 14.7 in (Lattimore and Szepesvári,
2020); we can express the KL-divergence term as follows:

D
(
Pµ0

∥∥Pµθ) =
∑

θ′
Nµ0(θ′;T )D

(
N (1/2, σ2)

∥∥N (1/2−∆εI{θ′ = θ}, σ2)
)

= Nµ0(θ;T )D
(
N (1/2, σ2)

∥∥N (1/2−∆ε, σ2)
)

=
∆2ε2

2σ2
Nµ0(θ;T ) .

Consequently, we get that

sup
µ
RT (µ) ≥ 1

N

∑
θ
RT (µθ) ≥ ∆ε

(
T − T

N
− ∆ε

2σ
T

√
T

N

)
≥ ∆εT

(
1

2
− ∆ε

2σ

√
T

N

)
,

where the second inequality holds by the concavity of the square root, and the third since

N ≥ 2. The proposition then follows by choosing ∆ := σ
2ε

√
N
T . Note that the stated condi-

tion on T ensures that ∆ ≤ 1/2.

As the construction of this lower bound relied on normally distributed (hence un-
bounded) losses, a lower bound in the adversarial setting is not immediately implied. In-
stead, the following theorem (proved in Appendix B) provides the sought bound at the cost
of an extra 1/

√
log(T ) factor by combining Proposition 8 with a simple truncation argu-

ment due to Cohen et al. (2017). Notice that the resulting bound can be made arbitrarily
larger than the mediator feedback guarantee of Theorem 1 by picking a small enough ε and
a suitably long horizon.
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Algorithm 3 OMD on the Convex Hull of the Policies Under Full-Information

1: Input: learning rate η, initial distribution α∗ ∈ co(Θ) : α∗(x) > 0 ∀x ∈X

2: Initialize: u1 = α∗

3: for t = 1, . . . , T do
4: Pick distribution pt ∈ PΘ such that

∑
θ pt(θ)θ = ut

5: Draw ϑt ∼ pt
6: Observe the loss vector `t
7: Set ut+1 = arg minu∈co(Θ) η〈u, `t〉+D(u ‖ut)
8: end for

Theorem 9 Assume that the policy set conforms to the ε-greedy structure with ε > 0.
Then, under linear bandit feedback, we have that for any algorithm and T ≥ N

8ε2
, there

exists a sequence of losses (bounded in [0, 1]) such that RT ≥ 1

64
√

2 log(16T )

√
NT .

7. The Full-Information Case

In this last section, we briefly examine a full-information variant of the problem, where the
entire loss map (`t(x))x∈X is observed at every round. One can see this as a variant of
the classical prediction with expert advice problem (Cesa-Bianchi et al., 1997), with the
outcomes representing the actions (or experts). The distinction is that the learner can
only sample from a mixture of the distributions of the policies in Θ. Moreover, the learner
competes with the best policy, aiming to minimize the same notion of regret as before. We
show in the following theorem that a simple strategy enjoys a regret guarantee depending on
the more standard notion of capacity based on the KL-divergence. Precisely, if ϑ and X are
two random variables taking values respectively over Θ and X such that PX|ϑ=θ(x) = θ(x)
for any θ ∈ Θ and x ∈X. Then, we define the KL-capacity of the policy set as:

CKL(Θ) := CKL(PX|ϑ) = max
τ∈PΘ

∑
θ
τ(θ)D

(
θ
∥∥∑

θ′τ(θ′)θ′
)
.

Via (Polyanskiy and Wu, 2023, Corollary 5.6), CKL(Θ) can alternatively be interpreted as
the “radius” of Θ in terms of the KL-divergence:

CKL(Θ) = min
α∈∆K

max
θ∈Θ

D(θ ‖α) . (13)

The idea of Algorithm 3 is to run an Online Mirror Descent (OMD) algorithm directly
on the outcome space restricted to the convex hull of the policy set, henceforth denoted as
co(Θ). The key to obtaining the following result is a tailored choice of the initial distribution
that utilizes the interpretation in (13).

Theorem 10 Algorithm 3 run with α∗ ∈ arg minα∈∆K
maxθ∈ΘD(θ ‖α) and η =

√
2CKL(Θ)

T

satisfies RT ≤
√

2CKL(Θ)T .

