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Abstract

A common way of constructing a multiclass classifier is by combining the outputs of several binary
ones, according to an error-correcting output code (ECOC) scheme. The combination is typically
done via a simple nearest-neighbor rule that finds the class that is closest in some sense to the
outputs of the binary classifiers. For these nearest-neighbor ECOCs, we improve existing bounds on
the error rate of the multiclass classifier given the average binary distance. The new bounds provide
insight into the one-versus-rest and all-pairs matrices, which are compared through experiments
with standard datasets. The results also show eligination (also known as DAGSVM) and
Hamming decoding often achieve the same accuracy.

Keywords: Error-correcting output codes, all-pairs ECOC matrix, multiclass support vector ma-
chines

1. Introduction

Several techniques for constructing binary classifiers with good generalization capabilities were de-
veloped in recent years, e.g., support vector machines (SVM) (Cortes and Vapnik, 1995). However,
in many applications the number of classes is larger than two. While multiclass versions of most
classification algorithms exist (e.g., Crammer and Singer, 2002), they tend to be complex (Hsu and
Lin, 2002). A more common approach is to construct the multiclass classifier by combining the
outputs of several binary ones (Dietterich and Bakiri, 1995, Allwein et al., 2000). Typically, the
combination is done via a simple nearest-neighbor rule, which finds the class that is closest in some
sense to the outputs of the binary classifiers.

The most traditional scheme for solving a multiclass problem with binary classifiers is based on
the so-called one-versus-rest matrix. However, the popularity of an alternative scheme based on the
all-pairs matrix (also known ak versus 1round-robinandpairwise decompositignhas recently
increased (see, e.g.uffikranz, 2002). All-pairs with Hamming decoding is related to well-known
methods of paired comparisons in statistics (David, 1963), and it was first applied to classification
problems by Friedman (1996).

There are theoretical results that compare some aspects of the all-pairs and one-versus-rest
(among other) matrices. These results also suggest guidelines for constructing accurate multiclass
classifiers. For example, recent work has used the error incurred by the binary classifiers to up-
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per bound the error committed by the combined nearest-neighbor classifier (Guruswami and Sahai,
1999, Allwein et al., 2000). These results are reviewed and expanded here.

We present theoretical and experimental contributions. We strengthen the bounds by Allwein
et al. (2000) and extend the class of decoders to which they apply. These improved bounds provide
insight into the properties of certain ECOC matrices when the number of classes is large. We also
conduct detailed experiments directly comparing ECOC schemes that use the all-pairs and one-
versus-rest matrices for solving multiclass problems with SVM, complementing previous work (e.g.,
Allwein et al., 2000, Hsu and Lin, 2002). Our results show that Hamming decoding is very effective
for all-pairs. Additionally, our experimental results explain wdlimination (Kref3el, 1999) (also
known as DAGSVM) and Hamming decoding often achieve similar accuracy.

The paper is organized as follows. Section 2 provides a brief review about the construction
of multiclass classifiers from binary ones and establishes the notation. Theoretical bounds for the
multiclass error are presented in Section 3. Experimental results are presented in Section 4, followed
by conclusions in Section 5.

2. Background on ECOC

In supervised classification problems, one is giveraeing set{(X1,y1),...,(Xn,Yn)} containing
N examplesEach exampléx, y) consists of an instancec X and alabey € {1,... K}, whereX is
theinstance spacandK > 2 is the number oflassesA classifieris a mappind-: X — {1,... K}
from instances to labels. For binary problenis=£ 2 classes) the examples are labelet and
+1, for convenience. We assume the base learngags-symmetrid.e., the learning problem is
equivalent if we exchange the labeld and+1, and we are especially interested @nfidence-
valuedbinary classifiers : X — R that return acore

One of the most successful methods for constructing multiclass classifiers is to combine the out-
puts of several binary classifiers. First, a collectign .., fg of B binary classifierds constructed,
where each classifier is trained to distinguish between two subsets of classes. The classes involved
in the training of the binary classifiers are typically specified by a matix {—1,1}X*B (Diet-
terich and Bakiri, 1995) oM < {—1,0,1}¥*B (Allwein et al., 2000), and classifiefy is trained
according to columi (-, b).

The K-ary classifierF takes the score$(x) = (f1(x),...,fg(x)) and combines them using a
functiong: RB — {1,...,K} to obtainF (x) = g(f(x)). One can view the rows of the matrit as
codewords and the functianas decoding the output(x) of the binary classifiers. By analogy to
coding! M is refereed to as aBCOC matrixand the functiorg is called thedecoder We call the
combination of a matri¥ and a decodey, anECOC schemer simply ECOC.

