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Abstract
A common way of constructing a multiclass classifier is by combining the outputs of several binary
ones, according to an error-correcting output code (ECOC) scheme. The combination is typically
done via a simple nearest-neighbor rule that finds the class that is closest in some sense to the
outputs of the binary classifiers. For these nearest-neighbor ECOCs, we improve existing bounds on
the error rate of the multiclass classifier given the average binary distance. The new bounds provide
insight into the one-versus-rest and all-pairs matrices, which are compared through experiments
with standard datasets. The results also show whyelimination (also known as DAGSVM) and
Hamming decoding often achieve the same accuracy.

Keywords: Error-correcting output codes, all-pairs ECOC matrix, multiclass support vector ma-
chines

1. Introduction

Several techniques for constructing binary classifiers with good generalization capabilities were de-
veloped in recent years, e.g., support vector machines (SVM) (Cortes and Vapnik, 1995). However,
in many applications the number of classes is larger than two. While multiclass versions of most
classification algorithms exist (e.g., Crammer and Singer, 2002), they tend to be complex (Hsu and
Lin, 2002). A more common approach is to construct the multiclass classifier by combining the
outputs of several binary ones (Dietterich and Bakiri, 1995, Allwein et al., 2000). Typically, the
combination is done via a simple nearest-neighbor rule, which finds the class that is closest in some
sense to the outputs of the binary classifiers.

The most traditional scheme for solving a multiclass problem with binary classifiers is based on
the so-called one-versus-rest matrix. However, the popularity of an alternative scheme based on the
all-pairs matrix (also known as1 versus 1, round-robinandpairwise decomposition) has recently
increased (see, e.g., F¨urnkranz, 2002). All-pairs with Hamming decoding is related to well-known
methods of paired comparisons in statistics (David, 1963), and it was first applied to classification
problems by Friedman (1996).

There are theoretical results that compare some aspects of the all-pairs and one-versus-rest
(among other) matrices. These results also suggest guidelines for constructing accurate multiclass
classifiers. For example, recent work has used the error incurred by the binary classifiers to up-

c©2003 Aldebaro Klautau, Nikola Jevti´c and Alon Orlitsky.



KLAUTAU , JEVTIĆ AND ORLITSKY

per bound the error committed by the combined nearest-neighbor classifier (Guruswami and Sahai,
1999, Allwein et al., 2000). These results are reviewed and expanded here.

We present theoretical and experimental contributions. We strengthen the bounds by Allwein
et al. (2000) and extend the class of decoders to which they apply. These improved bounds provide
insight into the properties of certain ECOC matrices when the number of classes is large. We also
conduct detailed experiments directly comparing ECOC schemes that use the all-pairs and one-
versus-rest matrices for solving multiclass problems with SVM, complementing previous work (e.g.,
Allwein et al., 2000, Hsu and Lin, 2002). Our results show that Hamming decoding is very effective
for all-pairs. Additionally, our experimental results explain whyelimination (Kreßel, 1999) (also
known as DAGSVM) and Hamming decoding often achieve similar accuracy.

The paper is organized as follows. Section 2 provides a brief review about the construction
of multiclass classifiers from binary ones and establishes the notation. Theoretical bounds for the
multiclass error are presented in Section 3. Experimental results are presented in Section 4, followed
by conclusions in Section 5.

2. Background on ECOC

In supervised classification problems, one is given atraining set{(x1,y1), . . . ,(xN,yN)} containing
N examples. Each example(x,y) consists of an instancex∈X and a labely∈ {1, . . . ,K}, whereX is
the instance spaceandK ≥ 2 is the number ofclasses. A classifieris a mappingF : X →{1, . . . ,K}
from instances to labels. For binary problems (K = 2 classes) the examples are labeled−1 and
+1, for convenience. We assume the base learner isclass-symmetric, i.e., the learning problem is
equivalent if we exchange the labels−1 and+1, and we are especially interested onconfidence-
valuedbinary classifiersf : X → R that return ascore.

One of the most successful methods for constructing multiclass classifiers is to combine the out-
puts of several binary classifiers. First, a collectionf1, . . . , fB of B binary classifiersis constructed,
where each classifier is trained to distinguish between two subsets of classes. The classes involved
in the training of the binary classifiers are typically specified by a matrixM ∈ {−1,1}K×B (Diet-
terich and Bakiri, 1995) orM ∈ {−1,0,1}K×B (Allwein et al., 2000), and classifierfb is trained
according to columnM(·,b).

The K-ary classifierF takes the scoresf (x) = ( f1(x), . . . , fB(x)) and combines them using a
functiong : R

B → {1, . . . ,K} to obtainF(x) = g( f (x)). One can view the rows of the matrixM as
codewords and the functiong as decoding the outputf (x) of the binary classifiers. By analogy to
coding,1 M is refereed to as anECOC matrixand the functiong is called thedecoder. We call the
combination of a matrixM and a decoderg, anECOC schemeor simply ECOC.