Proof Firstly, we note that setting u1 = α∗ is a valid choice since the minimum value of
maxθ∈ΘD(θ ‖α) in α ∈ ∆K can only be attained in co(Θ); see Theorem 11.6.1 in Cover and
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Thomas (2006). Let θ∗ ∈ arg minθ∈Θ E
∑

t `t(θ). As `t and ϑt are independent given the
events up to the end round t− 1, we have that RT = E

∑
t〈ϑt − θ∗, `t〉 = E

∑
t〈ut − θ∗, `t〉.

A standard regret bound for OMD with the negative entropy regularizer (see, e.g., Lemma
6.16 and the proof of Theorem 10.2 in Orabona, 2023) allows us to conclude that∑

t
〈ut− θ∗, `t〉 ≤

D(θ∗ ‖α∗)
η

+
η

2

∑
t

∑
x
ut(x)`2t (x) ≤ D(θ∗ ‖α∗)

η
+
η

2
T ≤ CKL(Θ)

η
+
η

2
T ,

where the last step follows from (13) and the definition of α∗. The theorem then follows
after plugging in the value of η.

We remark that CKL(Θ) ≤ min{logN, logK}, see Section 2.1. In particular, the first
bound is attained when the policies have non-overlapping supports, while the second is
attained when each outcome is matched with a policy entirely concentrated on that outcome.
Notice that these two cases essentially reduce the problem to a standard prediction with
expert advice problem on the policy and outcome spaces, respectively, where the bound
of Theorem 10 matches the minimax regret up to constants (Cesa-Bianchi et al., 1997).
Beyond these extreme cases, the bound improves as the capacity of the policy set—or its
information radius—shrinks.

8. Conclusions and Future Directions

In this paper, we have focused on the mediator feedback framework and studied to what
extent the structure of the problem can be exploited by the learner. In particular, we have
introduced the policy set capacity as a measure of the effective size (or complexity) of the
policy set. For various setups, we have derived new and improved regret bounds for Exp4
featuring the capacity. Further, the lower bounds we provided establish the capacity as a
fundamental indicator of the difficulty of the problem for a rich collection of policy sets.
Ultimately, we leave open the study of the optimality of the capacity on a more fine-grained
level; specifically, whether a regret lower bound in terms of the capacity can be shown to
hold for any given policy set.

Another direction for improvement is providing bounds that hold with high probabil-
ity rather than in expectation, noting that prior works on bandits with expert advice (or
contextual bandits) such as (Beygelzimer et al., 2011) and (Neu, 2015b) obtained high prob-
ability bounds only of order

√
KT logN . Yet another direction is proving data-dependent

(or small loss) bounds, following again previous works on bandits with expert advice (e.g.,
Allen-Zhu et al., 2018). Concerning the stochastic regime, improving the dependence of
the bounds on the sub-optimality gaps (beyond the crude scaling with the smallest gap) is
another interesting problem. Finally, for cases when the policy set is very large, achieving
similar regret guarantees via more computationally efficient strategies is a worthy direction.

Acknowledgments

The financial support of the FAIR (Future Artificial Intelligence Research) project, funded
by the NextGenerationEU program within the PNRR-PE-AI scheme, is gratefully acknowl-

29



Eldowa, Cesa-Bianchi, Metelli, and Restelli

edged. KE and NCB also acknowledge the support of the MUR PRIN grant 2022EKNE5K
(Learning in Markets and Society), funded by the NextGenerationEU program within the
PNRR scheme and of the EU Horizon CL4-2022-HUMAN-02 research and innovation action
under grant agreement 101120237, project ELIAS.

Appendix A. Proof of Theorem 7

Theorem 7 Suppose the policy set conforms to the multi-task structure. Then, for any
algorithm and T ≥ K

4 log(4/3) , there exists a sequence of losses such that RT ≥ 1
18

√
KT .

Proof In the following, we will overload the notation and denote by xi,θ—which belongs to
{xi,j}qj=1—the outcome chosen by policy θ in section i (i.e. we have that θ(xi,θ) = 1/M).
For each policy θ, we construct an environment µθ such that for any outcome x, µθ(x) :=
1/2 −∆I{x ∈ Supp(θ)} , where 0 ≤ ∆ ≤ 1/4 is to be tuned later. Moreover, we will also
use the following variations of each environment. For i ∈ [M ], let µ−iθ be an environment
such that for any outcome x,

µ−iθ (x) :=

{
1
2 , if x ∈ {xi,j}qj=1

µθ(x) , otherwise.