In spite of the appeal of matrices inspired by coding, the most popular ECOC matrices are
obtained by simply taking all combinations afversus (vs.)B classeso + 3 < K, where each
binary classifier is trained to distinguighpositive fromf3 negative classes. We will be specially
interested in the 1 vs. Bll-pairs) and 1 vs.K — 1 (one-vs-regtmatrices. The one-vs-rest matrix
inducesB = K binary classifierd,...,fx. The all-pairs matrix induceB = (g) binary classifiers
fij,1<i<j<K.

1. Many results from coding can be promptly used for ECOCs, specially M@{—l&l}KXB. For example,
Theorem 2 by Berger (1999) corresponds to the well-known Plotkin’s bound, which statestf@5BK) /(K —1),
wherep is the minimum Hamming distance between two distinct rowslof
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ECOC schemes often adophearest-neighbodecoder. These decoders usstancemeasure
d:RBx{-1,0,1}B — R, and select the clags(x) = argmind(f(x),M(k,-)) that minimizes the
distance between scorééx) and rowM (k, -). Of special interest adess-basedlistances (Allwein
et al., 2000), which are defined by

B
d(f(x),M(k,-)) = bz L(b), 1)
—1
whereL : R — R is alossfunction? andz, = f,(x)M (k,b) would be themarginunder classifier
fp if M (k,b) were the label of instance

It is easy to show that, for any ECOC with loss-based decoding, all linear loss functons
C1 + ¢z with negative (positivek, lead to the same classification result. If the binary learner is
an SVM, decoding with.(z) = (1—2z), where(x), = max{x,0}, has the appeal of matching the
criterion used to maximize the margin when training the SVMs (Allwein et al., 2000).

The natural decoding method for an ECOC with the one-vs-rest matrix is to select thé& class
that maximizes scordy(x). This decoder is callechax-wins It can be shown that for the one-
vs-rest matrix, several choices bflead to the same classification result as max-wins, such as
L(z) = (1—2)+ or whenL is a strictly decreasing function.

Instead of scores, the binary classifiers may retiami decisions tx) € {—1,1}8, or the results
of the binary classifiers may be quantized{tel,1} to overcome unreliability. A natural decoder
in these cases is thdamming decode(also known awoting), the nearest-neighbor decoder that
minimizes theHamming distancémodified to allow forM (k,b) = 0):

B
dh (h(x),M(k,-) =05 ¥ (1—hy(x)M (k,b)). )
b=1
Hamming distance is a special case of a loss-based distance ilagre (1 — sign(z))/2 (Allwein
et al., 2000).

We are mostly concerned with nearest-neighbor decoders, for which theoretical results are pre-
sented in Section 3. In general however, the decgadan be any mapping, such as the one obtained
with a stacked artificial neural network (Klautau et al., 2002). Another example of a non-nearest-
neighbor decoder is the one proposed by Moreira and Mayoraz (1998). They adopted the all-pairs
matrix and a decoding method equivalent to using Equation (1) (i) = —Z, whereZ is a
weighted margirg, , = wy, fs(X)M (k,b). The weightuwy, of classifierf, was obtained with an addi-
tional ECOC based on a 2 Vi&.— 2 matrix.

3. Bounds on the K-ary Error

Previous work (Guruswami and Sahai, 1999, Allwein et al., 2000) used the error, and more gener-
ally, distance, incurred by the binary classifiers, to upper bound the error committed Kyattye
classifier with nearest-neighbor decoding. This section strengthens these bounds, extends the dis-
tance measures to which they apply and provides some insight into the propetigs.@f ECOC
matrices wherK is large. We begin by discussing results for any distathc&hen we specialize

the bounds for the cases whates the Hamming distance, and later for ECOCs with Hamming
distance andr vs. 3 matrix.

2. Allwein et al. (2000) defined : R — [0, ), but here we extend the range loto allow for, e.g.,L(z) = —z used
by Zadrozny (2002).
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3.1 Bounds for Nearest-Neighbor with General Distance

The number of errors thK-ary classifiel commits on a given set (e.g., training or held-out set)
with N examples i€y def I{n: F(xn) # yn}| and itserror rate is

KT N’
The accumulated distance between the outputs of the binary classifiers and the correct codeword
over this set i &' N, d(f(Xn),M(yn,-)) and their average distance is

g def €k

= def D
DE .
N
To relateg, andD, the minimum Hamming distance between any two rows was defined by All-

wein et al. (2000) to be
p ' min{du (M (k,),M (K, ) -k # K},

wheredy is defined in Equation (2). For example, for one-vs-fest 2, and for all-pairsp =
(B+1)/2. Allwein et al. (2000) also used

L+ d:efmin{ L(z)+L(—2) }

z€R 2

to prove some of their results.