In spite of the appeal of matrices inspired by coding, the most popular ECOC matrices are
obtained by simply taking all combinations ofα versus (vs.)β classes,α + β ≤ K, where each
binary classifier is trained to distinguishα positive fromβ negative classes. We will be specially
interested in the 1 vs. 1 (all-pairs) and 1 vs.K−1 (one-vs-rest) matrices. The one-vs-rest matrix
inducesB = K binary classifiersf1, . . . , fK . The all-pairs matrix inducesB =

(K
2

)
binary classifiers

fi, j ,1≤ i < j ≤ K.

1. Many results from coding can be promptly used for ECOCs, specially whenM ∈ {−1,+1}K×B. For example,
Theorem 2 by Berger (1999) corresponds to the well-known Plotkin’s bound, which states thatρ≤ (0.5BK)/(K−1),
whereρ is the minimum Hamming distance between two distinct rows ofM .
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ECOC schemes often adopt anearest-neighbordecoder. These decoders use adistancemeasure
d : R

B×{−1,0,1}B → R, and select the classF(x) = argmink d( f (x),M(k, ·)) that minimizes the
distance between scoresf (x) and rowM(k, ·). Of special interest areloss-baseddistances (Allwein
et al., 2000), which are defined by

d( f (x),M(k, ·)) =
B

∑
b=1

L(zk,b), (1)

whereL : R → R is a lossfunction,2 andzk,b = fb(x)M(k,b) would be themarginunder classifier
fb if M(k,b) were the label of instancex.

It is easy to show that, for any ECOC with loss-based decoding, all linear loss functionsL(z) =
c1 + c2z with negative (positive)c2 lead to the same classification result. If the binary learner is
an SVM, decoding withL(z) = (1− z)+, where(x)+ = max{x,0}, has the appeal of matching the
criterion used to maximize the margin when training the SVMs (Allwein et al., 2000).

The natural decoding method for an ECOC with the one-vs-rest matrix is to select the classk
that maximizes scorefk(x). This decoder is calledmax-wins. It can be shown that for the one-
vs-rest matrix, several choices ofL lead to the same classification result as max-wins, such as
L(z) = (1−z)+ or whenL is a strictly decreasing function.

Instead of scores, the binary classifiers may returnhard decisions h(x)∈ {−1,1}B, or the results
of the binary classifiers may be quantized to{−1,1} to overcome unreliability. A natural decoder
in these cases is theHamming decoder(also known asvoting), the nearest-neighbor decoder that
minimizes theHamming distance(modified to allow forM(k,b) = 0):

dH(h(x),M(k, ·)) = 0.5
B

∑
b=1

(1−hb(x)M(k,b)). (2)

Hamming distance is a special case of a loss-based distance whereL(z) = (1−sign(z))/2 (Allwein
et al., 2000).

We are mostly concerned with nearest-neighbor decoders, for which theoretical results are pre-
sented in Section 3. In general however, the decoderg can be any mapping, such as the one obtained
with a stacked artificial neural network (Klautau et al., 2002). Another example of a non-nearest-
neighbor decoder is the one proposed by Moreira and Mayoraz (1998). They adopted the all-pairs
matrix and a decoding method equivalent to using Equation (1) withL(z′) = −z′, wherez′ is a
weighted marginz′k,b = ωb fb(x)M(k,b). The weightωb of classifier fb was obtained with an addi-
tional ECOC based on a 2 vs.K−2 matrix.

3. Bounds on the K-ary Error

Previous work (Guruswami and Sahai, 1999, Allwein et al., 2000) used the error, and more gener-
ally, distance, incurred by the binary classifiers, to upper bound the error committed by theK-ary
classifier with nearest-neighbor decoding. This section strengthens these bounds, extends the dis-
tance measures to which they apply and provides some insight into the properties ofα vs.β ECOC
matrices whenK is large. We begin by discussing results for any distanced. Then we specialize
the bounds for the cases whered is the Hamming distance, and later for ECOCs with Hamming
distance andα vs.β matrix.

2. Allwein et al. (2000) definedL : R → [0,∞), but here we extend the range ofL to allow for, e.g.,L(z) = −z, used
by Zadrozny (2002).
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3.1 Bounds for Nearest-Neighbor with General Distance

The number of errors theK-ary classifierF commits on a given set (e.g., training or held-out set)

with N examples isεK
def= |{n : F(xn) 6= yn}| and itserror rate is

εK
def=

εK

N
.

The accumulated distance between the outputs of the binary classifiers and the correct codeword

over this set isD
def= ∑N

n=1 d( f (xn),M(yn, ·)) and their average distance is

D
def=

D
N

.