In words, µ−iθ is identical to µθ everywhere except in game i, where all outcomes are assigned
a mean loss of 1/2. For any policy θ, we have that

RT (µθ) = ∆Eµθ
T∑
t=1

M∑
i=1

(θ(xi,θ)− ϑt(xi,θ))

=
∆

M
Eµθ

T∑
t=1

M∑
i=1

(1− I{xi,ϑt = xi,θ})

=
∆

M

M∑
i=1

(T −Nµθ(i, θ;T )) ,

where for an environment µ, a policy θ, and a section i ∈ [M ], we define Nµ(i, θ;T ) :=

Eµ
∑T

t=1 I{xi,ϑt = xi,θ}. In words, this counts the expected number of times (under µ)
that the chosen policy agrees with θ in section i. Next, we use that for any i ∈ [M ],
Nµθ(i, θ;T )−Nµ−iθ

(i, θ;T ) ≤ Tδ
(
Pµ−iθ

, Pµθ
)

together with Pinsker’s inequality to get that

RT (µθ) ≥
∆

M

M∑
i=1

(
T −Nµ−iθ

(i, θ;T )− T
√

1

2
D
(
Pµ−iθ

∥∥Pµθ)) . (14)
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For bounding the KL-divergence term, we start from Lemma 4:

D
(
Pµ−iθ

∥∥Pµθ) =
∑
θ′∈Θ

Nµ−iθ
(θ′;T )

∑
x∈X

θ′(x)d
(
µ−iθ (x)

∥∥µθ(x)
)

=
∑
θ′∈Θ

Nµ−iθ
(θ′;T )θ′(xi,θ)d

(
µ−iθ (xi,θ)

∥∥µθ(xi,θ))
=

1

M

∑
θ′∈Θ

I{xi,θ′ = xi,θ}Nµ−iθ
(θ′;T )d

(
1

2

∥∥∥∥ 1

2
−∆

)
≤ c∆2

M

∑
θ′∈Θ

I{xi,θ′ = xi,θ}Nµ−iθ
(θ′;T )

=
c∆2

M
Eµ−iθ

T∑
t=1

I{xi,ϑt = xi,θ} =
c∆2

M
Nµ−iθ

(i, θ;T ) ,

where the second equality holds since xi,θ is the only outcome that does not have the same
mean loss in the two environments, and the inequality holds for ∆ ≤ 1/4 with c := 8 log(4/3).
Plugging back into (14), we get that

RT (µθ) ≥
∆

M

M∑
i=1

(
T −Nµ−iθ

(i, θ;T )− T∆

√
c

2M
Nµ−iθ

(i, θ;T )

)
. (15)

For what follows, we introduce an extra bit of notation. For each i ∈ [M ], we let ∼i denote
an equivalence relation on the policy set such that for θ, θ′ ∈ Θ,

θ ∼i θ′ ⇐⇒ ∀s ∈ [M ]\{i}, xs,θ = xs,θ′ .

In words, two policies are equivalent according to ∼i if they agree everywhere outside of
section i. Denote the set of all equivalence classes of ∼i by Θ/ ∼i, which contains qM−1

classes, each containing q policies corresponding to the possible outcome choices in section i.
For any Y ∈ Θ/ ∼i, notice that if θ, θ′ ∈ Y , then µ−iθ and µ−iθ′ denote the same environment,
which will be referred to in the sequel as µ−iY . Now, notice that for any section i,

∑
θ∈Θ

Nµ−iθ
(i, θ;T ) =

∑
Y ∈Θ/∼i

∑
θ∈Y

Nµ−iY
(i, θ;T ) =

∑
Y ∈Θ/∼i

Eµ−iY

T∑
t=1

∑
θ∈Y

I{xi,ϑt = xi,θ}︸ ︷︷ ︸
=1

= qM−1T ,
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whereas
∑

θ∈Θ

√
Nµ−iθ

(i, θ;T ) ≤
√∑

θ∈Θ 12
√∑

θ∈ΘNµ−iθ
(i, θ;T ) = qM

√
T
q . Hence, we con-

clude that

sup
µ
RT (µ) ≥ 1

|Θ|
∑
θ∈Θ

RT (µθ)