Here we use the following two definitions related to distances between soreand rows of
M. Given an ECOC matri, a distance measutt and a vectof € RE, let d;(f) be the smallest
distance betweehand any row oM, and letd,(f) > di(f) be the smallest distance betweesnd
the remaining rows oM. Define

diy = mindy(f) and do = mind,(f).
! fcRB 1() 2 fcRB 2()

For example, for an ECOC with the one-vs-rest matrix and Hamming decatlirg 0 (achieved
when f(x) = h(x) matches a codeword) ard} = 1 (achieved wherf(x) = h(x) contains two
elementst1 while the others are-1). And for an ECOC with the all-pairs matrix and Hamming
decodingd; = O.S(Kgl) andd, = d; + 1. The following result was originally presented by Allwein
et al. (2000), and is restated here usihg

Lemmal (Implicit by Theorem 1 published by Allwein et al., 2000) For any ECOC with loss-
based decoding usirlg: R — [0, ),
d, > pL*. O

According to Lemma 1, whenever an examptey) leads to an error, the total erray is incre-
mented by 1 and at leagL* is added to the distand2. This reasoning can be used to interpret the
bound .

_ D
<
sK = pL*a (3)
which is proved by Allwein et al. (2000) for any ECOC with loss-based decoding Wwsirig) —
[0,00). Using the definitions ofl; andd,, Equation (3) can be strengthened as follows.

4
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Theorem 2  For any ECOC with nearest-neighbor decoding,

D—d;
dr—dy

& <

Proof Split the set of instances into

C %' {(tn,Yn) : F () = yn} and W ' {(xn, o) : F(40) 7 Yn.

containing the correctly and wrongly classified examples, respectively. The accumulated distance
D can then be written as

D= 5% d(f(xn),M{yn,))+ >  d(f(Xn),M(yn,"))
(%n.¥n)eC (Xn,Yn)EW

The total number of errors & = |W |, hence the first part is at led§t|d; = (N — &)d;, and the
second is at leasWV |d, = gcd,. ThereforeD > (N — g, )d; + &«dp. Normalizing byN and solving
for €, we obtain the theorem. O

We note that Theorem 2 applies to all distance measures, not just the loss-based obés with
0 andL* > 0, as required for Equation (3). Also, for loss-based distances, and when Equation (3)
is applicable and not trivial (i.eD < pL*), Theorem 2 is always at least as strong as Equation (3)
becaus® < pL* < dy, and henceyd; > 0,

D-d; D D
< —< .
do—d; —dp — pL*

A special case of interest is when the distadcebeys the triangle inequality. i, is the
minimum distance between two rows M, by the triangle inequalitg, > dmin/2. For example,
for any ECOC with Hamming decoding i, = p) and a matrixM without zero entriesd; = 0),
€« < 2D/p, because the Hamming distance obeys the triangle inequality. For Hamming decoding it
is also possible to writ® in terms of the binary error rate, as discussed in the next subsection.

3.2 Bounds for Hamming Decoding

For Hamming decoding, Allwein et al. (2000) presented a more natural form of Equation (3), which
relates theK-ary classifier’s errog, to that committed by the binary classifiers. Using Theorem 2,

we strengthen this bound as well.

LetT d:ef{(n, b) : M (yn,b) = 0} be the set of pairgn,b) corresponding to examples and binary

classifiers not used when esigning wary classifier, an = n, : Yn, e Its
lassifi d when designing t lassifi d L f(n,b) : M(yn,b) # 0} be i

complement. Clearly,T |+ |T ¢| = NB. The number of examples misclassified by the binary clas-

sifiers is therey def [{(n,b) € T ¢: hy(xn) # M (yn,b)}|, and theerror rate of the binary classifiers

IS
— def €p

We needd; andd, to apply Theorem 2 for ECOCs with Hamming decoding. In this case,
di = 0.5B"", whereBj"" is the minimum number of zero entries in a row. In order to conveniently
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expressl, let Oy def {b: M (k,b) #0AMK,b) +# 0} be the set of columns where both codewords

M(k,-) andM (K',-) have non-zero elements. Assume a partial Hamming distance that takes in
account only columns By and let

o1 dZEfrEIi(,n{O.S g (1-M(k,bM (K.,b)) : k£ K}

b€ k, K

be the minimum of such partial distances. Note that for ECOC matrices without zero entries, like
the one-vs-resip; = p. The reason for using; is to isolate the influence of zero entries in matrix
M. The following result can then be proved.

Lemma3 For any ECOC with Hamming decoding,
dz > di+ [p1/2].