To relateεK andD, the minimum Hamming distance between any two rows was defined by All-
wein et al. (2000) to be

ρ def= min
k,k′

{dH(M(k, ·),M(k′, ·)) : k 6= k′},

wheredH is defined in Equation (2). For example, for one-vs-restρ = 2, and for all-pairsρ =
(B+1)/2. Allwein et al. (2000) also used

L∗ def= min
z∈R

{
L(z)+L(−z)

2

}

to prove some of their results.
Here we use the following two definitions related to distances between scoresf (x) and rows of

M . Given an ECOC matrixM , a distance measured, and a vectorf ∈ R
B, let d1(f) be the smallest

distance betweenf and any row ofM , and letd2(f) ≥ d1(f) be the smallest distance betweenf and
the remaining rows ofM . Define

d1 = min
f∈RB

d1(f) and d2 = min
f∈RB

d2(f).

For example, for an ECOC with the one-vs-rest matrix and Hamming decoding,d1 = 0 (achieved
when f (x) = h(x) matches a codeword) andd2 = 1 (achieved whenf (x) = h(x) contains two
elements+1 while the others are−1). And for an ECOC with the all-pairs matrix and Hamming
decoding,d1 = 0.5

(K−1
2

)
andd2 = d1+1. The following result was originally presented by Allwein

et al. (2000), and is restated here usingd2.

Lemma 1 (Implicit by Theorem 1 published by Allwein et al., 2000) For any ECOC with loss-
based decoding usingL : R→ [0,∞),

d2 ≥ ρL∗. �

According to Lemma 1, whenever an example(x,y) leads to an error, the total errorεK is incre-
mented by 1 and at leastρL∗ is added to the distanceD. This reasoning can be used to interpret the
bound

εK ≤ D
ρL∗

, (3)

which is proved by Allwein et al. (2000) for any ECOC with loss-based decoding usingL : R →
[0,∞). Using the definitions ofd1 andd2, Equation (3) can be strengthened as follows.
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Theorem 2 For any ECOC with nearest-neighbor decoding,

εK ≤ D−d1

d2−d1
.

Proof Split the set of instances into

C def= {(xn,yn) : F(xn) = yn} and W def= {(xn,yn) : F(xn) 6= yn},

containing the correctly and wrongly classified examples, respectively. The accumulated distance
D can then be written as

D = ∑
(xn,yn)∈C

d( f (xn),M(yn, ·))+ ∑
(xn,yn)∈W

d( f (xn),M(yn, ·)).

The total number of errors isεK = |W |, hence the first part is at least|C |d1 = (N− εK)d1, and the
second is at least|W |d2 = εKd2. ThereforeD ≥ (N− εK)d1 + εKd2. Normalizing byN and solving
for εK, we obtain the theorem. �

We note that Theorem 2 applies to all distance measures, not just the loss-based ones withL(z)≥
0 andL∗ > 0, as required for Equation (3). Also, for loss-based distances, and when Equation (3)
is applicable and not trivial (i.e.,D < ρL∗), Theorem 2 is always at least as strong as Equation (3)
becauseD < ρL∗ ≤ d2, and hence,∀d1 ≥ 0,

D−d1

d2−d1
≤ D

d2
≤ D

ρL∗
.

A special case of interest is when the distanced obeys the triangle inequality. Ifdmin is the
minimum distance between two rows ofM , by the triangle inequalityd2 ≥ dmin/2. For example,
for any ECOC with Hamming decoding (dmin = ρ) and a matrixM without zero entries (d1 = 0),
εK ≤ 2D/ρ, because the Hamming distance obeys the triangle inequality. For Hamming decoding it
is also possible to writeD in terms of the binary error rate, as discussed in the next subsection.

3.2 Bounds for Hamming Decoding

For Hamming decoding, Allwein et al. (2000) presented a more natural form of Equation (3), which
relates theK-ary classifier’s errorεK to that committed by the binary classifiers. Using Theorem 2,
we strengthen this bound as well.

Let T def= {(n,b) : M(yn,b) = 0} be the set of pairs(n,b) corresponding to examples and binary

classifiers not used when designing theK-ary classifier, andT c def= {(n,b) : M(yn,b) 6= 0} be its
complement. Clearly,|T |+ |T c|= NB. The number of examples misclassified by the binary clas-

sifiers is thenεb
def= |{(n,b) ∈ T c : hb(xn) 6= M(yn,b)}|, and theerror rate of the binary classifiers

is
εb

def=
εb

|T c| .

We needd1 and d2 to apply Theorem 2 for ECOCs with Hamming decoding. In this case,
d1 = 0.5Bmin

0 , whereBmin
0 is the minimum number of zero entries in a row. In order to conveniently
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expressd2, let Ok,k′
def= {b : M(k,b) 6= 0∧M(k′,b) 6= 0} be the set of columns where both codewords

M(k, ·) and M(k′, ·) have non-zero elements. Assume a partial Hamming distance that takes in
account only columns inOk,k′ and let

ρ1
def= min

k,k′
{0.5 ∑

b∈Ok,k′
(1−M(k,b)M(k′,b)) : k 6= k′}

be the minimum of such partial distances. Note that for ECOC matrices without zero entries, like
the one-vs-rest,ρ1 = ρ. The reason for usingρ1 is to isolate the influence of zero entries in matrix
M . The following result can then be proved.