≥ 1

|Θ|
∑
θ∈Θ

∆

M

M∑
i=1

(
T −Nµ−iθ

(i, θ;T )− T∆

√
c

2M
Nµ−iθ

(i, θ;T )

)

≥ ∆

M

M∑
i=1

(
T − 1

|Θ|
qMT

(
1

q
+ ∆

√
cT

2qM

))

= ∆T

(
1− 1

q
−∆

√
cT

2K

)
q≥2
≥ ∆T

(
1

2
−∆

√
cT

2K

)
.

Plugging ∆ := 1
4

√
2K
cT into the previous display proves the theorem after observing that

1
16

√
2
c ≥

1
18 . Lastly, notice that the condition imposed on T ensures that indeed ∆ ≤ 1/4.

Appendix B. Proof of Theorem 9

Theorem 9 Assume that the policy set conforms to the ε-greedy structure with ε > 0.
Then, under linear bandit feedback, we have that for any algorithm and T ≥ N

8ε2
, there

exists a sequence of losses (bounded in [0, 1]) such that RT ≥ 1

64
√

2 log(16T )

√
NT .

Proof Building on the result of Proposition 8, we follow the technique used in the proof of
Theorem 5 in (Cohen et al., 2017). For the class of linear bandit environments specified in
Section 6, we define

R̂T (µ) := max
θ∗∈Θ

T∑
t=1

∑
x∈X

(ϑt(x)− θ∗(x))(µ(x) + Zt) = max
θ∗∈Θ

T∑
t=1

∑
x∈X

(ϑt(x)− θ∗(x))µ(x)

R̃T (µ) := max
θ∗∈Θ

T∑
t=1

∑
x∈X

(ϑt(x)− θ∗(x)) clip(µ(x) + Zt) ,

where clip(a) := max{min{a, 1}, 0}. Notice that ER̂T (µ) ≥ RT (µ), and that sup(`t)t RT ≥
supµ ER̃T (µ) considering sequences of losses (`t)t bounded in [0, 1]. We also define the
event Aµ := {∀t ∈ [T ], x ∈ X : clip(µ(x) + Zt) = µ(x) + Zt}. We will consider again the
environments {µθ}θ∈Θ used in the proof of Proposition 8, recalling that µθ(x) := 1/2 +
∆ ((1− ε)/N − I{x = xθ}) for some 0 ≤ ∆ ≤ 1/2. For any θ, we have that

ER̂T (µθ) = E
[
R̂T (µθ)I{Aµθ}

]
+ E

[
R̂T (µθ)I{Acµθ}

]
≤ E

[
R̃T (µθ)

]
+ ∆εTP

(
Acµθ

)
, (16)
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where we have used the fact that R̃T (µθ) and R̂T (µθ) are identical when Aµθ occurs, and

that R̂T (µθ) is uniformly bounded by ∆εT (see proof of Proposition 8). Assuming we
enforce that ∆ ≤ 1/4, the event {clip(µ(x) +Zt) 6= µ(x) +Zt} cannot hold for any outcome
unless |Zt| > 1/4. Hence, using a union bound and the fact that Zt ∼ N (0, σ2), we get that

P
(
Acµθ

)
≤
∑

t
P
(
|Zt| > 1/4

)
≤ 2T exp

(
−(1/4)2

2σ2

)
.

Combining this with (16) and the fact that ER̂T (µθ) ≥ RT (µθ) allows us to conclude that

sup
(`t)t

RT ≥ sup
µ

ER̃T (µ) ≥ 1

N

∑
θ
ER̃T (µθ) ≥

1

N

∑
θ
RT (µθ)− 2∆εT 2 exp

(
−(1/4)2

2σ2

)
.

Setting ∆ := σ
2ε

√
N
T , we obtain from the proof of Proposition 8 that 1

N

∑
θ RT (µθ) ≥

σ
8

√
NT . Hence, choosing σ := 1/(4

√
2 log(16T )) entails that the required bound. Notice

that the condition T ≥ N
8ε2

suffices to ensure that ∆ ≤ 1/4.
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