Proof We are after the classifiers’ outpbte {—1,+1}8 that minimizesd,(h). Let codewords
M(r,-) andM(s,-) achieved;(h) andd,(h), respectively. Define the following sets of columns:
Soo={b:M(r,o) =0AM(sb) =0}, So1 = {b: (M(r,b) =0AM(sb) #0)} andSi;o={b:
(M(r,b) #0AM(s,b) = 0)}. For the entries corresponding to colunins Spo, h can assume any
value, and fob € {Sp1U S10}, h will match the non-zero entry. Henceh,

di(h) +dao(h) > |Sgo| + 0.5(|So1| + |S10]) + P1.
The distancel; (h) cannot be larger thaa(h), so
2d(h) > dy(h) +dz(h) > B3+ p1 = 21 +p1.
To properly take in account the case whegds odd,
da(h) > di + [p1/2]. [

LetB; = |T ¢|/N be the average number of non-zero entries in each codeword. Applying Theo-
rem 2 leads to the following result.

Lemma4 For any ECOC with Hamming decoding,

.~ 05(B- BN —By) + BiEp
- [p1/2] '
Proof For Hamming decoding,

D = 0.5[T | +&p = 0.5(NB— [T ¢|) + |T [gp.
So0,D = 0.5(B— By) + B1&p. From Theorem 2,
£ < 0.5(B—Bs1)+Bigp—ds

© = dp —
< 0.5(B—B{"—Bi) + Bigp
- [p1/2] ’
where the last step follows from Lemma 3. 0
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3.3 Bounds for Hamming Decoding andx vs. 3 Matrix

The bound in Lemma 4 becomes simpler when applied to ECOCsowith 3 matrices. For these
matrices the numbes of binary classifiers i8y + B1, whereBo = Bf"" andB; = B, are the number
of zero and non-zero elements in each row, respectively. Applying Lemma 4 leads to

_ Br _
& < €p. 4)
“ = Ip/2]
For example, for one-vs-rest, Equation (4) implies
€ < K&, (5)

which was originally presented by Guruswami and Sahai (1999). And for all-pairs
& < (K— 1), (6)

We note that folx vs. B matrices it can be proved thdi achieves the lower-bound in Lemma 3,
namelyd, = di + [p1/2].

To apply Equation (4) for a generalvs. 3 matrix M, it is convenient to have expressions Bar
andp;. These can be written in terms Bf andp], which are parameters obtained from these
matrix M* of M, defined as follows.

We construct am vs. f matrix M using matrices

M* e {—1,—|—l}(°‘+B)XB* and Pe {O,l,...,(X—I—B}KX(“EB).

Given the value¥, a andf of M, the associate* is simply ana vs. 3 ECOC matrix with the
same values* = a andp* = 3, but with the number of classés" = a + 3. Clearly, ifa+p =K
(i.e., if there are no zero entries M), thenM* = M. The matrixP is used to expant* into M,
taking in account al(qﬁﬁ) ways of choosingt + 3 of theK classes. Each entR(m,n) =i, i # 0,
is replaced by théth row of M*. If P(m,n) = 0O, the entry is substituted 8" zeros. For example,
for a 1 vs. 2 ECOC matrix witk = 4, the matriced/1*, P andM are, respectively,

o1 a1 1110 +1 -1 -1][+1 -1 -1|+1 -1 -1] 0 0 0
1 220 1| gl -1 41 ~1]-1 41 -1/ 0 0 0+l -1 -1
11 a3 oz2e2 -1 -1 1| 0 0 0/-1 +1 -1|-1 +1 -1

0333 0 0 0|]-1 -1 +1|-1 -1 +1|-1 -1 +1

The number of columns in the base matx is

= reswl e )

where the indicator functio(-) (which is 1 if its argument is true and zero otherwise) takes in
account that, whexx = 3, half of the (“EB) binary problems are effectively the same. And the
minimum Hamming distance favl* is

* _ p* G+B_2
oo (50,7)

7



KLAUTAU, JEVTIC AND ORLITSKY

+1

where we assumei> a. For example, for all-pairs1* = [ 1

] , B* =1 andp; = 1. HavingB*

andp* for the base matrid*, one can obtain

K—1 . [ K=2 .
51 = <a+B—l>B and p1= <a+f3—2>p’

which allow to use Equation (4) for amyvs. 3 ECOC.

Based on this result, we now briefly discuss the behaviar e$. 3 ECOCs when the number
K of classes is large. Allwein et al. (2000) stated Equation (¥as fl_i, where§ = D/Biis the
average distance per binary classifier (note &ddes not explicitly take in account the influence of
zero entries irM). We note that for all-pairs, &€ grows, the proportiof,/B of zeros in each row
goes to 1, and goes toL*, which makes the bound trivial. This can be easily seen for Hamming

decoding. In this case,

go< oo - 2B
pL* P
wherey is the average Hamming distance per binary classifier (Corollary 2 in Allwein et al., 2000).
For all-pairs and large enoudfy €, < 4¢y, but also§y = L* = 0.5.