Lemma 3 For any ECOC with Hamming decoding,

d2 ≥ d1 + dρ1/2e.
Proof We are after the classifiers’ outputh ∈ {−1,+1}B that minimizesd2(h). Let codewords
M(r, ·) andM(s, ·) achieved1(h) andd2(h), respectively. Define the following sets of columns:
S00 = {b : M(r,b) = 0∧M(s,b) = 0}, S01 = {b : (M(r,b) = 0∧M(s,b) 6= 0)} and S10 = {b :
(M(r,b) 6= 0∧M(s,b) = 0)}. For the entries corresponding to columnsb∈ S00, h can assume any
value, and forb∈ {S01∪S10}, h will match the non-zero entry. Hence,∀h,

d1(h)+d2(h)≥ |S00|+0.5(|S01|+ |S10|)+ ρ1.

The distanced1(h) cannot be larger thand2(h), so

2d2(h)≥ d1(h)+d2(h)≥ Bmin
0 + ρ1 = 2d1 + ρ1.

To properly take in account the case whereρ1 is odd,

d2(h)≥ d1 + dρ1/2e. �

Let B1 = |T c|/N be the average number of non-zero entries in each codeword. Applying Theo-
rem 2 leads to the following result.

Lemma 4 For any ECOC with Hamming decoding,

εK ≤ 0.5(B−Bmin
0 −B1)+B1εb

dρ1/2e .

Proof For Hamming decoding,

D = 0.5|T |+ εb = 0.5(NB−|T c|)+ |T c|εb.

So,D = 0.5(B−B1)+B1εb. From Theorem 2,

εK ≤ 0.5(B−B1)+B1εb−d1

d2−d1

≤ 0.5(B−Bmin
0 −B1)+B1εb

dρ1/2e ,

where the last step follows from Lemma 3. �
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3.3 Bounds for Hamming Decoding andα vs.β Matrix

The bound in Lemma 4 becomes simpler when applied to ECOCs withα vs. β matrices. For these
matrices the numberB of binary classifiers isB0+B1, whereB0 = Bmin

0 andB1 = B1 are the number
of zero and non-zero elements in each row, respectively. Applying Lemma 4 leads to

εK ≤ B1

dρ1/2eεb. (4)

For example, for one-vs-rest, Equation (4) implies

εK ≤ Kεb, (5)

which was originally presented by Guruswami and Sahai (1999). And for all-pairs

εK ≤ (K−1)εb. (6)

We note that forα vs. β matrices it can be proved thatd2 achieves the lower-bound in Lemma 3,
namelyd2 = d1 + dρ1/2e.

To apply Equation (4) for a generalα vs.β matrixM , it is convenient to have expressions forB1

andρ1. These can be written in terms ofB∗1 andρ∗1, which are parameters obtained from thebase
matrix M ∗ of M , defined as follows.

We construct anα vs.β matrix M using matrices

M ∗ ∈ {−1,+1}(α+β)×B∗ and P∈ {0,1, . . . ,α+ β}K×( K
α+β).

Given the valuesK, α andβ of M , the associatedM ∗ is simply anα vs. β ECOC matrix with the
same valuesα∗ = α andβ∗ = β, but with the number of classesK∗ = α+ β. Clearly, if α+ β = K
(i.e., if there are no zero entries inM ), thenM ∗ = M . The matrixP is used to expandM ∗ into M ,
taking in account all

( K
α+β

)
ways of choosingα+ β of theK classes. Each entryP(m,n) = i, i 6= 0,

is replaced by thei-th row ofM ∗. If P(m,n) = 0, the entry is substituted byB∗ zeros. For example,
for a 1 vs. 2 ECOC matrix withK = 4, the matricesM ∗, P andM are, respectively,

[
+1 −1 −1
−1 +1 −1
−1 −1 +1

]
,


 1 1 1 0

2 2 0 1
3 0 2 2
0 3 3 3


 and


 +1 −1 −1 +1 −1 −1 +1 −1 −1 0 0 0

−1 +1 −1 −1 +1 −1 0 0 0 +1 −1 −1
−1 −1 +1 0 0 0 −1 +1 −1 −1 +1 −1

0 0 0 −1 −1 +1 −1 −1 +1 −1 −1 +1


.