Alternatively, we can look at the behavior for lareof ECOCs witha vs. 3 and Hamming
decoding using Equation (4), i.e., usiBg/[p1/2]. We note that, in spite of not being achieved by
all-pairs, there are ECOCs withvs.  matrix and Hamming decoding for whi@ /[p1/2] — 4, as
K — o, Whena = 3 = K /2, Equation (4) leads & < 4(K —1)g,/K. This is the same asymptotic
behavior achieved by Hadamard matrices (Guruswami and Sahai, 1998)ybu matrices may
correspond to a much larger numiiof classifiers.

4. Experimental Results

In this section we investigate the individual performance of binary classifiers for different ECOCs.
We are interested on evaluating if the bounds in Equations (5) and (6) are tight, and in using them
to get insight into the multiclass performance. Previous work (e.g., Allwein et al., 2000, Hsu and
Lin, 2002) compared the all-pairs and one-vs-rest matrices in terms of multiclass error, and here
we concentrate attention on the performance of the binary classifiers. Our experimental setup is
also propitious to explain whglimination(Kref3el, 1999), which is described below, and Hamming
decoding are often equivalent in terms of accuracy.

4.1 TheElimination Decoding Method for All-Pairs

The elimination decoding method applies only to ECOCs with the all-pairs matrix and quantized
scoresh(x). This decoder was originally described by Kref3el (1999) and independently reintro-
duced by Platt et al. (2000), where it was call#icected acyclic graph SVMDAGSVM) when

SVM is the binary learner. It operates iteratively and, at each iteratienl,2,...,K — 2, the

size of the seA, = {h;j} of active binary classifier$ is decreased. The sét contains all
binary classifiers, nameljA;| = B. At iteration n, the output of a classifieln m € A, is com-
puted, the loosing classe {I,m} is eliminated, and so are all classifiers related to it, namely
Ani1=An—{hij:i=tVvj=t}. The setAx_1 contains only one binary classifier, which deter-
mines the winner class. When compared to Hammnefigjinationdecoding can lead to substantial
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average # training|| minimum # training

Name #train || #test || #classes|| # attributes| examples per clas§ examples per class|
soybean-large 307 376 19 35 16.2 1

vowel 528 462 11 10 48.0 48
vowel-Isf 528 462 11 9 48.0 48
pbvoweluF1-2 599 600 10 2 59.9 42
pbvowelF0-3 760 760 10 4 76.0 76

isolet 6238 1559 26 617 239.9 238

e-set 2160 540 9 617 240.0 240

letter 16000 4000 26 16 615.4 576
satimage 4435 2000 6 36 739.2 409
pendigits 7494 3498 10 16 794.4 719
timit-plp40 138839 || 7142 39 40 3560.0 304

Table 1: Datasets used for the experiments.

savings given thak — 1 binary classifiers are consulted, instead@f. Platt et al. (2000) found the
ordering of classifier$y ; to be not important and adopted, j) = (1,2),(1,3),...,(1,K),(2,3),
...,(K=1,K), which was also used here.

It is clear that Hamming andliminationdecoding can in general lead to different results. For
example, it may happen ieliminationdecoding that the class with smallest Hamming distance is
prematurely eliminated, and the class with the largest Hamming distance is declared the winner. We
note that, if there is a class that wins all otlier- 1 classes, Hamming aralimination decoding
lead to the same classification result.

4.2 Datasets and Experimental Setup

We evaluated the performance of different ECOCs using the eleven standard datasets listed in Ta-
ble 1. The datasetsoybean-largevowel isolet letter, satimageandpendigitsare available at the
UCI repository, with associated documentation. The other five datasets are related to speech recog-
nition. In order to facilitate reproducing our results, these datasets and their descriptions were made
available on the Web,and here we present only a brief summary. Tbevel-Isfis a version of
vowel, obtained by a non-linear transformation (log-area ratios to line spectral frequencies) that is
standard in speech coding. Téesetis a subset of isolet consisting of the confusable let{8sC,
D,E,G,P, TV, 2. The two versions of the Peterson and Barney’s vowel data, ngshetwelF0-3
andpbvoweluF1-2are described by Klautau (2002). Timit-plp40dataset is a version of TIMIT,
a speech database with phonetic transcriptions. We used 12 perceptual linear prediction (PLP) co-
efficients and energy to represent each frame (10 milliseconds). As phones have different durations,
we linearly warped them into three regions, and took the average of each region to obtain a vector
with fixed-length (Ganapathiraju et al., 1998). After adding the phone duration (number of frames),
we obtained X 13+ 1 =40 features. We collapsed the 61 TIMIT labels into the standard 39 classes
proposed by Kai-Fu Lee.

All datasets have a standard partition into training and test sets, which were used throughout the
experiments. For each binary training set, the attributes were normalized to thé@dhdpased on
their minimum and maximum values, and the same normalization factors were used for the test set.

3. http://speech.ucsd.edu/aldebaro/repository
4. http://lwww.ldc.upenn.edu/Catalog/tdpn.html
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SVM parameters K-ary errorgy (%)
(polynomial kernel,
Dataset ECOC matrix unless noted) (1—2);+ | Hamming | elimination
soybean-large | all-pairs d=1E=2C=01 10.1 10.1 10.6
one-vs-rest linear,C=1 6.6 (+) 8.5 -
vowel all-pairs RBF,y=1,C=10 37.7 34.6 (+) 33.1
one-vs-rest RBF,y=10,C=10 41.3 68.6 -
vowel-Isf all-pairs RBF,y=1C=1 32.2 29.9(+) 30.3
one-vs-rest RBF,y=10,C=10 39.2 66.0 -
pbvowelFul-2 | all-pairs RBF,y=10C=1 19.0 19.0 19.0
one-vs-rest RBF,y=10,C=10 18.7 28.5 -
pbvowelF0-3 | all-pairs d=1E=4C=1 11.2 10.7 10.8
one-vs-rest RBF,y=10,C=10 12.2 15.9 -
isolet all-pairs d=0,E=3C=10 4.0 4.0 3.8
one-vs-rest d=0,E=4,C=0.1 3.8 8.1 -
e-set all-pairs d=0E=4C=1 5.6 6.3 5.9
one-vs-rest d=1E=4C=1 5.6 8.5 -
letter all-pairs RBF,y=10,C =10 3.2 2.3 2.2
one-vs-rest RBF,y=10,C=10 2.1 4.4 -
satimage all-pairs RBF,y=1,C=10 8.4 8.2 8.3
one-vs-rest RBF,y=10C=1 8.2 13.1 -
pendigits all-pairs RBF,y=1,C=10 2.1 1.6 1.6
one-vs-rest RBF,y=1,C=10 1.1(+) 2.1 -
timit-plp40 all-pairs RBF,y=1C=1 31.3 25.9 26.0
one-vs-rest RBFRy=4C=1 27.0 42.9 -

Table 2: Comparison of one-vs-rest and all-pairs matrices in terms of accuracy. The all-pairs with
Hamming and one-vs-rest with(z) = (1 —2), (max-wins) decoding were compared
through McNemar’s test, with a symbol (+) indicating the two ECOCs are not equivalent.

The binary learner was the SVM with either the polynonaix,y) = (x-y + 8)F or Gaussian
radial-basis function (RBFX (x,y) = e VI*-¥I* kernel> We used the same SVM parameters for
all binary classifiers of a given ECOC matrix. Because we were interested on comparing the perfor-
mance of binary classifiers using different ECOCs, we chosedimplexity parameter @nd kernel
parameters according to performance on the test set. Therefore, our results should not be interpreted
as indicating generalization error. More specifically, for each ECOC matrix we tested all decoders
using the set of parameters that achieved the smallest error with any decoding method. If differ-
ent sets of SVM parameters achieved the smallest error, we chose the parameters that minimized
the number of distinct support vectors. This methodology differs from the one adopted by Platt
et al. (2000), Hsu and Lin (2002), where different SVM parameters could be used for Hamming and
elimination making harder to identify the reason for their similar accuracy.

4.3 Results

Table 2 shows the results comparing #eary error of ECOCs with one-vs-rest and all-pairs. For
the all-pairs matrix,elimination achieved accuracy similar to Hamming decoding, whi(e) =
(1—2), was slightly worse. For the one-vs-rest matrix, max-wins has much better performance
than Hamming decoding, as expected.

5. Usingd = 0 andE = 1 leads to dinear SVM, which can be converted to a perceptron to avoid storing the support
vectors and save computations.
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Our main goal is to evaluate the binary classifiers, but we note that Table 2 indicates that quan-
tizing the scores may be beneficial when using all-pairs (or other matrices with zero entries). In
contrast, Allwein et al. (2000) concluded thatz) = (1 — z).. often gives better results than Ham-
ming decoding for the all-pairs matrix. For example, they reported that, for ECOCs using all-pairs
and SVMs with polynomial kernel of order 4, decoding wiitfz) = (1—z) . and Hamming led to
27.5% and 50.4% of error, respectively, for the satimage dataset. As we used the test set to perform
model selection, their results should not be compared directly to Table 2. However, when we used
all-pairs and Hamming with the SVM parametérs: 1, E = 4 andC=1, the error rate for satimage
was 11.0%.