The number of columns in the base matrixM ∗ is

B∗ =
1

1+ I(α = β)

(
α+ β

β

)
,

where the indicator functionI(·) (which is 1 if its argument is true and zero otherwise) takes in
account that, whenα = β, half of the

(α+β
β

)
binary problems are effectively the same. And the

minimum Hamming distance forM ∗ is

ρ∗ = B∗ −
(

α+ β−2
β−2

)
,
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where we assumedβ ≥ α. For example, for all-pairsM ∗ =
[

+1
−1

]
, B∗ = 1 andρ1 = 1. HavingB∗

andρ∗ for the base matrixM ∗, one can obtain

B1 =
(

K−1
α+ β−1

)
B∗ and ρ1 =

(
K−2

α+ β−2

)
ρ∗,

which allow to use Equation (4) for anyα vs.β ECOC.
Based on this result, we now briefly discuss the behavior ofα vs. β ECOCs when the number

K of classes is large. Allwein et al. (2000) stated Equation (3) asεK ≤ Bξ
ρL∗ , whereξ = D/B is the

average distance per binary classifier (note thatξ does not explicitly take in account the influence of
zero entries inM ). We note that for all-pairs, asK grows, the proportionB0/B of zeros in each row
goes to 1, andξ goes toL∗, which makes the bound trivial. This can be easily seen for Hamming
decoding. In this case,

εK ≤ Bξ
ρL∗

=
2BξH

ρ
,

whereξH is the average Hamming distance per binary classifier (Corollary 2 in Allwein et al., 2000).
For all-pairs and large enoughK, εK ≤ 4ξH , but alsoξH = L∗ = 0.5.

Alternatively, we can look at the behavior for largeK of ECOCs withα vs. β and Hamming
decoding using Equation (4), i.e., usingB1/dρ1/2e. We note that, in spite of not being achieved by
all-pairs, there are ECOCs withα vs.β matrix and Hamming decoding for whichB1/dρ1/2e→ 4, as
K →∞. Whenα = β = K/2, Equation (4) leads toεK ≤ 4(K−1)εb/K. This is the same asymptotic
behavior achieved by Hadamard matrices (Guruswami and Sahai, 1999), butα vs. β matrices may
correspond to a much larger numberB of classifiers.

4. Experimental Results

In this section we investigate the individual performance of binary classifiers for different ECOCs.
We are interested on evaluating if the bounds in Equations (5) and (6) are tight, and in using them
to get insight into the multiclass performance. Previous work (e.g., Allwein et al., 2000, Hsu and
Lin, 2002) compared the all-pairs and one-vs-rest matrices in terms of multiclass error, and here
we concentrate attention on the performance of the binary classifiers. Our experimental setup is
also propitious to explain whyelimination(Kreßel, 1999), which is described below, and Hamming
decoding are often equivalent in terms of accuracy.

4.1 TheElimination Decoding Method for All-Pairs

The eliminationdecoding method applies only to ECOCs with the all-pairs matrix and quantized
scoresh(x). This decoder was originally described by Kreßel (1999) and independently reintro-
duced by Platt et al. (2000), where it was calleddirected acyclic graph SVM(DAGSVM) when
SVM is the binary learner. It operates iteratively and, at each iterationn = 1,2, . . . ,K − 2, the
size of the setAn = {hi, j} of active binary classifiersh is decreased. The setA1 contains all
binary classifiers, namely|A1| = B. At iteration n, the output of a classifierhl ,m ∈ An is com-
puted, the loosing classt ∈ {l ,m} is eliminated, and so are all classifiers related to it, namely
An+1 = An−{hi, j : i = t ∨ j = t}. The setAK−1 contains only one binary classifier, which deter-
mines the winner class. When compared to Hamming,eliminationdecoding can lead to substantial
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average # training minimum # training
Name # train # test # classes # attributes examples per class examples per class
soybean-large 307 376 19 35 16.2 1
vowel 528 462 11 10 48.0 48
vowel-lsf 528 462 11 9 48.0 48
pbvoweluF1-2 599 600 10 2 59.9 42
pbvowelF0-3 760 760 10 4 76.0 76
isolet 6238 1559 26 617 239.9 238
e-set 2160 540 9 617 240.0 240
letter 16000 4000 26 16 615.4 576
satimage 4435 2000 6 36 739.2 409
pendigits 7494 3498 10 16 794.4 719
timit-plp40 138839 7142 39 40 3560.0 304

Table 1: Datasets used for the experiments.

savings given thatK−1 binary classifiers are consulted, instead of
(K

2

)
. Platt et al. (2000) found the

ordering of classifiershi, j to be not important and adopted:(i, j) = (1,2),(1,3), . . . ,(1,K),(2,3),
. . .,(K−1,K), which was also used here.

It is clear that Hamming andeliminationdecoding can in general lead to different results. For
example, it may happen ineliminationdecoding that the class with smallest Hamming distance is
prematurely eliminated, and the class with the largest Hamming distance is declared the winner. We
note that, if there is a class that wins all otherK− 1 classes, Hamming andeliminationdecoding
lead to the same classification result.