We attribute the fact that Hamming outperforing) = (1— z).; to the large number afnseen
classes for binary classifiers of all-pairs.Mf(k,b) = 0, we say that classis unseerwith respect
to classifierf,. During the test stage, all instances associated tanaeerclassk lead f, to make
potentially erratic prediction%. All-pairs is thea vs. B matrix with the largest number ainseen
classes per binary classifier. In this case, the scores are unreliable and quantizing {hdmitb}
can lead to higher accuracy.

At this point we assume Hamming and max-wins as the decoders for all-pairs and one-vs-rest,
respectively, and compare the accuracy of these two ECOCs using McNemar’s test (see Dietterich,
1998) (0.05 significance level). As shown in Table 2, McNemar's test indicated that the two clas-
sifiers were equivalent for 7 out of the 11 datasets. We now investigate the performance of the
individual binary classifiers, trying to characterize the situations where one ECOC outperforms the
other. This analysis is not required in order to understand the numbers for the soybean-large dataset
though, which confirm that all-pairs may perform poorly if there is not enough training data for all
classifiers.

Table 3 shows the performance on the test set of the binary classifiers corresponding to the
ECOCs in Table 2. Besides some statistics of the binary error that we will discuss later, Table 3
presents histograms of Hamming distandggM (k*,-),h(x)) between quantized scorbéx) and
codewordM (k*,-), wherek* is the winner class. For each dataset, the sum of the six right-most
columns is equal to the total number of test instances. These six columns were split into two
subsets, depending whether Hamming decoding ledkeaay error or not. For example, for the
soybean-large dataset and one-vs-rest matrix, 344 test instances were correctly classified (sum of 3
columns under “when match”) and 32 were misclassified (columns “when error”), corresponding to
theK-ary error of 8.5% in Table 2. In this case, all binary classifiers made the correct decision for
343 instances (column “when match / 0”). For one test instance, the Hamming distance was one,
but the instance was correctly classified (column “when match / 1”). Among the instances that led
to errors, there were 13 for whiah, = 0.

Whendy = 0O for one-vs-rest (only one binary classifier has a positive score), max-wins and
Hamming decoding lead to the same decision. Table 3 shows that, for one-vs-rest, most of the
K-ary errors occurred with the winner class leadingdto= 1, while only 5 out of 21,399 test
instances led taly > 1. Hence, in almost all cases, the results with max-wins differed from the
ones with Hamming when the quantized scdnés) led to either a tie between two or among all
K classes. In these cases, max-wins could use the magnitudes of scores as a tie-breaking rule,
outperforming Hamming decoding as shown in Table 2. For the isolet dataset for example, among

6. We are using the termnseenclasses to denote a problem that has been discussed in the literature related to all-
pairs. For example, Hastie and Tibshirani (1998) conducted an experiment with artificial data to characterize it, and
mentioned that Geoffrey Hinton originally pointed out the problem.
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| One-versus-rest |

Binary error statistics Occurrences ofiy (M (k*,-),h(x))
when match when error
Dataset mean &) min. max. std. 0 1| >1 0 1 >1
soybean-large 0.006 0 0.043 | 0.013 || 343 1 0 13 19 0
vowel 0.074 0.054 | 0.087 | 0.011|| 120 | 25| O 35 282 0
vowel-Isf 0.076 0.032 | 0.132 | 0.029|| 141 | 16| O 64 241 0
pbvowelFul-2 0.042 0.012 | 0.098 | 0.027 || 424 | 5 0 78 93 0
pbvowelF0-3 0.028 0.005 | 0.041| 0.013|| 621 | 18 | O 68 53 0
isolet 0.005 0 0.013| 0.005| 1391 | 40 | 2 25 102 0
e-set 0.017 0.002 | 0.026 | 0.008 475 | 18 1 18 28 0
letter 0.002 0 0.008 | 0.002 || 3807 | 15 0 39 139 0
satimage 0.032 0.012 | 0.056 | 0.017 || 1708 | 29 0 95 168 0
pendigits 0.003 2.86e-4| 0.009 | 0.002 || 3412 | 11 0 23 52 0
timit-plp40 0.028 0.013 | 0.092 | 0.025 || 4011 | 65 2 603 | 2461 0
| All-pairs |
Binary error statistics Occ. ofdy (M (K, -),h(x)) —0.5(%, 1)
when match when error
Dataset mean &) min. max. std. 0 1|>1 0 1 >1
soybean-large 0.010 0 0.789 | 0.079 || 334 1 3 23 3 12
vowel 0.054 0 0.286 | 0.073 297 4 1 133 26 1
vowel-Isf 0.046 0 0.238 | 0.068 318 5 1 125 13 0
pbvowelFul-2 0.026 0 0.184 | 0.043 486 0 0 112 2 0
pbvowelF0-3 0.013 0 0.145 | 0.030 677 2 0 80 1 0
isolet 0.002 0 0.126 | 0.010 || 1496 | 1 0 51 11 0
e-set 0.014 0 0.042 | 0.014 | 505 | 1 0 27 7 0
letter 0.002 0 0.034 | 0.004 || 3907 | O 1 86 6 0
satimage 0.019 0 0.092 | 0.029 || 1833 | 2 0 161 4 0
pendigits 0.004 0 0.022 | 0.005 || 3439 | 2 0 54 3 0
timit-plp40 0.015 0 0.220 | 0.027 || 5264 | 26 1 1799 | 51 1