4.2 Datasets and Experimental Setup

We evaluated the performance of different ECOCs using the eleven standard datasets listed in Ta-
ble 1. The datasetssoybean-large, vowel, isolet, letter, satimageandpendigitsare available at the
UCI repository, with associated documentation. The other five datasets are related to speech recog-
nition. In order to facilitate reproducing our results, these datasets and their descriptions were made
available on the Web,3 and here we present only a brief summary. Thevowel-lsf is a version of
vowel, obtained by a non-linear transformation (log-area ratios to line spectral frequencies) that is
standard in speech coding. Thee-setis a subset of isolet consisting of the confusable letters{B, C,
D, E, G, P, T, V, Z}. The two versions of the Peterson and Barney’s vowel data, namelypbvowelF0-3
andpbvoweluF1-2, are described by Klautau (2002). Thetimit-plp40dataset is a version of TIMIT,4

a speech database with phonetic transcriptions. We used 12 perceptual linear prediction (PLP) co-
efficients and energy to represent each frame (10 milliseconds). As phones have different durations,
we linearly warped them into three regions, and took the average of each region to obtain a vector
with fixed-length (Ganapathiraju et al., 1998). After adding the phone duration (number of frames),
we obtained 3×13+1= 40 features. We collapsed the 61 TIMIT labels into the standard 39 classes
proposed by Kai-Fu Lee.

All datasets have a standard partition into training and test sets, which were used throughout the
experiments. For each binary training set, the attributes were normalized to the range[0,1] based on
their minimum and maximum values, and the same normalization factors were used for the test set.

3. http://speech.ucsd.edu/aldebaro/repository.
4. http://www.ldc.upenn.edu/Catalog/topten.html.
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SVM parameters K-ary errorεK (%)
(polynomial kernel,

Dataset ECOC matrix unless noted) (1−z)+ Hamming elimination

soybean-large all-pairs δ = 1,E = 2,C = 0.1 10.1 10.1 10.6
one-vs-rest linear,C = 1 6.6 (+) 8.5 -

vowel all-pairs RBF, γ = 1,C = 10 37.7 34.6 (+) 33.1
one-vs-rest RBF,γ = 10,C = 10 41.3 68.6 -

vowel-lsf all-pairs RBF,γ = 1,C = 1 32.2 29.9 (+) 30.3
one-vs-rest RBF,γ = 10,C = 10 39.2 66.0 -

pbvowelFu1-2 all-pairs RBF, γ = 10,C = 1 19.0 19.0 19.0
one-vs-rest RBF,γ = 10,C = 10 18.7 28.5 -

pbvowelF0-3 all-pairs δ = 1,E = 4,C = 1 11.2 10.7 10.8
one-vs-rest RBF,γ = 10,C = 10 12.2 15.9 -

isolet all-pairs δ = 0,E = 3,C = 10 4.0 4.0 3.8
one-vs-rest δ = 0,E = 4,C = 0.1 3.8 8.1 -

e-set all-pairs δ = 0,E = 4,C = 1 5.6 6.3 5.9
one-vs-rest δ = 1,E = 4,C = 1 5.6 8.5 -

letter all-pairs RBF,γ = 10,C = 10 3.2 2.3 2.2
one-vs-rest RBF,γ = 10,C = 10 2.1 4.4 -

satimage all-pairs RBF, γ = 1,C = 10 8.4 8.2 8.3
one-vs-rest RBF, γ = 10,C = 1 8.2 13.1 -

pendigits all-pairs RBF, γ = 1,C = 10 2.1 1.6 1.6
one-vs-rest RBF, γ = 1,C = 10 1.1 (+) 2.1 -

timit-plp40 all-pairs RBF,γ = 1,C = 1 31.3 25.9 26.0
one-vs-rest RBF,γ = 4,C = 1 27.0 42.9 -

Table 2: Comparison of one-vs-rest and all-pairs matrices in terms of accuracy. The all-pairs with
Hamming and one-vs-rest withL(z) = (1− z)+ (max-wins) decoding were compared
through McNemar’s test, with a symbol (+) indicating the two ECOCs are not equivalent.

The binary learner was the SVM with either the polynomialK (x,y) = (x ·y+ δ)E or Gaussian
radial-basis function (RBF)K (x,y) = e−γ||x−y||2 kernel.5 We used the same SVM parameters for
all binary classifiers of a given ECOC matrix. Because we were interested on comparing the perfor-
mance of binary classifiers using different ECOCs, we chose thecomplexity parameter Cand kernel
parameters according to performance on the test set. Therefore, our results should not be interpreted
as indicating generalization error. More specifically, for each ECOC matrix we tested all decoders
using the set of parameters that achieved the smallest error with any decoding method. If differ-
ent sets of SVM parameters achieved the smallest error, we chose the parameters that minimized
the number of distinct support vectors. This methodology differs from the one adopted by Platt
et al. (2000), Hsu and Lin (2002), where different SVM parameters could be used for Hamming and
elimination, making harder to identify the reason for their similar accuracy.

4.3 Results

Table 2 shows the results comparing theK-ary error of ECOCs with one-vs-rest and all-pairs. For
the all-pairs matrix,elimination achieved accuracy similar to Hamming decoding, whileL(z) =
(1− z)+ was slightly worse. For the one-vs-rest matrix, max-wins has much better performance
than Hamming decoding, as expected.

5. Usingδ = 0 andE = 1 leads to alinear SVM, which can be converted to a perceptron to avoid storing the support
vectors and save computations.
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Our main goal is to evaluate the binary classifiers, but we note that Table 2 indicates that quan-
tizing the scores may be beneficial when using all-pairs (or other matrices with zero entries). In
contrast, Allwein et al. (2000) concluded thatL(z) = (1− z)+ often gives better results than Ham-
ming decoding for the all-pairs matrix. For example, they reported that, for ECOCs using all-pairs
and SVMs with polynomial kernel of order 4, decoding withL(z) = (1−z)+ and Hamming led to
27.5% and 50.4% of error, respectively, for the satimage dataset. As we used the test set to perform
model selection, their results should not be compared directly to Table 2. However, when we used
all-pairs and Hamming with the SVM parametersδ = 1, E = 4 andC=1, the error rate for satimage
was 11.0%.

We attribute the fact that Hamming outperformsL(z) = (1−z)+ to the large number ofunseen
classes for binary classifiers of all-pairs. IfM(k,b) = 0, we say that classk is unseenwith respect
to classifierfb. During the test stage, all instances associated to anunseenclassk lead fb to make
potentially erratic predictions.6 All-pairs is theα vs. β matrix with the largest number ofunseen
classes per binary classifier. In this case, the scores are unreliable and quantizing them to{−1,+1}
can lead to higher accuracy.

At this point we assume Hamming and max-wins as the decoders for all-pairs and one-vs-rest,
respectively, and compare the accuracy of these two ECOCs using McNemar’s test (see Dietterich,
1998) (0.05 significance level). As shown in Table 2, McNemar’s test indicated that the two clas-
sifiers were equivalent for 7 out of the 11 datasets. We now investigate the performance of the
individual binary classifiers, trying to characterize the situations where one ECOC outperforms the
other. This analysis is not required in order to understand the numbers for the soybean-large dataset
though, which confirm that all-pairs may perform poorly if there is not enough training data for all
classifiers.

Table 3 shows the performance on the test set of the binary classifiers corresponding to the
ECOCs in Table 2. Besides some statistics of the binary error that we will discuss later, Table 3
presents histograms of Hamming distancesdH(M(k∗, ·),h(x)) between quantized scoresh(x) and
codewordM(k∗, ·), wherek∗ is the winner class. For each dataset, the sum of the six right-most
columns is equal to the total number of test instances. These six columns were split into two
subsets, depending whether Hamming decoding led to aK-ary error or not. For example, for the
soybean-large dataset and one-vs-rest matrix, 344 test instances were correctly classified (sum of 3
columns under “when match”) and 32 were misclassified (columns “when error”), corresponding to
theK-ary error of 8.5% in Table 2. In this case, all binary classifiers made the correct decision for
343 instances (column “when match / 0”). For one test instance, the Hamming distance was one,
but the instance was correctly classified (column “when match / 1”). Among the instances that led
to errors, there were 13 for whichdH = 0.

WhendH = 0 for one-vs-rest (only one binary classifier has a positive score), max-wins and
Hamming decoding lead to the same decision. Table 3 shows that, for one-vs-rest, most of the
K-ary errors occurred with the winner class leading todH = 1, while only 5 out of 21,399 test
instances led todH > 1. Hence, in almost all cases, the results with max-wins differed from the
ones with Hamming when the quantized scoresh(x) led to either a tie between two or among all
K classes. In these cases, max-wins could use the magnitudes of scores as a tie-breaking rule,
outperforming Hamming decoding as shown in Table 2. For the isolet dataset for example, among

6. We are using the termunseenclasses to denote a problem that has been discussed in the literature related to all-
pairs. For example, Hastie and Tibshirani (1998) conducted an experiment with artificial data to characterize it, and
mentioned that Geoffrey Hinton originally pointed out the problem.
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One-versus-rest

Binary error statistics Occurrences ofdH (M(k∗, ·),h(x))
when match when error

Dataset mean (εb) min. max. std. 0 1 > 1 0 1 > 1
soybean-large 0.006 0 0.043 0.013 343 1 0 13 19 0
vowel 0.074 0.054 0.087 0.011 120 25 0 35 282 0
vowel-lsf 0.076 0.032 0.132 0.029 141 16 0 64 241 0
pbvowelFu1-2 0.042 0.012 0.098 0.027 424 5 0 78 93 0
pbvowelF0-3 0.028 0.005 0.041 0.013 621 18 0 68 53 0
isolet 0.005 0 0.013 0.005 1391 40 2 25 102 0
e-set 0.017 0.002 0.026 0.008 475 18 1 18 28 0
letter 0.002 0 0.008 0.002 3807 15 0 39 139 0
satimage 0.032 0.012 0.056 0.017 1708 29 0 95 168 0
pendigits 0.003 2.86e-4 0.009 0.002 3412 11 0 23 52 0
timit-plp40 0.028 0.013 0.092 0.025 4011 65 2 603 2461 0