Table 3: Performance of the binary classifiers associated to the ECOCs in Table 2. The six right-
most columns are histograms of Hamming distarebetween quantized score&c) and
the codeworadM (k*,-), wherek* is the winner class. For all-pairs, the constarﬁ(bgl)
was subtracted frordy.

the 144 instances that leddg > 0, 109 and 42 were correctly classified by max-wins and Hamming
decoding, respectively. In this case, around half ofkhary errors were associated héx) with
two positive entries. Assuming the correct class was among the two competing, a random guess had
a 50% error rate. For the cases whigéx) = —1, Vb, Hamming decoding had to randomly break
the tie amond< = 26 classes.

For all-pairs, the constant®, ") corresponding tq*,") zero entries ilM was subtracted
from dy in Table 3. In this case, there was a class that won according to all Kf-it4 binary
classifiers for 99.1% of the test instances when considering all dafaet® look at each dataset
individually, the percentage varies from 93.1% (vowel) to 99.9% (pendigits). This percentage of
unanimous decisions can explain whlmination and Hamming decoding perform similarly in
terms of accuracy (Platt et al., 2000, Hsu and Lin, 2002).

We now evaluate how tight are the bounds on the multiclass grr@nd how they can help to
understand the ECOC performance. It can be seen from Table §,tisdower for one-vs-rest only
for soybean-large and pendigits, which are the two datasets for which one-vs-rest outperformed all-

7. KrelRel (1999) noted this behavior in his experiments.
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pairs. For vowel and vowel-Isf (for which all-pairs achieved higher accuragyfyr one-vs-rest is
higher than for all-pairs by a factor of 1.37 and 1.65, respectively. In spite of these facts, a careful
evaluation indicates that only the binary erggrdoes not suffice to predict the-ary error. We
elaborate it as follows.

timit-plp40 ??5.4 mall-pairs
’ Mone-versus-rest

pendigits 70.0

satimage 86.3

4
letter ——‘ 64

6.0
e-set ggé

isolet 80.0

pbvowel0-3 *W 915
pbvowelu1-2 ﬁ 812
vowel-isf *—&Q—\ 180

vowel S 84.3

soybean-large J—_@J_‘ 746

Figure 1: Comparison of upper bounds and empirical results for ECOCs with Hammming decod-
ing. The numbers (in percentage) correspond to the division of results in Table 2 by the
upper bounds on average numbeKeary errorsg, for Equations (5) and (6). A result of
100% would correspond to an ECOC achieving in practice the upper bousid on

Figure 1 shows that the bounds (5) and (6) onkhkary errore, for Hamming decoding are close
to experimental results. These bounds, and consequently the binargeran be effectively used
to predictg; when using the Hamming decoder. In practice however, we want to use max-wins
decoding for one-vs-rest, for whicp alone cannot predict performance. For example, for isolet,
one-vs-rest has a binary erreg that is 2.5 times higher thagy, for all-pairs, but still achieves
slightly betterK-ary errorey.

5. Conclusions

We presented new bounds on teary error of ECOCs with nearest-neighbor decoding. We then
specialized the bounds for Hamming decoding ands. 3 matrices. We showed that for large
enoughK, a vs. 3 matrices witha = 3 = K/2, have the same behavior as Hadamard matrices. We
also conducted simulations to evaluate the bounds and compare ECOCs based on one-vs-rest and
all-pairs matrices.

The conclusions of these experiments can be summarized as follows. The bounds are relatively
tight, and accurately predict the multiclass error based on the performance of the binary classifiers
when using Hamming decoding. Quantizing the scores (as in Hamming decoding) can be benefi-
cial for ECOCs with the all-pairs matrix, and we attribute this to the influenagneterclasses,
for which the scores are unreliable. Hamming &fichination decoding achieved equivalent per-
formance for all datasets, and we explained that these two decoders lead to the same classification
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result when one class wins according to all ofkts- 1 binary classifiers, which is the case for
99.1% of our test instances.
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