All-pairs

Binary error statistics Occ. ofdH (M(k∗, ·),h(x))−0.5
(K−1

2

)
when match when error

Dataset mean (εb) min. max. std. 0 1 > 1 0 1 > 1
soybean-large 0.010 0 0.789 0.079 334 1 3 23 3 12
vowel 0.054 0 0.286 0.073 297 4 1 133 26 1
vowel-lsf 0.046 0 0.238 0.068 318 5 1 125 13 0
pbvowelFu1-2 0.026 0 0.184 0.043 486 0 0 112 2 0
pbvowelF0-3 0.013 0 0.145 0.030 677 2 0 80 1 0
isolet 0.002 0 0.126 0.010 1496 1 0 51 11 0
e-set 0.014 0 0.042 0.014 505 1 0 27 7 0
letter 0.002 0 0.034 0.004 3907 0 1 86 6 0
satimage 0.019 0 0.092 0.029 1833 2 0 161 4 0
pendigits 0.004 0 0.022 0.005 3439 2 0 54 3 0
timit-plp40 0.015 0 0.220 0.027 5264 26 1 1799 51 1

Table 3: Performance of the binary classifiers associated to the ECOCs in Table 2. The six right-
most columns are histograms of Hamming distancesdH between quantized scoresh(x) and
the codewordM(k∗, ·), wherek∗ is the winner class. For all-pairs, the constant 0.5

(K−1
2

)
was subtracted fromdH .

the 144 instances that led todH > 0, 109 and 42 were correctly classified by max-wins and Hamming
decoding, respectively. In this case, around half of theK-ary errors were associated toh(x) with
two positive entries. Assuming the correct class was among the two competing, a random guess had
a 50% error rate. For the cases wherehb(x) = −1, ∀b, Hamming decoding had to randomly break
the tie amongK = 26 classes.

For all-pairs, the constant 0.5
(K−1

2

)
corresponding to

(K−1
2

)
zero entries inM was subtracted

from dH in Table 3. In this case, there was a class that won according to all of itsK − 1 binary
classifiers for 99.1% of the test instances when considering all datasets.7 If we look at each dataset
individually, the percentage varies from 93.1% (vowel) to 99.9% (pendigits). This percentage of
unanimous decisions can explain whyelimination and Hamming decoding perform similarly in
terms of accuracy (Platt et al., 2000, Hsu and Lin, 2002).

We now evaluate how tight are the bounds on the multiclass errorεK, and how they can help to
understand the ECOC performance. It can be seen from Table 3 thatεb is lower for one-vs-rest only
for soybean-large and pendigits, which are the two datasets for which one-vs-rest outperformed all-

7. Kreßel (1999) noted this behavior in his experiments.
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pairs. For vowel and vowel-lsf (for which all-pairs achieved higher accuracy),εb for one-vs-rest is
higher than for all-pairs by a factor of 1.37 and 1.65, respectively. In spite of these facts, a careful
evaluation indicates that only the binary errorεb does not suffice to predict theK-ary error. We
elaborate it as follows.
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Figure 1: Comparison of upper bounds and empirical results for ECOCs with Hammming decod-
ing. The numbers (in percentage) correspond to the division of results in Table 2 by the
upper bounds on average number ofK-ary errorsεK for Equations (5) and (6). A result of
100% would correspond to an ECOC achieving in practice the upper bound onεK.

Figure 1 shows that the bounds (5) and (6) on theK-ary errorεK for Hamming decoding are close
to experimental results. These bounds, and consequently the binary errorεb, can be effectively used
to predictεK when using the Hamming decoder. In practice however, we want to use max-wins
decoding for one-vs-rest, for whichεb alone cannot predict performance. For example, for isolet,
one-vs-rest has a binary errorεb that is 2.5 times higher thanεb for all-pairs, but still achieves
slightly betterK-ary errorεK.

5. Conclusions

We presented new bounds on theK-ary error of ECOCs with nearest-neighbor decoding. We then
specialized the bounds for Hamming decoding andα vs. β matrices. We showed that for large
enoughK, α vs. β matrices withα = β = K/2, have the same behavior as Hadamard matrices. We
also conducted simulations to evaluate the bounds and compare ECOCs based on one-vs-rest and
all-pairs matrices.

The conclusions of these experiments can be summarized as follows. The bounds are relatively
tight, and accurately predict the multiclass error based on the performance of the binary classifiers
when using Hamming decoding. Quantizing the scores (as in Hamming decoding) can be benefi-
cial for ECOCs with the all-pairs matrix, and we attribute this to the influence ofunseenclasses,
for which the scores are unreliable. Hamming andeliminationdecoding achieved equivalent per-
formance for all datasets, and we explained that these two decoders lead to the same classification
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result when one class wins according to all of itsK − 1 binary classifiers, which is the case for
99.1% of our test instances.
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